八年级3月份数学试题
2022-2023学年江苏省南京市秦淮一中八年级(下)月考数学试卷(3月份)
2022-2023学年江苏省南京市秦淮一中八年级(下)月考数学试卷(3月份)一、单选题1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是() A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线2.下列调查中,最适宜采用全面调查(普查)的是()A.调查一批灯泡的使用寿命B.调查淮河水质情况C.调查江苏电视台某栏目的收视率D.调查全班同学的身高3.下列说法中,正确的是()A.“掷一次质地均匀的骰子,向上一面的点数是6”是必然事件B.“经过有交通信号灯的路口,遇到红灯”是随机事件C.“发热病人的核酸检测呈阳性”是必然事件D.“13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月”是不可能事件4.下面性质中菱形有而矩形没有的是()A.邻角互补B.内角和为360C.对角线相等D.对角线互相垂直5.如图,将ABC ∆绕点A 逆时针旋转50︒得到ADE ∆,若70E ∠=︒且AD BC ⊥于点F ,则BAC ∠的度数为()A .65︒B .70︒C .75︒D .80︒6.如图,已知四边形ABCD 是平行四边形,下列说法正确的是()A .若AB AD =,则ABCD 是矩形B .若AB AD =,则ABCD 是正方形C .若AB BC ⊥,则ABCD 是矩形D .若AC BD ⊥,则ABCD 是正方形7.如图,菱形ABCD 的对角线交于原点O ,若点B 的坐标为(4,)m ,点D 的坐标为(,2)n ,则m n +的值为()A .2B .2-C .6D .6-8.如图,E 为正方形ABCD 对角线BD 上一点,F 为边BC 的中点,EG BC ⊥于G ,若AE EF =,下列结论中:①AE EF ⊥;②FG CG =;③23ABE EBG S S ∆∆=;④2BE ED BF +=;⑤AB BF +=,正确结论的有()个.A .2B .3C .4D .5二、填空题9.为了了解我校八年级的780名学生的数学期中成绩,随机抽取80名学生的数学成绩进行分析,在该抽样中,样本是指.10.如图,D 、E 分别是ABC ∆的边AB 、AC 的中点.若6BC =,则DE 的长为.11.ABCD 中,:7:2A B ∠∠=,则C ∠=度.12.某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.该事件最有可能是(填写一个你认为正确的序号).①掷一个质地均匀的正六面体骰子,向上一面的点数是2;②掷一枚硬币,正面朝上;③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.13.将八年级3班分成五个组,各组人数在频数分布直方图中的小长方形高的比依次为1:2:5:3:1,人数最多的一组有20人,则该班共有人.14.一个不透明纸袋中装有黑白两种颜色的小球100个,为了估计两种颜色的球各有多少个,现将纸袋中的球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,多次重复上述过程后,发现摸到黑球的频率稳定在0.65,据此可以估计黑球的个数约是.15.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(2,0)-,点D 在y 轴上,则点C 的坐标是.16.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是OB ,OD 的中点,连接AE ,AF ,CE ,CF .若AB AC ⊥,3AB =,5BC =,则AE 的长为.17.在平面直角坐标系中,OABC 的边OC 落在x 轴的正半轴上,且点(4,0)C ,(6,2)B ,直线21y x =+以每秒1个单位的速度向下平移,经过秒该直线可将OABC 的面积平分.18.如图,正方形ABCD的边长为8,点E在AB上,2BE=,点M,N为AC上动点,且MN=,连接BN,EM,则四边形BEMN周长的最小值为.三、解答题19.某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.20.某玩具公司承接了第19届杭州亚运会吉祥物公仔的生产任务,现对一批公仔进行抽检,其结果统计如下,请根据表中数据,回答问题:抽取的公仔数n101001000200030005000优等品的频数m996951190028564750优等品的频率mn0.90.96a0.950.952b(1)a=;b=.(2)从这批公仔中任意抽取1只公仔是优等品的概率的估计值是.(精确到0.01)(3)若该公司这一批次生产了10000只公仔,请问这批公仔中优等品大约是多少只?21.如图,在正方形网格中,ABC∆的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出ABC∆关于原点O成中心对称的△111A B C;(2)直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.22.在平行四边形ABCD中,对角线AC和BD交于点O.若6AB=,8AC=,14BD=.求OCD∆的周长.23.如图,在平行四边形ABCD中()<.AB BC(1)在边AD上找一点E,使得E点到直线AB和直线BC的距离相等.(尺规作图,并保留作图痕迹)(2)在(1)的条件下,在边BC上取一点F,使得BF AE=,连接EF,请判断四边形ABFE 的形状,并说明理由.24.如图,在ABC∠=︒,CD是AB边上的中线,E是CD的中点,过点C作ACB∆中,90CF AB,交AE的延长线于点F,连接BF.//(1)求证:四边形BDCF是菱形;(2)当ABC∆满足时,四边形BDCF是正方形.25.表格是华师版九年级上册数学教材102103-页的部分内容.性质:直角三角形的斜边中线等于斜边的一半给出上述性质证明中的部分演绎推理的过程如下:已知:如图①,在ABC∆中,90ACB∠=︒,CD为斜边AB上的中线.求证:12 CD AB=证明:如图②,延长CD至点E,使DE CD=,连接AE,BE.(1)请结合图1将证明过程补充完整.(2)如图2,在ABC∆中,AD是高,CE是中线,点F是CE的中点,DF CE⊥,点F为垂足,78AEC∠=︒,则BCE∠为度.26.【问题情境】(1)同学们我们曾经研究过这样的问题:已知正方形ABCD,点E在CD的延长线上,以CE为一边构造正方形CEFG,连接BE和DG,如图1所示,则BE和DG的数量关系为,位置关系为.【继续探究】(2)若正方形ABCD的边长为4,点E是AD边上的一个动点,以CE为一边在CE的右侧作正方形CEFG,连接DG、BE,如图2所示,①请判断线段DG与BE有怎样的数量关系和位置关系,并说明理由;②连接BG,若1AE=,求线段BG长.爱动脑筋的小丽同学是这样做的:过点G作GH BC⊥,如图3,你能按照她的思路做下去吗?请写出你的求解过程.【拓展提升】(3)在(2)的条件下,点E在AD边上运动时,利用图2,则BG BE+的最小值为.2022-2023学年江苏省南京市秦淮一中八年级(下)月考数学试卷(3月份)参考答案与试题解析一、单选题1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是() A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线【分析】根据把一个图形绕某一点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.【点评】此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列调查中,最适宜采用全面调查(普查)的是()A.调查一批灯泡的使用寿命B.调查淮河水质情况C.调查江苏电视台某栏目的收视率D.调查全班同学的身高【分析】适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.【解答】解:A、调查一批灯泡的使用寿命,具有破坏性,应当使用抽样调查,故本选项不合题意;B、调查淮河水质,水量较大,应当采用抽样调查的方式,故本选项不合题意;C、调查江苏电视台某栏目的收视率,应当采用抽样调查的方式,故本选项不合题意.D、调查全班同学的身高,应当采用全面调查,故本选项符合题意.故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列说法中,正确的是()A.“掷一次质地均匀的骰子,向上一面的点数是6”是必然事件B.“经过有交通信号灯的路口,遇到红灯”是随机事件C.“发热病人的核酸检测呈阳性”是必然事件D.“13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月”是不可能事件【分析】根据事件的分类,对每个选项逐个进行分类,判断每个选项可得答案.【解答】解:A.“掷一次质地均匀的骰子,向上一面的点数是6”是随机事件,此选项错误;B.“经过有交通信号灯的路口,遇到红灯”是随机事件,此选项正确;C.“发热病人的核酸检测呈阳性”是随机事件,此选项错误;D.“13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月”是必然事件,此选项错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.下面性质中菱形有而矩形没有的是()A.邻角互补B.内角和为360︒C.对角线相等D.对角线互相垂直【分析】本题要熟知菱形以及矩形的性质方能解答要对比两者之间的相同点以及不同点.【解答】解:A、 平行四边形的邻角互补,∴矩形的邻角互补.故矩形和菱形的邻角均互补,故A错;B 、平行四边形的内角和为360,矩形内角和为360度.故矩形和菱形的内角和都是360︒,故B 错;C 、矩形的对角线相等,菱形的对角线互相垂直且平分,故C 错;D 、菱形对角线互相垂直,矩形的对角线不互相垂直.故选:D .【点评】根据菱形对角线互相垂直和矩形对角线相等的性质解答.5.如图,将ABC ∆绕点A 逆时针旋转50︒得到ADE ∆,若70E ∠=︒且AD BC ⊥于点F ,则BAC ∠的度数为()A .65︒B .70︒C .75︒D .80︒【分析】由旋转的性质可得50BAD ∠=︒,70E ACB ∠=∠=︒,由直角三角形的性质可得20DAC ∠=︒,即可求解.【解答】解: 将ABC ∆绕点A 逆时针旋转50︒得ADE ∆,50BAD ∴∠=︒,70E ACB ∠=∠=︒,AD BC ⊥ ,20DAC ∴∠=︒,70BAC BAD DAC ∴∠=∠+∠=︒.故选:B .【点评】本题考查了旋转的性质,直角三角形的性质,掌握旋转的性质是本题的关键.6.如图,已知四边形ABCD 是平行四边形,下列说法正确的是()A .若AB AD =,则ABCD 是矩形B .若AB AD =,则ABCD 是正方形C .若AB BC ⊥,则ABCD 是矩形D .若AC BD ⊥,则ABCD 是正方形【分析】根据已知条件及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.【解答】解:A 、有一组邻边相等的平行四边形是菱形,故本选项不符合题意;B 、有一组邻边相等的平行四边形是菱形,故本选项不符合题意;C 、有一个角是直角的平行四边形是矩形,故本选项符合题意;D 、错误,对角线互相垂直的平行四边形是菱形,故本选项不符合题意;故选:C .【点评】本题考查了对矩形的判定、菱形的判定,正方形的判定的应用,能正确运用判定定理进行判断是解此题的关键.7.如图,菱形ABCD 的对角线交于原点O ,若点B 的坐标为(4,)m ,点D 的坐标为(,2)n ,则m n +的值为()A .2B .2-C .6D .6-【分析】根据题意可知,原点为对角线BD 的中点,然后即可求得m 、n 的值,从而可以求得m n +的值.【解答】解: 菱形ABCD 的对角线交于原点O ,点B 的坐标为(4,)m ,点D 的坐标为(,2)n ,∴402n +=,202m +=,解得4n =-,2m =-,2(4)6m n ∴+=-+-=-,故选:D .【点评】本题考查菱形的性质、坐标与图形的性质,解答本题的关键是明确题意,求出m 、n 的值.8.如图,E 为正方形ABCD 对角线BD 上一点,F 为边BC 的中点,EG BC ⊥于G ,若AE EF =,下列结论中:①AE EF ⊥;②FG CG =;③23ABE EBG S S ∆∆=;④2BE ED BF +=;⑤AB BF +=,正确结论的有()个.A .2B .3C .4D .5【分析】根据正方形的对称性得到EF CE =,利用等腰三角形三线合一的性质判断②即可;证明()ABE CBE SAS ∆≅∆,得到BAE BCE ∠=∠,过B 作BH AE ⊥于H ,由ABE BEG ∠=∠,得到EBH BEF ∠=∠,即可判断①;由点F 是BC 的中点,点G 是CF 的中点,得到34BG BC =,推出34EBG EBC S S ∆∆=,即可判断③;由BE ED BD BC +=>,2BC BF =,即可判断④;过E 作EM AB ⊥于M ,得到Rt AME Rt CGE(HL)∆≅∆,推出AM CG =,由1)2BE AB BF ==-,即可判断⑤.【解答】解:E 为正方形ABCD 对角线BD 上一点,正方形关于BD 对称,AE CE ∴=,AE EF = ,EF CE ∴=,EG BC ⊥ 于G ,FG CF ∴=,故②正确;正方形ABCD 中,AB BC =,45ABD CBD ∠=∠=︒,BE BE =,()ABE CBE SAS ∴∆≅∆,BAE BCE ∴∠=∠,过B 作BH AE ⊥于H,ABH CEG FEG ∴∠=∠=∠,ABE BEG ∠=∠ ,EBH BEF ∴∠=∠,90AEF BEF AEB EBH BEH ∴∠=∠+∠=∠+∠=︒,AE EF ∴⊥,故①正确;点F 是BC 的中点,点G 是CF 的中点,∴34BG BC =,∴34EBG EBC S S ∆∆=,∴43ABE EBG S S ∆∆=,故③错误;BE ED BD BC +=> ,2BC BF =,2BE ED BF ∴+>,故④错误;过E 作EM AB ⊥于M,ME GE = ,AE CE =,Rt AME Rt CGE(HL)∴∆≅∆,AM CG ∴=,1)2BE AB BF ==-,∴2AB BF AB AB BF AB BF =-=+-=+,故⑤正确;正确的选项有①②⑤,共3个,故选:B .【点评】此题考查了正方形的性质,全等三角形的判定和性质,勾股定理计算,正确掌握正方形的性质及全等三角形的判定定理是解题的关键.二、填空题9.为了了解我校八年级的780名学生的数学期中成绩,随机抽取80名学生的数学成绩进行分析,在该抽样中,样本是指被抽取80名学生的数学成绩.【分析】样本是总体中所抽取的一部分个体,可得答案.【解答】解:为了了解我校八年级的780名学生的数学期中成绩,随机抽取80名学生的数学成绩进行分析,在该抽样中,样本是指被抽取80名学生的数学成绩.故答案为:被抽取80名学生的数学成绩.【点评】本题考查了样本,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.如图,D 、E 分别是ABC ∆的边AB 、AC 的中点.若6BC =,则DE 的长为3.【分析】根据三角形中位线定理计算即可.【解答】解:D 、E 分别是ABC ∆的边AB 、AC 的中点,DE ∴是ABC ∆的中位线,116322DE BC ∴==⨯=,故答案为:3.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.11.ABCD 中,:7:2A B ∠∠=,则C ∠=140度.【分析】由平行四边形的性质可得180A B ∠+∠=︒,又有:7:2A B ∠∠=,可求得140A ∠=︒,140C A ∴∠=∠=︒【解答】解:ABCD 180A B ∴∠+∠=︒又:7:2A B ∠∠= 140A ∴∠=︒C A ∠=∠ 140C ∴∠=︒【点评】此题主要考查:平行四边形的两组对角分别相等,平行四边形的邻角互补.12.某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.该事件最有可能是③(填写一个你认为正确的序号).①掷一个质地均匀的正六面体骰子,向上一面的点数是2;②掷一枚硬币,正面朝上;③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.【分析】根据统计图可知,试验结果在0.33附近波动,即其概率13P ≈,计算三个选项的概率,约为13者即为正确答案.【解答】解:由折线统计图知,随着试验次数的增加,频率逐渐稳定在0.33,即13左右,①中向上一面的点数是2的概率为16,不符合题意;②中掷一枚硬币,正面朝上的概率为12,不符合题意;③中从中任取一球是红球的概率为13,符合题意,故答案为:③.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.13.将八年级3班分成五个组,各组人数在频数分布直方图中的小长方形高的比依次为1:2:5:3:1,人数最多的一组有20人,则该班共有48人.【分析】依据各组人数在频数分布直方图中的小长方形高的比依次为1:2:5:3:1,可求得人数最多的一组所占的比值,进而得出总人数.【解答】解: 各组人数在频数分布直方图中的小长方形高的比依次为1:2:5:3:1,人数最多的一组所占的比值55 1253112=++++,人数最多的一组有20人,∴总人数为:5204812÷=(人),故答案为:48.【点评】本题主要考查了频数分布直方图,解题时注意:频数分布直方图中的小长方形高的比就是各组的频数之比.14.一个不透明纸袋中装有黑白两种颜色的小球100个,为了估计两种颜色的球各有多少个,现将纸袋中的球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,多次重复上述过程后,发现摸到黑球的频率稳定在0.65,据此可以估计黑球的个数约是65个.【分析】用球的总个数乘以黑球的频率的稳定值即可.【解答】解:根据题意估计黑球的个数约是1000.6565⨯=(个),故答案为:65个.【点评】本题主要考查利用频率估计概率,掌握频率稳定性定理,用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率是解题的关键.15.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(2,0)-,点D在y轴上,则点C 的坐标是(5,4)-.【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解: 菱形ABCD的顶点A,B的坐标分别为(3,0),(2,0)-,点D在y轴上,5AB∴=,5AD∴=,∴由勾股定理知:4OD===,∴点C 的坐标是:(5,4)-.故答案为:(5,4)-.【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO 的长是解题关键.16.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是OB ,OD 的中点,连接AE ,AF ,CE ,CF .若AB AC ⊥,3AB =,5BC =,则AE 的长为132.【分析】由平行四边形的性质得OA OC =,OB OD =,再由勾股定理得4AC =,则122OA AC ==,再由勾股定理求出OB =出结论.【解答】解: 四边形ABCD 是平行四边形,OA OC ∴=,OB OD =,AB AC ⊥ ,90BAC ∴∠=︒,4AC ∴==,122OA AC ∴==,在Rt AOB ∆中,由勾股定理得:OB ===,90BAO ∠=︒ ,E 是OB 的中点,11322AE OB ∴==,故答案为:2.【点评】本题考查了平行四边形的性质、直角三角形斜边上的中线性质以及勾股定理等知识;熟练掌握平行四边形的性质,由勾股定理求出OA 、OB 的长是解题的关键.17.在平面直角坐标系中,OABC 的边OC 落在x 轴的正半轴上,且点(4,0)C ,(6,2)B ,直线21y x =+以每秒1个单位的速度向下平移,经过6秒该直线可将OABC 的面积平分.【分析】首先连接AC 、BO ,交于点D ,当21y x =+经过D 点时,该直线可将OABC 的面积平分,然后计算出过D 且平行直线21y x =+的直线解析式,从而可得直线21y x =+要向下平移6个单位,进而可得答案.【解答】解:连接AC 、BO ,交于点D ,当21y x =+经过D 点时,该直线可将OABC 的面积平分;四边形AOCB 是平行四边形,BD OD ∴=,(6,2)B ,点(4,0)C ,(3,1)D ∴,设DE 的解析式为y kx b =+, 平行于21y x =+,2k ∴=, 过(3,1)D ,DE ∴的解析式为25y x =-,∴直线21y x =+要向下平移6个单位,∴时间为6秒,故答案为:6.【点评】此题主要考查了平行四边形的性质,以及一次函数,关键是正确掌握经过平行四边形对角线交点的直线平分平行四边形的面积.18.如图,正方形ABCD 的边长为8,点E 在AB 上,2BE =,点M ,N 为AC 上动点,且MN =,连接BN ,EM ,则四边形BEMN 周长的最小值为12+【分析】连接BD ,DN ,作点E 关于BD 的对称点F ,则2BE BF ==,连接NF ,DF ,根据正方形的性质和平行四边形的判定可证明四边形MEFN 是平行四边形,得ME NF =,BN DN =,利用三角形三边关系可得ME BN NF DN DF +=+ ,再利用勾股定理求得DF 即可求解.【解答】解:连接BD ,DN ,作点E 关于BD 的对称点F ,则2BE BF ==,连接NF ,DF ,四边形ABCD 是正方形,90ABC BCD ∴∠=∠=︒,DB AC ⊥,BN DN =,//EF AC ∴,EF MN ==,∴四边形MEFN 是平行四边形,ME NF∴=,∴+=+ (当D,N,F共线时取等号),ME BN NF DN DFDF==,在Rt DCF∆中,8CF=-=,则10CD=,826ME BN∴+ ,10∴+++++MN BE ME BN210,即四边形BEMN的周长的最小值为12+,故答案为:12+.【点评】本题主要考查了正方形的性质,平行四边形的判定与性质,轴对称-最短路线问题,将EM BN+的最小值转化为FN DN+是解题的关键.三、解答题19.某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=100,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.【分析】(1)根据其他垃圾的吨数和所占的百分比可以求得m的值,然后根据条形统计图中的数据,即可得到n的值;(2)根据统计图中的数据,可以得到可回收物的吨数,然后即可将条形统计图补充完整;(3)根据统计图中的数据,可以计算出厨余垃圾所对应的扇形圆心角的度数;(4)根据统计图中的数据,可以计算出该市2000吨垃圾中约有多少吨可回收物.【解答】解:(1)88%100m=÷=,1003028%100%60%100n---=⨯=,故答案为:100,60;(2)可回收物有:100302860---=(吨),补全完整的条形统计图如图所示;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为:30 360108100︒⨯=︒,故答案为:108;(4)6020001200100⨯=(吨),即该市2000吨垃圾中约有1200吨可回收物.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.某玩具公司承接了第19届杭州亚运会吉祥物公仔的生产任务,现对一批公仔进行抽检,其结果统计如下,请根据表中数据,回答问题:抽取的公仔数n101001000200030005000优等品的频数m996951190028564750优等品的频率mn0.90.96a0.950.952b(1)a=0.951;b=.(2)从这批公仔中任意抽取1只公仔是优等品的概率的估计值是.(精确到0.01)(3)若该公司这一批次生产了10000只公仔,请问这批公仔中优等品大约是多少只?【分析】(1)用优等品的频数除以抽取的总公仔数即可得出a与b的值;(2)由表中数据可判断频率在0.95左右摆动,利用频率估计概率可判断任意抽取1只公仔是优等品的概率为0.95;(3)用总生产的公仔数乘以优等品的概率,即可得出答案.【解答】解:(1)9510.9511000a==,47500.955000b==.故答案为:0.951,0.95;(2)从这批公仔中,任意抽取1只公仔是优等品的概率的估计值是0.95,故答案为:0.95;(3)根据题意得:100000.959500⨯=(只),答:这批公仔中优等品大约是9500只.【点评】本题考查了利用频率估计概率:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随试验次数的增多,值越来越精确.21.如图,在正方形网格中,ABC∆的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出ABC∆关于原点O成中心对称的△111A B C;(2)直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标(1,1)或(3,1)--或(5,3)-.【分析】(1)根据旋转的性质即可作出ABC ∆关于原点O 成中心对称的△111A B C ;(2)根据网格即可写出以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.【解答】解:(1)如图,△111A B C 即为所求;(2)顶点D 的坐标为:1(1,1)D 或2(3,1)D --或3(5,3)D -.故答案为:(1,1)或(3,1)--或(5,3)-.【点评】本题考查了作图-旋转变换,解决本题的关键是掌握旋转的性质.22.在平行四边形ABCD 中,对角线AC 和BD 交于点O .若6AB =,8AC =,14BD =.求OCD ∆的周长.【分析】由四边形ABCD 是平行四边形,且8AC =,14BD =,6AB =,根据平行四边形的对角线互相平分,即可求得OC 与OD 的长,继而可求得答案.【解答】解: 四边形ABCD 是平行四边形,且8AC =,14BD =,6AB CD ==,∴142OC AC ==,172OD BD ==,OCD ∴∆的周长为:64717CD OC OD ++=++=.【点评】本题重点考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.23.如图,在平行四边形ABCD 中()AB BC <.(1)在边AD 上找一点E ,使得E 点到直线AB 和直线BC 的距离相等.(尺规作图,并保留作图痕迹)(2)在(1)的条件下,在边BC 上取一点F ,使得BF AE =,连接EF ,请判断四边形ABFE 的形状,并说明理由.【分析】(1)作ABC ∠的角平分线交AD 于E 点,根据角平分线的性质可判断E 点满足条件;(2)先根据平行四边形点的性质得到//AD BC ,则AEB FBE ∠=∠,再证明BE 平分ABC ∠,则ABE FBE ∠=∠,接着证明AB AE =,从而可判断四边形ABFE 为平行四边形,然后利用AB AE =可判断四边形ABFE 为菱形.【解答】解:(1)如图,点E 为所作;(2)四边形ABFE 为菱形.理由如下:四边形ABCD 为平行四边形,//AD BC ∴,AEB FBE ∴∠=∠,E 点到直线AB 和直线BC 的距离相等,。
江苏省南通市崇川区南通田家炳中学2022-2023学年八年级下学期3月月考数学试题
江苏省南通市崇川区南通田家炳中学2022-2023学年八年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是( )A .30°B .45°C .60°D .75°2.下列图象中,表示y 是x 的函数的个数有( )A .1个B .2个C .3个D .4个3.如图,要使平行四边形ABCD 成为矩形,需添加的条件是( )A .B .C .D .AB BC =AC BD ⊥AC BD =12∠=∠4.下列式子中,表示是的正比例函数的是( )y x A .B .C .D .2y x 2y x =3xy =23y x=5.如图,在平行四边形中,平分,交边于E ,平分,ABCD AE BAD ∠CD BF ABC ∠交边于F ,,,则的长为( )CD 8AD =10AB =EFA .2B .4C .5D .66.如图,矩形沿对角线折叠,已知长,宽,那么折叠后ABCD BD 8cm BC =6cm AB =重合部分的面积是( )A .B .C .D .248cm 224cm 218.75cm 218cm 7.如图,正方形中,点P 和H 分别在边上,且,,ABCD AD AB 、BP CH =15AB =,则BE 的长是( )8BH =A .B .5C .7D .158120178.如图,在中,,,,分别是角平分线和中线,过点C ABC 8AB =5AC =AD AE 作于点F ,连接,则线段的长为( )CF AD ⊥EF EFA .B .3C .4D .1329.如图(折线ABCDE )描述了一辆汽车在某一直路上行驶的过程中,汽车离出发地的距离s (千米)与行驶时间t (小时)之间的变量关系.根据图中提供的信息,给出下列说法:①汽车共行驶了100千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中(含停留过程)的平均速度为千米/时;④汽车出发后3小时至4.5小4009时之间,其行驶的速度在逐渐减小.其中正确的有( )A .1个B .2个C .3个D .4个10.如图,正方形的边长为4,点M 为边上一动点,将沿直线翻ABCD DC BCM BM 折,使得点C 落在同一平面内的点处,连接并延长交正方形一边于点N .当C 'DC 'ABCD 时,的长为( )BN DM =CMA .B .2或8-28-C .2D .2或2二、填空题11.函数中自变量x 的取值范围是__.13y x =-12.将直线向上平移1个单位长度,可得直线的表达式为________.22y x =--y =13.菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.14.如图,在菱形ABCD 中,点E 是CD 上一点,连接AE 交对角线BD 于点F ,连接CF ,若∠AED =50°,则∠BCF =__________度.15.关于x 的一次函数的图象经过第一、二、四象限,则a 的取值范围()1y a x a =-+是________.16.若一次函数的图象与一次函数的图象的交点坐标为,则y x a =-+y x b =+(),8m ________.a b +=17.如图,在四边形中,与不平行,M ,N 分别是,的中点,ABCD AB CD AD BC ,,则的长度的取值范围是________.10AB =6CD =MN18.如图,菱形中,,,E ,F 分别是边和对角线上ABCD 60ABC ∠=︒8AB =BC BD 的点,且,则的最小值为________.BE DF =AE AF +三、解答题19.已知y 与成正比例,当时,,求:3x -6x =18y =(1)y 与x 的函数解析式;(2)当时,求x 的值.12y =20.如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E 、F 在AC 上,且AF =CE .求证:BE =DF .21.一次函数的图象由直线向下平移得到,且过点.()0y kx b k =+≠3y x =()1,2A (1)求一次函数的解析式;(2)求直线与坐标轴围成的三角形的面积.y kx b =+22.如图,菱形的对角线相交于点是的中点,点在ABCD AC BD 、O E ,AD F G 、边上,,.CD EF CD ⊥OG ∥E F(1)求证:四边形是矩形;OEFG (2)若,求的长.=5=4FG EF ,CG 23.模型建立:如图1,等腰直角三角形中,,,直线经ABC 90ACB ∠=︒CB CA =ED 过点,过作于,过作于.C A AD ED ⊥D B BE ED ⊥E(1)求证:;BEC CDA ≌(2)模型应用:已知直线:与轴交于点.将直线绕着点逆时针旋转1l 443y x =--y A 1l A 至,如图2,求的函数解析式;45︒2l 2l 24.已知正方形ABCD ,点F 是射线DC 上一动点(不与C ,D 重合).连接AF 并延长交直线BC 于点E ,交BD 于H ,连接CH ,过点C 作CG ⊥HC 交AE 于点G .(1)若点F 在边CD 上,如图1.①证明:∠DAH =∠DCH ;②猜想:△GFC 的形状并说明理由.(2)取DF 中点M ,连接MG .若MG =2.5,正方形边长为4,求BE 的长.25.如图,在平面直角坐标系中,直线:分别与x 轴,y 轴交于点B ,C .直1l 142y x =-+线:.2L 13y x =(1)直接写出点B ,C 的坐标:B ________;C ________.(2)若D 是直线上的点,且的面积为6,求直线的函数表达式;2L COD △CD (3)在(2)的条件下,且当点D 在第一象限时,设P 是射线上的点,在平面内存在CD 点Q .使以O ,C ,P ,Q 为顶点的四边形是菱形,请直接求点Q 的坐标.26.在平面直角坐标系xOy 中,对于两点A ,B ,给出如下定义:以线段AB 为边的正方形称为点A ,B 的“确定正方形”.如图为点A ,B 的“确定正方形”的示意图.(1)如果点M 的坐标为(0,1),点N 的坐标为(3,1),那么点M ,N 的“确定正方形”的面积为___________;(2)已知点O 的坐标为(0,0),点C 为直线上一动点,当点O ,C 的“确定y x b =+正方形”的面积最小,且最小面积为2时,求b 的值.(3)已知点E 在以边长为2的正方形的边上,且该正方形的边与两坐标轴平行,对角线交点为P (m ,0),点F 在直线上,若要使所有点E ,F 的“确定正方形”2y x =--的面积都不小于2,直接写出m 的取值范围.参考答案:1.B【分析】首先设平行四边形中两个内角分别为x °,3x °,由平行四边形的邻角互补,即可得x +3x =180,继而求得答案.【详解】解:设平行四边形中两个内角分别为x °,3x °,则x +3x =180,解得:x =45°,∴其中较小的内角是45°.故选:B .【点睛】此题考查了平行四边形的性质.注意平行四边形的邻角互补.2.B【分析】根据函数的定义:设在某变化过程中有两个变量x 、y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫做自变量,据此判断即可.【详解】解:属于函数的有故y 是x 的函数的个数有2个,故选:B .【点睛】本题考查了函数的定义,熟记定义是本题的关键.3.C【分析】根据矩形的判定定理逐一判断即可.【详解】解:A.添加,可判断平行四边形ABCD 为菱形,不符合题意;AB BC =B.添加,可判断平行四边形ABCD 为菱形,不符合题意;AC BD ⊥C.添加,可判断平行四边形ABCD 为矩形,符合题意;AC BD =D.添加,可判断平行四边形ABCD 为菱形,不符合题意;12∠=∠故选:C .【点睛】本题考查了矩形的判定定理,注意:矩形的判定定理有:①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形.4.C【分析】根据正比例函数的定义求解即可.【详解】解:A 、是二次函数,故此选项错误;2y x =B 、比例函数,故此选项错误;2y x =反C 、是正比例函数,故此选项正确;3x y =D 、不是函数,故此选项错误;23y x =故选C .【点睛】此题主要考查了正比例函数的定义,关键是掌握正比例函数的关系式.5.D【分析】,根据平行四边形的性质,得到,,得到,再结合平分AB CD =AB CD ∥DEA EAB ∠=∠AE ,证明,同理可得,即可得到,即可解答.BAD ∠DA DE =CF CB =EF ED FC DC =+-【详解】解:四边形是平行四边形,ABCD ,,,AB CD ∴∥10AB CD ==8AD BD ==,,DEA EAB ∴∠=∠CFB ABF ∠=∠平分,平分,AE BAD ∠BF ABC ∠,,BAE DAE DEA ∴∠=∠=∠CFB ABF FBC ∠=∠=∠,,8DA DE ∴==8CB CF ==.88106EF DE CF DC ∴=+-=+-=故选:D .【点睛】本题考查了平行四边形的性质,角平分线的性质,等角对等边,熟练运用性质解题是解答的关键.6.C【分析】由矩形的性质易得,那么可用表示出,利用的三边关DE BE =DE C E 'Rt C DE '△系即可求得长,然后三角形面积公式求解即可.DE 【详解】解:∵四边形是矩形,ABCD∴,AD CB ∥∴,ADB DBC ∠=∠∵C BD DBC '∠=∠∴,ADB EBD ∠=∠∴,DE BE =∴,8C E DE '=-∵,6C D AB '==∴,()22268DE DE +-=∴,254DE =∴.()2118.75cm 2BDE S DE CD =⨯=△故选:C .【点睛】本题考查了矩形的性质,折叠的性质,解决此类问题,应利用折叠找到相应的直角三角形,利用勾股定理求得所需线段长度.7.D【分析】由正方形的性质可得,再根据全等三角形的性质可得90AB BC A ABC =∠=∠=︒,,利用余角性质可得,再利用三角形面积法可得答案.ABP BCH ∠=∠90BEC ∠=︒【详解】解:∵四边形是正方形,ABCD ∴,90AB BC A ABC =∠=∠=︒,∵,BP CH =∴,()Rt ABP Rt BCH HL ≌∴,ABP BCH ∠=∠∵,9090BCH BHC ABP PBC ∠+∠=︒∠+∠=︒,∴,90BCE CBE ∠+∠=︒∴,BE CH ⊥∵,158AB BC BH ===,17,CH ∴==11,22CH BE BH BC ∴⋅=⋅即1117158,22BE ⨯=⨯⨯120.17BE ∴=故选: D.【点睛】此题考查的是正方形的性质、全等三角形的判定与性质,掌握其性质定理是解决此题的关键.8.A【分析】延长交于G ,根据等腰三角形的判定和性质得到,,CF AB 4AG AC ==FG CF =进而求出,根据三角形中位线定理计算即可.BG 【详解】解:延长交于G ,CF AB∵为的角平分线,,AD ABC CG AD ⊥∴是等腰三角形,ACG ∴,,5AG AC ==FG CF =∴,BG AB AG =-=-=853∵为的中线,AE ABC ∴是的中位线,EF BCG ∴,1322EF BG ==故选:A .【点睛】本题考查的是三角形的中位线定理、等腰三角形的判定与性质,正确作出辅助线是解题的关键.9.B【分析】根据图象可以得到首先从出发点匀速行驶1.5小时,走了80千米,然后在第1.5小时到2小时时停止运动,从2小时到3小时,继续沿原来的方向走了1小时,走了20千米到达目的地,然后匀速返回出发点,在距出发4.5小时是返回,据此即可判断.【详解】解:①汽车从出发地到目的地走了100千米,又回到出发地因而共行驶了200千米,故①错误;②汽车在行驶途中停留了2−1.5=0.5(小时),故②正确;③汽车在整个行驶过程中的平均速度为:200÷4.5=(千米/时),故③正确;4009④汽车出发后3小时至4.5小时之间行驶的速度不变,故④错误.综上所述,正确的有②③,共2个,故B 正确.故选:B .【点睛】本题主要考查了利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决,需注意计算单位的统一.10.B【分析】分两种情形:如图1中,当时,连接交于.如图2中,当BN DM =CC 'BM J BN DM =时,过点作于.分别求解即可.C 'C T CD '⊥T 【详解】解:如图1中,当时,连接交于.BN DM =CC 'BM J,,BN DM = BN DM ∥四边形是平行四边形,∴BNDM ,BM DN ∴ ,,由折叠知,,,BMC NDM ∴∠=∠BMC DC M ∠'=∠'MC MC '=BMC BMC ∠=∠',NDM DC M ∴∠=∠',MC MD ∴'=.122CM DM CD ∴===如图2中,当时,过点作于.BN DM =C 'C T CD '⊥T,,CB CD = BN DM =,CN CM MC ∴=='在和中,BCM DCN ,CB CD BCM DCN CM CN =⎧⎪∠=∠⎨⎪=⎩,(SAS)BCM DCN ∴ ≌,CDN CBM ∴∠=∠,,90CBM BCC ∠+∠'=︒ 90BCC C CD ∠'+∠'=︒,CBM C CD ∴∠=∠','C CD CDN ∴∠=∠,C D C C ∴'=',C T CD '⊥ ,2DT TC ∴==,C T CN ' ∥,DC C N ∴'=',12C T CN ∴'=设,则,,C T x '=2CN CM MC x =='=TM,22x ∴=4x ∴=-8CM ∴=-综上所述,的值为2或CM 8-故选B .【点睛】本题考查翻折变换,正方形的性质,平行四边形的判定和性质,全等三角形的判定和性质,三角形中位线定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考填空题中的压轴题.11.x≠3【详解】根据题意得x ﹣3≠0,解得x≠3.故答案为x≠3.12.##21x --12x--【分析】根据一次函数图象的平移规则,上加下减,求解即可.【详解】解:将直线向上平移1个单位长度,可得直线的表达式为22y x =--;22121y x x =--+=--故答案为:.21x --【点睛】本题考查一次函数图象的平移.熟练掌握一次函数图象的平移规则,上加下减,是解题的关键.13.20【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】解:如图,根据题意得AO=×8=4,BO=×6=3,1212∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,AC ⊥BD .∴△AOB 是直角三角形.∴.5AB ===∴此菱形的周长为:5×4=20故答案为:20.14.50【分析】根据题意,先通过菱形的性质求证,可得,再根据ADF CDF ≅ DAF DCF ∠=∠三角形内角和定理及同旁内角的关系进行角度的求解即可.【详解】∵四边形ABCD 是菱形∴,,ADF CDF ∠=∠AD CD =//AD CB在与中ADF △CDF AD CD ADF CDFDF DF =⎧⎪∠=∠⎨⎪=⎩∴()ADF CDF SAS ≅ ∴DAF DCF∠=∠∵//AD CB∴180ADE DCF FCB ∠+∠+∠=︒∵180ADE DAF AED ∠+∠+∠=︒∴BCF AED∠=∠∵50AED ∠=︒∴,50BCF ∠=︒故答案为:50.【点睛】本题主要考查了菱形的性质,三角形全等的判断及性质,平行线的性质,三角形内角和定理等,熟练掌握相关几何综合求解方法是解决本题的关键.15.01a <<【分析】利用一次函数图象所经过的象限确定k 、b 的范围,从而求出a 的范围.【详解】解:∵一次函数的图象经过第一、二、四象限,()1y a x a =-+∴,解得:,100a a -<⎧⎨>⎩01a <<故答案为:.01a <<【点睛】本题考查一次函数图象与系数的关系,熟记相关知识是解题的关键.16.16【分析】根据一次函数与一次函数的图象的交点坐标为,所以y x a =-+y x b =+(),8m (),8m 可以满足两个一次函数关系式,利用待定系数法把代入,再把两个关系式相加即可.(),8m 【详解】解:∵一次函数与一次函数的图象的交点坐标为,y x a =-+y x b =+(),8m∴,88m a m b -+=+=,∴,88m a m b -+++=+∴.16a b +=故答案为:16.【点睛】此题主要考查了两条直线相交问题,关键是把握凡是图象经过的点都能满足解析式.17.28MN <<【分析】连接,取的中点为E ,连接,,结合题中条件可得,BD BD EM EN 152EM AB ==,根据三角形三边之间的关系,即可解答.132EN CD ==【详解】解:如图,连接,取的中点为E ,连接,,BD BD EM EN M ,N 分别是,的中点,AD BC ,,∴152EM AB ==132EN CD ==在中,,EMN EM EN MN EM EN -<<+即.28MN <<故答案为:.28MN <<【点睛】本题考查了三角形的中位线,三角形三边之间的关系,作出正确的辅助线是解题的关键.18.【分析】如图,的下方作,使得,连接,.证明BC 30CBT ∠=︒BT AD =ET AT ,推出,,根据求解即可.()SAS ADF TBE ∆≅∆AF ET =AE AF AE ET +=+AE ET AT +≥【详解】解:如图,的下方作,使得,连接,.BC 30CBT ∠=︒BT AD =ET AT四边形是菱形,,ABCD 60ABC ∠=︒,,60ADC ABC ∴∠=∠=︒1302ADF ADC ∠=∠=︒,,,AD BT = 30ADF TBE ∠=∠=︒DF BE =,()SAS ADF TBE ∴∆≅∆,AF ET ∴=,,603090ABT ABC CBT ∠=∠+∠=︒+︒=︒ 2AB AD BT ===AT ∴=,AE AF AE ET ∴+=+,AE ET AT +≥AE AF ∴+≥的最小值为AE AF ∴+故答案为【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、两点之间线段最短等知识点,正确添加常用辅助线、构造全等三角形是解答本题的关键.19.(1)618y x =-(2)5【分析】(1)设,将,代入求解即可得到答案;()()30y k x k =-≠6x =18y =(2)将代入解析式求解即可得到答案;12y =【详解】(1)解:设()()30y k x k =-≠由题意,得()6318k -=∴6k =∴;()63618y x x =-=-(2)解:当时,有12y =61812x -=解得:;5x =【点睛】本题考查待定系数法求解析式与已知函数值求自变量的值,解题的关键根据题意设出解析式.20.证明见解析.【分析】根据平行四边形的性质可得OA =OC ,OD =OB ,再由全等三角形的判定证△BEO ≌△DFO 即可;【详解】证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OD =OB ,∵AF =CE ,∴AF -OA =CE -OC ,即OF =OE ,在△BEO 和△DFO 中,,OB OD BOE DOF OE OF =⎧⎪∠=∠⎨⎪=⎩∴△BEO ≌△DFO (SAS ),∴BE =DF .【点睛】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(1)31y x =-(2)16【分析】(1)根据平移可得,再将代入函数解析式,求出b 的值即可.3k =()1,2A 3y x b =+(2)先求出函数图象与x 、y 轴的交点坐标,根据三角形面积公式即可求解.【详解】(1)∵一次函数的图象由直线向下平移得到,()0y kx b k =+≠3y x =∴3k =∴函数解析式为:3y x b=+∵过点()1,2A ∴,312b ⨯+=∴1b =-∴所求函数的解析式为:31y x =-(2)在中31y x =-令,得0x =1y =-即图象与y 轴交点为()0,1-令,得0y =13x =即图象与x 轴交点为1,03⎛⎫ ⎪⎝⎭∴1111236S =⨯⨯=【点睛】本题考查了利用待定系数法求一次函数解析式、两点法确定函数图像;关键在于解出k 、b 值以及正确运用三角形面积公式求解.22.(1)见解析;(2)2.【分析】(1)证是的中位线,得,再由,得四边形是OE ACD OE CD ∥OG EF ∥OEFG 平行四边形,然后证出,即可得出结论;=90EFG ∠︒(2)由矩形的性质得,再由菱形的性质得,然后求出=OE FG =AD CD AC BD ⊥,,由勾股定理得,即可求解.1====22OE AD DE CD AD OE ,=3DF 【详解】(1)证明:∵四边形是菱形,ABCD ,=OA OC ∴是的中点,E AD 是的中位线,OE ∴ACD ,OE CD ∴∥,OG EF ∥ ∴四边形是平行四边形,OEFG ,EF CD ⊥,=90EFG ∴∠︒∴平行四边形是矩形;OEFG (2)解:由(1)得:四边形是矩形,OEFG ,==5OE FG ∴∵四边形是菱形,ABCD ,=AD CD AC BD ∴⊥,,=90AOD ∴∠︒是的中点,E AD ∴,1===5==2=102OE AD DE CD AD OE ,在中,,Rt DEF △3DF ==.10532CG CD FG DF ∴=--=--=【点睛】本题考查了菱形的性质,三角形中位线定理,矩形的判定和性质,平行四边形的判定与性质,直角三角形斜边上的中线性质,勾股定理等知识;熟练掌握三角形中位线定理,证明四边形为矩形是解题的关键.OEFG 23.(1)见解析(2)147y x =--【分析】(1)根据直角三角形的性质推出,再由等腰三角形的性质,即可12∠=∠BC CA =推出;()AAS BEC CDA ≌(2)过点作于点,交直线于点,过点作轴于点,由旋转的B BM AB ⊥B 2l M M MN x ⊥N 性质得,易知为等腰直角三角形,由(1)可知:,由45BAM ∠=︒ABM ABO BMN ≌△△全等的性质得到点的坐标,再利用待定系数法求解即可.M 【详解】(1)证明:,,AD ED ⊥BE ED ⊥,∴90E D ∠=∠=︒,∴1+3=90∠∠︒又,90ACB ∠=︒,∴2390∠+∠=︒,∴12∠=∠在和中BEC CDA ,12E D BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩.∴()AAS BEC CDA ≌(2)解:如图2,过点作于点,交直线于点,过点作轴于点B BM AB ⊥B 2l M M MN x ⊥,N 由条件知,45BAM ∠=︒为等腰直角三角形,ABM ∴ 由(1)可知:,ABO BMN ≌△△,,∴MN BO =NB OA =∵直线:,1l 443y x =--,,∴()0,4A -()3,0B -,,,∴3MN BO ==4BN OA ==7ON =,∴()7,3M --设:,2l ()0y kx b k =+≠,∴374k b b-=-+⎧⎨-=⎩,,∴17k =-4b =-:.∴2l 147y x =--【点睛】此题考查一次函数综合题,等腰直角三角形,全等三角形的判定与性质,解题的关键在于正确作出辅助线.24.(1)①证明见解析;②△GFC 是等腰三角形,理由见解析;(2)BE 的长为1或7.【分析】(1)①根据正方形的性质可得AD =CD ,∠ADH =∠CDH ,利用SAS 可证明△ADH ≌△CDH ,即可得∠DAH =∠DCH ;②由正方形的性质可得∠DAH +∠AFD =90°,由CG ⊥HC 可得∠DCH +∠FCG =90°,根据∠AFD =∠CFG ,可得∠CFG =∠FCG ,即可证明CG =FG ,可得△GFC 是等腰三角形;(2)当点F 在线段CD 上时,连接DE ,根据正方形的性质及角的和差关系可得∠E =∠GCE ,即可证明CG =EG ,由△GFC 是等腰三角形可得CG =GF ,可得点G 为EF 中点,即可证明GM 是△FDE 的中位线,根据中位线的性质可求出DE 的长,利用勾股定理可求出CE 的长,进而根据BE =BC +CE 即可求出BE 的长;当点F 在DC 延长线上时,连接DE ,同理可得MG 为△FDE 的中位线,可求出DE 的长,利用勾股定理可求出CE 的长,根据BE =BC -CE 即可求出BE 的长.【详解】(1)①∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠ADB =∠CDB =45°,在△ADH 和△CDH 中,,AD CD ADH CDH DH DH =⎧⎪∠=∠⎨⎪=⎩∴△ADH ≌△CDH ,∴∠DAH =∠DCH .②△GFC 是等腰三角形,理由如下:∵四边形ABCD 是正方形,CG ⊥HC ,∴∠ADF =∠HCG =90°,∴∠DAH +∠AFD =DCH +∠DCG =90°,∵∠DAH =∠DCH ,∠HFD =∠CFG ,∴∠CFG =∠GCF ,∴CF =CG ,∴△GFC 是等腰三角形.(2)如图,当点F 在线段CD 上时,连接DE ,∵四边形ABCD 是正方形,∴∠CEF +∠CFG =90°,∠GCE +∠GCF =90°,∵∠CFG =∠GCF ,∴∠CEF =∠GCE ,∴CG=EG,∵CG=FG,∴FG=EG,∵点M是DF的中点,∴GM是△DFE的中位线,∵GM=2.5,∴DE=2GM=5,∵正方形ABCD的边长为4,∴CE=3,=∴BE=BC+CE=4+3=7.如图,当点F在DC的延长线上时,连接DE,同理可得:MG为△DFE的中位线,∴DE=2GM=5,∴CE,∴BE=BC-CE=4-3=1,综上所述:BE 的长为1或7.【点睛】本题考查正方形的性质、全等三角形的判定与性质及三角形中位线的性质,熟练掌握相关性质及判定定理是解题关键.25.(1);()8,0()0,4(2)或4y x =-+543y x =+(3)或或()2,2Q -()4,4(-【分析】(1)将代入解析式,求得点B 坐标;将代入解析式,求得点C 坐标;0x =0y =(2)设,可得即为以为底边上的高,列方程,即可解答.1,3D x x ⎛⎫ ⎪⎝⎭x COD △CO (3)分两种情况讨论,即为边或为对角线两种情况讨论,由菱形的性质和两点距离OC OC 公式可求解.【详解】(1)解:直线:分别与x 轴,y 轴交于点B ,C , 1l 142y x =-+将代入,可得,0x =1l 10442y =-⨯+=,()0,4C ∴将代入,可得,0y =1l 1042x =-+解得,8x =.()8,0B ∴(2)解:D 是直线上的点,2L ,∴1,3D x x ⎛⎫ ⎪⎝⎭由条件得,,1462x ⋅⋅=∴,3x =∴,3x =±∴或,()3,1D ()3,1--设CD 的解析式为:4y kx =+①当时,()3,1D ,∴341k +=,∴1k =-对应的解析式为∴4y x =-+②当时,()3,1D --,∴341k -+=-,∴53k =对应的解析式为∴543y x =+综上,直线CD 的解析式为或.4y x =-+543y x =+(3)解:当点D 在第一象限时,直线的解析式为,CD 4y x =-+设点,()(),40P a a a -+≥①当以为边时,OC若四边形为菱形时:,可得方程:OCPQ 4OC CP ==4=解得,1a =2a =-,()4P ∴-,,4PQ OC == PQ OC ∥;(Q ∴-若四边形为菱形时:,可得方程:OCQP 4OC PO ==4=解得,(舍去),14a =20a =,()4,0P ∴同理可得;()4,4Q ②当以为对角线时,OC 与互相垂直平分,OC PQ P 点的纵坐标为2,即,,∴42a -+=2a =,()2,2P ∴.()2,2Q ∴-综上所述,点Q 的坐标为或或.()2,2-()4,4(-【点睛】本题是一次函数综合题,考查了一次函数的性质,待定系数法求解析式,菱形的性质,两点距离公式,利用分类讨论思想解决问题是本题的关键.26.(1)9;(2)OC ⊥直线于点C ;① ;② ;(3)y x b =+2b =2b =±6, 2.m m ≤-≥【分析】(1)求出线段MN 的长度,根据正方形的面积公式即可求出答案;(2)根据面积求出OC ⊥直线于点C ,再分情况分别OC =y x b =+求出b ;(3)分两种情况:当点E 在直线y=-x-2是上方和下方时,分别求出点P 的坐标,由此得到答案.【详解】解:(1)∵M(0,1),N (3,1),∴MN ∥x 轴,MN=3,∴点M ,N 的“确定正方形”的面积为,339⨯=故答案为:9;(2)∵点O ,C 的“确定正方形”面积为2,∴OC =∵点O ,C 的“确定正方形”面积最小,∴OC ⊥直线于点C .y x b =+① 当b>0时,如图可知OM =ON ,△MON 为等腰直角三角形,可求OC NC MC ===∴ 2.b =② 当时,同理可求0b < 2.b =-∴ 2.b =±(3)如图2中,当正方形ABCD 在直线y=-x-2的下方时,延长DB 交直线y=-x-2于H ,∴BH ⊥直线y=-x-2,当时,点E 、F 的“确定正方形”的面积的最小值是2,此时P (-6,0);如图3中,当正方形ABCD 在直线y=-x-2的上方时,延长DB 交直线y=-x-2于H ,∴BH ⊥直线y=-x-2,当时,点E 、F 的“确定正方形”的面积的最小值是2,此时P (2,0),观察图象可知:当或时,所有点E 、F 的“确定正方形”的面积都不小于26m ≤-2m ≥【点睛】此题是一次函数的综合题,考查一次函数的性质,正方形的性质,正确理解题中的正方形的特点画出图象求解是解题的关键.。
八年级数学第二学期3月份 质量检测测试卷含答案
八年级数学第二学期3月份 质量检测测试卷含答案一、选择题1.下列计算,正确的是( )A . 235+=B . 2323+=C . 8220-=D . 510-=2.下列根式是最简二次根式的是( )A .4B .21x +C .12D .40.5 3.计算32782-⨯的结果是( ) A .3 B .3- C .23 D .534.下列二次根式中是最简二次根式的为( )A .12B .30C .8D .125.下列计算正确的是( )A .42=±B .()233-=-C .()255-=D .()233-=-6.化简二次根式 22a a a +-的结果是( ) A .2a -- B .-2a --C .2a -D .-2a - 7.下列计算不正确的是 ( )A .35525-=B .236⨯=C 774=D 363693=+==8.下列运算正确的是( )A x 2x 3xB .2﹣2=1C .55D .x ﹣x (a ﹣b x9.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或 10.下列计算正确的是( ) A 235=B 623=C 23(3)86-=-D 321= 11.下列运算正确的是( )A 235=B .(228-=C 112222=D .()21313-=- 12.下列计算正确的是( ) A .235+= B .2332-= C .()222= D .393=二、填空题13.设42-的整数部分为 a,小数部分为 b.则1a b-= __________________________. 14.能力拓展: 11:2121A -=+;21:3232A -=+;31:4343A -=+;4:54A -=________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A∵32+________21+ ∴132+________121+ ∴32-________21-()3同理,我们可以比较出以下代数式的大小:43-________32-;76-________54-;1n n +-________1n n --15.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72 [72]=8 [8]=2 2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________.16.把31a-根号外的因式移入根号内,得________ 17.若613x ,小数部分为y ,则(213)x y 的值是___.18.若0xy >,则二次根式2y x -________. 19.下列各式:2521+n 2b 0.1y 是最简二次根式的是:_____(填序号)20.4x -x 的取值范围是_____ 三、解答题21.计算及解方程组:(1-1-) (2)2+ (3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩ 【答案】(1)2)7;(3)102x y =⎧⎨=⎩. 【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可;(2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可;(3)首先将第二个方程化简,然后利用加减消元法即可求解.【详解】(11-1+(11=1 (22+)=34-=7-=7-(3)251032x y x y x y -=⎧⎪⎨+-=⎪⎩①② 由②得:50x y -= ③②-③得: 10x =把x=10代入①得:y=2∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.22.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析.【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可.【详解】解:(1该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间.【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.23.先阅读下列解答过程,然后再解答:,a b ,使a b m +=,ab n =,使得22m +==)a b ==>7,12m n ==,由于437,4312+=⨯=,+=,=即:227===+。
八年级第二学期3月份月考数学试题含答案
八年级第二学期3月份月考数学试题含答案一、选择题1.下列各式计算正确的是( ) A .1222= B .362÷=C .2(3)3=D .222()-=-2.下列运算正确的是( ) A .235+=B .1823=C .3223-=D .1222÷= 3.下列运算正确的是 ( ) A .3223÷= B .235+= C .233363⨯=D .18126-=4.下列各式计算正确的是( )A .6232126()b a b a b a---⋅=B .(3xy )2÷(xy )=3xyC .23a a a +=D .2x •3x 5=6x 65.若31m -有意义,则m 能取的最小整数值是( )A .m = 0B .m = 1C .m = 2D .m = 36.下列式子中,为最简二次根式的是( ) A .12B .7C .4D .487.已知实数x ,y 满足(x -22008x -)(y -2-2008y )=2008,则3x 2-2y 2+3x -3y -2007的值为( ) A .-2008 B .2008C .-1D .18.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定 9.下列运算中错误的是( ) A 235=B 236=C 822÷=D .2 (3)3-=10.下面计算正确的是( ) A .3+3=33B 273=3C 2?3=5D ()222--11.下列运算正确的是( ) A 826=B 222=C 3515=D 2739=12.下列计算正确的是( ) A .234265=B 842C 2733=D .2(3)3-=-二、填空题13.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 32016p q =()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 14.已知3,3-1,则x 2+xy +y 2=_____. 15.当x 3x 2﹣4x +2017=________. 16.化简二次根式2a 1a+-_____. 17.已知a ,b 是正整数,若有序数对(a ,b )使得11)a b的值也是整数,则称(a ,b )是11)a b 的一个“理想数对”,如(1,4)使得112(a b =3,所以(1,4)是11)a b 的一个“理想数对”.请写出11)a b其他所有的“理想数对”: __________.18.若0xy >,则二次根式2yx -________. 19.已知4a2(3)|2|a a +--=_____.20.2a ·8a (a ≥0)的结果是_________.三、解答题21.1123124231372831-+-533121【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法. 【详解】11231242313722831-+-=1)2(3+⨯=121. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.计算:(1(2))((222+-+.【答案】(1) 【分析】(1)先化简二次根式,再合并同类二次根式即可; (2)根据平方差公式化简,再化简、合并同类二次根式即可. 【详解】(1==(2))((222+-+=2223--+ =5-4-3+2 =023.计算(1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.24.阅读下列材料,然后回答问题:其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==---.以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-.(1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1.【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案.【详解】(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.25.计算(1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:甲010*******乙2311021101请计算两组数据的方差.【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差.试题解析:(1)原式=4﹣3+2=6﹣3;(2)原式=﹣3﹣2+﹣3=-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65;乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点:二次根式的混合运算;方差.26.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.27.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可.【详解】解:===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.28.观察下列一组等式,然后解答后面的问题=,1)1=,1=,1=⋯⋯1(1)观察以上规律,请写出第n个等式:(n为正整数).(2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第n个等式为1=;故答案为1=;(2)原式111019==-=;-==,(3<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.29.计算(1(2)(()21-【答案】(1);(2)24+ 【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案. 【详解】解:(1=2+=(2-+=2(2)(()21-=22(181)---=452181--+=24+. 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.30.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4 【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可; (2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可. 【详解】解:(15-+5) =+5=+5=(2)由题意可知:50 50 bb-≥⎧⎨-≥⎩,解得5b=由此可化简原式得,30a+=30a∴+=,20c-=3a∴=-,2c=22((534b a∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】,故选项A错误;=2,故选项B错误;C. 23=,故选项C正确;2=,故选项D错误;故选C.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.2.D解析:D【分析】利用二次根式的加减法对A 、C 进行判断;利用二次根式的性质对B 进行判断;利用二次根式的除法法则对D 进行判断. 【详解】解:A A 选项错误;B =B 选项错误;C 、=C 选项错误;D 2=,所以D 选项正确. 故选:D . 【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.A解析:A 【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题. 【详解】A 、3=,故选项A 正确;B B 错误;C 、18=,故选项C 错误;D =D 错误; 故选:A . 【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.4.D解析:D 【分析】依据单项式乘以单项式、单项式除以单项式以及二次根式的加法法则对各项分别计算出结果,再进行判断即可得到结果. 【详解】A. 2321526()b a b a b a---⋅=,故选项A 错误;B. (3xy )2÷(xy )=9xy ,故选项B 错误;C 错误; D. 2x •3x 5=6x 6,正确.故选:D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.B解析:B【分析】根据被开方数大于等于0列式计算即可得解.【详解】310m-≥,解得13 m≥,所以,m能取的最小整数值是1.故选:B.【点睛】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.6.B解析:B【分析】根据最简二次根式的定义即可求出答案.【详解】=,故A不是最简二次根式;是最简二次根式,故B正确;,故C不是最简二次根式;=D不是最简二次根式;故选:B.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.7.D解析:D【解析】由(x y)=2008,可知将方程中的x,y对换位置,关系式不变,那么说明x=y是方程的一个解由此可以解得,或者则3x 2-2y 2+3x -3y -2007=1,故选D.8.B解析:B 【解析】因=,所以a =0,b =1,c =1,即可得2a +999b +1001c =999+1001=2000,故选B. 点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.9.A解析:A【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断.【详解】 23 23236=⨯= 828242÷÷===,故此项正确,不符合要求; D. 2 (3)3-=,故此项正确,不符合要求;故选A .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.B解析:B【分析】根据二次根式的混合运算方法,分别进行运算即可.【详解】解:A 3A 选项错误;B 2727393===3,故B 选项正确; C 23236=⨯=C 选项错误; D .22(2)22-==,故D 选项错误;故选B .【点睛】考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.11.C解析:C【分析】根据二次根式的减法法则对A进行判断;根据二次根式的加法法则对B进行判断;根据二次根式的乘法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】解:A=,所以A选项错误;B=B选项错误;C=C选项正确;D3=,所以D选项错误.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.12.C解析:C【分析】根据合并二次根式的法则、二次根式的性质、二次根式的除法法则即可判定.【详解】A、A错误;B=B错误;C3=,故选项C正确;=,故选项D错误;D3故选:C.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.二、填空题13.(1)2a-2b+1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1, ∴222(1)4a a ab b +--+=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵32016p q +=, ∴20163p q =-,p=2016-62016+9q,∴p=14x 3(其中x 为正整数),同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数)∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩, ∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。
江苏省南京秦淮外国语学校2023-2024学年八年级下学期3月月考数学试题(无答案)
初二数学练习一注意:1.选择题答案请用2B 铅笔填涂在答题卡相应位置上.2.非选择题答案必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.一、选择题(本大题共6小题,每小题2分,共12分)1.下列图形既是轴对称图形,也是中心对称图形的是( )A .B .C .D .2.已知四边形ABCD 是平行四边形,下列条件中能判定这个平行四边形为矩形的是()A .B .C .D .3.当)AB .C .D4.如图,正方形纸片ABCD 的四个顶点分别在四条平行线、、、上,这四条直线中相邻两条之间的距离依次为、、(,,),若,,则正方形ABCD 的面积S 等于( )(第4题图)A .34B .89C .74D .1095.如图,在一张矩形纸片ABCD 中,,点E ,F 分别在AD ,BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的点H 处,点D 落在点G 处,连接CE ,CH .有以下四个结论:①四边形CFHE 是菱形;②CE 平分;③线段BF 的取值范围为;④当点H 与点A 重合时,.以上结论中,其中正确结论的个数有( )A C ∠=∠AB ∠=∠AB BC =AC BD⊥0a <1l 2l 3l 4l 1h 2h 3h 10h >20h >30h >15h =22h =4AB =8BC =DCH ∠34BF ≤≤5EF =(第5题图)A .1个B .2个C .3个D .4个6.如图,已知菱形ABCD 与菱形AEFG 全等,菱形AEFG 可以看作是菱形ABCD 经过怎样的图形变化得到?下列结论:①经过1次平移和1次旋转;②经过1次平移和1次翻折;③经过1次旋转,且平面内可以作为旋转中心的点共有3个.其中所有正确结论的序号是( )(第6题图)A .②③B .①③C .①②D .①②③二、填空题(本大题共10小题,每小题2分,共20分)7.在整数20240320中,数字“0”出现的频率是______.8.直角三角形中,直角边a ,b ,斜边为c ,则______(填>,<,=).9.与最接近的整数是______.10.如图是某广告商制作甲、乙两种酒的价格变化的折线统计图,则酒的价格增长比较快的是______.(填“甲”或“乙”)(第10题图)11.在一个不透明的袋子中装有仅颜色不同的4个红球,6个黑球,现在再放入个黑球并摇匀.若随机摸出一个球是黑球的可能性大小是,则m 的值为______.12.在中,,,D 是AC 延长线上的的一点,,M 是边BC 上33a b +3c 7-()1m m >45Rt ABC △90BAC ∠=︒3AB AC ==1CD =的一点(不与端点B ,C 重合),以CD ,CM 为邻边作,连接AN ,并取AN 的中点P ,连接PM ,则PM 的取值范围是______.(第12题图)13.如图,A 、B 两点的坐标分别为、,C 是平面直角坐标系内一点.若四边形OABC 是平行四边形,则点C 的坐标为______.(第13题图)14.如图,在中,,,P 是内一点,若,,,则PB 的长为______.(第14题图)15.如图,四边形ABCD 为平行四边形,延长AD 到点E ,使,且,若是边长为3的等边三角形,点P 、M 、N 分别在线段BE 、BC 、CE 上运动,则的最小值为______.(第15题图)CMND ()4,0()6,3ABC △90BAC ∠=︒AB AC =ABC △1PA =2PC =135APC ∠=︒DE AD =BE DC ⊥ADB △PM PN +16.如图,矩形ABCD 中,,,以点A 为旋转中心,逆时针旋转矩形ABCD ,旋转角为,得到矩形AEFG ,点B 、点C 、点D 的对应点分别为点E 、点F 、点G .设点P 为边FG 的中点,连接PB 、PE 、在矩形ABCD 旋转过程中,的面积存在最大值,这个最大值为______.(第16题图)三、解答题(本大题共10小题,共68分,请在答题卡指定区城内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1(218.工厂质检员对甲员工近期生产的产品进行抽检,统计合格的件数,得到表格:抽取件数(件)501002003005001000合格频数4994192285m 950合格频率0.980.940.960.950.95n(1)表格中m 的值为______,n 的值为______;(2)估计任抽一件该产品是不合格品的概率为______;(3)该工厂规定,若每被抽检出一件不合格产品,需在相应员工奖金中扣除给工厂2元的材料损失费,今天甲员工被抽检了460件产品,估计要在他奖金中扣除多少材料损失费?19.如图,在中,点O 是边BC 的中点,连接DO 并延长,交AB 的延长线于点E ,连接BD ,EC .(1)求证:四边形BECD 是平行四边形;(2)当,则当______°时,四边形BECD 是矩形.20.某市对一大型超市销售的甲、乙、丙3种大米进行质量检测.共抽查大米200袋,质量评定分为A 、B 两个等级(A 级优于B 级),相应数据的统计图如下:3AB =2BC =()0180a a ︒<<︒BEP △-ABCD 50A ∠=︒BOD ∠=根据所给信息,解决下列问题:(1)______,______;(2)已知该超市现有乙种大米750袋,根据检测结果,请你估计该超市乙种大米中有多少袋B 级大米?(3)对于该超市的甲种和丙种大米,你会选择购买哪一种?运用统计知识简述理由.21.(1)请用直尺(不带刻度)和圆规在图中作菱形BDEF ,要求点D 、E 、F 分别在边BC ,AC 和AB 上.(不写作法,保留作图痕迹);(2)若,,,则菱形BDEF 的边长为______.22.一些含根号的式子可以写成另一个式子的平方,如.设(其中a 、b 、m 、n 均为正整数),则有.∴,.这样可以把部分的式子化为平方式的方法.请你仿照上述的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若,用含m 、n 的式子分别表示a 、b .得:______,______.(223.如图,在矩形ABCD 中,,,点M 为边DC 中点,连接AM ,过B 作于点连接CP 并延长交AD 于点E .a =b =60ABC ∠=︒75BAC ∠=︒AB =(231+=+(2a m +=+2222a m n +=++222a m n =+2b mn =a +(2a m +=+a =b =6AB =4AD =BP AM ⊥(1)求证:.(2)求AE 的长.24.如图①,在四边形ABCD 中,,E 、F 分别是BC 、AD 的中点,连结EF 并延长,分别与BA 、CD 的延长线交于点M 、N .(1)求证:;(2)如图②,在四边形ADBC 中,AB 与CD 相交于点O ,,E 、F 分别是BC 、AD 的中点,连结EF ,分别交DC 、AB 于点M 、N ,判断的形状.25.如图,在正方形ABCD 中,,E 是射线AC 上的一点,连接DE ,过点E 作,交直线AB 于点F .以DE 、EF 为邻边作矩形DEFG ,连接AG.AE EP =AB CD =BME CNE ∠=∠AB CD =OMN △4AB =EF ED ⊥(1)求证:矩形DEFG 是正方形;(2)如图1,当E 点在对角线AC 上时,求的值;(3)当时,求DE 的长.26.我们知道,四边形有两组对边,两组对角,两条对角线,已经研究了,如果四边形满足下列条件之一:①两组对边分别平行;②两组对边分别相等;③一组对边平行且相等;④对角线互相平分,那么这个四边形是平行四边形.由此,进一步探究……(1)如图①,在四边形ABCD 中,,.求证:四边形ABCD 是平行四边形.(2)命题:如果四边形满足一组对边平行且另一组对边相等,那么这个四边形是平行四边形.如果这个命题是真命题,请证明;否则,请画出一个反例示意图,并标明所满足的条件.(3)命题:如果四边形满足一组对边相等且一条对角线平分另一条对角线,那么这个四边形是平行四边形.(Ⅰ)小明认为这是假命题,尝试画出反例,如图②,他先画出四边形ABCD 的一条边AB ,一条对角线BD .请你利用无刻度直尺和圆规在图②中画出反例.(保留作图痕迹,不写作法,可以有必要的文字说明)(Ⅱ)小明进一步探索发现,在四边形ABCD 中,,对角线AC 、BD 相交于点O ,且,,,对于满足条件的平行四边形ABCD 的个数随着AB 长度的变化而变化,直接写出平行四边形ABCD 的个数及对应的AB的长的取值范围.AG AE+CE =A C ∠=∠B D ∠=∠AB CD =OB OD =8BD =60AOB ∠=︒。
江苏省淮安市淮安区淮安经济技术开发区开明中学2023-2024学年八年级下学期3月月考数学试题
江苏省淮安市淮安区淮安经济技术开发区开明中学2023-2024学年八年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列函数中,y 是关于x 的反比例函数的是( )A .2y x =B .8y x =C .21y x =-D .21y x =- 2.某工厂现有原材料300t ,平均每天用去t x ,这批原材料能用y 天,则y 与x 之间的函数解析式是( )A .300y x =B .300y x =C .300300y x =-D .300y x =- 3.如图,点A 在双曲线k y x=上,AB x ⊥轴于点B ,且AOB V 的面积为2,则k 的值为( )A .4-B .2-C .2D .44.若点()13,A y -,()22,B y -在反比例函数21k y x+=的图象上,则1y 、2y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .无法确定 5.函数1k y x=和2y kx k =--在同一坐标系中的图象可以大致是( ) A . B .C .D .6.如图,一组等腰三角形的底边均在x 轴的正半轴上,两腰的交点在反比例函数()10y x x=>的图象上,且它们的底边都相等.若记11OA B V ,122A A B V ,233A A B △…101110121012A A B △的面积分别为1231012,,S S S S L 则1012S 的值为( )A .11012B .11013C .12023D .12024二、填空题7.反比例函数2m y x-=,当m 时,在每一象限内,y 的值随x 的值的增大而减小. 8.关于x 的方程()211310a a x x ++--=是一元二次方程,则a 的值是9.关于x 的一元二次方程20x x k +-=有两个不相等的实数根,那么k 的取值范围是. 10.已知m 是方程2210x x --=的一个根,则2361m m -+=11.如图,P 是反比例函数4y x=的图象上一点,A 是x 轴正半轴上一点,若OP PA =,则三角形POA 的面积是.12.若22265,43M x x N x x =-+=-+,则M N .(填“>”、“<”或“=”).三、解答题13.解下列方程(1)()21250x --=;(2)()()251351x x -=-;(3)2430x x --=;(4)23510x x ++=.14.先化简,再求值:221()339x x x x +÷+--,其中5x =-. 15.一次函数y x m =-+与反比例函数k y x =的图像交于A ,B 两点,点A 的坐标为(1,2).(1)求一次函数和反比例函数的表达式;(2)求AOB V 的面积;(3)直接写出关于x 的不等式k x m x≤-+的解集. 16.制作一种工艺品时,需先将材料加热到50℃,再进行后续操作.设整个过程所用时间为x (分钟),材料的温度为y (℃),材料加热过程中,温度y 是时间x 的一次函数,工艺品制作过程中,y 是x 的反比例函数,材料加热与工艺品制作过程中,y 与x 的函数图象如图所示.(1)求工艺品制作过程中y 与x 的函数关系式;(2)若此工艺品在制作过程中温度不能低于15℃,那么只加热一次后,最多几分钟后就得停止工艺品的制作?17.如图,在平面直角坐标系中,四边形ABCD 为正方形,已知点A D 、的坐标分别为()()0,63,7--、,点B C 、在第四象限内.(1)点B的坐标为;(2)将正方形ABCD以每秒2个单位的速度沿y轴向上平移,所得四边形记为正方形''''.若t秒后,点B、D的对应点B'、D¢正好落在某反比例函数在第一象限内A B C D的图像上,请求出此时t值以及这个反比例函数的表达式;(3)在(2)的情况下,是否存在x轴上的点P和反比例函数图像上的点Q,使得以P、Q、B'、D¢四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点Q的坐标;若不存在,请说明理由.。
人教版八年级第二学期3月份 质量检测数学试卷含答案
人教版八年级第二学期3月份 质量检测数学试卷含答案一、选择题1.下列各式中,无意义的是( ) ABCD .310-2.下列运算正确的是( )A=B=C.3=D2= 3.下列各式中,运算正确的是()A.=-=.2=D 2=-4.下列运算正确的是( ) A .32-=﹣6 B 12-C =±2D .=5.已知226a b ab +=,且a>b>0,则a ba b+-的值为( ) AB C .2D .±26.当4x =-的值为( )A .1BC .2D .37.下列运算正确的是() AB .﹣=1C .D .﹣(a ﹣b8.下列各式中,不正确的是() A><C>D 5= 9.下列各式成立的是( ) A2B 5=- C xD6=-10.下列二次根式中是最简二次根式的是() ABCD11.下列计算正确的是() A=B.2-= C .22= D 3=12.下列属于最简二次根式的是( ) ABCD二、填空题13.能力拓展:11:2121A -=+;21:3232A -=+;31:4343A -=+;4:54A -=________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A∵32+________21+∴132+________121+ ∴32-________21-()3同理,我们可以比较出以下代数式的大小:43-________32-;76-________54-;1n n +-________1n n --14.已知2215x 19x 2+--=,则2219x 215x -++=________.15.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.16.已知实数a 、b 、c 在数轴上的位置如图所示,化简2a ﹣|a ﹣c |+2()c b -﹣|﹣b |=_______.17.若613x ,小数部分为y ,则(213)x y 的值是___. 18.已知1<x <2,171x x +=-11x x --_____.19.n 的最小值为___20.如果0xy >.三、解答题21.阅读下面问题: 阅读理解:==1;==2==-.应用计算:(1(21(n 为正整数)的值.归纳拓展:(398++【答案】应用计算:(12 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-,=10-1,=9.【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.若x,y为实数,且y12.求xyyx++2-xyyx+-2的值.【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x≥0且4x﹣1≥0,解得x=14,此时y=12.即可代入求解.【详解】解:要使y有意义,必须140410xx-≥⎧⎨-≤⎩,即1414xx⎧≤⎪⎪⎨⎪≥⎪⎩∴x=14.当x=14时,y=12.又∵xyyx++2-xyyx+-2=-|∵x=14,y=12,∴xy<yx.∴+当x=14,y=12时,原式=.【点睛】(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==24====进行分母有理化.(3)利用所需知识判断:若a=,2b=ab,的关系是.(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(2227-==-(3)∵2a ===,2b =-, ∴a 和b 互为相反数;(4))1++⨯=)11⨯=)11=20201- =2019, 故原式的值为2019. 【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.24.先观察下列等式,再回答问题:=1+1=2;12=2 12;=3+13=313;… (1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.【答案】(1=144+=144;(2=211n n n n++=,证明见解析. 【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,=414+=414;(2=n 211n n n++=”,再利用222112n n n n++=+()()开方即可证出结论成立.【详解】(1=1+1=2=212+=212;=313+=313;里面的数字分别为1、2、3,= 144+= 144.(2=1+1=2,=212+=212=313+=313=414+=414= 211n n n n++=.证明:等式左边==n 211n n n++==右边.=n 211n n n++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律=n 211n n n++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.25.已知x=2,求代数式(7+x 2+(2)x【答案】2【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x 2=(2)2=7﹣则原式=(7﹣+(2=49﹣26.计算 (1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差.【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差.试题解析:(1)原式=4﹣3+2=6﹣3;(2)原式=﹣3﹣2+﹣3=-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65;乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点:二次根式的混合运算;方差.+27.计算:(1)+-(2(33【答案】(1)2) -10【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可.【详解】+解:(1)===(2(33+-=5+9-24 =14-24 =-10. 【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.28.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得 【分析】根据整式的运算公式进行化简即可求解. 【详解】(()69x x x x +--+=22369x x x --++ =6x+6把1x =代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.29.计算:(1)11(2【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同. 【详解】解:)1131-=23==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.30.计算(1))(12112-⨯--⎝⎭(2)已知:11,22x y==,求22x xy y++的值.【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y+和xy的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y==,1122x y∴+=+=,()11119112224xy=⨯=⨯-=,则()222x xy y x y xy++=+-,22=-,192=-,17=.本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】直接利用二次根式有意义的条件、负整数指数幂的性质分析得出答案.【详解】AB ,有意义,不合题意;C D 、33110=10-,有意义,不合题意; 故选A.【点睛】 此题主要考查了二次根式有意义的条件、负整数指数幂的性质,正确把握二次根式的定义是解题关键.2.D解析:D【分析】利用二次根式的加减法对A 、C 进行判断;利用二次根式的性质对B 进行判断;利用二次根式的除法法则对D 进行判断.【详解】解:A A 选项错误;B =B 选项错误;C 、=C 选项错误;D 2=,所以D 选项正确. 故选:D .本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.A解析:A【分析】由合并同类项、二次根式的性质分别进行判断,即可得到答案.【详解】解:A 、-=A 正确;B =B 错误;C 、2不能合并,故C 错误;D 2=,故D 错误;故选:A .【点睛】本题考查了二次根式的性质,合并同类项,解题的关键是熟练掌握运算法则进行解题.4.B解析:B【分析】 分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.【详解】A 、3311228-==,此选项计算错误;B 12=-,此选项计算正确;C 2=,此选项计算错误;D 、,此选项计算错误;故选:B .【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.5.A解析:A【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案.【详解】∵a 2+b 2=6ab ,∴(a+b )2=8ab ,(a-b )2=4ab ,∵a >b >0,∴∴a b a b +-= 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.6.A解析:A【分析】根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式2223232323x x x x112323x x 将4x =代入得, 原式11423423 221113133113 133131131=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.7.D解析:D【解析】利用二次根式的加减法计算,可知:A、B、﹣C、D、﹣(a﹣b,此选项正确.故选:D.8.B解析:B【解析】=-3,故A正确;=4,故B不正确;根据被开方数越大,结果越大,可知C正确;5=,可知D正确.故选B.9.A解析:A【分析】直接利用二次根式的性质化简求出即可.【详解】解:,正确,故选项A符合题意;=,原选项计算错误,故选项B不符合题意;||x=,原选项计算错误,故选项C不符合题意;D. =,原选项计算错误,故选项D不符合题意.故选:A.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解答此题的关键.10.A解析:A【分析】根据最简二次根式的定义判断即可.【详解】A是最简二次公式,故本选项正确;BCD=故选A.【点睛】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.11.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.12.B解析:B【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】解:A,不符合题意;BC=2,不符合题意;D故选B.【点睛】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.二、填空题13.(1)、;(2);(3)【解析】【分析】(1)观察A1,A2,A3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等解析:(1)=;(2),,><<;(3) ,,<<< 【解析】【分析】(1)观察A 1,A 2,A 3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等式仍成立,求得>1)的结论解答;(3)利用(2)的结论进行填空.【详解】解:(1)观察A 1,A 2,A 3的规律可知,将等式右边的分式分母有理化,即得等式左边的代数式,所以=,(2>1>>,<<(3)由(1)、(2<,故答案为:=;(2),,><<;(3),,<<< 【点睛】 主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.14.【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m=,n=,那么m−n=2①,m2+n2=()2+()2=34②.由①得,m=2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m n那么m−n=2①,m2+n2=2+2=34②.由①得,m=2+n③,将③代入②得:n2+2n−15=0,解得:n=−5(舍去)或n=3,因此可得出,m=5,n=3(m≥0,n≥0).n+2m=13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.15.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a >0+3.a =a+3. 【点睛】本题考查阅读理解的能力,正确理解题意是关键. 16.-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,∴∴﹣|a ﹣c|+﹣|﹣b|=解析:-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,0c a b <<< ∴00.a c c b >,<|a ﹣c ﹣|﹣b |=||()||a ac c b b =()aa cbc b =aa cbc b =-2a .【点睛】本题考查二次根式的性质与化简和化简绝对值.在解决本题时需注意①对于任意实数a ,都有||a =;②在化简绝对值时,绝对值内如果是一个多项式,要给化简后的结果带上括号. 17.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2,y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2, y=4然后再代入计算即可求解.【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2, y=4-,所以(2x y =(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 18.-2【详解】∵x+=7,∴x-1+=6,∴(x-1)-2+=4,即 =4,又∵1<x <2,∴=-2,故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是 解析:-2【详解】∵x+11x -=7,∴x-1+11x -=6,∴(x-1)-2+11x -=4,即2=4,又∵1<x<2,∴,故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是要根据所求的式子对已知的式子进行变形.19.5【分析】因为是整数,且,则5n是完全平方数,满足条件的最小正整数n为5.【详解】∵,且是整数,∴是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为5.【点睛】主要考查了解析:5【分析】,则5n是完全平方数,满足条件的最小正整数n为5.【详解】∴是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.20.【分析】由,且,即知,,据此根据二次根式的性质化简可得.【详解】∵,且,即,∴,,∴,故答案为:.【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.解析:-【分析】由0xy >,且20xy -≥,即•0y xy -≥知0x <,0y <,据此根据二次根式的性质化简可得.【详解】∵0xy >,且20xy -≥,即•0y xy -≥,∴0x <,0y <,==-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
人教版八年级第二学期3月份 质量检测数学试题含解析
人教版八年级第二学期3月份 质量检测数学试题含解析一、选择题1.下列计算正确的是( ) A .()222a b a b -=- B .()322x x 8x ÷=+C .1a a a a÷⋅= D 4=-2. )A B .C .D . 3.下列计算正确的是( )A B C .=3D4.下列根式中,最简二次根式是( )A B C D5.在实数范围内有意义,则x 的取值范围是( ) A .x >3B .x >-3C .x≥-3D .x≤-36.下列运算正确的是( )A =B =C .3=D 2=7.(2的结果正确的是( )A B .3 C .6D .38.若2019202120192020a =⨯-⨯,b =,c a ,b ,c 的大小关系是( ) A .a b c <<B .a c b <<C .b a c <<D .b c a <<9.下列各式中,不正确的是( )A ><C > D 5=10.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( ) A .1个B .2个C .3个D .4个11.a 的值是( ) A .2B .-1C .3D .-1或312.已知,5x y +=-,3xy =则y x x y x y+的结果是( ) A .23B .23-C .32D .32-二、填空题13.已知412x =-,则()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________ 14.已知a =﹣73+,则代数式a 3+5a 2﹣4a ﹣6的值为_____.15.若613-的整数部分为x ,小数部分为y ,则(213)x y +的值是___. 16.已知|a ﹣2007|+2008a -=a ,则a ﹣20072的值是_____. 17.计算()623÷+=________________ .18.将一组数2,2,6,22,10,…,251按图中的方法排列:若2的位置记为(2,3),7的位置记为(3,2),则这组数中最大数的位置记为______. 19.1+x有意义,则x 的取值范围是____. 20.12a 1-能合并成一项,则a =______.三、解答题21.1123124231372831-+-533121【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法. 【详解】1123124231372831-+-=48132331)32(337228+⨯⨯⨯=462331323371. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:1S = 同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2S =2a b cp ++=(1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积.(2)请证明:12S S【答案】(12) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S = (2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:S == (2)222222211[()]24a b a S c b +-=-=222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =---∵2a b cp ++=, ∴22()(2)(222)S a a b c a b c a b c a b cb c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅=1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >, ∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.23.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:3==,25384532++====-进行分母有理化. (3)利用所需知识判断:若a =,2b =a b,的关系是 . (4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019 【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(22243743--==--(3)∵2a===,2b=-,∴a和b互为相反数;(4))1 ++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.24.)÷)(a≠b).【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b--+-=a b+÷()()2222a a ab b ab b a b ab a b a b ----++-=a b +·()()()ab a b a b ab a b -+-+=-a b +.25.先化简,再求值:a+212a a -+,其中a =1007. 如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (22a (a <0) (3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.26.计算:(1(0112441238--;(2326232423⎛- ⎝【答案】(12;(2)6-【解析】试题分析:根据二次根式的性质及分母有理化,化简二次根式,然后合并同类二次根式即可解答.试题解析:(1(0112441238-- 22(2⎛- ⎝-0-=27.计算 (1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差. 【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差. 试题解析:(1)原式=4﹣3+2=6﹣3; (2)原式=﹣3﹣2+﹣3 =-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65; 乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点: 二次根式的混合运算;方差.28.计算(1-(2)(()21【答案】(1);(2)24+【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案.【详解】解:(1==-=2-(2)(()21---=22(181)=452181--+=24+.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.29.计算:(1)-(2)【答案】(1)21【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的乘除法则运算,再合并即可.【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.30.已知长方形的长a =b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大. 【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)114.23=⨯⨯=正方形的面积也为4. 2.= 周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断. 【详解】解: A .()222a b a 2ab b -=-+,选项错误; B .()3322x x 8x x 8x ÷=÷=,选项正确; C .111a a 1a a a÷⋅=⋅=,选项错误;D44=-=,选项错误.故选:B.2.A解析:A【分析】先计算二次根式乘法,再合并同类二次根式即可.【详解】原式=故选:A.【点睛】本题考查二次根式的运算,熟练掌握运算法则是解题关键.3.D解析:D【解析】解:A A错误;B==,所以B错误;C.=C错误;D==D正确.故选D.4.C解析:C【分析】根据最简二次根式的定义,可得答案.【详解】A、被开方数含分母,故选项A不符合题意;B、被开方数是小数,故选项B不符合题意;C、被开方数不含开的尽的因数,被开方数不含分母,故C符合题意;D、被开方数含开得尽的因数,故D错误不符合题意;故选:C.【点睛】本题考查了最简二次根式,被开方数不含开的尽的因数或因式,被开方数不含分母.5.C解析:C【解析】分析:根据被开方数大于等于0列式进行计算即可得解.详解:根据题意得,x+3≥0,解得x≥-3.故选C.点睛:本题考查的知识点为:二次根式的被开方数是非负数,这也是解答本题的关键. 6.D解析:D【分析】利用二次根式的加减法对A、C进行判断;利用二次根式的性质对B进行判断;利用二次根式的除法法则对D进行判断.【详解】解:A A选项错误;B=B选项错误;C、=C选项错误;=,所以D选项正确.D2故选:D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.A解析:A【分析】分别根据二次根式的除法和乘法法则以及二次根式的平方计算每一项,再合并即可.【详解】=+=解:原式333故选:A.【点睛】本题主要考查了二次根式的混合运算,属于基础题型,熟练掌握二次根式的乘除法则是解题的关键.8.A解析:A【分析】利用平方差公式计算a,利用完全平方公式和二次根式的化简求出b,利用二次根式大小的比较办法,比较b、c得结论.【详解】解:a=2019×2021-2019×2020=(2020-1)(2020+1)-(2020-1)×2020=20202-1-20202+2020=2019;∵20222-4×2021=(2021+1)2-4×2021=20212+2×2021+1-4×2021=20212-2×2021+1=(2021-1)2=20202,∴b=2020;>∴c>b>a.故选:A.【点睛】本题考查了完全平方公式、平方差公式、二次根式的化简、二次根式大小的比较等知识点.变形2019×2021-2019×2020解决本题的关键.9.B解析:B【解析】=-3,故A正确;=4,故B不正确;根据被开方数越大,结果越大,可知C正确;5=,可知D正确.故选B.10.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.11.C解析:C【分析】根据同类二次根式的性质即可求出答案.【详解】由题意可知:a2-3=2a∴解得:a=3或a=-1当a=-1时,该二次根式无意义,故a=3故选C.【点睛】本题考查二次根式的概念,解题的关键是熟练正确理解最简二次根式以及同类二次根式的概念.12.B解析:B【分析】由x+y=-5,xy=3可得到x<0,y<0,再利用二次根式的性质化简得到原式==-,然后把xy=3代入计算即可.【详解】∵x+y=−5,xy=3,∴x<0,y<0,∴原式===-(x<0,y<0),当xy=3时,原式=-故选B.【点睛】此题考查二次根式的化简求值,解题关键在于先化简.二、填空题13.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 14.-4【分析】先将a 进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a =-=-=-3时,原式=a3+6a2+9a -(a2+6a+9)-7a+3=a(a+3)2-(解析:-4【分析】先将a 进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a-3时, 原式=a 3+6a 2+9a -(a 2+6a +9)-7a +3=a (a +3)2-(a +3)2-7a +3=7a -7-7a +3=-4.故答案为:-4.【点睛】本题综合运用了二次根式的化简,提公因式及完全平方公式法分解因式,熟练掌握分母有理化的方法及因式分解的方法是解题的关键.15.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2, y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2, y=4然后再代入计算即可求解.【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2, y=4-,所以(2x y =(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 16.2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007|+=a,∴a≥2008,解析:2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007=a,∴a≥2008,∴a﹣2007=a,=2007,两边同平方,得:a﹣2008=20072,∴a﹣20072=2008.故答案为:2008.点睛:解决此题的关键是能够得到a的取值范围,从而化简绝对值并变形.17.【解析】=,故答案为.解析:【解析】÷====-,故答案为18.(17,6)【解析】观察、分析这组数据可发现:第一个数是的积;第二个数是的积;第三个数是的积,的积.∵这组数据中最大的数:,∴是这组数据中的第102个数.∵每一行排列了6个数,而∴是第1解析:(17,6)【解析】的积,.∵这组数据中最大的数:∴102个数.∵每一行排列了6个数,而1026=17÷∴17行第6个数,∴这组数据中最大的一个数应记为(17,6).点睛:(1)这组数据组中的第n 2)该组数据是按从左到右,从小到大,每行6个数进行排列的;(3)6n ÷6n ÷的余数是所在的列数.19.x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】∵有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键. 解析:x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义,∴x≥0, 故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a 的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a 的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
八年级第二学期3月份质量检测数学试卷含答案
八年级第二学期3月份质量检测数学试卷含答案一、选择题1.若2a <3=( ) A .5a - B .5a -C .1a -D .1a -- 2.对于所有实数a ,b ,下列等式总能成立的是( )A .2a b =+B 22a b =+C a b =+D a b =+ 3.下列式子中,属于最简二次根式的是( )A B C D4.下列计算正确的是( )A 2=±B 3=-C .(25=D .(23=-5.当0x =的值是( )A .4B .2CD .06的倒数是( )A B .2 C . D .2- 7.下列各式是二次根式的是( )A B C D 8.下列各式中正确的是( )A 6B 2=-C 4D .2(=79.下列计算正确的是( )A .+=B .()322326a b a b -=-C .222()a b a b -=-D .2422a ab a a b a -+⋅=-++10.的下列说法中错误的是( )A 12的算术平方根B .34<<C 不能化简D 是无理数11.以下运算错误的是( )A =B .2= CD 2=a >0)12. )A .18B .13 C 24D 0.3二、填空题13.比较实数的大小:(1)5?-______3 ;(251 -_______12 14.使函数21122y x x x =-+有意义的自变量x 的取值范围为_____________ 15.若0a >4a b-化成最简二次根式为________. 16.将2(3)(0)3a a a a -<-化简的结果是___________________. 17.把31a-根号外的因式移入根号内,得________ 18.已知a ,b 是正整数,若有序数对(a ,b )使得11)a b 的值也是整数,则称(a ,b )是11)a b 的一个“理想数对”,如(1,4)使得112(a b=3,所以(1,4)是11)a b 的一个“理想数对”.请写出11)a b 其他所有的“理想数对”: __________.19.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=1332=_____.20.已知x ,y 为实数,y 22991x x -+-+求5x +6y 的值________. 三、解答题21.计算:22322343341009999100+++++【答案】910 【解析】【分析】 先对代数式的每一部分分母有理化,然后再进行运算【详解】 22322343341009999100++++++=21009926129900-++++=9912233499100-+-+-++-=1100-=1110- =910 【点睛】本题看似计算繁杂,但只要找到分母有理化这个突破口,就会化难为易。
江苏省南京师范大学附属中学仙林学校初中部2022-2023学年八年级下学期3月月考数学试题(含答案)
2022-2023学年南京师范大学附属中学仙林学校初中部初二下学期3月月考一.选择题(共4小题,每小题3分,共12分)1.下列汽车标志中既是轴对称图形,又是中心对称图形的是( )A.B.C.D.2.菱形具有而矩形不一定具有的性质是( )A.对角线相等B.对角线互相垂直C.对角相等D.对边平行3.如图,在▱ABCD中,对角线AC、BD相交于点O,下列条件中,不能判断这个平行四边形是菱形的是( )A.AB=AD B.∠BAC=∠DAC C.∠BAC=∠ABD D.AC⊥BD4.如图,将矩形ABCD绕点C顺时针旋转90°得到矩形FGCE,点M、N分别是BD、GE 的中点,若BC=7,CE=1,则MN的长( )A.3B.5C.6D.8二.填空题(共10小题,每小题3分,共30分)5.当x 时,分式有意义.6.如图,矩形ABCD中,对角线AC、BD交于点O,∠AOB=60°,若AB=1,则BC = .7.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于 .8.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是 .9.如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加 条件,就能保证四边形EFGH是菱形.10.如图,△COD是△AOB绕点O顺时针方向旋转38°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠B的度数是 .11.如图,在平行四边形ABCD中,E为AD上一点,∠EBC=40°,且BE=BC,CE=CD,则∠A= .12.如图,已知菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC,垂足为点E,则AE的长是 cm.13.如图,▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为 .14.如图,矩形纸片ABCD中,已知AD=12,AB=9,E是BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为 .三.解答题(共7小题,共58分)15.(6分)解方程:(1);(2).16.(8分)先化简,再求值:,其中a是满足不等式3a﹣1>﹣4的最小整数解.17.(9分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)画出△ABC关于原点成中心对称的△A'B'C';(2)将△ABC绕坐标原点O逆时针旋转90°,得△A″B″C″,画出△A″B″C″;(3)请直接写出,以A'、B'、C'为顶点的平行四边形的第四个顶点D'的坐标.18.(9分)如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.19.(8分)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M、N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.20.(9分)如图,点A在直线l外,点B在直线l上.(1)在l上求作一点C,在l外求作一点D,使得以A、B、C、D为顶点的四边形是菱形;(要求:用直尺和圆规作出所有大小不同的菱形)(2)连接AB,若AB=5,且点A到直线l的距离为4,通过计算,找出(1)中面积最小的菱形.21.(9分)如图1,在△ABC中,BD、CE分别是边AC、AB上的中线,BD与CE相交于点O,M和N分别为OB、OC的中点,连接ED、EM、MN、ND.(1)求的值;(2)当△ABC满足什么条件时,四边形DEMN是矩形?给出你的结论并证明.(3)如图2,在△ABC中,BD、AF分别是边AC、BC上的中线,BD与AF相交于点O,若OA=4,OC=3,OB=5,则△ABC的面积为 (请直接写出结果).2022-2023学年南京师范大学附属中学仙林学校初中部初二下学期3月月考参考答案与试题解析一.选择题(共4小题)1.下列汽车标志中既是轴对称图形,又是中心对称图形的是( )A.B.C.D.【解答】解:A选项中的图形是轴对称图形,但不是中心对称图形,不符合题意;B选项中的图形既是轴对称图形,又是中心对称图形,符合题意;C选项选项中的图形是轴对称图形,但不是中心对称图形,不符合题意;D选项中的图形是中心对称图形但不是轴对称图形,不符合题意;故选:B.2.菱形具有而矩形不一定具有的性质是( )A.对角线相等B.对角线互相垂直C.对角相等D.对边平行【解答】解:∵菱形的性质有对角相等,对边平行,对角线互相垂直平分,矩形的性质有对角相等,对边平行,对角线互相平分且相等,故选:B.3.如图,在▱ABCD中,对角线AC、BD相交于点O,下列条件中,不能判断这个平行四边形是菱形的是( )A.AB=AD B.∠BAC=∠DAC C.∠BAC=∠ABD D.AC⊥BD【解答】解:A、邻边相等的平行四边形是菱形,故A选项不符合题意;B、对角线平分对角的平行四边形是菱形,故B选项不符合题意;C、由∠BAC=∠ABD不一定能够判断这个平行四边形是菱形,故C选项符合题意;D、对角线互相垂直平分的平行四边形是菱形,故D选项不符合题意.故选:C.4.如图,将矩形ABCD绕点C顺时针旋转90°得到矩形FGCE,点M、N分别是BD、GE 的中点,若BC=7,CE=1,则MN的长( )A.3B.5C.6D.8【解答】解:连接AC、CF、AF,如图所示:∵矩形ABCD绕点C顺时针旋转90°得到矩形FFCE,∴∠ABC=90°,∴AC===5AC=BD=GE=CF,AC与BD互相平分,GE与CF互相平分,∵点M、N分别是BD、GE的中点,∴M是AC的中点,N是CF的中点,∴MN是△ACF的中位线,∴MN=AF,∵∠ACF=90°,∴△ACF是等腰直角三角形,∴AF=AC=5×=10,∴MN=5.故选:B.二.填空题(共10小题)5.当x ≠﹣3 时,分式有意义.【解答】解:由题意得:x+3≠0,解得:x≠﹣3,故答案为:≠﹣3.6.如图,矩形ABCD中,对角线AC、BD交于点O,∠AOB=60°,若AB=1,则BC= .【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=1,∴AC=2OA=2,∴BC===.故答案为:.7.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于 3.5 .【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=AB=×7=3.5.故答案为:3.5.8.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是 22.5° .【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵AE=AC,∴∠ACE=∠E==67.5°,∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故答案为:22.5°.9.如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加 AC=BD 条件,就能保证四边形EFGH是菱形.【解答】解:∵顺次连接四边形ABCD各边中点得到四边形EFGH即为平行四边形,∴根据菱形的性质,只要再有一组邻边相等就为菱形,只要添加的条件能使四边形EFGH 一组对边相等即可,例如AC=BD,故答案为:AC=BD.10.如图,△COD是△AOB绕点O顺时针方向旋转38°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠B的度数是 57° .【解答】解:根据旋转性质得△COD≌△AOB,∴CO=AO,由旋转角为38°,可得∠AOC=∠BOD=38°,∴∠OAC=(180°﹣∠AOC)÷2=71°,∴∠BOC=∠AOD﹣∠AOC﹣∠BOD=14°,∴∠AOB=∠AOC+∠BOC=52°,在△AOB中,由内角和定理得∠B=180°﹣∠OAC﹣∠AOB=180°﹣71°﹣52°=57°.答:∠B的度数为57°.11.如图,在平行四边形ABCD中,E为AD上一点,∠EBC=40°,且BE=BC,CE=CD,则∠A= 110° .【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB,AB∥CD,∴∠2=∠3,∠A+∠D=180°,∵BE=BC,CE=CD,∴BE=BC=10,CE=CD=6,∠1=∠2,∠3=∠D,∴∠1=∠2=∠3=∠D,∵∠EBC=40°,∴∠D=∠1=∠3=70°,∴∠A=180°﹣70°=110°;故答案为:110°.12.如图,已知菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC,垂足为点E,则AE的长是 cm.【解答】解:如图,设AC与BD的交点为O,∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AC⊥BD,∴BC===5cm,∴S菱形ABCD=AC•BD=×6×8=24(cm2),∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=(cm),故答案为:.13.如图,▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为 8 .【解答】解:连接EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO==4,∴AE=2AO=8.故答案为:8.14.如图,矩形纸片ABCD中,已知AD=12,AB=9,E是BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为 或9 .【解答】解:有两种情形:①如图1中,当∠EFC=90°时,A,F,C共线,设BE=EF=x,在Rt△ABC中,∵∠B=90°,AB=9,BC=AD=12,∴AC==15,在Rt△EFC中,∵EC2=EF2+CF2,∴(12﹣x)2=x2+62,∴x=,②如图2中,当∠FEC=90°时,四边形ABEF是正方形,BE=AB=9,综上所述,BE的值为或9.三.解答题(共7小题)15.解方程:(1);(2).【解答】解:(1)两边都乘以x(x﹣6),得3(x﹣6)=2x,解得x=18,检验,当x=18时,x(x﹣6)=216≠0,∴x=18是方程的解;(2)两边都乘以x﹣2,得1﹣3(x﹣2)=x﹣1,去括号,得1﹣3x+6=x﹣1,移项,得﹣3x﹣x=﹣1﹣6﹣1,合并同类项,得﹣4x=﹣8系数化为1,得x=2,检验:当x=2时,x﹣2=0,x=2是方程的增根,∴原方程无解.16.先化简,再求值:,其中a是满足不等式3a﹣1>﹣4的最小整数解.【解答】解:A=•=,由3a﹣1>﹣4,解得:a>﹣1,即a=2(a=0与a=1原式没有意义),则原式=1.17.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)画出△ABC关于原点成中心对称的△A'B'C';(2)将△ABC绕坐标原点O逆时针旋转90°,得△A″B″C″,画出△A″B″C″;(3)请直接写出,以A'、B'、C'为顶点的平行四边形的第四个顶点D'的坐标.【解答】解:(1)如图,△A'B'C'即为所求作.(2)如图,△A″B″C″即为所求作.(3)D点的坐标(5,3)或(7,﹣3)或(﹣3,﹣3).18.如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF;(2)由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE.19.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P 作PM⊥AD,PN⊥CD,垂足分别为M、N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,PM⊥AD,PN⊥CD,∴PM=PN,∴四边形MPND是正方形.20.如图,点A在直线l外,点B在直线l上.(1)在l上求作一点C,在l外求作一点D,使得以A、B、C、D为顶点的四边形是菱形;(要求:用直尺和圆规作出所有大小不同的菱形)(2)连接AB,若AB=5,且点A到直线l的距离为4,通过计算,找出(1)中面积最小的菱形.【解答】解:(1)如图①②③;(2)图①中,菱形ABCD的面积=5×4=20,图②中,BC=6,AD=8,菱形ABDC的面积=×6×8=24,图③中,作AH⊥BC于H,设菱形的边长为x,在Rt△ABH中,AH=4,AB=5,则BH=3,所以CH=x﹣3,在Rt△ACH中,42+(x﹣3)2=x2,解得x=菱形ACBD的面积=×4=,所以面积最小的菱形为ACBD.21.如图1,在△ABC中,BD、CE分别是边AC、AB上的中线,BD与CE相交于点O,M 和N分别为OB、OC的中点,连接ED、EM、MN、ND.(1)求的值;(2)当△ABC满足什么条件时,四边形DEMN是矩形?给出你的结论并证明.(3)如图2,在△ABC中,BD、AF分别是边AC、BC上的中线,BD与AF相交于点O,若OA=4,OC=3,OB=5,则△ABC的面积为 18 (请直接写出结果).【解答】解:(1)∵D、E、M、N分别为AC、AB、OB、OC的中点,∴DE∥BC,DE=BC,MN∥BC,MN=BC,∴DE∥MN,DE=MN,∴四边形EMND为平行四边形,∴OM=OD,∵OM=BM,∴OB=2OM=2OD,∴=2;(2)当AB=AC时,四边形DEMN为矩形,理由如下:∵D、E为AC、AB的中点,∴AD=AC,AE=AB,∴AD=AE,在△AEC和△ADB中,,∴△AEC≌△ADB(AAS),∴BD=CE,∵OD=OM=BM,∴MD=BD,同理EN=EC,∴MD=EN,∴四边形DEMN为矩形;(3)∵D,E,F分别为中点,设图中各小三角形的面积分别为a,b,c,由△ABF于△ACF等积,得a+2c=a+2b,∴b=c,同理可得a=b=c,∵OA=4,∴OF=2,延长OF到G,可得BG=OC=3,OG=2OF=4,∵OB=5,∴△OBG是直角三角形,且面积为6,∴a=3,∴△ABC的面积=6a=18.故答案为:18.。
广西壮族自治区南宁市青秀区三美学校2023-2024学年八年级下学期3月月考数学试题
广西壮族自治区南宁市青秀区三美学校2023-2024学年八年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列二次根式中,最简二次根式是( )A B C D2.如图,要使平行四边形ABCD 成为矩形,需要添加的条件是( )A .ABD CBD ∠=∠B .90ABC ∠=︒ C .AC BD⊥D .AB BC =3.在直角三角形中,若直角边为6和8,则斜边为( ) A .7B .8C .9D .104.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,E 是AB 的中点,连接OE ,若3cm OE =,则AD 的长为( )A .3cmB .6cmC .9cmD .12cm5.下列计算正确的是( )A B 4= C .3 D 6.菱形具有而矩形不具有的性质是( ) A .对边相等 B .对角相等 C .对角线互相平分 D .对角线互相垂直7.化简1x x y x÷⋅结果为( )A .x yB .y xC .xyD .18.如图,公路AC 、BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AB 的长为4.8km ,则M 、C 两点间的距离为( )A .2.4k mB .3.6k mC .4.2k mD .4.8k m9.如图,在ABC V 中,90ACB ∠=︒,CD 是高,30A ∠=︒,2BD =,则AB 的长为( )A .4B .6C .8D .1010.电商经济的蓬勃发展,物流配送体系建设的不断完善,推动我国快递行业迅速崛起.某快递公司的甲、乙两名快递员从公司出发分别到距离公司2400米和1000米的两地派送快件,甲快递员的速度是乙快递员速度的1.2倍,乙快递员比甲快递员提前10分钟到达派送地点.若设乙快递员的速度是x 米/分,则下列方程正确的是( )A .24001000101.2x x -= B .1.21024001000x x-= C .10002400101.2x x-= D .1.21024001000x x -= 11.如图,这是用面积为6的四个全等的直角三角形ABE BCF CDG ,,V V V 和DAH V 拼成的“赵爽弦图”,如果=5AB ,那么正方形EFGH 的边长为( )A .4B .3C .2D .112.如图,12OA A △为等腰直角三角形,11OA =,以斜边2OA 为直角边作等腰直角三角形23OA A ,再以3OA 为直角边作等腰直角三角形34OA A ,…,按此规律作下去,则n OA 的长度为( )A .12n⎛⎫ ⎪⎝⎭B.1n - C.nD.1n -⎝⎭二、填空题13x 的取值范围是. 14.分解因式:24a a +=.15.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,若OA =2,则BD 的长为.16.若最简二次根式x =.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中4A S =,2B S =,2C S =,1D S =,则S =.18.如图,菱形ABCD 中,AB =2,∠A =120°,点P 是直线BD 上⼀动点,连接PC ,当PC +2PB的值最小时,线段PD 的长是.三、解答题19 20.解方程:314133x x x -=+--. 21.如图,是由边长为1的小正方形组成的网格,其中点A 、B 、C 均在网格的格点上.(1)直接写出格点ABC V 的面积为______;(2)在网格中画出使A 、B 、C 、D 四点构成平行四边形的所有点D ; (3)直接写出线段AD 的长为______.22.如图,四边形ABCD 是平行四边形,∠BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E . (1)求证:BE =CD ;(2)若BF 恰好平分∠ABE ,连接AC 、DE ,求证:四边形ACED 是平行四边形.23.消防云梯的作用主要是用于高层建筑火灾等救援任务,它能让消防员快速到达高层建筑的火灾现场,如图,已知云梯最多只能伸长到50米(即50AA BB ''==米),消防车高3.4米,救人时云梯伸长至最长,在完成从33.4米(即33.4A M '=米)高的A '处救人后,还要从51.4米(即51.4B M '=米)高的B '处救人,这时消防车从A 处向着火的楼房靠近的距离AB 为多少米?24.先观察下列等式,再回答问题:11111122+-=;11111236+-=;111113412+-=; ……(1)请你根据上面三个等式提供的信息,写出第④个等式:______;(2); (3)请利用你发现的规律,计算:2024L . 25.如图,已知ABD △,分别以AD AB ,为边,在ABD △外侧作等边ACD V 和等边ABE V ,连接BC DE ,.(1)求证:BC DE =.(2)当30ABD ∠=︒时,求证:222BE BD BC +=.(3)当90BAD ∠=︒,6BD =时,求ACD V 与ABE V 的面积和. 26.实践操作在矩形ABCD 中,8AB =,6AD =,现将纸片折叠,点D 的对应点记为点P ,折痕为EF (点E 、F 是折痕与矩形的边的交点),再将纸片还原. 初步思考(1)若点P 落在矩形ABCD 的边AB 上(如图①).①当点P与点A重合时,DEF∠=______°;∠=______°;当点E与点A重合时,DEF②当点E在AB上,点F在DC上时(如图②),求证:四边形DEPF为菱形,并直接写AP=时的菱形EPFD的边长.出当7拓展延伸(2)若点F与点C重合,点E在AD上,射线BA与射线FP交于点M(如图③).在各种不同的折叠位置中,是否存在某一情况,使得线段AM与线段DE的长度相等?若存在,请直接写出线段AE的长度;若不存在,请说明理由.。
八年级数学第二学期3月份月考测试卷及答案
八年级数学第二学期3月份月考测试卷及答案一、选择题1.下列计算正确的为( ).A 5=-B =C .2+=+D 2=2.若 有意义,则 x 的取值范围是 ( ) A .3x > B .3x ≥C .3x ≤D .x 是非负数3.下列运算中,正确的是 ( )A . 3B .×=6C . 3D .4.若01x <<=( ). A .2xB .2x- C .2x - D .2x5.下列运算正确的是 ( )A .3=B =C .=D =6.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:S =,其中2a b cp ++=,若一个三角形的三边长分别为2,3,4,则其面积( )A B C D 7.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( ) A .1个B .2个C .3个D .4个8.设0a >,0b >=的值是( ) A .2B .14C .12D .31589.下列各式成立的是( ) A2B 5=- C xD6=-10.x y x x y >=->+中,二次根式有( ) A .2个B .3个C .4个D .5个11.下列各式计算正确的是() A .23=B 5=± C=D.3=12.下列各式中,一定是二次根式的是() ABCD 二、填空题13.2==________. 14.把根号外的因式移入根号内,得________ 15.已知函数1x f xx,那么1f _____.16.已知x =,a 是x 的整数部分,b 是x 的小数部分,则a-b=_______ 17.若2x ﹣x 2﹣x=_____.18.,则x+y=_______.19..20.x 的取值范围是______. 三、解答题21.)÷)(a ≠b).【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-22.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.23.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1)(2)请你按照上面各等式反映的规律,用含n的等式表示(n为正整数).【答案】(1)1120(2)()111n n++(n为正整数)【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1 1 20(2)1n−1n1+=1+()1n n1+ (n为正整数).a=,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.24.在一个边长为(cm的正方形的内部挖去一个长为()cm,cm的矩形,求剩余部分图形的面积.【答案】【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm2).考点:二次根式的应用25.一样的式子,其实我==3==,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n +++【答案】(1-2. 【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)===== (2)原式2n +++=. 考点:分母有理化.26.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22m m-+ 1. 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m --=221m m --()•122m m m --+-()() =﹣22m m -+ =22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.27.计算(1))(121123-⎛⨯-- ⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值.【答案】(1)28-;(2)17. 【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得. 【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y ==,1122x y ∴+=+=,()11119112224xy =⨯=⨯-=,则()222x xy y x y xy ++=+-,22=-,192=-, 17=. 【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.28.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答. 【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.29.02020((1)π-.【答案】 【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可. 【详解】原式11=-= 【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.30.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =, 由于437+=,4312⨯=,所以22+==,2===.. 【答案】见解析 【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法. 【详解】根据题意,可知13m =,42n =, 由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据二次根式的性质、二次根式的加法以及混合运算的法则逐项进行判断即可. 【详解】A 5=,故A 选项错误;B B 选项错误;C .++=222,故C 选项错误;D 2=,正确, 故选D . 【点睛】本题考查了二次根式的运算,熟练掌握各运算的运算法则是解题的关键.2.B解析:B 【分析】直接利用二次根式有意义的条件进而分析得出答案.有意义的x 的取值范围是:x ≥3. 故选:B . 【点睛】本题考查二次根式有意义的条件,解题关键是正确掌握定义和二次根式有意义的条件.3.C解析:C 【分析】根据二次根式的加减法对A 、D 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断. 【详解】A 、A 选项错误;B 、×=12,所以B 选项错误;C 、3,所以C 选项正确;D 、,不能合并,所以D 选项错误; 故选:C . 【点睛】本题考查了二次根式的混合运算,正确掌握运算法则是解题关键.4.D解析:D 【分析】根据二次根式的意义先化简各项,再进行分式的加减运算可得出解. 【详解】 解:∵0<x <1, ∴0<x <1<1x, ∴10x x +>,10x x-<.原式=11x x x x+-- =11x x x x ++- =2x . 故选D .点睛:本题考查了二次根式的性质和绝对值化简,也考查了分式的加减.解析:A【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A、3=,故选项A正确;B B错误;C、18=,故选项C错误;D=D错误;故选:A.【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.6.A解析:A【分析】根据公式解答即可.【详解】根据题意,若一个三角形的三边长分别为2,3,4,则2+349=222a b cp+++==∴其面积为4 S====故选:A.【点睛】本题考查二次根式的应用、数学常识等知识,难度较难,掌握相关知识是解题关键.7.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.8.C解析:C【分析】=变形后可分解为:)=0,从而根据a>0,b>0可得出a和b的关系,代入即可得出答案.【详解】由题意得:a=+15b,∴+)=0,=,a=25b,1.2故选C.【点睛】本题考查二次根式的化简求值,有一定难度,根据题意得出a和b的关系是关键.9.A解析:A【分析】直接利用二次根式的性质化简求出即可.【详解】解:,正确,故选项A符合题意;=,原选项计算错误,故选项B不符合题意;=,原选项计算错误,故选项C不符合题意;||xD. =,原选项计算错误,故选项D不符合题意.故选:A.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解答此题的关键.10.B解析:B【解析】解:当y=﹣2时,y+1=﹣2+1=﹣1,∴y=-2)无意义;当x>0无意义;x>0共3个.故选B.11.A解析:A【分析】根据二次根式的性质和运算法则逐一计算可得.【详解】A、23=此选项计算正确,符合题意;B、5=此选项计算错误,不符合题意;C-不是同类二次根式,不能合并,此选项计算错误,不符合题意;D、-=故选:A.【点睛】本题主要考查了利用二次根式的性质化简以及二次根式的加减运算,准确利用二次根式的性质计算是解题的关键.12.D解析:D【分析】根据二次根式的意义,如果一定是二次根式,则不论字母取何值,被开方数一定是非负数,逐一判断即可得.【详解】解:A,不是二次根式;B x<0时无意义,不一定是二次根式;C在-2<a<2时,无意义,不一定是二次根式;D a2≥0,一定是二次根式;故选:D.【点睛】本题主要考查二次根式的定义,一般地,a≥0)的式子叫做二次根式.二、填空题13.【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m =,n =,那么m −n =2①,m2+n2=()2+()2=34②.由①得,m =2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m 、n 的关系式,解方程组求m 、n 的值即可.【详解】设m n那么m−n =2①,m 2+n 2=2+2=34②.由①得,m =2+n ③,将③代入②得:n 2+2n−15=0,解得:n =−5(舍去)或n =3,因此可得出,m =5,n =3(m≥0,n≥0).n +2m =13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.14.【分析】根据被开方数大于等于零,可得出,再根据二次根式的性质进行计算即可.【详解】解:∵,∴,∴.故答案为:.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质解析:a 【分析】根据被开方数大于等于零,可得出0a <,再根据二次根式的性质进行计算即可.【详解】 解:∵310a-≥,∴0a<,∴a===.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质是解此题的关键.15.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时,.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x=,代入原函数即可解答.【详解】因为函数1xf xx,所以当1x=时,211()2221f x.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 16.【分析】先把x分母有理化求出x= ,求出a、b的值,再代入求出结果即可.【详解】∵∴∴∴【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a、b的值.解析:6【分析】先把x 分母有理化求出2 ,求出a 、b 的值,再代入求出结果即可.【详解】2x === ∵23<<∴425<< ∴4,242a b ==-=∴42)6a b -=-=【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.17.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣1= ,∴(2x ﹣1)2=3∴4x 2﹣4x+1=3∴4(x2﹣x )=2∴x2﹣x=故答案为【点 解析:12【解析】【分析】 根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x ﹣,∴(2x ﹣1)2=3∴4x 2﹣4x+1=3∴4(x 2﹣x )=2∴x 2﹣x=12故答案为1 2【点睛】本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.18.8+2【解析】根据配方法,由完全平方公式可知x+y==()2-2,然后把+=+,=-整体代入可得原式=(+)2-2(-)=5+3+2-2+2=8+2.故答案为:8+2.解析:【解析】根据配方法,由完全平方公式可知x+y=2222+=+-)2整体代入可得原式=2-2)故答案为:19.【解析】【详解】根据二次根式的性质和二次根式的化简,可知==.故答案为.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.【解析】【详解】22.故答案为2.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.20.且【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:,解得且,故答案为:且.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
人教版八年级第二学期3月份质量检测数学试卷含答案
一、选择题1.如图,在矩形ABCD中,AB=3,BC=4,在矩形内部有一动点P满足S△PAB=3S△PCD,则动点P到点A,B两点距离之和PA+PB的最小值为()A.5 B.35C.332+D.2132.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是()A.4 B.5 C.7 D.63.如图,□ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为()A.1 B.2C.32D.34.如图,是一长、宽都是3 cm,高BC=9 cm的长方体纸箱,BC上有一点P,PC=23BC,一只蚂蚁从点A出发沿纸箱表面爬行到点P的最短距离是()A.2B.3C.10 cm D.12 cm5.如图,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45︒,若AD=4,CD=2,则BD的长为( )A .6B .27C .5D .256.以下列各组数为边长,不能构成直角三角形的是( ) A .3,4,5 B .1,1,2 C .8,12,13 D .2、3、5 7.由下列条件不能判定△ABC 为直角三角形的是( )A .∠A+∠B=∠CB .∠A :∠B :∠C=1:3:2C .a=2,b=3,c=4D .(b+c)(b-c)=a²8.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( ) A .7.5平方千米B .15平方千米C .75平方千米D .750平方千米9.如图,在ABC ∆中,D 、E 分别是BC 、AC 的中点.已知90ACB ∠=︒,4BE =,7AD =,则AB 的长为( )A .10B .53C .213D .21510.已知三角形的两边分别为3、4,要使该三角形为直角三角形,则第三边的长为( ) A .5B .7C .5或7D .3或4二、填空题11.如图,RT ABC ,90ACB ∠=︒,6AC =,8BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则B FC '△的面积为______.12.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为_______________.13.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________. 14.如图是由边长为1的小正方形组成的网格图,线段AB ,BC ,BD ,DE 的端点均在格点上,线段AB 和DE 交于点F ,则DF 的长度为_____.15.如图,已知△DBC 是等腰直角三角形,BE 与CD 交于点O ,∠BDC=∠BEC=90°,BF=CF ,若BC=8,OD=2,则OF=______.16.已知,在△ABC 中,∠C=90°,AC=BC=7,D 是AB 的中点,点E 在AC 上,点F 在BC 上,DE=DF ,若BF=4,则EF=_______17.如图,BAC 90∠=度,AB AC =,AE AD ⊥,且AE AD =,AF 平分DAE ∠交BC 于F ,若BD 6=,CF 8=,则线段AD 的长为______.18.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.19.在△ABC 中,∠A=30°,∠B=90°,AC=8,点 D 在边 AB , 且 BD=3,点 P 是△ABC 边上的一个动点,若 AP=2PD 时,则 PD 的长是____________.20.已知,在△ABC 中,BC=3,∠A=22.5°,将△ABC 翻折使得点B 与点A 重合,折痕与边AC 交于点P ,如果AP=4,那么AC 的长为_______三、解答题21.如图,在两个等腰直角ABC 和CDE △中,∠ACB = ∠DCE=90°.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE △绕点C 在平面内自由旋转,若AC = BC=10,DE=12,当A 、E 、D 三点在直线上时,请直接写出 AD 的长.22.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.23.如图,将一长方形纸片OABC 放在平面直角坐标系中,(0,0)O ,(6,0)A ,(0,3)C ,动点F 从点O 出发以每秒1个单位长度的速度沿OC 向终点C 运动,运动23秒时,动点E 从点A 出发以相同的速度沿AO 向终点O 运动,当点E 、F 其中一点到达终点时,另一点也停止运动.设点E 的运动时间为t :(秒)(1)OE =_________,OF =___________(用含t 的代数式表示)(2)当1t =时,将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标及直线DE 的解析式;(3)在(2)的条件下,点M 是射线DB 上的任意一点,过点M 作直线DE 的平行线,与x 轴交于N 点,设直线MN 的解析式为y kx b =+,当点M 与点B 不重合时,设MBN ∆的面积为S ,求S 与b 之间的函数关系式.24.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .(1)如图1,当,D E 两点重合时,求证:BD DF =; (2)延长BD 与EF 交于点G . ①如图2,求证:60BGE ∠=︒;②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为______________.25.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.(1)求CD 的长.(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.①若当2v =时,CP BQ =,求t 的值.②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.26.如图,点A 是射线OE :y =x (x ≥0)上的一个动点,过点A 作x 轴的垂线,垂足为B ,过点B 作OA 的平行线交∠AOB 的平分线于点C .(1)若OA =52,求点B 的坐标;(2)如图2,过点C 作CG ⊥AB 于点G ,CH ⊥OE 于点H ,求证:CG =CH .(3)①若点A 的坐标为(2,2),射线OC 与AB 交于点D ,在射线BC 上是否存在一点P 使得△ACP 与△BDC 全等,若存在,请求出点P 的坐标;若不存在,请说明理由. ②在(3)①的条件下,在平面内另有三点P 1(2,2),P 2(2,22),P 3(2+2,2﹣2),请你判断也满足△ACP 与△BDC 全等的点是 .(写出你认为正确的点)27.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM . (1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.28.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE相交于点F.(1)求证:∠ABE=∠CAD;(2)如图2,以AD为边向左作等边△ADG,连接BG.ⅰ)试判断四边形AGBE的形状,并说明理由;ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).29.在平面直角坐标系中,点A(0,4),B(m,0)在坐标轴上,点C,O关于直线AB 对称,点D在线段AB上.(1)如图1,若m=8,求AB的长;(2)如图2,若m=4,连接OD,在y轴上取一点E,使OD=DE,求证:CE=2DE;(3)如图3,若m=43,在射线AO上裁取AF,使AF=BD,当CD+CF的值最小时,请在图中画出点D的位置,并直接写出这个最小值.30.(发现)小慧和小雯用一个平面去截正方体,得到一个三角形截面(截出的面),发现截面一定是锐角三角形.为什么呢?她们带着这个疑问请教许老师.(体验)(1)从特殊入手许老师用1个铆钉把长度分别为4和3的两根窄木棒的一端连在一起(如图,),保持不动,让从重合位置开始绕点转动,在转动的过程,观测的大小和的形状,并列出下表:的大小的形状…直角三角形…直角三角形…请仔细体会其中的道理,并填空:_____,_____;(2)猜想一般结论在中,设,,(),①若为直角三角形,则满足;②若为锐角三角形,则满足____________;③若为钝角三角形,则满足_____________.(探索)在许老师的启发下,小慧用小刀在一个长方体橡皮上切出一个三角形截面(如图1),设,,,请帮助小慧说明为锐角三角形的道理.(应用)在小慧的基础上,小雯又切掉一块“角”,得到一个新的三角形截面(如图2),那么的形状是()A.一定是锐角三角形B.可能是锐角三角形或直角三角形,但不可能是钝角三角形C.可能是锐角三角形或直角三角形或钝角三角形【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先由PAB PCD S =3S △△,得知动点P 在与AB 平行且与AB 的距离为3的直线l 上,作点A 关于直线l 的对称点E ,连接AE 、BE ,则BE 的长就是所求的最短距离,然后在直角三角形ABE 中,由勾股定理求得BE 的值,即PA+PB 的最小值. 【详解】解:∵PAB PCD S =3S △△, 设点P 到CD 的距离为h ,则点P 到AB 的距离为(4-h ),则11AB (4-h)=3CD h 22⋅⋅⨯⋅⋅,解得:h=1,∴点P 到CD 的距离1,到AB 的距离为3, ∴如下图所示,动点P 在与AB 平行且与AB 的距离为3的直线l 上,作点A 关于直线l 的对称点E ,连接AE 、BE ,且两点之间线段最短,∴PA+PB 的最小值即为BE 的长度,AE=6,AB=3,∠BAE=90°, 根据勾股定理:22222BE =AE AB =63=35++ 故选:B . 【点睛】本题考查了轴对称—最短路线问题(两点之间线段最短),勾股定理,得出动点P 所在的位置是解题的关键.2.D解析:D【解析】【分析】先利用勾股定理计算BC的长度,然后阴影部分的面积=以AB为直径的半圆面积+以BC为直径的半圆面积+-以AC为直径的半圆面积.【详解】解:在中∵,,∴,∴BC=3,∴阴影部分的面积=以AB为直径的半圆面积+以BC为直径的半圆面积+-以AC为直径的半圆面积=6.故选D.【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积. 3.B解析:B【解析】【分析】如图,连接BB′.根据折叠的性质知△BB′E是等腰直角三角形,则BB′=2BE.又B′E是BD 的中垂线,则DB′=BB′.【详解】∵四边形ABCD是平行四边形,BD=2,∴BE=12BD=1.如图2,连接BB′.根据折叠的性质知,∠AEB=∠AEB′=45°,BE=B′E.∴∠BEB′=90°,∴△BB′E是等腰直角三角形,则BB′=2BE=2,又∵BE=DE,B′E⊥BD,∴DB′=BB′=2.故选B.【点睛】考查了平行四边形的性质以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.4.A解析:A【解析】【分析】将图形展开,可得到安排AP 较短的展法两种,通过计算,得到较短的即可.【详解】解:(1)如图1,AD=3cm ,DP=3+6=9cm ,在Rt △ADP 中,AP=2239+=310cm((2)如图2, AC=6cm ,CP=6cm ,Rt △ADP 中,2266+62综上,蚂蚁从点A 出发沿纸箱表面爬行到点P 的最短距离是2cm .故选A .【点睛】题考查了平面展开--最短路径问题,熟悉平面展开图是解题的关键.5.A解析:A【解析】【分析】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,根据等式的性质,可得∠BAD 与∠CAD′的关系,根据SAS ,可得△BAD 与△CAD′的关系,根据全等三角形的性质,可得BD 与CD′的关系,根据勾股定理,可得答案.【详解】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,则有∠AD′D=∠D′AD=45︒,∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD′中,''BC CA BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAD′(SAS ),∴BD=CD′,∠DAD′=90°,由勾股定理得DD′=22'AD AD +=42,∠D′DA+∠ADC=90°,由勾股定理得CD′=22DC DD +'=()22422+=6,故选A.【点睛】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,添加辅助线作出全等图形是解题关键. 6.C解析:C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断. 【详解】A. 32+42=52,能构成直角三角形,故不符合题意;B. 12+12=2)2,能构成直角三角形,故不符合题意;C. 82+122≠132,不能构成直角三角形,故符合题意;D.2)2+32=52,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.C解析:C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A 、∠A+∠B =∠C ,可得∠C =90°,是直角三角形,错误;B 、∠A :∠B :∠C =1:3:2,可得∠B =90°,是直角三角形,错误;C 、∵22+32≠42,故不能判定是直角三角形,正确;D 、∵(b+c )(b ﹣c )=a 2,∴b 2﹣c 2=a 2,即a 2+c 2=b 2,故是直角三角形,错误; 故选C .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.8.A解析:A【解析】分析:直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.详解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形, ∴这块沙田面积为:12×5×500×12×500=7500000(平方米)=7.5(平方千米). 故选A .点睛:此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键. 9.C解析:C【分析】设EC=x ,DC=y ,则直角△BCE 中,x 2+4y 2=BE 2=16,在直角△ADC 中,4x 2+y 2=AD 2=49,由方程组可求得x 2+y 2,在直角△ABC 中,2244ABx y 【详解】解:设EC=x ,DC=y ,∠ACB=90°,∵D 、E 分别是BC 、AC 的中点,∴AC=2EC=2x ,BC=2DC=2y ,∴在直角△BCE 中,CE 2+BC 2=x 2+4y 2=BE 2=16在直角△ADC 中,AC 2+CD 2=4x 2+y 2=AD 2=49,∴2255164965x y ,即2213x y +=,在直角△ABC 中,2244413213ABx y .故选:C .【点睛】 本题考查了勾股定理的灵活运用,考查了中点的定义,本题中根据直角△BCE 和直角△ADC 求得22x y +的值是解题的关键.10.C解析:C【分析】根据勾股定理和分类讨论的方法可以求得第三边的长,从而可以解答本题.【详解】由题意可得,当3和45,当斜边为4,故选:C【点睛】本题考查勾股定理,解答本题的关键是明确题意,利用勾股定理和分类讨论的数学思想解答.二、填空题11.96 25【分析】将△B´CF的面积转化为求△BCF的面积,由折叠的性质可得CD=AC=6,∠ACE=∠DCE,∠BCF=∠B´CF,CE⊥AB,可证得△ECF是等腰直角三角形,EF=CE,∠EFC=45°,由等面积法可求CE的长,由勾股定理可求AE的长,进而求得BF的长,即可求解.【详解】根据折叠的性质可知,CD=AC=6,∠ACE=∠DCE,∠BCF=∠B´CF,CE⊥AB,∴∠DCE+∠B´CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,且CE⊥AB,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∵S△ABC=12AC•BC=12AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=10,∴CE=245,∴EF=245,∵AE 185,∴BF=AB−AE−EF=10-185-245=85,∴S△CBF=12×BF×CE=12×85×245=9625,∴S△CB´F=96 25,故填:96 25.【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等知识,根据折叠的性质求得相等的角是解决本题的关键.12.32或42【分析】根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案【详解】当△ABC是钝角三角形时,∵∠D=90°,AC=13,AD=12,∴222213125CD AC AD=-=-=,∵∠D=90°,AB=15,AD=12,∴222215129BD AB AD=-=-=,∴BC=BD-CD=9-5=4,∴△ABC的周长=4+15+13=32;当△ABC是锐角三角形时,∵∠ADC=90°,AC=13,AD=12,∴222213125CD AC AD-=-=,∵∠ADB=90°,AB=15,AD=12,∴222215129BD AB AD=-=-,∴BC=BD-CD=9+5=14,∴△ABC的周长=14+15+13=42;综上,△ABC 的周长是32或42,故答案为:32或42.【点睛】此题考查勾股定理的实际应用,能依据题意正确画出图形分类讨论是解题的关键.13.23或2 【分析】 先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.【详解】在Rt ABC 中,90,30,2C A BC ∠=∠==,∴AB=2BC=4,∴22224223AC AB BC =-=-=,当AC 为腰时,则该三角形的腰长为23;当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则AE=3,设DE=x ,则AD=2x ,∵222AE DE AD +=,∴222(3)(2)x x +=∴x=1(负值舍去),∴腰长AD=2x=2,故答案为:32【点睛】此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.14.2【分析】连接AD 、CD ,由勾股定理得:22435AB DE ==+=,224225BD =+=,22125CD AD ==+=,得出AB =DE =BC ,222BD AD AB +=,由此可得△ABD 为直角三角形,同理可得△BCD 为直角三角用形,继而得出A 、D 、C 三点共线.再证明△ABC ≌△DEB ,得出∠BAC =∠EDB ,得出DF ⊥AB ,BD 平分∠ABC ,再由角平分线的性得出DF =DG =2即可的解.【详解】连接AD 、CD ,如图所示:由勾股定理可得,22435AB DE ==+=,224225BD =+=22125CD AD ==+, ∵BE=BC=5,∴AB=DE =AB =BC ,222BD AD AB +=,∴△ABD 是直角三角形,∠ADB =90°,同理可得:△BCD 是直角三角形,∠BDC =90°,∴∠ADC =180°,∴点A 、D 、C 三点共线,∴225AC AD BD ===,在△ABC 和△DEB 中,AB DE BC EB AC BD =⎧⎪⎨⎪=⎩=,∴△ABC ≌△DEB(SSS),∴∠BAC =∠EDB ,∵∠EDB+∠ADF =90°,∴∠BAD+∠ADF =90°,∴∠BFD =90°,∴DF ⊥AB ,∵AB=BC ,BD ⊥AC ,∴BD 平分∠ABC ,∵DG ⊥BC ,∴DF =DG =2.【点睛】本题考查全等三角形的性质与判定以及勾股定理的相关知识,解题的关键是熟练掌握勾股定理和过股定理的逆定理.1510【分析】过点F 作FG ⊥BE ,连接OF 、EF ,先根据等腰直角三角形的性质得出DC 的值,再用勾股定理求出OE 的值,然后根据中位线定理得出FG 的的值,最后再根据勾股定理得出OF 的值即可.【详解】过点F 作FG ⊥BE ,连接OF 、EF ,如下图所示:∵DBC ∆是等腰直角三角形,且BF CF =,8BC = ∴422DC DB ===∵2OD =∴32OC DC OD =-= ∴2234OB BD DO +=设OE x =,∵∠BEC=90°则()2222OC OE BC OB OE -=-+ ∴33417OE = ∴221234EC OC EO =-=∵BF CF =,FG ⊥BE ,∠BEC=90° ∴16342FG EC ==∴2034BE BO OE =+=∴17342GO GE OE BE OE =-=-= ∴22=10OF GO GF -=【点睛】本题主要考查了等腰直角三角形的性质、相似三角形、中位线定理、勾股定理等,综合度比较高,准确作出辅助线是关键.16.322或11或5或109 5【分析】分别就E,F在AC,BC上和延长线上,分别画出图形,过D作DG⊥AC,DH⊥BC,垂足为G,H,通过构造全等三角形和运用勾股定理作答即可.【详解】解:①过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D是AB的中点,∴DG=12 BC同理:DH=12 AC又∵BC=AC∴DG=DH在Rt△DGE和Rt△DHF中DG=DH,DE=DF∴Rt△DGE≌Rt△DHF(HL)∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=GC-GE=CH-HF=CF=AB-BF=3∴EF=223332+=②过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D是AB的中点,∴DG=12BC 同理:DH=12AC 又∵BC=AC∴DG=DH在Rt△DGE 和Rt△DHF 中DG=DH,DE=DF ∴Rt△DGE≌Rt△DHF(HL )∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=CF=AC+AE=AB+BF=7+4=11 ∴EF=221111112+=③如图,以点D 为圆心,以DF 长为半径画圆交AC 边分别为E 、E ',过点D 作DH⊥AC 于点H ,可知DF DE DE '==,可证△EHD≌△E HD ',CE D CFD '≌,△DHC 为等腰直角三角形,∴∠1+∠2=45°∴∠EDF=2(∠1+∠2)=90°∴△EDF 为等腰直角三角形可证AED CFD △△≌∴AE=CF=3,CE=BF=4∴2222435EF CE CF =+=+=④有第③知,EF=5,且△EDF 为等腰直角三角形,∴ED=DF=522,可证△E CF E DE ''∆∽,2223y x += 5252x =+ 综上可得:4225x =∴2222E F DE DF DE '''''=+= 1095E F ''= 【点睛】本题考查了全等三角形和勾股定理方面的知识,做出辅助线、运用数形结合思想是解答本题的关键.17.65【分析】由“SAS”可证ABD ≌ACE ,DAF ≌EAF 可得BD CE =,4B ∠∠=,DF EF =,由勾股定理可求EF 的长,即可求BC 的长,由勾股定理可求AD 的长.【详解】解:如图,连接EF ,过点A 作AG BC ⊥于点G ,AE AD ⊥,DAE DAC 290∠∠∠∴=+=,又BAC DAC 190∠∠∠=+=,12∠∠∴=,在ABD 和ACE 中12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴≌()ACE SAS .BD CE ∴=,4B ∠∠=BAC 90∠=,AB AC =,∴B 345∠∠==4B 45∠∠∴==,ECF 3490∠∠∠∴=+=,222CE CF EF ∴+=,222BD FC EF ∴+=, AF 平分DAE ∠,DAF EAF ∠∠∴=,在DAF 和EAF 中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,DAF ∴≌()EAF SAS .DF EF ∴=.222BD FC DF ∴+=.22222DF BD FC 68100∴=+=+=,∴DF 10=BC BD DF FC 610824∴=++=++=,AB AC =,AG BC ⊥,1BG AG BC 122∴===, DG BG BD 1266∴=-=-=,∴AD =故答案为【点睛】考查等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.18.2-【分析】根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE 的值最小,转化成求DM 的最小值,通过已知值计算即可.【详解】解:如图所示,在AB 上取AM=AC=2,∵90ACB ∠=,2AC BC ==,∴∠CAB=45°,又∵45EAD ∠=,∴∠EAC+∠CAD=∠DAB+∠CAD=45°,∴∠EAC =∠DAB ,∴在△EAC 与△DAB 中AE=AD ,∠EAF =∠DAB ,AC =AM ,∴△EAC ≌△DAM (SAS )∴CE=MD ,∴当MD ⊥BC 时,CE 的值最小,∵AC=BC=2, 由勾股定理可得2222AB AC BC =+=,∴222=-BM ,∵∠B=45°,∴△BDM 为等腰直角三角形,∴DM=BD ,由勾股定理可得222+BD DM =BM∴DM=BD=22-∴CE=DM=22-故答案为:22-【点睛】本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE 最小时的状态,化动为静.19.3315【分析】根据直角三角形的性质求出BC ,勾股定理求出AB ,根据直角三角形的性质列式计算即可.【详解】解:如图∵∠B=90°,∠A=30°,∴BC=12AC=12×8=4, 由勾股定理得,22228443AC BC -=-=43333AD ∴==当点P 在AC 上时,∠A=30°,AP=2PD ,∴∠ADP=90°,则AD 2+PD 2=AP 2,即(32=(2PD )2-PD 2,解得,PD=3,当点P 在AB 上时,AP=2PD ,3∴3当点P 在BC 上时,AP=2PD ,设PD=x ,则AP=2x ,由勾股定理得,BP 2=PD 2-BD 2=x 2-3,()(222233x x ∴-=-解得,15 故答案为:3315【点睛】本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.20.522,32++【分析】过B 作BF ⊥CA 于F ,构造直角三角形,分两种情况讨论,利用勾股定理以及等腰直角三角形的性质,即可得到AC 的长.【详解】分两种情况:①当∠C 为锐角时,如图所示,过B 作BF ⊥AC 于F ,由折叠可得,折痕PE 垂直平分AB ,∴AP=BP=4,∴∠BPC=2∠A=45°,∴△BFP 是等腰直角三角形,∴BF=DF=22,又∵BC=3,∴Rt △BFC 中,CF=221BC BF -=,∴AC=AP+PF+CF=5+22;②当∠ACB 为钝角时,如图所示,过B 作BF ⊥AC 于F ,同理可得,△BFP 是等腰直角三角形,∴BF=FP=22又∵BC=3,∴Rt △BCF 中,221BC BF -=,∴AC=AF-CF=3+22故答案为:5+223+22【点睛】本题主要考查了折叠问题以及勾股定理的运用,解决问题的关键是分两种情况画出图形进行求解.解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题21.(1)AE BD =,AE BD ⊥;(2)成立,理由见解析;(3)14或2.【分析】(1)先根据等腰三角形的定义可得AC BC =,CE CD =,再根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,然后根据直角三角形两锐角互余、等量代换即可得90AHD ∠=︒,由此即可得;(2)先根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,再根据直角三角形两锐角互余可得90EAC AOC ∠+∠=︒,然后根据对顶角相等、等量代换可得90BOH DBC ∠∠+=︒,从而可得90OHB ∠=︒,由此即可得;(3)先利用勾股定理求出102AB =,再分①点,,A E D 在直线上,且点E 位于中间,②点,,A E D 在直线上,且点D 位于中间两种情况,结合(1)(2)的结论,利用勾股定理求解即可得.【详解】(1)AE BD =,AE BD ⊥,理由如下:如图1,延长AE 交BD 于H ,由题意得:AC BC =,90ACE BCD ∠=∠=︒,CE CD =,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90DBC BDC ∠+∠=︒,∴90EAC BDC ∠+∠=︒,∴0)9018(EAC BD A D C H ∠+∠∠︒==-︒,即AE BD ⊥,故答案为:AE BD =,AE BD ⊥;(2)成立,理由如下:如图2,延长AE 交BD 于H ,交BC 于O ,∵90ACB ECD ∠=∠=︒,∴ACB BCE ECD BCE ∠-∠=∠-∠,即ACE BCD ∠=∠,在ACE △和BCD 中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90ACB ∠=︒,∴90EAC AOC ∠+∠=︒,∵AOC BOH ∠=∠,∴90BOH DBC ∠∠+=︒,即90OBH BOH ∠+∠=︒,∴180()90OHB OBH BOH ∠=︒-∠+∠=︒,即AE BD ⊥;(3)设AD x =,10,90AC BC ACB ==∠=︒, 2102AB AC ∴==,由题意,分以下两种情况:①如图3-1,点,,A E D 在直线上,且点E 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==-=-,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x +-=,解得14x =或2x =-(不符题意,舍去),即14AD =,②如图3-2,点,,A E D 在直线上,且点D 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==+=+,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x ++=,解得2x =或14x =-(不符题意,舍去),即2AD =,综上,AD 的长为14或2.【点睛】本题考查了三角形全等的判定与性质、勾股定理等知识点,较难的是题(3),正确分两种情况讨论,并画出图形是解题关键.22.(1)①详见解析;②详见解析;(2)DE2=EB2+AD2+EB·AD,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD,∠DCF=90°,再根据已知条件即可证明△ACD≌△BCF;②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12 BF,FG=3BF∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+12BF,∴EF2=(EB+12BF)2+(32BF)2∴DE2=(EB+12AD)2+(3AD)2∴DE2=EB2+AD2+EB·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.23.(1)6-t,t+23;(2)D(1,3),y=34-x+154;(3)1515215()4215215()2b bSb b⎧-+≤<⎪⎪=⎨⎪->⎪⎩【分析】(1)根据点E,F的运动轨迹和速度,即可得到答案;(2)由题意得:DF=OF=53,DE=OE=5,过点E作EG⊥BC于点G,根据勾股定理得DG=4,进而得D(1,3),根据待定系数法,即可得到答案;(3)根据题意得直线直线MN的解析式为:34y x b=-+,从而得M(443b-,3),分2种情况:①当点M 在线段DB 上时, ②当点M 在DB 的延长线上时,分别求出S 与b 之间的函数关系式,即可.【详解】∵(0,0)O ,(6,0)A ,(0,3)C ,∴OA=6,OC=3,∵AE=t×1= t , ∴OE =6-t ,OF =(t+23)×1=t+23, 故答案是:6-t ,t+23; (2)当1t =时,OE =6-t=5,OF =t+23=53, ∵将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,∴DF=OF=53,DE=OE=5, 过点E 作EG ⊥BC 于点G ,则EG=OC=3,CG=OE=5,∴4=,∴CD=CG-DG=5-4=1,∴D(1,3),设直线DE 的解析式为:y=kx+b ,把D(1,3),E(5,0)代入y=kx+b ,得350k b k b +=⎧⎨+=⎩ ,解得:34154k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线DE 的解析式为:y=34-x+154; (3)∵MN ∥DE ,∴直线直线MN 的解析式为:34y x b =-+, 令y=3,代入34y x b =-+,解得:x=443b -, ∴M(443b -,3). ①当点M 在线段DB 上时,BM=6-(443b -)=4103b -+, ∴1143(10)223S BM AB b =⋅=⨯⨯-+=215b -+, ②当点M 在DB 的延长线上时,BM=443b --6=4103b -,∴1143(10)223S BM AB b=⋅=⨯⨯-=215b-,综上所述:1515215()4215215()2b bSb b⎧-+≤<⎪⎪=⎨⎪->⎪⎩.【点睛】本题主要考查一次函数与几何图形的综合,掌握勾股定理与一次函数的待定系数法,是解题的关键.24.(1)见解析;(2)①见解析;②2.【分析】(1)当D、E两点重合时,则AD=CD,然后由等边三角形的性质可得∠CBD的度数,根据等腰三角形的性质和三角形的外角性质可得∠F的度数,于是可得∠CBD与∠F的关系,进而可得结论;(2)①过点E作EH∥BC交AB于点H,连接BE,如图4,则易得△AHE是等边三角形,根据等边三角形的性质和已知条件可得EH=CF,∠BHE=∠ECF=120°,BH=EC,于是可根据SAS 证明△BHE≌△ECF,可得∠EBH=∠FEC,易证△BAE≌△BCD,可得∠ABE=∠CBD,从而有∠FEC=∠CBD,然后根据三角形的内角和定理可得∠BGE=∠BCD,进而可得结论;②易得∠BEG=90°,于是可知△BEF是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE和BF的长,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM、MC、CF、FN、CN、GN的长,进而可得△GCN也是等腰直角三角形,于是有∠BCG=90°,故所求的△BCG的面积=12BC CG⋅,而BC和CG可得,问题即得解决.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,当D、E两点重合时,则AD=CD,∴1302DBC ABC∠=∠=︒,∵CF CD=,∴∠F=∠CDF,∵∠F+∠CDF=∠ACB=60°,∴∠F=30°,∴∠CBD=∠F,∴BD DF=;(2)①∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC,过点E 作EH ∥BC 交AB 于点H ,连接BE ,如图4,则∠AHE =∠ABC =60°,∠AEH =∠ACB =60°,∴△AHE 是等边三角形,∴AH=AE=HE ,∴BH =EC ,∵AE CD =,CD=CF ,∴EH=CF ,又∵∠BHE =∠ECF =120°,∴△BHE ≌△ECF (SAS ),∴∠EBH =∠FEC ,EB=EF ,∵BA=BC ,∠A =∠ACB =60°,AE=CD ,∴△BAE ≌△BCD (SAS ),∴∠ABE =∠CBD ,∴∠FEC =∠CBD ,∵∠EDG =∠BDC ,∴∠BGE =∠BCD =60°;②∵∠BGE =60°,∠EBD =30°,∴∠BEG =90°,∵EB=EF ,∴∠F =∠EBF =45°,∵∠EBG =30°,BG =4,∴EG =2,BE 3∴BF 226BE =232GF =,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形, ∴6BM ME MF ===∵∠ACB =60°,∴∠MEC =30°,∴2MC =, ∴62BC =266262CF ==∴26231CN FN ===, ∴)2323131GN GF FN CN =-=-==, ∴45GCN CGN ∠=∠=︒,∴∠GCF =90°=∠GCB , ∴62CG CF ==∴△BCG 的面积=116262222BC CG ⋅==. 故答案为:2.【点睛】本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知识,涉及的知识点多、难度较大,正确添加辅助线、熟练掌握全等三角形的判定与性质是解①题的关键,灵活应用等腰直角三角形的性质和30°角的直角三角形的性质解②题的关键.25.(1)CD=8;(2)t=4;(3)12-=tvt(26t≤<)【分析】(1)作AE⊥BC于E,根据等腰三角形三线合一的性质可得BE=12BC,然后利用勾股定理求出AE,再用等面积法可求出CD的长;(2)①过B作BF⊥AC于F,易得BF=CD,分别讨论Q点在AF和FC之间时,根据△BQF≌△CPD,得到PD=QF,建立方程即可求出t的值;(3)同(2)建立等式关系即可得出关系式,再根据Q在FC之间求出t的取值范围即可.【详解】解:(1)如图,作AE⊥BC于E,∵AB=AC,∴BE=12BC=25在Rt△ABE中,()2222AE=AB BE=1025=45--∵△ABC的面积=11BC AE=AB CD 22⋅⋅∴BC AE4545 CD===8AB10⋅。
2023年春季学期八年级下册3月份月考模拟考试数学试题卷
2023年春季学期八年级下册3月份月考模拟考试数学试题卷(全卷三个大题,共24个小题,共6页;满分100分;考试用时120分钟)注意事项:1.本卷为试题卷。
考生必须在答题卡上解题作答。
答案应书写在答题卡的相应位置上,在试题卷,草稿纸上作答无效。
2.考试结束后,请将试题卷和答题卡一并交回。
一、选择题(共12题,每题3分,共36分)1.下列式子中,属于最简二次根式的是()ABC D 2.下列各组数中,能构成直角三角形的是()A .4,5,6B .1,1C .6,8,11D .5,12,233.下列运算,结果正确的是()A =B .3=C 3=D =4.下列为勾股数的是()A .2,3,4B .5,12,13C .6,7,8D5)A BC D 6.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑()米.A .0.4B .0.6C .0.7D .0.87.如图,数轴上点A 对应的数是-1,点C 对应的数是-3,BC ⊥AC ,垂足为C ,且BC =1,以A 为圆心,AB 长为半径画弧,交数轴于点D ,则点D 表示的数为()A .1-B C .1-D8.已知三角形三边长为a ,b ,c 2|8|(6)0b c -+-=,则ABC 是()A .以a 为斜边的直角三角形B .以b 为斜边的直角三角形C .以c 为斜边的直角三角形D .不是直角三角形9是整数,则正整数n 的最小值是()A .2B .3C .4D .510.实数a ,b 在数轴上对应点的位置如图所示,化简|a |)A .﹣2a +bB .2a ﹣bC .﹣bD .b11.ABC ∆的三边长分别为,,a b c ,下列条件:①A B C ∠=∠-∠;②::3:4:5A B C ∠∠∠=;③()()2a b c b c =+-;④::5:12:13a b c =.其中能判断ABC ∆是直角三角形的个数有()A .1个B .2个C .3个D .4个12.如图所示,已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第2个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第3个等腰Rt △ADE ……以此类推,第2022个等腰直角三角形的斜边长是()AB .2C .10112D .2022二、填空题(共4题,每题2分,共8分)13有意义,则x 的取值范围是___________.14.命题“等边三角形的三个内角相等”的逆命题是____________.15.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为_______cm .16()250b +-=,那么以a,b 为边长的直角三角形的第三边长为_______.三、解答题(共8题,共56分)17.(8分)计算:(1)-(2)11|(4)4π-⎛⎫-- ⎪⎝⎭18.(6分)先化简,再求值:222222211a a a a aa a a --++÷--,其中a 1.19.(6分)为了求出湖两岸A ,B 两点之间的距离,观测者小林在点C 设桩,使△ABC 恰好为直角三角形(∠B =90°),如图所示,通过测量得AC 长为160m ,BC 长为128m ,请求出图中A 、B 两点之间的距离.20.(7分)已知某实验中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草坪,经测量∠A=90°,AC=3m,BD=12m,CB=13m,DA=4m,若每平方米草坪需要300元,间学校需要投入多少资金买草坪?21.(6分)在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的,如图,为了安全起见,爆破点C周围半径400距离为600米,与公路上另一停靠站B的距离为800米,且CA CB米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.22.(7分)已知x=2y=(1)x2+2xy+y2;(2)x2﹣y2.23.(8分)如图,在R t△ABC中,∠C=90°,BC=8,AC=6,将△ABC沿AE折叠使点C恰好落在AB边上的点F 处.求BE的长.24.(8这样的式子,其实我们还可以将其进一步化简:===)()22212111-===-像这样,把代数式中分母化为有理数过程叫做分母有理化.化简:n为正整数);(3)+。
山东省青岛市莱西市南京路中学(五四制)2022-2023学年八年级下学期3月月考数学试题
A. 300(1 x)2 2100
B. 300 300(1 x)2 2100
C. 300(1 x) 300(1 x)2 2100
D. 300 300(1 x) 300(1 x)2 2100
6.若方程 (m 3)xm27 mx 2 0 是关于 x 的一元二次方程,则 m 等于( )
单位长度的速度沿 AB 方向运动,点 Q 从点 C 出发,以每秒 2 个单位长度的速度沿对角 线 CA 方向运动.已知 P ,Q 两点同时出发,当点 Q 到达点 A 时, P ,Q 两点同时停止运 动,连结 EF. 设运动时间为 t 秒.
(1) BC , AC . (2)当 t 为何值时,△APQ 的面积为 3 . (3)是否存在某一时刻 t,使△APQ 是以 PQ 为底边的等腰三角形?如果存在,求出 t 值, 如果不存在,请说明理由.
(1)若降价 3 元,则平均每天销售数量为______件;
(2)当每件商品降价多少元时,该商店每天销售利润为1200 元?
(3)该商店每天销售利润能否为1600 元?如果能,请求出所降的价格,如果不能,请说
明理由.
25.如图,在矩形 ABCD 中, AB 3 3 ,CAB 30 ,点 P 从点 A 出发,以每秒 3 个
三、解答题 19.计算:
(1) 6 2 2 (2) 6 2 15 3 6 1
2 (3) 24 216 5
6
(4) 2 32 3 2 3 2
20.
(1) x2 6x 2 0
(2) x2 4x 5 0
(3) x(x 4) 2 8x
(4) 2x2 3x 4 0
B.1.6<x<1.7
C.1.7<x<1.8
D.1.8<x<1.9
山东省济宁市任城区济宁学院附属中学2022-2023学年八年级下学期3月月考数学试题
.125B..如图所示,在四边形ABCD 点,连接AE,CE,则AE与∴11422 OA AC OB BD ===,则2223 AB OA OB=+=+∴12ABCDS AC BD AB=×=菱形∴AE 是斜线段,BE 是垂线段.∴AE >BE .∴AE >CE .故选:C .【点睛】本题考查了直角三角形的性质,和垂线段最短的定理,正确理解并应用这些知识点是解题关键.10.D【分析】根据正方形的性质可得90BAF D AB AD CD Ð=Ð=°==,,然后求出AF DE =,再利用“边角边”证明ABF △和DAE V 全等,根据全等三角形对应边相等可得AE BF =,从而判定出①正确;再根据全等三角形对应角相等可得ABF DAE Ð=Ð,然后证明90ABF BAO Ð+Ð=°,再得到90AOB Ð=°,从而得出AE BF ^,判断②正确;假设AO OE =,根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AB BE =,再根据直角三角形斜边大于直角边可得BE BC >,即BE AB >,从而判断③错误;根据全等三角形的面积相等可得ABF ADE S S =V V ,然后都减去AOF V 的面积,即可得解,从而判断④正确.【详解】解:在正方形ABCD 中,90BAF D AB AD CD Ð=Ð=°==,,∵CE DF =,∴AD DF CD CE -=-,即AF DE =,在ABF △和DAE V 中,90AB AD BAF D AF DE =ìïÐ=Ð=°íï=î,∴()SAS ABF DAE @V V ,∴AE BF =,故①正确;∵9090DAE BAO ABF BAO Ð+Ð=°Ð+Ð=°,,∴ABF DAE Ð=Ð,在ABO V 中,1801809)090(AOB ABF BAO Ð=°-Ð+Ð=°-°=°,∴AE BF ^,故②正确;假设AO OE =,∵AE BF ^(已证),∴AB BE =(线段垂直平分线上的点到线段两端点的距离相等),∵在Rt BCE V 中,BE BC >,∴AB BC >,这与正方形的边长AB BC =相矛盾,所以,假设不成立,AO OE ¹,故③错误;∵ABF DAE @V V ,∴ABF DAE S S =V V ,∴ABF AOF DAE AOF S S S S -=-△△△△,即AOB DEOF S S =四边形△,故④正确;\==,DO BO4\四边形CODE的周长2(34)14=´+=.故答案为:14.【点睛】本题主要考查矩形、菱形的判定和性质,掌握矩形的判定方法及菱形的对角线互相垂直平分是解题的关键.21.(1)四边形为菱形,证明见解析;ADCE(2)45【分析】(1)根据平行可以证明四边形ADCE是平行四边形,由直角三角形的性质可求得=,进而得出四边形ADCE为菱形AE EC(2)根据题意可知当四边形ADCE为正方形时,等腰直角三角形的三线合一性即可求得ÐABC【详解】(1)解:四边形ADCE为菱形,理由如下:∵AE CD∥∥,CE AB∴四边形ADCE为平行四边形∵90ACBÐ=°,D为AB的中点∴DA DC=∴平行四边形ADCE为菱形(2)解:若四边形ADCE为正方形∴CD AB^∵D为AB的中点∴AD BD=∴Rt ACBV是等腰直角三角形∴=45аABC故答案为:45°【点睛】本题考查了菱形的判定,正方形的性质,等腰直角三角形的性质,熟记判定定理和性质定理是解题的关键.。
浙教版八年级下数学3月考试卷(1-3章含解析)
浙教版八年级下数学月考试卷(3月份)一.选择题(共10小题,3*10=30)1.要使式子有意义的x的取值范围是()A.x<3 B.x≠3C.x≤3 D.x为一切实数2.下列计算中正确的是()A.B.C.=1D.3.方程①2x2﹣9=0②=0③xy+x2④7x+6=x2⑤ax2+bx+c=0中,一元二次方程的个数是()A.1个B.2个C.3个D.4个4.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)20303550100学生数(人)51051510在这次活动中,该班同学捐款金额的众数和中位数分别是()A.30,35 B.50,35 C.50,50 D.15,505.方程x2﹣8x+15=0左边配成一个完全平方式后,所得的方程是()A.(x﹣6)2=1 B.(x﹣4)2=1 C.(x﹣4)2=31 D.(x﹣4)2=﹣76.已知方程mx2﹣mx+2=0有两个相等的实数根,则m的值是()A.m=0或m=﹣8 B.m=0或m=8 C.m=﹣8 D.m=87.某市2014年的快递业务量为4.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.若2016年的快递业务量达到9.7亿件,设2015年与2016年这两年的平均增长率为x,则下列方程正确的是()A.4.4(1+x)=9.7B.44.4(1+2x)=9.7C.4.4(1+x)2=9.7D.4.4(1+x)+4.4(1+x)2=9..78.若0<a<1,则﹣的值为()A.2a B.C.﹣2a D.﹣49.已知等腰△ABC的底边长为3,两腰长恰好是关于x的一元二次方程kx2﹣(k+3)x+6=0的两根,则△ABC的周长为()A.6.5 B.7 C.6.5或7 D.810.小聪、小明、小伶、小刚私人共同探究代数式2x2﹣4x+6的值的情况他们做了如下分工:小聪负责找值为0时x的值,小明负责找值为4时x的值,小伶负责找最小值,小明负责找最大值,几分钟后,各自通报探究的结论,其中正确的是()(1)小聪认为找不到实数x,使2x2﹣4x+6得值为0;(2)小明认为只有当x=1时,2x2﹣4x+6的值为4;(3)小伶发现2x2﹣4x+6没有最小值;(4)小刚发现2x2﹣4x+6没有最大值.A.(1)(2)B.(1)(3)C.(1)(2)(4) D.(2)(3)(4)二.填空题(共8小题,3*8=24)11.已知x<0,化简二次根式的结果是.12.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是分.13.甲、乙两人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么两人中成绩更稳定的是(填“甲”或“乙”).14.若一元二次方程x2﹣(a+1)x+a=0的两个实数根分别是2、b,则a﹣b=.15.已知(x+)(x+﹣1)=2,则x+=.16.某经营户以2元/千克的价格购进一批瓯柑,以5元/千克的价格出售,每天可售出100千克.为了促销,该经营户决定降价销售.经调查发现,这种瓯柑每千克降价0.1元,每天可多售出10千克.另外,每天的房租等固定成本共100元.该经营户要想每天盈利300元.设每千克瓯柑的售价降低x元,依题意可列方程:.17.已知有理数a,满足|2016﹣a|+=a,则a﹣20162=.18.已知a是方程x2﹣x﹣1=0的一个根,则a4﹣3a﹣2的值为.三.解答题(共7小题,66分)19.(6分)计算:(1)(﹣)2﹣+(2).20.(8分)用适当的方法解下列方程:(1)x2+2x﹣1=0(2)(3x﹣7)2=﹣2(7﹣3x)(3)2x2﹣6x﹣1=0(4)9(x﹣2)2=4(x+1)221.(8分)在最近的五次数学过关测试中,小聪和小明的成绩如下表:(单位:分)第1次第2次第3次第4次第5次小聪75801009080小明7085959580(1)完成下表:平均成绩(分)中位数(分)众数(分)小聪85小明8595(2)在这五次测试中,哪位同学的成绩比较稳定?请说明理由.22.(8分)已知关于x的一元二次方程x2﹣4x+12+m=0.(1)若方程的一个根是,求m的值及方程的另一根;(2)若方程的两根恰为等腰三角形的两腰,而这个三角形的底边为m,求m的值及这个等腰三角形的面积.23.(10分)诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售件,每件盈利元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.24.(12俀)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1•x2=q,请根据以上结论,解决下列问题:(1)若p=﹣4,q=3,求方程x2+px+q=0的两根.(2)已知实数a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求+的值;(3)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.25.(14分)如图1,Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,与此同时,点Q从点B开始沿BC向点C以2cm/s的速度移动.如果P,Q同时分别从A,B点出发,设出发时间为ts(t>0).(1)当t为何值时,△PBQ的面积是8cm2?(2)当t为何值时,点P和点Q间的距离是6cm?(3)如图2,若点P,点Q同时从B点出发,点P沿折线BA﹣AC移动,点Q沿折线BC﹣CA 移动,其余条件均不变,求当P,Q在D点相遇时,点D与点B的距离.参考答案与试题解析一.选择题(共10小题)1.要使式子有意义的x的取值范围是()A.x<3 B.x≠3C.x≤3 D.x为一切实数【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3﹣x≥0,解得x≤3,故选:C.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.2.下列计算中正确的是()A.B.C.=1D.【分析】根据二次根式的性质、合并同类二次根式法则、二次根式的运算法则逐一计算即可得.【解答】解:A、=13,错误;B、===2,错误;C、2﹣=,错误;D、=|2﹣|=﹣2,正确;故选:D.【点评】本题主要考查二次根式的加减法,解题的关键是掌握二次根式的性质与运算法则.3.方程①2x2﹣9=0②=0③xy+x2④7x+6=x2⑤ax2+bx+c=0中,一元二次方程的个数是()A.1个B.2个C.3个D.4个【分析】本题根据一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式方程,依据定义即可解答.【解答】解:在方程①2x2﹣9=0②=0③xy+x2④7x+6=x2⑤ax2+bx+c=0中,一元二次方程的是①④这2个,故选:B.【点评】本题考查了一元二次方程的概念,解答要判断方程是否是整式方程,若是整式方程,再化简,观察化简的结果是否只含有一个未知数,并且未知数的最高次数是2.4.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)20303550100学生数(人)51051510在这次活动中,该班同学捐款金额的众数和中位数分别是()A.30,35 B.50,35 C.50,50 D.15,50【分析】根据众数、中位数的定义,结合表格数据进行判断即可.【解答】解:捐款金额学生数最多的是50元,故众数为50;共45名学生,中位数在第23名学生处,第23名学生捐款50元,故中位数为50;故选:C.【点评】本题考查了众数及中位数的知识,解答本题的关键是熟练掌握众数及中位数的定义.5.方程x2﹣8x+15=0左边配成一个完全平方式后,所得的方程是()A.(x﹣6)2=1 B.(x﹣4)2=1 C.(x﹣4)2=31 D.(x﹣4)2=﹣7【分析】移项后,两边配上一次项系数一半的平方即可得.【解答】解:∵x2﹣8x=﹣15,∴x2﹣8x+16=﹣15+16,即(x﹣4)2=1,故选:B.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.6.已知方程mx2﹣mx+2=0有两个相等的实数根,则m的值是()A.m=0或m=﹣8 B.m=0或m=8 C.m=﹣8 D.m=8【分析】由方程mx2﹣mx+2=0有两个相等的实数根,得m≠0,△=m2﹣4×2m=0,解m的方程得m=0或8,最后m=8.【解答】解:因为方程mx2﹣mx+2=0有两个相等的实数根,所以m≠0且△=m2﹣4×2m=0,解方程m2﹣4×2m=0得m=0或8,所以m=8.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时也考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的定义.7.某市2014年的快递业务量为4.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.若2016年的快递业务量达到9.7亿件,设2015年与2016年这两年的平均增长率为x,则下列方程正确的是()A.4.4(1+x)=9.7B.44.4(1+2x)=9.7C.4.4(1+x)2=9.7D.4.4(1+x)+4.4(1+x)2=9..7【分析】设2015年与2016年这两年的平均增长率为x,根据2014年及2016年的快递业务量,即可得出关于x的一元二次方程,此题得解.【解答】解:设2015年与2016年这两年的平均增长率为x,根据题意得:4.4(1+x)2=9.7.故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.若0<a<1,则﹣的值为()A.2a B.C.﹣2a D.﹣4【分析】由0<a<1,判断出>1>a>0,再根据二次根式和绝对值的性质解答即可.【解答】解:∵0<a<1,>1>a>0,∴原式=﹣,=|a﹣|﹣|a+|,=﹣a﹣a﹣,=﹣2a.故选:C.【点评】本题考查了二次根式的化简,注意二次根式的结果为非负数.9.已知等腰△ABC的底边长为3,两腰长恰好是关于x的一元二次方程kx2﹣(k+3)x+6=0的两根,则△ABC的周长为()A.6.5 B.7 C.6.5或7 D.8【分析】先根据两腰长恰好是关于x的一元二次方程kx2﹣(k+3)x+6=0的两根,求得k=3,进而得到一元二次方程为x2﹣6x+6=0,进而得到两腰之和为=4,进而得出△ABC的周长为4+3=7.【解答】解:∵两腰长恰好是关于x的一元二次方程kx2﹣(k+3)x+6=0的两根,∴△=[﹣(k+3)]2﹣4×k×6=0,解得k=3,∴一元二次方程为x2﹣6x+6=0,∴两腰之和为=4,∴△ABC的周长为4+3=7,故选:B.【点评】本题主要考查了根的判别式以及三角形三边关系,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.10.小聪、小明、小伶、小刚私人共同探究代数式2x2﹣4x+6的值的情况他们做了如下分工:小聪负责找值为0时x的值,小明负责找值为4时x的值,小伶负责找最小值,小明负责找最大值,几分钟后,各自通报探究的结论,其中正确的是()(1)小聪认为找不到实数x,使2x2﹣4x+6得值为0;(2)小明认为只有当x=1时,2x2﹣4x+6的值为4;(3)小伶发现2x2﹣4x+6没有最小值;(4)小刚发现2x2﹣4x+6没有最大值.A.(1)(2)B.(1)(3)C.(1)(2)(4) D.(2)(3)(4)【分析】解一元二次方程,根据判别式即可判断(1)(2),将式子转化为抛物线,经配方成顶点式的形式,根据抛物线的性质即可判断(3)(4).【解答】解:(1)2x2﹣4x+6=0,△=42﹣4×2×6<0,方程无实数根,故小聪找不到实数x,使2x2﹣4x+6得值为0正确,符合题意,(2)2x2﹣4x+6=4,解得x1=x2=1,方程有两个相等的实数根x=1,故小明认为只有当x=1时,2x2﹣4x+6的值为4正确,符合题意,(3)令y=2x2﹣4x+6,二次项系数为2>0,用配方法整理成y=2(x﹣2)2+4,抛物线开口向上,有最小值,故小伶发现2x2﹣4x+6没有最小值错误,不符合题意,(4)令y=2x2﹣4x+6,二次项系数为2>0,用配方法整理成y=2(x﹣2)2+4,抛物线开口向上,没有最大值,故小刚发现2x2﹣4x+6没有最大值正确,符合题意,故选:C.【点评】本题考查配方法的应用,和抛物线的性质,掌握一元二次方程求根公式和抛物线的性质是解决本题的关键.二.填空题(共8小题)11.已知x<0,化简二次根式的结果是﹣x.【分析】根据二次根式有意义,可知y≤0,再由二次根式的性质解答.【解答】解:∵x<0,﹣x2y≥0,∴y≤0,∴=﹣x.故答案为:﹣x.【点评】本题主要考查了二次根式的性质和化简,难度适中,容易丢负号.12.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是79分.【分析】按3:3:4的比例算出本学期数学总评分即可.【解答】解:本学期数学总评分=70×30%+80×30%+85×40%=79(分).故答案为:79.【点评】本题考查了加权成绩的计算,平时成绩:期中考试成绩:期末考试成绩=3:3:4的含义就是分别占总数的30%、30%、40%.13.甲、乙两人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么两人中成绩更稳定的是甲(填“甲”或“乙”).【分析】根据方差的意义数据波动越小,数据越稳定即可得出答案.【解答】解:根据图形可得:甲的成绩波动最小,数据最稳定,则两人中成绩最稳定的是甲,故答案为:甲.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.若一元二次方程x2﹣(a+1)x+a=0的两个实数根分别是2、b,则a﹣b=1.【分析】根据根与系数的关系得出2+b=a+1,变形即可得出答案.【解答】解:∵一元二次方程x2﹣(a+1)x+a=0的两个实数根分别是2、b,∴2+b=a+1,∴a﹣b=2﹣1=1.故答案为:1.【点评】本题考查了根与系数的关系,难度不大,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.15.已知(x+)(x+﹣1)=2,则x+=2.【分析】根据换元法可以解答本题.【解答】解:设x+=a,∵(x+)(x+﹣1)=2,∴a(a﹣1)=2,解得,a1=2,a2=﹣1,∴x+=2或x+=﹣1(舍去),故答案为:2.【点评】本题考查换元法解一元二次方程,解答本题的关键是会用换元法解方程.16.某经营户以2元/千克的价格购进一批瓯柑,以5元/千克的价格出售,每天可售出100千克.为了促销,该经营户决定降价销售.经调查发现,这种瓯柑每千克降价0.1元,每天可多售出10千克.另外,每天的房租等固定成本共100元.该经营户要想每天盈利300元.设每千克瓯柑的售价降低x元,依题意可列方程:(5﹣2﹣x)(100+)﹣100=300.【分析】设每千克瓯柑的售价降低x元.那么每千克的利润为:(5﹣2﹣x),由于这种瓯柑每千克降价0.1元,每天可多售出10千克.所以降价x元,则每天售出数量为:(100+)千克.本题的等量关系为:每千克的利润×每天售出数量﹣固定成本=300.【解答】解:设每千克瓯柑的售价降低x元.根据题意,得(5﹣2﹣x)(100+)﹣100=300.故答案为(5﹣2﹣x)(100+)﹣100=300.【点评】本题考查了由实际问题抽象出一元二次方程,解题关键是要读懂题目的意思,抓住根据描述语,找到等量关系列出方程.17.已知有理数a,满足|2016﹣a|+=a,则a﹣20162=2017.【分析】根据二次根式有意义的条件可得a﹣2017≥0,解不等式可得a的取值范围,然后再去绝对值可得a﹣2016+=a,再整理可得答案.【解答】解:由题意得:a﹣2017≥0,解得:a≥2017,|2016﹣a|+=a,a﹣2016+=a,=2016,a﹣20162=2017,故答案为:2017.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.18.已知a是方程x2﹣x﹣1=0的一个根,则a4﹣3a﹣2的值为0.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【解答】解:把x=a代入方程可得,a2﹣a﹣1=0,即a2=a+1,∴a4﹣3a﹣2=(a2)2﹣3a﹣2=(a+1)2﹣3a﹣2=a2﹣a﹣1=0.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取等量关系a2=a+1,然后利用“整体代入法”求代数式的值.解此题的关键是降次,把a4﹣3a﹣2变形为(a2)2﹣3a﹣2,把等量关系a2=a+1代入求值.三.解答题(共7小题)19.计第:(1)(﹣)2﹣+(2).【分析】(1)根据二次根式的性质化简各二次根式,再计算加减可得;(2)先化简各二次根式,再合并同类二次根式可得.【解答】解:(1)原式=6﹣5+3=4;(2)原式=3﹣4×+2+=3﹣2+2+=+2+.【点评】本题主要考查二次根式的加减法,解题的关键是掌握二次根式的性质和运算法则.20.用适当的方法解下列方程:(1)x2+2x﹣1=0(2)(3x﹣7)2=﹣2(7﹣3x)(3)2x2﹣6x﹣1=0(4)9(x﹣2)2=4(x+1)2【分析】(1)求出b2﹣4ac的值,再带公式求出即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(3)求出b2﹣4ac的值,再带公式求出即可;(4)两边开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2+2x﹣1=0,b2﹣4ac=22﹣4×1×(﹣1)=8,x=,x1=﹣1+,x2=﹣1﹣;(2)(3x﹣7)2=﹣2(7﹣3x),(3x﹣7)2﹣2(3x﹣7)=0,(3x﹣7)(3x﹣7﹣2)=0,3x﹣7=0,3x﹣7﹣2=0,x1=,x2=3;(3)2x2﹣6x﹣1=0,b2﹣4ac=(﹣6)2﹣4×2×(﹣1)=44,x=,x1=,x2=;(4)9(x﹣2)2=4(x+1)2,开方得:3(x﹣2)=±2(x+1),x1=8,x2=0.8.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.21.在最近的五次数学过关测试中,小聪和小明的成绩如下表:(单位:分)第1次第2次第3次第4次第5次小聪75801009080小明7085959580(1)完成下表:平均成绩(分)中位数(分)众数(分)小聪858080小明858595(2)在这五次测试中,哪位同学的成绩比较稳定?请说明理由.【分析】(1)将小聪的成绩按照从小到大的顺序排列,结合中位数、众数的定义即可得出小聪成绩的中位数、众数,再根据小明五次测试的成绩结合平均数的定义,即可求出小明五次测试的平均分;(2)根据方差公式,分别求出S2小明、S2小聪,二者比较后即可得出结论.【解答】解:(1)按照从小到大的顺序排列小聪的成绩:75,80,80,90,100,∴小聪成绩的中位数为80分,众数为80分.小明成绩的平均成绩为(70+85+95+95+80)÷5=80(分).故答案为:80;80;85.(2)小聪的成绩比较稳定,理由如下:S2小聪=×[(75﹣85)2+(80﹣85)2+(100﹣85)2+(90﹣85)2+(80﹣85)2],=×[100+25+225+25+25],=×400,=80(分2);S2小明=×[(70﹣85)2+(85﹣85)2+(95﹣85)2+(95﹣85)2+(80﹣85)2],=×[225+0+100+100+25],=90(分2).∵90>80,∴S2小明>S2小聪,∴小聪的成绩比较稳定.【点评】本题考查了方差、中位数以及众数,解题的关键是:(1)牢记中位数、众数以及平均数的定义;(2)牢记方差公式.22.已知关于x的一元二次方程x2﹣4x+12+m=0.(1)若方程的一个根是,求m的值及方程的另一根;(2)若方程的两根恰为等腰三角形的两腰,而这个三角形的底边为m,求m的值及这个等腰三角形的面积.【分析】(1)可将该方程的已知根代入方程,求出m的值,即可求出方程的另一根,(2)根据方程的两根恰为等腰三角形的两腰可得△=b2﹣4ac=0,列出式子,即可求实数m的值,再根据勾股定理可求底边的高,根据三角形面积公式计算即可求解.【解答】解:(1)∵x=是方程x2﹣4x+12+m=0的一个根∴()2﹣4×+12+m=0解得:m=3则方程为:x2﹣4x+15=0解得:x1=,x2=3.∴方程的另一根为3.(2)若方程的两根恰为等腰三角形的两腰,则△=b2﹣4ac=0,所以△=(﹣4)2﹣4(12+m)=0,解得m=8,则方程为:x2﹣4x+20=0,解得x=2,底边的高为:=2,故面积为8×2÷2=8.【点评】此题考查了一元二次方程的解和根的判别式,解决此类题目时要认真审题,根据根的判别式列出式子.23.诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利40﹣x元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.【分析】(1)根据:销售量=原销售量+因价格下降而增加的数量,每件利润=实际售价﹣进价,列式即可;(2)根据:总利润=每件利润×销售数量,列方程求解可得;(3)根据(2)中相等关系列方程,判断方程有无实数根即可得.【解答】解:(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利40﹣x元,故答案为:(20+2x),(40﹣x);(2)根据题意,得:(20+2x)(40﹣x)=1200解得:x1=20,x2=10答:每件童装降价20元或10元,平均每天赢利1200元;(3)不能,∵(20+2x)(40﹣x)=2000 此方程无解,故不可能做到平均每天盈利2000元.【点评】本题主要考查一元二次方程的实际应用,理解题意找到题目蕴含的等量关系是列方程求解的关键.24.如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1•x2=q,请根据以上结论,解决下列问题:(1)若p=﹣4,q=3,求方程x2+px+q=0的两根.(2)已知实数a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求+的值;(3)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.【分析】(1)根据p=﹣4,q=3,得出方程x2﹣4x+3=0,再求解即可;(2)根据a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,得出a,b是x2﹣15x﹣5=0的解,求出a+b 和ab的值,即可求出+的值;(3)先设方程x2+mx+n=0,(n≠0)的两个根分别是x1,x2,得出+=﹣,•=,再根据这个一元二次方程的两个根分别是已知方程两根的倒数,即可求出答案.【解答】解:(1)当p=﹣4,q=3,则方程为x2﹣4x+3=0,解得:x1=3,x2=1.(2)∵a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,∴a、b是x2﹣15x﹣5=0的解,当a≠b时,a+b=15,ab=﹣5,+====﹣47;当a=b时,原式=2.(3)设方程x2+mx+n=0,(n≠0),的两个根分别是x1,x2,则+==﹣,•==,则方程x2+x+=0的两个根分别是已知方程两根的倒数.【点评】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.25.如图1,Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s 的速度移动,与此同时,点Q从点B开始沿BC向点C以2cm/s的速度移动.如果P,Q同时分别从A,B点出发,设出发时间为ts(t>0).(1)当t为何值时,△PBQ的面积是8cm2?(2)当t为何值时,点P和点Q间的距离是6cm?(3)如图2,若点P,点Q同时从B点出发,点P沿折线BA﹣AC移动,点Q沿折线BC﹣CA 移动,其余条件均不变,求当P,Q在D点相遇时,点D与点B的距离.【分析】(1)设出运动所求的时间,可将BP和BQ的长表示出来,代入三角形面积公式,列出等式,可将时间求出;(2)根据PQ2=PB2+BQ2,列出方程即可解决问题;(3)作BE⊥AC于E,连接DB,在Rt△DBE中,解直角三角形即可解决问题;【解答】解:(1)∵P A=t.BQ=2t,AB=6,∴PB=6﹣t,由题意(6﹣t)•2t=8,解得t=2或4,∴当t为2s或4s时,△PBQ的面积是8cm2.(2)由题意:(6﹣t)2+(2t)2=62,解得t1=0(舍),t2=,∴当t为s时,点P和点Q间的距离是6cm.(3)∵∠B=90°,AB=6cm,BC=8cm,∴AC==10cm,由题意,得(1+2)t=6+8+10,∴t=8,∴AD=t﹣AB=2cm.作BE⊥AC于E,连接DB,则BE==cm,∴AE==cm,∴DE=AE﹣AD=cm,∴BD==cm.【点评】本题考查三角形综合题、勾股定理、一元二次方程的应用等知识,解题的关键是学会利用参数构建方程解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.。
南昌市东湖区八年级下月考数学试卷(3月份)含答案解析
2022-2023江西省南昌市东湖区八年级(下)月考数学试卷(3月份)一、选择题(每小题3分,共24分)1.(3分)下列各式是最简二次根式的是()A. B.C.D.2.(3分)若式子有意义,则x的取值范围为()A.x≥2 B.x≠3 C.x≥2或x≠3 D.x≥2且x≠33.(3分)下列计算结果正确的是()A. += B.2+=2C.3﹣=2D.=14.(3分)直角三角形两边长分别是3、4,第三边是()A.5 B.C.5或D.无法确定5.(3分)如图,已知正方形的B面积为144,正方形C的面积为169时,那么正方形A的面积为()A.100 B.121 C.64 D.256.(3分)实数a、b在数轴上的对应点如图,化简﹣+的结果是()A.2a﹣2b B.0 C.﹣2a D.2b7.(3分)已知是整数,正整数n的最小值为()A.0 B.1 C.6 D.368.(3分)如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块.一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A点相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A.()cm B.C.D.9cm二、填空题(每小题3分,共24分)9.(3分)若最简二次根式与可以合并,则a=.10.(3分)计算﹣3的结果是.11.(3分)三角形三边长为6、8、10,则这个三角形的面积是.12.(3分)在△ABC中,∠A:∠B:∠C=1:2:3.已知BC=3cm,则AB=cm.13.(3分)“等边三角形是锐角三角形”的逆命题是.14.(3分)若1<x<2,则|x﹣1|+的值为.15.(3分)已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为.16.(3分)观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律:.三、解答题(第17题8分,第18、19各6分,共20分)17.(8分)计算(1)﹣4+÷(2)(1﹣)2﹣+()0.18.(6分)已知:,,求的值.19.(6分)如图,在△DEF中,DE=17,EF=30,EF边上的中线DH=8,请判断△DEF的形状?并说明理由.四、完成下列各题(每小题8分,共32分.)20.(8分)如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,求(1)AE的长.(2)折痕EF的长.21.(8分)如图所示,在正方形ABCD中,M为AB的中点,N为AD上的一点,且AN=AD,试猜测△CMN是什么三角形,请证明你的结论.(提示:正方形的四条边都相等,四个角都是直角)22.(8分)观察下列等式:①=+1;②=+;③=+;…,(1)、请用字母表示你所发现的律:即=.(n为正整数)(2)化简计算: +++…+.23.(8分)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式+的最小值.2016-江西省南昌市东湖区八年级(下)月考数学试卷(3月份)参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下列各式是最简二次根式的是()A. B.C.D.【解答】解:A、被开方数含能开得尽方的因数或因式,故A不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含分母,故D不符合题意;故选:B.2.(3分)若式子有意义,则x的取值范围为()A.x≥2 B.x≠3 C.x≥2或x≠3 D.x≥2且x≠3【解答】解:根据二次根式有意义,分式有意义得:x﹣2≥0且x﹣3≠0,解得:x≥2且x≠3.故选:D.3.(3分)下列计算结果正确的是()A. += B.2+=2C.3﹣=2D.=1【解答】解:A、+不能合并,故A错误;B、2+不能合并,故B错误;C、3﹣=2,故C正确;D、==,故D错误;故选:C.4.(3分)直角三角形两边长分别是3、4,第三边是()A.5 B.C.5或D.无法确定【解答】解:当第三边是斜边时,则第三边==5;当第三边是直角边时,则第三边==.故选:C.5.(3分)如图,已知正方形的B面积为144,正方形C的面积为169时,那么正方形A的面积为()A.100 B.121 C.64 D.25【解答】解:根据题意知正方形的B面积为144,正方形C的面积为169,则字母A所代表的正方形的面积=169﹣144=25.故选:D.6.(3分)实数a、b在数轴上的对应点如图,化简﹣+的结果是()A.2a﹣2b B.0 C.﹣2a D.2b【解答】解:由数轴可得:∵﹣1<a<0,0<b<1,∴a﹣b<0,∴﹣+=﹣a﹣b﹣(a﹣b)=﹣2a.故选:C.7.(3分)已知是整数,正整数n的最小值为()A.0 B.1 C.6 D.36【解答】解:∵,且是整数,∴是整数,即6n是完全平方数;∴n的最小正整数值为6.故选:C.8.(3分)如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块.一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A点相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A.()cm B.C.D.9cm【解答】解:AB就是蚂蚁爬的最短路线.但有三种情况:当:AD=3,DB=4+6=10.AB==.当AD=4,DB=6+3=9.AB=.当AD=6,DB=3+4=7AB=.所以第三种情况最短.故选:C.二、填空题(每小题3分,共24分)9.(3分)若最简二次根式与可以合并,则a=1.【解答】解:∵最简二次根式与可以合并,∴1+2a=5﹣2a,∴4a=4,∴a=1,故答案为1.10.(3分)计算﹣3的结果是2.【解答】解:原式=3﹣=2.故答案为:2.11.(3分)三角形三边长为6、8、10,则这个三角形的面积是24.【解答】解:∵三角形的三边长分别为6、8、10,而62+82=102,∴此三角形是直角三角形,6×8=24.∴S△=×12.(3分)在△ABC中,∠A:∠B:∠C=1:2:3.已知BC=3cm,则AB=6cm.【解答】解:∵∠A:∠B:∠C=1:2:3,∴设∠A=x,∠B=2x,∠C=3x,∴x+2x+3x=180°,解得x=30°,则∠A=30°,∠C=3×30°=90°,∵30°的角所对的直角边是斜边的一半,∴AB=3×2=6cm.13.(3分)“等边三角形是锐角三角形”的逆命题是锐角三角形是等边三角形.【解答】解:其逆命题是:锐角三角形是等边三角形.14.(3分)若1<x<2,则|x﹣1|+的值为1.【解答】解:∵1<x<2,∴x﹣1>0,x﹣2<0,∴原式=x﹣1+2﹣x=1.故答案为:1.15.(3分)已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为等腰直角三角形.【解答】解:∵+|a﹣b|=0,∴c2﹣a2﹣b2=0,且a﹣b=0,∴c2=a2+b2,且a=b,则△ABC为等腰直角三角形.故答案为:等腰直角三角形16.(3分)观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律:=(n+1).【解答】解:从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,即=(n+1).三、解答题(第17题8分,第18、19各6分,共20分)17.(8分)计算(1)﹣4+÷(2)(1﹣)2﹣+()0.【解答】解:(1)原式=3﹣2+=3﹣2+2=3;(2)原式=1﹣2+2﹣3(﹣1)+1=3﹣2﹣3+3+1=7﹣5.18.(6分)已知:,,求的值.【解答】解:=…(2分)=,…(4分)当x=+1,y=﹣1时,原式===.19.(6分)如图,在△DEF中,DE=17,EF=30,EF边上的中线DH=8,请判断△DEF的形状?并说明理由.【解答】解:△DEF是等腰三角形.理由:∵DH是EF边上的中线,EF=30cm,∴EH=15cm,∵DE=17cm,DH=8cm,∴EH2+DH2=DE2,∴DH⊥EF,∴△DHE≌△DHF,∴DE=DF,∴△DEF是等腰三角形.四、完成下列各题(每小题8分,共32分.)20.(8分)如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,求(1)AE的长.(2)折痕EF的长.【解答】解:(1)∵将长方形纸片ABCD折叠,使C点与A点重合,∴AE=CE,∴BE=BC﹣CE=BC﹣AE=8﹣AE,∵∠B=90°,∴AB2+BE2=AE2,即42+(8﹣AE)2=AE2,∴AE=5;(2)解:过点F作FG⊥BC于G∵EF是直角梯形AECD的折痕∴AE=CE,∠AEF=∠CEF.又∵AD∥BC∴∠AEF=∠AFE.∴AE=AF.在Rt△ABE中,设BE=x,AB=4,AE=CE=8﹣x.x2+42=(8﹣x)2,解得x=3.在Rt△FEG中,EG=BG﹣BE=AF﹣BE=AE﹣BE=5﹣3=2,FG=4,∴EF==2.21.(8分)如图所示,在正方形ABCD中,M为AB的中点,N为AD上的一点,且AN=AD,试猜测△CMN是什么三角形,请证明你的结论.(提示:正方形的四条边都相等,四个角都是直角)【解答】解:△CMN是直角三角形.理由如下:设正方形ABCD的边长为4a,则AB=BC=CD=AD=4a.∵M是AB的中点,∴AM=BM=2a.∵AN=AD,AD=4a,∴AN=a,DN=3a.∵在Rt△AMN中,满足AM2+AN2=MN2,且AM=2a,AN=a,∴MN=a.同理可得:MC=a,NC=5a.∵MN2+MC2=(a)2+(a)2=25a2,NC2=(5a)2=25a2,∴MN2+MC2=NC2,∴△CMN是直角三角形.22.(8分)观察下列等式:①=+1;②=+;③=+;…,(1)、请用字母表示你所发现的律:即=+.(n为正整数)(2)化简计算: +++…+.【解答】解:(1)=+,故答案为: +;(2)+++…+=﹣1+﹣+﹣+…+﹣=﹣1.23.(8分)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式+的最小值.【解答】解:(1)AC+CE=+;(2)当A、C、E三点共线时,AC+CE的值最小;(3)如右图所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,设BC=x,则AE的长即为代数+的最小值.过点A作AF∥BD交ED的延长线于点F,得矩形ABDF,则AB=DF=2,AF=BD=12,EF=ED+DF=3+2=5,所以AE===13,即+的最小值为13.故代数式+的最小值为13.。
江苏省苏州市苏州工业园区青剑湖实验中学2023-2024学年八年级下学期3月月考数学试题
江苏省苏州市苏州工业园区青剑湖实验中学2023-2024学年八年级下学期3月月考数学试题一、单选题1.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .2.彩民小明购买10000张彩票,中一等奖.这个事件是( ) A .必然事件B .确定性事件C .不可能事件D .随机事件3.为了了解某校八年级1000名学生的身高情况,从中抽查100名学生的身高进行统计分析,在这个问题中,总体是指( ) A .1000名学生 B .被抽取的100名学生 C .1000名学生的身高D .被抽取的100名学生的身高4.在平行四边形ABCD 中,130A ∠=︒,则C ∠=( ) A .130︒B .50︒C .30︒D .120︒5.如图,矩形ABCD 中,对角线AC 、BD 交于点O ,若60AOB ∠=︒,8BD =,则DC 长为( )A .B .4C .3D .56.如图,四边形ABCD 为菱形,对角线AC ,BD 交于点O ,DE AB ⊥,垂足为E .若5AB =,6BD =,则DE 的长是( )A.125B.185C.245D.4857.如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为()A.4s B.3s C.2s D.1s8.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数.n”甲、乙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取13n=.乙:如图3,思路是当x倍时就可移转过去:结果取13n=.下列正确的是()A.甲的思路对,他的n值错B.乙的思路错,他的n值对C.甲和乙的思路都对D.甲和乙的n值都对二、填空题9.某医院病房护土对一位病人每小时测一次体温,要把这位病人一昼夜体温变化情况用统计图表示出来选用统计图比较合适(填“条形”、“扇形”、“折线”).10.如图,在四边形ABCD中,AB∥CD,请你添加一个条件,使得四边形ABCD成为平行四边形,你添加的条件是.11.如图,A B ,两地被池塘隔开,小康通过下列方法测出了A B ,间的距离:先在A B ,两地外选一点C ,然后测出AC BC ,的中点M N ,,并测量出MN 的长为18m ,由此他就知道了A B ,间的距离,则AB =.12.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.13.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,E 为AD 的中点,若5OE =,BC 等于.14.某科技公司开展技术研发,在相同条件下,对运用新技术生产的一批产品的合格率进行检测,下表是检测过程中的一组统计数据:估计这批产品合格的产品的概率为(精确到0.01).15.已知平面上四点(0,0)A ,(10,0)B ,(10,6)C ,(0,6)D ,直线32y mx m =-+将四边形ABCD分成面积相等的两部分,则m 的值为.16.如图,四边形ABCD 中,AD BC ∥,60ABC ∠=︒,1AD AB ==,2BC =,E 为射线CB 上的动点,将线段AE 绕A 点顺时针旋转120︒得到AE ',DE '的最小值为.三、解答题17.某学校开展课外球类特色的体育活动,决定开设A :羽毛球、B :篮球、C :乒乓球、 D :足球四种球类项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数是度;(2)请把条形统计图补充完整;(3)若该校有学生3000人,请根据样本估计全校最喜欢足球的学生人数约是多少? 18.在一个不透明的盒子里装有红、黑两种颜色的球共20个,这些球除颜色外其余完全相同.为了估计红球和黑球的个数,我们将球搅匀后,从盒子里随机摸出一个球记下颜色,再把球放回盒子中,多次重复上述过程,得到下表中的一组统计数据:(1)通过以上实验,盒子里红球的数量为__________个.(2)若先从袋子中取出()1x x >个红球,再从袋子中随机摸出1个球,若“摸出黑球”为必然事件,则x =___________.(3)若先从袋子中取出x 个红球,再放入x 个一个样的黑球并摇匀,随机摸出1个红球的概率为14,求x 的值. 19.如图,ABC V 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)请画出ABC V 关于原点对称的111A B C △; (2)四边形11CBC B 为___________四边形;(3)点P (P 在格点上)为平面内一点,若以点A 、B 、C 、P 为顶点的四边形为平行四边形,请直接写出所有满足条件的点P 有___________个. 20.已知:如图,四边形ABCD 中,AB CD ∥,AB CD =.(1)求证:AD BC =(2)AD 与BC 的位置关系为:21.如图,ABC V 中,90C ∠=︒,5AB =,3BC =,将ABC V 绕A 点按顺时针旋转60︒,得到AB C ''△,求CC '的长度.22.如图,在ABCD Y 中,点,E F 分别在,BC AD 上,AC 与EF 交于点O ,且AO CO =.(1)求证:AF EC =;(2)连接,AE CF ,若8,6AC EF ==,且EF AC ⊥,求四边形AECF 的周长.23.如图,在正方形ABCD 中,延长BC 至点E ,使得:AD CE =连接AC ,AE ,AE 交CD 于点F .(1)试探究ACE △的形状; (2)求AFD ∠的度数.24.利用中位线定理,证明“直角三角形斜边上的中线等于斜边的一半”. 已知:如图,在Rt ABC △中,90BAC ∠=︒,. 求证:.25.在矩形纸片ABCD 中,6AB =,10BC =.(1)将矩形纸片沿BD 折叠,使点A 落在点E 处如图①.设DE 与BC 相交于点F ,求BF 的长; (2)将矩形折叠,使点A 落在点P 处,折痕为DE ,如图②,若点P 恰好在边BC 上,连接AP ,求AP 的长度;(3)将矩形纸片折叠,使点B 与D 重合如图③,求折痕GH 的长.26.平面直角坐标系中点(),A a b ,(),B m n ;记A ,B 两点的横向距离为1d m a =-;纵向距离为2d n b =-,A ,B 两点的相对距离记为()12,D A B d d =+.(1)已知()1,3M 与()2,4N -,则(),D M N =________.(2)已知(),P x y 与()0,2Q ,且(),2D P Q =,求满足条件的所有点P 围成的图形面积为____________. (3)已知点G 在122y x =+上,()1,0H ,直接写出(),D G H 的最小值. (4)已知点(),4W w w +,(),0T t ,且(),2D W T =,求满足条件的所有点W 围成的图形长为__________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双凤坳中学2016年春季八年级3月月考数学试题满分:120分时间:120分钟命题人:彭卫东一、选择题(每小题3分共24分)1.(3分)若有意义,则a的取值范围是()A.任意实数B.a≥1C.a≤1D.a≥02.(3分)下列变形正确的是()A.=×B.=×=4×=2C.=|a+b| D.=13﹣12=13.(3分)是整数,正整数n的最小值是()A.4B.3C.2D.04.(3分)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为()A.(2,0)B.()C.()D.()5.(3分)最简二次根式的被开方数相同,则a的值为()A.B.C.a=1 D.a=﹣16.(3分)设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和57.(3分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP 长不可能是()A.3.5 B.4.2 C.5.8 D.78.(3分)一艘轮船以16海里∕小时的速度从港口A出发向东北方向航行,另一轮船12海里∕小时从港口A出发向东南方向航行,离开港口3小时后,则两船相距()A.36海里B.48海里C.60海里D.84海里二、填空题(每小题3分,满分24分)9.等式成立的条件是____________.10在Rt△ABC中,∠C=90°,c=20,a:b=3:4,则a=________,b=________.11.如图,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,阴影部分面积是______.12.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于_________.13.已知x,y为实数,且满足=0,那么x2011﹣y2011=__________.14.计算:=_________.15.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有________m.16.将一根长为15cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hc m,则h的取值范围是___________________.三、解答题(本大题共9小题,共计72分)17.(8分)计算(1)(﹣3)0﹣+|1﹣|+(2)﹣(π﹣)+|﹣2|﹣()2.18.(6分)先化简,再求值:()÷(﹣1),其中a=2﹣.19.(8分)如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.求:(1)△ABC的周长;(2)判断△ABC是否是直角三角形?为什么?20.(8分)如图,为修通铁路凿通隧道AC,量出∠A=40°∠B=50°,AB=5公里,BC=4公里,若每天凿隧道0.3公里,问几天才能把隧道AC凿通?21.(8分)如图,已知在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于D,交AB 于E,求证:BE2﹣EA2=AC2.22.(8分)如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,求AE的长为多少?23.(12分)直角三角形ABC中∠A=90,BC=4,有一个内角为60度,点P是直线AB 上不同于A,B的一点,且∠ACP=30度,求PB的长。
24.(12分)台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A的正南方向220km的B处有一台风中心,其中心最大风力为12级,每远离台风中心20km,风力就会减弱一级,该台风中心现在正以15km/h的速度沿北偏东30°的方向移动,且台风中心风力不变,如图,若城市所受的风力达到或超过4级,则称为受台风影响.(1)该城市是否受到这次台风的影响?请说明理由;(2)若会受台风影响,那么台风影响该城市的持续时间有多长?该城市受到台风影响的最大风力为几级?八年级下学期第一次月考数学试卷参考答案与试题解析一、选择题(3分×8=24分)1.(3分)若有意义,则a的取值范围是()A.任意实数B.a≥1C.a≤1D.a≥0考点:二次根式有意义的条件.专题:计算题.分析:二次根式有意义:被开方数是非负数.解答:解:根据题意,得a﹣1≥0,解得,a≥1.故选B.点评:此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.(3分)下列变形正确的是()A.=×B.=×=4×=2C.=|a+b| D.=13﹣12=1考点:二次根式的乘除法.分析:根据二次根式的乘法法则和除法法则结合选项求解.解答:解:A、=×,原式计算错误,故本选项错误;B、==,原式计算错误,故本选项错误;C、=|a+b|,计算正确,故本选项正确;D、=5,原式计算错误,故本选项错误.故选C.点评:本题考查了二次根式的乘除法,掌握运算法则是解答本题的关键.3.(3分)是整数,正整数n的最小值是()A.4B.3C.2D.0考点:二次根式的定义.分析:如果一个根式是整数,则被开方数是完全平方数,首先把化简,然后求n的最小值.解答:解:∵=2,∴要使是整数,正整数n的最小值是2,故选C.点评:本题主要考查二次根式的基本概念,解题的关键是对二次根式先化简,再求正整数n的最小值.4.(3分)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为()A.(2,0)B.()C.()D.()考点:勾股定理;实数与数轴;矩形的性质.专题:数形结合.分析:在RT△ABC中利用勾股定理求出AC,继而得出AM的长,结合数轴的知识可得出点M的坐标.解答:解:由题意得,AC===,故可得AM=,B M=AM﹣AB=﹣3,又∵点B的坐标为(2,0),∴点M的坐标为(﹣1,0).故选C.点评:此题考查了勾股定理及坐标轴的知识,属于基础题,利用勾股定理求出AC的长度是解答本题的关键,难度一般.5.(3分)最简二次根式的被开方数相同,则a的值为()A.B.C.a=1 D.a=﹣1考点:最简二次根式.分析:最简二次根式是被开方数中不含开得尽方的因数或因式,被开方数相同,令被开方数相等,列方程求a.解答:解:∵最简二次根式的被开方数相同,∴1+a=4﹣2a,解得a=1,故选C.点评:本题主要考查最简二次根式的知识点,关键是理解概念,比较简单.6.(3分)设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和5考点:估算无理数的大小.专题:计算题.分析:先对进行估算,再确定是在哪两个相邻的整数之间,然后计算介于哪两个相邻的整数之间.解答:解:∵16<19<25,∴4<<5,∴3<﹣1<4,∴3<a<4,∴a在两个相邻整数3和4之间;故选C.点评:此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.7.(3分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP 长不可能是()A.3.5 B.4.2 C.5.8 D.7考点:含30度角的直角三角形;垂线段最短.分析:利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.解答:解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.点评:本题主要考查了垂线段最短和的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.8.(3分)一艘轮船以16海里∕小时的速度从港口A出发向东北方向航行,另一轮船12海里∕小时从港口A出发向东南方向航行,离开港口3小时后,则两船相距()A.36海里B.48海里C.60海里D.84海里考点:勾股定理的应用.分析:根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了48,36.再根据勾股定理,即可求得两条船之间的距离.解答:解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×3=48,12×3=36海里,根据勾股定理得:=60(海里).故选C.点评:本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.二、填空题(共8小题,每小题3分,满分24分)9.(3分)等式成立的条件是a≥1.考点:二次根式的乘除法.分析:根据二次根式的乘法法则•=成立的条件:a≥0且b≥0,即可确定.解答:解:根据题意得:,解得:a≥1.故答案是:a≥1.点评:本题考查了二次根式的乘法法则,理解二次根式有意义的条件是关键.10.(3分)在Rt△ABC中,∠C=90°,c=20,a:b=3:4,则a=12,b=16.考点:勾股定理.分析:假设a=3x,b=4x,根据勾股定理列方程即可求出x,从而求出a,b.解答:解:设a=3x,b=4x,则c=5x.又∵c=20,即5x=20,∴x=4,∴a=3x=12,b=4x=16.故答案为:12,16.点评:考查了勾股定理,能够根据勾股定理得到第三边所占的份数,从而求得一份的长,注意勾股定理的熟练运用.11.(3分)如图,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,阴影部分的面积是19.考点:勾股定理;正方形的性质.专题:计算题.分析:在直角三角形ABE中,由AE与BE的长,利用勾股定理求出AB的长,由正方形面积减去直角三角形面积求出阴影部分面积即可.解答:解:∵AE⊥BE,∴∠AEB=90°,在Rt△ABE中,AE=3,BE=4,根据勾股定理得:AB==5,则S阴影=S正方形﹣S△ABE=52﹣×3×4=25﹣6=19,故答案为:19.点评:此题考查了勾股定理,以及正方形的性质,熟练掌握勾股定理是解本题的关键.12.(3分)如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于13.考点:勾股定理.分析:首先根据勾股定理求得AB的长,再根据勾股定理求得AD的长.解答:解:在直角三角形ABC中,AC=4,BC=3,根据勾股定理,得AB=5.在直角三角形ABD中,BD=12,根据勾股定理,得AD=13.点评:熟练运用勾股定理进行计算.13.(3分)已知x,y为实数,且满足=0,那么x2011﹣y2011=﹣2.考点:非负数的性质:算术平方根;有理数的乘方.专题:计算题.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答:解:∵=0,∴+=0,∴x+1=0,y﹣1=0,解得x=﹣1,y=1,∴x2011﹣y2011=(﹣1)2011﹣12011,=﹣1﹣1,=﹣2.故答案为:﹣2.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.(3分)计算:=1.考点:二次根式的混合运算.专题:计算题.分析:先利用积的乘方得到原式=[(﹣2)(+2)]2010,然后根据平方差公式计算.解答:解:原式=[(﹣2)(+2)]2010=(3﹣4)2010=1.故答案为1.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.15.(3分)如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有4m.考点:勾股定理的应用.分析:利用勾股定理,用一边表示另一边,代入数据即可得出结果.解答:解:由图形及题意可知,AB2+BC2=AC2设旗杆顶部距离底部有x米,有32+x2=52,得x=4,故答案为4.点评:本题主要是考查学生对勾股定理的熟练掌握,解题的关键是从实际问题中整理出直角三角形并正确的利用勾股定理.16.(3分)将一根长为15cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是2cm≤h≤3cm.考点:勾股定理的应用.分析:根据杯子内筷子的长度取值范围得出杯子外面长度的取值范围,即可得出答案.解答:解:∵将一根长为15cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,∴在杯子中筷子最短是等于杯子的高,最长是等于杯子斜边长度,∴当杯子中筷子最短是等于杯子的高时,h=12,最长时等于杯子斜边长度,即:h==13,∴h的取值范围是:(15﹣13)≤h≤(15﹣12),即2cm≤h≤3cm.故答案为:2cm≤h≤3cm.点评:此题主要考查了勾股定理的应用,正确得出杯子内筷子的取值范围是解决问题的关键.三、解答题(3×6分=18分)17.(6分)计算(1)(﹣3)0﹣+|1﹣|+(2)﹣(π﹣)+|﹣2|﹣()2.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:(1)根据零指数幂、绝对值的意义和分母有理化得到原式=1﹣3+﹣1+﹣,然后合并即可;(2)根据零指数幂、绝对值的意义和分母有理化得到原式=2+﹣1+2﹣﹣5,然后合并即可.解答:解:(1)原式=1﹣3+﹣1+﹣=﹣2;(2)原式=2+﹣1+2﹣﹣5=﹣2.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.18.(6分)先化简,再求值:()÷(﹣1),其中a=2﹣.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的交集法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.解答:解:原式=[﹣]÷=•=•=,把a=2﹣代入得:原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(6分)如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.求:(1)△ABC的周长;(2)判断△ABC是否是直角三角形?为什么?考点:勾股定理;勾股定理的逆定理.专题:计算题.分析:(1)在Rt△ABD和R t△ACD中,先根据勾股定理求出AB和A C的长,继而即可求出△A BC的周长;(2)根据勾股定理的逆定理,看△ABC的三边是否符合勾股定理,即可判断出△ABC是否是直角三角形.解答:解:(1)在Rt△ABD和Rt△ACD中,根据勾股定理得:AB2=AD2+BD2,AC2=AD2+CD2,又AD=12,BD=16,CD=5,∴AB=20,AC=13,△ABC的周长=AB+AC+BC=AB+AC+BD+DC=20+13+16+5=54.(2)∵AB=20,AC=13,BC=21,AB2+AC2≠BC2,∴△ABC不是直角三角形.点评:本题考查勾股定理及其逆定理的知识,属于基础题,关键是熟练掌握勾股定理公式.四.(8分×3=24分)20.(8分)如图,为修通铁路凿通隧道AC,量出∠A=40°∠B=50°,AB=5公里,BC=4公里,若每天凿隧道0.3公里,问几天才能把隧道AC凿通?考点:勾股定理的应用.分析:由题意知:∠A=50°,∠B=40°则∠C为90°,在直角△ABC中,已知AB,BC根据勾股定理即可求AC,则需要天数可求.解答:解:∵∠A=50°,∠B=40°,∴∠C=90°,∴AC2=AB2﹣BC2=(3km)2∴AC=3km,∵3÷0.3=10,∴10天才能将隧道凿通.答:10天才能将隧道凿通.点评:本题考查了勾股定理在实际生活中的应用,解本题的关键是正确的计算AC的长度.21.(8分)如图,已知在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于D,交AB 于E,求证:BE2﹣EA2=AC2.考点:勾股定理;线段垂直平分线的性质.专题:证明题.分析:连接CE,根据线段垂直平分线性质求出BE=CE,根据勾股定理得出CE2﹣EA2=AC2,代入求出即可.解答:证明:连接CE,∵D是BC中点,DE⊥BC,∴BE=CE,∵∠A=90°,∴CE2﹣EA2=AC2,∴BE2﹣EA2=AC2.点评:本题考查了勾股定理,线段垂直平分线性质的应用,解此题的关键是能正确作出辅助线,注意:线段垂直平分线上的点到线段两个端点的距离相等,直角三角形的两直角边的平方和等于斜边的平方.22.(8分)如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,求AE的长为多少?考点:翻折变换(折叠问题).分析:首先利用勾股定理计算出BD的长,再根据折叠可得AD=A′D=5,进而得到A′B的长,再设AE=x,则A′E=x,BE=12﹣x,再在Rt△A′EB中利用勾股定理可得方程:(12﹣x)2=x2+82,解出x的值,可得答案.解答:解:∵AB=12,BC=5,∴AD=5,∴BD==13,根据折叠可得:AD=A′D=5,∴A′B=13﹣5=8,设AE=x,则A′E=x,BE=12﹣x,在Rt△A′EB中:(12﹣x)2=x2+82,解得:x=.故AE的长为.点评:此题主要考查了图形的翻折变换,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.五.(10分×1=10分)23.(10分)台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A的正南方向220km的B处有一台风中心,其中心最大风力为12级,每远离台风中心20km,风力就会减弱一级,该台风中心现在正以15km/h的速度沿北偏东30°的方向移动,且台风中心风力不变,如图,若城市所受的风力达到或超过4级,则称为受台风影响.(1)该城市是否受到这次台风的影响?请说明理由;(2)若会受台风影响,那么台风影响该城市的持续时间有多长?该城市受到台风影响的最大风力为几级?考点:勾股定理的应用;方向角.分析:(1)求是否会受到台风的影响,其实就是求A到BC的距离是否大于台风影响范围的半径,如果大于,则不受影响,反之则受影响.如果过A作AD⊥BC于D,AD就是所求的线段.直角三角形ABD中,有∠ABD的度数,有AB的长,AD就不难求出了.(2)受台风影响时,台风中心移动的距离,应该是A为圆心,台风影响范围的半径为半径,所得圆截得的BC上的线段的长即EF得长,可通过在直角三角形AED和AFD中,根据勾股定理求得.有了路程,有了速度,时间就可以求出了,风力最大时,台风中心应该位于D 点,然后根据题目给出的条件判断出时几级风.解答:解:(1)该城市会受到这次台风的影响.理由是:如图,过A作AD⊥BC于D.在Rt△ABD中,∵∠ABD=30°,AB=220,∴AD=,∵城市受到的风力达到或超过四级,则称受台风影响,∴受台风影响范围的半径为20×(12﹣4)=160.∵110<160,∴该城市会受到这次台风的影响;(2)如图以A为圆心,160为半径作⊙A交BC于E、F.则AE=AF=160.∴台风影响该市持续的路程为:EF=2DE=2=60.∴台风影响该市的持续时间t=60÷15=4(小时),∵AD距台风中心最近,∴该城市受到这次台风最大风力为:12﹣(110÷20)=6.5(级).点评:本题考查了勾股定理的应用,解题的关键是将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到直角三角形中,使问题解决.。