数学模型总结

合集下载

初中几何48个模型总结

初中几何48个模型总结

初中几何48个模型总结1. 引言几何是数学的重要分支,它研究空间的形状、大小和相对位置关系,是培养学生的空间想象力和逻辑思维能力的有效方法之一。

初中阶段主要学习了48个基本的几何模型,本文将对这些模型进行总结和概述。

2. 一维几何模型(线段)2.1 线段的定义线段是由两个不同的点确定的有限部分,它有长度但没有宽度。

2.2 线段的表示方法线段可以用两个端点表示,如AB代表由点A和点B确定的线段。

2.3 线段的性质•线段的长度可以用两个端点的坐标计算得到。

•相等线段具有相等的长度。

•如果两个线段的长度相等,则它们是相等线段。

3. 二维几何模型(平面图形)3.1 三角形三角形是由三条边和三个顶点组成的平面图形。

- 根据边的长短,三角形可以分为等边三角形、等腰三角形和普通三角形。

- 根据角度的大小,三角形可以分为锐角三角形、直角三角形和钝角三角形。

3.2 四边形四边形是由四条边和四个顶点组成的平面图形。

- 根据边的长短和角的大小,四边形可以分为正方形、长方形、菱形、平行四边形和梯形。

3.3 多边形多边形是由多条边和多个顶点组成的平面图形。

- 根据边的数量,多边形可以分为五边形、六边形、七边形等等。

4. 三维几何模型(立体图形)4.1 三棱柱三棱柱是由两个全等的底面和三个并排的矩形侧面组成的立体图形。

4.2 矩形长方体矩形长方体是由六个矩形面组成的立体图形,其中相对的面全等且平行。

4.3 正方体正方体是由六个正方形面组成的立体图形,所有的面都是相等的。

4.4 三棱锥三棱锥是由一个底面和三条共边的三角形侧面组成的立体图形。

4.5 圆柱体圆柱体是由两个全等的圆面和一个侧面组成的立体图形,侧面是一个矩形。

4.6 球体球体是由无数个半径相等的点组成的立体图形,它的表面到中心的距离都是相等的。

4.7 圆锥体圆锥体是由一个底面和一个顶点连接底面边上的点所形成的所有线段组成的立体图形。

4.8 圆柱圆柱是由两个平行圆底面和一个侧面组成的立体图形。

数学建模_四大模型总结

数学建模_四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS 传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。

1.5 组合优化经典问题多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。

如何将尽可能多的物品装入背包。

多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于NP 难问题。

二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。

工人i 完成工作j 的时间为ij d 。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP 问题是VRP 问题的特例。

车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

数学建模常用模型方法总结

数学建模常用模型方法总结

数学建模常用模型方法总结无约束优化线性规划连续优化非线性规划整数规划离散优化组合优化数学规划模型多目标规划目标规划动态规划从其他角度分类网络规划多层规划等…运筹学模型(优化模型)图论模型存储论模型排队论模型博弈论模型可靠性理论模型等…运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理优化模型四要素:①目标函数②决策变量③约束条件④求解方法(MATLAB--通用软件LINGO--专业软件)聚类分析、主成分分析因子分析多元分析模型判别分析典型相关性分析对应分析多维标度法概率论与数理统计模型假设检验模型相关分析回归分析方差分析贝叶斯统计模型时间序列分析模型决策树逻辑回归传染病模型马尔萨斯人口预测模型微分方程模型人口预测控制模型经济增长模型Logistic 人口预测模型战争模型等等。

灰色预测模型回归分析预测模型预测分析模型差分方程模型马尔可夫预测模型时间序列模型插值拟合模型神经网络模型系统动力学模型(SD)模糊综合评判法模型数据包络分析综合评价与决策方法灰色关联度主成分分析秩和比综合评价法理想解读法等旅行商(TSP)问题模型背包问题模型车辆路径问题模型物流中心选址问题模型经典NP问题模型路径规划问题模型着色图问题模型多目标优化问题模型车间生产调度问题模型最优树问题模型二次分配问题模型模拟退火算法(SA)遗传算法(GA)智能算法蚁群算法(ACA)(启发式)常用算法模型神经网络算法蒙特卡罗算法元胞自动机算法穷举搜索算法小波分析算法确定性数学模型三类数学模型随机性数学模型模糊性数学模型。

高中数学模型总结归纳

高中数学模型总结归纳

高中数学模型总结归纳数学模型是数学在实际问题中的应用,通过建立数学模型,我们可以对实际问题进行定量分析和预测。

在高中数学学习中,数学模型是一个重要的学习内容,它能够培养学生的数学思维和解决实际问题的能力。

下面将从线性规划、概率统计和微分方程三个方面总结归纳高中数学模型的相关知识。

一、线性规划模型线性规划模型是数学建模中常用的一种模型。

它通过建立一组线性方程和一个线性目标函数来描述实际问题,并求解最优解。

线性规划模型在经济、管理、交通等领域有广泛的应用。

例如,在生产计划中,可以通过线性规划模型来确定最佳的生产数量,以最大化利润或最小化成本。

在运输问题中,可以利用线性规划模型来确定最佳的物流路径,以最大化运输效益或最小化运输成本。

二、概率统计模型概率统计模型是研究随机现象的数学模型。

它通过建立概率分布函数和统计模型来描述实际问题,并对随机变量进行分析和推断。

概率统计模型在风险评估、市场调查、医学研究等领域具有重要的应用价值。

例如,在风险评估中,可以利用概率统计模型来评估不同投资组合的风险和收益,以帮助投资者做出合理的决策。

在市场调查中,可以通过概率统计模型来分析市场需求和消费者行为,以指导企业的营销策略。

三、微分方程模型微分方程模型是描述变化过程的数学模型。

它通过建立微分方程和初始条件来描述实际问题,并求解方程得到解析解或数值解。

微分方程模型在物理、生物、环境等领域有广泛的应用。

例如,在物理学中,可以利用微分方程模型来描述物体的运动规律,求解方程可以得到物体的位置、速度和加速度等信息。

在生物学中,可以通过微分方程模型来描述生物种群的增长和衰退过程,以了解生态系统的变化和稳定性。

高中数学模型是数学在实际问题中的应用,通过建立数学模型,可以对实际问题进行定量分析和预测。

线性规划模型、概率统计模型和微分方程模型是数学建模中常用的三种模型。

通过学习和应用这些模型,可以培养学生的数学思维和解决实际问题的能力,提高数学学科的学习效果和实际应用能力。

中考数学常用模型和定理总结

中考数学常用模型和定理总结

中考数学常用模型和定理总结中考数学是学生们重要的考试之一,为了更好地备战中考,学生们需要总结常用模型和定理。

本文将为学生们提供一份中考数学常用模型和定理的总结,帮助大家更好地备考。

一、常用模型1.三角形模型三角形是初中数学中最重要的图形之一,它具有稳定性,是解决许多数学问题的关键。

在解决与三角形有关的数学问题时,学生们需要掌握三角形的性质、三角形的内角和定理、直角三角形的勾股定理等。

2.矩形模型矩形是初中数学中另一个重要的图形,它具有对角线相等、四个角都是直角的性质。

在解决与矩形有关的数学问题时,学生们需要掌握矩形的性质、矩形的面积和周长的计算等。

3.函数模型函数是初中数学中的一个重要概念,它是描述变量之间关系的一种方式。

在解决与函数有关的数学问题时,学生们需要掌握函数的定义、函数的图像和性质等。

4.坐标系模型坐标系是描述点和位置的一种方式,它是初中数学中另一个重要的概念。

在解决与坐标系有关的数学问题时,学生们需要掌握坐标系的建立、点的坐标的确定等。

二、常用定理1.梅涅劳斯定理梅涅劳斯定理是指任何一条直线截三角形的各边或其延长线,都使得三条不相邻线段之积等于另外三条线段之积,这一定理同样可以轻而易举地用初等几何或通过应用简单的三角比关系来证明,梅涅劳斯把这一定理扩展到了球面三角形。

2.托勒密定理托勒密定理是指圆的内接四边形中,两条对角线的乘积等于其对边之积的和,即对角线乘积的一半。

古希腊哲学家毕达哥拉斯和他的学派在单位正方形上以直径为边作正多边形,然后把这个多边形分割为四个小的相似多边形,并将相似多边形的边换算成等量线段。

这样,他们就得到一个“倍长”过程,即用一组线段拼成另一组线段,用一组线段的长度表示另一组线段长度的比例中项。

如果把一条边看作是某个正偶数(4除外)的正弦,则另一条边可以被表示为同一个偶数的余弦。

3.西姆松定理西姆松定理是指一个三角形中,如果有三条平行于基底的直线通过另外两个顶点,那么这三条直线一定相交于基底的中点。

数学建模四大模型总结

数学建模四大模型总结

数学建模四大模型总结1优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov链模型。

1.5 组合优化经典问题l 多维背包问题(MKP)背包问题:个物品,对物品,体积为,背包容量为。

如何将尽可能多的物品装入背包。

多维背包问题:个物品,对物品,价值为,体积为,背包容量为。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于难问题。

l 二维指派问题(QAP)工作指派问题:个工作可以由个工人分别完成。

工人完成工作的时间为。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):台机器要布置在个地方,机器与之间的物流量为,位置与之间的距离为,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

l 旅行商问题(TSP)旅行商问题:有个城市,城市与之间的距离为,找一条经过个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

l 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP问题是VRP问题的特例。

l 车间作业调度问题(JSP)车间调度问题:存在个工作和台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

数学知识总结解决实际问题的常用数学模型

数学知识总结解决实际问题的常用数学模型

数学知识总结解决实际问题的常用数学模型数学作为一门科学,不仅仅是学科的基础,还是解决实际问题的重要工具。

在工程、物理、经济、生物等领域中,数学模型被广泛运用于解决各种实际问题。

本文将总结一些常用的数学模型,并说明它们在应用中的具体作用。

1. 线性回归模型线性回归模型是一种常见的统计学模型,它用于描述两个变量之间的线性关系。

在实际问题中,我们常常需要通过已知的数据来预测或估计未知的变量。

线性回归模型通过建立一个线性方程,根据已知的数据点进行拟合,并用于预测未知数据点的取值。

这种模型广泛应用于经济预测、市场分析等领域。

2. 概率统计模型概率统计模型是研究随机现象规律性的数学工具。

在实际问题中,我们常常需要确定某个事件发生的可能性。

概率统计模型通过统计分析已有的数据,从而得到事件发生的概率。

根据已有的统计数据,我们可以计算出事件发生的可能性,并做出相应的决策。

例如,在风险评估中,我们可以通过概率统计模型来评估某个投资产品的风险。

3. 最优化模型最优化模型是研究如何找到使某个目标函数取得最优值的数学模型。

在实际问题中,我们常常需要在一定的约束条件下,找到一组满足特定条件的最优解。

最优化模型可以通过建立数学模型,并应用最优化算法来求解。

在工程设计、物流规划等领域中,最优化模型被广泛应用。

4. 图论模型图论模型是研究图的性质和关系的数学工具。

在实际问题中,我们常常需要分析和描述事物之间的关系。

图论模型可以通过构建图来描述和分析事物之间的关系,并帮助我们解决实际问题。

在社交网络分析、交通规划等领域中,图论模型发挥着重要的作用。

5. 随机过程模型随机过程模型是研究随机现象随时间变化规律的数学工具。

在实际问题中,我们常常需要研究某个随机变量随时间的变化趋势,或者某个随机事件在一段时间内的累积概率。

随机过程模型可以通过建立数学模型,对随机现象进行建模和分析。

在金融风险管理、天气预测等领域中,随机过程模型被广泛应用。

初二上数学模型汇总

初二上数学模型汇总

初二上数学模型汇总数学模型可以帮助我们把实际问题转化为数学问题,并通过数学的方法进行分析和求解。

在初二上学期的数学课程中,我们学习了多个数学模型,帮助我们理解并解决实际生活中的问题。

本文将对这些数学模型进行汇总和总结。

二、线性方程模型线性方程模型是数学中常见的模型之一。

在初二数学中,我们学习了一元一次方程和一元二次方程。

一元一次方程可以用于解决一些实际问题,例如简单的比例关系、速度与时间的关系等。

一元二次方程则可以用于解决关于抛物线的问题,例如物体的抛射运动问题等。

三、等比数列模型等比数列模型可以应用于很多实际问题中,例如利息问题、人口增长问题等。

在初二数学中,我们学习了等比数列的概念、通项公式以及数列求和公式。

通过这些知识,我们可以更好地理解和分析等比数列模型,并解决与之相关的问题。

四、几何模型几何模型也是数学中重要的一部分。

在初二数学中,我们学习了平行线与比例、相似三角形、勾股定理等几何模型。

这些模型可以帮助我们理解和求解与几何形状相关的问题,例如直角三角形的边长关系、相似三角形的比例关系等。

五、统计模型统计模型是数学中常用的模型之一。

在初二数学中,我们学习了统计学的基本概念,例如频率、中位数、众数等。

通过统计模型,我们可以收集、整理、分析和解释数据,并从中得出有关问题的结论。

六、函数模型函数是数学中重要的概念之一,我们在初二数学中也学习了函数的相关知识。

函数模型可以用于解决各种实际问题,例如平均速度的计算、利润与成本的关系等。

通过了解和应用函数模型,我们可以更好地理解和分析与函数相关的问题。

通过初二上学期的数学学习,我们了解了多个数学模型,并学会了如何应用这些模型解决实际问题。

线性方程模型、等比数列模型、几何模型、统计模型和函数模型等,都在我们日常生活中有着广泛的应用。

掌握这些数学模型,不仅可以提升我们的数学能力,还可以帮助我们更好地理解和应用数学知识,为未来的学习和工作打下基础。

数学模型制作活动设计及总结

数学模型制作活动设计及总结

数学模型制作活动设计及总结活动背景随着科技的快速发展和应用领域的广泛扩展,数学模型在各行各业中发挥着越来越重要的作用。

为了提高学生对数学模型的理解和应用能力,培养学生解决实际问题的综合素质,我们特举办此次数学模型制作活动。

活动目标1. 加深学生对数学模型的理解,提升数学思维能力。

2. 培养学生运用数学知识解决实际问题的能力。

3. 激发学生数学的兴趣和积极性,提高学生的团队协作和沟通能力。

活动内容活动前期1. 主题发布:活动开始前,发布活动主题,引导学生关注现实生活中的数学问题。

2. 分组:学生自由组合,形成参赛团队,每个团队3-5人。

3. 培训:组织专家对数学建模方法、软件使用技巧等进行培训,为学生提供技术支持。

活动中期1. 选题:团队根据活动主题,选择感兴趣的数学问题进行研究。

2. 调研:团队进行资料查阅、实地考察等,收集与课题相关的信息。

3. 建模:团队根据所收集的信息,建立数学模型,并进行求解和验证。

4. 撰写报告:团队撰写数学模型制作报告,包括问题分析、建模过程、结果验证等内容。

活动后期1. 提交作品:各团队在规定时间内提交数学模型制作报告及相关材料。

2. 评审:组织专家对作品进行评审,评选出一、二、三等奖及优秀奖。

3. 总结颁奖:对获奖团队进行表彰,对活动进行总结。

活动组织1. 策划组:负责活动整体策划,包括主题设定、日程安排、资源调配等。

2. 培训组:负责组织专家进行培训,提供技术支持。

3. 评审组:负责作品评审,确保评审过程的公平、公正、公开。

4. 宣传组:负责活动宣传、报道及总结,记录活动过程中的精彩瞬间。

活动预算1. 专家培训费用:¥10,0002. 活动物资费用:¥5,0003. 奖励费用:¥15,0004. 其他费用:¥5,000总计:¥35,000活动总结活动结束后,组织团队对活动进行总结,总结活动中的优点和不足,为以后的活动提供借鉴和改进的方向。

同时,对获奖团队进行表彰,激发学生数学的兴趣和积极性。

143个高中高频数学解题模型

143个高中高频数学解题模型

143个高中高频数学解题模型一、一元一次方程与一元一次方程组1. 一元一次方程的定义一元一次方程指的是只含有一个变量,并且最高次数为一的方程,通常表示为ax+b=0。

解一元一次方程的方法主要有求解法和图解法。

2. 一元一次方程组的概念一元一次方程组指的是由若干个一元一次方程组成的方程组,通常表示为a1x+b1y=c1a2x+b2y=c2解一元一次方程组的方法主要有代入法、加减法和等系数消去法。

二、一元二次方程与一元二次不等式1. 一元二次方程的特点一元二次方程指的是最高次数为二的方程,通常表示为ax^2+bx+c=0。

解一元二次方程的方法主要有配方法和求根公式。

2. 一元二次不等式的解法一元二次不等式指的是最高次数为二的不等式,通常表示为ax^2+bx+c>0或ax^2+bx+c<0。

解一元二次不等式的方法主要有因式分解法和图像法。

三、二元二次方程与二元二次不等式1. 二元二次方程的定义二元二次方程指的是含有两个变量且最高次数为二的方程,通常表示为ax^2+by^2+cxy+dx+ey+f=0。

解二元二次方程的方法主要有配方法和消元法。

2. 二元二次不等式的概念二元二次不等式指的是含有两个变量且最高次数为二的不等式。

解二元二次不等式的方法主要有图解法和代数法。

四、指数与对数1. 指数的基本性质指数是幂运算的一种表示方式,有基本性质包括乘法法则、除法法则和零指数法则。

2. 对数的基本概念对数是幂运算的逆运算,有基本性质包括对数的乘除法则和对数的换底公式。

五、三角函数与解三角形1. 三角函数的基本性质三角函数包括正弦函数、余弦函数和正切函数,有基本性质包括奇偶性、周期性和对称性。

2. 解三角形的基本方法解三角形主要包括利用三角函数和利用三角恒等式两种方法,主要应用于解直角三角形和不定角三角形。

六、平面向量的运算1. 平面向量的基本定义平面向量是具有大小和方向的量,有基本运算包括数乘、加法和减法。

三种数学模型进行总结归纳

三种数学模型进行总结归纳

三种数学模型进行总结归纳数学模型是现代科学研究和实践中的重要工具,它们能够对真实世界中的问题进行抽象和数学描述,帮助我们理解和解决复杂的问题。

在本文中,我将对三种常见的数学模型进行总结归纳,分别是线性模型、非线性模型和概率模型。

一、线性模型线性模型是数学中最基本也是最简单的模型之一。

在线性模型中,变量之间的关系是线性的,可以用一条直线或者一个超平面来刻画。

线性模型的基本形式可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn其中,Y表示因变量,X1、X2、...,Xn表示自变量,β0、β1、β2、...,βn表示系数。

线性模型的关键是确定合适的系数,可以通过最小二乘法等统计方法进行估计。

线性模型在很多领域都有广泛的应用,例如线性回归模型可以用来建立变量之间的关系模型,在市场营销中可以用来预测销售量与广告费用之间的关系;线性分类模型可以用来进行二分类或多分类,广泛应用于图像识别、信用评估等领域。

二、非线性模型与线性模型相对应的是非线性模型,非线性模型是一类不能用线性关系表示的模型。

在非线性模型中,变量之间的关系是非线性的,可能呈现出曲线、二次曲线、指数函数等形态。

非线性模型的基本形式可以表示为:Y = f(X, β)其中,Y表示因变量,X表示自变量,β表示参数,f(·)表示一个非线性的函数。

非线性模型在很多实际问题中有重要的应用,例如生物学中的生长模型、物理学中的运动模型等。

非线性模型的参数估计通常需要通过数值方法或者迭代算法来进行求解。

三、概率模型概率模型是一种利用概率理论描述随机现象的数学模型。

概率模型通过引入随机变量和概率分布来描述不确定性和随机性。

概率模型可以分为两类:参数模型和非参数模型。

参数模型是一类具有固定参数的概率模型,可以用有限个参数来刻画变量之间的关系。

参数模型的应用非常广泛,例如正态分布模型、泊松分布模型等。

参数模型的参数通常可以通过最大似然估计等方法进行估计。

七年级下册数学模型总结

七年级下册数学模型总结

七年级下册数学模型总结
数学模型是通过数学的方式研究现实生活中的问题。

七年级下册的数学模型主要包括以下内容:
1.比例和相似
比例是不同数量之间的比较,而相似则是形状和大小相似的物体。

在数学模型中,比例和相似可以应用于解决物体的大小、比例和相似等问题。

2.图形的性质和变换
图形的性质和变换包括平移、旋转和翻转等。

这些概念可以应用于解决图形的位置、形状和方向等问题。

3.分数、小数和百分数
分数、小数和百分数是数学中非常重要的概念。

在数学模型中,它们可以应用于解决各种比例和预算问题。

4.统计
统计是研究数据和信息的收集、分析和解释。

在数学模型中,统计可以应用于解决人口统计、财务预算和市场分析等问题。

5.代数
代数是研究未知量和它们之间的关系。

在数学模型中,代数可
以应用于解决方程、函数和不等式等问题。

总之,七年级下册数学模型涵盖了许多数学概念和应用,并且通过这些概念和应用,可以解决现实生活中的各种问题。

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。

建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。

然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。

整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。

整数规划的特殊情况是0-1规划,其变量只取0或者1。

多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。

目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。

目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。

设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。

设有q个优先级别,分别为P1, P2, …, Pq。

在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。

七下数学模型总结

七下数学模型总结

七下数学模型总结
七年级数学模型是一个比较全面的数学知识体系,包含了很多实际问题中需要用到的数学思想和方法。

下面是我对七年级数学模型的总结:
1. 比例:比例是七年级数学模型最基础的知识点之一。

在实际生活中,我们经常需要进行比较或者计算不同物品、事物之间的比例关系,这时候就需要运用比例的知识。

2. 百分数:百分数其实是一个特殊的比例,通常以“%”表示。

在实际生活中,我们也经常用到百分数来表示利率、涨幅、降幅等。

3. 几何图形的认识和计算:几何图形在生活中非常常见,如长方形、正方形、圆形、三角形等。

在七年级数学模型中,我们需要学习各种几何图形的特点、性质以及计算周长、面积等相关知识。

4. 数据统计和概率:数据统计和概率是现代社会中非常重要的两个领域。

在七年级数学模型中,我们需要学习如何收集、整理和描述数据,并且了解一些基本的概率计算方法。

5. 一元一次方程:一元一次方程是数学中非常基础的内容,也是解决实际问题中经常使用的方法之一。

在七年级数学模型中,我们需要掌握如何列方程、解方程和应用方程来解决实际问题。

总的来说,七年级数学模型涵盖了很多实际问题的解决方法,这些知识点可以帮助我们更好地理解和应用数学。

通过学习这些知识,我们可以更好地处理日常生活中遇到的各种数学问题。

数学建模所有模型用途总结

数学建模所有模型用途总结

数学建模所有模型用途总结数学建模是一种将实际问题转化为数学模型并通过数学方法求解的方法和技巧。

它在各个领域都有广泛的应用,可以帮助我们更好地理解和解决现实世界中的问题。

本文将总结数学建模的所有模型用途。

1.优化模型优化模型是数学建模中最常见的一种模型。

它通过建立数学模型来寻找使目标函数达到最大或最小的最优解。

优化模型可以应用于生产调度、资源分配、运输路线规划等问题。

例如,在生产调度中,我们可以利用优化模型来确定最佳的生产计划,以最大化产量或最小化成本。

2.预测模型预测模型是根据已有的数据和规律来预测未来的发展趋势。

它可以应用于经济预测、天气预报、股票市场预测等领域。

例如,在经济预测中,我们可以利用预测模型来预测未来的经济增长率,以帮助政府制定相应的宏观经济政策。

3.决策模型决策模型是用于辅助决策的一种模型。

它可以帮助人们在面对复杂的决策问题时做出科学合理的决策。

决策模型可以应用于投资决策、风险评估、市场营销策略等问题。

例如,在投资决策中,我们可以利用决策模型来评估各种投资方案的风险和收益,以帮助投资者做出明智的投资决策。

4.模拟模型模拟模型是通过建立仿真模型来模拟和分析现实世界中的复杂系统。

它可以帮助人们更好地理解系统的运行规律,并提供决策支持。

模拟模型可以应用于交通流量模拟、气候模拟、环境模拟等领域。

例如,在交通流量模拟中,我们可以利用模拟模型来评估不同的交通管理策略对交通流量的影响,以优化交通系统的运行效率。

5.网络模型网络模型是一种描述和分析网络结构和功能的数学模型。

它可以帮助人们研究和优化网络的布局、传输效率、容错性等问题。

网络模型可以应用于电力网络、通信网络、社交网络等领域。

例如,在电力网络中,我们可以利用网络模型来评估不同的电网布局方案,以提高电力系统的可靠性和稳定性。

6.随机模型随机模型是一种描述和分析随机现象的数学模型。

它可以帮助人们研究随机事件的概率分布、统计特性等问题。

随机模型可以应用于风险评估、信号处理、金融风险管理等领域。

八年级重要模型知识点归纳

八年级重要模型知识点归纳

八年级重要模型知识点归纳在八年级数学学习中,模型问题是十分重要的知识点。

在实际应用中,我们经常需要使用数学知识来解决各种问题。

因此,学习并掌握模型问题的解决方法对于我们的生活和学习都有很大的帮助。

下面,本文从几个方面对八年级数学重要的模型问题进行归纳总结。

一、分式运算模型在分式运算模型中,比较典型的有三角形面积和体积问题。

三角形面积问题可以用海龙公式进行求解,而体积问题可以通过计算三棱锥、圆锥、圆柱、球体等的体积来进行求解。

另外,我们还可以应用比例关系来解决一些常见的分式运算问题,如百分数和几何平均数的求解。

二、函数模型在函数模型中,常见的问题包括线性函数、二次函数和指数函数的应用。

其中,线性函数是最为常见的函数形式,我们可以通过一些实际问题来应用线性函数来求解,如速度问题、收入问题等;对于二次函数,我们可以通过图像、顶点公式和配方法等多种方式来求解,例如,找到最值点、求解距离等问题;指数函数广泛应用于自然生态、生产技术、金融等各个领域,我们需要通过不同的方法来解决涉及到指数函数的实际问题。

三、几何模型几何模型是八年级数学学习中比较重要的模型问题形式之一。

在几何模型中,我们可以通过不同的方法来解决各种几何问题,比如勾股定理、正弦/余弦定理等。

另外,在三角形的边界问题中,我们需要计算周长、面积、余弦定理、正弦定理等各种基本概念和公式来解决实际应用中的问题。

四、概率模型概率模型在八年级数学学习中也十分重要。

概率模型不仅应用于数学,而且广泛应用于物理、化学、生物、经济学等各个领域。

在概率模型中,我们需要通过一些基本概念、概率公式、条件概率等来解决实际问题。

五、代数模型代数模型是指通过代数方法解决实际问题。

比较典型的求解代数模型的方法有代数化简、方程求解等。

在代数模型实践中,我们需要针对不同的问题进行不同的分析和解决,比如制定出合适的方案、制定经济政策等。

代数模型除了在解决具体问题中具有广泛的应用外,还是数学学科中一个重要的基础理论。

数学48个几何模型总结

数学48个几何模型总结

数学48个几何模型总结摘要数学中的几何模型是研究几何形状和空间关系的工具,具有广泛的应用。

本文总结了48个常见的几何模型,包括点、线、面和立体等,介绍了它们的定义、特点、性质和应用领域等内容。

1. 点(Point)点是几何学中最基本的概念,用于表示位置,没有大小和形状。

点常用大写字母标记,如A、B、C等。

2. 线(Line)线由无限多个点构成,是一维的,没有宽度和厚度。

线可用一条直线符号表示,如AB。

3. 线段(Segment)线段是由两个点确定的线段部分,有起点和终点。

线段通常用两个点的大写字母标记,如AB。

4. 射线(Ray)射线由一个起点和一个方向确定,可以无限延伸。

射线通常用一个点和一个方向符号表示,如AB→。

5. 直线(Angle)角是由两条相交的线段组成,分为内角和外角。

角常用顶点的大写字母来标记,如∠ABC。

6. 三角形(Triangle)三角形是由三条线段组成的图形,有三个顶点和三条边。

三角形根据边长和角度可以分为等边三角形、等腰三角形、直角三角形等不同类型。

7. 直角三角形(Right Triangle)直角三角形是其中一个角为直角的三角形。

直角三角形的斜边和直角边之间存在特殊的关系,如勾股定理。

8. 矩形(Rectangle)矩形是由四条边组成的四边形,有四个顶点和四个直角。

矩形的对角线相等且垂直,可以用长和宽来定义。

9. 正方形(Square)正方形是一种特殊的矩形,具有四个相等的边和四个直角。

10. 平行四边形(Parallelogram)平行四边形是一个有两对平行边的四边形,对角线不相交,相邻两边相等。

11. 梯形(Trapezoid)梯形是一个有一对平行边的四边形。

梯形的两条非平行边叫做腰,两个腰之间的距离叫做高。

12. 菱形(Rhombus)菱形是具有四条相等边的四边形,对角线相交于垂直的角。

13. 正多边形(Regular Polygon)正多边形是指边长和内角都相等的多边形,如正三角形、正四边形等。

小学数学五大几何模型总结

小学数学五大几何模型总结

五大模型(二)知识框架一、等积模型DC BA①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; ③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、共角定理(鸟头定理)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.:():()ABC ADE S S AB AC AD AE =⨯⨯△△(1)(2)(3)(4)三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.S 4S 3S 2S 1O DC BA梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.A B C DO ba S 3S 2S 1S 4四、相似模型(一)金字塔模型 (二) 沙漏模型GF E AB CD ABCDEF G①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾定理)有一条公共边的三角形叫做共边三角形。

初中几何模型及常见结论的总结归纳

初中几何模型及常见结论的总结归纳

初中几何模型及常见结论的总结归纳一、引言在初中数学学习中,几何是一个重要的部分,它不仅涉及到图形的性质和特点,还涉及到一些基本的几何模型和常见结论。

掌握这些模型和结论,有助于更好地理解和应用几何知识,提高解题能力和数学素养。

二、初中几何模型总结1. 全等三角形模型:两个三角形全等,则它们的边相等或角相等。

2. 相似三角形模型:两个三角形相似,则它们的对应边成比例。

3. 直角三角形模型:直角三角形的两个锐角互余。

4. 平行线模型:两直线平行,同位角相等,内错角相等,同旁内角互补。

5. 三角形内角和定理:三角形内角和为180度。

6. 多边形内角和定理:n边形内角和等于(n-2) × 180度。

7. 三角形重心性质模型:三角形的重心是三边中线的交点,重心到顶点的距离是它到对边中点距离的2倍。

三、常见结论归纳1. 等腰三角形的特点:等腰三角形两底角相等,顶角平分线垂直平分底边。

2. 直角三角形的特点:直角三角形斜边上的中线等于斜边的一半;勾股定理的逆定理适用;两个锐角互余。

3. 平行线的判定和性质:平行线的判定主要是依据平行线的定义和两直线夹角相等;平行线的性质主要有两直线平行,同位角相等;三角形内角和定理的推论等。

4. 辅助线常见位置和方法:在添加辅助线时,常常用到截长补短、垂直平分线、对顶角相等、平行线的性质等。

四、应用举例1. 利用全等三角形模型解决实际问题:例如测量旗杆高度或河流宽度等问题,需要用到全等三角形的性质。

2. 利用相似三角形模型解决实际问题:例如测量河对岸的建筑物高度或篮球架高度等问题,需要用到相似三角形的性质。

3. 利用平行线模型解决实际问题:例如求两直线的距离问题,需要用到平行线的判定和性质。

4. 利用勾股定理解决实际问题:例如求斜坡的长度等问题,需要用到勾股定理的性质。

五、总结通过总结归纳初中几何模型和常见结论,可以更好地理解和应用几何知识,提高解题能力和数学素养。

在应用时,需要根据具体情况选择合适的几何模型和结论,并结合辅助线等方法解决问题。

学习数学模型心得体会5篇读友吧_1

学习数学模型心得体会5篇读友吧_1

学习数学模型心得体会5篇学习数学模型心得体会精选篇1数学是解决生活问题的钥匙,学数学就是为了学会应用,学会生活。

只要我们细细感悟,就会发现数学就在我们的身边。

比如说,购物会用到数的运算;小朋友搭积木时会用到空间几何;修房造屋会用到图形的整合;投票选举时会用统计知识……这样的问题数不胜数,由此可见,生活与数学形影相随,密不可分。

而数的运算在生活中更是无处不在。

理财、购物、比较大小等,无一不用到数的运算。

它给我们的生活带来的价值深远而非比寻常。

现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。

他们通常都是有不同的形状和颜色。

其实,这里面就有数学问题。

在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。

这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢?由此,我们得出了。

n边形,可以分成(n-2)个三角形,内角和是(n-2)x180度,一个内角的度数是(n-2)x180÷2度,外角和是360度。

若(n-2)x180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。

瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢?因此,于生活中准确地把握数的内涵,运用数的外延,能更好地服务我们的生活,丰富我们的生活。

同时,我也从中学会了“学而不思则罔,思而不学则殆!”总之,在学习数学的过程中,我们可以获得数学知识,并用所学知识解题及解决一些生活实际问题。

而更重要的是,我们在学习数学的过程中能锻炼自己观察事物的能力,分析判断力及创新能力,在以后的生活中,这些能力可以帮助我们把人生道路走得更好,使我们终生受益。

学习数学模型心得体会精选篇2教研组举办活动时,全体数学教师重新学习了《数学课程标准》,对数学教学有了新的认识。

新旧课标对比之后,比较显目的的是关于“基本理念”和“总体目标”的修订。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS 传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。

1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。

如何将尽可能多的物品装入背包。

多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于NP 难问题。

● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。

工人i 完成工作j 的时间为ij d 。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP 问题是VRP 问题的特例。

● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

如何求得从第一个操作开始到最后一个操作结束的最小时间间隔。

2 分类模型判别分析是在已知研究对象分成若干类型并已经取得各种类型的一批已知样本的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分析。

聚类分析则是给定的一批样品,要划分的类型实现并不知道,正需要通过局内分析来给以确定类型的。

2.1 判别分析● 距离判别法基本思想:首先根据已知分类的数据,分别计算各类的重心即分组(类)的均值,判别准则是对任给的一次观测,若它与第i 类的重心距离最近,就认为它来自第i 类。

至于距离的测定,可以根据实际需要采用欧氏距离、马氏距离、明科夫距离等。

● Fisher 判别法基本思想:从两个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个判别函数或称判别式1pi i i y c x ==∑。

其中系数i c 确定的原则是使两组间的区别最大,而使每个组内部的离差最小。

对于一个新的样品,将它的p 个指标值代人判别式中求出 y 值,然后与判别临界值(或称分界点(后面给出)进行比较,就可以判别它应属于哪一个总体。

在两个总体先验概率相等的假设下,判别临界值一般取: (1)(2)12012n y n y y n n +=+最后,用F 统计量来检验判别效果,若F F α>则认为判别有效,否则判别无效。

以上描述的是两总体判别,至于多总体判别方法则需要加以扩展。

Fisher 判别法随着总体数的增加,建立的判别式也增加,因而计算比较复杂。

● Bayes 判别法基本思想:假定对所研究的对象有一定的认识,即假设k 个总体中,第i 个总体i G 的先验概率为i q ,概率密度函数为()i f x 。

利用bayes 公式计算观测样品X来自第j 个总体的后验概率1()(/)()j j j k i i i q f x p G X q f x ==∑,当1,2,,(/)(/)m a x h j j k p G X p G X == 时,将样本X 判为总体h G 。

● 逐步判别法基本思想与逐步回归法类似,采用“有进有出”的算法,逐步引入变量,每次引入一个变量进入判别式,则同时考虑在较早引入判别式的某些作用不显著的变量剔除出去。

2.2 聚类分析聚类分析是一种无监督的分类方法,即不预先指定类别。

根据分类对象不同,聚类分析可以分为样本聚类(Q 型)和变量聚类(R 型)。

样本聚类是针对观测样本进行分类,而变量聚类则是试图找出彼此独立且有代表性的自变量,而又不丢失大部分信息。

变量聚类是一种降维的方法。

● 系统聚类法(分层聚类法)基本思想:开始将每个样本自成一类;然后求两两之间的距离,将距离最近的两类合成一类;如此重复,直到所有样本都合为一类为止。

适用范围:既适用于样本聚类,也适用于变量聚类。

并且距离分类准则和距离计算方法都有多种,可以依据具体情形选择。

● 快速聚类法(K-均值聚类法)基本思想:按照指定分类数目n ,选择n 个初始聚类中心(1,2,,)i Z i n = ;计算每个观测量(样本)到各个聚类中心的距离,按照就近原则将其分别分到放入各类中;重新计算聚类中心,继续以上步骤;满足停止条件时(如最大迭代次数等)则停止。

使用范围:要求用户给定分类数目n ,只适用于样本聚类(Q 型),不适用于变量聚类(R 型)。

● 两步聚类法(智能聚类方法)基本思想:先进行预聚类,然后再进行正式聚类。

适用范围:属于智能聚类方法,用于解决海量数据或者具有复杂类别结构的聚类分析问题。

可以同时处理离散和连续变量,自动选择聚类数,可以处理超大样本量的数据。

● 模糊聚类分析● 与遗传算法、神经网络或灰色理论联合的聚类方法2.3 神经网络分类方法3 评价模型3.1 层次分析法(AHP)基本思想:是定性与定量相结合的多准则决策、评价方法。

将决策的有关元素分解成目标层、准则层和方案层,并通过人们的判断对决策方案的优劣进行排序,在此基础上进行定性和定量分析。

它把人的思维过程层次化、数量化,并用数学为分析、决策、评价、预报和控制提供定量的依据。

基本步骤:构建层次结构模型;构建成对比较矩阵;层次单排序及一致性检验(即判断主观构建的成对比较矩阵在整体上是否有较好的一致性);层次总排序及一致性检验(检验层次之间的一致性)。

优点:它完全依靠主观评价做出方案的优劣排序,所需数据量少,决策花费的时间很短。

从整体上看,AHP在复杂决策过程中引入定量分析,并充分利用决策者在两两比较中给出的偏好信息进行分析与决策支持,既有效地吸收了定性分析的结果,又发挥了定量分析的优势,从而使决策过程具有很强的条理性和科学性,特别适合在社会经济系统的决策分析中使用。

缺点:用AHP进行决策主观成分很大。

当决策者的判断过多地受其主观偏好影响,而产生某种对客观规律的歪曲时,AHP的结果显然就靠不住了。

适用范围:尤其适合于人的定性判断起重要作用的、对决策结果难于直接准确计量的场合。

要使AHP的决策结论尽可能符合客观规律,决策者必须对所面临的问题有比较深入和全面的认识。

另外,当遇到因素众多,规模较大的评价问题时,该模型容易出现问题,它要求评价者对问题的本质、包含的要素及其相互之间的逻辑关系能掌握得十分透彻,否则评价结果就不可靠和准确。

改进方法:(1)成对比较矩阵可以采用德尔菲法获得。

(2)如果评价指标个数过多(一般超过9个),利用层次分析法所得到的权重就有一定的偏差,继而组合评价模型的结果就不再可靠。

可以根据评价对象的实际情况和特点,利用一定的方法,将各原始指标分层和归类,使得每层各类中的指标数少于9个。

3.2 灰色综合评价法(灰色关联度分析)基本思想:灰色关联分析的实质就是,可利用各方案与最优方案之间关联度大小对评价对象进行比较、排序。

关联度越大,说明比较序列与参考序列变化的态势越一致,反之,变化态势则相悖。

由此可得出评价结果。

基本步骤:建立原始指标矩阵;确定最优指标序列;进行指标标准化或无量纲化处理;求差序列、最大差和最小差;计算关联系数;计算关联度。

优点:是一种评价具有大量未知信息的系统的有效模型,是定性分析和定量分析相结合的综合评价模型,该模型可以较好地解决评价指标难以准确量化和统计的问题,可以排除人为因素带来的影响,使评价结果更加客观准确。

整个计算过程简单,通俗易懂,易于为人们所掌握;数据不必进行归一化处理,可用原始数据进行直接计算,可靠性强;评价指标体系可以根据具体情况增减;无需大量样本,只要有代表性的少量样本即可。

缺点:要求样本数据且具有时间序列特性;只是对评判对象的优劣做出鉴别,并不反映绝对水平,故基于灰色关联分析综合评价具有“相对评价”的全部缺点。

适用范围:对样本量没有严格要求,不要求服从任何分布,适合只有少量观测数据的问题;应用该种方法进行评价时,指标体系及权重分配是一个关键的问题,选择的恰当与否直接影响最终评价结果。

改进方法:(1)采用组合赋权法:根据客观赋权法和主观赋权法综合而得权系数。

(2)结合TOPSIS法:不仅关注序列与正理想序列的关联度γ+,而且关注序列与负理想序列的关联度γ-,依据公式γγγγ+-+=+计算最后的关联度。

3.3 模糊综合评价法基本思想:是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清、不易定量的因素定量化,从多个因素对被评价事物隶属等级(或称为评语集)状况进行综合性评价的一种方法。

综合评判对评判对象的全体,根据所给的条件,给每个对象赋予一个非负实数评判指标,再据此排序择优。

基本步骤:确定因素集、评语集;构造模糊关系矩阵;确定指标权重;进行模糊合成和做出评价。

优点::数学模型简单,容易掌握,对多因素、多层次的复杂问题评判效果较好。

模糊评判模型不仅可对评价对象按综合分值的大小进行评价和排序,而且还可根据模糊评价集上的值按最大隶属度原则去评定对象所属的等级,结果包含的信息量丰富。

评判逐对进行,对被评对象有唯一的评价值,不受被评价对象所处对象集合的影响。

接近于东方人的思维习惯和描述方法,因此它更适用于对社会经济系统问题进行评价。

缺点:并不能解决评价指标间相关造成的评价信息重复问题,隶属函数的确定还没有系统的方法,而且合成的算法也有待进一步探讨。

其评价过程大量运用了人的主观判断,由于各因素权重的确定带有一定的主观性,因此,总的来说,模糊综合评判是一种基于主观信息的综合评价方法。

应用范围:广泛地应用于经济管理等领域。

综合评价结果的可靠性和准确性依赖于合理选取因素、因素的权重分配和综合评价的合成算子等。

相关文档
最新文档