2019年高考数学一轮复习(文理通用) 选修4-5 不等式选讲 选修4-5 第2讲
2019版理科数学一轮复习高考帮试题:选修4-5 不等式选讲(习思用.数学理) Word版含解析
选修4-5不等式选讲考点1不等式的性质1.已知a,b,c均为正数,证明: a2+b2+c2+(1a +1b+1c)2≥6√3, 并确定a,b,c为何值时,等号成立.考点2绝对值不等式2.设函数f(x)=|x-1|+|x-2|.(1)解不等式f(x)>2;(2)求函数g(x)=ln f(x)的值域.3.已知函数f(x)=2|x+a|-|x-1|(a>0).(1)若函数f(x)与x轴围成的三角形的面积的最小值为4,求实数a的取值范围;(2)若对任意的x∈R都有f(x)+2≥0,求实数a的取值范围.4.已知m>1,且关于x的不等式m-|x-2|≥1的解集为[0,4].(1)求m的值;(2)若a,b均为正实数,且满足a+b=m,求a2+b2的最小值.5.设函数f(x)=√x-2+√11-x的最大值为M.(1)求实数M的值;(2)求关于x的不等式|x-√2|+|x+2√2|≤M的解集.6.已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求实数a的取值范围.考点3证明不等式的基本方法7.已知a>0,b>0,求证:√b +√a≥√a+√b.8.已知a,b∈R,且a+b=1,求证:(a+2)2+(b+2)2≥252.9.已知a ,b ,c 均为正实数.求证:(1)(a +b )(ab +c 2)≥4abc ;(2)若a +b +c =3,则√a +1+√b +1+√c +1≤3√2. 考点4柯西不等式10.已知x,y 是两个不相等的正实数,求证:(x 2y +x +y 2)·(xy 2+y +x 2)>9x 2y 2.答案1.解法一 因为a ,b ,c 均为正数,所以a 2+b 2+c 2≥3(abc )23 ①, 因为1a +1b +1c ≥3(abc )-13,所以(1a +1b +1c )2≥9(abc )-23 ②.故a 2+b 2+c 2+(1a +1b +1c )2≥3(abc )23+9(abc )-23. 又3(abc )23+9(abc )-23≥2√27=6√3 ③, 所以原不等式成立.当且仅当a=b=c 时,①式和②式等号成立. 当且仅当3(abc )23=9(abc )-23时,③式等号成立,。
高中数学选修4-5不等式选讲的重要思想及高中数学选修4-5知识点(最全版)
一、a) 恒等关系是义务教育数学学习中的一种基本的关系。
在义务教育的学习过程中,有哪些恒等关系是重要的?是需要学生掌握的?决定这些恒等关系的基本数学思想是什么?这些数学思想是怎么发挥作用的?b) 在义务教育阶段也引入了事物之间的不等关系,同时也引出了一些重要的不等关系,例如,实数中的不等关系。
我们还引出了一些不等关系的性质,例如,a>b>0,b>c>0就可以得出,a>c。
建议同学们梳理一下在义务教育阶段所学的不等关系,体会不等关系与恒等关系的区别。
c) 在高中的必修5,我们设置了不等式的内容。
它大体上由四部分内容组成。
我们同学们梳理复习这四部分内容。
第一部分是,一些基本不等式的性质,例如,a>b,c>0得出,ac>bc等。
第二部分是,在学会解一元一次不等式的基础上,引入了一元二次不等式。
第三部分是,介绍了我们一个经常使用的不等式,这个重要的不等式有许多不同的呈现形式,值得一提的是,它还有很多重要的几何形式。
第四部分是,简单的线性规划问题。
解决线性规划问题是按照以下基本步骤实现的:1)确定目标函数2)确定目标函数的约束条件,即讨论这个目标函数的可行区域。
利用不等式刻画目标函数的约束条件。
3)观察目标函数在可行区域内的变化趋势。
4)确定使得目标函数达到最大或最小值的解。
同学们应该思考的是,在讨论这些不等式的过程中什么思想发挥了作用。
d) 在我们上面分析的这些内容的学习中,我们可以体会到由运算思想所体现的恒等变换的能力。
这种能力在研究不等式中发挥了重要的作用。
建议同学们在教师的帮助下更好的发挥这种能力。
e) 由运算思想所体现的恒等变换的能力,是一种重要的逻辑推理的能力。
在本专题中,提高这种能力是本专题的基本定位。
建议教师思考在本专题中,如何体现这样一个基本定位。
f) 我们知道基本不等式,a2+b2≥2ab,它有着重要的几何背景。
如图所示:令AF=a,BF=b,则AB2=a2+b2,而S正方形ABCD≥4S⊿ABF即,所以,a2+b2≥2ab,当AF=BF时,正方形EFGH缩为一点,S正方形ABCD=44S⊿ABF实际上每一个好的不等式都有重要的数学背景,特别是重要的几何背景。
高考数学(文理合用)新一线学案(课件+练案+考案):选修4-5 不等式选讲选修4-5 第1讲
B.0 D.2
数 学
[ 解析]
∵|2x-t|<1-t,∴t-1<2x-t<1-t.
1 1 ∴2t-1<2x<1,t-2<x<2,∴t=0.
返回导航
选修4-5 不等式选讲
2.不等式|x-5|+|x+3|≥10的解集是( D ) A.[-5,7] B.[-4,6]
C.(-∞,-5]∪[7,+∞)
2
数 学
返回导航
选修4-5 不等式选讲
|2a+b|+|2a-b| 4 5.已知 a 和 b 是任意非零实数, 则 的最小值为 __________. |a|
文 理 合 订
[ 解析] ∴最小值为4.
∵ |2a + b| +|2a-b|≥|2a+ b+ 2a- b| =4|a| 对于任意的 a ,b 恒成立,
文 理 合 订
掉绝对值符号化为若干个不等式组问题求解,其一般步骤为:①求零点;②划 分区间,去绝对值符号;③分别解去掉绝对值符号之后的不等式;④取每个结
数 学
果的并集.
(3)通过构造函数,利用函数的图像求解,体现了函数与方程的思想.
返回导航
选修4-5 不等式选讲
〔变式训练 1 〕 (2019·山东泰安)已知函数f(x)=|x+m|+|2x-3|(m∈R).
〔变式训练 2 〕 已知函数f(x)=-|x-a|+a,g(x)=|2x-1|+|2x+4|. (1)解不等式g(x)<6; (2)若对任意的x1∈R,存在x2∈R,使得-g(x1)=f(x1)成立,求实数a的取值
文 理 合 订
范围.
数 学
返回导航
选修4-5 不等式选讲
[ 解析]
(1)由题意得|2x-1|+|2x+4|<6.
2019年高考数学一轮复习(文理通用) 选修4-5 不等式选讲 选修4-5 第1讲
• [解析] 解法一:y=|x-4|+|x-6|=|4-x|+|x-6|≥|(4- x)+(x-6)|=2. • 解法二:|x-4|+|x-6|表示在数轴上,x对应的点到4与6 对应点的距离之和,随着x在数轴上的移动易看出|x-4|+ |x-6|≥2,故选A.
5.(2015· 山东)不等式|x-1|-|x-5|<2 的解集是 导学号 58533684 ( A ) A.(-∞,4) C.(1,4) B.(-∞,1) D.(1,5)
选考内容
选修4-5 不等式选讲
第一讲 绝对值不等式
• 五年新课标全国卷试题分析
高考考点分布示例图
命题特点 1.本章在高考中只考查一个大题,以解答题的形式出现, 占10分. 2.高考主要考查绝对值不等式的解法,求含绝对值的函数 的值域及求含参数的绝对值不等式中参数的取值范围 , 不等式的证明等,结合集合的运算、函数的图象和性质、 恒成立问题及基本不等式、绝对值不等式的应用成为命 题的热点,主要考查学生的基本运算能力与推理论证能 力以及数形结合思想、分类讨论思想. 3.从命题趋势来看,估计2019年高考,绝对值不等式问题 仍然是考查的热点问题,不等式的证明更是不可缺少,
1.下列结论正确的个数为 导学号 58533680 ( D ) (1)对|a+b|≥|a|-|b|当且仅当 a>b>0 时等号成立. (2)对|a-b|≤|a|+|b|当且仅当 ab≤0 时等号成立. (3)|ax+b|≤c 的解等价于-c≤ax+b≤c. (4)若|x|>c 的解集为 R,则 c≤0. (5)不等式|x-1|+|x+2|<2 的解集为∅. A.0 C.2 B.1 D.3
[ 解析]
(1)原不等式等价于
1<x-2≤3 或-3≤x-2<-1, 解得 3<x≤5 或-1≤x<1. 所以原不等式的解集是{x|-1≤x<1 或 3<x≤5}. (2)方法一:原不等式可化为|2x+1|>2|x-1|, 两边平方得 4x2+4x+1>4(x2-2x+1), 1 解得 x>4, 1 所以原不等式的解集为{x|x>4}.
2018-2019学年高考数学(文科)一轮复习通用版:选修4-5 不等式选讲
选修4-5 不等式选讲第1课绝对值不等式[过双基]1.绝对值三角不等式定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. 定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集(2)|ax +b |①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法: ①利用绝对值不等式的几何意义求解; ②利用零点分段法求解;③构造函数,利用函数的图象求解. [小题速通]1.不等式|x +1|-|x -2|≥1的解集是________. 解析:f (x )=|x +1|-|x -2|=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2.当-1<x <2时,由2x -1≥1,解得1≤x <2. 又当x ≥2时,f (x )=3>1, 所以不等式的解集为{}x |x ≥1. 答案:{x |x ≥1}2.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是________.解析:∵|x-a|+|x-1|≥|(x-a)-(x-1)|=|a-1|,要使|x-a|+|x-1|≤3有解,可使|a-1|≤3,∴-3≤a-1≤3,∴-2≤a≤4.答案:[-2,4]x|1≤x≤3,则实数k=________.3.若不等式|kx-4|≤2的解集为{}解析:由|kx-4|≤2⇔2≤kx≤6.x|1≤x≤3,∵不等式的解集为{}∴k=2.答案:24.设不等式|x+1|-|x-2|>k的解集为R,则实数k的取值范围为____________.解析:∵||x+1|-|x-2||≤3,∴-3≤|x+1|-|x-2|≤3,∴k<(|x+1|-|x-2|)的最小值,即k<-3.答案:(-∞,-3)[清易错]1.对形如|f(x)|>a或|f(x)|<a型的不等式求其解集时,易忽视a的符号直接等价转化造成失误.2.绝对值不等式||a|-|b||≤|a±b|≤|a|+|b|中易忽视等号成立的条件.如|a-b|≤|a|+|b|,当且仅当ab≤0时等号成立,其他类似推导.1.设a,b为满足ab<0的实数,那么()A.|a+b|>|a-b|B.|a+b|<|a-b|C.|a-b|<||a|-|b||D.|a-b|<|a|+|b|解析:选B∵ab<0,∴|a-b|=|a|+|b|>|a+b|.2.若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为________.解析:|x-2y+1|=|(x-1)-2(y-2)-2|≤|x-1|+2|y-2|+2≤5.答案:5绝对值不等式的解法[典例] 设函数(x )=|x +1|-|x -1|+a (a ∈R). (1)当a =1时,求不等式f (x )>0的解集;(2)若方程f (x )=x 只有一个实数根,求实数a 的取值范围. [解] (1)依题意,原不等式等价于: |x +1|-|x -1|+1>0,当x <-1时,-(x +1)+(x -1)+1>0, 即-1>0,此时解集为∅;当-1≤x ≤1时,x +1+(x -1)+1>0, 即x >-12,此时-12<x ≤1;当x >1时,x +1-(x -1)+1>0, 即3>0,此时x >1.综上所述,不等式f (x )>0的解集为⎩⎨⎧⎭⎬⎫xx >-12.(2)依题意,方程f (x )=x 等价于a =|x -1|-|x +1|+x , 令g (x )=|x -1|-|x +1|+x . ∴g (x )=⎩⎪⎨⎪⎧x +2,x <-1,-x ,-1≤x ≤1,x -2,x >1..画出函数g (x )的图象如图所示,∴要使原方程只有一个实数根,只需a >1或a <-1. ∴实数a 的取值范围是(-∞,-1)∪(1,+∞). [方法技巧](1)求解绝对值不等式的两个注意点:①要求的不等式的解集是各类情形的并集,利用零点分段法的操作程序是:找零点、分区间、分段讨论.②对于解较复杂绝对值不等式,要恰当运用条件,简化分类讨论,优化解题过程. (2)求解该类问题的关键是去绝对值符号,可以运用零点分段法去绝对值,此外还常利用绝对值的几何意义求解.[即时演练]1.解不等式|2x -1|+|2x +1|≤6.解:法一:当x >12时,原不等式转化为4x ≤6⇒12<x ≤32;当-12≤x ≤12时,原不等式转化为2≤6⇒-12≤x ≤12;当x <-12时,原不等式转化为-4x ≤6⇒-32≤x <-12.综上知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.法二:原不等式可化为⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12≤3, 其几何意义为数轴上到12,-12两点的距离之和不超过3的点的集合,数形结合知,当x=32或x =-32时,到12,-12两点的距离之和恰好为3,故当-32≤x ≤32时,满足题意,则原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.2.解不等式|x -1|-|x -5|<2.解:当x <1时,不等式可化为-(x -1)-(5-x )<2, 即-4<2,显然成立,所以此时不等式的解集为(-∞,1); 当1≤x ≤5时,不等式可化为x -1-(5-x )<2, 即2x -6<2,解得x <4,所以此时不等式的解集为[1,4); 当x >5时,不等式可化为(x -1)-(x -5)<2, 即4<2,显然不成立.所以此时不等式无解. 综上,不等式的解集为(-∞,4).绝对值不等式的证明[典例] 已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.[证明] ∵|x +5y |=|3(x +y )-2(x -y )|. ∴由绝对值不等式的性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )| =3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1. [方法技巧]绝对值不等式证明的3种主要方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明. (2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明. (3)转化为函数问题,数形结合进行证明. [即时演练]已知f (x )=|x +2|-|2x -1|,M 为不等式f (x )>0的解集. (1)求M ;(2)求证:当x ,y ∈M 时,|x +y +xy |<15.解:(1)f (x )=⎩⎨⎧x -3,x <-2,3x +1,-2≤x ≤12,-x +3,x >12,当x <-2时,由x -3>0,得x >3,舍去; 当-2≤x ≤12时,由3x +1>0,得x >-13,即-13<x ≤12;当x >12时,由-x +3>0,得x <3,即12<x <3,综上,M =⎝⎛⎭⎫-13,3. (2)证明:∵x ,y ∈M ,∴|x |<3,|y |<3,∴|x +y +xy |≤|x +y |+|xy |≤|x |+|y |+|xy |=|x |+|y |+|x |·|y |<3+3+3×3=15.绝对值不等式的综合应用[典例] (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围. [解] (1)f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2; 当x >2时,由f (x )≥1,解得x >2. 所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54, 且当x =32时,|x +1|-|x -2|-x 2+x =54.故m 的取值范围为⎝⎛⎦⎤-∞,54. [方法技巧](1)研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,将原函数转化为分段函数,然后利用数形结合解决问题,这是常用的思想方法.(2)f (x )<a 恒成立⇔f (x )max <a . f (x )>a 恒成立⇔f (x )min >a . [即时演练]已知函数f (x )=|x -a |-|2x -1|. (1)当a =2时,求f (x )+3≥0的解集;(2)当x ∈[1,3]时,f (x )≤3恒成立,求a 的取值范围. 解:(1)当a =2时,由f (x )+3≥0, 可得|x -2|-|2x -1|≥-3,①⎩⎪⎨⎪⎧ x <12,2-x +2x -1≥-3或②⎩⎪⎨⎪⎧12≤x <2,2-x -2x +1≥-3或 ③⎩⎪⎨⎪⎧x ≥2,x -2-2x +1≥-3. 解①得-4≤x <12;解②得12≤x <2;解③得x =2.综上所述,不等式的解集为{x |-4≤x ≤2}. (2)当x ∈[1,3]时,f (x )≤3恒成立, 即|x -a |≤3+|2x -1|=2x +2. 故-2x -2≤x -a ≤2x +2, 即-3x -2≤-a ≤x +2,∴-x -2≤a ≤3x +2对x ∈[1,3]恒成立. ∴a ∈[-3,5].1.(2017·全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围. 解:(1)当a =1时,不等式f (x )≥g (x )等价于 x 2-x +|x +1|+|x -1|-4≤0. ①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1; 当x >1时,①式化为x 2+x -4≤0, 从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2.所以f (x )≥g (x )的解集包含[-1,1],等价于当x ∈[-1,1]时,f (x )≥2.又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一, 所以f (-1)≥2且f (1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1].2.(2015·全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x 23<x <2.(2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).3.(2016·江苏高考)设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a .证明:因为|x -1|<a 3,|y -2|<a3,所以|2x +y -4|=|2(x -1)+(y -2)|≤2|x -1|+|y -2|<2×a 3+a3=a .4.(2013·全国卷Ⅰ)已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎡⎭⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围. 解:(1)当a =-2时,不等式f (x )<g (x )可化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎨⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1.其图象如图所示.从图象可知,当且仅当x ∈(0,2)时,y <0. 所以原不等式的解集是{x |0<x <2}. (2)当x ∈⎣⎡⎭⎫-a 2,12时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3. 所以x ≥a -2对x ∈⎣⎡⎭⎫-a 2,12都成立. 故-a 2≥a -2,即a ≤43.从而a 的取值范围是⎝⎛⎦⎤-1,43.1.(2018·唐山模拟)已知函数f (x )=|2x -a |+|x +1|. (1)当a =1时,解不等式f (x )<3; (2)若f (x )的最小值为1,求a 的值.解:(1)因为f (x )=|2x -1|+|x +1|=⎩⎨⎧-3x ,x ≤-1,-x +2,-1<x <12,3x ,x ≥12,且f (1)=f (-1)=3,所以f (x )<3的解集为{x |-1<x <1}.(2)|2x -a |+|x +1|=⎪⎪⎪⎪x -a 2+|x +1|+⎪⎪⎪⎪x -a 2≥⎪⎪⎪⎪1+a 2+0=⎪⎪⎪⎪1+a 2, 当且仅当(x +1)⎝⎛⎭⎫x -a 2≤0且x -a2=0时,取等号. 所以⎪⎪⎪⎪1+a2=1, 解得a =-4或0.2.已知函数f (x )=|2x +1|,g (x )=|x -1|+a . (1)当a =0时,解不等式f (x )≥g (x );(2)若对任意x ∈R ,f (x )≥g (x )恒成立,求实数a 的取值范围. 解:(1)当a =0时,由f (x )≥g (x ),得|2x +1|≥|x -1|, 两边平方整理得x 2+2x ≥0,解得x ≥0或x ≤-2. 所以原不等式的解集为(-∞,-2]∪[0,+∞). (2)由f (x )≥g (x ),得a ≤|2x +1|-|x -1|. 令h (x )=|2x +1|-|x -1|,则h (x )=⎩⎨⎧-x -2,x ≤-12,3x ,-12<x <1,x +2,x ≥1.故h (x )min =h ⎝⎛⎭⎫-12=-32. 故所求实数a 的取值范围为⎝⎛⎦⎤-∞,-32. 3.已知函数f (x )=|2x -a |+|2x -1|,a ∈R. (1)当a =3时,求关于x 的不等式f (x )≤6的解集; (2)当x ∈R 时,f (x )≥a 2-a -13,求实数a 的取值范围. 解:(1)当a =3时,不等式f (x )≤6可化为|2x -3|+|2x -1|≤6.当x <12时,不等式可化为-(2x -3)-(2x -1)=-4x +4≤6,解得-12≤x <12;当12≤x ≤32时,不等式可化为-(2x -3)+(2x -1)=2≤6,解得12≤x ≤32; 当x >32时,不等式可化为(2x -3)+(2x -1)=4x -4≤6,解得32<x ≤52.综上所述,关于x 的不等式f (x )≤6的解集为 ⎩⎨⎧⎭⎬⎫x -12≤x ≤52.(2)当x ∈R 时,f (x )=|2x -a |+|2x -1|≥|2x -a +1-2x |=|1-a |, 所以当x ∈R 时,f (x )≥a 2-a -13等价于|1-a |≥a 2-a -13. 当a ≤1时,等价于1-a ≥a 2-a -13,解得-14≤a ≤1; 当a >1时,等价于a -1≥a 2-a -13,解得1<a ≤1+13, 所以a 的取值范围为[-14,1+13]. 4.已知函数f (x )=|x -a |+|2x +1|. (1)当a =1时,解不等式f (x )≤3;(2)若f (x )≤2a +x 在[a ,+∞)上有解,求a 的取值范围. 解:(1)当a =1时,f (x )≤3化为|x -1|+|2x +1|≤3, 则⎩⎪⎨⎪⎧ x <-12,1-x -1-2x ≤3或⎩⎪⎨⎪⎧-12≤x ≤1,1-x +2x +1≤3或⎩⎪⎨⎪⎧x >1,x -1+2x +1≤3,解得-1≤x <-12或-12≤x ≤1或∅.所以原不等式解集为{x |-1≤x ≤1}.(2)因为x ∈[a ,+∞),所以f (x )=|x -a |+|2x +1|=x -a +|2x +1|≤2a +x , 即|2x +1|≤3a 有解,所以a ≥0, 所以不等式化为2x +1≤3a 有解, 即2a +1≤3a ,解得a ≥1, 所以a 的取值范围为[1,+∞). 5.设函数f (x )=|2x -a |+2a .(1)若不等式f (x )≤6的解集为{x |-6≤x ≤4},求实数a 的值;(2)在(1)的条件下,若不等式f (x )≤(k 2-1)x -5的解集非空,求实数k 的取值范围. 解:(1)∵|2x -a |+2a ≤6,∴|2x -a |≤6-2a,2a -6≤2x -a ≤6-2a , ∴32a -3≤x ≤3-a 2. 而f (x )≤6的解集为{x |-6≤x ≤4},故有⎩⎨⎧32a -3=-6,3-12a =4,解得a =-2.(2)由(1)得f (x )=|2x +2|-4, ∴不等式|2x +2|-4≤(k 2-1)x -5, 化简得|2x +2|+1≤(k 2-1)x ,令g (x )=|2x +2|+1=⎩⎪⎨⎪⎧2x +3,x ≥-1,-2x -1,x <-1.画出函数y =g (x )的图象如图所示.要使不等f (x )≤(k 2-1)x -5的解集非空,只需k 2-1>2或k 2-1≤-1, 解得k >3或k <-3或k =0,∴实数k 的取值范围为(-∞,-3)∪{0}∪(3,+∞). 6.设函数f (x )=|ax -1|.(1)若f (x )≤2的解集为[-6,2],求实数a 的值;(2)当a =2时,若存在x ∈R ,使得不等式f (2x +1)-f (x -1)≤7-3m 成立,求实数m 的取值范围.解:(1)显然a ≠0,当a >0时,解集为⎣⎡⎦⎤-1a ,3a , 则-1a =-6,3a =2,无解; 当a <0时,解集为⎣⎡⎦⎤3a,-1a ,则-1a =2,3a =-6,得a =-12.综上所述,a =-12.(2)当a =2时,令h (x )=f (2x +1)-f (x -1)=|4x +1|-|2x -3|=⎩⎪⎨⎪⎧-2x -4,x ≤-14,6x -2,-14<x <32,2x +4,x ≥32,由此可知,h (x )在⎝⎛⎭⎫-∞,-14上单调递减,在⎝⎛⎭⎫-14,32上单调递增,在⎝⎛⎭⎫32,+∞上单调递增,则当x =-14时,h (x )取到最小值-72,由题意知,-72≤7-3m ,解得m ≤72,故实数m 的取值范围是⎝⎛⎦⎤-∞,72. 7.(2018·九江模拟)已知函数f (x )=|x -3|-|x -a |. (1)当a =2时,解不等式f (x )≤-12;(2)若存在实数a ,使得不等式f (x )≥a 成立,求实数a 的取值范围. 解:(1)∵a =2,∴f (x )=|x -3|-|x -2|=⎩⎪⎨⎪⎧1,x ≤2,5-2x ,2<x <3,-1,x ≥3,∴f (x )≤-12等价于⎩⎪⎨⎪⎧x ≤2,1≤-12或⎩⎪⎨⎪⎧ 2<x <3,5-2x ≤-12或⎩⎪⎨⎪⎧x ≥3,-1≤-12,解得114≤x <3或x ≥3,∴不等式的解集为⎣⎡⎭⎫114,+∞.(2)由不等式性质可知f (x )=|x -3|-|x -a |≤|(x -3)-(x -a )|=|a -3|, ∴若存在实数x ,使得不等式f (x )≥a 成立,则|a -3|≥a ,解得a ≤32,∴实数a 的取值范围是⎝⎛⎦⎤-∞,32. 8.已知函数f (x )=|2x +1|-|x |+a , (1)若a =-1,求不等式f (x )≥0的解集;(2)若方程f (x )=2x 有三个不同的解,求a 的取值范围. 解:(1)当a =-1时,不等式f (x )≥0可化为 |2x +1|-|x |-1≥0, ∴⎩⎪⎨⎪⎧ x <-12,-(2x +1)-(-x )-1≥0或⎩⎪⎨⎪⎧-12≤x <0,(2x +1)-(-x )-1≥0或⎩⎪⎨⎪⎧x ≥0,(2x +1)-x -1≥0,解得x ≤-2或x ≥0,∴不等式的解集为(-∞,-2]∪[0,+∞). (2)由f (x )=2x ,得a =2x +|x |-|2x +1|, 令g (x )=2x +|x |-|2x +1|,则g (x )=⎩⎨⎧3x +1,x <-12,-x -1,-12≤x <0,x -1,x ≥0,作出函数y =g (x )的图象如图所示,易知A ⎝⎛⎭⎫-12,-12,B (0,-1), 结合图象知:当-1<a <-12时,函数y =a 与y =g (x )的图象有三个不同交点,即方程f (x )=2x 有三个不同的解,∴a 的取值范围为⎝⎛⎭⎫-1,-12.第2课不等式证明[过双基]1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 2.比较法(1)比差法:依据是a -b >0⇔a >b ;步骤是“作差→变形→判断差的符号”.变形是手段,变形的目的是判断差的符号.(2)比商法:若B >0,欲证A ≥B ,只需证AB ≥1. 3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.4.柯西不等式(1)设a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)若a i ,b i (i ∈N *)为实数,则⎝ ⎛⎭⎪⎪⎫∑i =1n a 2i ⎝ ⎛⎭⎪⎪⎫∑i =1n b 2i ≥⎝ ⎛⎭⎪⎪⎫∑i =1n a i b i 2,当且仅当b 1a 1=b 2a 2=…=b na n (当a i =0时,约定b i =0,i =1,2,…,n )时等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|,当且仅当α,β共线时等号成立.[小题速通]1.若m =a +2b ,n =a +b 2+1,则m 与n 的大小关系为________. 解析:∵n -m =a +b 2+1-a -2b =b 2-2b +1=(b -1)2≥0,∴n ≥m .答案:n ≥m2.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(填序号).①ab ≤1;② a +b ≤2;③a 2+b 2≥2; ④a 3+b 3≥3;⑤1a +1b ≥2. 解析:令a =b =1,排除②④;由2=a +b ≥2ab ⇒ab ≤1,命题①正确; a 2+b 2=(a +b )2-2ab =4-2ab ≥2,命题③正确; 1a +1b =a +b ab =2ab ≥2,命题⑤正确. 答案:①③⑤3.已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c 的最小值为________. 解析:把a +b +c =1代入1a +1b +1c 得a +b +c a +a +b +c b +a +b +c c=3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.答案:9[清易错]1.在使用作商比较法时易忽视说明分母的符号.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,易忽视性质成立的前提条件.1.已知a >0,b >0,则a a b b ________(ab )a +b2(填大小关系).解析:∵a a b b (ab )a +b 2=⎝⎛⎭⎫a b a -b 2,∴当a =b 时,⎝⎛⎭⎫a b a -b2=1,当a >b >0时,a b >1,a -b 2>0,∴⎝⎛⎭⎫a b a -b 2>1, 当b >a >0时,0<ab <1,a -b 2<0,则⎝⎛⎭⎫a b a -b 2>1,∴a a b b≥(ab )a +b2.答案:≥2.设x >y >z >0,求证:x -z +8(x -y )(y -z )≥6.证明:x -z +8(x -y )(y -z )=(x -y )+(y -z )+8(x -y )(y -z )≥33(x -y )(y -z )8(x -y )(y -z )=6.当且仅当x -y =y -z =8(x -y )(y -z )时取等号,所以x -z +8(x -y )(y -z )≥6.[典例] (2018·a +b ). [证明] (a 2+b 2)-ab (a +b ) =(a 2-a ab )+(b 2-b ab ) =a a (a -b )+b b (b -a ) =(a -b )(a a -b b ) =(a 12-b 12)(a 32-b 32).因为a ≥0,b ≥0,所以不论a ≥b ≥0,还是0≤a ≤b ,都有a 12-b 12与a 32-b 32同号,所以(a 12-b 12)(a 32-b 32)≥0, 所以a 2+b 2≥ab (a +b ). [方法技巧]比较法证明不等式的方法和步骤(1)求差比较法:由a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b 只要证明a -b >0即可,这种方法称为求差比较法.(2)求商比较法:由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时,要证明a >b ,只要证明ab >1即可,这种方法称为求商比较法.(3)用比较法证明不等式的一般步骤是:作差(商)—变形—判断—结论,而变形的方法一般有配方、通分和因式分解.[即时演练]求证:当x ∈R 时,1+2x 4≥2x 3+x 2. 证明:法一:(1+2x 4)-(2x 3+x 2) =2x 3(x -1)-(x +1)(x -1) =(x -1)(2x 3-x -1) =(x -1)(2x 3-2x +x -1) =(x -1)[2x (x 2-1)+(x -1)] =(x -1)2(2x 2+2x +1) =(x -1)2⎣⎡⎦⎤2⎝⎛⎭⎫x +122+12≥0, 所以1+2x 4≥2x 3+x 2. 法二:(1+2x 4)-(2x 3+x 2) =x 4-2x 3+x 2+x 4-2x 2+1 =(x -1)2·x 2+(x 2-1)2≥0, 所以1+2x 4≥2x 3+x 2.综合法证明不等式[典例] 已知a ,(1)(ax +by )2≤ax 2+by 2; (2)⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥252.[证明] (1)(ax +by )2-(ax 2+by 2)=a (a -1)x 2+b (b -1)y 2+2abxy , 因为a +b =1,所以a -1=-b ,b -1=-a ,又a ,b 均为正数, 所以a (a -1)x 2+b (b -1)y 2+2abxy =-ab (x 2+y 2-2xy )=-ab (x -y )2≤0,当且仅当x =y 时等号成立. 所以(ax +by )2≤ax 2+by 2.(2)⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2=4+a 2+b 2+⎝⎛⎭⎫1a 2+1b 2 =4+a 2+b 2+(a +b )2a 2+(a +b )2b 2=4+a 2+b 2+1+2b a +b 2a 2+a 2b 2+2a b +1=4+(a 2+b 2)+2+⎝⎛⎭⎫2b a +2a b +⎝⎛⎭⎫b 2a 2+a 2b 2≥6+(a +b )22+4+2=252, 当且仅当a =b =12时,等号成立,所以⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥252. [方法技巧]1.综合法证明不等式的方法综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.综合法证明时常用的不等式 (1)a 2≥0. (2)|a |≥0.(3)a 2+b 2≥2ab ,它的变形形式有:a 2+b 2≥2|ab |;a 2+b 2≥-2ab ;(a +b )2≥4ab ;a 2+b 2≥12(a +b )2;a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22. (4)a +b 2≥ab ,它的变形形式有:a +1a ≥2(a >0);ab +b a ≥2(ab >0); a b +ba ≤-2(ab <0). [即时演练]设a ,b ,c 均为正数,且a +b +c =1,求证: (1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1, 所以3(ab +bc +ca )≤1, 即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c , 故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a ≥1.分析法证明不等式[典例] 设a ,b 求证:(1)a +b +c ≥ 3. (2)a bc +b ac +cab ≥3(a +b +c ).[证明] (1)要证a +b +c ≥3, 由于a ,b ,c >0, 因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3,而ab +bc +ca =1,故需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ). 即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)证得.所以原不等式成立. (2)abc+ b ac+ c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3. 因此要证原不等式成立, 只需证明1abc≥ a +b +c , 即证a bc +b ac +c ab ≤1, 即证a bc +b ac +c ab ≤ab +bc +ca . 而a bc =ab ·ac ≤ab +ac2,b ac ≤ab +bc 2,c ab ≤bc +ac2.所以a bc +b ac +c ab ≤ab +bc +ca 当且仅当a =b =c =33时等号成立. 所以原不等式成立. [方法技巧]1.用分析法证“若A 则B ”这个命题的模式 为了证明命题B 为真,只需证明命题B 1为真,从而有… 只需证明命题B 2为真,从而有… ……只需证明命题A 为真,而已知A 为真,故B 必真. 2.分析法的应用当所证明的不等式不能使用比较法,且和重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.[即时演练]已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab . 证明:要证c -c 2-ab <a <c +c 2-ab ,即证-c 2-ab <a -c <c 2-ab ,即证|a -c |<c 2-ab ,即证(a -c )2<c 2-ab , 即证a 2-2ac <-ab .因为a >0,所以只要证a -2c <-b , 即证a +b <2c .由已知条件知,上式显然成立,所以原不等式成立.1.(2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.证明:(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3(a +b )24(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.2.(2016·全国卷Ⅱ)已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.解:(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1, 从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |.3.(2015·全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd , 得(a +b )2>(c +d )2. 因此a +b >c +d . (2)①必要性:若|a -b |<|c -d |, 则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1),得a +b >c +d .②充分性:若a +b >c +d , 则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd . 因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件. 4.(2014·全国卷Ⅰ)若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)由ab =1a +1b ≥2ab,得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3. 由于43>6,从而不存在a ,b , 使得2a +3b =6.1.已知a ,b 都是正实数,且a +b =2,求证:a 2a +1+b 2b +1≥1.证明:∵a >0,b >0,a +b =2,∴a 2a +1+b 2b +1-1=a 2(b +1)+b 2(a +1)-(a +1)(b +1)(a +1)(b +1) =a 2b +a 2+b 2a +b 2-ab -a -b -1(a +1)(b +1)=a 2+b 2+ab (a +b )-ab -(a +b )-1(a +1)(b +1)=a 2+b 2+2ab -ab -3(a +1)(b +1)=(a +b )2-3-ab (a +1)(b +1)=1-ab (a +1)(b +1).∵a +b =2≥2ab ,∴ab ≤1. ∴1-ab (a +1)(b +1)≥0. ∴a 2a +1+b 2b +1≥1. 2.已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a . (1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3. 解:(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3, 当且仅当-1≤x ≤2时,等号成立, 所以f (x )的最小值等于3,即a =3. (2)证明:由(1)知p +q +r =3, 又因为p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9,即p 2+q 2+r 2≥3. 3.(2018·云南统一检测)已知a 是常数,对任意实数x ,不等式|x +1|-|2-x |≤a ≤|x +1|+|2-x |都成立.(1)求a 的值;(2)设m >n >0,求证:2m +1m 2-2mn +n 2≥2n +a .解:(1)设f (x )=|x +1|-|2-x |, 则f (x )=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2,∴f (x )的最大值为3.∵对任意实数x ,|x +1|-|2-x |≤a 都成立,即f (x )≤a , ∴a ≥3.设h (x )=|x +1|+|2-x |,则h (x )=⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2,则h (x )的最小值为3.∵对任意实数x ,|x +1|+|2-x |≥a 都成立,即h (x )≥a , ∴a ≤3. ∴a =3.(2)证明:由(1)知a =3. ∵2m +1m 2-2mn +n 2-2n =(m -n )+(m -n )+1(m -n )2,且m >n >0,∴(m -n )+(m -n )+1(m -n )2≥33(m -n )(m -n )1(m -n )2=3.∴2m +1m 2-2mn +n 2≥2n +a .4.已知x ,y ,z 是正实数,且满足x +2y +3z =1. (1)求1x +1y +1z 的最小值;(2)求证:x 2+y 2+z 2≥114. 解:(1)∵x ,y ,z 是正实数,且满足x +2y +3z =1, ∴1x +1y +1z =⎝⎛⎭⎫1x +1y +1z (x +2y +3z )=6+2y x +3z x +x y +3z y +x z +2yz ≥6+22+23+26, 当且仅当2y x =x y 且3z x =x z 且3z y =2yz 时取等号. (2)由柯西不等式可得1=(x +2y +3z )2≤(x 2+y 2+z 2)(12+22+32) =14(x 2+y 2+z 2),∴x 2+y 2+z 2≥114, 当且仅当x =y 2=z 3,即x =114,y =17,z =314时取等号.故x 2+y 2+z 2≥114.5.(2018·石家庄模拟)已知函数f (x )=|x |+|x -1|. (1)若f (x )≥|m -1|恒成立,求实数m 的最大值M ;(2)在(1)成立的条件下,正实数a ,b 满足a 2+b 2=M ,证明:a +b ≥2ab . 解:(1)由绝对值不等式的性质知 f (x )=|x |+|x -1|≥|x -x +1|=1, ∴f (x )min =1, ∴只需|m -1|≤1, 即-1≤m -1≤1, ∴0≤m ≤2,∴实数m 的最大值M =2.(2)证明:∵a 2+b 2≥2ab ,且a 2+b 2=2, ∴ab ≤1,∴ab ≤1,当且仅当a =b 时取等号.① 又ab ≤a +b 2,∴ab a +b ≤12,∴ab a +b ≤ab2,当且仅当a =b 时取等号.②由①②得,ab a +b ≤12,∴a +b ≥2ab . 6.(2018·吉林实验中学模拟)设函数f (x )=|x -a |. (1)当a =2时,解不等式f (x )≥4-|x -1|;(2)若f (x )≤1的解集为[0,2],1m +12n =a (m >0,n >0),求证:m +2n ≥4.解:(1)当a =2时,不等式为|x -2|+|x -1|≥4.①当x ≥2时,不等式可化为x -2+x -1≥4,解得x ≥72;②当1<x <2时,不等式可化为2-x +x -1≥4, 不等式的解集为∅;③当x ≤1时,不等式可化为2-x +1-x ≥4,解得x ≤-12.综上可得,不等式的解集为⎝⎛⎦⎤-∞,-12∪⎣⎡⎭⎫72,+∞. (2)证明:∵f (x )≤1,即|x -a |≤1,解得a -1≤x ≤a +1,而f (x )≤1的解集是[0,2],∴⎩⎪⎨⎪⎧a -1=0,a +1=2,解得a =1, 所以1m +12n =1(m >0,n >0),所以m +2n =(m +2n )⎝⎛⎭⎫1m +12n =2+m 2n +2nm≥2+2m 2n ·2nm=4, 当且仅当m =2,n =1时取等号. 7.已知a ,b ,c ,d 均为正数,且ad =bc . (1)证明:若a +d >b +c ,则|a -d |>|b -c |;(2)若t ·a 2+b 2·c 2+d 2=a 4+c 4+b 4+d 4,求实数t 的取值范围. 解:(1)证明:由a +d >b +c ,且a ,b ,c ,d 均为正数, 得(a +d )2>(b +c )2,又ad =bc , 所以(a -d )2>(b -c )2,即|a -d |>|b -c |.(2)因为(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2=a 2c 2+2abcd +b 2d 2=(ac +bd )2, 所以t ·a 2+b 2·c 2+d 2=t (ac +bd ). 由于a 4+c 4≥ 2ac,b 4+d 4≥ 2bd ,又已知t ·a 2+b 2·c 2+d 2=a 4+c 4+b 4+d 4,则t (ac +bd )≥ 2(ac +bd ),故t ≥ 2,当且仅当a =c ,b =d 时取等号. 所以实数t 的取值范围为[2,+∞). 8.已知函数f (x )=|x -1|.(1)解不等式f (2x )+f (x +4)≥8; (2)若|a |<1,|b |<1,a ≠0,求证:f (ab )|a |>f ⎝⎛⎭⎫b a . 解:(1)f (2x )+f (x +4)=|2x -1|+|x +3|=⎩⎨⎧-3x -2,x <-3,-x +4,-3≤x <12,3x +2,x ≥12,当x <-3时,由-3x -2≥8,解得x ≤-103;当-3≤x <12时,-x +4≥8无解;当x ≥12时,由3x +2≥8,解得x ≥2.所以不等式f (2x )+f (x +4)≥8的解集为⎝⎛⎦⎤-∞,-103∪[2,+∞). (2)证明:f (ab )|a |>f ⎝⎛⎭⎫b a 等价于f (ab )>|a |f ⎝⎛⎭⎫b a , 即|ab -1|>|a -b |. 因为|a |<1,|b |<1,所以|ab -1|2-|a -b |2=(a 2b 2-2ab +1)-(a 2-2ab +b 2)=(a 2-1)(b 2-1)>0, 所以|ab -1|>|a -b |. 故所证不等式成立.阶段滚动检测(六)全程仿真验收(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A ={1,2,3},B ={(x ,y )|x +y -4>0,x ,y ∈A },则集合B 中的元素个数为( ) A .9 B .6 C .4D .3解析:选D 集合A ={1,2,3},B ={(x ,y )|x +y -4>0,x ,y ∈A }={(2,3),(3,2),(3,3)},则集合B 中的元素个数为3.2.若复数2a +2i1+i (a ∈R)是纯虚数,则复数2a +2i 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B2a +2i 1+i =(2a +2i )(1-i )(1+i )(1-i )=2a +2+(2-2a )i2,由题意可知2a +2=0且2-2a ≠0,所以a =-1,则复数2a +2i 在复平面内对应的点(-2,2)在第二象限.3.已知命题p :∃x 0∈(-∞,0),2x 0<3x 0;命题q :∀x ∈0,π2,cos x <1,则下列命题为真命题的是( )A .p ∧qB .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )解析:选C 因为x ∈(-∞,0)时,2x 3x =⎝⎛⎭⎫23x>1,所以2x >3x ,故命题p 是假命题;命题q :∀x ∈⎝⎛⎭⎫0,π2,cos x <1,是真命题,则綈p 是真命题,綈q 是假命题,故(綈p )∧q 是真命题.4.某几何体的三视图如图所示,则该几何体的体积为( )A .1+2πB .1+4π3C .1+π2D .1+π6解析:选D 由三视图可知,该几何体是一个组合体,上面是一个半径为12的球,下面是一个棱长为1的正方体,所以该几何体的体积V =4π3·⎝⎛⎭⎫123+1=1+π6.5.函数y =x 22x -2-x的图象可能是( )解析:选C 因为f (-x )=x 22-x -2x =-f (x ),即函数y =x 22x -2-x是奇函数,故排除B 、D ;当x >0,且x →+∞时,y →0,故排除A ,因此选C.6.执行如图所示的程序框图,如果输入的m ,n 分别为1 848,936,则输出的m 的值为( )A .168B .72C .36D .24解析:选D 根据题意,运行程序:m =1 848,n =936;r =912,m =936,n =912;r =24,m =912,n =24;r =0,m =24,n =0,此时满足条件,循环结束,输出m =24,故选D.7.如图,Rt △ABC 中,AB =AC ,BC =4,O 为BC 的中点,以O 为圆心,1为半径的半圆与BC 交于点D ,P 为半圆上任意一点,则BP ―→·AD ―→的最小值为( )A .2+ 5 B. 5 C .2D .2- 5解析:选D 建立如图所示的平面直角坐标系,则B (-2,0),A (0,2),D (1,0),设P (x ,y ),故BP ―→=(x +2,y ),AD ―→=(1,-2),所以BP ―→·AD ―→=x -2y +2.令x -2y +2=t ,根据直线的几何意义可知,当直线x -2y +2=t 与半圆相切时,t 取得最小值,由点到直线的距离公式可得|2-t |5=1,t =2-5,即BP ―→·AD ―→的最小值是2- 5.8.将函数f (x )=cos ωx (ω>0)的图象向右平移π3个单位,若所得图象与原图象重合,则f ⎝⎛⎭⎫π24不可能等于( )A .0B .1 C.22D.32解析:选D 将函数f (x )=cos ωx (ω>0)的图象向右平移π3个单位,得函数y =cos ⎝⎛⎭⎫ωx -ωπ3,由题意可得ωπ3=2k π,k ∈Z ,因为ω>0,所以ω=6k >0,k ∈Z ,则f ⎝⎛⎭⎫π24=cos ωπ24=cos k π4,k ∈Z ,显然,f ⎝⎛⎭⎫π24不可能等于32,故选D. 9.(2017·郑州二模)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥x +2,x +y ≤6,x ≥1,则z =2|x -2|+|y |的最小值是( )A .6B .5C .4D .3解析:选C作出不等式组⎩⎨⎧y ≥x +2,x +y ≤6,x ≥1表示的可行域如图中阴影部分所示,其中A (2,4),B (1,5),C (1,3),∴x ∈[1,2],y ∈[3,5].∴z =2|x -2|+|y |=-2x +y +4,当直线y =2x -4+z 过点A (2,4)时,直线在y 轴上的截距最小,此时z 有最小值,∴z min =-2×2+4+4=4,故选C.10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,A =π4,b 2-a 2=12c 2,则tanC =( )A .2B .-2 C.12D .-12解析:选A 因为b 2-a 2=12c 2且b 2+c 2-a 2=2bc cos A =2bc ,所以b =3c 22,a =5c 22,由余弦定理可得cos C =58c 2+98c 2-c 22×5c 22×3c 22=15,则角C 是锐角,sin C =25,则tan C =sin C cos C =2.11.已知点P 在双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右支上,F 1,F 2分别为双曲线的左、右焦点,若|PF 1―→ |2-|PF 2―→|2=12a 2,则该双曲线的离心率的取值范围是( )A .[3,+∞)B .(2,4]C .(2,3]D .(1,3]解析:选D 根据题意,因为|PF 1―→|2-|PF 2―→|2=12a 2,且|PF 1|-|PF 2|=2a ,所以|PF 1|+|PF 2|=6a ≥|F 1F 2|=2c ,所以e ≤3.又因为e >1,所以该双曲线的离心率的取值范围是(1,3].12.已知f ′(x )为函数f (x )的导函数,且f (x )=12x 2-f (0)x +f ′(1)e x -1,若g (x )=f (x )-12x 2+x ,则方程g ⎝⎛⎭⎫x2a -x -x =0有且仅有一个根时,实数a 的取值范围是( ) A .(-∞,0)∪{1} B .(-∞,1] C .(0,1]D .[1,+∞)解析:选A 由函数的解析式可得f (0)=f ′(1)e -1,f ′(x )=x -f (0)+f ′(1)e x -1,f ′(1)=1-f (0)+f ′(1),所以f ′(1)=e ,f (0)=1,所以f (x )=12x 2-x +e x ,g (x )=f (x )-12x 2+x =e x ,则e x 2a -x -x =0有且仅有一个根,即x 2a =x +ln x 有且仅有一个根,分别作出y =x 2a 和y=x +ln x 的图象,由图象知a <0或a =1.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.(m +x )(1+x )3的展开式中x 的奇数次幂项的系数之和为16,则⎠⎛-11x m d x =________.解析:(m +x)(1+x)3=(m +x)(C 03x 3+C 13x 2+C 23x +C 33),所以x 的奇数次幂项的系数之和为m C 03+m C 23+C 13+C 33=16,解得m =3,所以⎠⎛-11x md x =⎠⎛-11x 3d x =14x 4⎪⎪⎪1-1=0.答案:014.在△ABC 中,AB ⊥AC ,AB =1t,AC =t ,P 是△ABC 所在平面内一点,若AP ―→=4AB―→|AB ―→|+AC ―→|AC ―→|,则△PBC 面积的最小值为________. 解析:由于AB ⊥AC ,故以AB ,AC 所在直线分别为x 轴,y 轴,建立平面直角坐标系(图略),则B ⎝⎛⎭⎫1t ,0,C(0,t),因为AP ―→=4AB ―→|AB ―→|+AC ―→|AC ―→|,所以点P 坐标为(4,1),直线BC 的方程为t 2x +y -t =0,所以点P 到直线BC 的距离为d =|4t 2+1-t|t 4+1,BC =t 4+1t,所以△PBC 的面积为12×|4t 2+1-t|t 4+1×t 4+1t =12⎪⎪⎪⎪4t +1t -1≥32,当且仅当t =12时取等号. 答案:3215.若m ∈(0,3),则直线(m +2)x +(3-m)y -3=0与x 轴、y 轴围成的三角形的面积小于98的概率为________. 解析:令x =0,得y =33-m ;令y =0,得x =3m +2.所以12·|x|·|y|=12·⎪⎪⎪⎪⎪⎪3m +2·⎪⎪⎪⎪⎪⎪33-m <98,因为m ∈(0,3),所以解得0<m<2,由几何概型概率公式可得,所求事件的概率为23.答案:2316.已知M(x 0,y 0)是椭圆E :x 2a 2+y 2b 2=1(a>b>0)上一点,A ,B 是其左、右顶点,若AM―→2AM ―→·BM ―→=x 20-a 2,则离心率e =________.解析:由题意知A(-a,0),B(a,0),∴AM ―→=(x 0+a ,y 0),BM ―→=(x 0-a ,y 0),∵2AM ―→·BM―→=x 20-a 2,∴2(x 20-a 2+y 20)=x 20-a 2,∴x 20=a 2-2y 20. 又x 20a 2+y 20b 2=1,∴a 2-2y 20a 2+y 20b2=1, ∴-2a 2+1b2=0,∴a 2=2b 2,∴c 2a 2=a 2-b 2a 2=1-b 2a 2=1-12=12,∴e =22. 答案:22三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知数列{a n }的前n 项和为S n ,a 1=2,且满足a n +1=S n +2n +1(n∈N *).(1)证明数列⎩⎨⎧⎭⎬⎫S n 2n 为等差数列;(2)求S 1+S 2+…+S n .解:(1)证明:由条件可知,S n +1-S n =S n +2n +1, 即S n +1-2S n =2n +1,整理得S n +12n +1-S n2n =1,所以数列⎩⎨⎧⎭⎬⎫S n 2n 是以1为首项,1为公差的等差数列.(2)由(1)可知,S n2n =1+n -1=n ,即S n =n ·2n ,令T n =S 1+S 2+…+S n ,则T n =1×2+2×22+…+n ×2n ①2T n =1×22+2×23+…+n ×2n +1,②①-②,得-T n =2+22+…+2n -n ·2n +1=2(1-2n)1-2-n ·2n +1=(1-n )·2n +1-2,所以T n =2+(n -1)·2n +1.18.(本小题满分12分)如图所示的是某母婴用品专卖店根据以往销售奶粉的销售记录绘制的日销售量的频率分布直方图.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)估计日销售量的平均值;(2)求未来连续三天里,有两天日销售量不低于100袋且另一天销售量低于50袋的概率; (3)记X 为未来三天里日销售量不低于150袋的天数,求X 的分布列和均值(数学期望). 解:(1)估计日销售量的平均值为25×0.003×50+75×0.005×50+125×0.006×50+175×0.004×50+225×0.002×50=117.5.(2)不低于100袋的概率为0.6,低于50袋的概率为0.15,设事件A 表示有两天日销售量不低于100袋且另一天销售量低于50袋,则P (A )=C 23(0.6)2×0.15=0.162.(3)不低于150袋的概率为0.3,由题意知,X ~B (3,0.3),P (X =0)=C 03(0.7)3=0.343, P (X =1)=C 13(0.7)2×0.3=0.441, P (X =2)=C 23×0.7×0.32=0.189, P (X =3)=C 33×0.33=0.027.所以X 的分布列为则X 的均值为E (X 19.(本小题满分12分)如图①,等腰直角三角形ABC 的底边AB =4,点D 在线段AC。
高中数学一轮复习文数通用版:选修4-5 不等式选讲
. . .选修4-5 不等式选讲第1课绝对值不等式[过双基]1.绝对值三角不等式定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集不等式 a >0a =0 a <0 |x |<a {}x |-a <x <a ∅∅ |x |>a{}x |x >a 或x <-a{}x ∈R|x ≠0R(2)|ax +b |≤c ,|ax +b |≥c (c >0)型不等式的解法: ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法: ①利用绝对值不等式的几何意义求解; ②利用零点分段法求解;③构造函数,利用函数的图象求解. [小题速通]1.不等式|x +1|-|x -2|≥1的解集是________. 解析:f (x )=|x +1|-|x -2|=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2.当-1<x <2时,由2x -1≥1,解得1≤x <2. 又当x ≥2时,f (x )=3>1, 所以不等式的解集为{}x |x ≥1. 答案:{x |x ≥1}2.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________. 解析:∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|, 要使|x -a |+|x -1|≤3有解,可使|a -1|≤3, ∴-3≤a -1≤3,∴-2≤a ≤4. 答案:[-2,4]3.若不等式|kx -4|≤2的解集为{}x |1≤x ≤3,则实数k =________. 解析:由|kx -4|≤2⇔2≤kx ≤6. ∵不等式的解集为{}x |1≤x ≤3, ∴k =2. 答案:24.设不等式|x +1|-|x -2|>k 的解集为R ,则实数k 的取值范围为____________. 解析:∵||x +1|-|x -2||≤3, ∴-3≤|x +1|-|x -2|≤3, ∴k <(|x +1|-|x -2|)的最小值, 即k <-3. 答案:(-∞,-3)[清易错]1.对形如|f (x )|>a 或|f (x )|<a 型的不等式求其解集时,易忽视a 的符号直接等价转化造成失误. 2.绝对值不等式||a |-|b ||≤|a ±b |≤|a |+|b |中易忽视等号成立的条件.如|a -b |≤|a |+|b |,当且仅当ab ≤0时等号成立,其他类似推导.1.设a ,b 为满足ab <0的实数,那么( ) A .|a +b |>|a -b | B .|a +b |<|a -b | C .|a -b |<||a |-|b || D .|a -b |<|a |+|b |解析:选B ∵ab <0,∴|a -b |=|a |+|b |>|a +b |.2.若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为________.解析:|x -2y +1|=|(x -1)-2(y -2)-2|≤|x -1|+2|y -2|+2≤5. 答案:5绝对值不等式的解法[典例] 设函数f (x )=|x +1|-|x -1|+a (a ∈R). (1)当a =1时,求不等式f (x )>0的解集;(2)若方程f (x )=x 只有一个实数根,求实数a 的取值范围. [解] (1)依题意,原不等式等价于: |x +1|-|x -1|+1>0,当x <-1时,-(x +1)+(x -1)+1>0, 即-1>0,此时解集为∅;当-1≤x ≤1时,x +1+(x -1)+1>0, 即x >-12,此时-12<x ≤1;当x >1时,x +1-(x -1)+1>0, 即3>0,此时x >1.综上所述,不等式f (x )>0的解集为⎩⎨⎧⎭⎬⎫xx >-12.(2)依题意,方程f (x )=x 等价于a =|x -1|-|x +1|+x , 令g (x )=|x -1|-|x +1|+x . ∴g (x )=⎩⎪⎨⎪⎧x +2,x <-1,-x ,-1≤x ≤1,x -2,x >1..画出函数g (x )的图象如图所示,∴要使原方程只有一个实数根,只需a >1或a <-1.∴实数a 的取值范围是(-∞,-1)∪(1,+∞). [方法技巧](1)求解绝对值不等式的两个注意点:①要求的不等式的解集是各类情形的并集,利用零点分段法的操作程序是:找零点、分区间、分段讨论.②对于解较复杂绝对值不等式,要恰当运用条件,简化分类讨论,优化解题过程.(2)求解该类问题的关键是去绝对值符号,可以运用零点分段法去绝对值,此外还常利用绝对值的几何意义求解.[即时演练]1.解不等式|2x -1|+|2x +1|≤6.解:法一:当x >12时,原不等式转化为4x ≤6⇒12<x ≤32;当-12≤x ≤12时,原不等式转化为2≤6⇒-12≤x ≤12;当x <-12时,原不等式转化为-4x ≤6⇒-32≤x <-12.综上知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.法二:原不等式可化为⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12≤3, 其几何意义为数轴上到12,-12两点的距离之和不超过3的点的集合,数形结合知,当x =32或x =-32时,到12,-12两点的距离之和恰好为3,故当-32≤x ≤32时,满足题意,则原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.2.解不等式|x -1|-|x -5|<2.解:当x <1时,不等式可化为-(x -1)-(5-x )<2, 即-4<2,显然成立,所以此时不等式的解集为(-∞,1); 当1≤x ≤5时,不等式可化为x -1-(5-x )<2, 即2x -6<2,解得x <4,所以此时不等式的解集为[1,4); 当x >5时,不等式可化为(x -1)-(x -5)<2, 即4<2,显然不成立.所以此时不等式无解. 综上,不等式的解集为(-∞,4).绝对值不等式的证明[典例] 已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.[证明] ∵|x +5y |=|3(x +y )-2(x -y )|.∴由绝对值不等式的性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )| =3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1. [方法技巧]绝对值不等式证明的3种主要方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明. (2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明. (3)转化为函数问题,数形结合进行证明. [即时演练]已知f (x )=|x +2|-|2x -1|,M 为不等式f (x )>0的解集. (1)求M ;(2)求证:当x ,y ∈M 时,|x +y +xy |<15. 解:(1)f (x )=⎩⎪⎨⎪⎧x -3,x <-2,3x +1,-2≤x ≤12,-x +3,x >12,当x <-2时,由x -3>0,得x >3,舍去; 当-2≤x ≤12时,由3x +1>0,得x >-13,即-13<x ≤12;当x >12时,由-x +3>0,得x <3,即12<x <3,综上,M =⎝⎛⎭⎫-13,3. (2)证明:∵x ,y ∈M ,∴|x |<3,|y |<3,∴|x +y +xy |≤|x +y |+|xy |≤|x |+|y |+|xy |=|x |+|y |+|x |·|y |<3+3+3×3=15.绝对值不等式的综合应用[典例] (2017·全国卷Ⅲ)已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围. [解] (1)f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2; 当x >2时,由f (x )≥1,解得x >2. 所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54, 且当x =32时,|x +1|-|x -2|-x 2+x =54.故m 的取值范围为⎝⎛⎦⎤-∞,54. [方法技巧](1)研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,将原函数转化为分段函数,然后利用数形结合解决问题,这是常用的思想方法.(2)f (x )<a 恒成立⇔f (x )max <a . f (x )>a 恒成立⇔f (x )min >a . [即时演练]已知函数f (x )=|x -a |-|2x -1|. (1)当a =2时,求f (x )+3≥0的解集;(2)当x ∈[1,3]时,f (x )≤3恒成立,求a 的取值范围. 解:(1)当a =2时,由f (x )+3≥0, 可得|x -2|-|2x -1|≥-3,①⎩⎪⎨⎪⎧x <12,2-x +2x -1≥-3或②⎩⎪⎨⎪⎧12≤x <2,2-x -2x +1≥-3或 ③⎩⎪⎨⎪⎧x ≥2,x -2-2x +1≥-3.解①得-4≤x <12;解②得12≤x <2;解③得x =2.综上所述,不等式的解集为{x |-4≤x ≤2}. (2)当x ∈[1,3]时,f (x )≤3恒成立, 即|x -a |≤3+|2x -1|=2x +2. 故-2x -2≤x -a ≤2x +2, 即-3x -2≤-a ≤x +2,∴-x -2≤a ≤3x +2对x ∈[1,3]恒成立. ∴a ∈[-3,5].1.(2017·全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围. 解:(1)当a =1时,不等式f (x )≥g (x )等价于 x 2-x +|x +1|+|x -1|-4≤0. ①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1; 当x >1时,①式化为x 2+x -4≤0, 从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2.所以f (x )≥g (x )的解集包含[-1,1],等价于当x ∈[-1,1]时,f (x )≥2. 又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一, 所以f (-1)≥2且f (1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1].2.(2015·全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x 23<x <2.(2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).3.(2016·江苏高考)设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a .证明:因为|x -1|<a 3,|y -2|<a3,所以|2x +y -4|=|2(x -1)+(y -2)|≤2|x -1|+|y -2|<2×a 3+a3=a .4.(2013·全国卷Ⅰ)已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎡⎭⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围. 解:(1)当a =-2时,不等式f (x )<g (x )可化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1.其图象如图所示.从图象可知,当且仅当x ∈(0,2)时,y <0. 所以原不等式的解集是{x |0<x <2}. (2)当x ∈⎣⎡⎭⎫-a 2,12时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3. 所以x ≥a -2对x ∈⎣⎡⎭⎫-a 2,12都成立. 故-a 2≥a -2,即a ≤43.从而a 的取值范围是⎝⎛⎦⎤-1,43.1.(2018·唐山模拟)已知函数f (x )=|2x -a |+|x +1|. (1)当a =1时,解不等式f (x )<3; (2)若f (x )的最小值为1,求a 的值.解:(1)因为f (x )=|2x -1|+|x +1|=⎩⎪⎨⎪⎧-3x ,x ≤-1,-x +2,-1<x <12,3x ,x ≥12,且f (1)=f (-1)=3,所以f (x )<3的解集为{x |-1<x <1}.(2)|2x -a |+|x +1|=⎪⎪⎪⎪x -a 2+|x +1|+⎪⎪⎪⎪x -a 2≥⎪⎪⎪⎪1+a 2+0=⎪⎪⎪⎪1+a2, 当且仅当(x +1)⎝⎛⎭⎫x -a 2≤0且x -a2=0时,取等号. 所以⎪⎪⎪⎪1+a2=1, 解得a =-4或0.2.已知函数f (x )=|2x +1|,g (x )=|x -1|+a . (1)当a =0时,解不等式f (x )≥g (x );(2)若对任意x ∈R ,f (x )≥g (x )恒成立,求实数a 的取值范围. 解:(1)当a =0时,由f (x )≥g (x ),得|2x +1|≥|x -1|, 两边平方整理得x 2+2x ≥0,解得x ≥0或x ≤-2. 所以原不等式的解集为(-∞,-2]∪[0,+∞). (2)由f (x )≥g (x ),得a ≤|2x +1|-|x -1|. 令h (x )=|2x +1|-|x -1|,则h (x )=⎩⎪⎨⎪⎧-x -2,x ≤-12,3x ,-12<x <1,x +2,x ≥1.故h (x )min =h ⎝⎛⎭⎫-12=-32. 故所求实数a 的取值范围为⎝⎛⎦⎤-∞,-32. 3.已知函数f (x )=|2x -a |+|2x -1|,a ∈R. (1)当a =3时,求关于x 的不等式f (x )≤6的解集; (2)当x ∈R 时,f (x )≥a 2-a -13,求实数a 的取值范围. 解:(1)当a =3时,不等式f (x )≤6可化为|2x -3|+|2x -1|≤6.当x <12时,不等式可化为-(2x -3)-(2x -1)=-4x +4≤6,解得-12≤x <12;当12≤x ≤32时,不等式可化为-(2x -3)+(2x -1)=2≤6,解得12≤x ≤32; 当x >32时,不等式可化为(2x -3)+(2x -1)=4x -4≤6,解得32<x ≤52.综上所述,关于x 的不等式f (x )≤6的解集为 ⎩⎨⎧⎭⎬⎫x -12≤x ≤52.(2)当x ∈R 时,f (x )=|2x -a |+|2x -1|≥|2x -a +1-2x |=|1-a |, 所以当x ∈R 时,f (x )≥a 2-a -13等价于|1-a |≥a 2-a -13. 当a ≤1时,等价于1-a ≥a 2-a -13,解得-14≤a ≤1; 当a >1时,等价于a -1≥a 2-a -13,解得1<a ≤1+13, 所以a 的取值范围为[-14,1+13]. 4.已知函数f (x )=|x -a |+|2x +1|. (1)当a =1时,解不等式f (x )≤3;(2)若f (x )≤2a +x 在[a ,+∞)上有解,求a 的取值范围. 解:(1)当a =1时,f (x )≤3化为|x -1|+|2x +1|≤3, 则⎩⎪⎨⎪⎧ x <-12,1-x -1-2x ≤3或⎩⎪⎨⎪⎧-12≤x ≤1,1-x +2x +1≤3或⎩⎪⎨⎪⎧x >1,x -1+2x +1≤3, 解得-1≤x <-12或-12≤x ≤1或∅.所以原不等式解集为{x |-1≤x ≤1}.(2)因为x ∈[a ,+∞),所以f (x )=|x -a |+|2x +1|=x -a +|2x +1|≤2a +x , 即|2x +1|≤3a 有解,所以a ≥0, 所以不等式化为2x +1≤3a 有解, 即2a +1≤3a ,解得a ≥1, 所以a 的取值范围为[1,+∞). 5.设函数f (x )=|2x -a |+2a .(1)若不等式f (x )≤6的解集为{x |-6≤x ≤4},求实数a 的值;(2)在(1)的条件下,若不等式f (x )≤(k 2-1)x -5的解集非空,求实数k 的取值范围. 解:(1)∵|2x -a |+2a ≤6,∴|2x -a |≤6-2a,2a -6≤2x -a ≤6-2a , ∴32a -3≤x ≤3-a 2. 而f (x )≤6的解集为{x |-6≤x ≤4},故有⎩⎨⎧32a -3=-6,3-12a =4,解得a =-2.(2)由(1)得f (x )=|2x +2|-4, ∴不等式|2x +2|-4≤(k 2-1)x -5, 化简得|2x +2|+1≤(k 2-1)x ,令g (x )=|2x +2|+1=⎩⎪⎨⎪⎧2x +3,x ≥-1,-2x -1,x <-1.画出函数y =g (x )的图象如图所示.要使不等f (x )≤(k 2-1)x -5的解集非空,只需k 2-1>2或k 2-1≤-1, 解得k >3或k <-3或k =0,∴实数k 的取值范围为(-∞,-3)∪{0}∪(3,+∞). 6.设函数f (x )=|ax -1|.(1)若f (x )≤2的解集为[-6,2],求实数a 的值;(2)当a =2时,若存在x ∈R ,使得不等式f (2x +1)-f (x -1)≤7-3m 成立,求实数m 的取值范围.解:(1)显然a ≠0,当a >0时,解集为⎣⎡⎦⎤-1a ,3a , 则-1a =-6,3a =2,无解; 当a <0时,解集为⎣⎡⎦⎤3a,-1a ,则-1a =2,3a =-6,得a =-12.综上所述,a =-12.(2)当a =2时,令h (x )=f (2x +1)-f (x -1)=|4x +1|-|2x -3|=⎩⎪⎨⎪⎧-2x -4,x ≤-14,6x -2,-14<x <32,2x +4,x ≥32,由此可知,h (x )在⎝⎛⎭⎫-∞,-14上单调递减,在⎝⎛⎭⎫-14,32上单调递增,在⎝⎛⎭⎫32,+∞上单调递增,则当x =-14时,h (x )取到最小值-72,由题意知,-72≤7-3m ,解得m ≤72,故实数m 的取值范围是⎝⎛⎦⎤-∞,72. 7.(2018·九江模拟)已知函数f (x )=|x -3|-|x -a |. (1)当a =2时,解不等式f (x )≤-12;(2)若存在实数a ,使得不等式f (x )≥a 成立,求实数a 的取值范围. 解:(1)∵a =2,∴f (x )=|x -3|-|x -2|=⎩⎪⎨⎪⎧1,x ≤2,5-2x ,2<x <3,-1,x ≥3,∴f (x )≤-12等价于⎩⎪⎨⎪⎧x ≤2,1≤-12或⎩⎪⎨⎪⎧ 2<x <3,5-2x ≤-12或⎩⎪⎨⎪⎧x ≥3,-1≤-12, 解得114≤x <3或x ≥3,∴不等式的解集为⎣⎡⎭⎫114,+∞. (2)由不等式性质可知f (x )=|x -3|-|x -a |≤|(x -3)-(x -a )|=|a -3|, ∴若存在实数x ,使得不等式f (x )≥a 成立,则|a -3|≥a ,解得a ≤32,∴实数a 的取值范围是⎝⎛⎦⎤-∞,32. 8.已知函数f (x )=|2x +1|-|x |+a , (1)若a =-1,求不等式f (x )≥0的解集;(2)若方程f (x )=2x 有三个不同的解,求a 的取值范围. 解:(1)当a =-1时,不等式f (x )≥0可化为|2x +1|-|x |-1≥0,∴⎩⎪⎨⎪⎧ x <-12,-(2x +1)-(-x )-1≥0或⎩⎪⎨⎪⎧-12≤x <0,(2x +1)-(-x )-1≥0或⎩⎪⎨⎪⎧x ≥0,(2x +1)-x -1≥0,解得x ≤-2或x ≥0,∴不等式的解集为(-∞,-2]∪[0,+∞). (2)由f (x )=2x ,得a =2x +|x |-|2x +1|, 令g (x )=2x +|x |-|2x +1|, 则g (x )=⎩⎪⎨⎪⎧3x +1,x <-12,-x -1,-12≤x <0,x -1,x ≥0,作出函数y =g (x )的图象如图所示,易知A ⎝⎛⎭⎫-12,-12,B (0,-1), 结合图象知:当-1<a <-12时,函数y =a 与y =g (x )的图象有三个不同交点,即方程f (x )=2x有三个不同的解,∴a 的取值范围为⎝⎛⎭⎫-1,-12.第2课不等式证明[过双基]1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 2.比较法(1)比差法:依据是a -b >0⇔a >b ;步骤是“作差→变形→判断差的符号”.变形是手段,变形的目的是判断差的符号.(2)比商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.4.柯西不等式(1)设a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立. (2)若a i ,b i (i ∈N *)为实数,则⎝ ⎛⎭⎪⎪⎫∑i =1n a 2i ⎝ ⎛⎭⎪⎪⎫∑i =1n b 2i ≥⎝ ⎛⎭⎪⎪⎫∑i =1n a i b i 2,当且仅当b 1a 1=b 2a 2=…=b n a n (当a i=0时,约定b i =0,i =1,2,…,n )时等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|,当且仅当α,β共线时等号成立.[小题速通]1.若m =a +2b ,n =a +b 2+1,则m 与n 的大小关系为________. 解析:∵n -m =a +b 2+1-a -2b =b 2-2b +1=(b -1)2≥0,∴n ≥m . 答案:n ≥m2.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(填序号).①ab ≤1;② a +b ≤2;③a 2+b 2≥2; ④a 3+b 3≥3;⑤1a +1b ≥2. 解析:令a =b =1,排除②④;由2=a +b ≥2ab ⇒ab ≤1,命题①正确; a 2+b 2=(a +b )2-2ab =4-2ab ≥2,命题③正确; 1a +1b =a +b ab =2ab ≥2,命题⑤正确. 答案:①③⑤3.已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c 的最小值为________. 解析:把a +b +c =1代入1a +1b +1c得a +b +c a +a +b +c b +a +b +c c=3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.答案:9[清易错]1.在使用作商比较法时易忽视说明分母的符号.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,易忽视性质成立的前提条件.1.已知a >0,b >0,则a a b b ________(ab )a +b2(填大小关系).解析:∵a a b b(ab )a +b 2=⎝⎛⎭⎫a b a -b 2,∴当a =b 时,⎝⎛⎭⎫a b a -b2=1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b a -b 2>1, 当b >a >0时,0<ab <1,a -b 2<0,则⎝⎛⎭⎫a b a -b 2>1, ∴a a b b ≥(ab )a +b 2.答案:≥2.设x >y >z >0,求证:x -z +8(x -y )(y -z )≥6.证明:x -z +8(x -y )(y -z )=(x -y )+(y -z )+8(x -y )(y -z )≥33(x -y )(y -z )8(x -y )(y -z )=6.当且仅当x -y =y -z =8(x -y )(y -z )时取等号,所以x -z +8(x -y )(y -z )≥6.比较法证明不等式[典例] (2018·莆田模拟)设a ,b 是非负实数.求证:a 2+b 2≥ab (a +b ). [证明] (a 2+b 2)-ab (a +b ) =(a 2-a ab )+(b 2-b ab ) =a a (a -b )+b b (b -a ) =(a -b )(a a -b b ) =(a 12-b 12)(a 32-b 32).因为a ≥0,b ≥0,所以不论a ≥b ≥0,还是0≤a ≤b ,都有a 12-b 12与a 32-b 32同号,所以(a 12-b 12)(a 32-b 32)≥0, 所以a 2+b 2≥ab (a +b ). [方法技巧]比较法证明不等式的方法和步骤(1)求差比较法:由a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b 只要证明a -b >0即可,这种方法称为求差比较法.(2)求商比较法:由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时,要证明a >b ,只要证明ab >1即可,这种方法称为求商比较法.(3)用比较法证明不等式的一般步骤是:作差(商)—变形—判断—结论,而变形的方法一般有配方、通分和因式分解.[即时演练]求证:当x ∈R 时,1+2x 4≥2x 3+x 2. 证明:法一:(1+2x 4)-(2x 3+x 2) =2x 3(x -1)-(x +1)(x -1) =(x -1)(2x 3-x -1) =(x -1)(2x 3-2x +x -1) =(x -1)[2x (x 2-1)+(x -1)] =(x -1)2(2x 2+2x +1) =(x -1)2⎣⎡⎦⎤2⎝⎛⎭⎫x +122+12≥0, 所以1+2x 4≥2x 3+x 2. 法二:(1+2x 4)-(2x 3+x 2) =x 4-2x 3+x 2+x 4-2x 2+1 =(x -1)2·x 2+(x 2-1)2≥0, 所以1+2x 4≥2x 3+x 2.综合法证明不等式[典例] 已知a ,b 均为正数,且a +b =1,求证: (1)(ax +by )2≤ax 2+by 2; (2)⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥252. [证明] (1)(ax +by )2-(ax 2+by 2)=a (a -1)x 2+b (b -1)y 2+2abxy , 因为a +b =1,所以a -1=-b ,b -1=-a ,又a ,b 均为正数, 所以a (a -1)x 2+b (b -1)y 2+2abxy =-ab (x 2+y 2-2xy )=-ab (x -y )2≤0,当且仅当x =y 时等号成立. 所以(ax +by )2≤ax 2+by 2.(2)⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2=4+a 2+b 2+⎝⎛⎭⎫1a 2+1b 2 =4+a 2+b 2+(a +b )2a 2+(a +b )2b 2=4+a 2+b 2+1+2b a +b 2a 2+a 2b2+2a b +1=4+(a 2+b 2)+2+⎝⎛⎭⎫2b a +2a b +⎝⎛⎭⎫b 2a 2+a 2b 2≥6+(a +b )22+4+2=252,当且仅当a =b =12时,等号成立,所以⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥252. [方法技巧]1.综合法证明不等式的方法综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.综合法证明时常用的不等式 (1)a 2≥0. (2)|a |≥0.(3)a 2+b 2≥2ab ,它的变形形式有:a 2+b 2≥2|ab |;a 2+b 2≥-2ab ;(a +b )2≥4ab ; a 2+b 2≥12(a +b )2;a 2+b 22≥⎝⎛⎭⎫a +b 22.(4)a +b2≥ab ,它的变形形式有:a +1a ≥2(a >0);ab +b a ≥2(ab >0); a b +ba ≤-2(ab <0). [即时演练]设a ,b ,c 均为正数,且a +b +c =1,求证: (1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1, 所以3(ab +bc +ca )≤1, 即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a≥1.分析法证明不等式[典例] 设a ,b ,c >0,且ab +bc +ca =1. 求证:(1)a +b +c ≥ 3. (2)a bc+ b ac+ cab≥3(a +b +c ). [证明] (1)要证a +b +c ≥3, 由于a ,b ,c >0, 因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3, 而ab +bc +ca =1,故需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ). 即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)证得.所以原不等式成立. (2)abc +b ac +c ab =a +b +c abc .在(1)中已证a +b +c ≥ 3. 因此要证原不等式成立, 只需证明1abc≥ a +b +c , 即证a bc +b ac +c ab ≤1, 即证a bc +b ac +c ab ≤ab +bc +ca .而a bc=ab·ac≤ab+ac2,b ac≤ab+bc2,c ab≤bc+ac2.所以a bc+b ac+c ab≤ab+bc+ca当且仅当a=b=c=33时等号成立.所以原不等式成立.[方法技巧]1.用分析法证“若A则B”这个命题的模式为了证明命题B为真,只需证明命题B1为真,从而有…只需证明命题B2为真,从而有………只需证明命题A为真,而已知A为真,故B必真.2.分析法的应用当所证明的不等式不能使用比较法,且和重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.[即时演练]已知a>0,b>0,2c>a+b,求证:c-c2-ab<a<c+c2-ab.证明:要证c-c2-ab<a<c+c2-ab,即证-c2-ab<a-c<c2-ab,即证|a-c|<c2-ab,即证(a-c)2<c2-ab,即证a2-2ac<-ab.因为a>0,所以只要证a-2c<-b,即证a+b<2c.由已知条件知,上式显然成立,所以原不等式成立.1.(2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.证明:(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3(a +b )24(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.2.(2016·全国卷Ⅱ)已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.解:(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1, 从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |.3.(2015·全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd , 得(a +b )2>(c +d )2. 因此a +b >c +d . (2)①必要性:若|a -b |<|c -d |, 则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1),得a +b >c +d . ②充分性:若a +b >c +d , 则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd . 因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件. 4.(2014·全国卷Ⅰ)若a >0,b >0,且1a +1b =ab . (1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)由ab =1a +1b ≥2ab,得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b , 使得2a +3b =6.1.已知a ,b 都是正实数,且a +b =2,求证:a 2a +1+b 2b +1≥1.证明:∵a >0,b >0,a +b =2,∴a 2a +1+b 2b +1-1=a 2(b +1)+b 2(a +1)-(a +1)(b +1)(a +1)(b +1) =a 2b +a 2+b 2a +b 2-ab -a -b -1(a +1)(b +1)=a 2+b 2+ab (a +b )-ab -(a +b )-1(a +1)(b +1)=a 2+b 2+2ab -ab -3(a +1)(b +1)=(a +b )2-3-ab (a +1)(b +1)=1-ab (a +1)(b +1).∵a +b =2≥2ab ,∴ab ≤1. ∴1-ab (a +1)(b +1)≥0. ∴a 2a +1+b 2b +1≥1. 2.已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a . (1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3. 解:(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3, 当且仅当-1≤x ≤2时,等号成立, 所以f (x )的最小值等于3,即a =3. (2)证明:由(1)知p +q +r =3, 又因为p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9,即p 2+q 2+r 2≥3. 3.(2018·云南统一检测)已知a 是常数,对任意实数x ,不等式|x +1|-|2-x |≤a ≤|x +1|+|2-x |都成立.(1)求a 的值;(2)设m >n >0,求证:2m +1m 2-2mn +n 2≥2n +a .解:(1)设f (x )=|x +1|-|2-x |, 则f (x )=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2,∴f (x )的最大值为3.∵对任意实数x ,|x +1|-|2-x |≤a 都成立,即f (x )≤a , ∴a ≥3.设h (x )=|x +1|+|2-x |, 则h (x )=⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2,则h (x )的最小值为3.∵对任意实数x ,|x +1|+|2-x |≥a 都成立,即h (x )≥a , ∴a ≤3. ∴a =3.(2)证明:由(1)知a =3. ∵2m +1m 2-2mn +n 2-2n =(m -n )+(m -n )+1(m -n )2,且m >n >0,∴(m -n )+(m -n )+1(m -n )2≥33(m -n )(m -n )1(m -n )2=3.∴2m +1m 2-2mn +n 2≥2n +a .4.已知x ,y ,z 是正实数,且满足x +2y +3z =1. (1)求1x +1y +1z 的最小值;(2)求证:x 2+y 2+z 2≥114. 解:(1)∵x ,y ,z 是正实数,且满足x +2y +3z =1, ∴1x +1y +1z =⎝⎛⎭⎫1x +1y +1z (x +2y +3z )=6+2y x +3z x +x y +3z y +x z +2yz ≥6+22+23+26, 当且仅当2y x =x y 且3z x =x z 且3z y =2yz 时取等号. (2)由柯西不等式可得1=(x +2y +3z )2≤(x 2+y 2+z 2)(12+22+32) =14(x 2+y 2+z 2), ∴x 2+y 2+z 2≥114,当且仅当x =y 2=z 3,即x =114,y =17,z =314时取等号.故x 2+y 2+z 2≥114.5.(2018·石家庄模拟)已知函数f (x )=|x |+|x -1|. (1)若f (x )≥|m -1|恒成立,求实数m 的最大值M ;(2)在(1)成立的条件下,正实数a ,b 满足a 2+b 2=M ,证明:a +b ≥2ab . 解:(1)由绝对值不等式的性质知 f (x )=|x |+|x -1|≥|x -x +1|=1, ∴f (x )min =1, ∴只需|m -1|≤1, 即-1≤m -1≤1, ∴0≤m ≤2,∴实数m 的最大值M =2.(2)证明:∵a 2+b 2≥2ab ,且a 2+b 2=2, ∴ab ≤1,∴ab ≤1,当且仅当a =b 时取等号.① 又ab ≤a +b 2,∴ab a +b ≤12, ∴ab a +b≤ab 2,当且仅当a =b 时取等号.②由①②得,ab a +b ≤12,∴a +b ≥2ab .6.(2018·吉林实验中学模拟)设函数f (x )=|x -a |. (1)当a =2时,解不等式f (x )≥4-|x -1|;(2)若f (x )≤1的解集为[0,2],1m +12n =a (m >0,n >0),求证:m +2n ≥4.解:(1)当a =2时,不等式为|x -2|+|x -1|≥4.①当x ≥2时,不等式可化为x -2+x -1≥4,解得x ≥72;②当1<x <2时,不等式可化为2-x +x -1≥4, 不等式的解集为∅;③当x ≤1时,不等式可化为2-x +1-x ≥4,解得x ≤-12.综上可得,不等式的解集为⎝⎛⎦⎤-∞,-12∪⎣⎡⎭⎫72,+∞. (2)证明:∵f (x )≤1,即|x -a |≤1,解得a -1≤x ≤a +1,而f (x )≤1的解集是[0,2],∴⎩⎪⎨⎪⎧a -1=0,a +1=2,解得a =1, 所以1m +12n =1(m >0,n >0),所以m +2n =(m +2n )⎝⎛⎭⎫1m +12n =2+m 2n +2nm≥2+2m 2n ·2nm=4, 当且仅当m =2,n =1时取等号. 7.已知a ,b ,c ,d 均为正数,且ad =bc . (1)证明:若a +d >b +c ,则|a -d |>|b -c |;(2)若t ·a 2+b 2·c 2+d 2=a 4+c 4+b 4+d 4,求实数t 的取值范围. 解:(1)证明:由a +d >b +c ,且a ,b ,c ,d 均为正数, 得(a +d )2>(b +c )2,又ad =bc , 所以(a -d )2>(b -c )2,即|a -d |>|b -c |.(2)因为(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2=a 2c 2+2abcd +b 2d 2=(ac +bd )2, 所以t ·a 2+b 2·c 2+d 2=t (ac +bd ). 由于a 4+c 4≥ 2ac,b 4+d 4≥ 2bd ,又已知t ·a 2+b 2·c 2+d 2=a 4+c 4+b 4+d 4,则t (ac +bd )≥ 2(ac +bd ),故t ≥ 2,当且仅当a =c ,b =d 时取等号. 所以实数t 的取值范围为[2,+∞). 8.已知函数f (x )=|x -1|. (1)解不等式f (2x )+f (x +4)≥8; (2)若|a |<1,|b |<1,a ≠0,求证:f (ab )|a |>f ⎝⎛⎭⎫b a . 解:(1)f (2x )+f (x +4)=|2x -1|+|x +3|=⎩⎪⎨⎪⎧-3x -2,x <-3,-x +4,-3≤x <12,3x +2,x ≥12,当x <-3时,由-3x -2≥8,解得x ≤-103; 当-3≤x <12时,-x +4≥8无解;当x ≥12时,由3x +2≥8,解得x ≥2.所以不等式f (2x )+f (x +4)≥8的解集为⎝⎛⎦⎤-∞,-103∪[2,+∞). (2)证明:f (ab )|a |>f ⎝⎛⎭⎫b a 等价于f (ab )>|a |f ⎝⎛⎭⎫b a , 即|ab -1|>|a -b |. 因为|a |<1,|b |<1,所以|ab -1|2-|a -b |2=(a 2b 2-2ab +1)-(a 2-2ab +b 2)=(a 2-1)(b 2-1)>0, 所以|ab -1|>|a -b |. 故所证不等式成立.阶段滚动检测(六)全程仿真验收(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A ={1,2,3},B ={(x ,y )|x +y -4>0,x ,y ∈A },则集合B 中的元素个数为( ) A .9 B .6 C .4D .3解析:选D 集合A ={1,2,3},B ={(x ,y )|x +y -4>0,x ,y ∈A }={(2,3),(3,2),(3,3)},则集合B 中的元素个数为3.2.若复数2a +2i 1+i (a ∈R)是纯虚数,则复数2a +2i 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B2a +2i 1+i =(2a +2i )(1-i )(1+i )(1-i )=2a +2+(2-2a )i2,由题意可知2a +2=0且2-2a ≠0,所以a =-1,则复数2a +2i 在复平面内对应的点(-2,2)在第二象限.3.已知命题p :∃x 0∈(-∞,0),2x 0<3x 0;命题q :∀x ∈0,π2,cos x <1,则下列命题为真命题的是( )A .p ∧qB .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )解析:选C 因为x ∈(-∞,0)时,2x 3x =⎝⎛⎭⎫23x>1,所以2x >3x ,故命题p 是假命题;命题q :∀x ∈⎝⎛⎭⎫0,π2,cos x <1,是真命题,则綈p 是真命题,綈q 是假命题,故(綈p )∧q 是真命题. 4.某几何体的三视图如图所示,则该几何体的体积为( )A .1+2πB .1+4π3C .1+π2D .1+π6解析:选D 由三视图可知,该几何体是一个组合体,上面是一个半径为12的球,下面是一个棱长为1的正方体,所以该几何体的体积V =4π3·⎝⎛⎭⎫123+1=1+π6. 5.函数y =x 22x -2-x 的图象可能是( )解析:选C 因为f (-x )=x 22-x -2x =-f (x ),即函数y =x 22x -2-x 是奇函数,故排除B 、D ;当x >0,且x →+∞时,y →0,故排除A ,因此选C.6.执行如图所示的程序框图,如果输入的m ,n 分别为1 848,936,则输出的m 的值为( )A .168B .72C .36D .24解析:选D 根据题意,运行程序:m =1 848,n =936;r =912,m =936,n =912;r =24,m =912,n =24;r =0,m =24,n =0,此时满足条件,循环结束,输出m =24,故选D.7.如图,Rt △ABC 中,AB =AC ,BC =4,O 为BC 的中点,以O 为圆心,1为半径的半圆与BC 交于点D ,P 为半圆上任意一点,则BP ―→·AD ―→的最小值为( )A .2+ 5 B. 5 C .2D .2- 5解析:选D 建立如图所示的平面直角坐标系,则B (-2,0),A (0,2),D (1,0),设P (x ,y ),故BP ―→=(x +2,y ),AD ―→=(1,-2),所以BP ―→·AD ―→=x -2y +2.令x -2y +2=t ,根据直线的几何意义可知,当直线x -2y +2=t 与半圆相切时,t 取得最小值,由点到直线的距离公式可得|2-t |5=1,t =2-5,即BP ―→·AD ―→的最小值是2- 5.8.将函数f (x )=cos ωx (ω>0)的图象向右平移π3个单位,若所得图象与原图象重合,则f ⎝⎛⎭⎫π24不可能等于( )A .0B .1 C.22D.32解析:选D 将函数f (x )=cos ωx (ω>0)的图象向右平移π3个单位,得函数y =cos ⎝⎛⎭⎫ωx -ωπ3,由题意可得ωπ3=2k π,k ∈Z ,因为ω>0,所以ω=6k >0,k ∈Z ,则f ⎝⎛⎭⎫π24=cos ωπ24=cos k π4,k ∈Z ,显然,f ⎝⎛⎭⎫π24不可能等于32,故选D. 9.(2017·郑州二模)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥x +2,x +y ≤6,x ≥1,则z =2|x -2|+|y |的最小值是( )A .6B .5C .4D .3解析:选C 作出不等式组⎩⎪⎨⎪⎧y ≥x +2,x +y ≤6,x ≥1表示的可行域如图中阴影部分所示,其中A (2,4),B (1,5),C (1,3),∴x ∈[1,2],y ∈[3,5].∴z =2|x -2|+|y |=-2x +y +4,当直线y =2x -4+z 过点A (2,4)时,直线在y 轴上的截距最小,此时z 有最小值,∴z min =-2×2+4+4=4,故选C.10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,A =π4,b 2-a 2=12c 2,则tan C =( )A .2B .-2 C.12D .-12解析:选A 因为b 2-a 2=12c 2且b 2+c 2-a 2=2bc cos A =2bc ,所以b =3c 22,a =5c 22,由余弦定理可得cos C =58c 2+98c 2-c 22×5c 22×3c 22=15,则角C 是锐角,sin C =25,则tan C =sin C cos C =2.11.已知点P 在双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右支上,F 1,F 2分别为双曲线的左、右焦点,若|PF 1―→ |2-|PF 2―→|2=12a 2,则该双曲线的离心率的取值范围是( )A .[3,+∞)B .(2,4]C .(2,3]D .(1,3]解析:选D 根据题意,因为|PF 1―→|2-|PF 2―→|2=12a 2,且|PF 1|-|PF 2|=2a ,所以|PF 1|+|PF 2|=6a ≥|F 1F 2|=2c ,所以e ≤3.又因为e >1,所以该双曲线的离心率的取值范围是(1,3].12.已知f ′(x )为函数f (x )的导函数,且f (x )=12x 2-f (0)x +f ′(1)e x -1,若g (x )=f (x )-12x 2+x ,则方程g ⎝⎛⎭⎫x2a -x -x =0有且仅有一个根时,实数a 的取值范围是( ) A .(-∞,0)∪{1} B .(-∞,1] C .(0,1]D .[1,+∞)解析:选A 由函数的解析式可得f (0)=f ′(1)e -1,f ′(x )=x -f (0)+f ′(1)e x -1,f ′(1)=1-f (0)+f ′(1),所以f ′(1)=e ,f (0)=1,所以f (x )=12x 2-x +e x ,g (x )=f (x )-12x 2+x =e x ,则e x 2a -x -x =0有且仅有一个根,即x 2a =x +ln x 有且仅有一个根,分别作出y =x 2a 和y =x +lnx 的图象,由图象知a <0或a =1.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.(m +x )(1+x )3的展开式中x 的奇数次幂项的系数之和为16,则⎠⎛-11x m d x =________.解析:(m +x)(1+x)3=(m +x)(C 03x 3+C 13x 2+C 23x +C 33),所以x 的奇数次幂项的系数之和为 m C 03+m C 23+C 13+C 33=16,解得m =3,所以⎠⎛-11x m d x =⎠⎛-11x 3d x =14x 4⎪⎪⎪1-1=0.答案:014.在△ABC 中,AB ⊥AC ,AB =1t,AC =t ,P 是△ABC 所在平面内一点,若AP ―→=4AB―→|AB ―→|+AC―→|AC ―→|,则△PBC 面积的最小值为________. 解析:由于AB ⊥AC ,故以AB ,AC 所在直线分别为x 轴,y 轴,建立平面直角坐标系(图略),则B ⎝⎛⎭⎫1t ,0,C(0,t),因为AP ―→=4AB ―→|AB ―→|+AC ―→|AC ―→|,所以点P 坐标为(4,1),直线BC 的方程为t 2x +y-t =0,所以点P 到直线BC 的距离为d =|4t 2+1-t|t 4+1,BC =t 4+1t ,所以△PBC 的面积为12×|4t 2+1-t|t 4+1×t 4+1t =12⎪⎪⎪⎪4t +1t -1≥32,当且仅当t =12时取等号.答案:3215.若m ∈(0,3),则直线(m +2)x +(3-m)y -3=0与x 轴、y 轴围成的三角形的面积小于98的概率为________.解析:令x =0,得y =33-m ;令y =0,得x =3m +2. 所以12·|x|·|y|=12·⎪⎪⎪⎪3m +2·⎪⎪⎪⎪33-m <98,因为m ∈(0,3),所以解得0<m<2,由几何概型概率公式可得,所求事件的概率为23.答案:2316.已知M(x 0,y 0)是椭圆E :x 2a 2+y 2b2=1(a>b>0)上一点,A ,B 是其左、右顶点,若AM ―→2AM ―→·BM―→=x 20-a 2,则离心率e =________.解析:由题意知A(-a,0),B(a,0),∴AM ―→=(x 0+a ,y 0),BM ―→=(x 0-a ,y 0),∵2AM ―→·BM ―→=x 2-a 2,∴2(x 20-a 2+y 20)=x 20-a 2,∴x 20=a 2-2y 20. 又x 20a 2+y 20b 2=1,∴a 2-2y 20a 2+y 20b 2=1, ∴-2a 2+1b2=0,∴a 2=2b 2,∴c 2a 2=a 2-b 2a 2=1-b 2a 2=1-12=12,∴e =22. 答案:22三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知数列{a n }的前n 项和为S n ,a 1=2,且满足a n +1=S n +2n +1(n ∈N *).(1)证明数列⎩⎨⎧⎭⎬⎫S n 2n 为等差数列;(2)求S 1+S 2+…+S n .解:(1)证明:由条件可知,S n +1-S n =S n +2n +1, 即S n +1-2S n =2n +1,整理得S n +12n +1-S n2n=1, 所以数列⎩⎨⎧⎭⎬⎫S n 2n 是以1为首项,1为公差的等差数列.(2)由(1)可知,S n2n =1+n -1=n ,即S n =n ·2n ,令T n =S 1+S 2+…+S n ,则T n =1×2+2×22+…+n ×2n ①2T n =1×22+2×23+…+n ×2n +1,② ①-②,得-T n =2+22+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1=(1-n )·2n +1-2,所以T n =2+(n -1)·2n +1.18.(本小题满分12分)如图所示的是某母婴用品专卖店根据以往销售奶粉的销售记录绘制的日销售量的频率分布直方图.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)估计日销售量的平均值;(2)求未来连续三天里,有两天日销售量不低于100袋且另一天销售量低于50袋的概率; (3)记X 为未来三天里日销售量不低于150袋的天数,求X 的分布列和均值(数学期望). 解:(1)估计日销售量的平均值为25×0.003×50+75×0.005×50+125×0.006×50+175×0.004×50+225×0.002×50=117.5.(2)不低于100袋的概率为0.6,低于50袋的概率为0.15,设事件A 表示有两天日销售量不低于100袋且另一天销售量低于50袋,则P (A )=C 23(0.6)2×0.15=0.162. (3)不低于150袋的概率为0.3,由题意知,X ~B (3,0.3),P (X =0)=C 03(0.7)3=0.343, P (X =1)=C 13(0.7)2×0.3=0.441, P (X =2)=C 23×0.7×0.32=0.189, P (X =3)=C 33×0.33=0.027.所以X 的分布列为X 0 1 2 3 P0.3430.4410.1890.027则X 的均值为E (X )=3×0.3=0.9.19.(本小题满分12分)如图①,等腰直角三角形ABC 的底边AB =4,点D 在线段AC 上,DE ⊥AB 于E ,现将△ADE 沿DE 折起到△PDE 的位置(如图②).(1)求证:PB ⊥DE ;(2)若PE ⊥BE ,直线PD 与平面PBC 所成的角为30°,求PE 长. 解:(1)证明:∵DE ⊥AB ,∴DE ⊥PE ,DE ⊥EB . 又∵PE ∩BE =E ,∴DE ⊥平面PEB . ∵PB ⊂平面PEB ,∴PB ⊥DE .(2)由(1)知DE ⊥PE ,DE ⊥EB ,且PE ⊥BE ,所以DE ,BE ,PE 两两垂直.分别以ED ―→,EB ―→,EP ―→的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.。
高考数学一轮复习 选考部分选修4—5不等式选讲教学案
选修4—5 不等式选讲考纲要求1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1)|a +b |≤|a |+|b |;(2)|a -b |≤|a -c |+|c -b |.2.会利用绝对值的几何意义求解以下类型的不等式:|ax +b |≤c ,|ax +b |≥c ,|x -a |+|x -b |≥c .3.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.1.含____________的不等式叫作绝对值不等式.2.解含有绝对值的不等式关键是去掉绝对值符号,基本方法有如下几种:(1)分段讨论:根据|f (x )|=⎩⎪⎨⎪⎧f x,f x ≥0,-f x ,f x <0去掉绝对值符号.(2)利用等价不等式:|ax +b |≤c (c >0)⇔________; |ax +b |≥c (c >0)⇔__________.(3)两端同时平方:即运用移项法则,使不等式两边都变为非负数...,再平方,从而去掉绝对值符号.3.定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当______时,等号成立. 4.定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当__________时,等号成立.5.|x -a |的几何意义:数轴上表示数x 与a 的两点间的______.6.形如|x -a |+|x -b |≥c (a ≠b )与|x -a |+|x -b |≤c (a ≠b )的绝对值不等式的解法主要有三种:(1)运用绝对值的几何意义; (2)零点分区间讨论法;(3)构造分段函数,结合函数图像求解.7.重要绝对值不等式:||a |-|b ||≤|a ±b |≤________. 使用时(特别是求最值)要注意等号成立的条件,即 |a +b |=|a |+|b |⇔ab ≥0; |a -b |=|a |+|b |⇔ab ≤0;|a |-|b |=|a +b |⇔b (a +b )≤0; |a |-|b |=|a -b |⇔b (a -b )≥0;注:|a |-|b |=|a +b |⇔|a |=|a +b |+|b |⇔|(a +b )-b |=|a +b |+|b |⇔b (a +b )≤0.同理可得|a |-|b |=|a -b |⇔b (a -b )≥0.1.(2012天津高考)集合A ={ x ∈R |}|x -2|≤5中的最小整数为__________. 2.若存在实数x 满足|x -3|+|x -m |<5,则实数m 的取值范围为__________.3.设函数f (x )=|x +1|+|x -a |(a >0).若不等式f (x )≥5的解集为(-∞,-2]∪[3,+∞),则a 的值为__________.4.若不等式⎪⎪⎪⎪⎪⎪x +1x >|a -2|+1对于一切非零实数x 均成立,则实数a 的取值范围是__________.5.设函数f (x )=|2x +1|-|x -4|,f (x )>2的解集为__________;若不等式a >f (x )有解,则实数a 的取值范围是__________.一、含有一个绝对值的不等式的解法【例1】已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1},则a =__________;若⎪⎪⎪⎪⎪⎪fx -2f ⎝ ⎛⎭⎪⎫x 2≤k 恒成立,则k 的取值范围是__________. 方法提炼1.解含绝对值的不等式的关键是去掉绝对值符号.对于只含有一个绝对值的不等式,可先将其转化成形如|ax +b |≤c ,|ax +b |≥c 的形式,再根据绝对值的意义,去掉绝对值符号,转化为不含绝对值符号的不等式(或不等式组)求解;也可利用绝对值的几何意义或函数图像法求解.2.已知不等式的解集求字母的值,可先用字母表示解集,再与原解集对比即得字母的值.请做演练巩固提升1二、含有两个绝对值的不等式的解法【例2】 设函数f (x )=|x -1|+|x -a |,若a =-1,则不等式f (x )≥3的解集为__________;若f (x )≥2,则a 的取值范围是__________.方法提炼1.解含两个绝对值符号的不等式,可先将其转化为|x -a |+|x -b |≥c 的形式,对于这种绝对值符号里是一次式的不等式,一般有三种解法,分别是“零点划分法”“利用绝对值的几何意义法”和“利用函数图像法”.此外,有时还可采用平方法去绝对值,它只有在不等式两边均为正的情况下才能使用.2.绝对值不等式|x -a |≥c (c >0)表示数轴上到点a 的距离不小于c 的点的集合;反之,绝对值|x -a |<c (c >0)表示数轴上到点a 的距离小于c 的点的集合.3.“零点划分法”是解绝对值不等式的最基本方法,一般步骤是: (1)令每个绝对值符号里的代数式等于零,求出相应的根;(2)把这些根按由小到大进行排序,n 个根把数轴分为n +1个区间;(3)在各个区间上,去掉绝对值符号组成若干个不等式,解这些不等式,求出它们的解集;(4)这些不等式解集的并集就是原不等式的解集.请做演练巩固提升2三、利用绝对值的几何意义或含绝对值的函数图像解不等式【例3】 已知函数f (x )=|x -8|-|x -4|,则不等式|x -8|-|x -4|>2的解集为_______.方法提炼1.不等式|x -a |+|x -b |≥c 表示数轴上到两个定点a ,b 的距离之和不小于c 的点的集合;反之,不等式|x -a |+|x -b |<c 表示数轴上到两个定点a ,b 的距离之和小于c 的点的集合.2.构造形如f (x )=|x -a |+|x -b |的函数,通过去掉绝对值,将其转化成分段函数,利用其图像求解不等式,体现了函数与方程的思想.请做演练巩固提升3等价转化思想在解含绝对值不等式中的应用【典例】 已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,不等式f (x )≥3的解集为__________;(2)若f (x )≤|x -4|的解集包含[1,2],则a 的取值范围为__________. 解析:(1)当a =-3时,f (x )=⎩⎪⎨⎪⎧-2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4; 所以f (x )≥3的解集为{x |x ≤1}∪{x |x ≥4}. (2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |.当x∈[1,2]时,|x-4|-|x-2|≥|x+a|⇔4-x-(2-x)≥|x+a|⇔-2-a≤x≤2-a.由条件得-2-a≤1且2-a≥2,即-3≤a≤0.故满足条件的a的取值范围为[-3,0].答案:(1){x|x≤1或x≥4}(2)[-3,0]答题指导:1.本题第(1)问较简单,一般用零点划分法就可以转化,第(2)问容易犯直接求解f(x)≤|x-4|的解集的错误,应该是利用[1,2]是其解集而将绝对值先去掉再转化为[1,2]⊆[-2-a,2-a]这一问题,注意不要弄反.2.等价转化思想在数学中是一重要的数学思想方法之一,应用其思想的关键是强调“等价”两字,转化的目的是使问题简单化.1.设集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R}.若A⊆B,则实数a,b满足的绝对值不等式是__________.2.(2012陕西高考)若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是______________.3.对于x∈R,不等式|x+10|-|x-2|≥8的解集为________.4.设不等式|2x-1|<1的解集为M,则集合M=__________,若a,b∈M,则ab+1与a+b的大小关系是__________.参考答案基础梳理自测知识梳理1.绝对值符号2.(2)-c ≤ax +b ≤c ax +b ≤-c 或ax +b ≥c 3.ab ≥04.(a -b )(b -c )≥0 5.距离 7.|a |+|b | 基础自测1.-3 解析:∵|x -2|≤5, ∴-5≤x -2≤5,∴-3≤x ≤7,∴集合A 中的最小整数为-3.2.(-2,8) 解析:存在实数x 满足|x -3|+|x -m |<5⇔(|x -3|+|x -m |)min <5,即|m -3|<5,解得-2<m <8.3.2 解析:由题意,知f (-2)=f (3)=5,即1+|2+a |=4+|3-a |=5,解得a =2.4.(1,3) 解析:∵⎪⎪⎪⎪⎪⎪x +1x ≥2,∴|a -2|+1<2,即|a -2|<1,解得1<a <3.5.⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-7或x >53 a >-92解析:原不等式等价于⎩⎪⎨⎪⎧x ≤-12,-(2x +1)+(x -4)>2或⎩⎪⎨⎪⎧-12<x ≤4,(2x +1)+(x -4)>2或⎩⎪⎨⎪⎧x >4,(2x +1)-(x -4)>2.解得x <-7或53<x ≤4或x >4.所以原不等式的解集为{x |x <-7或x >53}.由题意知a >f (x )min ,又f (x )=⎩⎪⎨⎪⎧-x -5,x ≤-12,3x -3,-12<x ≤4,x +5,x >4.所以f (x )min =f ⎝ ⎛⎭⎪⎫-12=-92. 所以a >-92.考点探究突破【例1】 2 k ≥1 解析:由|ax +1|≤3得-4≤ax ≤2. 又f (x )≤3的解集为{x |-2≤x ≤1}, 所以当a ≤0时,不合题意.当a >0时,-4a ≤x ≤2a,得a =2.记h (x )=f (x )-2f ⎝ ⎛⎭⎪⎫x 2,则h (x )=⎩⎪⎨⎪⎧1,x ≤-1,-4x -3,-1<x <-12,-1,x ≥-12,所以|h (x )|≤1,因此k ≥1. 【例2】 ⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≤-32或x ≥32 (-∞,1]∪[3,+∞)解析:当a =-1时,f (x )=|x -1|+|x +1|,由f (x )≥3得|x -1|+|x +1|≥3,(方法一)由绝对值的几何意义知不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≤-32或x ≥32.(方法二)不等式可化为⎩⎪⎨⎪⎧x ≤-1,-2x ≥3或⎩⎪⎨⎪⎧-1<x ≤1,2≥3或⎩⎪⎨⎪⎧x >1,2x ≥3.所以不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≤-32或x ≥32.若a =1,f (x )=2|x -1|,不满足题设条件; 若a <1,f (x )=⎩⎪⎨⎪⎧-2x +a +1,x ≤a ,1-a ,a <x <1,2x -(a +1),x ≥1,f (x )的最小值为1-a ;若a >1,f (x )=⎩⎪⎨⎪⎧-2x +a +1,x ≤1,a -1,1<x <a ,2x -(a +1),x ≥a .f (x )的最小值为a -1.所以对于任意的x ∈R ,f (x )≥2的充要条件是|a -1|≥2,从而a 的取值范围为(-∞,1]∪[3,+∞).【例3】 {x |x <5} 解析:f (x )=⎩⎪⎨⎪⎧4,x ≤4,-2x +12,4<x ≤8,-4,x >8.图像如下:不等式|x -8|-|x -4|>2,即f (x )>2,由-2x +12=2得x =5.由函数f (x )的图像可知,原不等式的解集为{x |x <5}. 演练巩固提升1.|a -b |≥3 解析:由题意可得集合A ={x |a -1<x <a +1},集合B ={x |x <b -2,或x >b +2},又因为A ⊆B ,所以有a +1≤b -2,或b +2≤a -1,即a -b ≤-3,或a -b ≥3,即|a -b |≥3.2.-2≤a ≤4 解析:由绝对值不等式的几何意义可知,数轴上点x 到a 点与1点的距离的和小于等于3.由图可得-2≤a ≤4.3.{x |x ≥0} 解析:令y =|x +10|-|x -2|=⎩⎪⎨⎪⎧-12, x ≤-10,2x +8,-10<x <2,12, x ≥2.则可画出其函数图像如图所示:由图像可以观察出使y ≥8的x 的取值范围为[0,+∞). ∴|x +10|-|x -2|≥8的解集为{x |x ≥0}. 4.{x |0<x <1} ab +1>a +b解析:由|2x -1|<1,得-1<2x -1<1,解得0<x <1. 所以M ={x |0<x <1}.由a ,b ∈M ,得0<a <1,0<b <1.所以(ab +1)-(a +b )=(a -1)(b -1)>0. 故ab +1>a +b .。
文科科一轮复习资料选修4-5不等式选讲4-5-3
≥13(1+9)2=1030.
题型四 排序不等式的应用 例 4 设 a、b、c 都是正数,求证:bac+cba+acb≥a+b+c.
证明:不妨设 a≥b≥c>0, ∴ab≥ac≥bc,1c≥1b≥1a. 由排序原理,知 ab×1c+ac×1b+bc×1a≥ab×1b+ac×1a+ bc×1c,即acb+abc+bac≥a+b+c.
⑯a1bn+a2bn-1+…+anb1 ⑰a1bn+a2bn-1+…+anb1 ⑱ a1c1+a2c2+…+ancn ⑲a1b1+a2b2+…+anbn ⑳a1=a2=… =an 或 b1=b2=…=bn ○21 反序和 ○22 乱序和 ○23 顺序和
考点自测
1.f(x)=2 x+3 1-x的最大值为( )
2.用参数配方法讨论柯西不等式的一般情形:
n
n
n
∑ i=1a2i ·∑ i=1b2i ≥(∑i=1aibi)2
3.会用向量递归方法讨论排序不等式.
4.能利用平均值不等式,柯西不等式求一些特定函数的 极值.
说基础
课前预习读教材
考点梳理 1.平均值不等式 a1,a2,…an∈R+ a1+a2+n …+an≥①_____________≥a11+a12+1 …+a1n. 2.贝努利不等式 若 x∈R,且 x>-1,x≠0,n>1,n∈N,则(1+x)n>1 +②__________.
=4+(a+b+c+d)=5, ∴51+a2 a+1+b2b+1+c2 c+1+d2 d≥1. ∴1+a2a+1+b2b+1+c2 c+1+d2d≥15.
点评:①柯西不等式的一般结构为(a21+a22+…+a2n)(b21+b22 +…+b2n)≥(a1b1+a2b2+…+anbn)2,在利用柯西不等式证明不 等式时关键是正确构造左边的两个数组,从而利用题目的条件 正确解题.②使用柯西不等式时,既要注意它的数学意义,又 要注意它的外在形式,当一个式子与柯西不等式的左侧或右侧 具有一致形式时,就可以考虑使用柯西不等式对这个式子进行 放大或缩小.
高考数学(理科)一轮复习:选修4 选修4—5 不等式选讲
因为 ������ + ������ =|x|+
1
1 ������
≥2,要使对于一切非零实数 x, ������ + ������ >|a-2|+1 恒
1
成立, 则|a-2|+1<2,即 1<a<3.
关闭
C
解析 答案
选修4系列
知识梳理 考点自测
选修4—5
必备知识
不等式选讲
关键能力
-9-
1
2
3
4
关闭
(1)√ (2)√ (3)√ (4)× (5)√
答案
选修4系列
知识梳理 考点自测
选修4—5
必备知识
不等式选讲
关键能力
-7-
1
2
3
4
5
2.(2017江苏南通模拟)若|a-c|<|b|,则下列不等式正确的是( A.a<b+c B.a>c-b C.|a|>|b|-|c| D.|a|<|b|+|c|
)
关闭
|a|-|c|≤|a-c|<|b|,即|a|<|b|+|c|,故选D.
关闭
D
解析 答案
选修4系列
知识梳理 考点自测
选修4—5
必备知识
不等式选讲
关键能力
-8-
1
1 + ������
2
3
4
5
>|a-2|+1 对于一切非零实数x均成立,则实数a 3.若不等式 ������ 的取值范围是( ) A.2<a<3 B.1<a<2 C.1<a<3 D.1<a<4
《选修4-5--不等式选讲》知识点详解+例题+习题(含详细答案)
选修4-5 不等式选讲最新考纲:1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a+b|≤|a|+|b|(a,b∈R).(2)|a-b|≤|a-c|+|c-b|(a,b∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c,|ax+b|≥c,|x-c|+|x-b|≥a.3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法.1.含有绝对值的不等式的解法(1)|f(x)|>a(a>0)⇔f(x)>a或f(x)<-a;(2)|f(x)|<a(a>0)⇔-a<f(x)<a;(3)对形如|x-a|+|x-b|≤c,|x-a|+|x-b|≥c的不等式,可利用绝对值不等式的几何意义求解.2.含有绝对值的不等式的性质|a|-|b|≤|a±b|≤|a|+|b|.问题探究:不等式|a|-|b|≤|a±b|≤|a|+|b|中,“=”成立的条件分别是什么?提示:不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.3.基本不等式定理1:设a,b∈R,则a2+b2≥2ab.当且仅当a=b时,等号成立.定理2:如果a、b为正数,则错误!未定义书签。
≥错误!未定义书签。
,当且仅当a=b时,等号成立.定理3:如果a、b、c为正数,则错误!未定义书签。
≥3,abc,当且仅当a =b =c 时,等号成立. 定理4:(一般形式的算术—几何平均值不等式)如果a 1、a2、…、a n为n 个正数,则a 1+a 2+…+a n n≥错误!,当且仅当a 1=a 2=…=a n时,等号成立. 4.柯西不等式(1)柯西不等式的代数形式:设a,b ,c,d为实数,则(a 2+b 2)·(c 2+d2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)若ai ,b i(i∈N *)为实数,则(错误!错误!)(错误!未定义书签。
2019年高考文科数学选修4-5:不等式选讲
2019年高考文科数学选修4-5:不等式选讲1、已知函数. (1)解不等式;(2)已知,若恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)不等式可化为:①.当时,①式为,解得;当,①式为,解得;当时,①式为,无解.综上所述,不等式的解集为.(2)解:, 令, ()32f x x =+()41f x x <--()1,0m n m n +=>()()110x a f x a m n--+>≤a 51,42⎛⎫- ⎪⎝⎭100,3⎛⎤ ⎥⎝⎦()41f x x <--3214x x ++-<23x <-3214x x ---+<4253x -<<-213x -≤≤3214x x +-+<2132x -<≤1x >3214x x ++-<()41f x x <--51,42⎛⎫- ⎪⎝⎭()111124n mm n m n m n m n⎛⎫+=++=++ ⎪⎝⎭≥()()222,323242,322,x a x g x x a f x x a x x a x a x a x a ⎧++<-⎪⎪⎪=--=--+=--+-⎨⎪--->⎪⎪⎩≤≤时,,要使不等式恒成立,只需,即,实数取值范围是. 2.已知函数,. (1)当时,求不等式的解集;(2)设,且当时,都有,求的取值范围.【解析】解:(1)当时,,故不等式可化为:或或,解得:,所求解集为.……………………………………5分(2)当时,由有:,,,23x ∴=-()max 23g x a =+()max 243g x a =+≤1003a <≤∴100,3⎛⎤⎥⎝⎦30x k +≥不等式可变形为:,故对恒成立,即,解得,而,故.的取值范围是.………………3.已知函数()2f x x =-.(1)求不等式()51f x x --≤的解集;(2)若函数()()12g x f x a x =--的图像在1,2⎛⎫+∞ ⎪⎝⎭上与x 轴有3个不同的交点,求a 得取值范围.【解析】解:(1)由()51f x x --≤,得125x x -+-≤,∴212123515325x x x or or x x ><⎧⎧⎧⎨⎨⎨--⎩⎩⎩≤≤≤≤≤,解得14x -≤≤, 故不等式()51f x x --≤的解集为[]1,4-.…..5分(2)()()122,1112221122,12x x xh x f x x x x x x x⎧-+⎪⎪=-=--=⎨⎪+-<⎪⎩≥<,当112x <<时,()12222h x x x =+-=≥, 当且仅当12x x=即2x =时取等号,∴()min 2h x =.当1x ≥时,()122h x x x =-+递减,由()()120g x f x a x=--=得()h x a =, 又()1112h h ⎛⎫== ⎪⎝⎭,结合()h x的图像可得,()2,1a ∈.…..10分4.已知函数.(1)当时,已知,求的取值范围; (2)若的解集为或,求的值. 【答案】(1);(2).【解析】(1)因为,当且仅当时等号成立.所以时,,故.(2)由题知,当时,不等式的解集为,不合题意;()()30f x x x a a =++->4a =()7f x =x ()6f x ≥{4x x -≤}2x ≥a []3,4x ∈-1a =34347x x x x ++-+-+=≥()()340x x +-≤()7f x =34x -≤≤[]3,4x ∈-()()()()3233323a x x f x a x a x a x a ---⎧⎪=+-<<⎨⎪+-⎩≤≥36a +≥()6f x ≥R当时,不等式的解为或,即或,又因为的解集为或,所以. 5.已知,不等式的解集是.(1)求的值;(2)若存在实数解,求实数的取值范围.【答案】(1)由,得,即.当时,,因为不等式的解集是,所以,解得; 当时,,因为不等式的解集是,所以,无解. 所以.(2)因为,36a +<()6f x ≥3326x a x -⎧⎨--⎩≤≥236x ax a ⎧⎨+-⎩≥≥392x a x -⎧⎪⎨-⎪⎩≤≤32x aa x ⎧⎪⎨+⎪⎩≥≥()6f x ≥{4x x -≤}2x ≥1a =13ax -≤313ax --≤≤24ax -≤≤0a >24x a a-≤≤()3f x ≤{}12x x -≤≤2142aa⎧-=-⎪⎪⎨⎪=⎪⎩2a =0a <42x a a-≤≤()3f x ≤{}12x x -≤≤2241aa⎧-=⎪⎪⎨⎪=-⎪⎩2a =()()|21||21||(21)(21)|23333f x f x x x x x +--++--+==≥所以要使存在实数解,只需.解得或.所以实数的取值范围是.6、已知函数()1f x x x m =-+-.(1)当3m =时,求不等式()5f x ≥的解集;(2)若不等式()21f x m -≥对x ∈R 恒成立,求实数m 的取值范围.【解析】(1)当3m =时,原不等式可化为135x x -+-≥. 若1x ≤,则135x x -+-≥,即425x -≥,解得12x -≤; 若13x <<,则原不等式等价于25≥,不成立;若3x ≥,则135x x -+-≥,解得92x ≥.综上所述,原不等式的解集为:19|22x x x ⎧⎫-⎨⎬⎩⎭≤或≥.(2)由不等式的性质可知()1f x x x m =-+-1m -≥, 所以要使不等式()21f x m -≥恒成立,则121m m --≥,所以112m m --≤或121m m --≥,解得23m ≤,所以实数m 的取值范围是23m m ⎧⎫⎨⎬⎩⎭≤.()()3f x f x k +-<23k >23k >23k <-k 22(,)(,)33-∞-+∞7、已知函数,.(1)若关于的不等式的解集为,求实数的值;(2)若对于任意的恒成立,求实数的取值范围.【答案】解:(1)由,可得,所以,由题意得,所以.(2)若恒成立,则有恒成立,因为,当且仅当时取等号,所以.8、已知函数()3f x x x =+-. (1)解关于x 的不等式()5f x x -≥;(2)设(){},|m n y y f x ∈=,试比较4mn +与()2m n +的大小.【答案】(1)32,0()|||3|3,0323,3x x f x x x x x x -<⎧⎪=+-=⎨⎪->⎩≤≤从而得0325x x x <⎧⎨-+⎩≥或0335x x ⎧⎨+⎩≤≤≥或3235x x x >⎧⎨-+⎩≥,解之得23x -≤或 x ∈∅或8x ≥,所以不等式的解集为2(,][8,)3-∞-+∞. (2)由(1)易知()3f x ≥,所以3m ≥,3n ≥, 由于()()()()2422422m n mn m mn n m n +-+=-+-=--且3m ≥,3n ≥,所以20m ->,20n -<,即()()220m n --<, 所以()24m n mn +<+. 9、已知函数.(1)若,解不等式;(2)若不等式的解集为,,求的最小值.【答案】解:(1)函数.当,不等式为去绝对值,解得:或原不等式的解集为; (2)的解集为, .∵的解集为∴.∴,∴.(当且仅当即,时取等号)∴的最小值为2.10、已知函数. (1)求证:;(2)解不等式.【答案】(1)证明:∵,∴;(2)解:∵,所以原不等式等价于①; ②; ③; 综合上述,原不等式的解集为. 11、已知函数()1f x x x a =-+-. (1)若1a =-,解不等式()3f x ≥;()14f x x x =---()3f x ≤()29f x x x >--()14f x x x =---≤()()143x x ---=()3f x ≤()()()()3,125,143,4x f x x x x -<⎧⎪=-<⎨⎪⎩≤≥22113960x x x x x x <<⎧⎧⇒⎨⎨->----<⎩⎩21x ⇒-<<221414259340x x x x x x x <<⎧⎧⇒⎨⎨->----<⎩⎩≤≤141414x x x <⎧⇒⇒<⎨-<<⎩≤≤224439120x x x x x x ⎧⎧⇒⎨⎨>----<⎩⎩≥≥1434x x x <⎧⇒⇒∈∅⎨-<<⎩≤()2,4-(2)若x ∀∈R ,()3f x ≥,求实数a 的取值范围.【答案】(1)33,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U ;(2)(][),24,-∞-+∞U .【解析】(1)当1a =-时,()11f x x x =-++. 由()3f x ≥得113x x -++≥.当1x -≤时,不等式可化为113x x ---≥,即32x -≤, 此时不等式()3f x ≥的解集为3,2⎛⎤-∞- ⎥⎝⎦.当11x -<≤时,不等式可化为113x x -++≥,即23≥, 此时不等式()3f x ≥的解集为∅.当 1x >时,不等式可化为113x x -++≥,即32x ≥,此时不等式()3f x ≥的解集为3,2⎡⎫+∞⎪⎢⎣⎭.综上知不等式()3f x ≥的解集为33,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U .(2)方法一:∵()1113f x x x a x x a a =-+---+=-≥≥, ∴13a -≥或13a --≤,即4a ≥或 2a -≤. ∴a 的取值范围是(][),24,-∞-+∞U .方法二:若1a =,()21f x x =-,不满足题设条件.若1a <,()21,,1,1,21, 1.x a x a f x a a x x a x -++⎧⎪=-<<⎨⎪--⎩≤≥此时()f x 的最小值为1a -.若1a >,()21,1,1,1,21,.x a x f x a x a x a x a -++⎧⎪=-<<⎨⎪--⎩≤≥此时()f x 的最小值为1a -.所以x ∀∈R ,()3f x ≥的充要条件是13a -≥, 从而a 的取值范围是(][),24,-∞-+∞U .12、已知函数()1f x x x =+-.(1)若()|1|f x m -≥恒成立,求实数m 的最大值M ;(2)在(1)成立的条件下,正实数,,m n p 满足32m n p M ++=,求证: 3mn np pm ++≤.【答案】(1)2;(2)见解析.【解析】(1)由已知可得12,01,012(,1)1x x f x x x x ->⎧⎪=<⎨⎪-⎩≤≥,所以min ()1f x =, 由题意知,只需 ||11m -≤,解得111m --≤≤,02m ≤≤, 所以实数m 的最大值2M =. (2)证明: 3m n p ++=,2222() 2229m n p m n p mn np mp ∴++=+++++=,,,m n p 为正实数,∴由均值不等式,得22 2m n mn +≥(当且仅当m n =时取等号), 22 2n p np +≥(当且仅当n p =时取等号),222p m pm +≥(当且仅当p m=时取等号),222 m n p mn np pm ∴++++≥(当且仅当m n p ==时取等号),2222 222933()3m n p m n p mn np pm mn np pm ++=+++++=++∴≥,3mn np pm ∴++≤(当且仅当m n p ==时取等号).13、已知函数()2132f x x x =++-,且不等式()5f x ≤的解集为4355m n x x ⎧⎫-⎨⎬⎩⎭≤≤(其中,m n ∈R ). (1)求,m n 的值;(2)若()()2f x x m a a =--∈R 的图象恒在函数()232x ng x +=-的图象上方,求实数a 的取值范围.【答案】(1)1,2m n ==;(2)(),4-∞.【解析】(1)若12x ≤-,原不等式可化为21325x x ---+≤,解得45x -≥,即4152x --≤≤, 若1223x -<<,原不等式可化为21325x x +-+≤,解得2x -≥,即1223x -<<;若23x ≥,原不等式可化为21325x x ++-≤,解得65x ≤,即2635x ≤≤;综上所述,不等式21325x x ++-≤的解集为46,55⎡⎤-⎢⎥⎣⎦,所以1,2m n ==.(2)由(1)知1,2m n ==,因为()y f x =的图象恒在函数()y g x =的上方, 故()()0f x g x ->,所以213a x x <-++对任意x ∈R 成立.设()213h x x x =-++,则()31,35,3131,1x x h x x x x x ---⎧⎪=--<⎨⎪+>⎩≤≤.则()h x 在(),1-∞是减函数,在()1,+∞上是增函数, 所以,当时1x =,()h x 取得最小值4,故4a <时,函数()y f x =的图象恒在函数()y g x =的上方, 即实数a 的取值范围是(),4-∞.14、设函数()12f x x a x a=++-(x ∈R ,实数0a <). (1)若()502f >,求实数a 的取值范围; (2)求证:()f x .【答案】(1)解:∵0a <,∴115(0)||||2f a a a a =+-=-->,即25102a a ++>,解得2a <-或102a -<<.(2)证明:13,2111()|2|||,2113,a x a x a af x x a x x a x a a a x a x a a ⎧+--⎪⎪⎪=++-=---<<-⎨⎪⎪--+⎪⎩≥≤,当2a x -≥时,1()2a f x a --≥;当12a x a <<-时,1()2a f x a>--;当1x a ≤时,2()f x a a --≥.∴min 1()2a f x a =--=≥当且仅当12a a-=-即a =()f x . 15、设函数. (Ⅰ)解不等式;(Ⅱ),恒成立,求实数的取值范围.【答案】(Ⅰ),即, 即,,解得或,所以不等式的解集为.(Ⅱ), 故的最大值为,因为对于,使恒成立.所以,即,解得或,∴.()221f x x x =--+()0f x ≤x ∀∈R ()224f x m m -≤m ()0f x ≤221x x -+≤2244441x x x x -+++≤23830x x +-≥13x ≥3x -≤()0f x ≤133x x x ⎧⎫-⎨⎬⎩⎭≥或≤()=221f x x x --+=13,2131,223,2x x x x x x ⎧+<-⎪⎪⎪-+-⎨⎪-->⎪⎪⎩≤≤()f x 1522f ⎛⎫-= ⎪⎝⎭x ∀∈R ()224f x m m -≤25242m m +≥24850m m +-≥12m ≥52m -≤51,,22m ⎛⎤⎡⎫∈-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U。
2019版高考数学(理科 课标版)一轮复习题组训练:选修4-5 不等式选讲
选修4-5不等式选讲题组1不等式的性质和绝对值不等式1.[2015 山东,5,5分][理]不等式|x-1|-|x-5|<2的解集是()A.(-∞,4)B.(-∞,1)C.(1,4)D.(1,5)2.[2015重庆,16,5分][理]若函数f(x)=|x+1|+2|x-a|的最小值为5,则实数a=.3.[2014重庆,16,5分][理]若不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是.4.[2017全国卷Ⅰ,23,10分][理]已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.5.[2016全国卷Ⅰ,24,10分][理]已知函数f(x)=|x+1|-|2x-3|.(Ⅰ)在图1中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.图16.[2015 新课标全国Ⅰ,24,10分][理]已知函数f(x)=|x+1|-2|x-a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.7.[2014新课标全国Ⅱ,24,10分][理]设函数f(x)=|x+|+|x-a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.题组2不等式的证明8.[2016全国卷Ⅱ,24,10分][理]已知函数f(x)=|x-|+|x+|,M为不等式f(x)<2的解集. (Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.9.[2015 新课标全国Ⅱ,24,10分][理]设a,b,c,d均为正数,且a+b=c+d,证明:(Ⅰ)若ab>cd,则+>+;(Ⅱ)+>+是|a-b|<|c-d|的充要条件.10.[2013新课标全国Ⅱ,24,10分][理]设a,b,c均为正数,且a+b+c=1.证明:(Ⅰ)ab+bc+ac≤;(Ⅱ)++≥1.A组基础题1.[2018广东七校联考,23]已知函数f(x)=|x-a|-|2x-1|.(1)当a=2时,求f(x)+3≥0的解集;(2)当x∈[1,3]时,f(x)≤3恒成立,求a的取值范围.2.[2018湖北省八校第一次联考,23] 已知f(x)=|2x+1|+|x-1|.(1)求f(x)在[-1,1]上的最大值m及最小值n.(2)a,b∈R,设am+bn=1,求a2+b2的最小值.3.[2018广西桂林市、柳州市高三综合模拟,23]已知f(x)=|ax-1|,不等式f(x)≤3的解集是{x|-1≤x≤2}.(1)求a的值;(2)若)-)<k存在实数解,求实数k的取值范围.4.[2017郑州市高三第三次质量预测,23]已知函数f(x)=|x-5|-|x-2|.(1)若∃x∈R,使得f(x)≤m成立,求m的取值范围;(2)求不等式x2-8x+15+f(x)≤0的解集.B组提升题5.[2018湘东五校联考,23]已知函数f(x)=m-|x-1|-|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,求实数m的取值范围.6.[2018河南省中原名校高三第三次质量考评,23]已知函数f(x)=|x-m|+|x+2|(m∈R),g(x)=|2x-1|+3.(1)当m=1时,求不等式f(x)≤5的解集;(2)若对任意的x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数m的取值范围.7.[2017长春市高三第四次质量监测,23](1)已知函数f(x)=|x+1|+|x-a|(a>0),若不等式f(x)≥5的解集为{x|x≤-2或x≥3},求a的值;(2)已知a,b,c为正实数,且a+b+c=m,求证:++≥.8.[2017长沙市5月模拟,23]已知函数f(x)=(x+1)2.(1)证明: f(x)+|f(x)-2|≥2;+[f(x)]2的最小值.(2)当x≠-1时,求y=)答案1.A当x<1时,不等式可化为-(x-1)+(x-5)<2,即-4<2,显然成立,所以此时不等式的解集为(-∞,1);当1≤x≤5时,不等式可化为x-1+(x-5)<2,即2x-6<2,解得x<4,又1≤x≤5,所以此时不等式的解集为[1,4);当x>5时,不等式可化为(x-1)-(x-5)<2,即4<2,显然不成立,所以此时不等式无解.综上,不等式的解集为(-∞,4).故选A.2.-6或4当a=-1时,f(x)=3|x+1|≥0,不满足题意;当a<-1时,f(x)=--,,--,-,-,-,f(x)min=f(a)=-3a-1+2a=5,解得a=-6;当a>-1时,f(x)=--,-,-,-,-,,f(x)min=f(a)=-a+1+2a=5,解得a=4.3.[-1,]|2x-1|+|x+2|=|x-|+(|x-|+|x+2|)≥0+|(x-)-(x+2)|=,当且仅当x=时取等号,因此函数y=|2x-1|+|x+2|的最小值是.所以a2+a+2≤,即2a2+a-1≤0,解得-1≤a≤,即实数a的取值范围是[-1,].4.(1)当a=1时,不等式f(x)≥g(x)等价于x2-x+|x+1|+|x-1|-4≤0①.当x<-1时,①式化为x2-3x-4≤0,无解;当-1≤x≤1时,①式化为x2-x-2≤0,从而-1≤x≤1;当x>1时,①式化为x2+x-4≤0,从而1<x≤-.所以f(x)≥g(x)的解集为{x|-1≤x≤-}.(2)当x∈[-1,1]时,g(x)=2.所以f(x)≥g(x)的解集包含[-1,1],等价于当x∈[-1,1]时f(x)≥2.又f(x)在[-1,1]的最小值必为f(-1)与f(1)之一,所以f(-1)≥2且f 1)≥2,得-1≤a≤1.所以a的取值范围为[-1,1].5.(Ⅰ)由题意可得f(x)=-,-, -,-, -,,y=f(x)的图象如图D 2所示.图D 2(Ⅱ)由f(x)的表达式及图象知,当f(x)=1时,可得x=1或x=3; 当f(x)=-1时,可得x=或x=5.故f(x)>1的解集为{x|1<x<3};f(x)<-1的解集为{x|x<或x>5}.所以|f(x)|>1的解集为{x|x<或1<x<3或x>5}.6.(Ⅰ)当a=1时, f(x)>1化为|x+1|-2|x-1|-1>0.当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得<x<1;当x≥1时,不等式化为-x+2>0,解得1≤x<2.所以f(x)>1的解集为{x|<x<2}.(Ⅱ)由题设可得f(x)=--,-,-,-,-,所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A(-,0),B(2a+1,0),C(a,a+1),△ABC的面积为(a+1)2.由题设得(a+1)2>6,故a>2.所以a的取值范围为(2,+∞).7.(Ⅰ)由a>0,有f(x)=|x+|+|x-a|≥|x+-(x-a)|=+a≥2.所以f(x)≥2.(Ⅱ)f(3)=|3+|+|3-a|.当a>3时,f(3)=a+,由f(3)<5得3<a<.当0<a≤3时,f(3)=6-a+,由f(3)<5得<a≤3.综上,a的取值范围是(,).8.(Ⅰ)由题意可得f(x)=-,-, ,-, ,当x≤-时,由f(x)<2得-2x<2,解得x>-1,所以-1<x≤-;当-<x<时,f(x)<2恒成立;当x≥时,由f(x)<2得2x<2,解得x<1,所以≤x<1.所以f(x)<2的解集M={x|-1<x<1}.(Ⅱ)由(Ⅰ)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)(1-b2)<0.因此|a+b|<|1+ab|.9.(Ⅰ)因为(+)2=a+b+2,(+)2=c+d+2,由题设a+b=c+d,ab>cd得(+)2>(+)2.因此+>+.(Ⅱ)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(Ⅰ)得+>+.②若+>+,则(+)2>(+)2,即a+b+2>c+d+2.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,+>+是|a-b|<|c-d|的充要条件. 10.(Ⅰ)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得a2+b2+c2≥ab+bc+ca.由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(Ⅱ)因为+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2 a+b+c),即++≥a+b+c.所以++≥1.A组基础题1.(1)当a=2时,由f(x)≥-3,可得|x-2|-|2x-1|≥-3,∴,---或,---或,---,解得-4≤x<或≤x<2或x=2.综上,当a=2时,不等式f(x)+3≥0的解集为{x|-4≤x≤2}.(2)当x∈[1,3]时,f(x)≤3恒成立,即|x-a|≤3+|2x-1|=2x+2.故-2x-2≤x-a≤2x+2,即-3x-2≤-a≤x+2, ∴-x-2≤a≤3x+2对x∈[1,3]恒成立.∴a∈[-3,5].2.(1)∵f(x)=,,,-, -,-∴当x∈[-1,1]时,f(x)max=3,f(x)min=,即m=3,n=. (2)∵am+bn=3a+b=1,∴a2+b2=)) ))≥=,∴a2+b2的最小值为.3.(1)由|ax-1|≤3,得-3≤ax-1≤3,即-2≤ax≤4,当a>0时,-≤x≤,所以--,,解得a=2;当a<0时,≤x≤-,所以-,-无解.所以a=2.(2)因为)-)=-≥--) =,所以要使)-)<k存在实数解,只需k>,所以实数k的取值范围是(,+∞).4.(1)f(x)=|x-5|-|x-2|=,, -,, -,当2<x<5时,-3<7-2x<3,所以-3≤f(x)≤3.所以m的取值范围是[-3,+∞).(2)原不等式等价于-f(x)≥x2-8x+15,由(1)可知,当x≤2时,-f(x)≥x2-8x+15的解集为空集; 当2<x<5时,-f(x)≥x2-8x+15的解集为{x|5-≤x<5}; 当x≥5时,-f(x)≥x2-8x+15的解集为{x|5≤x≤6}.综上,原不等式的解集为{x|5-≤x≤6}.B组提升题5.(1)当m=5时,f(x)=-), -), -),由f(x)>2得不等式的解集为{x|-<x<}.(2)因为二次函数y=x2+2x+3=(x+1)2+2在x=-1处取得最小值2,f(x)=-),--),-)在x=-1处取得最大值m-2,所以要使二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,只需m-2≥2,即m≥4,所以实数m的取值范围为[4,+∞).6.(1)当m=1时,f(x)=|x-1|+|x+2|,①当x≤-2时,f(x)=-2x-1,由-2x-1≤5,解得x≥-3,所以-3≤x≤-2;②当-2<x<1时,f(x)=1-x+x+2=3≤5恒成立,所以-2<x<1;③当x≥1时,f(x)=2x+1,由2x+1≤5,解得x≤2,所以1≤x≤2.综上所述,不等式f(x)≤5的解集为[-3,2].(2)若对任意的x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,设A={y|y=f(x)},B={y|y=g(x)},则A⊆B,因为f(x)=|x-m|+|x+2|≥|(x-m)-(x+2)|=|m+2|,g(x)=|2x-1|+3≥3,所以|m+2|≥3,解得m≥1或m≤-5,因此,实数m的取值范围为(-∞,-5]∪[1,+∞).7.(1)因为a>0,所以f(x)=|x+1|+|x-a|=--,-,,-, -,又不等式f(x)≥5的解集为{x|x≤-2或x≥3},解得a=2.(2)++=) )==≥(当且仅当a=b=c=时,取等号).8.(1)∵f(x)=(x+1)2≥0,∴f (x )+|f (x )-2|=|f (x )|+|2-f (x )|≥|f (x )+[2-f (x )]|=|2|=2. (2)当x ≠-1时,f (x )=(x+1)2>0,∴y=)+[f (x )]2=)+)+[f (x )]2≥3·)·)· )=,当且仅当)=)=[f (x )]2时取等号,即x=-1± 时取等号. ∴y=)+[f (x )]2的最小值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)放缩法的注意事项: 12 3 12 ①舍去或加上一些项,如(a+2) +4>(a+2) ; 1 1 1 1 1 2 ②将分子或分母放大(缩小),如k2< ,k2> , < , k k - 1 kk+1 k k+ k-1 1 2 > (k∈N*,k>1)等. k k+ k+1 ③放大或缩小时注意要适当,必须目标明确,合情合理,恰到好处,且不可 放缩过大或过小,谨慎地添或减是放缩法的基本策略.
1.下列结论正确的个数为 导学号 58533693 ( C ) (1)用反证法证明命题“a、b、c 全为 0”时假设为“a、b、c 全不为 0”. (2)若实数 x、y 适合不等式 xy>1,x+y>-2,则 x>0,y>0. x+2y (3)若 >1,则 x+2y>x-y. x-y (4)|a+b|+|a-b|≥|2a|. A.0 C.2 B.1 D.3
选考内容
选修4-5 不等式选讲
第二讲 不等式的证明与柯西不等式
1 2
知 识 梳 理
考 点 突 破
知 识 梳 理
1.均值不等式
2ab 定理 1:设 a、b∈R,则 a2+b2≥________. 当且仅当 a=b 时,等号成立.
a+b ab ,当且仅当 a=b 时,等号成 定理 2:如果 a、b 为正数,则 2 ≥________ 立.
n n n
bn an(当 ai=0 时,约定 bi=0,i=1,2,„,n)时等号成立. (3)柯西不等式的向量形式:设 α、β 为平面上的两个向量,则|α||β|≥|α· β|,当 且仅当 α,β 共线时等号成立.
• 3.不等式的证明方法 反证法 放缩法 • 证明不等式常用的方法有比较法、综合法、分析法、 ________、________等.
c b +(b+ c)≥3+2+2+2=9. 3 1 3 1 1 1 1 1 1 方法二:a+b+c =(a+b+ c)(a+b+c)≥3 abc· abc=9,当 a=b=c 时, 等号成立,故选 C.
n≥m 4 .若 m = a + 2b , n = a + b2 + 1 ,则 m 与 n 的大小关系为 __________.
[ 证明]
1 1 ∵0<xi<1,∴ >x ,其中 i=1,2,3,„,n, xi-x3 i i
1 1 1 1 1 1 1 1 x2 x3 ∴ + 3+ 3+„+ 3 > + + + „ + ≥(1 + + + „ xn x2 x3 x1 x1 x1-x3 x - x x - x x - x 1 2 2 3 3 n n x1 xn-1 x1 x3 x1 xn xn +x )+(x +1+x +„x )+„+(x +„+ x +1) n n 1 2 2 2 x n -1 x2 x3 x1 x2 xn x1 x3 xn =n+x +x +„+x +x +x +„+x +„+x +x +„+ x n n n 1 1 1 2 2 2 =n+2[(n-1)+(n-2)+…+1] =n2≥4(n≥2) 1 1 1 ∴ + 3+„+ 3>4. x1-x3 x - x x - x 1 2 2 n n
3 a+b+c abc ,当且仅当 a=b=c 时, 定理 3:如果 a、b、c 为正数,则 3 ≥________
等号成立. 定理 4: (一般形式的算术-几何平均不等式)如果 a1、 a2、 „、 an 为 n 个正数, a1+a2+„+an a1a2„an ,当且仅当 a =a =„=a 时,等号成立. 则 ≥ ____________ 1 2 n n
• [解析] (1)(3)不正确,(2)(4)正确,故选C.
2. 若 x、 y∈R 且满足 x+3y=2, 则 3x+27y+1 的最小值是 导学号 58533694 ( D )
3
A.3 9 C.6
B.1+2 2 D.7
[ 解析]
3x+27y+1=3x+33y+1≥2 3x· 33y+1=2 32+1=7,故选 D.
1+2 2+3 3+4 n+n+1 s< 2 + 2 + 2 +„+ 2 1 1 =2[3+5+7+…+(2n+1)] =2n(n+2). 1 1 ∴2n(n+1)<s<2n(n+2).
• 放缩法是不等式证明的基本方法,在不等式证明中几乎处 处存在. • (1)放缩法证明不等式时,常见的放缩依据或技巧主要有: ①不等式的传递性;②等量加不等量为不等量;③同分子 (母)异分母(子)的两个分式大小的比较.缩小分母、扩大 分子,分式值增大;缩小分子,扩大分母,分式值减小; 全量不少于部分;每一次缩小和变小,但需大于所求;每 一次扩大其和变大,但需小于所求,即不能放缩不够或放 缩过头,同时放缩有时需便于求和.
导学号 58533696
• [解析] ∵n-m=a+b2+1-a-2b=b2-2b+1=(b- 1)2≥0,∴n≥m.
5.(2014· 陕西)设 a、b、m、n∈R,且 a2+b2=5,ma+nb=5,则 m2+n2的
5 最小值为________. 导学号 58533697
[ 解析]
由柯西不等式,得(a2+b2)(m2+n2)≥(am+bn)2,即 5(m2+n2)≥25.
1 1 1 3 .已知 a 、 b 、 c 是正实数,且 a + b + c = 1 ,则 a + b + c 的最小值为 导学号 58533695 ( C ) A.3 C.9 B.6 D.12
[ 解析]
1 1 1 a+b+c a+b+c a+b+c b a c a 方法一: =3+(a+b)+(a+c ) a+b+c = a + b + c
∴m2+n2≥5,当且仅当 an=bm 时,等号成立. ∴ m2+n2的最小值为 5.
考 点 突 破
• 考点1 放缩法证明不等式
1 设 s= 1×2+ 2×3+ 3×4+„+ nn+1,求证:2n(n+1)<s 1 <2n(n+2). 导学号 5851×1 + 2×2 + 3×3 + „ + n×n = 1 + 2 + 3 + „ + n = 2 n(n
n
2.柯西不等式 (1)设 a、b、c、d 均为实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当 ad= bc 时等号成立. (2)若 b1 b2 2 2 2 ai、bi(i∈N+)为实数,则(∑ai )(∑bi )≥(∑aibi) ,当且仅当a =a =„= 1 2 i=1 i=1 i=1
• 〔变式训练 1〕
(2018· 河南洛阳模拟)有小于 1 的 n(n≥2)个正数 x1,x2,x3,„,xn,且 x1+ x2+x3+„+xn=1. 导学号 58533699 1 1 1 1 求证: + 3+ 3+„+ 3>4. x1-x3 x - x x - x x - x 1 2 2 3 3 n n