高考数学模拟复习试卷试题模拟卷2171 3
模拟高考数学考试题及答案
模拟高考数学考试题及答案尊敬的同学们:为了帮助大家更好地备战高考,提升数学应试能力,我为大家准备了一套模拟高考数学考试题及答案。
本套题目分为选择题、填空题、解答题三个部分,涵盖了高考数学各个重要知识点。
希望通过认真解答,大家能够进一步熟悉考试题型和提高解题技巧。
一、选择题(每小题3分,共30分)1. 若函数 f(x) = 2x^2 - 5x + k 在直线 y = x - 1 上有且只有一个交点,则实数 k 的取值范围是:A. (-∞, -1)B. (-∞, 1)C. (1, ∞)D. (1, 9)2. 若 2^x + 2^(1/x) = 3,则 x 的值是:A. 1B. 2C. 3D. 43. 已知集合 A = {x | 0 < x < 1},B = {y | y = 2 - x},则方程 x^2 - xy + y^2 - 1 = 0 的所有解在 A 与 B 的交集中的个数是:A. 无穷多个B. 5C. 4D. 3...(题目继续,请根据需要增添题目数量)二、填空题(每小题4分,共40分)1. 设 a、b 是正整数,且 a^2 - b^2 = 189,其中 a - b 的值为 __ 。
2. 已知等差数列 {an} 的前 n 项和为 Sn = 3n^2 - 3n,则 a1 的值为__ 。
3. 已知函数 f(x) = x^3 - x^2 + bx + c,其中 f(0) = -2,f(1) = 0,则 b + c 的值为 __ 。
...(题目继续,请根据需要增添题目数量)三、解答题(每小题10分,共60分)1. 已知函数 f(x) = ax^2 + bx + c,其中 a > 0。
若对于任意的实数 x,都有f(x) ≥ 0,则关于参数 a、b、c 的条件是什么?解:2. 某城市发生交通事故,事故车辆的速度与事故发生时间的关系如下:v = -0.02t^2 + 0.4t + 30,其中 v 表示速度(km/h),t 表示事故发生时间(s)。
高三数学模拟试题及答案
高三数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = 2x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:C2. 求下列数列的通项公式:数列:1, 1/2, 1/3, 1/4, ...A. a_n = nB. a_n = 1/nC. a_n = n^2D. a_n = 1/(n+1)答案:B3. 已知圆x^2 + y^2 = 9,点P(1, 2),求点P到圆心的距离。
A. 2B. 3C. 4D. 5答案:C4. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的夹角θ。
A. 30°B. 45°C. 60°D. 90°答案:B5. 已知函数y = x^3 - 3x^2 + 4x,求导数y'。
A. 3x^2 - 6x + 4B. 3x^2 - 6x + 5C. 3x^2 - 6x + 3D. 3x^2 - 6x + 2答案:A6. 已知等差数列的第5项为15,第8项为25,求公差d。
A. 2B. 3C. 4D. 5答案:B7. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,求三角形ABC的面积。
A. 6B. 9C. 12D. 15答案:A8. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。
A. √2B. √3C. 2D. 1答案:A9. 已知复数z = 1 + i,求z的共轭复数。
A. 1 - iB. 1 + iC. -1 + iD. -1 - i答案:A10. 已知函数y = x^2 - 6x + 9,求函数的最小值。
A. 0B. 3C. 6D. 9答案:A二、填空题(本题共5小题,每小题4分,共20分。
)11. 已知函数f(x) = x^3 - 3x + 1,求f''(x)的值。
高考数学模拟考试试卷.doc
高考数学模拟考试试卷理科数学一、选择题:(每小题5分,共50分)1.设复数z 满足关系式i z z +=+2,那么z 等于 A.i +-43 B.i -43 C.i --43 D.i +432.已知等差数列}{n a 中,1697=+a a ,14=a ,则16a 的值是A.15B.22C.31D.64 3.若命题p :B A x ⋃∈,则p ⌝是A.B x A x ∉∉且B.B x A x ∉∉或C.B A x ⋂∉D.B A x ⋂∈4.一植物园参观路径如右图所示,若要全部参观并且路线不重复,则不同 的参观路线种数共有 A. 6种B. 8种C. 36种D. 48种5.已知空间直角坐标系O xyz -中有一点)2,1,1(--A ,点B 是xOy 平面内的直线 1x y +=上的动点,则,A B 两点的最短距离是B. C.3 D.1726.若不等式na nn )1(2)1(1-+<-+对任意正整数n 恒成立,则实数a 的取值范围是A. )1,2[-B. )1,2(-C. )1,25[-D. )1,25(- 7.点),(b a M 在由不等式组⎪⎩⎪⎨⎧≤+≥≥200y x y x 确定的平面区域内,则点),(b a b a N -+所在平面区域的面积是A. 1B. 2C. 4D.88.如图,三棱锥ABC P -中,⊥PA 平面ABC ,BC AB ⊥,1==AB PA ,2=BC ,则三棱锥ABC P -的外接球表面积为A. π4B. π3C. π2D. π9.设M 是ABC ∆内任一点,且,30,320=∠=⋅BAC AC AB 设MAB MAC MBC ∆∆∆,,的面积分别为z y x ,,,且21=z ,则在平面直角中坐标系中,以,x y 为坐标的点),(y x 的轨迹图形是10.对于集合P 、Q , 定义},|{Q x P x x Q P ∉∈=-且,()()P Q P Q Q P ⊕=--,设集合},4|{2R x x x y y A ∈-==,},3|{R x y y B x∈-==,则A B ⊕等于 A. (]4,0- B. [)4,0- C. ()[),40,-∞-+∞ D. (](),40,-∞-+∞二、填空题(每小题5分,共25分)11.如图所示两个带指针的转盘,每个转盘被分成5个区域,指针落在5个区域的可能性相等,每个区域 内标有一个数字,则两个指针同时落在奇数所在区 域内的概率为 .12.函数x x x f cos 2)(+=在⎥⎦⎤⎢⎣⎡π2,0上的最大值为 .13.设121112084)3()3()4()1(a x a x a x x +++++=++ ,则=++++12420a a a a .14.点P 是双曲线)0,0(1:22221>>=-b a by a x C 和圆22222:b a y x C +=+的一个交点,且12212F PF F PF ∠=∠,其中21,F F 是双曲线1C 的两个焦点,则双曲线1C 的离心率为 。
高三数学模拟试题含答案
高三数学模拟试题含答案第一题:计算题已知 a = 3,b = 5,c = 7,d = 9,请计算以下表达式的值,并给出计算过程。
1) x = a + b × c - d2) y = (a + b) × c - d3) z = a + (b × c - d)解答:1) x = 3 + 5 × 7 - 9 = 3 + 35 - 9 = 292) y = (3 + 5) × 7 - 9 = 8 × 7 - 9 = 56 - 9 = 473) z = 3 + (5 × 7 - 9) = 3 + (35 - 9) = 3 + 26 = 29第二题:选择题在下面的选项中,选择一个正确答案。
1) 二次函数 y = ax^2 + bx + c 的图像开口方向与参数 a 的关系是:A. a > 0,开口向上B. a > 0,开口向下C. a < 0,开口向上D. a < 0,开口向下解答:B. a > 0,开口向下第三题:解方程请求解以下方程,并给出解的步骤。
1) 2x - 5 = 3x + 12) x^2 - 4x + 3 = 0解答:1) 2x - 5 = 3x + 1移项得:2x - 3x = 1 + 5化简得:-x = 6解得:x = -62) x^2 - 4x + 3 = 0因为该方程无法直接分解成两个一次因式相乘的形式,因此使用求根公式:x = (-b ± √(b^2 - 4ac)) / 2a代入 a = 1,b = -4,c = 3,得:x = (-(-4) ± √((-4)^2 - 4 × 1 × 3)) / 2 × 1化简得:x = (4 ± √(16 - 12)) / 2计算得:x = (4 ± √4) / 2化简得:x = (4 ± 2) / 2分解得:x1 = (4 + 2) / 2 = 3x2 = (4 - 2) / 2 = 1因此方程的解为 x1 = 3,x2 = 1第四题:证明请证明勾股定理,即直角三角形中,直角边平方和等于斜边平方。
高考数学模拟复习试卷试题模拟卷21113
高考模拟复习试卷试题模拟卷【高频考点解读】 1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义. 【热点题型】题型一平面向量的有关概念 【例1】给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c. 其中正确命题的序号是()A .②③B .②④C .③④D .②③④【提分秘籍】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a|的关系:a|a|是与a 同方向的单位向量.【举一反三】 给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0 (λ为实数),则λ必为零;④已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为() A .1 B .2 C .3 D .4解析 ①错误.两向量共线要看其方向而不是起点与终点.②正确.因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误.当a =0时,不论λ为何值,λa =0.④错误.当λ=μ=0时,λa =μb ,此时,a 与b 可以是任意向量. 答案 C题型二 平面向量的线性运算【例2】 (1)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a·b =0,|a|=1,|b|=2,则AD →=() A.13a -13b B.23a -23b C.35a -35b D.45a -45b(2)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.解析 (1)∵a·b =0,∴∠ACB =90°,∴AB =5,CD =255, ∴BD =55,AD =455,∴AD ∶BD =4∶1. ∴AD →=45AB →=45(CB →-CA →)=45a -45b. (2)因为ABCD 为平行四边形, 所以AB →+AD →=AC →=2AO →, 已知AB →+AD →=λAO →,故λ=2.答案 (1)D(2)2 【提分秘籍】(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【举一反三】(1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=()A .a -12b B.12a -b C .a +12b D.12a +b(2)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则()A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0解析 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a.(2)由题意知:AD →=FE →,BE →=DF →,CF →=ED →,而FE →+ED →+DF →=0,∴AD →+BE →+CF →=0. 答案 (1)D(2)A题型三共线向量定理的应用【例3】设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b).求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.【提分秘籍】(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.【举一反三】(1)已知向量i 与j 不共线,且AB →=i +mj ,AD →=ni +j.若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是()A .m +n =1B .m +n =-1C .mn =1D .mn =-1(2)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.解析 (1)由A ,B ,D 共线可设AB →=λAD →,于是有i +mj =λ(ni +j)=λni +λj.又i ,j 不共线,因此⎩⎪⎨⎪⎧λn =1,λ=m , 即有mn =1.(2)设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b),PQ →=OQ →-OP →=nb -ma ,PG →=OG →-OP →=⎝⎛⎭⎫13-m a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,即nb -ma =λ⎝⎛⎭⎫13-m a +13λb ,从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ得1n +1m =3.答案 (1)C(2)3 【高考风向标】1.【高考安徽,文15】ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB 2=→,b a AC+=→2,则下列结论中正确的是.(写出所有正确结论得序号)①a 为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4(。
高考专题高三数学(文科)仿真模拟试题 .docx
高中数学学习材料唐玲出品高三数学(文科)仿真模拟试题5.20第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知11abi i=-+,其中,a b 是实数,i 是虚数单位,则||a bi -= A .3 B .2 C .5 D .5 2. 已知集合2{|20}M x x x =->,22{|1}N x x y =+=,则MN =A .[1,2)-B .(0,1)C .(0,1]D .∅3. 某校共有高一、高二、高三学生1290人,其中高一480人,高二比高三多30人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生96人,则该样本中的高三学生人数为A .84B .78C .81D .96 4. 函数11()2xy =-的值域为A .[0,)+∞B .(0,1)C .[0,1)D .[0,1] 5. 已知MOD 函数是一个求余函数,其格式为(,)MOD n m ,其结果为n 除以m 的余数,例如(8,3)2MOD =. 右面是一个算法的程序框图,开始 输入n2i =(,)0?MOD n i =输出i是当输入的值为25时,则输出的结果为 A .4 B .5 C .6 D .76. 已知圆22:440C x y x y +--=与x 轴相交于,A B 两点,则弦AB 所对的圆心角的大小为 A .6πB .3πC .2π D .23π 7.“01m ≤≤”是“函数()sin 1f x x m =+-有零点”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8. 已知函数()2sin(2)(||)2f x x πϕϕ=+<的图象过点(0,3),则()f x 的图象的一个对称中心是A .(,0)3π-B .(,0)6π-C .(,0)6πD .(,0)4π9. 设,x y 满足约束条件2311x x y y x ≥⎧⎪-≥⎨⎪≥+⎩,则下列不等式恒成立的是A .3x ≥B .4y ≥C .280x y +-≥D .210x y -+≥10. 如果函数()y f x =在区间I 上是增函数,而函数()f x y x=在区间I 上是减函数,那么称函数()y f x =是区间I 上的“缓增函数”,区间I 叫做“缓增区间”,若函213()22f x x x =-+是区间I 上的“缓增函数”,则其“缓增区间”I 为A .[1)+∞,B .[0,3]C .[0]1,D .[1,3]第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11. 已知不共线的平面向量a ,b 满足(2,2)a =-,()()a b a b +⊥-,那么||b = ;12. 已知函数22,0,()|log |,0,x x f x x x ⎧≤=⎨>⎩则((1))f f -= ;13. 已知实数,x y 满足221xy+=,则x y +的最大值是;14. 某三棱锥的三视图如图所示,该三棱锥的体积是4644 正(主)视图侧(左)视图44;15. 已知双曲线22221(0,0)x y a b a b -=>>的右焦点为F ,过F 作斜率为1-的直线交双曲线的渐近线于点P ,点P 在第一象限,O 为坐标原点,若OFP ∆的面积为228a b +,则该双曲线的离心率为 .三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16. (本小题满分12分)某区工商局、消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的群众中随机抽取120名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],得到的频率分布直方图如图所示.(Ⅰ)若电视台记者要从抽取的群众中选1人进行采访,求被采访人恰好在第2组或第4组的概率; (Ⅱ)已知第1组群众中男性有2人, 组织方要从第1组中随机抽取3名群 众组成维权志愿者服务队,求至少 有两名女性的概率.17.(本小题满分12分)已知向量2(sin,cos )33x x a k =,(cos ,)3xb k =-,实数k 为大于零的常数,函数()f x a b =⋅,R x ∈,且函数()f x 的最大值为212-. (Ⅰ)求k 的值;(Ⅱ)在ABC ∆中,,,a b c 分别为内角,,A B C 所对的边,若2A ππ<<,()0f A =,且年龄0.0050.010.020.03 m20 30 40 50 60 70 —频率 组距22b =,210a =,求AB AC ⋅的值.18.(本小题满分12分)如图,在正四棱台1111ABCD A B C D -中,11A B a =,2AB a =,12AA a =,E 、F 分别是AD 、AB 的中点.(Ⅰ)求证:平面11EFB D ∥平面1BDC ; (Ⅱ)求证:1A C ⊥平面1BDC .注:用一个平行于正四棱锥底面的平面去截该棱锥, 底面与截面之间的部分叫做正四棱台. 19.(本小题满分12分)设{}n a 是等差数列,{}n b 是各项都为正整数的等比数列,且111a b ==,13250a b =,82345a b a a +=++,*N n ∈.(Ⅰ)求{}n a ,{}n b 的通项公式;(Ⅱ)若数列{}n d 满足218log 11()2n b n n d d +-++=(*N n ∈),且116d =,试求{}n d 的通项公式及其前2n 项和2n S .20.(本小题满分13分)已知抛物线1:C 22(0)y px p =>的焦点为F ,抛物线上存在一点G 到焦点的距离为3,且点G 在圆:C 229x y +=上.(Ⅰ)求抛物线1C 的方程;(Ⅱ)已知椭圆2:C 2222 1 (0)x y m n m n +=>>的一个焦点与抛物线1C 的焦点重合,且离心率为12.直线:4l y kx =-交椭圆2C 于A 、B 两个不同的点,若原点O 在以线段AB 为直径的圆的外部,求k 的取值范围.21.(本小题满分14分)C1BED FAB1A1D 1C已知函数()1ln af x x x=--(R a ∈). (Ⅰ)当1a =时,求函数()f x 的图象在点11(,())22f 处的切线方程;(Ⅱ)当0a ≥时,记函数21()(12)1()2ax ax a x f x xΓ=+-+-+,试求()x Γ的单调递减区间;(Ⅲ)设函数2()32h a a a λ=-(其中λ为常数),若函数()f x 在区间(0,2)上不存在极值,求()h a 的最大值.高三数学(文科)参考答案及评分标准5.20一、选择题:本大题共10小题.每小题5分,共50分. D C B C B C A B C D二、填空题:本大题共5小题,每小题5分,共25分.11.22 12. 1 13. 2- 14.32 15.103三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分)解:(Ⅰ)设第2组[30,40)的频率为2f21(0.0050.010.020.03)100.35f =-+++⨯=; ………………………………………3分第4组的频率为0.02100.2⨯=所以被采访人恰好在第2组或第4组的概率为1P =0.350.20.55+= ……………………………………………………………………6分(Ⅱ)设第1组[30,40)的频数1n ,则11200.005106n =⨯⨯= ……………………7分记第1组中的男性为12,,x x ,女性为1234,,,y y y y随机抽取3名群众的基本事件是:121(,,)x x y ,122(,,)x x y ,123(,,)x x y ,124(,,)x x y121(,,)x y y ,132(,,)x y y ,113(,,)x y y ,141(,,)x y y ,124(,,)x y y ,134(,,)x y y , 221(,,)x y y ,232(,,)x y y ,213(,,)x y y ,241(,,)x y y ,224(,,)x y y ,234(,,)x y y , 123(,,)y y y ,124(,,)y y y ,234(,,)y y y ,134(,,)y y y 共20种 ……………………10分其中至少有两名女性的基本事件是:121(,,)x y y ,132(,,)x y y ,113(,,)x y y ,141(,,)x y y ,124(,,)x y y ,134(,,)x y y ,221(,,)x y y ,232(,,)x y y ,213(,,)x y y ,241(,,)x y y ,224(,,)x y y ,234(,,)x y y ,123(,,)y y y ,124(,,)y y y ,234(,,)y y y ,134(,,)y y y 共16种所以至少有两名女性的概率为2164205P ==………………………………………………12分 17.(本小题满分12分) 解:(Ⅰ)由已知2()(sin ,cos )(cos ,)333x x xf x a b k k =⋅=⋅-221cos12223sin cos cos sin (sin cos )3332322332x x x x x k x x k k k k k+=-=-=--2222222(sin cos )sin()2232322342k x x k k x k π=--=-- ………………………5分因为R x ∈,所以()f x 的最大值为(21)2122k --=,则1k = …………………6分 (Ⅱ)由(Ⅰ)知,221()sin()2342x f x π=--,所以221()sin()02342A f A π=--= 化简得22sin()342A π-=因为2A ππ<<,所以25123412A πππ<-<则2344A ππ-=,解得34A π= ……………………………………………………………8分 所以22222840cos 22222b c a c A bc c+-+-=-==⨯ 化简得24320c c +-=,则4c =…………………………………………………………10分所以32cos422()842AB AC AB AC π⋅==⨯⨯-=-……………………………12分 18.(本小题满分12分) 证明:(Ⅰ)连接11A C ,AC ,分别交11,,B D EF BD 于,,M N P ,连接1,MN C P由题意,BD ∥11B D 因为BD ⊄平面11EFB D ,11B D ⊂平面11EFB D ,所以BD ∥平面11EFB D (3)分又因为11,2A B a AB a ==,所以1111222MC A C a == 又因为E 、F 分别是AD 、AB 的中点,所以1242NP AC a == 所以1MC NP =又因为AC ∥11A C ,所以1MC ∥NP所以四边形1MC PN 为平行四边形 所以1PC ∥MN 因为1PC ⊄平面11EFB D ,MN ⊂平面11EFB D ,所以1PC ∥平面11EFB D因为1PC BD P =I ,所以平面11EFB D ∥平面1BDC …………………………………6分 (Ⅱ)连接1A P ,因为11A C ∥PC ,11A C =2PC a =, 所以四边形11AC CP 为平行四边形C1BE DFAB1A 1D 1C MNP因为112CC AA PC a ===,所以四边形11AC CP 为菱形所以11AC PC ⊥ ………………………………………………………………………9分 因为MP ⊥平面ABCD ,MP ⊂平面11AC CA 所以平面11AC CA ⊥平面ABCD , 因为BD AC ⊥,所以BD ⊥平面11AC CA 因为1AC ⊂平面11AC CA ,所以1BD AC ⊥因为1PC BD P =I ,所以1A C ⊥平面1BDC . ………………………………………12分19.(本小题满分12分) 解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且(112)50(17)(12)(13)5d q d q d d +=⎧⎨++=++++⎩即(112)5026d q d q +=⎧⎨+=⎩解得:22d q =⎧⎨=⎩,或1112256d q ⎧=⎪⎪⎨⎪=⎪⎩,由于{}n b 是各项都为正整数的等比数列,所以22d q =⎧⎨=⎩……………………………………3分从而1(1)21n a n d n =+-=-,112n n n b q --==. ……………………………………5分(Ⅱ)12n n b -= 21log n b n +∴=811()2n n n d d -++∴= , 7121()2n n n d d -+++=两式相除:212n n d d +=, 由116d =,81121()1282d d -+==可得:28d =135,,,d d d ∴是以116d =为首项,以12为公比的等比数列;246,,,d d d 是以28d =为首项,以12为公比的等比数列, …………………………………………………………7分∴当n 为偶数时,12128()16()22n n n d -=⨯= 当n 为奇数时,1121216()162()22n n n d +-=⨯=综上,216(),22162(),2nn n d ⎧⎪⎪=⎨⎪⎪⎩ …………………………………………………………9分∴21321242()()n n n S d d d d d d -=+++++++n 为偶数 n 为奇数1116[1()]8[1()]1112232[1()]16[1()]4848()112221122n n n n n ⨯-⨯-=+=-+-=---………………12分 20.(本小题满分13分)解:(Ⅰ)设点G 的坐标为00(,)x y ,由题意可知022002003292p x x y y px⎧+=⎪⎪+=⎨⎪=⎪⎩………………………2分解得:001,22,4,x y p ==±=所以抛物线1C 的方程为:28y x = ………………………………………………………4分(Ⅱ)由(Ⅰ)得抛物线1C 的焦点(2,0)F 椭圆2C 的一个焦点与抛物线1C 的焦点重合∴椭圆2C 半焦距2222, 4c m n c =-==椭圆2C 的离心率为12,2142m m ∴=⇒=,23n = ∴椭圆2C 的方程为:2211612x y +=…………………………………………………………6分 设11(,)A x y 、22(,)B x y ,由22411612y kx x y =-⎧⎪⎨+=⎪⎩得22(43)32160kx kx +-+=由韦达定理得:1223243k x x k +=+,1221643x x k =+ ………………………………8分 由0∆>22(32)416(43)0k k ⇒--⨯+>12k ⇒>或12k <- ………………①……………………………………………………10分∵原点O 在以线段AB 为直径的圆的外部,则0OA OB ⋅>, ∴11221212(,)(,)OA OB x y x y y y x x ⋅=⋅=+212121212(4)(4)(1)4()16kx kx x x k x x k x x =-⋅-+=+-++2221632(1)4164343kk k k k =+⨯-⨯+++2216(43)043k k -=>+ 232333k ⇒-<<………………② 由①、②得实数k 的范围是23132k -<<-或12323k <<………………………13分 21.(本小题满分14分)解:(Ⅰ)当1a=时,1()1ln f x x x=--,211()f x x x '=-,则1()4222f '=-=,1()12ln 2ln 212f =-+=-∴函数()f x 的图象在点11(,())22f 的切线方程为:1(ln 21)2()2y x --=-,即2ln 220x y -+-= …………………………………………………………………4分(Ⅱ)()1ln a f x x x =--,21()(12)ln 2x ax a x x ∴Γ=+--(0)x >,21(21)1()(12)ax a x x ax a x x ---'Γ=+--=①当0a =时,1()x x x-'Γ=由1()0x x x-'Γ=≤及0x >可得:01x <≤,()x ∴Γ的单调递减区间为(0,1]………6分②当0a >时,2(21)1()ax a x x x---'Γ=由2(21)10ax a x ---=可得:22(21)4410a a a ∆=-+=+>设其两根为12,x x ,因为1210x x a=-<,所以12,x x 一正一负设其正根为2x ,则2221412a a x a-++=由2(21)1()0ax a x x x---'Γ=≤及0x >可得:2214102a a x a -++<≤()x ∴Γ的单调递减区间为22141(0,]2a a a-++…………………………………………8分 (Ⅲ)221()a a xf x x x x-'=-=,由()0f x '=x a ⇒= 由于函数()f x 在区间(0,2)上不存在极值,所以0≤a 或2≥a ………………………10分对于2()32h a a a λ=-,对称轴34a λ=当304λ≤或324λ≥,即0λ≤或83λ≥时,2max 39()()48h a h λλ==;。
高三数学试卷模拟十五套
一、选择题(本大题共15小题,每小题5分,共75分)1. 若函数f(x) = ax^2 + bx + c在x=1时取得极值,则a+b+c的值为()A. 0B. 1C. -1D. 无法确定2. 已知等差数列{an}的首项为2,公差为3,则第10项与第15项的和为()A. 50B. 60C. 70D. 803. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=3,b=4,c=5,则角C的余弦值为()A. 1/2B. 1/3C. 2/3D. 3/44. 下列函数中,在定义域内单调递增的是()A. y = x^2B. y = 2^xC. y = log2xD. y = x^35. 已知等比数列{an}的首项为2,公比为1/2,则第n项an的值为()A. 2^nB. 2^(n-1)C. 2^(n+1)D. 2^(1-n)6. 若复数z满足|z-1|=|z+1|,则复数z的实部为()A. 0B. 1C. -1D. 无法确定7. 下列不等式中,恒成立的是()A. x^2 + 1 > 0B. x^2 - 1 > 0C. x^2 + 1 < 0D. x^2 - 1 < 08. 若函数f(x) = x^3 - 3x在区间[0,3]上的最大值为2,则f(x)在区间[-3,0]上的最小值为()A. -2B. 0C. 2D. 无法确定9. 在直角坐标系中,点P(2,3)关于直线y=x的对称点为()A. (2,3)B. (3,2)C. (3,-2)D. (-2,3)10. 若复数z满足z^2 + z + 1 = 0,则复数z的虚部为()A. 1B. -1C. iD. -i11. 下列数列中,不是等比数列的是()A. 1, 2, 4, 8, ...B. 1, 3, 9, 27, ...C. 1, -2, 4, -8, ...D. 1, 3, 5, 7, ...12. 若函数f(x) = ax^2 + bx + c在x=2时取得最小值,则a、b、c之间的关系为()A. a > 0, b > 0, c > 0B. a > 0, b < 0, c > 0C. a < 0, b > 0, c < 0D.a < 0,b < 0,c < 013. 已知函数f(x) = x^2 - 4x + 3,则f(x)的图像的对称轴为()A. x = 1B. x = 2C. x = 3D. x = 414. 若等差数列{an}的首项为3,公差为2,则第10项与第15项的差的绝对值为()A. 18B. 20C. 22D. 2415. 下列数列中,不是等差数列的是()A. 1, 4, 7, 10, ...B. 2, 5, 8, 11, ...C. 3, 6, 9, 12, ...D. 4, 7, 10, 13, ...二、填空题(本大题共15小题,每小题5分,共75分)16. 已知函数f(x) = 2x - 3,则f(-1)的值为______。
高考模拟考试数学真题试卷
高考模拟考试数学真题试卷一、选择题(本大题共10小题,每小题5分,共50分)1. 下列哪个选项不是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集D. 复数集C2. 已知函数f(x) = 2x - 1,求f(3)的值。
A. 5B. 4C. 3D. 23. 若a > 0,b < 0,且|a| < |b|,则a + b的值是:A. 正数B. 负数C. 零D. 不确定4. 已知等差数列{an}的首项a1=3,公差d=2,求第5项a5。
A. 9B. 11C. 13D. 155. 圆的半径为5,求圆的面积。
A. 25πB. 50πC. 75πD. 100π6. 已知三角形ABC的三边长分别为a=3,b=4,c=5,求三角形的面积。
A. 6B. 9C. 12D. 157. 函数y = x^2 - 4x + 4的图像与x轴交点个数是:A. 0B. 1C. 2D. 38. 已知向量\( \vec{a} = (3, 2) \),\( \vec{b} = (-1, 2) \),求\( \vec{a} \)与\( \vec{b} \)的点积。
A. 4B. 5C. 6D. 79. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B。
A. {1}B. {2, 3}C. {4}D. {1, 2, 3}10. 函数y = log_2(x)的定义域是:A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞]二、填空题(本大题共5小题,每小题5分,共25分)11. 若f(x) = x^2 + 3x + 2,求f(x)的导数f'(x)。
答案:__________。
12. 已知数列{bn}满足bn = 2bn-1 + 3,b1 = 1,求b3。
答案:__________。
13. 已知直线l的方程为y = 2x + 3,求直线l的斜率。
答案:__________。
全国高考数学模拟试卷(4套)
全国高考数学模拟试卷(4套)一、选择题(共30题,每题2分,共60分)1. 已知函数 $ f(x) = x^2 4x + 3 $,则下列哪个选项是正确的?A. $ f(x) $ 在 $ x = 2 $ 处取得最小值B. $ f(x) $ 在 $ x = 2 $ 处取得最大值C. $ f(x) $ 在 $ x = 2 $ 处取得极值D. $ f(x) $ 在 $ x = 2 $ 处无极值2. 若 $ \log_2 8 = x $,则 $ x $ 的值为多少?A. 3B. 4C. 5D. 63. 已知等差数列 $ \{a_n\} $,若 $ a_1 = 3 $,$ a_3 = 9 $,则 $ a_5 $ 的值为多少?A. 12B. 15C. 18D. 214. 若 $ \sin^2 x + \cos^2 x = 1 $,则下列哪个选项是正确的?A. $ \sin x $ 和 $ \cos x $ 必须同时为正B. $ \sin x $ 和 $ \cos x $ 必须同时为负C. $ \sin x $ 和 $ \cos x $ 一正一负D. $ \sin x $ 和 $ \cos x $ 可以同时为零5. 若 $ \frac{a}{b} = \frac{c}{d} $,则下列哪个选项是正确的?A. $ a + c = b + d $B. $ ad = bc $C. $ a c = b d $D. $ \frac{a}{c} = \frac{b}{d} $6. 已知 $ a $、$ b $、$ c $ 是等边三角形的三边长,则下列哪个选项是正确的?A. $ a^2 + b^2 = c^2 $B. $ a^2 + c^2 = b^2 $C. $ b^2 + c^2 = a^2 $D. $ a = b = c $7. 若 $ \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 $,则下列哪个选项是正确的?A. 该方程表示椭圆B. 该方程表示双曲线C. 该方程表示抛物线D. 该方程表示圆8. 已知 $ \sqrt{3} $ 是方程 $ x^2 2x + 1 = 0 $ 的根,则该方程的另一根为多少?A. $ 1 \sqrt{3} $B. $ 1 + \sqrt{3} $C. $ 2 \sqrt{3} $D. $ 2 + \sqrt{3} $9. 若 $ a $、$ b $、$ c $ 是三角形的三边长,且 $ a^2 +b^2 = c^2 $,则下列哪个选项是正确的?A. 该三角形是等腰三角形B. 该三角形是等边三角形C. 该三角形是直角三角形D. 该三角形是钝角三角形10. 若 $ \frac{1}{x} + \frac{1}{y} = \frac{1}{z} $,则下列哪个选项是正确的?A. $ x + y = z $B. $ xy = z $C. $ \frac{1}{x} + \frac{1}{y} = z $D. $ x + y + z = 0 $二、填空题(共10题,每题2分,共20分)11. 已知 $ f(x) = 2x + 1 $,若 $ f(3) = 7 $,则 $ f(1)$ 的值为______。
高考数学模拟试题及答案 (二十套)
【解析】
【分析】
以点 为坐标原点, 、 、 所在直线分别为 、 、 轴建立空间直角坐标系 ,利用空间向量法可判断A选项的正误;证明出 平面 ,分别取棱 、 、 、 、 、 的中点 、 、 、 、 、 ,比较 和六边形 的周长和面积的大小,可判断B选项的正误;利用空间向量法找出平面 与棱 、 的交点 、 ,判断四边形 的形状可判断C选项的正误;将矩形 与矩形 延展为一个平面,利用 、 、 三点共线得知 最短,利用平行线分线段成比例定理求得 ,可判断D选项的正误.
9.Keep是一款具有社交属性的健身APP,致力于提供健身教学、跑步、骑行、交友及健身饮食指导、装备购买等一站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程.不仅如此,它还可以根据不同人的体质,制定不同的健身计划.小明根据Keep记录的2019年1月至2019年11月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图.根据该折线图,下列结论正确的是()
,则 , ,所以B正确.
对于选项C、D, ,
令 ,即 ,所以 ,则令 ,
,令 ,得
由函数 的图像性质可知:
时, , 单调递减.
时, , 单调递增.
所以 时, 取得极小值,
即当 时 取得极小值,
又 ,即
又因为在 上 单调递减,所以
所以 时, 取得极小值,
即当 时 取得极大值,
又 ,即
所以
当 时,
所以当 ,即 时,f(x)在(-π,+∞)上无零点,所以C不正确.
A.月跑步里程最小值出现在2月
B.月跑步里程逐月增加
C.月跑步里程的中位数为5月份对应的里程数
D. 1月至5月的月跑步里程相对于6月至11月波动性更小
高考数学模拟考试试卷(含有答案)
高考数学模拟考试试卷(含有答案)本试卷共19题。
全卷满分120分。
考试用时120分钟注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡的非答题区域均无效。
3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z 则T S ( ) A .∅ B .S C .T D .Z2.已知复数z 满足1z =且有510z z ++=则z = ( )A .12-±B .12±C .22±D i 12±3.已知α,β均为锐角,且sin cos()sin ααββ+=则tan α的最大值是 ( )A .4B .2CD 4.为了激发同学们学习数学的热情,某学校开展利用数学知识设计LOGO 的比赛,其中某位同学利用函数图像的一部分设计了如图的LOGO ,那么该同学所选的函数最有可能是 ( )A .()sin x x x f -=B .()sin cos f x x x x =-C .()221f x x x =-D .()3sin f x x x =+5.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(N n ∈,从左数第1根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线:1l y x =+交于点n A (n x ,n y )和n B (nx ',n y ')则200n n n y y ='=∑( ) 参考数据:取221.18.14=.A .814B .900C .914D .10006.表面积为4π的球内切于圆锥则该圆锥的表面积的最小值为( ) A .4πB .8πC .12πD .16π7.已知定点(,0)P m ,动点Q 在圆O :2216x y +=上,PQ 的垂直平分线交直线 OQ 于M 点,若动点M 的轨迹是双曲线则m 的值可以是 ( ) A .2B .3C .4D .58.设cos0.1a =和10sin0.1b =,110tan 0.1c =则 ( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<二、选择题:本题共3小题,每小题6分,共18分。
高考模拟数学试卷及答案
高考模拟数学试卷及答案高考模拟数学试卷及答案高考即将到来,数学作为一门重要的科目,对于许多学生来说都是一个挑战。
为了帮助大家更好地备考,我们为大家提供了一份高考模拟数学试卷及答案,希望对大家有所帮助。
一、选择题(每题5分,共40分)1、在等差数列{an}中,a1=1,an=6n-5,则公差d的值为() A. 1B. 2C. 3D. 4 答案:B2、已知复数z满足|z|=1,则|z-i|的最大值为() A. 1 B. 2 C. 3D. 4 答案:B3、已知函数f(x)=x3+ax2+bx在x=1处取得极小值-2,则a、b的值为() A. a=1,b=0 B. a=3,b=3 C. a=1,b=2 D. a=3,b=2 答案:A4、已知双曲线x2-y2=1的焦点为F1、F2,点P在双曲线上,且∠F1PF2=90°,则|PF1|•|PF2|的值为() A. 2 B. 4 C. 8 D. 16 答案:B5、已知{an}为等比数列,a1=1,公比为q,则“q>1”是“{an}为递增数列”的() A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件答案:A6、已知向量a、b的夹角为60°,|a|=2,|b|=4,则|a-b|=() A.2 B. 4 C. 6 D. 8 答案:C7、已知函数f(x)=x3+ax2+bx在x=1处取得极小值-2,则a、b的值为() A. a=1,b=0 B. a=3,b=3 C. a=1,b=2 D. a=3,b=2 答案:A8、等差数列{an}的前n项和记为Sn,已知a2=3,S9=45,则数列{an}的前多少项的和最大() A. 7 B. 8 C. 9 D. 10 答案:C二、填空题(每题6分,共30分)9、已知角α的终边过点P(3,-4),则sin(α-π)=__________。
答案:-4/591、若空间中有四个点A、B、C、D,则直线AB和直线CD的位置关系为____________。
高中高考数学模拟试卷试题含答案.docx
16.有以下几个命 :
①曲x2-(y+1)2=1按a=(-1,2)平移可得曲
(x+1)2-(y+3)2=1
②与直相交,所得弦2
③A、B两个定点,m常数,, 点P的 迹
④若 的左、右焦点分F1、F2,P是 上的任意一点, 点F2关于∠F1PF2的外角平分 的 称点M的 迹是
B.向右平移个单位
C.向左平移个单位
D.向右平移个单位
5.如图,是一程序框图,则输出结果中()
.
精品文档
A.B.
C.D.
6.平面的一个充分不必要条件是()
A.存在一条直B.存在一个平面
C.存在一个平面D.存在一条直
7.已知以F1(-2,0),F2(2,0) 焦点的 与直有且 有一个交点, 的
()
A.B.C.D.
在答题卡上把所选题目对应的题号涂黑.
22.(本小题满分10分)
[几何证明选讲]如图,E是圆内两弦AB和CD的交点, 直线EF//CB,交AD的延长线于F,FG切圆于G,求证:
(1)∽;
(2)EF=FG.
23.[选修4-4:坐标系与参数方程]
已知曲线C:(t为参数),C:(为参数).
(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;
8.O是平面上一定点,A、B、C是平面上不共 的三个点, 点P足
,p的 迹一定通 △ABC的 ( )
A.外心B.重心C.内心D.垂心
9. {an}是等差数列,从{a1,a2,a3,⋯,a20}中任取3个不同的数,使3个数仍成等差数列, 不同的等差数列最多有 ( )
A.90个B.120个C.180个D.200个
模拟高考数学试卷及答案
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列函数中,y是x的函数的是()A. y = 2x + 1,x = 3B. y = 2x + 1,x = 3或x = 4C. y = 2x + 1,x可以是任意实数D. y = 2x + 1,x = 2或x = 32. 已知函数f(x) = 2x - 3,若f(a) = f(b),则a和b的关系是()A. a = bB. a = b + 1C. a = b - 1D. a + b = 23. 在△ABC中,∠A = 60°,∠B = 45°,则sinC的值为()A. √3/2B. √3/4C. 1/2D. √2/24. 下列各式中,表示x与y成反比例关系的是()A. xy = 5B. x + y = 5C. x/y = 5D. x - y = 55. 已知等差数列{an}的公差d = 3,且a1 + a3 = 15,则a2的值为()A. 6B. 9C. 12D. 156. 下列各式中,表示一元二次方程的判别式的是()A. b^2 - 4acB. a^2 + b^2 + c^2C. a^2 - b^2D. a^2 + b^27. 已知等比数列{bn}的公比q = 2,且b1 + b2 = 6,则b3的值为()A. 12B. 18C. 24D. 308. 下列各式中,表示圆的方程的是()A. x^2 + y^2 = 1B. x^2 + y^2 + 2x - 2y + 1 = 0C. x^2 + y^2 - 2x + 2y + 1 = 0D. x^2 + y^2 + 2x + 2y + 1 = 09. 下列函数中,在定义域内单调递增的是()A. y = x^2B. y = -x^2C. y = x^3D. y = -x^310. 已知等差数列{an}的前n项和为Sn,若S5 = 25,则S10的值为()A. 45B. 50C. 55D. 6011. 下列各式中,表示一元二次不等式的解集的是()A. x^2 - 4 > 0B. x^2 - 4 < 0C. x^2 - 4 ≥ 0D. x^2 - 4 ≤ 012. 已知函数f(x) = ax^2 + bx + c,若f(1) = 3,f(-1) = 1,则a、b、c的值分别为()A. a = 1,b = -2,c = 3B. a = 1,b = 2,c = 3C. a = -1,b = -2,c = 3D. a = -1,b = 2,c = 3二、填空题(本大题共6小题,每小题5分,共30分。
高考数学模拟试卷附答案解析
高考数学模拟试卷附答案解析请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数f(x)是定义域为R的偶函数,且满足f(x)=f(2一x),当x e[0,1]时,f(x)=x,则函数F(x)=f(x)+x+4在区间[一9,10]上零点的个数为() 1一2xA.9B.10C.18D.202.如图,ABC中经A=2经B=60。
,点D在BC上,经BAD=30。
,将△ABD沿AD旋转得到三棱锥B,一ADC,分别记B,A,B,D与平面ADC所成角为C,β,则C,β的大小关系是()A.C<β<2C B.2C<β<3CC.β<2C,2C<β<3C两种情况都存在D.存在某一位置使得β>3a3.为计算S=1一2x2+3x22一4x23+...+100x(一2)99,设计了如图所示的程序框图,则空白框中应填入()A.i<100B.i>100C.i<100D.i之1004.已知定义在[1,+伪)上的函数f(x)满足f(3x)=3f(x),且当1<x<3时,f(x)=1一x一2,则方程f (x )=f (2019)的最小实根的值为()A .168B .249C .411D .5615.已知抛物线C :x 2=4y ,过抛物线C 上两点A ,B 分别作抛物线的两条切线PA ,PB ,P 为两切线的交点O 为坐标原点若PA .PB =0,则直线OA 与OB 的斜率之积为()11A .—-B .—3C .—-486.在复平面内,复数z =a +bi (a ,b e R )对应向量OZ (O 为坐标原点),设OZ =r ,以射线Ox 为始边,OZ 为终边旋转的角为θ,则z =r (cos θ+isin θ),法国数学家棣莫弗发现了棣莫弗定理:z 1=r (cos θ+isin θ),111z 2=r 2(cos θ2+isin θ2),则z 1z 2=r 2cos r (cos θ+isin θ)n =r n (cos n θ+isinn θ)(θ+θ)+isin (θ+121,已知z =(3+i )4θ2),由棣莫弗定理可以导出复数乘方公式:,则z =()A .23B .4C .83D .167.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取30%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A .240,18C .240,208.直角坐标系xOy 中,双曲线边三角形,则该双曲线的离心率x 2y 2—a 2b 2e =()A .43B .54B .200,20D .200,18=1(a ,b >0)与抛物线y 2=2bx?相交于A 、B 两点,若ΔOAB 是等C .65D .76119.在平行四边形ABCD 中,AB =3,AD =2,AP =AB,AQ =AD,若CP .CQ =12,则经ADC =()32A .5π6B .3π4C .2π3D .π210.在ABC 中,角A ,B,C 的对边分别为a ,b,c ,若c —a cos B =(2a —b)cos A ,则ABC 的形状为()D .—4A .直角三角形C .等腰或直角三角形B .等腰非等边三角形D .钝角三角形11.若复数z =21+i,其中i 为虚数单位,则下列结论正确的是()A .z 的虚部为-iB .z =2C .z 的共轭复数为-1-iD .z 2为纯虚数12.下图为一个正四面体的侧面展开图,G 为BF 的中点,则在原正四面体中,直线EG 与直线BC 所成角的余弦值为()A .C .3336B .D .63336二、填空题:本题共4小题,每小题5分,共20分。
高考数学模拟复习试卷试题模拟卷2171
高考模拟复习试卷试题模拟卷【高频考点解读】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数. 【热点题型】题型一 由数列的前几项求数列的通项 例1、写出下面各数列的一个通项公式: (1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…; (4)3,33,333,3333,….解 (1)各项减去1后为正偶数,所以an =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以an =2n -12n .(3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以an =(-1)n·2+-1nn.也可写为an =⎩⎨⎧-1n ,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为93,993,9993,99993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以an =13(10n -1). 【提分秘籍】根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征,应多进行对比、分析,从整体到局部多角度观察、归纳、联想.【举一反三】(1)数列-1,7,-13,19,…的一个通项公式是an =________.(2)数列{an}的前4项是32,1,710,917,则这个数列的一个通项公式是an =________. 答案 (1)(-1)n·(6n -5) (2)2n +1n2+1解析 (1)符号问题可通过(-1)n 或(-1)n +1表示,其各项的绝对值的排列规律为后面的数的绝对值总比前面的数的绝对值大6,故通项公式为an =(-1)n(6n -5).(2)数列{an}的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故an =2n +1n2+1.题型二由数列的前n 项和Sn 求数列的通项例2 已知下面数列{an}的前n 项和Sn ,求{an}的通项公式: (1)Sn =2n2-3n ; (2)Sn =3n +b.【提分秘籍】数列的通项an 与前n 项和Sn 的关系是an =⎩⎪⎨⎪⎧S1,n =1,Sn -Sn -1,n≥2.当n =1时,a1若适合Sn -Sn -1,则n =1的情况可并入n≥2时的通项an ;当n =1时,a1若不适合Sn -Sn -1,则用分段函数的形式表示.【举一反三】已知数列{an}的前n 项和Sn =3n2-2n +1,则其通项公式为________________.题型三 由数列的递推关系求数列的通项公式例3 (1)设数列{an}中,a1=2,an +1=an +n +1,则通项an =________. (2)数列{an}中,a1=1,an +1=3an +2,则它的一个通项公式为an =________. (3)在数列{an}中,a1=1,前n 项和Sn =n +23an ,则{an}的通项公式为________.(2)方法一 (累乘法)an +1=3an +2,即an +1+1=3(an +1), 即an +1+1an +1=3,所以a2+1a1+1=3,a3+1a2+1=3,a4+1a3+1=3,…,an +1+1an +1=3.将这些等式两边分别相乘得an +1+1a1+1=3n.因为a1=1,所以an +1+11+1=3n ,即an +1=2×3n -1(n≥1), 所以an =2×3n -1-1(n≥2),又a1=1也满足上式,故数列{an}的一个通项公式为an =2×3n -1-1.(3)由题设知,a1=1.当n>1时,an =Sn -Sn -1=n +23an -n +13an -1. ∴an an -1=n +1n -1. ∴an an -1=n +1n -1,…,a4a3=53, a3a2=42,a2a1=3.以上n -1个式子的等号两端分别相乘, 得到an a1=n n +12, 又∵a1=1,∴an =n n +12. 【提分秘籍】已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解.当出现an =an -1+m 时,构造等差数列;当出现an =xan -1+y 时,构造等比数列;当出现an =an -1+f(n)时,用累加法求解;当出现an an -1=f(n)时,用累乘法求解.【举一反三】(1)已知数列{an}满足a1=1,an =n -1n ·an -1(n≥2),则an =________. (2)已知数列{an}的前n 项和为Sn ,且Sn =2an -1(n ∈N*),则a5等于( ) A .-16B .16C .31D .32 答案 (1)1n (2)B【高考风向标】【高考安徽,文13】已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于.【答案】27【解析】∵2≥n 时,21,21121+=+=-a a a a n n 且 ∴{}1a a n 是以为首项,21为公差的等差数列 ∴2718921289199=+=⨯⨯+⨯=S 1.(·江西卷)已知首项都是1的两个数列{an},{bn}(bn≠0,n ∈N*)满足anbn +1-an +1bn +2bn +1bn =0.(1)令cn =anbn ,求数列{cn}的通项公式; (2)若bn =3n -1,求数列{an}的前n 项和Sn.【解析】(1)因为anbn +1-an +1bn +2bn +1bn =0,bn≠0(n ∈N*),所以an +1bn +1-anbn =2,即cn +1-cn =2,所以数列{cn}是以c1=1为首项,d =2为公差的等差数列,故cn =2n -1.(2)由bn =3n -1,知an =(2n -1)3n -1,于是数列{an}的前n 项和Sn =1×30+3×31+5×32+…+(2n -1)×3n -1,3Sn =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,将两式相减得-2Sn =1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)×3n ,所以Sn =(n -1)3n +1.2.(·新课标全国卷Ⅰ] 已知数列{an}的前n 项和为Sn ,a1=1,an≠0,anan +1=λSn -1,其中λ为常数.(1)证明:an +2-an =λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.3.(·新课标全国卷Ⅱ] 已知数列{an}满足a1=1,an +1=3an +1.(1)证明⎩⎨⎧⎭⎬⎫an +12是等比数列,并求{an}的通项公式;(2)证明1a1+1a2+…+1an <32.【解析】(1)由an +1=3an +1得an +1+12=3⎝⎛⎭⎫an +12. 又a1+12=32,所以⎩⎨⎧⎭⎬⎫an +12是首项为32,公比为3的等比数列,所以an +12=3n2,因此数列{an}的通项公式为an =3n -12.(2)证明:由(1)知1an =23n -1. 因为当n≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1,即1an =23n -1≤13n -1.于是1a1+1a2+…+1an ≤1+13+…+13n -1=32⎝⎛⎭⎫1-13n <32.所以1a1+1a2+…+1an <32.4.(·重庆卷)设a1=1,an +1=a2n -2an +2+b(n ∈N*). (1)若b =1,求a2,a3及数列{an}的通项公式.(2)若b =-1,问:是否存在实数c 使得a2n<c<a2n +1对所有n ∈N*成立?证明你的结论. 【解析】(1)方法一:a2=2,a3=2+1. 再由题设条件知(an +1-1)2=(an -1)2+1.从而{(an -1)2}是首项为0,公差为1的等差数列, 故(an -1)2=n -1,即an =n -1+1(n ∈N*). 方法二:a2=2,a3=2+1.可写为a1=1-1+1,a2=2-1+1,a3=3-1+1.因此猜想an =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.假设n =k 时结论成立,即ak =k -1+1,则ak +1=(ak -1)2+1+1=(k -1)+1+1=(k +1)-1+1, 这就是说,当n =k +1时结论成立. 所以an =n -1+1(n ∈N*).(2)方法一:设f(x)=(x -1)2+1-1,则an +1=f(an). 令c =f(c),即c =(c -1)2+1-1,解得c =14. 下面用数学归纳法证明命题 a2n<c<a2n +1<1.当n =1时,a2=f(1)=0,a3=f(0)=2-1,所以a2<14<a3<1,结论成立. 假设n =k 时结论成立,即a2k<c<a2k +1<1. 易知f(x)在(-∞,1]上为减函数,从而 c =f(c)>f(a2k +1)>f(1)=a2,即1>c>a2k +2>a2.再由f(x)在(-∞,1]上为减函数,得c =f(c)<f(a2k +2)<f(a2)=a3<1,故c<a2k +3<1,因此a2(k +1)<c<a2(k +1)+1<1,这就是说,当n =k +1时结论成立. 综上,存在 c =14使a2n<C<a2a +1对所有n ∈N*成立. 方法二:设f(x)=(x -1)2+1-1,则an +1=f(an). 先证:0≤an≤1(n ∈N*). ① 当n =1时,结论明显成立. 假设n =k 时结论成立,即0≤ak≤1. 易知f(x)在(-∞,1]上为减函数,从而 0=f(1)≤f(ak)≤f(0)=2-1<1.即0≤ak +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a 2n<a2n +1(n ∈N*). ②当n =1时,a2=f(1)=0,a3=f(a2)=f(0)=2-1,所以a2<a3,即n =1时②成立. 假设n =k 时,结论成立,即a2k<a 2k +1. 由①及f(x)在(-∞,1]上为减函数,得 a2k +1=f(a2k)>f(a2k +1)=a2k +2, a2(k +1)=f(a2k +1)<f(a2k +2)=a2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N*成立. 由②得a2n<a22n -2a2n +2-1, 即(a2n +1)2<a22n -2a2n +2, 因此a2n<14.③又由①②及f(x)在(-∞,1]上为减函数,得f(a2n)>f(a2n +1),即a2n +1>a2n +2. 所以a2n +1>a22n +1-2a2n +1+2-1,解得a2n +1>14.④ 综上,由②③④知存在c =14使a2n<c<a2n +1对一切n ∈N*成立.5.(·安徽卷)如图1-3所示,互不相同的点A1,A2,…,An ,…和B1,B2,…,Bn ,…分别在角O 的两条边上,所有AnBn 相互平行,且所有梯形AnBnBn +1An +1的面积均相等,设OAn =an ,若a1=1,a2=2,则数列{an}的通项公式是________.图1-3【答案】an =3n -26.(·辽宁卷)下面是关于公差d>0的等差数列{}an 的四个命题: p1:数列{}an 是递增数列; p2:数列{}nan 是递增数列;p3:数列⎩⎨⎧⎭⎬⎫an n 是递增数列;p4:数列{}an +3nd 是递增数列. 其中的真命题为( )A .p1,p2B .p3,p4C .p2,p3D .p1,p4 【答案】D【解析】因为数列{an}中d>0,所以{an}是递增数列,则p1为真命题.而数列{an +3nd}也是递增数列,所以p4为真命题,故选D.7.(·全国卷)等差数列{an}前n 项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.【解析】设{an}的公差为d.由S3=a22,得3a2=a22,故a2=0或a2=3. 由S1,S2,S4成等比数列得S22=S1S4. 又S1=a2-d ,S2=2a2-d ,S4=4a2+2d , 故(2a2-d)2=(a2-d)(4a2+2d). 若a2=0,则d2=-2d2,所以d =0, 此时Sn =0,不合题意;若a2=3,则(6-d)2=(3-d)(12+2d), 解得d =0或d =2.因此{an}的通项公式为an =3或an =2n -1. 【高考押题】1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是an 等于( ) A.-1n +12B .cos nπ2C .cos n +12πD .cos n +22π 答案 D解析 令n =1,2,3,…逐一验证四个选项,易得D 正确.2.已知数列{an}中,a1=1,若an =2an -1+1(n≥2),则a5的值是( ) A .7B .5C .30D .31 答案 D解析 由题意得a2=2a1+1=3,a3=2×3+1=7,a4=2×7+1=15,a5=2×15+1=31. 3.若数列{an}的通项公式是an =(-1)n(3n -2),则a1+a2+…+a10等于( ) A .15B .12C .-12D .-15 答案 A解析 由题意知,a1+a2+…+a10 =-1+4-7+10-…+(-1)10×(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9×(3×9-2)+(-1)10×(3×10-2)]=3×5=15.4.若Sn 为数列{an}的前n 项和,且Sn =n n +1,则1a5等于( ) A.56B.65C.130D .30答案 D解析 当n≥2时,an =Sn -Sn -1=n n +1-n -1n =1n n +1,所以1a5=5×6=30. 5.已知数列{an}满足a1=1,an +1an =2n(n ∈N*),则a10等于( )A .64B .32C .16D .8答案 B6.若数列{an}满足关系:an +1=1+1an ,a8=3421,则a5=________.答案 85解析 借助递推关系,则a8递推依次得到a7=2113,a6=138,a5=85.7.数列{an}中,a1=1,对于所有的n≥2,n ∈N*,都有a1·a2·a3·…·an =n2,则a3+a5=________.答案 6116解析 由题意知:a1·a2·a3·…·an -1=(n -1)2,∴an =(n n -1)2(n≥2),∴a3+a5=(32)2+(54)2=6116. 8.已知{an}是递增数列,且对于任意的n ∈N*,an =n2+λn 恒成立,则实数λ的取值范围是________.答案 (-3,+∞)解析 因为{an}是递增数列,所以对任意的n ∈N*,都有an +1>an ,即(n +1)2+λ(n +1)>n2+λn ,整理,得2n+1+λ>0,即λ>-(2n+1).(*)因为n≥1,所以-(2n+1)≤-3,要使不等式(*)恒成立,只需λ>-3.9.已知数列{an}的前n项和Sn=2n+1-2.(1)求数列{an}的通项公式;(2)设bn=an+an+1,求数列{bn}的通项公式.解(1)当n=1时,a1=S1=22-2=2;当n≥2时,an=Sn-Sn-1=2n+1-2-(2n-2)=2n+1-2n=2n;因为a1也适合此等式,所以an=2n(n∈N*).(2)因为bn=an+an+1,且an=2n,an+1=2n+1,所以bn=2n+2n+1=3·2n.10.数列{an}的通项公式是an=n2-7n+6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高考数学模拟试题及答案
高考数学模拟试题及答案[说明:以下是一份数学模拟试卷,包含20道题目和对应的答案解析。
请按照试题进行答题,并在答案解析中查看详细的解题过程。
希望对您的备考有所帮助。
]Part I 选择题(共10题,每题4分,共40分)1. 若集合 A = {1, 2, 3, 4},集合 B = {3, 4, 5, 6},则A∩B = ( )。
A. {1, 2, 3, 4}B. {3, 4}C. {3, 4, 5, 6}D. {}2. 函数 y = 2^(x-1) 的图像是一条( )。
A. 直线B. 双曲线C. 抛物线D. 指数曲线3. 已知函数 f(x) = x^2 - 3x + 2,则 f(3) = ( )。
A. -2B. 0C. 2D. 44. 若sinθ = 0.8,0<θ<π/2,则cosθ = ( )。
A. 0.2B. 0.4C. 0.6D. 0.85. 已知一边长度为 a 的正方形的对角线长为 d,则 a/d = ( )。
A. √2B. 1C. 1/√2D. √2/26. 若函数 f(x) 为奇函数,则 f(-2) = ( )。
A. -f(2)B. f(2)C. 0D. -f(-2)7. 一枚硬币正面向上的概率为 0.6,抛掷该枚硬币10次,正面向上次数是 4 的概率是 ( )。
A. 0.2508B. 0.3024C. 0.2016D. 0.40328. 空间直角坐标系中,已知直线L1: 3x + 4y + λ = 0,L2: 2x + 5y - 1 = 0 相交于点 P(1, -1),则λ = ( )。
A. 3B. 4C. -3D. -49. 设复数 z 满足 |z-1| = |z-2|,则 z 等于 ( )。
A. 1B. 2C. 3D. 410. 已知对数函数y = logₐx 的图像经过点 (2, 1/3),则 a 的值为 ( )。
A. 2B. 1/2C. 1/3D. 3Part II 解答题(共10题,每题6分,共60分)11. 已知三角形 ABC,其中∠B = 100°,∠C = 25°,AD 为高,垂足为 D。
高考模拟卷数学试卷及答案
一、选择题(本大题共12小题,每小题5分,共60分)1. 下列函数中,是奇函数的是:A. \( f(x) = x^2 + 1 \)B. \( f(x) = \frac{1}{x} \)C. \( f(x) = |x| \)D. \( f(x) = x^3 \)2. 已知等差数列的前三项分别为2,5,8,则该数列的公差是:A. 1B. 2C. 3D. 43. 在直角坐标系中,点P(3,4)关于直线y=x的对称点是:A. (3,4)B. (4,3)C. (3,-4)D. (-4,3)4. 若\( a^2 + b^2 = 25 \),且\( a - b = 3 \),则\( ab \)的最大值为:A. 12B. 15C. 18D. 205. 在三角形ABC中,若\( \angle A = 30^\circ \),\( \angle B = 45^\circ \),则\( \angle C \)的度数是:A. 105°B. 120°C. 135°D. 150°6. 已知函数\( f(x) = 2x^2 - 3x + 1 \),则\( f(2) \)的值为:A. 3B. 5C. 7D. 97. 在等比数列中,若前三项分别为2,6,18,则该数列的公比是:A. 2B. 3C. 6D. 98. 若\( \sin \alpha = \frac{1}{2} \),\( \cos \beta = \frac{\sqrt{3}}{2} \),则\( \tan(\alpha + \beta) \)的值为:A. 1B. -1C. 0D. 无解9. 已知圆的方程为\( x^2 + y^2 - 4x + 6y - 12 = 0 \),则该圆的半径是:A. 2B. 3C. 4D. 510. 在直角坐标系中,点A(2,3)到直线\( 2x - y + 1 = 0 \)的距离是:A. 1B. 2C. 3D. 411. 若\( \log_2(x - 1) = 3 \),则\( x \)的值为:A. 3B. 4C. 5D. 612. 若\( \frac{a}{b} = \frac{c}{d} \),且\( a \neq 0 \),\( b \neq 0 \),\( c \neq 0 \),\( d \neq 0 \),则\( \frac{a + c}{b + d} \)的值为:A. 1B. \(\frac{1}{2}\)C. \(\frac{2}{3}\)D. 无法确定二、填空题(本大题共6小题,每小题5分,共30分)13. 函数\( f(x) = x^3 - 3x \)的极值点是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟复习试卷试题模拟卷【高频考点解读】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数. 【热点题型】题型一 由数列的前几项求数列的通项 例1、写出下面各数列的一个通项公式: (1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…; (4)3,33,333,3333,….解 (1)各项减去1后为正偶数,所以an =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以an =2n -12n .(3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以an =(-1)n·2+-1nn.也可写为an =⎩⎨⎧-1n ,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为93,993,9993,99993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以an =13(10n -1). 【提分秘籍】根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征,应多进行对比、分析,从整体到局部多角度观察、归纳、联想.【举一反三】(1)数列-1,7,-13,19,…的一个通项公式是an =________.(2)数列{an}的前4项是32,1,710,917,则这个数列的一个通项公式是an =________. 答案 (1)(-1)n·(6n -5) (2)2n +1n2+1解析 (1)符号问题可通过(-1)n 或(-1)n +1表示,其各项的绝对值的排列规律为后面的数的绝对值总比前面的数的绝对值大6,故通项公式为an =(-1)n(6n -5).(2)数列{an}的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故an =2n +1n2+1.题型二由数列的前n 项和Sn 求数列的通项例2 已知下面数列{an}的前n 项和Sn ,求{an}的通项公式: (1)Sn =2n2-3n ; (2)Sn =3n +b.【提分秘籍】数列的通项an 与前n 项和Sn 的关系是an =⎩⎪⎨⎪⎧S1,n =1,Sn -Sn -1,n≥2.当n =1时,a1若适合Sn -Sn -1,则n =1的情况可并入n≥2时的通项an ;当n =1时,a1若不适合Sn -Sn -1,则用分段函数的形式表示.【举一反三】已知数列{an}的前n 项和Sn =3n2-2n +1,则其通项公式为________________.题型三 由数列的递推关系求数列的通项公式例3 (1)设数列{an}中,a1=2,an +1=an +n +1,则通项an =________. (2)数列{an}中,a1=1,an +1=3an +2,则它的一个通项公式为an =________. (3)在数列{an}中,a1=1,前n 项和Sn =n +23an ,则{an}的通项公式为________.(2)方法一 (累乘法)an +1=3an +2,即an +1+1=3(an +1), 即an +1+1an +1=3,所以a2+1a1+1=3,a3+1a2+1=3,a4+1a3+1=3,…,an +1+1an +1=3.将这些等式两边分别相乘得an +1+1a1+1=3n.因为a1=1,所以an +1+11+1=3n ,即an +1=2×3n -1(n≥1), 所以an =2×3n -1-1(n≥2),又a1=1也满足上式,故数列{an}的一个通项公式为an =2×3n -1-1.(3)由题设知,a1=1.当n>1时,an =Sn -Sn -1=n +23an -n +13an -1. ∴an an -1=n +1n -1. ∴an an -1=n +1n -1,…,a4a3=53, a3a2=42,a2a1=3.以上n -1个式子的等号两端分别相乘, 得到an a1=n n +12, 又∵a1=1,∴an =n n +12. 【提分秘籍】已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解.当出现an =an -1+m 时,构造等差数列;当出现an =xan -1+y 时,构造等比数列;当出现an =an -1+f(n)时,用累加法求解;当出现an an -1=f(n)时,用累乘法求解.【举一反三】(1)已知数列{an}满足a1=1,an =n -1n ·an -1(n≥2),则an =________. (2)已知数列{an}的前n 项和为Sn ,且Sn =2an -1(n ∈N*),则a5等于( ) A .-16B .16C .31D .32 答案 (1)1n (2)B【高考风向标】【高考安徽,文13】已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于.【答案】27【解析】∵2≥n 时,21,21121+=+=-a a a a n n 且 ∴{}1a a n 是以为首项,21为公差的等差数列 ∴2718921289199=+=⨯⨯+⨯=S 1.(·江西卷)已知首项都是1的两个数列{an},{bn}(bn≠0,n ∈N*)满足anbn +1-an +1bn +2bn +1bn =0.(1)令cn =anbn ,求数列{cn}的通项公式; (2)若bn =3n -1,求数列{an}的前n 项和Sn.【解析】(1)因为anbn +1-an +1bn +2bn +1bn =0,bn≠0(n ∈N*),所以an +1bn +1-anbn =2,即cn +1-cn =2,所以数列{cn}是以c1=1为首项,d =2为公差的等差数列,故cn =2n -1.(2)由bn =3n -1,知an =(2n -1)3n -1,于是数列{an}的前n 项和Sn =1×30+3×31+5×32+…+(2n -1)×3n -1,3Sn =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,将两式相减得-2Sn =1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)×3n ,所以Sn =(n -1)3n +1.2.(·新课标全国卷Ⅰ] 已知数列{an}的前n 项和为Sn ,a1=1,an≠0,anan +1=λSn -1,其中λ为常数.(1)证明:an +2-an =λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.3.(·新课标全国卷Ⅱ] 已知数列{an}满足a1=1,an +1=3an +1.(1)证明⎩⎨⎧⎭⎬⎫an +12是等比数列,并求{an}的通项公式;(2)证明1a1+1a2+…+1an <32.【解析】(1)由an +1=3an +1得an +1+12=3⎝⎛⎭⎫an +12. 又a1+12=32,所以⎩⎨⎧⎭⎬⎫an +12是首项为32,公比为3的等比数列,所以an +12=3n2,因此数列{an}的通项公式为an =3n -12.(2)证明:由(1)知1an =23n -1. 因为当n≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1,即1an =23n -1≤13n -1.于是1a1+1a2+…+1an ≤1+13+…+13n -1=32⎝⎛⎭⎫1-13n <32.所以1a1+1a2+…+1an <32.4.(·重庆卷)设a1=1,an +1=a2n -2an +2+b(n ∈N*). (1)若b =1,求a2,a3及数列{an}的通项公式.(2)若b =-1,问:是否存在实数c 使得a2n<c<a2n +1对所有n ∈N*成立?证明你的结论. 【解析】(1)方法一:a2=2,a3=2+1. 再由题设条件知(an +1-1)2=(an -1)2+1.从而{(an -1)2}是首项为0,公差为1的等差数列, 故(an -1)2=n -1,即an =n -1+1(n ∈N*). 方法二:a2=2,a3=2+1.可写为a1=1-1+1,a2=2-1+1,a3=3-1+1.因此猜想an =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.假设n =k 时结论成立,即ak =k -1+1,则ak +1=(ak -1)2+1+1=(k -1)+1+1=(k +1)-1+1, 这就是说,当n =k +1时结论成立. 所以an =n -1+1(n ∈N*).(2)方法一:设f(x)=(x -1)2+1-1,则an +1=f(an). 令c =f(c),即c =(c -1)2+1-1,解得c =14. 下面用数学归纳法证明命题 a2n<c<a2n +1<1.当n =1时,a2=f(1)=0,a3=f(0)=2-1,所以a2<14<a3<1,结论成立. 假设n =k 时结论成立,即a2k<c<a2k +1<1. 易知f(x)在(-∞,1]上为减函数,从而 c =f(c)>f(a2k +1)>f(1)=a2,即1>c>a2k +2>a2.再由f(x)在(-∞,1]上为减函数,得c =f(c)<f(a2k +2)<f(a2)=a3<1,故c<a2k +3<1,因此a2(k +1)<c<a2(k +1)+1<1,这就是说,当n =k +1时结论成立. 综上,存在 c =14使a2n<C<a2a +1对所有n ∈N*成立. 方法二:设f(x)=(x -1)2+1-1,则an +1=f(an). 先证:0≤an≤1(n ∈N*). ① 当n =1时,结论明显成立. 假设n =k 时结论成立,即0≤ak≤1. 易知f(x)在(-∞,1]上为减函数,从而 0=f(1)≤f(ak)≤f(0)=2-1<1.即0≤ak +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a 2n<a2n +1(n ∈N*). ②当n =1时,a2=f(1)=0,a3=f(a2)=f(0)=2-1,所以a2<a3,即n =1时②成立. 假设n =k 时,结论成立,即a2k<a 2k +1. 由①及f(x)在(-∞,1]上为减函数,得 a2k +1=f(a2k)>f(a2k +1)=a2k +2, a2(k +1)=f(a2k +1)<f(a2k +2)=a2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N*成立. 由②得a2n<a22n -2a2n +2-1, 即(a2n +1)2<a22n -2a2n +2, 因此a2n<14.③又由①②及f(x)在(-∞,1]上为减函数,得f(a2n)>f(a2n +1),即a2n +1>a2n +2. 所以a2n +1>a22n +1-2a2n +1+2-1,解得a2n +1>14.④ 综上,由②③④知存在c =14使a2n<c<a2n +1对一切n ∈N*成立.5.(·安徽卷)如图1-3所示,互不相同的点A1,A2,…,An ,…和B1,B2,…,Bn ,…分别在角O 的两条边上,所有AnBn 相互平行,且所有梯形AnBnBn +1An +1的面积均相等,设OAn =an ,若a1=1,a2=2,则数列{an}的通项公式是________.图1-3【答案】an =3n -26.(·辽宁卷)下面是关于公差d>0的等差数列{}an 的四个命题: p1:数列{}an 是递增数列; p2:数列{}nan 是递增数列;p3:数列⎩⎨⎧⎭⎬⎫an n 是递增数列;p4:数列{}an +3nd 是递增数列. 其中的真命题为( )A .p1,p2B .p3,p4C .p2,p3D .p1,p4 【答案】D【解析】因为数列{an}中d>0,所以{an}是递增数列,则p1为真命题.而数列{an +3nd}也是递增数列,所以p4为真命题,故选D.7.(·全国卷)等差数列{an}前n 项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.【解析】设{an}的公差为d.由S3=a22,得3a2=a22,故a2=0或a2=3. 由S1,S2,S4成等比数列得S22=S1S4. 又S1=a2-d ,S2=2a2-d ,S4=4a2+2d , 故(2a2-d)2=(a2-d)(4a2+2d). 若a2=0,则d2=-2d2,所以d =0, 此时Sn =0,不合题意;若a2=3,则(6-d)2=(3-d)(12+2d), 解得d =0或d =2.因此{an}的通项公式为an =3或an =2n -1. 【高考押题】1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是an 等于( ) A.-1n +12B .cos nπ2C .cos n +12πD .cos n +22π 答案 D解析 令n =1,2,3,…逐一验证四个选项,易得D 正确.2.已知数列{an}中,a1=1,若an =2an -1+1(n≥2),则a5的值是( ) A .7B .5C .30D .31 答案 D解析 由题意得a2=2a1+1=3,a3=2×3+1=7,a4=2×7+1=15,a5=2×15+1=31. 3.若数列{an}的通项公式是an =(-1)n(3n -2),则a1+a2+…+a10等于( ) A .15B .12C .-12D .-15 答案 A解析 由题意知,a1+a2+…+a10 =-1+4-7+10-…+(-1)10×(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9×(3×9-2)+(-1)10×(3×10-2)]=3×5=15.4.若Sn 为数列{an}的前n 项和,且Sn =n n +1,则1a5等于( ) A.56B.65C.130D .30答案 D解析 当n≥2时,an =Sn -Sn -1=n n +1-n -1n =1n n +1,所以1a5=5×6=30. 5.已知数列{an}满足a1=1,an +1an =2n(n ∈N*),则a10等于( )A .64B .32C .16D .8答案 B6.若数列{an}满足关系:an +1=1+1an ,a8=3421,则a5=________.答案 85解析 借助递推关系,则a8递推依次得到a7=2113,a6=138,a5=85.7.数列{an}中,a1=1,对于所有的n≥2,n ∈N*,都有a1·a2·a3·…·an =n2,则a3+a5=________.答案 6116解析 由题意知:a1·a2·a3·…·an -1=(n -1)2,∴an =(n n -1)2(n≥2),∴a3+a5=(32)2+(54)2=6116. 8.已知{an}是递增数列,且对于任意的n ∈N*,an =n2+λn 恒成立,则实数λ的取值范围是________.答案 (-3,+∞)解析 因为{an}是递增数列,所以对任意的n ∈N*,都有an +1>an ,即(n +1)2+λ(n +1)>n2+λn ,整理,得2n+1+λ>0,即λ>-(2n+1).(*)因为n≥1,所以-(2n+1)≤-3,要使不等式(*)恒成立,只需λ>-3.9.已知数列{an}的前n项和Sn=2n+1-2.(1)求数列{an}的通项公式;(2)设bn=an+an+1,求数列{bn}的通项公式.解(1)当n=1时,a1=S1=22-2=2;当n≥2时,an=Sn-Sn-1=2n+1-2-(2n-2)=2n+1-2n=2n;因为a1也适合此等式,所以an=2n(n∈N*).(2)因为bn=an+an+1,且an=2n,an+1=2n+1,所以bn=2n+2n+1=3·2n.10.数列{an}的通项公式是an=n2-7n+6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。