Effect of stress-induced grain growth
花后前期高温对玉米强弱势籽粒生长发育的影响
花后前期高温对玉米强弱势籽粒生长发育的影响赵丽晓;张萍;王若男;王璞;陶洪斌【摘要】The kernel culture in vitro was adopted to study the effect of high temperature after flowering on maize superior and inferior kernels. Results indicated that dry matter accumulation of grain decreased, due to the fact that grain development was accelerated at early grain-filling stage by high temperature, but declined at middle late grain filling stage. In mature stage, the dry weight of superior and inferior kernels under high temperature was reduced by 5.8%and 17.4%, respectively, so inferior kernels had a more reduction than superior kernels. The synthesis of starch was influenced by reducing the activity of enzymes related to starch synthesis significantly at different grain-filling stages under high temperature treatment. The contents of IAA and ZR in kernel were significantly reduced after being treated with high temperature. The content of GA3 was increased in inferior kernels, but not in superior kernels. It could be deduced that the much dry weight loss of inferior kernels should be ascribed to the increas-ing in GA3 content when kernels exposed to high temperature.%采用籽粒离体培养的方法,研究花后高温对玉米强、弱势籽粒的影响。
Stress-induced and Electromigration Voiding in Nitride Passivated Al Interconnects
Stress-induced and Electromigration Voiding in Nitride Passivated Al Interconnects Seok-Hee Lee, Samantha Lee†, John C. Bravman, Paul A. Flinn,and Thomas N. Marieb*Department of Materials Science and Engineering, Stanford University, Stanford, California 94305†Advanced Micro Devices, Sunnyvale, California 94088*Components Research, Intel Corporation, Santa Clara, California 95054Abstract. Void nucleation in nitride passivated aluminum interconnects was studiedusing High Voltage Scanning Electron Microscopy (HVSEM). Extensive stress-inducedvoiding was observed in the line regardless of passivation thickness. Some of the stress-induced and electromigration voids formed away from the interconnect sidewall, which iscontrary to images presented in other studies of void nucleation. Transmission electronmicroscopy showed that hydrogen from the nitride layer forms bubbles in the aluminum.These bubbles act as pre-existing defects in the aluminum, reducing the barrier for voidnucleation.INTRODUCTIONElectromigration failure occurs by the nucleation, growth, and movement of a void or voids. As the quality of metallization was improved, the incubation time for void nucleation increased as well. It has been shown that the time to void nucleation can be a very large portion of interconnect lifetime.1,2 For that reason, the energy barrier of void nucleation becomes an important factor in understanding the electromigration failure process. Recent theoretical studies have shown that void formation is not possible unless voids nucleate on a pre-existing defect.3-6 The nucleation barrier in any other case is too large to be overcome on a reasonable time scale.Aluminum lines passivated with plasma enhanced CVD (PECVD) silicon nitride are known to have stress-induced voids which occur to release the strain energy in the line.7 Lee showed that some of the stress-induced voids can be formed in the interior of the line in nitride passivated aluminum lines, in contrast to voids in oxide passivated lines.8 A possible mechanism involving hydrogen microvoids has been proposed to explain the stress-induced voiding in nitride passivated aluminum lines.9 To the best of our knowledge, however, no study about the formation of stress-induced and electromigration voids in the interior of the nitride-covered line has been reported.In order to understand the dynamics of electromigration voiding, an in-situ technique is necessary. For this purpose, a high voltage scanning electron microscope(HVSEM) has been employed to study electromigration voiding in the presence of stress-induced voids in nitride passivated aluminum lines.EXPERIMENTSSamples were made from Si wafers fabricated with 550 Å thermal oxide / 250 Å Ti / 7200 Å Al / 50 Å TiN. 300 µm long and 2.6 µm wide lines were patterned for the electromigration tests. After patterning, a 1000 Å PECVD oxide from a silane source was deposited at 400°C. In order to stabilize the grain structure and to ensure the complete reaction of the Ti and Al, the samples were annealed at 400 °C for 5 hours before additional deposition of 0.5, 1.0, or 2.0 µm silicon nitride at 400 °C. After the anneal step, the Ti is assumed to have completely reacted with Al to form approximately 900Å Al3Ti, leaving 6500 Å Al.The microstructure of the line sample was determined by transmission electron microscopy (TEM) analysis. In this sample preparation, it is necessary to keep the void region unchanged. The details of this sample preparation technique have been documented elsewhere.10,11 This technique permitted the entire passivated line to be viewed in the TEM. Figure 1 shows a TEM image of a test line passivated with 1 µm thick silicon nitride. It is clear that the line has a polygranular structure. For hydrogen bubble observation, plan view TEM samples were prepared by conventional dimpling and ion milling techniques. To avoid heating the sample, ion milling was performed at liquid nitrogen temperature.FIGURE 1. TEM image of an Al line passivated with 1 µm silicon nitride.In-situ observation of electromigration voiding was performed by taking images with backscattered electrons in a high-voltage SEM, which makes possible observation through the passivation layer. The development of the HVSEM to perform in-situ testing has been documented elsewhere.12 The HVSEM has a resolution of 0.05 µm through 0.5 µm of passivation. Images were digitized and displayed in false color to enhance visibility; however, they are shown in grayscale in this paper. Accelerated testing was performed by heating the sample and supplying current to the line inside the HVSEM chamber. The temperature was measured using both a thin film platinum resistance thermometer on the heater and the resistance change in the test line. Before setting up the electromigration test, the line resistance was measured as a function oftemperature in a furnace to obtain the temperature coefficient of resistance of the line. The measured value was then used to calculate the target line resistance at the test temperature. The electromigration test conditions were 33 mA/µm2 and 250°C. The test was stopped after a 30 percent increase in resistance.RESULTS AND DISCUSSIONExtensive stress-induced voiding was observed in the test lines regardless of passivation thickness. An aluminum line passivated with 1.0 µm silicon nitride is shown in Figure 2. Some of the stress-induced voids formed away from the interconnect sidewall. This observation is contrary to results presented by other studies of void formation.13,14 In Figure 2, such a void is shown in the white box (marked with a black arrow) at the 6th segment of the line as a white spot away from the sidewall. Stress-induced voiding sites in the line were identified using TEM and the results are shown in Figure 3. Figure 3 (a) shows a void along the sidewall which is commonly observed in other studies of void formation. Fig. 3 (b) shows a void in the interior of the line located at the triple junction of the grain boundary in the aluminum line.FIGURE 2. Back-scattered electron image of a straight, 300 µm long, 2.6 µm wide Al test line under 1.0 µm silicon nitride. Stress-induce voids in the line appear as white spots. Note the many stress voids in the white boxes in the 4th and 6th segments.Recent theoretical studies have shown that void nucleation is not energetically possible unless voids nucleate on a pre-existing defect.3-6 During the aluminum line patterning process, the resulting residue from the metal can serve as sites for void nucleation. It has been shown that the post-etch cleaning step has a large effect on void nucleation and interconnect reliability.15,16 Based on these facts, it is not surprising that we observe stress-induced voids along the sidewalls, as shown in Figure 3 (a). Thesurprise here is the void which formed in the interior of the line, as shown in Figure 3 (b). A recent study showed that by selectively implanting Ar ions in aluminum interconnects, one can introduce defects of controlled size in selected locations.17 The argon atoms precipitate and form small bubbles after implantation. Since noble gases do not bond to the aluminum, the bubbles act as free surfaces. This reduces the energy barrier for nucleation, and voids can thereby form in the interior of the line as well as along the sidewalls. It is plausible that a similar mechanism is responsible for the interior void nucleation in the nitride-covered samples.PECVD nitride films have long been known to be a hydrogen source.18,19 The fact that it has been used for hydrogenation of polycrystalline silicon films in thin film transistor applications further supports this.20,21 Therefore, we can hypothesize that hydrogen from the nitride film forms small bubbles in the aluminum, which act as void nucleation sites. To test this hypothesis, plan-view TEM analysis of aluminum film passivated with 1 µm nitride was performed. The TEM sample was from the same wafer as the test lines. The result is shown in Figure 4.(a) (b)FIGURE 3. TEM images of stress-induced voids (marked as S) in an aluminum line passivated with 1µm silicon nitride: (a) void along the sidewall and (b) void in the interior of the line.FIGURE 4. A Bright field TEM image of bubbles in an Al thin film passivated with 1 µm silicon nitride. The sample was from the same wafer as the test lines. This Fresnel contrast image was taken in an underfocused condition. Bubbles appear as white fringes.3 µm FIGURE 5. HVSEM sequence of 1.0 µm nitride passivated aluminum line tested at J =33 mA/µm 2and T = 250°C. Elapsed test time is shown at right.In the TEM, we can image voids which are fully enclosed inside the aluminum film by defocusing the image and observing the special form of phase contrast termed Fresnel contrast.22 Figure 4 is an underfocused TEM image which shows a high density of bubbles. In this image, bubbles appear as white fringes. Although the element in the bubble was not characterized, we believe that the hydrogen from the nitride caused these. Analogous to the results from the Ar implanted experiment, the hydrogen bubbles act as pre-existing defects, enabling void formation in the interior of the metal line by reducing the nucleation barrier for void nucleation.In order to evaluate the effect of hydrogen bubbles on electromigration voiding,HVSEM images were taken throughout electromigration testing. Figure 5 shows a sequence of HVSEM images of the boxed region in the 6th segment shown in Figure 2.Some of the pre-existing stress-induced voids grew during electromigration testing. It can also be seen that new electromigration voids nucleated and grew in other regions.One significant phenomenon is electromigration voiding in the middle of the line, as shown in the right part of the segment. This behavior is again in contrast to what is normally observed in passivated aluminum lines. Like the stress-induced voids, the presence of the hydrogen bubbles has decreased the energy barrier for EM void nucleation.CONCLUSIONExtensive stress-induced voiding was observed in PECVD nitride-covered aluminum lines regardless of passivation thickness. Some of the stress-induced and electromigration voids formed in the interior of the aluminum lines, in contrast to what is normally observed in passivated metal lines. Plan-view TEM showed a high density t = 0 hrs.t = 8.5 hrs.t = 9.9 hrs.t = 10.6 hrs.t = 20.0 hrs.(a)(b)(c)(d)(e)of small bubbles in the aluminum film. Hydrogen evolution from the PECVD nitride layer is plausible source of these bubbles. These bubbles act as pre-existing defects in the aluminum, reducing the barrier for void nucleation. All of these observations strongly support the theories of heterogeneous void nucleation on pre-existing defects. Since PECVD silicon nitride film is commonly used in silicon device processing, careful caution is needed to suppress the extensive stress-induced and electromigration voiding in the aluminum interconnects.ACKNOWLEDGEMENTSWe gratefully acknowledge Intel Corporation for their support of this program. The support of SIA/FRC on Interconnects is also gratefully acknowledged.REFERENCES1.Levine, E. and Kichter, J., 22nd Annual Proc. of IEEE IRPS, 242 (1984).2.Doan, J., Bravman, J.C., Flinn, P.A., and Marieb, T.N., Mater. Res. Soc. Symp. Proc. 516, 83(1998).3.Nix, W.D. and Arzt, E. Met. Trans. A23A, 2007 (1992).4.Flinn, P.A., Mater. Res. Bull.20 (11), 70 (1995).5.Gleixner, R.J., Clemens, B.M., and Nix, W.D., J. Mater. Res.12, 2081 (1997).6.Clemens, B.M., Nix, W.D., and Gleixner, R.J., J. Mater. Res.12, 2038 (1997).7.Yue, J.T., Funsten, W.P., and Taylor, R.V., 23rd Annual Proc. of IEEE IRPS, 126 (1985).8.Lee, S., Thesis, Stanford University, 1999.9.Koyama, H., Mashiko, Y., and Nishioka, T., 24th Annual Proc. of IEEE IRPS, 24 (1986).10.Lee, S.H., Bravman, J.C., Flinn, P.A., and Arnaud, L., Mater. Res. Soc. Symp. Proc.473, 235(1997).11.Meier, N.E., Doan, J.C., Marieb, T.N, Flinn, P.A., and Bravman, J.C., Mater. Res. Soc. Symp.Proc., Spring 1999, in press.12.Flinn, P.A., Lee, S., Doan, J.C., Marieb, T.N., Bravman, J.C., and Madden, M. AIP Conf. Proc.418, 250 (1997).13.Marieb, T., Flinn, P., Bravman, J.C., Gardner, D., and Madden, M., J. Appl. Phys., 78, 1026(1995)14.Heinen, D. and Schroeder, H., Mater. Res. Soc. Symp. Proc., 473, 381 (1997)15.Wada, T, Sugimoto, M., and Ajiki, T., IEEE Trans. Reliability38, 565 (1985).16.Abe, H., Tanabe, S., Kondo, Y., and Ikubo, M., Jpn. Soc. Of Appl. Phys. (39th Spring Meeting),658 (1992)17.Doan, J.C., Lee, S.H., Bravman, J.C., Flinn, P.A., and Marieb, T.N., Appl. Phys. Lett., acceptedfor publication.18.Flinn, P.A., Chien, C., J. Appl. Phys., 67, 2927 (1990).19.Filter, W.F. and Van Den Avyle, J.A., AIP Conf. Proc., 263, 158 (1992)20.Pollack, G.P., Richardson, W.F., Malhi, S.D., Bonifield, T., Shichijo, H., Banerjee, S., Elahy, M.,Shar, A.H., Womack, R., and Chatterjee, P.K., IEEE Electron Device Lett., EDL-5, 468 (1984).m, L.K., Chen, D.L., and Ast, D.G., Electrochemical and Solid-State Lett., 2, No. 3, 140 (1999)22.Williams, D.B. and Carter, C.B., Transmission Electron Microscopy, New York: Plenum Press,1996, ch. 27, pp. 451-452.。
过表达ZmCIPKHT基因增强植物耐热性
作物学报ACTA AGRONOMICA SINICA 2022, 48(4): 851 859 / ISSN 0496-3490; CN 11-1809/S; CODEN TSHPA9E-mail: zwxb301@DOI: 10.3724/SP.J.1006.2022.13013过表达ZmCIPKHT基因增强植物耐热性许静1高景阳1李程成2宋云霞1董朝沛1王昭1李云梦1栾一凡1陈甲法2周子键2,*吴建宇1,2,*1 河南农业大学农学院, 河南郑州 450002; 2河南农业大学生命科学学院, 河南郑州 450002摘要: 高温胁迫对植物正常生长发育及产量的影响越来越显著。
为了适应外界环境的变化, 植物进化出了一系列应对高温胁迫的分子遗传机制。
类钙调磷酸酶B蛋白(CBL)互作蛋白激酶(CIPK), 在ABA信号转导途径上积极参与植物对高温胁迫的响应。
在前期全基因组关联分析的基础上, 本实验克隆了一个与玉米耐高温性状相关的候选基因ZmCIPKHT, qRT-PCR结果表明ZmCIPKHT基因受高温胁迫的显著诱导。
室内表型鉴定的实验发现过表达ZmCIPKHT的转基因拟南芥植株在高温胁迫下, 比野生型的存活率显著提高, 生长状态更好。
玉米原生质体瞬时转化实验证明ZmCIPKHT蛋白定位于细胞核中。
酵母双杂交实验验证了ZmCIPKHT蛋白与玉米CBLs家族中的ZmCBL4蛋白存在互作关系。
同时, ZmCIPKHT转基因拟南芥在高温胁迫条件下, 脱落酸(ABA)通路相关基因的表达水平有其相应的变化, 揭示了ZmCIPKHT可能依赖于ABA信号转导通路来增强植物的耐热性。
这些结果为解析玉米CBL-CIPK信号通路依赖于ABA途径对植物非生物胁迫响应的分子机制提供了新的实验根据。
关键词:玉米; 耐热性; 蛋白激酶; CBL-CIPK; ABA信号通路;Overexpression of ZmCIPKHT enhances heat tolerance in plantXU Jing1, GAO Jing-Yang1, LI Cheng-Cheng2, SONG Yun-Xia1, DONG Chao-Pei1, WANG Zhao1,LI Yun-Meng1, LUAN Yi-Fan1, CHEN Jia-Fa2, ZHOU Zi-Jian2,*, and WU Jian-Yu1,2,*1 College of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China;2 College of Life Science, Henan Agricultural University,Zhengzhou 450002, Henan, ChinaAbstract: The effects of high temperature stress on the normal growth and yield of plants is more and more serious. To adapt thechanges of external environment, plants have evolved a series of molecular genetic mechanisms to respond to high temperaturestress. The calcineurin B-like protein (CBL) interacting protein kinase (CIPK) is actively involved in response to high temperaturestress depended on ABA signal transduction pathway in plants. Based on previous genome-wide association analysis, a candidategene ZmCIPKHT related to maize high temperature tolerance was cloned in this study. Real-time quantitative PCR results showedthat ZmCIPKHT gene was significantly induced by high temperature stress. Transient transformation of maize protoplasts revealedthat ZmCIPKHT was localized in the nucleus. Overexpressing ZmCIPKHT plants of transgenic Arabidopsis thaliana had signifi-cantly higher survival rate and better growth status than wild type under high temperature stress. The yeast two-hybrid experimentconfirmed that the interaction between ZmCIPKHT protein and ZmCBL4 protein in maize CBLs family. The relative expressionlevels of genes related to abscisic acid (ABA) pathway in transgenic Arabidopsis thaliana with ZmCIPKHT under high tempera-ture stress were changed accordingly, indicating that the regulations of ZmCIPKHT genes under high temperature stress were inthe ABA-dependent pathway. These results provide a new experimental basis for elucidating the molecular mechanism of maizeCBL-CIPK signaling pathway dependent on ABA pathway to abiotic stress in plants.Keywords: maize; heat tolerance; protein kinase; CBL-CIPK; ABA signal pathway玉米是一种重要的食品、饲料以及工业原料, 在我国粮食生产安全中占领重要地位。
表面改性技术形变强化
二、表面形变强化的主要方法及应用
(一)表面形变强化的 主要方法 1.滚压 目前,滚压强化用的滚 轮、滚压力大小等尚无 标准。 对于圆角、沟槽等可通 过滚压获得表层形变强 化,并能在表面产生约 5mm深的残余压应力, 其分布如图所示。
2.内挤压
内孔挤压是使孔的内表面获得形变强化 的工艺措施,效果明显
喷丸速度对表层残余应力有明显影响试验表明当弹丸粒度和硬度不变提高压缩空气的压力和喷射速度不仅增大了受喷表面压应力而且有利于增加变形层的深度6不同表面处理后的表面残余应力的比较不同表面处理后的表面残余应力及疲劳极限如下表所示
第六章 表面改性技术
采用某种工艺手段使材料表面获得与其基 体材料的组织结构、性能不同的一种技术。
(4)弹丸形状对喷丸表面形貌的影响
球形弹丸高速喷射工件表面后,将留下 直径小于弹丸直径的半球形凹坑,被喷 面的理想外形应是大量球坑的包络面。 这种表面形貌能消除前道工序残留的痕 迹,使外表美观。同时,凹坑起储油作 用,可以减少摩擦,提高耐磨性。
(5)喷丸表层的残余应力
喷丸处理能改善零件表层的应力分布。 喷丸后的残余应力来源于表层不均匀的塑性 变形和金属的相变,其中以不均匀的塑性变 形最重要。
4.旋片喷丸工艺
5.喷丸表面质量及影响因素
(1) 喷丸表层的塑性变形和组织变化。
金属的塑性变形来源于晶面滑移、孪生、 晶界滑动、扩散性蠕变等晶体运动,其 中晶面间滑移最重要。晶面间滑移是通 过晶体内位错运动而实现的。
喷丸表层的组织变化
金属表面经喷丸后,表面产生大量凹坑形式的塑性 变形,表层位错密度大大增加。而且还会出现亚晶 界和晶粒细化现象。 喷丸后的零件如果受到交变载荷或温度的影响,表 层组织结构将产生变化,由喷丸引起的不稳定结构 向稳定态转变。
2019年武汉理工大学理学院博士研究生招生入围考试考生信息公示汇总表
《一种高效的非线性电网数字锁相环》
否
中国电机工程学报 Vol.32 No.33 《调 频激励器原理及其发展》广电设备与技
术 2004年第4期
1. Yang H, Wen P, Zhou X, et al.
Enhanced thermoelectric performance
of Te-doped skutterudite with nano-
/否)
外语免 考依据
外语折 算成绩
学院标志 性学术成 果(是/
否)
标志性学术成果
其他学术成果
谢翔宇,李永静,晏石林.LCM 工艺二维
是 径向非饱和流动数值模拟 [J].复合材料学
报, 2018, 35.
否
否
否
否
《A calculation model and characteristics analysis of radio wave propagation in rectangular shed tunnel》(EI收录)
5 舒翠翠 1049799701 定向就业 武汉理工大学 材料科学与工程 武汉理工大学
材料学
翟鹏程 李国栋,武汉理工大学;晏石林,武汉理工大学
否
6 朱央炫 1049799612 非定向就业 武汉理工大学 理论与应用力学 武汉理工大学 固体力学
方岱宁 朱四荣,武汉理工大学;谢官模,武汉理工大学
否
7 华香颖 1049799806 非定向就业 武汉理工大学 信息与计算科学 武汉理工大学
是
Effects of sintering temperature on Co4Sb11.5Te0.5 via a two-pronged the microstructure and thermoelectric strategy combining grain
金属材料专业英语词汇精选
A.S.T.M. specification A.S.T.M. 的规范ablation 耗损abradant 摩擦剂abrasion 磨耗abrasion resistance 耐磨抗力abrasive 研磨剂,磨料abrasive grain 研磨粒absolute temperature 绝对温度absorption coefficient 吸收系数accuracy 精度accuracy test 精度试验acetone 丙酮acicular cast iron 针状铸体acicular powder 针状粉末acicular structure 针状组织pig iron 生铁polishing 抛光refractory material 耐火材料acid resisting cast iron 耐酸铸铁acid refractory material 酸性耐火材料activated atom 活化原子activated carbon 活性碳activation polarization 活性极化active region 活性区active-passive metal 活性-钝态金属active-passive transition 活性-钝态转变additive 添加剂adherence test 黏着试验adhesion force 附着力adhesion strength 附着强度adhesives 黏合剂adiabatic curve 绝热曲线adiabatic deformation 绝热变形elasticity弹性age hardening 时效硬化aging 时效aging crack 时效裂纹(痕)aging range 时效温度范围aging test 时效试验agitation 搅拌agitator 搅拌器alloy 合金alloy carbide 合金碳化物alloy cast iron 合金铸铁alloy element 合金元素alloy pig iron 合金生铁alloy plating 合金电镀alloy powder 铝金粉末alloy steel 合金钢alloy steel casting 合金钢铸件alloy tool steel 合金工具钢alpha brass α- 黄铜alpha bronze α- 青铜alpha-beta titanium alloy α-β 钛合金alpha-iron α- 铁aluminizing (calorizing) 渗铝法alumino thermic process 铝热法alumino-nickle alloy 铝镍合金aluminum 铝aluminum alloy 铝合金aluminum alloy casting 铝合金铸件aluminum brass 铝黄铜aluminum bronze 铝青铜aluminum cast iron 铝铸铁aluminum deoxidation 加铝脱氧aluminum oxide tool 氧化铝刀具aluminum removal 除铝剂amorphous 非晶[形]的amorphous graphite 非晶质石墨amorphous material1 非晶态材料2 非晶质材料amorphous state 非晶质状态amount of finish 加工量amount of oxygen precipitation 析出氧气量anelasticity 滞弹性anelastic creep 滞弹性潜变anelastic strain 滞弹性应变angle 角形料angle bar 角铁angle steel 角钢anneal, annealing 退火annealed condition 退火状态annealed material 退火材料annealed structure 退火组织annealing embrittlement 退火脆性annealing furnace 退火炉anode 阳极anode effect 阳极效应anode efficiency 阳极效率anode material 阳极材料anodic oxidation 阳极氧化anti-corrosion 耐蚀anti-corrosion alloy 耐蚀合金anti-oxidant 抗氧化剂anti-oxidation 抗氧化anti-oxidation additives 抗氧化添加剂analyzing magnet 分析磁铁aqua regia 王水arc cutting 电弧切割arc furnace 电弧炉arc welding 电弧焊接artificial aging 人工时效artificial age-hardening 人工时效硬化asbestos 石棉asphalt1 沥青2柏油asphalt cement 沥青胶泥asphalt coal 沥青煤asphalt cutback 涂料沥青availability 利用度,利用率ball bearing 滚珠轴承ball bearing steel 滚珠轴承钢ball bonding 球形接合,球形压接banded structure 带状组织bearing bronze 轴承青铜bearing corrosion 轴承腐蚀bearing metals 轴承金属bend test 弯曲试验bendability 弯曲性binary alloy 二元合金blast 鼓风blast cleaning 喷砂处理blast furnace 鼓风炉,高炉body-centered cubic (b.c.c.)体心立方boron (B, 5) 硼boric acid 硼酸boric oxide 氧化硼borides 硼化物boriding 渗硼处理boron nitride 氮化硼(BN)boron steel 硼钢boronising 渗硼法breaking strength 断裂强度breaking stress 断裂应力brittleness 脆性brittle material 脆性材料brittle rupture 脆性破坏brittle fracture 脆性断裂bronze 青铜bronze welding 青铜焊carbon potential 碳势(碳位能) carbon rod 碳棒carbon saturation 碳饱和度carbon tool steel 碳工具钢carbonaceous inclusion 碳质夹杂物carburization 渗碳carburized case depth 渗碳层厚度carburized depth 渗碳深度carburized structure 渗碳组织carburizer 渗碳剂carburizing 渗碳处理carburizing steel 渗碳钢case case carbon 表皮,表层含碳量case depth 硬化深度case hardening 表面硬化case-hardening steel 表面硬化钢cast 铸造cast alloy 铸性合金,铸造合金cast dies 铸造钢模cast iron 铸铁cast iron pipe 铸铁管cast refractory 筹造耐火材料cast steel 铸钢cast structure 铸造组织casting rate 浇铸速率casting sand 铸砂casting steel 钢铸件casting strain 铸造应变casting stress 铸造应力casting temperature 浇铸温度cathod 阴极cathodic polarization 阴极极化cellulose 纤维素cement sand 水泥砂cementite渗碳体centrifugal casting 离心铸造法ceramic 陶瓷characteristic curve of hardening 淬火特性曲线chemical activity 化学活性chemical affinity 化学亲和力chemical attack 化学侵蚀coated abrasives 砂纸coefficient of elasticity 弹性系数coefficient of friction 摩擦系数coefficient of scatter 散射系数coefficient of thermal expansion 热胀系数columnar structure 柱状组织concrete 混凝土conductivity 导电性crystal 晶体;结晶crystal lattice 晶格;晶体点阵crystal structure 晶体组织decarburization 脱碳decarburized depth 脱碳深度decarburized layer 脱碳层decarburized structure 脱碳组织decorative concrete 装饰混凝土defect structure 缺陷组织deformation 变形deformability 变形度deformation structure 变形组织deformation temperature 变形温度deformation texture 变形织构crystallinity degree 结晶度dendrite 树枝状结晶;树状突dendritic structure 树枝状组织deposition 沉积dewpoint indicator 露点计dielectric 介电dielectric constant 介电常数dielectric insulator 介电绝缘体dielectric strength 介电强度diffusion 扩散diffusion activation energy 扩散活化能diffusion annealing 扩散退火diffusion coefficient 扩散系数diffusion constant 扩散常数diffusion hardening 扩散硬化dimension1尺寸2因次3维,度distortion 歪变,畸变ductility 延性ductile crack 延性破裂ductile fracture 延性断口ductile rupture 延性破坏durability 久耐性elastic hysteresis 弹性迟滞elastic deformation 弹性变形elastic reactance 弹性抗力elastic strain 弹性应变elastic constant 弹性常数electric resistance furnace 电阻炉electric induction furnace 感应电炉electric arc furnace 电弧炉electro-deposited coating 电积层electro-deposition 电[淀]积electro-forming 电铸electro-plating 电镀electrode materials 电极材料electrode potential 电极电位electron lens 电子透镜electron microscope 电子显微镜electropositive potential 正电位electrostatic scan 静电扫描endurance limit 疲劳极限endurance ratio 疲劳比endurance strength 疲劳强度equilibrium (phase)平衡equilibrium diagram 平衡图equilibrium potential 平衡电位equilibrium segregation 平衡偏析equilibrium segregation coefficient 平衡偏析系数equilibrium state 平衡状态eutectic 共晶eutectic alloy 共晶合金eutectic carbide 共晶碳化物eutectic cast iron 共晶铸铁eutectoid 共析eutectoid alloy 共析合金eutectoid steel 共析钢eutectoid structure 共析组织eutectoid temperature 共析温度modulus 模数elasticity modulus 弹性模数face-centered cubic (f.c.c.)面心立方fatigue corrosion 疲劳腐蚀fatigue crack 疲劳裂痕fatigue fracture 疲劳破裂fatigue limit 疲劳极限feed riser 冒口ferromagnetic 强磁的ferromagnetism 铁磁性,强磁性ferrous alloy 铁合金fiber ceramic 陶瓷纤维fine grinding 细磨fine-grained steel 细晶粒钢fire resistance 耐火性fire clay 耐火泥flake1 小片2 裂纹3 白疵flake graphite 片状石墨flake graphite cast iron 片状石墨铸铁flame annealing 火焰退火flexural strength 抗弯强度fluidity 流体性forgeability 锻造性formability 成形性furnace lining 炉衬gaseous diffusion process 气体扩散法gassy surface 疏松结构glass fiber 玻璃纤维grain 晶粒grain boundary 晶界grain boundary attack 晶界侵蚀grain boundary reaction 晶界反应grain coarsening 晶粒粗化grain coarsening temperature 晶粒化温度grain growth 晶粒生长grain refining 晶粒微化grain size 晶粒度,晶粒大小grain size analysis 粒度分析grain structure 晶粒组织granite 花岗石graphite 石墨graphite electrode 石墨电极graphite flake precipitation 片状石墨析出graphitizing anneal 石墨化退火gray [cast] iron 灰口铸铁grinding 研磨heat resistant alloy 耐热合金heat resistant casting 耐热铸件heat resistant steel 耐热钢heat resisting cast iron 耐热铸铁heat resisting cast steel 耐热铸钢heat resisting steel 耐热铸钢heat transfer coefficient 热传递系数high speed steel 高速钢high-alumina brick 高铝砖high-duty fireclay brick 高级火黏土砖high-temperature carburizing 高温渗碳high-temperature corrosion 高温腐蚀high-temperature oxidation 高温氧化high-temperature refractory 高温耐火材料homogeneity 均质homogeneous carburizing 均质渗碳homogeneous deformation 均匀变形homogeneous material 均质材料homogeneous nucleation 均态成核homogeneous structure 均质组织homogenization 均质化,均质作用homogenizing 均质化homogenizing anneal 均质化退火hydrogen electrode 氢电极hydrogen embrittlement 氢脆性,氢脆化hypereutectic 过共晶hypereutectic alloy 过共晶合金hypereutectic cast iron 过共晶铸铁hypoeutectic 亚共晶hypoeutectic cast iron 亚共晶铸铁hypoeutectic alloy 亚共晶合金hypereutectoid alloy 过共析合金hypereutectoid cast iron 过共析铸铁hypereutectoid steel 过共析钢hypoeutectoid steel 亚共析钢hystersis 迟滞i-type semiconductori型半导体intrinsic semiconductor 本徵半导体lattice constant 晶体常数;点阵常数limestone 石灰石line defect test 线缺陷试验magnetic ceramics 磁性陶瓷mechanical analysis 机械分析mobility 迁移率modulus 模数elasticity modulus 弹性模数rigidity modulus 刚性模数optical metallographic examination 光学金相检验oxide ceramics 氧化物陶瓷oxidizing flame 氧化焰p-type semiconductor p型半导体particle size 粒度particle-size analysis 粒度分析powder metallurgy antifriction material 粉末冶金减摩材料powder metallurgy friction material 粉末冶金摩擦材料quartz 石英quartz glass 石英玻璃quartz sand 石英砂reclaim 再生refining 净化refining speed 精练速度refractoriness 耐火性;耐火度refractory coating 耐火涂料refractory concrete 耐火混凝土refractory material 耐火材料refractory cement 耐火水泥resistance heating element 电阻加热元件resist thermal stability 抗蚀剂热稳定性saturation coefficient 饱和系数scanning electron microscopy 扫描电子显微镜scanning transmission electron microscope 扫描透射型电子显微镜segregation 偏析semi-conductor 半导体shear 剪切shear creep 剪切蠕变shear strain 剪应变shear strength 剪切强度shear stress 剪应力shock resistance 耐冲击性shrinkage 收缩shrinkage volumetric 容量收缩shrinking stress 收缩应力slag 熔渣slag cement 熔渣水泥sleeve 套筒solubility 溶度solute 溶质solute-solvent interaction 溶质-溶剂相互作用spray welding 喷焊static electricity 静电strain energy 应变能stress cracking 应力破裂stress crystallinity 应力晶性stress curve 应力曲线stress decay 应力衰变stress distributions 应力分布stress reinforcement 应力加强stress relaxation 应力松弛stress-corrosion cracking 应力腐蚀破裂stress-cracking resistance 应力破裂抗性stress-deformation rate 应力衰变速率stretch 拉伸,延伸sulfur compound 硫化物surface resistivity 表面电阻swell 膨胀synthetic fibers 人造纤维tear 开裂(玻)tear strength 撕裂强度tear test 撕裂试验tearing 裂痕tempers 回火tensile impact testing 拉伸冲击试验tensile modulus 拉伸模数tensile properties 抗拉特性tensile strength 抗拉强度tensile stress 抗拉应力texture 组织thermal conductivity 导热性thermal diffusion 热扩散thermal endurance 耐热性thermal expansion 热膨胀transmission electron microscope 透射型电子显微镜tungsten 钨twist test 扭转试验under-cooling 过冷uniaxial crystal 单轴晶釉uniaxial orientation 单轴定向uniaxial orientation distribution 单轴定向分布vapor-phase reactions 气相反应velocity 速度viscosity 黏度volume changes 容积变化volume crystallinity 容积结晶度volume resistivity 容积电阻Young's modulus 杨氏模数。
应力对316L_在液态铅铋共晶合金中腐蚀行为的影响
第15卷第8期精密成形工程腐蚀行为的影响贲知宇,赵信毅,雷玉成(江苏大学材料科学与工程学院,江苏镇江 212013)摘要:目的研究应力对316L在高温液态铅铋合金(LBE)中腐蚀行为的影响。
方法将316L制成C型环试样,加载应力后将其置于500 ℃的LBE中腐蚀2 500 h,利用X射线衍射仪(XRD)、场发射扫描电镜(SEM)、能谱仪(EDS)等手段分析腐蚀程度。
结果在应力作用下,316L在LBE中的腐蚀机制仍然为氧化腐蚀,且形成的氧化层结构和成分与无应力状态下的一致;材料表面氧化层总厚度显著增加,且内/外氧化层之间更容易产生裂纹,随腐蚀时间的延长,外氧化层有剥落的趋势。
施加应力后,试样的氧化速率系数从0.190 1 μm/h增大至0.278 1 μm/h,其中内氧化层生长速率增加得更显著。
EBSD分析表明,施加应力后,316L组织未发生改变,晶界附近的腐蚀加剧。
结论在应力作用下,基体晶界缺陷密度增加,元素在晶界处的扩散速率增大,内氧化层的生长速度加快,腐蚀速度增加。
关键词:316L;铅铋共晶合金;液态金属腐蚀;应力;C型环;氧化机制DOI:10.3969/j.issn.1674-6457.2023.08.011中图分类号:TG178 文献标识码:A 文章编号:1674-6457(2023)08-0089-10Effect of Stress on Corrosion Behavior of 316L in LiquidLead-bismuth Eutectic AlloyBEN Zhi-yu, ZHAO Xin-yi, LEI Yu-cheng(School of Materials Science and Engineering, Jiangsu University, Jiangsu Zhenjiang 212013, China)ABSTRACT: The work aims to study the effect of stress on the corrosion behavior of 316L in high temperature liquid lead-bismuth alloy (LBE). Several C-ring specimens of 316L were etched in LBE at 500 ℃up to 2 500 h. XRD, SEM, EDS and other equipment were employed to evaluate the degree of corrosion. The results showed that 316L specimens underwent oxidative corrosion in LBE under two stress states. The structure and component of its oxide layer were consistent with that without stress. The total thickness of the oxide layer increased after applying tensile stress to the specimen. In the corrosion process, the outer oxide layer was prone to cracking and had a tendency to peel off on the specimen. The oxide layer growth rate收稿日期:2023-05-09Received:2023-05-09基金项目:国家自然科学基金(51875264)Fund:The National Natural Science Foundation of China(51875264)作者简介:贲知宇(1998—),男,硕士生,主要研究方向为结构材料与LBE相容性。
固体发动机药柱完整性失效的判据
固体发动机药柱完整性失效的判据刘梅;高波;董新刚;郜婕【摘要】固体发动机工作过程中,燃烧室药柱处于三向受压状态下,围压条件对推进剂力学性能有增强.该增强作用在细观结构上表现为延缓推进剂中微裂纹与真空孔穴(脱湿)的出现,并限制其在固体填料周围粘合剂中的扩展;在宏观力学性能上表现为在低温高应变率下推进剂的最大伸长率εm由常压下的较小值增大到接近断裂伸长率εb.通过围压环境对推进剂力学性能的影响分析,提出以推进剂断裂伸长率εb 作为药柱在工作内压下的失效判据,并结合某翼柱型装药结构的有限元分析、完整性评估及地面试验,验证了该判据的合理性.【期刊名称】《固体火箭技术》【年(卷),期】2018(041)004【总页数】5页(P424-427,508)【关键词】固体发动机;最大伸长率;围压环境;失效判据;有限元分析【作者】刘梅;高波;董新刚;郜婕【作者单位】中国航天科技集团公司四院四十一所,西安 710025;中国航天科技集团公司第四研究院,西安 710025;中国航天科技集团公司四院四十一所,西安710025;中国航天科技集团公司四院四十一所,西安 710025【正文语种】中文【中图分类】V4350 引言固体火箭发动机在工作过程中,燃烧室内为高温高压的燃气,药柱及界面均处于三向受压状态。
而装药所用的固体推进剂是含有大量固体颗粒的聚合物,呈粘弹特性,其力学性能对时间和温度具有很大的依赖关系,同时具有明显的拉压不等特性。
国内外学者针对压强对固体弹性材料力学性能的影响开展了一系列研究。
Kruse、Jones[1]等的实验表明,固体推进剂属于压力敏感材料。
Tra Issac Y[2]及Paip C H [3]的研究表明,固体弹性材料在不同压强环境下的力学行为规律与常压下的变化规律差异很大。
Liu C T 等[4]针对围压对高填充弹性体内裂纹扩展的影响机理展开了研究。
Md.Abu Sayeed[5]及Md.Abdul Alim[6]分别研究了围压对粒状弹性材料强度和变形特性的影响。
超高压处理对发芽糙米淀粉凝胶特性的影响
超高压处理对发芽糙米淀粉凝胶特性的影响张静林;刘桂玲;陶阳;赵黎平;罗伟斌;韩永斌;叶晓松;叶明儒;叶淑娴【摘要】In this paper,starches from germinated brown rice were treated by high hydrostatic pressure (HHP) processing.The effects of pressure level,pressure holding time and pH on texture and gelation properties of starch gel,as well as the freeze-thawing stability were studied.It was found that the adhesiveness,cohesiveness,resilience and gumminess of starch gel were improved by HHP.RVA results exhibited that after HHP treatment for 20 min,peak viscosi ty of starch gel rose from 404.83 mPa · s to 595.75 mPa · s,while hot paste viscosity,final viscosity,setback and attenuation values were also increased.However,the peak time and pasting temperature of starch gel decreased after pressure treatment.The effects of pressure level and pH on RVA were insignificant,indicating that pressure-treated starch were more stable to pressure and pHchange.Besides,after treating at 200 MPa and pH 5 or 8 for 10 min,the freezing-thawing stability of starch gel also got improved.%糙米发芽过程中,淀粉理化特性发生改变,该研究采用超高压技术处理发芽糙米淀粉,考察处理压力,保压时间及pH值对发芽糙米淀粉凝胶质构特性、糊化特性及冻融稳定性的影响.结果表明,不同压力、保压时间、pH处理对淀粉凝胶的弹性、黏着性、胶黏性、回弹性、咀嚼性有不同程度的改善.RVA结果显示,当保压时间为20 min时,峰值黏度由404.83 mPa·s增至595.75 mPa·s,同时热糊黏度、最终黏度、回生值、衰减值也呈现上升趋势,出峰时间减小,糊化温度降低;超高压处理压力和pH对淀粉的糊化特性的影响较小,说明超高压处理的淀粉对压力和pH有较好的稳定性.超高压处理后淀粉的冻融稳定性显著提高,在200 MPa时达到最大;随保压时间延长,淀粉糊析水率呈先下降后上升趋势,保压时间为10 min时,淀粉糊的析水率达到最小值;当pH 为5或8时析水率与对照相比没有显著变化(p>0.05).【期刊名称】《食品与发酵工业》【年(卷),期】2018(044)004【总页数】7页(P82-88)【关键词】发芽糙米;淀粉;超高压;凝胶特性【作者】张静林;刘桂玲;陶阳;赵黎平;罗伟斌;韩永斌;叶晓松;叶明儒;叶淑娴【作者单位】南京农业大学食品科学与技术学院,江苏南京,210095;南京农业大学理学院,江苏南京,210095;南京农业大学食品科学与技术学院,江苏南京,210095;南京农业大学食品科学与技术学院,江苏南京,210095;南京农业大学食品科学与技术学院,江苏南京,210095;南京农业大学食品科学与技术学院,江苏南京,210095;镇江市智海食品有限公司,江苏镇江,212000;镇江市智海食品有限公司,江苏镇江,212000;镇江市智海食品有限公司,江苏镇江,212000【正文语种】中文超高压技术是将食品原料经真空密封后放入密闭高压容器内通过液体介质在高压(100~1 000 MPa)及一定温度条件下处理一段时间,使食品中的酶、蛋白质、淀粉等生物高分子物质失活、变性、糊化,同时杀死微生物的物理过程[1],与传统加工技术比较它在处理过程中作用更加均匀,同时操作安全,且一般不伴随化学变化的发生,更为环保。
船舶英文名词
船舶英文名词船舶英文名词船舶结构部件名称以及相关名词2014-05-13 中国海员之家1.1船长1)总长Loa:length of overall2)垂线间长Lbp:length between perpendiculars3)登记船长L:registered length4)干舷长Lf:freeboard length5)船舶分舱长度LS:subdivision length6)艉垂线:aft perpendicular7)艏垂线:forward perpendicular8)后端点:aft end point9)挪威规范,英国规范:Oslo Rules, UK Rules10)前端点:fore end point11)美国规范:USA Rules12)艏楼甲板:F’cle Dk13)日本规范: Japanese Rules14)艏柱:stem15)水线长:length of water line16)干舷长前端点: forward end of freeboard length 1.2 船宽1)登记船宽B:registered breadth2)上甲板Upp Deck3)角隅圆弧的断点:termination of corner radius4)干舷船宽Bf : breadth of ship for freeboard5)分舱船宽Bs : subdivision breadth of ship1.3 型深(D)depth1.4 吃水d: draught or draft1.5 干舷: freeboard1.6 吨位及舱容tonnage and cargo capacity总吨gross tonnage 净吨net tonnage苏伊士运河吨位Suez Canal tonnage巴拿马运河吨位Panama Canal tonnage排水量displacement载重吨deadweight国家吨位national tonnage国际吨位international tonnage包装货物舱容bale capacity谷物舱容grain capacity外板shell plating 护肋材sparring谷物容积限度grain capacity捆包容积限度limit of bale capacityg表示谷物容积g indicates grain capacity b表示捆包容积b indicates bale capacity底部垫木bottom ceiling1.7船速speed1.8 船型系数block coefficient细长型fine form 肥大型full form 方形系数block coefficient (Cb)中横剖面系数midship coefficient (Cm)棱形系数prismatic coefficient (Cp)水线面系数water plane coefficient (Cw)1.9描述船舶动态及静态的词汇terms to describe the dynamic [dai’nAmik] conditions and static positions纵倾trim 艉翘trim by stern 艏翘trim by head无纵倾状态even keel (non-trimmed condition)横倾heel or list 船体运动ship motion横摇rolling纵摇pitching艏摇yawing垂荡heaving横荡swaying纵荡surging1.10描述船体构件受力及变形的词汇describe the movement of hull structural member弯曲bending 扭曲twisting 屈曲buckling振动vibration 剪切sheering 横摇rolling 强摇racking1.11其他基本词汇(1)1)左舷port side 2) 右舷starboard side3) 纵向longitudinal 4) 横向transverse5) 水平horizontal 6) 垂直vertical 7) 中心线centre line (CL & )8) 舯midship or amidships (expressed by symbol )9) 船中区域midship part (0.4L ~ 0.5L)10) 船首bow 11) 艏柱stem 12) 艏部bow part or fore part13) 艏垂线fore perpendicular (FP)14) 艉柱stern 15) 艉部stern part or aft part16) 艉垂线aft perpendicular (AP)17) 尾端ends: these normally signify the end parts ofthe hull of a ship with 0.1L通常是指自船尾端始的0.1L的范围18) 基线base line (BL): normally the keel line 通常是指龙骨线19) 肋骨间距frame space 20) 肋骨线frame line21) 船体围长girth length: the length measured at the transverse section of the hull of a ship from gunnel to gunnel 在船体横截面上从一侧的船舷上沿量取到另一侧的船舷上沿的距离22) 龙骨上面top of keel 23) 折角线knuckle line (KL) 24) 折角点knuckle point25) 舷弧sheer 26) 艏舷弧fore sheer 27) 艉舷弧aft sheer 28) 梁拱camber29)甲板内倾tumble home 30) 外飘flare31)舭部升高rise of floor 32)平行部parallel part1.12其他基本词汇(2)1) 船桥甲板上缘top of bridge deck beam 2) 船桥楼外缘outlineof bridge enclosure3) 上甲板梁上缘top of upper deck beam 4)梁拱camber5) 主甲板的内倾tumble home at upper deck6) 船桥甲板的内倾tumble home at bridge deck7) 上甲板边upper deck at side 8) 船中心线centre line of ship9) 舭部bilge part 10) 平板龙骨的一半half-side dimension of flat portion at keel11) 船中船桥甲板的型深moulded depth to bridge deck12) 船中主甲板处的型深moulded depth to upper deck13) 船中型吃水moulded draught1.13 线型lines1) 横剖线图body plan 2) 纵剖线图profile or sheer plan 3)半宽图水线half-breadth plan1.14其他图纸文件other plans and documents1) 除线型图之外,下列图纸被称为关键图(key plans):总体布置图general arrangement 中横剖面图midship section 钢材构造图construction profile 外板展开图shell expansion2) 其他关键图以外的船体图纸被称为船厂图(yard plan):(1) 船体方面艏柱、艉柱、螺旋桨柱和舵结构stem, stern frame, propeller post and rudder甲板结构图deck plans 单底、双底结构图single bottom and double bottom水密和油密舱壁结构图watertight and oil tight bulkheads上层建筑端壁图superstructure end bulkhead船首、船尾、船底部抗拍击结构图arrangement to resist panting in both peaks and their vicinity [vi’siniti] 邻近, 接近支柱和甲板纵桁图pillars and deck girders 轴隧图shaft tunnels 锅炉、主机、推力轴承、中间轴承、发电机和其它重要辅机基座图Seating of boiler, engine, thrust and plummer blocks dynamos 发电机机舱棚图machinery casings长甲板室结构图long deckhouse桅杆、桅室和绞车平台结构图masts and mast houses and winch platforms泵布置图pumping arrangements甲板装原木时绑扎装置布置图timber deck cargo security arrangements防火构造图construction for fire protection消防布置图plans showing fire extinguishing arrangement逃生路径布置图plans showing escape routes舱室路径图plans showing arrangement for access of tank and space(2) 轮机方面机器处所布置图machinery arrangement of machinery space船内通讯系统图diagram for internal communication system 主、辅机图main and auxiliary engines动力传动齿轮、轴系及螺旋桨图power transmission gears, shafting and propellers锅炉及压力容器图boiler and pressure vessel辅机和管系图auxiliary machinery and piping操舵装置图steering gear自动控制及遥控装置图automatic and remote controls备件spare part 电气装置electrical installations 船桥视界navigation bridge visibility(3) 其他图纸文件船体轮机设计说明书specifications for hull and machinery船中横剖面模数计算书calculation sheets for minimumathwartship (横越) section modulus (模数) in way of the midship part防腐式样书corrosion prevention scheme 稳性计算书stability calculation sheets破舱稳性计算书damage stability calculation sheets装载手册loading manual 绑扎手册security manual1.15 静水力曲线hydrostatic curves浮心距基线高度centre of buoyancy above base line (KB)浮心距船中centre of buoyancy from midship (B)漂心距船中centre of floatation from midship (F)每厘米吃水吨数tons per one centimeter immersion (TPC)每厘米纵倾力矩moment to change one centimeter (CTM)水线系数water plane coefficient (Cw)纵稳心距基线高longitudinal metacentre above base line (LKM) 横稳心距基线高transverse metacentre above base line (KM) 棱形系数prismatic [priz’mAtik] coefficient (Cp)垂直棱形系数vertical prismatic coefficient (Cvp)方形系数block coefficient (Cb)型排水量displacement in tons excluding appendages (附件,附属物)总排水量displacement in tons including appendages船体湿表面面积wetted surface area (W.S.)1.16 稳性stability1)静态稳性intact stability 2)动态稳性dynamic stability3)稳性判据stability criteria (标准)4)稳性曲线stability curves5)倾斜试验inclining test 6)重心高度KG (height of centre of gravity)7)稳心高度KM (height of metacentre)8)初稳性高度GM 9)静稳性力臂GZ10)自由液面的影响free water effect11)大倾角稳性stability at a large inclination angle12)稳性十字曲线cross curves of stability13)纵向稳性longitudinal stability 14)横向稳性transverse stability15)破舱稳性damage stability 16)浸水计算flooding calculation17)浸水概率flooding probability 18)分舱compartment19)生存条件survival requirement 20)最终状态final stage 21)生存概率survival probability 22)分舱指数subdivision index23)处所渗透率permeability of a space24)许用GM0曲线permissible GM0 curve1.17 波浪wave斯托克波stokes wave 正弦波sine wave 摆动波trochoidal wave 船行波wave generated by ship sailing 散波divergent wave 船尾横波stern transverse eave 船首横波bow transverse wave 1.18 船体强度strength of ship船体垂向弯曲最终强度vertical bending ultimate strength船体梁强度hull girder strength 纵向强度longitudinal strength 纵向弯距longitudinal bending moment 剪切力sheering force 中拱hogging 中垂sagging静水弯距longitudinal bending moment in still water (Ms)波浪弯矩Mw(+) and Mw (-) wave induced longitudinal bending moment横向强度transverse strength 扭转强度twisting strength局部强度local strength 失稳强度buckling strength受压失稳强度compressive buckling strength剪切失稳强度sheer buckling strength直接强度计算/分析direct strength calculation / analyzing疲劳强度fatigue strength疲劳强度解析、评价fatigue strength anlyze, assessment应力集中stress concentration波浪周期wave period 随浪following wave 顶浪heading sea 横浪beam wave 波浪载荷wave load 垂向波浪弯距vertical wave bending moment波浪变动压hydrodynamic (水力,流体动力学)pressure舱室内压internal pressure 许用应力allowable stress最小弯距Wmin 剖面模数section modulus惯性矩moment of inertia强度连续性continuity of strength 板架、板单元plate panel1.19 船体尺寸限制Panama 圣。
TiAlSiN_涂层力学性能改善措施的研究现状及进展
表面技术第53卷第8期TiAlSiN涂层力学性能改善措施的研究现状及进展周琼,王涛,黄彪*,张而耕,陈强,梁丹丹 (上海应用技术大学 上海物理气相沉积(PVD)超硬涂层及装备工程技术研究中心,上海 201418)摘要:TiAlSiN涂层具有耐温性好、化学惰性高等优异性能,其作为防护层被广泛应用于摩擦零部件、机械加工工具上。
但TiAlSiN涂层内应力过大导致的力学性能不足,限制了其在严苛工况下的进一步应用。
总结了目前改善TiAlSiN涂层力学性能的主要措施:涂层微观结构优化、膜层结构设计以及热处理工艺。
对改善涂层力学性能所涉及的细晶强化、共格效应、固溶强化以及模量差理论等机理进行了全面的描述,并详细地对比分析了上述理论之间的内在联系与差异。
系统地讨论了纳米多层和梯度复合膜层结构对涂层力学性能的影响规律,主要从调制结构以及成分调整2个角度对膜层结构变化进行了分析,有利于指导具有良好力学性能的膜层结构的设计。
此外,分别阐述了退火温度、时间以及气氛环境对TiAlSiN涂层力学性能的影响规律,分析了退火条件对涂层微观结构的影响以及微观结构与力学性能之间的关系。
在此基础上,提出了未来可以从基础理论和改善措施之间的协同作用角度,对TiAlSiN涂层力学性能的改善展开进一步研究。
关键词:TiAlSiN;性能改善;力学性能;微观结构;膜层结构;热处理中图分类号:TG174.4 文献标志码:A 文章编号:1001-3660(2024)08-0040-12DOI:10.16490/ki.issn.1001-3660.2024.08.004Research Status and Progress of Improving MechanicalProperties of TiAlSiN CoatingsZHOU Qiong, WANG Tao, HUANG Biao*, ZHANG Ergeng, CHEN Qiang, LIANG Dandan(Shanghai Engineering Research Center of Physical Vapor Deposition (PVD) Superhard Coating and Equipment,Shanghai Institute of Technology, Shanghai 201418, China)ABSTRACT: TiAlSiN coatings have excellent high temperature resistance and chemical inertness, and they have been widely used on friction work pieces and cutting tools. However, their high internal stress limits their further application in industries under harshworking conditions. This paper focuses on the main techniques employed to improve the mechanical properties of TiAlSiN coatings, including microstructure optimization, micro-structure design and treatment. The coating hardness is predominantly influenced by microstructure, which can be tailored through various processing methods such as deposition method optimization, and modulation of the deposition process parameters including nitrogen flow rate, substrate bias, target quantity, and power duration. In addition, doping new elements and changing the original element content of TiAlSiN coatings also affect the hardness of the coatings. In this work, the mechanisms involved in improving the mechanical properties of the收稿日期:2023-05-08;修订日期:2023-07-29Received:2023-05-08;Revised:2023-07-29基金项目:国家自然科学基金资助项目(51971148);上海市自然科学基金资助项目(20ZR1455700)Fund:The National Natural Science Foundation of China (51971148); Shanghai Natural Science Foundation (20ZR1455700)引文格式:周琼, 王涛, 黄彪, 等. TiAlSiN涂层力学性能改善措施的研究现状及进展[J]. 表面技术, 2024, 53(8): 40-51.ZHOU Qiong, WANG Tao, HUANG Biao, et al. Research Status and Progress of Improving Mechanical Properties of TiAlSiN Coatings[J]. Surface Technology, 2024, 53(8): 40-51.*通信作者(Corresponding author)第53卷第8期周琼,等:TiAlSiN涂层力学性能改善措施的研究现状及进展·41·coatings, such as fine grain strengthening, solid solution strengthening and modulus difference theory, were compared and analyzed. The refinement of grain size resulting from fine-crystal strengthening reduced the crack propagation, while solid-solution strengthening was achieved by introducing foreign atoms into a compound to form a solid solution, thereby increasing the hardness of the TiAlSiN coatings. The coherent effect and modulus difference theory promoted the enhancement of TiAlSiN coating hardness through interface structure optimization. Both mechanisms induced interfacial stresses that prevented dislocation generation. The internal relations and differences between the above theories were compared and analyzed in detail. The effect of nano-multilayer and gradient composite layers on the mechanical properties of the coatings was systematically discussed. Modulation structure and composition adjustment were the two main factors that affected the variation of micro-structure. Currently, research on the strengthening mechanisms of nano-layered coatings and gradient-structured coatings is not comprehensive. Even small structural alterations to these coatings can cause various influence mechanisms that alter their mechanical properties. For instance, changing the modulation period significantly impacts the mechanical behavior of TiAlSiN coatings by means of coherent strain and the modulus difference theory. It is helpful to guide the design of membrane structure with good mechanical properties. In addition, heat treatment has the most significant effect on the properties of TiAlSiN coatings. So the influence of annealing temperature, annealing time, and atmosphere on the mechanical properties of TiAlSiN coatings was summarized. The effect of annealing conditions on the microstructure of the coatings and the relationship between the microstructure and mechanical properties were analyzed. In addition to experimental research, basic theoretical research was also be conducted by starting from first principles to identify the specific relationships and influence mechanisms between microstructure and mechanical properties of coatings. Annealing had three main effects on the mechanical properties of TiAlSiN coatings: grain coarsening, phase transformation, and surface oxide formation. Annealing resulted in grain coarsening, which improved the toughness of the coatings. The mechanical properties of TiAlSiN coatings were affected by the phase structure when phase transitions occurred during annealing. Additionally, the significance of the synergistic effect of improving measures on the mechanical properties of TiAlSiN coatings was emphasized. Finally, it was suggested to conduct deep research in future on improving mechanical properties of TiAlSiN coatings from basic theory and cooperation effect of various improvement actions.KEY WORDS: TiAlSiN; property improvement; mechanical property; microstructure; film structure; heat treatment现代刀具材料主要有高速钢、硬质合金、金属陶瓷等,随着切削加工技术的不断提高,其力学性能已经逐渐不能满足工业上的要求,而提升涂层的力学性能可以弥补刀具材质上的不足[1-5]。
植物叶绿素荧光成像技术在国内的应用
植物叶绿素荧光成像技术在国内的应用(第四期)植物叶绿素荧光成像技术作为最早实用化的叶绿素荧光成像技术,是目前世界上最权威、使用范围最广、种类最全面、发表论文最多的叶绿素荧光成像技术。
涵盖了从叶绿体、单个细胞、微藻到叶片、果实、花朵,乃至整株植物和植物灌层,几乎可以测量所有的植物样品,甚至包括含有叶绿素的微生物和动物。
叶绿素荧光成像技术最早在21世纪初引进到国内,但一直到2010年后国内的科学家才在国际交流中逐渐发现这项技术的巨大价值,在短短数年中也利用这一技术发表了几十篇高水平SCI 文献。
本期主要介绍目前叶绿素荧光成像技术在国内的应用情况。
一、 植物光合生理研究叶绿素荧光可以直接反应植物光系统的生理状况,因此从叶绿素荧光技术发明之初,就被用于各种植物光合生理研究。
山东农科院使用FluorCam 叶绿素荧光成像技术研究了小麦旗叶与外露花梗光合能力的差异[1]。
研究中发现在小麦生长前中期,旗叶与外露花梗的最大光化学效率Fv/Fm 和量子产额ΦPSII 基本相同。
但在生长后期,旗叶的光合能力显著下降,而花梗光合能力的下降幅度要小于旗叶(图1)。
这证明了在生长后期的灌浆期,花梗对维持籽粒的生长更为重要。
之后,他们又研究了小麦叶片和颖片季节衰老过程中以及颖果发育过程中光合特性的变化[2;3,图2]。
图2. 不同生长期小麦叶片和颖片的最大光化学效率Fv/Fm (A )、量子产额ΦPSII (B )和非光化学淬灭NPQ (C )的变化图1. 不同生长阶段的旗叶(A ,C )和外露花梗(B ,D )的Fv/Fm (A ,B )和ΦPSII (C ,D )典型叶绿素荧光成像图二、植物生物/非生物逆境胁迫与抗逆性研究由于几乎所有种类的生物/非生物逆境胁迫都会影响到植物光合系统的正常生理功能,而叶绿素荧光技术是公认的植物逆境光合功能研究最灵敏的无损探针。
因此通过叶绿素荧光成像技术不但能反映植物受胁迫程度和抗逆能力的差异,而且能指明胁迫影响光合系统的具体机理过程。
40crnimoa去应力退火温度
40crnimoa去应力退火温度英文回答:To determine the stress relief annealing temperaturefor 40CrNiMoA, it is important to consider the material's composition and its desired properties after annealing.40CrNiMoA is a low-alloy steel that is commonly used in the manufacturing of heavy-duty machinery components, such as crankshafts, gears, and axles. This material is knownfor its high strength, toughness, and wear resistance.Stress relief annealing is a heat treatment processthat aims to reduce residual stresses in a material. It involves heating the material to a specific temperature and holding it at that temperature for a certain period of time, followed by slow cooling. The goal is to minimize the riskof distortion or cracking that may occur due to internal stresses.The stress relief annealing temperature for 40CrNiMoA typically ranges between 600°C and 650°C. This temperature range is chosen to ensure that the material reaches a sufficiently high temperature to allow for stress relaxation, while avoiding excessive grain growth or other undesirable microstructural changes.In my experience, I have found that a stress relief annealing temperature of around 620°C works well for40CrNiMoA. This temperature allows for effective stress relief without compromising the material's mechanical properties. It is important to note that the specific annealing temperature may vary depending on factors such as the size and shape of the component being annealed, as well as any specific requirements or specifications provided by the customer.中文回答:40CrNiMoA的去应力退火温度取决于材料的组成以及退火后所需的性能。
2124铝合金疲劳裂纹扩展的EBSD分析_英文_蹇海根
Received date: June 19, 2013 Foundation item: The National Natural Science Foundation of China (51301065); The Natural Science Foundation of Hunan Province (14JJ7067) Corresponding author: Jian Haigen, Ph. D., Lecturer, School of Metallurgical Engineering, Hunan University of Technology, Zhuzhou 412007, P. R. China, Tel: 0086-731-22183452, E-mail: jianhaigen2001@
ARTICLE
EBSD Analysis of Fatigue Crack Growth of 2124 Aluminum Alloy for Aviation
Jian Haigen1,2, Yin Zhimin2, Jiang Feng2, Li Xue 2
1 Hunan University of Technology, Zhuzhou 412007, China; 2 Central South University, Changsha 410083, China
after aging treatment on 2024 aluminum alloy in different time, when the smallest crack growth rate appears, the aging time would correspond to the precipitated phased-transition stage from GPB zone to S-phase in alloy. Ludwing[13] adopted X-ray diffraction and an EBSD technique in the study of the effect against short crack growth from grain and grain boundary orientation; besides he discovered that when the crack growth extended to the grain boundary position, it would continue extending if certain angle existed between crack orientation and the adjoining grain, while it would stop extending if the crack orientation was in torsion with adjoining grain slip plane. Lindigkeit [14] discovered that with the increasing of grain size, the crack growth rate would decrease accordingly, but this corresponding relationship between crack growth rate and grain size would not exist apparently if it was under corrosive circumstance. Jian[15] studied B93 aluminum alloy fatigue crack growth and discovered that, it was more advantageous for crack to traverse grain boundary into the next new grain than cross the crack front by simple torsion. This article makes use of the EBSD technique to study the fatigue crack growth rule of 2124-T851 aluminum alloy with 30 mm thickness, expatiates the relationship between fatigue crack growth path
盐胁迫诱导玉米幼苗GABA积累的生理作用
分类号:单位代码:10019密级:学号:s01406硕士学位论文盐胁迫诱导玉米幼苗GABA积累的生理作用 The Physiological Role of Salt Stress-induced GABAAccumulation in Zea Mays研究生:周 翔指导教师:张蜀秋(教授)合作指导教师:申请学位门类级别:理学硕士专业名称:植物学研究方向:植物信息传递所在学院:生物学院2004年5月独 创 性 声 明本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。
尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得中国农业大学或其它教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
研究生签名:时间:2004年5月31日关于论文使用授权的说明本人完全了解中国农业大学有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件和磁盘,允许论文被查阅和借阅,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。
同意中国农业大学可以用不同方式在不同媒体上发表、传播学位论文的全部或部分内容。
(保密的学位论文在解密后应遵守此协议)研究生签名:时间:2004年5月31日导师签名:时间: 2004年5月31 日中文摘要γ-氨基丁酸(4-aminobutyric acid, GABA)是一种四碳非蛋白质氨基酸,广泛存在于原核生物和真核生物之中。
在动物中,它是作为中枢神经系统中的一种抑制性神经递质而存在的,主要与其受体结合及其它神经递质的交互作用发挥其生理效应,参与动物体内多种重要行为的调节以及多种疾病的发病机制。
GABA也大量存在于高等植物之中,它在胁迫反应中的作用越来越引起人们的关注。
本文以玉米种子及黄化玉米幼苗为材料研究GABA在盐胁迫响应中的作用以及与ABA的关系。
小麦花后高温对籽粒胚乳细胞发育及粒重的影响
表 1 高温 (30℃) 对籽粒胚乳细胞数变化动态的影响 (扬麦 5 号) Table 1 Effect of h igh tempera ture (30℃) on prol ifera tion of endosperm cell (Yangma i 5)
处理时间 (花后天数)
粒位
花后天数 D ays after an thesis(d)
(A g ronom y D ep t. A g ric. Coll. , Y ang zhou U niversity , Y ang zhou, 225009)
Abstract T he po t experim en t w as carried ou t from 1993 to 1995 in Yangzhou to study the influence of h igh tem peratu re after an thesis on endo sperm cell developm en t and grain grow th in w heat (T. aestivum L. cv. Yangm ai 5 and PH 8524). T he m ain resu lts w ere as fo llow s. T he effect of h igh tem peratu re after an thesis on grain w eigh t w as: treatm en t 20th~ 22nd day> 12th ~ 14th day > 5th~ 7th day > 1st~ 3rd day > 28th~ 30th day > CK. T he endo sperm cell p ro liferation rate w as increased du ring a sho rt period after h igh tem peratu re, bu t the p ro liferation du ration w as sign ifican tly sho rtened, w h ich resu lted in the decrease of the m ax im um endo sperm cell num ber and the decline of grain w eigh t. T he h igh tem peratu re in sp ike o r leaf parts cou ld sign ifican tly affect grain w eigh t and sp ikes w as m o re sen sitive to h igh tem peratu re than leaves. T he o rder of grain endo sperm cell num ber and w eigh t in d ifferen t po sition s w as no t changed under h igh tem peratu re treatm en t, bu t the d ifference w as en larged. Key words W heat; H igh tem peratu re; Grain w eigh t; Endo sperm cell num ber
高温胁迫下水稻叶片的蛋白响应及其基因型和生育期差异
作物学报 ACTA AGRONOMICA SINICA 2011, 37(5): 820−831/zwxb/ISSN 0496-3490; CODEN TSHPA9E-mail: xbzw@本研究由浙江省科学技术厅项目(2008C22069)资助。
*通讯作者(Corresponding author): 张国平, E-mail: zhanggp@ Received(收稿日期): 2010-10-22; Accepted(接受日期): 2011-01-06.DOI: 10.3724/SP.J.1006.2011.00820高温胁迫下水稻叶片的蛋白响应及其基因型和生育期差异周伟辉1 薛大伟2 张国平1,*1浙江大学农业与生物技术学院, 浙江杭州 310029; 2杭州师范大学生命与环境科学学院, 浙江杭州 310036摘 要: 高温已经成为水稻产量的主要限制因素, 且其影响由于全球温室效应的加剧而呈扩大趋势。
本研究在鉴定耐热水稻基因型的基础上, 从生理学和蛋白质组学上进行耐性机制研究。
结果表明, 苗期或抽穗期高温处理导致结实率、SPAD 值、株高、根长和生物量下降, 丙二醛、过氧化氢、超氧阴离子含量增加和超氧化物歧化酶活性提高。
同时, 高温胁迫对热敏感品种明恢63的影响大于对耐热品种密阳46的影响。
蛋白质组学分析表明, 高温使光合作用相关蛋白、能量类蛋白、代谢类蛋白表达量下降, 抗逆相关蛋白表达量上升。
另外, 蛋白试验结果佐证了密阳46的耐热性以及水稻抽穗期对高温的敏感性。
本研究还首次发现抗逆相关蛋白2-cys 过氧化物酶BAS1的表达量在高温下上升。
关键词: 水稻; 高温; 耐热性; 基因型; 蛋白质组学Protein Response of Rice Leaves to High Temperature Stress and Its Difference of Genotypes at Different Growth StageZHOU Wei-Hui 1, XUE Da-Wei 2, and ZHANG Guo-Ping 1,*1Department of Agronomy, College of Agriculture and Biotechnology, Huajiachi Campus, Zhejiang University, Hangzhou 310029, China; 2 Collegeof Life and Environment Sciences, Hangzhou Normal University, Hangzhou 310036, ChinaAbstract: High temperature has become a major disastrous factor affecting rice productivity, and the temperature stress becomes more severe due to the global warming effect. The present study was carried out to identify the rice genotypes with high heat tole- rance and understand the tolerant mechanisms of both physiology and proteomics. The results showed that seed setting rate, SPAD value, plant height, root length and biomass were dramatically reduced under high temperature, while contents of malondialde-hyde, hydrogen peroxide and superoxide anions, and activity of superoxide dismutase were greatly increased, irrespectively of growth stage. Moreover, Minghui 63 (a heat-sensitive genotype) was much more affected by heat stress than Milyang 46 (a heat-tolerant genotype). Proteomic analysis showed that high temperature resulted in down-regulation of the proteins related to photosynthesis, energy and metabolism, while resistance-related proteins were up-regulated. The results also confirmed the heat tolerance of Milyang 46 and the heat sensitivity of the rice plants at heading stage. The up-regulation of anti-stress protein, 2-cys peroxiredoxin BAS1, under heat stress was first reported in this study.Keywords: Rice; High temperature; Thermo-tolerance; Genotype; Proteomics蛋白质组(proteome)一词由澳大利亚科学家提出, 源于蛋白质(protein)与基因组(genome)两个词的组合, 意指“一种基因组所表达的全套蛋白质”[1]。
英汉词汇对照
英汉词汇对照“ A ” segregates in steel in got钢锭中的“ A ” 型偏析Acetylene :carburizer乙炔渗碳剂soot乙炔烟Aggregate moulds聚合物铸型Aerofoil fluidity test 螺旋桨桨叶流动性测试Aerospace casti ng reliability航天用铸件的可靠性Air bubbles 气泡Air gap 气隙Al in cast iron 铸铁中的铝A1-Bi alloy 铝铋合金Al-Cu alloy 铝铜合金Al-Cu-Ag alloy 铝铜银合金Al-Cu-X alloys 铝铜-X 合金Al-Mg alloys 铝镁合金Al-Pb alloys 铝铅合金Al-Si alloys : 铝硅合金high Si wear resista nt高硅耐磨铝硅合金mecha ni cal properties铝硅合金的力学性能porosity 铝硅合金的疏松Al-Sn alloys 铝锡合金Al-Zn superplastic alloys 铝锌超塑性合金Aluminium bronze 铝青铜Aluminium powder mould wash 铝粉铸型涂料AIN 氮化铝Ammonium bifluoride 氟化氢铵Anodizing 阳极处理Argon : 氩气degass ing氩气除气in pores气孔中的氩气Auste nite奥氏体Bala need steels半镇静钢Be effect on oxide film 对氧化膜的影响Be nd test弯曲试验Ben to nite 膨润土Benzene苯Bessemer con verte贝氏转炉(酸性转炉)Bifilm, see also films : 双层膜(参见膜)asymmetric双层膜的不对称性buoya ncy双层膜的浮力characteristic appeara nc双层膜的外貌特征deactivation 双层膜失去活性definition 双层膜的定义n etworks网状双层膜Bimodal distribution 双峰式分布Binders for sand : 型砂黏结剂breakdow n, see Furan型砂黏结剂溃散(见呋喃)water con te nt型砂黏结剂的水含量Bismuth 铋Blast furnace 鼓风炉Blow defect 砂芯侵入性气孔缺陷Body cen tred cubic 体心立方Boiling points : 沸点brasses黄铜的沸点liquid metals 液态金属的沸点Boron 硼Boun dary layer 边界层Bran ched colu mnar zone in steel in got连冈锭中的分枝柱状晶区Brasses黄铜Breakdow n of sand bin ders after casti n篩造后砂黏结剂破裂Brittle failure 脆性断裂Bron zes 青铜Bobble: 气泡trail 气泡轨迹damage气泡损伤collapse气泡塌陷Camber挠度Capillary repulsion 毛细排斥Carbon boil 碳沸腾Carbon-based moulds碳基铸型Carbon equivalent value( CEV)碳当量Carburization 渗碳Cast iron : 铸铁ductile 球墨铸铁grey(flake) 灰铸铁growth 铸铁晶粒生长internal oxidation 铸铁内部氧化sectio n size effect铸铁断面尺寸效应volume cha nge铸铁体积变化white 白口铁Cavitatio n damage 空蚀损伤Cells, cellular growth 晶胞,胞状生长C.ha nnel defects通道缺陷Channel segregate!道偏析Charcoal 木炭Charge materials炉料Chills 冷铁Chromite glaze 铬铁釉料Chvorinov Chvorinov 定律/平方根定理Closed crack闭合裂纹Coal additive 煤粉添加剂Coarse ning of den drite arms枝晶臂粗化Coat ings on chills 冷铁涂料Cobalt alumi nate 铝酸钻Cobalt-base casti ng alloys钴基铸造合金COD(Crack Ope ning Displaceme nt) tes裂纹展开位移试验Cold lap 冷搭接缺陷Cold shut, see Cold lap冷隔缺陷Columnar grain 柱状晶粒Computer discs计算机硬盘Conden satio n on chills 冷铁上凝结Conden sati on zone凝结区域Conden sed phase 凝结相Co nflue nee weld 汇流焊缝Constitutional undercooling 成分过冷Con ti nu ous cast ing 连续铸造Continuous fluidity 连续流动性Convection : 对流in casti ngs铸件中的对流in moulds 铸型中的对流Cope heati ng上型(砂)箱加热Coring 芯子Corrosion 腐蚀filiform 丝状腐蚀intergranular 晶间腐蚀pitting 点蚀Cosworth Process Cosworth消肖除热疲劳裂纹工艺Counter gravity casting 反重力铸造Crack blunting 裂纹钝化Crankshafts in ductile iron 球铁曲轴Creep蠕变Cristobalite 方石英Criteria functions 判据函数Critical fall height 临界下落高度Critical flaw size 临界裂纹尺寸Critical velocity 临界速度Croning shell moulds克郎宁壳形铸型Cryoge nic treatme nt for stress relie释放应力的低温处理Crystal structure of metals : 金属晶体结构steels cubic lattices!冈的立方晶格Hall-Petch resistance to slip Hall-Petch 滑移阻力hexagonal close packed lattice (Mg)密排六方晶格(Mg) lattice definition 晶格定义Cupola for iron melting 铸铁熔炼冲天炉Cu alloys porosity铜合金的疏松缺陷Cu-Zn-Al alloy 铜锌铝合金Cyli nder heads 气缸盖Dampi ng capacity, see In ternal frictio n 阻尼性能(见内部摩擦)DC casting , see Continuous casting 直接激冷铸造(见连续铸造)Deactivation , see Bifilms 失去活性(见双层膜)Decarburization 脱碳Deep draw ing steel 深冲钢Degass ing 除气Dendrite arm spacing(DAS)枝晶臂间距Den dritic segregati on 枝晶间偏析Density index 密度指数Deoxidation : 脱氧copper alloys铜合金脱氧steels , see Steel钢脱氧(见钢)Detrain 卷出/卷入到金属液的表面膜再次返回到表面上Diamond films 金刚石薄膜Die cast ing, see Pressure die casting 铸(见压力铸造)Diffraction mottle 衍射斑点Diffusion 扩散Diffusion bonding 扩散黏结Dihedral an gle 二面角Direct chiII(DC) cast ing see contin uous cast ing直接激冷铸造(见连续铸造)Distortion 扭曲Dog bo ne hot tear tests I杆形热撕裂试验Drag coefficient 阻力系数/牵引系数Draw, see Porosity surface ini tiatec裂纹(见始于表面的疏松)Dross熔渣Dross stri ngers in ductile irons球铁抛光断口上“渣线”缺陷,实为卷入的膜Ductile iron, see also Spheroidal graphite iron球铁(见球墨铸铁)Ductility 延展性Dye pen etra nt testi ng着色探伤Elastic modulus , see Young ' s modulus 弹性模量(见杨氏模量)Electro-slag casti ng 电渣熔铸Ellingham diagram Ellingham 图(氧化物标准生成自由能与温度关系图)Elongation, see Ductility 延伸率(见延展性)Entrained bubbles卷入的气泡Entrainment definition “卷入”定义En vir onment 环境Equiaxed grain 等轴晶Eutectic reduc ing porosity共晶减少疏松缺陷Eutectic reduci ng hot teari ng共晶减少热撕裂缺陷Exfoliation defect 鳞型剥落缺陷Extreme value distribution 极值分布Face cen tred cubic面心立方Fatigue : 疲劳high cycle,low stress高周低应力疲劳high stress,low cycle高应力低周疲劳improvement by HIPping 热等静压改善疲劳pull-pull versus push-pull 拉一拉与压一拉式疲劳thermal 热疲劳Favalite铁橄榄石Feather den drite羽状枝晶Fe-C alloys铁碳合金Feed mecha nism# 卜缩机希9Feed paths# 缩通道Feed ing Rules补缩准则Ferro-chrome 铁铬Ferro-ma ngan ese铁锰Fillability 充型能力Film.see also Bifilms 膜(见双层膜)A12O3 三氧化二铝膜AIN 氮化铝膜graphitic 石墨膜liquid 液膜new and old新膜和旧膜stre ngth膜强度structure膜结构TiN 氮化钛膜transient films 瞬态膜Filtration 过滤Fins铸件飞边Flash喷溅,飞溅Flowability 流动能力Fluidity 流动性Flux treatme nt 熔剂处理Foil stock 金属箔原料Fold defects in lost foam cast ing消失模铸造中的折叠缺陷Fracture mecha nics断裂力学Fracture tough ness断裂韧性Freckle defects “斑点”缺陷Friction betwee n casti ng and mould铸件与铸型的摩擦Froude number弗鲁德数Fules燃料Furan , furane呋喃Furling (and unfurling)卷起(和展开)Furn ace types炉子类型Galvanising (hot dip)电镀(热浸)Gamma distribution 伽马分布(用于描述延展性失效)Gasses : 气体in Cu alloys 铜合金中的气体in Fe alloys 铁合金中的气体Gas law 气体定律Gaussian 高斯型分布(有关材料强度,图9.24)Glass 玻璃Glissile drop 滑动液滴/滑移液滴Grain boundary:晶粒边界decohesion 晶界分离migration 晶界迁移sliding 晶粒滑移Grain growth 晶粒生长Grain refinement:晶粒细化advantages 晶粒细化的优点aiding hot tear growth 晶粒细化促进热撕裂生长aiding mass feeding 晶粒细化促进浆态补缩by fragmentation/multiplication 通过枝晶分裂/增殖细化晶粒by nucleation 通过形核细化晶粒reducing strainconcentration 细化晶粒减少应变集中Grain structure in castings 铸件中的晶粒结构Graphite dies 石墨模具Graphite film 石墨膜Graphite nodules, see Spheroidal graphite; Ductile ironGraphite die casti ng dies石墨球(见球形石墨,压铸模具中球形石墨)Gravity segregati on 比重偏析Great Paul Bell伦敦圣保罗教堂大钟Grey cast iron 灰铸铁Growth restrictio n parameter生长限制参数Gumbel distribution Gumbel 分布(最大极值分布,用于分析某领域最多缺陷的概率)Hall-Petch equation Hall-Petch方程(晶粒尺寸减小,屈服强度增大方程)Heat transfer coefficie nt 换热系数Heat treatme nt reducti on of ten sile propertie降低拉伸性能的热处理Hexachloretha ne mould coat六氯乙烷铸型涂料High pressure die casti ng, see Pressure die casti n高压铸造(见压铸件)Hippi ng see Hot Isostatic Press ing热等静压处理(见热等静压)Homogenization 均质化Hot Isostatic Press ing 热等静压Hot spot (promoting tearing)热节(促进撕裂)Hot teari ng 热撕裂Hot tearing susceptibility 热撕裂敏感性Humidity 湿度Hydraulic radius 水力半径Hydraulic jump 水跃/金属液面翻腾Hydrogen : 氢embrittleme nt in steels 钢中的氢脆equilibration with environment 与环境中的氢相平衡in solution in Al 在铝中溶解的氢in solution in Cu 在铜中溶解的氢pick up from moisture 从湿气中获得的氢permeati on渗氢(渗入的氢)Hydrocarbon fuels碳氢化合物燃料Hydrostatic (triaxial) stress 静水(三轴)应力Ice 冰Impregnation 浸渗Inclusions , see Non-metallic inclusions 夹杂物(见非金属夹杂物)Inert gas solubility 惰性气体的溶解度In gots and in got moulds, see also Rimi ng steel 钢锭和钢锭模(见沸腾钢)Inhibitors ~抑制剂Ino culatio n of cast irons 铸铁的孕育处理Inserts 内冷铁Interdendritic : 枝晶间feedi ng枝晶间补缩flow 枝晶间流动In termetallic compo unds 金属间化合物Internal oxidation 内部氧化In verse chill in cast irons铸铁中的“逆向激冷”现象Inverse segregation, see Dendritic segregatio逆偏析”(见枝晶偏析),是过去对“枝晶偏析”的错误叫法Investment : 精密铸造casti ng精密铸造mould 精密铸造蜡模铸型lron carbonyl 羰基铁Iron oxide addition to sand bi nders向型砂黏合剂中添加的氧化铁Killed steel 脱氧钢,镇静钢Laminar flow 层流Lap defects: 搭接缺陷cold lap 冷搭接缺陷confluence weld 汇流焊缝缺陷oxide lap 氧化物搭接缺陷Lattice, see Crystal structure晶格(见晶体结构)Lead-a ntim ony alloys 铅锑合金Lead in Cu alloys铜合金中的铅Leak detection 渗漏检测Leak sealing , see Impregnation 渗漏密封(见浸渗)Leak tight ness渗漏气密性Liberty Bell, USA 美国自由大钟LIMCA 监控铝合金液夹杂数量测试技术Liquid metal in ternal structure 液态金属的内部结构Lost foam casti ngs 消失模铸造Lost wax castings , see , Investment castings失蜡铸造法(见精密铸造法)Low pressure casti ng{氐压铸造Lustrous carb on 光亮碳Machining 机加工allowa nee力卩工余量carbide and diam ond cutti ng tools硬质合金和金刚石刀具machi ne tool beds机床床身machinability 机械加工性,切削性mach ined surfaces 机加工的表面Magnesium : 镁vapour镁蒸汽burning , oxidation 镁燃烧,镁氧化Manifold casting 进气歧管铸件Marangoni effect Marangoni 效应(氐表面张力的液体在表面上向高表面张力的液体处流动现象)Mass feedi ng浆态补缩Meni scus adva nee without en trai nmen没有卷入现象的弯月面推进Metal/matrix composite (MMC)金属基复合材料fluidity 金属基复合材料流动性vortex method 涡流法制备金属基复合材料Mg-Zn alloys 镁锌合金Mg-Zr alloys 镁锆合金Mircroblows 微观侵入性气孔Microjetting 微型射流Misrun 浇不足MnS in steels钢中的硫化锰Modulus (geometric)模数(几何的)effect on fluidity 模数对流动性的影响effect on que nching stresS模数对淬火应力的影响Mould : 铸型dilation 铸型膨胀dress ing or coati ng 铸型涂料gasses铸型气体gen eral铸型总体介绍pe netration铸型的渗透Negative segregation负偏析NDT, see non-destructive test ing无损检测Nickel-base cast ing alloys 镍基铸造合金Nitride films 氮化物膜Nitrogen: 氮protective bla nket 氮气保护层in soluti on in iron and steel 钢铁中溶解的氮Nitroge n fissures in cast iron 铸铁中氮裂纹Nodular graphite, see ductile iron; and spheroidal graphite 石墨球(见球墨铸铁和球形石墨)Non destructive testi ng 无损检测Non-metallic inclusion 非金属夹杂物action of entrained particles as pores卷入的夹杂物粒子作用如同气孔作用(对材料延展性的危害)agglomerati on夹杂物团聚clumping 夹杂物聚集distribution in steel ingot 夹杂物在钢锭中的分布flocs and flocculation 絮凝夹杂物growth 夹杂物生长in Al alloys 在铝合金中的夹杂物in cast steels在铸钢中的夹杂物in rolled steels在轧钢中的夹杂物macroin clusi ons 宏观夹杂sand in clusi ons 夹砂shape con trol夹杂物的形状控制sulphides in steels!冈中的硫化物夹杂types夹杂物类型Normal distribution 正态分布Nucleation : 形核auste nite奥氏体形核control by [O] in Fe and Cu 铁和铜中由氧原子控制的形核diagram 形核相图graphite石墨形核general —般形核in clusi on and sec ond phase夹杂物与第二相形核pores and cracks气孔与裂纹的形核shri nkage pores收缩孔隙的形核steel钢的形核Oil can distortion 油罐扭曲Oil pan casti ng, see Sump cast ing由盘铸件(见油盘铸造)Olivine 橄榄石Oxidation : 氧化rate 氧化速率Mg burni ng example镁燃烧氧化实例Oxide flow tube defect氧化物流管缺陷Oxide lap 氧化物皱皮Oxyge n steelmaki ng 氧化法炼钢Pai nt涂料Partition coefficient 分配系数Pasty freezi ng 糊状凝固Patter nm aker' s shri nkage allowa nc模型工的收缩余量Perma nent mould casti ng, see Gravity die casti n永久型铸造,见金属型铸造Phosphoric acid 磷酸Phosphorus : 磷in Al-Si 铝硅合金中的磷in grey iron 灰铸铁中的磷in steels钢中的磷Plate fracture in ductile irons球墨铸铁中的板状裂纹PODFA 铝液通过细小过滤器收集夹杂物测试其数量Polymer que ncha n聚合物淬火介质Porosity : 气孔或疏松blow defects侵入气孔缺陷En trai ned air bubbles卷入气泡External, see Surface ini tiatec表层疏松(见始于表面的疏松)Gas porosity types气孔类型Grain refin eme nt effect晶粒细化减少疏松Growth domination by [H] [H] 控制气孔生长Layer porosity 层状疏松Layer porosity con trasted with hot teari ng 与热裂相对应的层状疏松Maximum pore size最大气孔尺寸Microporosity and macroporosity 微观疏松和宏观疏松Nucleation 气孔形核Origins 气孔源Reduction by eutectic 共晶减少疏松Secondary pore匸次缩孑LShrin kage porosity 疏松Surface in ititates/co nn ectec皮下萌生气孔/与表面连通气孔Wormhole type蠕虫状气孔Porosity test: 疏松测试Cast ing test铸件疏松测试Porotec test, see also RP减压疏松测试Wait and see Tes等和看疏松测试Potassium borofluoride 氟硼酸钾Powder coati ng粉末涂料PREFIL 铝液通过细小过滤器收集夹杂物测试其数量Pressure applied in casti ng施加在铸件中的压力Pressure die cast ing$铸Dies压铸模Lubricant/cooling 压铸润滑剂/压铸冷却Pressure tight ness , see Leakage defects气密性(见渗漏缺陷)Proof stre ngth, see Yield stre ngtlh单性极限强度,屈服强度Pyrolysis 高温分解Quality assura nee质量保证Quartz石英Que nch distortion 淬火扭曲Quench factor an alysis淬火因素分析Quench stress, see also Residual stre淬;火应力(见残余应力)Que nchants淬火介质Radioactivity 放射性Radiography , see X-ray radiography 射线检验学(见X 射线照相术)Rare earth 稀土Recrystallization 再结晶Reduced pressure tes减压测试Reliability of castings 铸件的可靠性Remelting : 重熔of solid 固态重熔of dendrite roots 枝晶根部重熔Residual stress残余应力Reynold ' s number Re雷诺数ReRheology of the solid alloy 固态合金的流变Rigidity, see also Young ' s modulus 刚度(见杨氏模量)Rimming steel 沸腾钢Ring test for hot teari ng 环形热裂测试Rock candy fractures in steels!冈的岩石状断裂Roll-over tech nique 翻箱工艺Rolling wave 滚动波Rolling-back wave 反向滚动波Rolled steel 轧冈Rotary degass ing旋转除气RPT, see Reduced pressure te减压测试(见减压测试)Running system 浇注系统Sai nt Paul ' s Cathedral Bel伦敦圣保罗教堂大钟Sand in clusi ons 夹砂Sand moulds 砂型Sealing , see Impregnation 密封(见浸渗)Segregati on 偏析microsegregati on, see Cori ng显微偏析(见制芯)segregati on ratio偏析率un der feeder冒口下偏析Sessile drop黏着液滴Shell moulds : 壳型铸型croning shell 克郎宁壳型inv estme nt shell 蜡模壳型Shrin kage allowa nee 收缩余量Shrin kage porosity 疏松Shrinkage porosity misidentification 疏松识别错误Si ngle crystal 单晶Sink, see also porosity surface-i nitiatec凹坑(见表面萌生气孔)Skin freezing 逐层凝固Sn-Pb alloys锡铅合金Sodium addition to Al-Si alloys 铝硅合金中的钠Soldered joint 锡焊缝Solid (self) feeding 固态(自)补缩Solution treatment 固溶处理Spheroidal (no dular) graphite 球墨铸铁Spinel 尖晶石Stai nless steels不锈钢Stars at night defects像夜空中点点繁星式的双层膜缺陷Steam reaction汽化反应Steels and steelmaking :钢和炼钢bottom-pour ( bottom-teemed) ladles 炼钢用底漏钢包copper con tami natio n钢中的铜污染deoxidation 钢脱氧embrittleme nt 钢的氢脆gases!冈中气体homoge ni zatio n钢的均质化Steels and steelmaking (cont) :钢及炼钢hot teari ng钢的热撕裂rolling cracks 钢的轧制裂纹Strain concen trati on 应变集中Statistics 统计Straube-Pfeiffer test, see RPT Straube-Pfeiffer 测试(见减压测试)Stress concen tratior应力集中Stress corrosi on cracki ng应力腐蚀裂纹Stress inten sity factor 应力强度因子Stress relief, stress relaxation应力释放Strontium addition to Al-Si alloy 向铝硅合金中加入的锶添加剂Subgra in boun daries亚晶界Suboxides低价氧化物Subsurface porosity皮下气孑Lcasti ng test铸件测试皮下气孔wait and see Tes等和看测试皮下气孔Sulphide in clusio ns in steels^ 冈中的硫化物夹杂Sulphur 硫Sulphur hexafluoride 六氟化硫Sulph onic acid 磺酸Sulphuric acid 硫酸Sump cast ing油盘铸件Superheat defi niti on 过热定义Superplastic 超塑性Supply chain 供应链Surface in itiated/c onn ected porosity表面萌生疏松/与表面连通的疏松Surface in itiated crack colours in steels!冈表面萌生裂纹的颜色Surface in itiated tears皮下萌生裂纹Surface curvature表面曲率Surface fin ish/sk in of cast ing 铸件的表面清理Surface reactio n 表面反应Surface tension: 表面张力explanatory definition 表面张力的定义curvature fun ction表面张力的曲率方程plus surface film complication 表面张力和表面膜的复合影响更复杂Surface turbule nee defi niti on 表面湍流定义Swell 膨胀Tay Bridge Disaste r (英国苏格兰中部)泰河桥灾难Tellurium 碲(Te)Temper colours for steels!冈的回火颜色Temperature gradient :温度梯度in casti ng铸件中的温度梯度at freezi ng front凝固前沿的温度梯度Ti alloys 钛合金TiC 碳化钛TiN 氮化钛Tilt casting 倾斜铸造Tin sweat in bron zes青铜中的锡汗Thermal an alysis 热分析Thermal fatigue : 热疲劳of dies模具的热疲劳of casti ngs铸件的热疲劳Thermal tran spiratio n 热蒸发Three poi nt bend test三点弯曲测试Tool steels 工具钢Tough ness韧性Tramp eleme nts in steel^冈中的残余元素Tran sformatio n zones转化区域Tridymite 鳞石英TRIP (Transformation Induced Plasticity) 相变诱导塑性Turbi ne blades, see also Ni-base allo涡轮叶片(见镍基合金) Turbulence : 湍流bulk 整个体积内湍流surface表面湍流Type metal铅字金属Ultimate ten sile stre ngth 抗拉强度Ultraso nic fatigui ng of surface defect 表面缺陷超声波疲劳探测Ultrasonic testing : 超声波检测of liquid metals 液态金属的超声波检测of railroad wheels铁路车轮超声波检测Unfurling 展平Unit cell 单个晶胞Unzipping wave 链开波'V' segregation in steel ingots!冈锭中的V 型偏析Vacuum arc remelt ing真空电弧熔炼Vacuum casti ng真空铸造Vacuum degass ing真空除气Venting 排气Vibration 振动Viscosity 黏度VK Strip Test VK 带形测试Vortex method for MMC production 用于金属基复合材料生产的涡流法Waterfall effect 瀑布效应Weber Number We韦伯数Weibull modulus 威布尔模数Welds, weldi ng 焊接Wetting: 润湿adhesio n润湿黏附definition 润湿定义non-wett ing and de-wett ing 不润湿of grain boun daries 晶界润湿of moulds 铸型润湿Wheels : 轮Al alloy 铝合金轮毂steel rail tappi ng钢轨轮敲击检测轮上是否有裂纹White iron, see cast iron 白口铁(见铸铁)Work harde ning 加工硬化Wrought alloys 锻造合金Wustite FeO 方铁矿石(FeO)X-ray radiography standards X 射线成像标准Yield strength 屈服强度Young ' s modulus 杨氏模量Yttria 氧化钇Zildjian cymbals 生产钗鲅Zildjian 公司Zinc alloys : 锌合金Gen eral普通锌合金ZA alloys ZA 系列锌合金(高铝含量锌合金,含铝8%,12%,27%)Zi nc pressure die casti ng锌压铸件Zi nc vapour, zi nc flare 锌蒸汽,锌焰Zircon : 锆mould 锆砂铸型mould coat锆英粉涂料Zirconium alloys 锆合金Zirconium addition for grain refinement 细化晶粒用锆添加剂Vocabularies in “Castings”Chapter 2 entrainment Entrain v 拖拽,吸入;坐火车,携带Entrainment n 夹杂,输运Submerge vt 淹没,沉入水中,是沉浸Buoyancy n 浮力,愉快Buoyant adj 能浮的,有浮力的Crown n 王冠,顶,头Trail n 痕迹,小径Convolute adj 回旋状的Crumple n 皱纹,v 挤皱Chlorine n 氯Chloride n 氯化物Fluorine n 氟Fluoride n 氟化物Underlie v 在,, 的下面Clump n 快v 成块,使成块Exogenous adj 外生的,外院的Envisage v 正视Envision n 预想,展望Akin adj 类似的Enfold v 包裹,拥抱Debris n 残骸,瓦砾堆Entrap v 缺陷,使陷入困难或危险Heap v 堆,大量Conical adj 圆锥的Asymmetric adj 不对称的Symmetric adj 对称的Confluence n 聚集处Confluence weld 溶合不良Dyed-in-the-wool 彻头彻尾的,纯粹的Menisars n 新月型Inconstrained 不多拘束的,自然的Aggressive adj 积极地Crease n 折痕Tangle v n 缠结,纠缠,混乱Detach v 使分开Furl v n 卷起,合拢,卷,收拢Ravel v 拆开,解除Quiescent adj 禁止的Flutten v 使平,击倒Lengthy adj 长的Pivotal adj 关键性的,重要的Deactivate v 是无效,是不混乱Spindl n 尖晶石Solder n 焊料,结合v 大旱Lustrous adj 有光泽的,灿烂的Detrain v 下火车Highlight v 强调n 最重要的部分Bear in mind Ratimale n 根本理由,理论基础Bifilm films Morass 沼泽Ricochet n 跃起v 回跳,打水漂Bounce v n 弹起,跳跃Tower 塔Shaft furnale 竖式炉Shaft n 轴,井筒Counterflow 逆流的Dry heathHearth 炉床Hearthox 炉膛Cast-in 浇入Cast-in blade 注入或叶片Inadvertent 不小心的,不注意的Overflow v 满溢Dendritic 枝状的Sump n 油井,沼泽Oil pan 油地盘Abut v 紧接,接近Intermittent adj 间接的Burst through 推开,拨开sober冷静的,镇定sundry 各式各样的hygroscopic 吸湿的dye 着色,染dye-pe netra nt crack detecti on 染色,渗透, 裂纹。
建筑专业英语词汇(E)_建筑英语词汇
early curing 早期养护early strength 早硬强度early strength admixture 早强剂early strength cement 快硬混凝上early strength concrete 早强混凝土earth 上地earth and rockfill dam 土石坝earth back pressure 土背压earth banking 土堤earth blanket 粘土防渗层earth borer 土钻earth canal 土渠earth cofferdam 土围堰earth compaction 土壤夯实earth concrete 土混凝土earth consolidation 土壤固结earth core 粘土心墙earth dam 土坝earth embankment 土堤earth excavation 挖土工程earth fill 土堤earth fill cofferdam 土围堰earth fill dam 土坝earth fill timber dam 土木坎earth foundation 土基础earth grade 地面坡度earth mass 土体earth mixtures 土混合物earth moving machinery 土方机械earth moving plant 土方机械earth pigment 土质颜料earth pressure 土压力earth pressure at rest 土静止压力earth ridge 土龙earth sample 土样品earth sheltered home 半土屋earth slope 土坡earth structure 土工构造物earth terminal 接地端子earthen structure 土工构筑物earthenware slab 陶瓷平板earthing 接地earthing electrode 接地电极earthmoving 运土earthquake 地震earthquake acceleration 地震加速度earthquake action 地震酌earthquake allowance 地震容许量earthquake damage 地震损害earthquake dynamic earth pressure 地震土动压力earthquake engineering 地震工程学earthquake epicentre 震中earthquake focus 震源earthquake forces 地震力earthquake induced failure 地震毁坏earthquake intensity 地震烈度earthquake load 地震荷载earthquake magnitude 地震震级earthquake period 地震周期earthquake proofing construction 抗震earthquake region 地震区earthquake resistant structure 抗震结构earthquake resisting house 防地震住宅earthquake response spectrum 地震响应谱earthquake zone 地震区earthwork 土方工程earthworker 控土工easement curve 缓和曲线easily dug rock 易掘岩石eastern style park 东方式公园eaves 檐口eaves board 檐板eaves channel 檐槽eaves girder 屋檐梁eaves gutter 檐沟eaves tile 檐口瓦eaves trough 檐沟ebb 干潮ebullition 沸腾eccentric load 偏心荷载eccentric tendon 偏心钢筋束eccentrically loaded column 偏心载荷柱eccentricity 偏心ecclesiastical building 宗教建筑echo 回声echo sounding 回声测深economic calculation 经济计算economic construction 经济建设economic percentage of steel and concrete 钢筋和混凝土的经济比率economizer cycle 省热装置循环系统economy brick 经济砖economy of labor power 劳动力经济制度economy wall 经济墙eddy 涡流edge conditions 边界条件edge force 边缘力edge girder 边缘梁edge iron 角铁edge joint 边接edge load 边缘荷载edge moment 边缘弯矩edge plate 护边板edge reaction 边棱反力edge stress 棱边应力edge strip of a slab 边沿衬条edge supported slab 边缘支承板edgestone 边缘石edging 缘饰editreception room 接待室educational building 文教建筑物effect of restraint 约束效应effective area 有效面积effective area of concrete 混凝土有效面积effective cross section 有效截面effective depth 有效深度effective flange width 有效翼缘宽度effective grain diameter 有效粒径effective grain size 有效粒径effective head 有效水头effective height 有效高度effective lateral restraint 有效侧向约束effective length 有效长度effective length factor 有效长度系数effective prestress 有效预应力effective reinforcement 种筋effective size 有效尺寸effective span 有效跨度effective storage 有效客量effective stress 有效应力effective thickness 有效厚度effective width of slab 平板有效宽度efficiency 效率efflorescence 泛白effluent 瘤物effort 力egg shaped section 蛋形截面egress 出口ejector 喷射器elastic aftereffect 弹性后效elastic behavior 弹性行为elastic body 弹性体elastic buckling 弹性弯曲elastic center 弹性中心elastic constants 弹性常数elastic curve 弹性曲线elastic deflection 弹性挠曲elastic deformation 弹性变形elastic design 弹性设计elastic equilibrium 弹性平衡elastic failure 弹性破坏elastic limit 弹性限度elastic loss 弹性损失elastic modulus 弹性模量elastic plastic behavior 弹塑性行为elastic rail spike 弹性道钉elastic range 弹性区域elastic reaction 弹性反应elastic recovery 弹性回复elastic restraint 弹性约束elastic shortening 弹性压缩elastic strain 弹性应变elastic strain range 弹性应变范围elastic strength 弹性强度elastic support 弹性支座elastic theory 弹性理论elastic weights method 弹性荷重法elastically supported girder 弹性支持梁elasticity 弹性elastomeric bearing 弹性支承elastomeric joint sealant 合成橡胶接缝料elbow 弯管electric analogy method 电模拟法electric bell 电铃electric cable 电缆electric curing 电养护electric current 电流electric distribution network 配电网electric drainage 电渗排水electric drill 电钻electric fixtures 电气设备electric float 电动式抹子electric heat accumulator 电蓄热器electric heater 电热器electric heating 电力供热electric heating blanket 电加热毯electric heating coil 电热盘管electric heating system 电力供热系统electric hoist 电动起重机electric installation 电气装置electric lamp 电灯electric lift truck 电动起重车electric lighting 电气照明electric panel heating 板式电热法electric power pylon 输电线塔electric pressure 电压electric source 电源electric space heater 电供热装置electric storage heater 蓄电式加热器electric stove 电炉electric tools 电动工具electric traction 电牵引electric water heater 电热水器electric welding 电焊electric winch 电动卷杨机electric wire 电线electrical engineering 电工学electrical insulation 电气绝缘electrical prestressing 电预加应力electrically conductive concrete 导电性混凝土electricity 电气electrification 电气化electro osmosis 电渗透electro thermal curing 电热养护electroacoustics 电声学electrochemical gaging 电化学测定electrode 电极electrode boiler 电热锅炉electrofilter 电滤器electrohydraulic elevator 电液升降机electrolysis 电解electrolyte 电解质electronic computer 电子计算机electronic computer room 电子计算机室electroslag welding 电渣焊electrostatic air filter 静电式空气过滤器electrothermal hardening 电热养护electrothermal pre tensioning 预应力法electrothermal prestressing 预应力法element 元素element of construction 结构组件elementary color 原色elephant trunk 混凝土输送管elevated approach 高架引道elevated flume 高架渡槽elevated road 高架道路elevated tank 高架桶elevating belt conveyor 提升运输带elevating grader 升降平土机elevating scraper 升降式刮土机elevation 立面图elevation drawing 正面图elevation head 位势水头elevator 升降机elevator cage 升降吊笼elevator car 升降吊笼elevator car safeties 电梯车厢保险装置elevator dredger 链斗式挖掘船elevator guide rails 升降机导轨elevator mahine room 电梯机房elevator shaft 升降机井elevator shaft gates 升降机井门elevator stairway core 建筑物中心带elevator well 升降机井eliminator 分离器ellipse of inertia 惯量椭圆ellipse of stress 应力椭圆ellipsoid 椭圆体ellipsoid of elasticity 弹性椭圆体elliptical paraboloid shell 椭圆抛物面型壳elongated aggregate 细长骨料elongation 延伸elongation at rupture 断裂延伸elongation per unit length 延伸率embankment 堤embankment wall 堤墙embedded column 暗柱embedded heating panel 埋入式加热板embedment length 埋置长度embrittlement 脆化emergency door 太平门emergency dwelling 临时住宅emergency exhaust fan 应急排风机emergency exit 太平门emergency gallery 非常出口坑道emergency gate 应急闸门emergency lighting 紧急照明emergency outlet 应急泄洪口emergency spillway 非常溢洪道emergency ventilation 紧急通风emergency water 非常用水emergency water valve 应急给水阀emery paper 金刚砂纸emissivity 辐射率empiric data 经验资料empirical data 经验数据empirical formula 经验公式employers' dining room 职员餐室empty weight 无载重量emptying gate 排水闸门emscher tank 双层沉淀槽emulsified asphalt 乳化沥青emulsifier 乳化剂emulsion 乳浊液emulsion coating 乳胶涂层emulsion paint 乳胶漆enamel 塘瓷enamel covered wire 漆包线enameled brick 涂釉砖enameled tile 釉瓷瓦encased sheet pile 有壳桩encased structures 钢管混凝土结构encastre 端部固定encastre moment 端部固定矩encaustic tile 彩瓦enclose pattern 内部图形enclosing sheeting 围板桩enclosure 围墙enclosure wall 围墙end 终止end anchorage 端部锚具end bearing pile 端承桩end block 末端引线块end cap 管端盖板end conditions 终端条件end contraction 侧方收缩end hook 端钩end joint 端接头end lap 端搭接end moments 端力矩end post 端柱end reaction 支座反力end restraint 端部约束end sill 端梁end span 端跨end stiffener 端部加劲条end thrust 轴向推力end view drawing 侧面图end wall 端墙endless saw 带锯endless sling 环状吊索endurance limit 疲劳极限endurance period 持续运转时间endurance strength 耐久强度endurance test 疲劳试验endurance testing machine 疲劳试验机energy 能energy dissipator 消能装置energy efficient building 节能建筑物energy efficient precast wall panel 绝热装配式墙板energy gradient 能源坡度energy loss 能量损耗engaged column 附墙圆柱engine 发动机engine house 动力车间engineer 工程师engineer's chain 工程测链engineering 技术engineering brick 高强度砖engineering department 技术科engineering development 工程技术发展engineering drawing 工程图engineering requirements 技术要求engineering research 工程研究engineering services 工程设施engineering structures 工程结构engineering supervision 技术监督engineering works 工程建筑物english cross bond 砖头缝错开的英国式砌合english tile 英国式瓦engraving 雕刻enlarged drawing 放大图enlarged toe pile 扩底桩enrichment 增添装饰enrockment 抛石ensemble 总效应entasis 柱微凸线enterclose 通道entering catch 窗插闩enterprise 企业entrained air 携入的空气entrance 入口entrance door 入口门entrance foyer 进口门厅entrance gate 入口门entrance hall 进口门厅entrance lock 入口船闸entrance loss 入口损失entrance ramp 入口坡道entresol 夹层entry head 进口水头entry loss 进口损失envelope 外壳envelope curve 包络曲线envelope wall 密封墙environment pollution 环境污染environmental chamber 环境室environmental design 环境设计environmental engineering 环境保护工程environmental hazards 环境公害environmental science 环境科学environmental system 环境体系environs area 近郊地区epoxy adhesive 环氧尸粘合剂epoxy bitumen material 环氧沥青材料epoxy coated rebars 敷环氧尸钢筋epoxy coated reinforcing bars 敷环氧尸钢筋epoxy concrete 环氧尸混凝土epoxy mortar 环氧灰浆epoxy resin 环氧尸epure 图形equal friction method 均等摩擦法equal lay rope 平行捻绳索equalized heat distribution 热均匀分布equalizer 平衡器equalizing reservoir 均衡蓄水池equalizing tank 倒水箱equalizing valve 平衡阀equation of continuity 连续方程equation of the influence line 影响线方程equilibrant force 平衡力equilibrium 均衡equilibrium conditions 平衡条件equilibrium method 平衡法equilibrium of forces 力的平衡equilibrium polygon 平衡多边形equilibrium pressure 平衡压力equilibrium state 平衡状态equilibrium temperature 平衡温度equipment 设备equipment drawing 装置图equipment ground 设备接地equipment yard 设备堆放场地equivalence 等价equivalent diameter 等效直径equivalent length 等效长度equivalent load 等效负载erecting bill 装配次序表erecting deck 装配用平台erecting jib 装配吊杆erecting mast 装配桅杆erecting mechanism 装配机械装置erecting shop 装配车间erecting tools 装配工erecting yard 装配场erection 架设erection bolt 安装螺栓erection brace 安装用支撑erection by launching 伸展架设法erection column 安装柱erection crane 安装吊车erection diagram 装配图erection drawing 装配图erection equipment 安装设备erection hinge 装配用铰链erection joint 安装接头erection load 装配负载erection loop 安装环erection mark 装配证号erection of house frame 房屋构架架设erection of structural steel 结构钢装配erection of truss 桁架架设erection on trestle 在栈架安装erection practice 安装惯例erection procedure 安装程序erection reinforcement 装配用钢筋erection schedule 安装进程erection scheme 装配方案erection sequence 安装顺序erection site 装配场erection stage 安装阶段erection stress 装配应力erection tower 吊装塔erection work 装配工作erector 装配工erosion 侵蚀erosion protection works 冲刷防护椎erratic block 漂砾error 误差escalator 阶梯式电梯escape 漏失escape canal 排水渠escape gallery 太平通道escape stair 太平梯espagnolette bolt 长插销estimate 预算etching 腐蚀european park 欧洲式公园evaporation 蒸发evaporation basin 蒸发池evaporative condenser 蒸发冷凝器evaporative cooling 蒸发冷却evaporative heat meter 蒸发热量计evaporative humidifier 蒸发式加湿器even load 均匀载荷evenly distributed load 均布荷载examination 甸excavated area 挖掘面积excavated material 挖出物excavated volume 开挖量excavating equipment 挖掘设备excavating tools 挖掘工具excavation 挖掘excavation bottom 挖掘基底excavation depth 挖掘深度excavation works 挖方工程excavator 挖掘机excess 过剩excess concrete 过量混凝土excess heat 余热excess pressure 超压excessive air elimination 过量空气除去excessive elastic deformability 过大弹性变性excitation 激励execution control 施工管理execution scheme drawing 施工计划图exfoliation 剥落exhast duct 排风道exhaust air 排出空气exhaust damper 排气第板exhaust fan 排气机exhaust flue 烟道exhaust funnel 排气筒exhaust grille 排气格栅exhaust hood 排风罩exhaust opening 排气口exhaust plant 排气装置exhaust shaft 排气井exhaust system 排气系统exhaust valve 排气阀exhaust ventilation 排气通风exhauster 排气机exhibition building 展览馆exhibition hall 展览厅exit 出口exit loss 出口水头损失exit opening 屋顶出口exit ramp 出口坡道exit route 应急通路expanded blast furnace slag 膨胀高炉矿渣expanded bore pile 扩底桩expanded cement 膨胀水泥expanded clay 膨胀粘土expanded column head 扩头柱expanded glass 泡沫玻璃expanded perlite 膨胀珍珠岩expanded plastics 泡沫塑料expanded polyurethane 泡沫聚氨基甲酸乙酯expanded rubber 海棉橡胶expanded shale 膨胀页岩expanded slag concrete 膨胀矿渣混凝土expanded slate 膨胀页岩expanding 扩张expanding vault 圆锥形弓窿expansion 膨胀expansion agent 膨胀剂expansion and contraction joint 伸缩缝expansion bearing 活动支座expansion bend 膨缩弯管expansion bolt 伸缩螺栓expansion cistern 膨胀水箱expansion crack 膨胀裂纹expansion joint 膨缝expansion joint cover 伸缩接头复盖expansion loop 补偿器expansion rollers 活动支承滚柱expansion strip 伸缩缝嵌条expansion tank 膨胀箱expansion vessel 膨胀箱expansive cement 膨胀水泥expansive concrete 膨胀混凝土expansive soil 膨胀土experiment 试验experimental area 试验场experimental data 试验数据experimental facilities 实验装置experimental furnace 实验炉experimental material 试验材料experimental plant 实验工厂experimental shop 试制车间expert 专家explanatory note 注释exploded view 分解图explosion 爆发explosion action 爆炸酌explosion proof luminaire 防爆灯explosion proof wiring 防爆配线explosive dust 爆炸性粉尘exponent 指数exposed aggregate 浮露骨料exposed aggregate finish 水刷石饰面exposed aggregated concrete 浮露骨料混凝土exposed concrete 露石混凝土exposed masonry 渺砌筑exposed wiring 外露布线exposure 曝露exposure of aggregate 外露骨料express filter 高速过滤器expressway 高速公路expulsion 放出extended life superplasticizer 长期有效的增塑剂extension 延长extension device 延伸设备extension elongation 张拉延伸extension ladder 伸缩梯extension trestle badder 伸缩式栈桥梯子extensometer 伸长计exterior face 外面exterior finish 外面装修exterior house paint 室外用油漆exterior panel 外壁板exterior protected construction 围护结构exterior separation 外部隔距exterior shutter 外部百叶窗exterior stair 外部楼梯exterior support 外部支座exterior type plywood 外装修用胶合板exterior wall 外墙exterior zone 外部区域external air 外气external bownpipe 外部水落管external door 外部门external dormer 老虎窗external force 外力external loading 外部负载external prestress 外部预应力external prestressing cable 外部预拉钢丝束external resistance 外阻力external skin 外部涂层external wall 外墙extinguisher 灭火器extra heavy concrete 特重混凝土extra rapid hardening cement 特种快凝性水泥extra work 额外工作extract 抽出物extract air 抽气extract duct 排气管道extract opening 抽气口extract ventilation 抽气通风extraction of groundwater 地下水的抽出extrados 外拱线extreme fibre stress 最外缘纤维应力extremity 端extrusion chipboard 压制刨花板extrusion particle board 压制刨花板eyebar 环头铁杆eyebolt 环首螺栓。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Bull. Mater. Sci., Vol. 33, No. 5, October 2010, pp. 561–568. © Indian Academy of Sciences.561Effect of stress-induced grain growth during room temperature tensile deformation on ductility in nanocrystalline metalsWEICHANG XU, PINQIANG DAI* and XIAOLEI WU †College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China †State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, ChinaMS received 24 March 2009; revised 17 April 2009Ab stract. In the present study defect-free nanocrystalline (nc) Ni–Co alloys with the Co content ranging from 2⋅4–59⋅3% (wt.%) were prepared by pulse electrodeposition. X-ray diffraction analysis shows that only a single face-centred cubic solid solution is formed for each alloy and that the grain size reduces monotonically with increasing Co content, which is consistent with transmission electron microscopy (TEM) observations. In the nc Ni–Co alloys, both the ultimate tensile strength and the elongation to failure increase as the Co content increases. The TEM observations reveal that stress-induced grain growth during tensile deformation is signi-ficantly suppressed for the nc Ni–Co alloys rich in Co in sharp contrast to those poor in Co. We believe that sufficient solutes could effectively pin grain boundaries making grain boundary motions (e.g. grain boundary migration and/or grain rotation) during deformation more difficult. Thus, stress-induced grain growth is greatly suppressed. At the same time, shear banding plasticity instability is correspondingly delayed leading to the enhanced ductility.Keywords. Nanocrystalline; Ni–Co; mechanical property; ductility; grain growth.1. IntroductionNanocrystalline (nc) metals, with very high strength in contrast to their coarse-grained counterparts, will have extensive engineering applications in the future as ade-quate ductility is developed. In the past decade, plentiful investigations have been carried out with the objective of finding several proper routes to enhance the low ductility of nc metals. Ultrahigh strength combined with good ducti-lity has been shown in some nc metals (Karimpoor et al 2003; Li and Ebrahimi 2004; Gu et al 2006; Guduru et al 2007; Wei et al 2007). The improved ductility is mostly ascribed to enhancement of strain hardening which can suppress or delay plasticity instability in the process of plastic deformation (Wang et al 2002; Li and Ebrahimi 2004; Ma 2006).For nc metals, shear banding is a common type of plasti-city instability. Shear bands are frequently observed on the surface of specimen, especially for the thin-sheet ten-sile specimen, as plasticity instability occurs in the deformation process (Dalla Torre et al 2002; Wei et al 2002; Misra et al 2005). Inside the shear band, severely deformed microstructures such as elongated grains and grown grains are observed, while the grains in the exte-rior of the shear band show a relatively small change in the grain size and shape (Wei et al 2002). Thus, we deduce that the shear bands caused by localized deformation might initially occur in the regions, where nanograins are experiencing fast growth driven by applied stresses. In recent years, the propensity of stress-induced grain growth in nc metals is well established by molecular dyna-mics (MD) simulations (Haslam et al 2003; Schiøtz 2004; Farkas et al 2006, 2008) and experimental studies (Shan et al 2004; Zhang et al 2004; Fan et al 2006a; Liao et al 2006; Pan et al 2006; Brandstetter et al 2008; Wang et al 2008). Based on the above facts, we are stimulated to consider such an issue: whether the extent of grain growth during room temperature (RT ) tensile deformation affects the ductility, since fast grain growth driven by applied stresses could result in ultimate shear banding plasticity instability.In the present study, a series of nc Ni–Co alloys with varying compositions were prepared by electrodeposition. First, the nc Ni–Co alloys were testified to be free of defects by tensile tests. Then, transmission electron mi-croscope (TEM) observations were carried out using the as-deposited samples and the correspondingly as-deformed samples (from tensile failures) to compare the signifi-cance of grain growth during tensile deformation. On this basis, the relationship between the extent of grain growth during tensile deformation and the resulting ductility was investigated.*Author for correspondence (pqdai@)Weichang Xu, Pinqiang Dai and Xiaolei Wu5622. Experimental 2.1 Fabrication methodIn the present study an aqueous sulfamate-based electro-lyte was used to produce nc Ni–Co alloys by square-wave pulse electrodeposition. The electrolyte was made of 1⋅65 ± 0⋅01 M/L the sum of [Ni 2+] and [Co 2+] (nickel sul-famate and cobalt sulfamate as nickel source and cobalt source, respectively), 20 g/L NiCl 2⋅6H 2O, 30 g/L boric acid, 2⋅5 g/L soluble saccharin and 0⋅1 g/L lauryl sodium sulfate. Ni–Co alloys with varying compositions were obtained by only changing the Ni/Co ion ratio in the elec-trolyte with invariable other electrodeposition conditions. The main electrodeposition conditions are listed in table 1. Under these conditions, Ni–Co alloys, whose thickness was 180–200 μm, were deposited on stainless steel sub-strates, which had been polished to a mirror-like finish surface prior to electrodeposition. After electrodeposi-tion, alloy deposits can be mechanically stripped from stainless steels.2.2 Composition determination and microstructure characterizationThe compositions of nc Ni–Co alloys were determined by the energy dispersive X-ray (EDX) spectroscopy method with a scanned area of 3 × 3 mm 2. The composition unit is the weight percent (wt.%). The crystallographic struc-ture of the as-deposited nc Ni–Co alloys were analysed by X-ray diffraction (XRD). XRD was carried out on a Philip X’Pert Pro MPP X-ray diffractometer using Cu-K α radiation at an acceleration voltage of 45 keV and a cur-rent of 40 mA. In addition, the grain size was quantified by applying the integral breadth method to the {111} family of peaks (Zhang et al 2003). The microstructures of nc Ni–Co alloys were observed by TEM. TEM obser-vations were performed using a Tecnai G2 F20 S-TWIN operated at 200 kV. TEM samples were prepared byTab le 1. Operating conditions of electrodeposition for pro-ducing nc Ni–Co alloys ParametersElectrolyte volume (L) 1Electrolyte temperature (°C) 60pH 3Average current density (A/dm 2) 10 On-time in a cycle (ms) 50 Duty ratio (%) 50 Anode material Electrolytic Ni (purity >99⋅9 mass.%)Ratio of cathode area to anode 1 : 4area in the plating bathCathode substrate Stainless steel sheet(1Cr15Mn8Ni5Cu2)double-jet electropolishing using an electrolyte consisting of 5% (volume) perchloric acid and 95% (volume) etha-nol at a temperature below –20°C. The TEM average grain size was determined from dark field TEM images using image analysis software (Photoshop 7.0) to count at least 300 grains for each sample.2.3 Mechanical properties test and fracture analysis Dog-bone-shaped tensile specimens with a gauge length of 10 mm and a gauge width of 3 mm were cut using an electro-discharging machine. Tensile tests were carried out on a CMT-6104 test machine at RT and a strain rate of 10–3 s –1. The tensile ductility in this study was mea-sured through the gripping-head movement of the tensile machine. A XL30 ESEM-TMP environmental scanning electron microscopy (SEM) was employed to analyse fractured samples.3. Results and discussion 3.1 Microstructure analysisXRD patterns for specimens with compositions ranging from 2⋅4–59⋅3% Co are shown in figure 1. Several trends can be observed as the Co content increases. First, the crystal structure is unchanged with compositions. All of the peaks can be indexed with face-centred cubic (fcc ) reflections, as expected for γ solid solutions. Second, the addition of Co clearly leads to substantial peak broaden-ing, which is quantified through the trend of decreasingFigure 1. XRD patterns for specimens with global Co content from 2⋅4–59⋅3%. The XRD grain size calculated using the inte-gral breadth method is also shown for each specimen. Alsoshown for comparison is the XRD pattern for conventionalpolycrystalline Ni powder.Effect of stress-induced grain growth in nanocrystalline metals563Figure 2.TEM bright field images of the as-deposited (a) Ni–2⋅4%Co, (b) Ni–15⋅4%Co, (c) Ni–32⋅0%Co and (d) Ni–59⋅3%Co.grain size reported in figure 1. The present electrodepo-sited Ni–Co alloys show the strong composition dependency of grain size, which is shared by other electrodeposited Ni-based binary systems, such as Ni–P (Jeong et al 2003), Ni–W (Cheung et al 1994) and Ni–Fe (Li and Ebrahimi 2003). The XRD average grain sizes show the maximum average grain size as 21⋅6 nm for the Ni–2⋅4%Co alloy and the minimum average grain size as 10⋅7 nm for the Ni–59⋅3%Co alloy. Finally, it seems that when the grain size is small enough (e.g. 10⋅7 nm), the nc Ni–Co alloys tend to gain weak textures close to those of conventional polycrystalline Ni powder free of textures, as shown at the top of figure 1.In order to verify the grain sizes determined by XRD, direct observations of the alloy nanostructure were also conducted by TEM for representative specimens contain-ing 2⋅4, 15⋅4, 32⋅0 and 59⋅3% Co. Bright field images for these specimens are shown in figure 2. The TEM average grain sizes for each specimen are 24⋅2, 21⋅6, 17⋅3 and 14⋅3 nm for the alloys with 2⋅4, 15⋅4, 32⋅0 and 59⋅3% Co, respectively. These values are in line with those approxi-mated by the XRD line broadening measurements which gave the average grain size ≈21⋅6, 19⋅4, 15⋅9 and 10⋅7 nm for specimens of similar respective compositions. Together, a series of micrographs in figure 2 illustrate the same trend suggested by figure 1 that a clear refinement of the nanostructure occurs with increasing Co content. 3.2 Mechanical propertiesFigure 3 shows a typical tensile engineering stress–strain curve for each composition, respectively. At least three tensile specimens were tested for each composition. All of these curves show similar characteristics to those reported in defect-free specimens (Karimpoor et al 2003;Weichang Xu, Pinqiang Dai and Xiaolei Wu 564Li and Ebrahimi 2004; Gu et al 2006; Wei et al 2007). Furthermore, each specimen shows an edge fracture with an angle of ~55° with respect to the tensile direction.Figure 3. Tensile engineering stress–strain curves for nc Ni–Co alloys.Figure 4. (a) Average ultimate tensile strength vs Co content and (b) average elongation to failure vs Co content for nc Ni–Co alloys. According to the stress–strain curves, the average ulti-mate tensile strength (UTS) and the average elongation to failure (ETF) vs the Co content, respectively are plotted in figures 4(a) and (b).Figure 4(a) shows the curve of average UTS vs Co content. There is an apparent increase in the average UTS from 1300–1500 MPa, as the Co content is increased from 2⋅4–15⋅4%. When the Co content exceeds 15⋅4%, in the range of 32⋅0–59⋅3%, the average UTS ceases to increase and maintains at about 1550 MPa. According to the results in a Ni–Fe system (Li and Ebrahimi 2003) and the fact that Co (0⋅167 nm) has the most similar atomic radius to that of Ni (0⋅162 nm), we believe solid solution strengthening from the Co addition to Ni is very weak compared with strengthening by grain refinement.In addition, Co is a well known element with a low stacking fault energy (SFE) and the SFE in Ni–Co alloys decreases with increasing Co content (Zhou et al 2001). Furthermore, the reduction of SFE in nc alloys has been evidenced to improve the strength by facilitating the acti-vities of partial dislocations (Ebrahimi et al 2004). There-fore, when the Co content is in the range of 2⋅4–15⋅4%, the increase in the average UTS could be mainly caused by a reduction in the SFE instead of grain refinement due to the small variation in the grain size, e.g. 21 ± 1 nm. When the Co content is increased to 59⋅3%, the grain size is reduced to 10⋅7 nm. The reduction of SFE and grain refinement should have significantly increased the strength. But the expectation never happened. Therefore, the additional softening, if it exists, could set off increase in strength from grain refinement and a reduction in SFE. This strength softening is likely to be caused by grain boundary (GB) sliding dominated deformation, which results in the inverse Hall-Petch effect (Schiøtz 2003; Farkas and Curtin 2005).The curve of average ETF vs Co content is shown in figure 4(b). When the Co content is in the range of 2⋅4–15⋅4%, the average ETF maintains at about 11%. Increas-ing the Co content in this range has a small effect on the ductility. However, when the Co content is increased to 32⋅0%, the average ETF is enhanced to about 14% and maintains at this high level with further increasing Co content to 59⋅3%. This indicates that the Ni–Co alloys rich in Co have the combination of high strength with enhanced ductility.3.3 Fracture analysisThe SEM images of tensile fractured surface for repre-sentative specimens containing 2⋅4, 15⋅4, 32⋅0 and 59⋅3% Co are shown in figure 5. An apparent transition from deep dimples to shallow dimples was observed with an increase in the Co content. The deep dimples are common fracture morphologies for nc metals with the grain size above 20 nm (Dalla Torre et al 2002), where plasticEffect of stress-induced grain growth in nanocrystalline metals565Figure 5.SEM images of tensile fracture surface for (a) Ni–2⋅4%Co, (b) Ni–15⋅4%Co, (c) Ni–32⋅0% Co and (d) Ni–59⋅3%Co.deformation is mediated by dislocation motion. The simi-lar shallow dimples were observed in the fracture surface of a nc Ni–Fe alloy (Li and Ebrahimi 2004). They corre-lated this fractography to a characteristic caused by the GB sliding dominated process. Consequently, we believe that a transition of deformation mechanism from the dis-location dominated process to the GB sliding dominated process occurs in the present Ni–Co alloys.3.4 Post-deformed microstructureFigure 6 shows post-deformed TEM microstructures of representative specimens containing 2⋅4, 15⋅4 and 59⋅3% Co. The TEM specimens were sampled in the vicinity of tensile fractures. For the Ni–2⋅4%Co alloy, the average TEM grain size is 24⋅2 nm in the as-deposited state, but the global grain size with about 50nm is seen after ten-sion to failure, as observed in figure 6(a). The significant grain growth occurs in most grains just like uniform grain growth. Similar results were obtained in nc Ni with a grain size of ~20 nm (Wang et al 2008). For the post-deformed Ni–15⋅4%Co alloy (figure 6(b)), the global stress-induced grain growth is alleviated in contrast to the observation in the post-deformed Ni–2⋅4%Co alloy. A number of large grains with sizes of 60–80 nm, which exceeds the upper bound grain size (~50 nm) in the as-deposited state, are observed in figure 6(b). However, abnormal grain growth with some grain sizes beyond 250 nm, which was observed in a nc Ni–Fe alloy (Fan et al 2006a), are not observed in the present deformed Ni–15⋅4%Co alloy. For the post-deformed Ni–59⋅3%Co alloy, it was observed in figure 6(c) that the global grain coarsening becomes relatively insignificant and grain coarsening is just accumulated in some dispersive areas, where the maximum grain size was just 30–40 nm equiva-lent to the upper bound grain size in the as-deposited state. Similar TEM observations were reported in a Co–P alloy (Fan et al 2006b) and nc Co (Zhang and Jia 2006). It seems that stress-induced grain growth is relatively insignificant for nc Co-based metals. For the present nc Ni–Co alloys, a transition from global grain growth to local grain coalescence is clearly observed as the Co con-tent increases. Correlating the extent of stress-induced grain growth with ductility (see figure 4(b)), it is revealed that suppression of grain growth during tensile deforma-tion can enhance the ductility.Nanocrystalline metals have a propensity of stress-induced grain growth and this propensity is relatively stronger for nc pure metals, which was well established by plentiful MD simulations (Haslam et al 2003; Schiøtz 2004; Farkas et al 2006a, 2008) and experimental studies (Shan et al 2004; Zhang et al 2004; Fan et al 2006; Liao et al 2006; Pan et al 2006; Brandstetter et al 2008; Wang et al 2008). Moreover, for nc metals stress-induced grain growth seems to be independent of the grain size or the deformation mechanism. For example, for two nc Ni samples with initial grain sizes of 10 and 20 nm (here for nc Ni 10 nm is in the grain size region of the GB slidingWeichang Xu, Pinqiang Dai and Xiaolei Wu566Figure 6. TEM bright field images of tensile fracture of (a) Ni–2⋅4%Co, (b) Ni–15⋅4%Co and (c) Ni–59⋅3%Co.dominated mechanism, while 20 nm is in the grain size region of the dislocation-mediated mechanisms) (Schiøtz and Jacobsen 2003; Li and Ebrahimi 2004), grain coar-sening from the initial grain size to ~80 nm were both observed in the in situ tensile process of the two samples (Shan et al 2004; Wang et al 2008). Therefore, deforma-tion mechanisms controlled by GB sliding are not expected to facilitate inhabiting stress-induced grain growth.High strength along with further enhanced ductility is obtained in the present nc Ni–Co alloys with smaller grain sizes (~10 nm) instead of those with larger grain sizes (~20 nm). Based on the above discussion, we do not believe that the enhanced ductility is much related to the GB sliding controlled deformation process. The com-parison of grain sizes between as-deposited specimens and post-deformed specimens (see figures 2 and 6) re-veals that this enhancement of ductility originated from suppression of stress-induced grain growth during tensile deformation.The MD simulations of immiscible nc Al–Pb alloy reveals that due to complete segregation of Pb to GBs, GBs are more stable in the deformation process so that grain growth during deformation is relatively insignifi-cant (Jang et al 2008). Experimentally, Soer et al (2004) also observed that high-angle GBs were pinned effec-tively during deformation in an ultrafine-grained (ufg) Al–Mg alloy compared to ufg pure Al, making stress-induced grain growth in the Al–Mg alloy more difficultEffect of stress-induced grain growth in nanocrystalline metals 567than in pure Al. It is apparent that for nc and ufg metals solutes in the matrix can help to hinder GB migration in the deformation process. Accordingly, it is reasonable to deem that in the present nc Ni–Co alloys Co solutes play similar role of pinning GBs during deformation and that the pinning effect is strengthened with increasing Co con-tent. As a result, grain growth during tensile deformation is significantly suppressed by adequate Co solutes for the nc Ni–Co alloys with higher Co contents in contrast to those with lower Co contents. As grain growth during tensile deformation is suppressed, the larger uniform deformation can persist and shear banding is delayed leading to the enhanced ductility. In the present study alloying is witnessed to be a useful route to enhance the ductility combined with high strength. However, the effects of the solute states (e.g. species, concentration, and distribution) on GB responses during deformation are not well understood. More investigations in these aspects are expected to be further undertaken.In addition, the effect of crystallographic textures on stress-induced grain growth should be considered, too. The Ni–Co alloys with very weak textures appear in the region with high Co contents, e.g. 49⋅4%Co and 59⋅3%Co, while a significant texture with preferred {200} planes is formed as the Co content is below 32⋅0%. Individual nanograins tend to align at a preferred orientation under deformation conditions, as a result of an accommodation to plastic deformation (Qin et al 2004). In this case, cer-tain crystallographic textures are created in microstruc-tures of plastically deformed nc metals accompanied by grain coarsening. Grain coalescence by crystallographic orientation accommodation among adjacent grains can be a process of grain rotation (Wang et al 2008) and/or GB migration (Haslam et al 2003; Schiøtz 2004; Farkas et al 2006, 2008). Thus, textures in microstructures would lead to different effects on deformation depending on the direction of applied stresses. The two extreme cases are: if the orientations of original textures are fully favourable for the deformation condition, it would completely pro-mote stress-induced grain growth. On the contrary, it would completely prevent stress-induced grain growth. In the present case, it seems that stronger the {200} texture in the Ni–Co alloys, the more significant would be the stress-induced grain growth.4. ConclusionsThe experimental results on nc Ni–Co alloys are con-cluded as follows:(I) A series of defect-free nc Ni–Co alloys with Co con-tent ranging from 2⋅4–59⋅3 wt.% were prepared by pulse electrodeposition. XRD analysis shows that only a single fcc solid solution is formed for each composition and that the grain size reduces monotonically with increasing Co content. A minimum grain size of 10⋅7 nm was obtained for the Ni–59⋅3%Co alloy. (II) GB sliding plays a dominant role in the deformation process as grain sizes are close to ~10 nm. Evidence is given by stress–strain curves (e.g. for the Ni–Co alloys with 49⋅4% and 59⋅3% Co, strength softening possibly resulted from GB sliding which sets off strengthening from grain refinement and a reduction in the SFE) and a transition from the tensile fracture morphologies.(III) The UTS is in the range of 1300–1650 MPa and the EOF in the range of 10⋅5–14⋅5%. Both the UTS and EOF enhance with increasing Co content.(IV) TEM observations reveal that grain growth during tensile deformation is significantly suppressed for the alloys with high Co content in contrast to those with low Co content. We believe that grain growth during tensile deformation could be significantly suppressed by suffi-cient Co solutes pinning GB, independent of deformation mechanisms. Thus, it leads to the enhanced ductility by delaying shear banding plasticity instability. AcknowledgementsThe present investigation was supported by the Natural Science Foundation of Fujian Province (Grant no. E0810006) and National 863 projects of China (No. 2007AA03Z325).ReferencesBrandstetter S, Zhang K, Escuadro A, Weertman J R and Van Swygenhoven H 2008 Scr. Mater.58 61Cheung C, Palumbo G and Erb U 1994 Scr. Metall. Mater.31 735Dalla Torre F, Van Swygenhoven H and Victoria M 2002 Acta Mater.50 3957Ebrahimi F, Ahmed Z and Li H 2004 Appl. Phys. Lett.85 3749 Fan G J, Fu L F, Choo H, Liaw P K and Browning N D 2006a Acta Mater.54 4781Fan G J, Fu L F, Qiao D C, Choo H, Liaw P K and Browning N D 2006b Scr. Mater.54 2137Farkas D and Curtin W A 2005 Mater. Sci. Eng.A412 316Farkas D, Froeth A and Van Swygenhoven H 2006 Scr. Mater.55 695Farkas D, Mohanty S and Monk J 2008 Mater. Sci. Eng.A493 33Gu C D, Lian J S, Jiang Z H and Jiang Q 2006 Scr. Mater.54 279Guduru R K, Linga Murty K, Youssef Khaled M, Scattergood R O and Koch C C 2007 Mater. Sci. Eng.A463 14Haslam A J, Moldovan D, Yamakov V, Wolf D, Phillpot S R and Gleiter H 2003 Acta Mater.51 2097Jang S, Purohit Y, Irving D, Padgett C, Brenner D and Scatter-good R O 2008 Mater. Sci. Eng.A493 53Jeong D H, Erb U, Aust K T and Palumbo G 2003 Scr. Mater.48 1067Karimpoor A A, Erb U, Aust K T and Palumbo G 2003 Scr. Mater.49 651Weichang Xu, Pinqiang Dai and Xiaolei Wu 568Liao X Z, Kilmametov A R, Valiev R Z, Gao H, Li X, Mukher-jee A K, Bingert J F and Zhu Y T 2006 Appl. Phys. Lett.88 021909Li H and Ebrahimi F 2003 Mater. Sci. Eng.A347 93Li H and Ebrahimi F 2004 Appl. Phys. Lett.84 4307Ma E 2006 Scr. Mater.49 663Misra A, Zhang X, Hammon D and Hoagland R G 2005 Acta Mater.53 221Pan D, Nieh T G and Chen M W 2006 Appl. Phys. Lett.88 161922Qin X Y, Zhu X G and Lee J S 2004 Scr. Mater.50 489Schiøtz J 2004 Mater. Sci. Eng.A375–377 975Schiøtz J and Jacobsen K W 2003 Science301 1357Shan Z W, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M and Mao S X 2004 Science305 654 Soer W A, De Hosson J Th M, Minor A M, Morris Jr. J W and Stach E A 2004 Acta Mater.52 5783Wang Y B, Li B Q, Sui M L and Mao S X 2008 Appl. Phys. Lett.92 011903Wei H, Hibbard G D, Palumbo G and Erb U 2007 Scr. Mater.57 996Wei Q, Jia D, Ramesh K T and Ma E 2002 Appl. Phys. Lett.81 1240Zhang K, Weertman J R and Eastman J A 2004 Appl. Phys. Lett.85 5197Zhang X and Jia C 2006 Mater. Sci. Eng.A418 77Zhang Z, Zhou F and Lavernia E J 2003 Metall. Mater. Trans. A34 1349Zhou W, Jiang B, Liu Y and Qi X 2001 Trans. Nonferrous Met. Soc. China11 555。