九年级上学期期中考试数学试题及答案 (2)
荣昌初级中学2025级九年级上期期中考试数学试题(答案)
荣昌初级中学2025级九年级上期期中考试数学试卷(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B铅笔完成.参考公式:抛物线(a≠0)的顶点坐标为(,),对称轴为.一、选择题:(本大题10个小题,每小题4分,共40分).1. 下列四个图形分别是重庆航空、山东航空、海南航空和春秋航空公司标志的部分图案,其中属于中心对称图形的是()A. B. C. D.【答案】A2. 如图,一块直角三角板的直角顶点放在直尺的一边上.如果,那么的度数是()A. B. C. D.【答案】B3. 抛物线y=2(x+1)2−1的对称轴是()A. x=−1B. y=−1C. x=1D. y=1【答案】A4. 已知点M(m,−1)与点N(3,n)关于原点对称,则m+n的值为()A. 3B. 2C. −2D. −3【答案】C5. 若m是方程x2+x−1=0的一个根,则2024-2m2-2m的值为( )A. 2 025B. 2 024C. 2 023D. 2 022【答案】D6. 的值应在()A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间【答案】B7. 用边长为1的小等边三角形按如图所示的规律拼图案,其中第①个图形有6个边长为1的小三角形,第②cbxaxy++=2ab2-abac442-abx2-=132∠=︒2∠68︒58︒45︒32︒2⎛⎝个图形有10个边长为1的小三角形,第③个图形有14个边长为1的小三角形,第④个图形有18个边长为1的小三角形,…,按照这个规律排列下去,第⑩个图形中边长为1的小三角形的个数为( )A. 34B. 38C. 42D. 46 8题图【答案】C 8. 如图,AB 是⊙O 的直径,点C 在⊙O 上,∠ACB 的平分线交⊙O 于点D ,连接AD 、BD ,若AC =6,BD =5,则BC 的长为( )A .12B .C .10D .8【答案】D【解析】【详解】解:如图,连接,∵AB 是的直径,,是的弦,∴∠ADB =,∵CD 是∠ACB 的平分线∴∠ACD =∠BCD =45°,∵∠BAD =∠BCD =45°,∴,∴;故选:.9. 在正方形中,将绕点逆时针旋转到,旋转角为,连接BE ,并延长至点,使,连接DF ,则的度数是( )A. B. C. D. 【答案】C【解析】【详解】解:四边形是正方形,AB =BC =CD =AD ,,102==BD AB 822=-=AC AB BC BC O e AC BC O e 90ACB ∠=︒D ABCD AB A AE αF CF CB =DFC ∠452α︒+45α︒+90BCF BCD α=∠-∠=︒-245α-︒ ABCD ∴90ABC BCD ∠=∠=︒由旋转的性质可知,,,,,,,,,,10. 已知代数式,,从第三个式子开始,每一个代数式都等于前两个代数式的和,,,…,则下列说法正确的是( )①若,则; ②;③前2024个式子中,a 的系数为偶数的代数式有674个A. 3个B. 2个C. 1个D. 0个【答案】B【解析】【详解】解:由题意得:,,,,,,,,,,若,则,故①正确;,故②正确;推理得:奇,偶,奇,三个为一个周期,故前2024个式子中,,则a 的系数为偶数的代数式有675个,故③错误.故选B .二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上 .11. 方程x (x−3)=0的解是.【答案】x 1=0,x 2=312. 若抛物线y =x 2+8x +m 的顶点在x 轴上,则m =______________.【答案】m =16.13. 已知一元二次方程kx 2-4x +2=0有实数解,则k 的取值范围是 ______________.【答案】k ≤2且k ≠0.BAE α∠=AB AE =1809022ABE AEB αα︒-∴∠=∠==︒-2CBF ABC ABE α∴∠=∠-∠=CF CB =∴2CBF CFB α∠=∠=CF CD =18021802BCF αα∴∠=︒-⨯=︒-90DCF BCF BCD α∴∠=∠-∠=︒-1m a =22m a =3123m m m a =+=4325m m m a =+=34n m a =8n =12310231m m m m a +++⋅⋅⋅=1m a =22m a =3123m m m a =+=4325m m m a =+=5348m m m a =+=613m a =721m a =834m a =955m a =1089m a =34n m a =8n =12310235...89231m m m m a a a a a a +++⋅⋅⋅=+++++=202436742÷=【详解】解:一元二次方程kx 2-4x +2=0有实数解,∴k ≠0且,即△=16-8k ≥0解得k ≤2,的取值范围为k ≤2且k ≠0..14. 某工业园区今年六月份提供就业岗位1500个,并按计划逐月增长,预计八月份将提供岗位2500个.设七、八两个月提供就业岗位数量的月平均增长率为,根据题意,可列方程为 .【答案】1500250015. 如图,四边形ABCD 是⊙O 内接四边形,若∠AOC =130°,则∠ABC =______°.【答案】115.【解析】【分析】本题考查了圆内接四边形的性质、圆周角的性质.【详解】四边形是⊙O 内接四边形,∠ADC =65°,∴∠ABC =180°−65°=115°,16. 若关于x 的一元一次不等式组有解且最多有3个整数解,且使关于y 的分式方程有整数解,则所有满足条件的整数a 的值之和是______.【答案】12【解析】【详解】解:解不等式①得:,解不等式②得:,∵不等式组有解且最多有3个整数解,∴,∴;解得:,∵分式方程有整数解,∴是整数,且y ≠1,即a ≠-2且a 为偶数. 0∆≥k ∴x ()2150111815x += ABCD 31231x x x a -⎧->⎪⎨⎪-≤⎩53711a y y y-=+--1x >-13a x ≤+1133a +-<<48a -<<53711a y y y -=+--22a y =+53711a y y y-=+--22a y =+∴,a =2,4,6∴所有满足条件的整数的值之和是2+4+6=12.故答案为:12.17.如图,在正方形ABCD 中,E ,F 分别为BC ,CD 边上的点,AF 与DE交于点M ,N 为AE 的中点,连接MN ,若,CE=DF ,CF=3DF ,则MN 的长度为________.18. 一个各数位上的数字不完全相同且均不为0的四位正整数,若满足千位数字与个位数字相等,百位数字与十位数字相等,称这样的四位数为“对称数”,则最小的“对称数”是___________;将“对称数”M的千位数字与百位数字对调,个位数字与十位数字对调得到一个新数记为,记,若“对称数”A ,满足能被7整除,则A 的最大值为______________.【答案】①. 1221 ②. 9229【解析】【详解】解:“对称数”,则,∴a 4AB =M '()99M M P M '-=()P A 100010010A abba a b b a ==+++100010010A baab b a a b '==+++()()10001001010001001099a b b a b a a b P A +++-+++=17题图∵能被7整除,A 最小,各数位上的数字不完全相同且均不为0,∴是7的倍数且,,∵的最大值为7,∴当时,A 的最大值为9229.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19. (1)解方程: 2x 2−4x−6=0;(2)计算:.(1)解:(x −3)(2x +2)=0x-3=0, 2x+2=0解得x 1=3, x 2=−1.【小问2详解】解:=.20. 在学习了角平分线的性质后,小红进行了拓展性探究.她发现在直角梯形中,如果两内角(非直角内角)的角平分线相交于腰上同一点,那么两底边的长度之和等于这两内角夹边的长度.她的解决思路是:将问题转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决,请根据她的思路完成以下作图与填空:(1)用直尺和圆规,过点E 作AD 的垂线,垂足为点(只保留作图痕迹).(2)已知:在四边形ABCD 中,,∠B =90°,AE 平分,DE 平分.求证:AB+CD=AD .证明:∵AE 平分,∴① ,∵,89189199a b-=()9a b =-()P A a b -09a <<09b <<a b -9,2a b ==22362369m m m m m -⎛⎫-÷ ⎪--+⎝⎭22362369m m m m m -⎛⎫-÷ ⎪--+⎝⎭2226693336m m m m m m m --+⎛⎫-⨯ ⎪---⎝⎭()()()236366m m m m m --=´--+36m m -=+F AB CD ∥BAD ∠ADC ∠BAD ∠EF AD ⊥∴,∴∠B =90°,∴,在△ABE 和中,②____________∴,∴③ ,同理可得:,∴.小红再进一步研究发现,只要梯形满足夹同一条腰的两个内角的角平分线相交于另一条腰上同一点,均有此结论.请你依照题意完成下面命题:如果一个梯形满足夹同一条腰的两个内角的角平分线相交于另一条腰上同一点,那么④.90AFE ∠=︒B AFE ∠=∠AFE △B AFE∠=∠BAE FAE∠=∠()AAS ABE AFE V V ≌CD DF =AB CD AF DF AD +=+=21. 重庆被誉为“最食烟火的人间8D 魔幻城市”.为更全面的了解“十一”期间游客对重庆热门景点的游玩满意度,工作人员从多维度设计了满分为100分的问卷,在洪崖洞和磁器口随机采访游客并记录结果.假期结束,工作人员从洪崖洞和磁器口的采访结果中各随机抽取10个数据,并进行整理描述和分析(结果用x 表示,共分为四个等级:不满意,比较满意,满意,很满意),下面给出了部分信息:10名洪崖洞游客的评分结果:76,84,85,87,88,88,88,89,96,9910名磁器口游客中“满意”等级包含的所有数据为:86,88,88,89,89抽取的洪崖洞和磁器口游客的游玩满意度统计表 景点满意度平均数中位数众数洪崖洞8888b 磁器口88a 89根据以上信息,解答下列问题:(1)填空: , , ;(2)根据以上数据,你认为“十一”当天游客对洪崖洞和磁器口这两个景点的游玩满意度哪一个更高?请说明理由(写出一条理由即可);(3)若“十一”当天洪崖洞和磁器口的游客分别为3万人和5万人,请你估计“五一”当天有多少万人对这两个景点的满意度为“很满意”.【答案】(1)88.5,88,30;(2)磁器口,理由:磁器口的评分中位数较大(不唯一) (3)2.1 万人.【解析】【小问1详解】解:10名洪崖洞游客的评分结果:76,84,85,87,88,88,88,89,96,99,出现次数最多的是88,出现了三次,∴众数,10名磁器口游客中“不满意”和“比较满意”等级均占,∴(人)即10名磁器口游客中“不满意”和“比较满意”等级的人数均为1人,则磁器口游客中“很满意”等级的人数为(人),将10名磁器口游客的评分按照从小到大的顺序排列,则中位数为第5和第6位的平均数,第5和第6位评分分别是88,89,070x ≤<7080x ≤<8090x ≤<90100x≤≤a =b =m =88b =10%1010%1⨯=105113---=∴a =88.5,,即,故答案为:88.5,88,30;【小问2详解】磁器口,理由:磁器口的评分中位数89大于洪崖洞的评分中位数88(不唯一);【小问3详解】解:洪崖洞游客中“很满意”等级的人数所占的百分比为:,磁器口游客中“很满意”等级的人数所占的百分比为:,(万人),(万人)(万人)答:“五一”当天有2.1万人对这两个景点的满意度为“很满意”.22. 如图,四边形中,,,,,CD =2.动点从点出发,以每秒1个单位的速度沿的路径运动,到点C 停止.设点的运动时间为秒,的面积为.(1)请直接写出y 关于x 的函数关系式并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出面积小于8时x 的取值范围.(保留1位小数,误差不超过0.2)【解析】【分析】本题是四边形综合题,考查了一次函数在动点面积问题中的应用,一次函数的性质,能画出图象,根据图象写出性质,解题的关键是分类讨论.(1)分类讨论:①当在边上时,②当在边上时,由三角形的面积分别求解即可;3%30%10m ==30m =220%10=330%10=320%0.6⨯=530% 1.5⨯=0.6 1.5 2.1+=ABCD AB BC ⊥DC BC ⊥4AB =6BC =P A A B C D→→→P x APD △y APD △P AB P BC(2)画出图象,根据图象写出性质即可求解;(3)根据图象即可求解;【小问1详解】解:过点作于点,,四边形为矩形,,①当点在上时,即,则,,②当点在上时,即,则,,,综上, ;【小问2详解】图象如图:该函数的一条性质:当0<x <4时,随的增大而增大;当4<x <10时,随的增大而减小;【小问3详解】解:面积小于8,即y <8,根据图象,可得0≤x <2.7或8<x ≤10.23. 大华水果店各花费5400元购进一批樱桃和枇杷,已知每千克樱桃的进价是每千克枇杷进价的倍,且购进的枇杷比樱桃多100千克.(1)求每千克樱桃的进价是多少元?(2)枇杷的售价为30元/千克,在销售过程中,因水果不易储存,水果店及时调整了销售策略:枇杷在售出后进行打折促销.问剩下的枇杷最低打几折销售,才能使得这批枇杷全部售出后获利不低于3000元?D DE AB ⊥E 90B C DEB ∠=∠=∠=︒ ∴BCDE 6DE BC ∴==P AB 04t ≤≤AP x =116322APD y S AP DE x x ∴==⋅=⨯=△P BC 410t <≤4BP x =-4610PC x x =+-=-APD ABP PCDABCD y S S S S ∴==--四边形△△△()111222CD AB BC AB BP CD PC =+⋅-⋅-⋅()()()11124644210222x x =⨯+⨯-⨯--⨯-16x =-y x y x APD △ 1.523⎩⎨⎧≤-≤≤=)10<4(16)40(3x x x x y【小问1详解】解:设每千克枇杷的进价为x 元,则每千克樱桃的进价是元,由题意得,,解得,检验,当时,,∴是原方程的解且符合题意,∴,答:每千克樱桃的进价是元;【小问2详解】解:由(1)知,这批枇杷的数量为千克,设剩下的枇杷打m 折销售,由题意得,3000,解得,答:剩下的枇杷最多打八折销售,才能使得这批枇杷全部售出获利不低于3000元.24. 五边形是围绕河修建的步道,小依和爸爸从A 前往D 处,有两条线路,如图:①;②.经勘测,点B 在点A 的正南方向,米,点C 在点B 的正东方向,米,点D 在点C 的北偏东,点E 在点A 的东北方向,点E 在点C 的正北方向,点D 在点E 的正东方向.)(1)求的长度(结果精确到1米);(2)小依选择线路①,爸爸选择线路②,小依步行速度是80米/分钟,爸爸步行速度是100米/分钟,小依和爸爸同时从A 处出发且始终保持匀速前进,请计算说明小依和爸爸谁先到达D 处?【答案】(1)424米(2)爸爸先到达D 处【解析】【小问1详解】解:如图,过点A 作于点H ;1.5x 540054001001.5x x-=18x =18x = 1.50x x ⋅≠18x =1.527x =27540030018=()5222001301830030183001585083103m ⎛⎫⎛⎫⎛⎫⨯⨯-+-⨯⨯+⨯-⨯⨯-≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭8m ≥ABCDE CE A E D --A B C D ---150AB =300BC =60︒ 1.732≈≈AE AH CE ⊥则;由题意知,,即,故四边形是矩形,米,;,即是等腰直角三角形,米,由勾股定理得:(米); 【小问2详解】解:由(1)知,四边形是矩形,米,米;点E 在点C 的正北方向,点D 在点E 的正东方向,;在中,,∠D =30°∴DC =2CE =900米,米;∵①(米),②(米),∴小依到达终点的时间为:(分),小依爸爸到达终点的时间为:1350÷100=13.5(分);综上,小依爸爸先到达D 处.25. 如图, 抛物线经过A , B 两点,与x 轴的另外一个交点为C ,点P 是直线上方抛物线上的一动点,过点P 作y 轴的平行线交直线于点 D ,点E 是y 轴上点B 下方一点,若DE=DB ,点A (4,0),点B (0,3).(1)求抛物线的表达式;(2)求的最大值及此时点P 的坐标;(3)在点P 运动过程中,连接,当的中点恰好落在y 轴上时,连接,在抛物线34503==CE DE BE PD 21+90AHC AHE ∠=∠=︒90B BCH ∠=∠=︒90B BCH AHC ∠=∠=∠=︒ABCH 300AH BC ∴==90BAH =︒∠45EAH AEH ∴∠=∠=︒AHE V 300EH AH ∴==424AE ==≈ABCH 150CH AB ∴==450CE CH HE ∴=+= 90DEC ∴∠=︒Rt ECD △60ECD ∠=︒424450 1.7321203AE DE ∴+=+⨯≈1503009001350AB BC DC ++=++=12038015.0÷≈234y x bx c =-++AB AB PC PCAP上是否存在点Q ,使得,如果存在,请写出所有符合条件的点Q 的坐标;如果不存在,请说明理由.【答案】(1) (2)的最大值为, (3)存在,所有符合条件的点Q 的坐标为或【解析】小问1详解】解:将,代入得,,解得,,∴抛物线的表达式为; ..............2′【小问2详解】解:设直线AB 的解析式为y=kx+n ,将,代入,得 解得 ∴直线AB 的解析式为 ..............3′如图1,作轴于,∵DE=DB∴ ..............4′设,则,,∴ ∴,..............6′【234y x bx c =-++PAB QPA ∠=∠239344y x x =-++7516563216P ⎛⎫ ⎪⎝⎭,()33,291287464⎛⎫- ⎪⎝⎭,334y x =-+()40A ,()03B ,234y x bx c =-++12403b c c -++=⎧⎨=⎩943b c ⎧=⎪⎨⎪=⎩239344y x x =-++()40A ,()03B ,DH y ⊥H 239344P m m m ⎛⎫-++ ⎪⎝⎭,334D m m ⎛⎫-+ ⎪⎝⎭,3034H m ⎛⎫-+ ⎪⎝⎭,⎩⎨⎧==+304n n k 343+-=x y BE PD 21+⎪⎩⎪⎨⎧=-=343n k m m m m m PD 343)343()34943(22+-=+--++-=m m BH 43)343(3=+--=BE BH 21=∵,∴当时,的值最大,最大值为,; ..............8′【小问3详解】解:令,解得,或,∴,∵的中点恰好落在y 轴上,∴,解得,,∴;如图2,作,交抛物线于,∴,设的解析式为,将代入得,,解得,,∴的解析式为,联立,解得,或, ∴;如图2,在上取点,连接,交抛物线于,使,∴,∴,设,则,,∴,解得,,∴,同理,直线的解析式为,联立,解得,或,304-<52m =7516563216P ⎛⎫ ⎪⎝⎭,2393044x x -++=1x =-4x =()10C -,PC 102m -+=1m =912P ⎛⎫ ⎪⎝⎭,PM AB ∥1Q 1PAB Q PA ∠=∠PM 34y x d =-+912P ⎛⎫ ⎪⎝⎭,34y x d =-+3942d -+=214d =PM 32144y x =-+23214439344y x y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩192x y =⎧⎪⎨=⎪⎩33x y =⎧⎨=⎩()133Q ,AB N PN 2Q NPA PAB ∠=∠2PAB Q PA ∠=∠PN AN =334N n n ⎛⎫-+ ⎪⎝⎭,()222391342PN n n ⎛⎫=-+-+- ⎪⎝⎭()2223434AN n n ⎛⎫=-+-+ ⎪⎝⎭()()22223931343424n n n n ⎛⎫⎛⎫-+-+-=-+-+ ⎪ ⎪⎝⎭⎝⎭2917n =291171768N ⎛⎫ ⎪⎝⎭,PN 631351616y x =-+263135161639344y x y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩192x y =⎧⎪⎨=⎪⎩294128764x y ⎧=⎪⎪⎨⎪=-⎪⎩BE PD 21+∴;综上所述,存在,所有符合条件的点Q 的坐标为或...............10′26. △ABC 为等腰直角三角形,,, 线段CA 绕点旋转至线段CF ,点对应点为,连接.(1)如图1,若CF 在△ABC 外部,且,交 于点,若.求 AB 的长度;(2)如图2,若CF 在△ABC 内部,延长 交 于点,延长CF 交 AB 于点,,将线段 绕点 逆时针旋转60°得到线段,为CE 中点,连接并延长交 于点,求证:;(3)如图3,若CF 在△ABC 内部,将线段绕点逆时针旋转60°到线段,连接 、.为直 线 AB 上一点,将△BCK 沿 翻 折,点对应点为,,直接写出的最小值.【答案】(1)的长度为;(2)见解析;(3)的最小值为【解析】【小问1详解】解:如图,过点作于点∵为等腰直角三角形,,,∴∴是等腰直角三角形,∵∴又∵线段CA 绕点旋转至线段CF ,,则是等边三角形,∴∴∴∴..............3′的22=BN 322+22=BN 323==MN AM 322+=+=AM BM AB 2291287464Q ⎛⎫- ⎪⎝⎭()33,291287464⎛⎫- ⎪⎝⎭90BAC ∠=︒AB AC =C A F AF 60ACF ∠=︒AF BC N AF BC D E 60ADC ∠=︒AF A AG H HG AC M 2FH HG HM +=AF A AG FG CG K BC K K '4AB =GK 'nAB GK 'n6-N NM AB ⊥MABC V 90BAC ∠=︒AB AC =45B ∠=︒BNM V MN BM ==C 60ACF ∠=︒AFC V 60FAC ∠=︒9030MAN FAC ∠=︒-∠=︒【小问2详解】证明:如图,连接∵,,∴∠ACB =∵,∴∠FAC =180°-∠ADC -∠ACB =75°,∵线段CA 绕点旋转至线段CF ,∴∴∴,∠AEC =60°在中,,为CE 中点,∴=EH ∴是等边三角形,∴, AE=AH∵∴又∵,AF=AG∴∴,∵∴∠AMH =90°∴∵AH=EH=FH+EF=FH+HG∴; ..............8′【小问3详解】解:∵为等腰直角三角形,,,∴∴是等腰直角三角形,∵为直 线 AB 上一点,将沿 翻 折 ,点对应点为,∴在上,,∴BK /∥AC∵∴是等边三角形,∵∴∴以为斜边作等边三角形,如图所示,∵∴在上运动,∴当三点共线,且时,最小,设交于点,此时在中,,,∴∴..............10′AH90BAC ∠=︒AB AC=45B ∠=︒60ADC ∠=︒C CA CF=75AFC CAF ∠=∠=︒30ACE ∠=︒Rt AEC △90BAC ∠=︒H 12AH EC =AEH △60EAH ∠=︒60FAG ∠=︒EAF HAG∠=∠AE AH =AEF AHGV V ≌EF HG =60AHG AEF ∠=∠=︒30HAM HCA ∠=∠=︒2AH HM EH EF FH===+2FH HG HM +=ABC V 90BAC ∠=︒AB AC =45B ∠=︒ABC V K BCK V BC K K 'K 'BK ¢45CBK ABC '∠=∠=︒60,FAG AF AG∠=︒=AFG V ,,AC CF AG FG CG CG===AGC FGCV V ≌()13601502AGC FGC AGF ∠=∠=︒-∠=︒AC ACO 1180601502AGC ∠=︒-⨯︒=︒G O e ,,O G K 'OK BK ''⊥GK 'OK 'AC Q OQ AC⊥Rt AGO △60OAQ ∠=︒2AQ =OQ =4GQ OG OQ =-=-4K G GQ '=-=【点睛】本题考查了勾股定理,等边三角形的性质与判定,旋转的性质,等腰直角三角形的性质与判定,勾股定理,全等三角形的性质与判定,折叠的性质,圆内接四边形的性质,圆周角定理,熟练掌握以上知识是解题的关键.。
九年级上学期期中考试人教版数学试题及答案
上学期期中测试卷 九年级数学(满分100分,考试用时120分钟)一、选择题(每题3分,共21分) 1、下列运算正确的是( )A .532=+B .2323=+C .()3-3-2=D . 228=÷ 2、方程()1-x 1-x 2=的根是( )A.0x =或1x =B. 1x =C. 2x =D. 1x =或2x = 3、用配方法解方程2250x x --=时,原方程应变形为( ) A 、2(1)6x += B 、2(1)6x -= C 、2(2)9x += D 、2(2)9x -= 4`、下列图形中,既是轴对称图形,又是中心对称图形的个数是( )A.1个 B.2个 C.3个 D.4个5、二次根式中,最简二次根式有( )个A 、1B 、2C 、3D 、46、若,x y 为实数,且|2|0x +=,则2009x y ⎛⎫ ⎪⎝⎭的值为( )A 、1B 、2009C 、1-D 、2009-7.方程29180x x -+=的两根是等腰三角形的底和腰,则这个等腰三角形的周长是( )A .12B .12或15C .15D .不能确定 二、填空题(每题3分,共24分) 8、当x 时,x2-11有意义。
9、如图,将Rt △ABC(其中∠B =300,∠C =900) 绕A 点按顺时针方向旋转到△AB 1 C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角最小等于 。
10、关于x 的一元二次方程()01-m x x 1-m 22=++有一根为0,则m = 。
11a = 。
12、若点p (m ,2)与点Q(3,n )关于x 轴对称,则p 点关于原点对称的点M 的坐标为 。
13、若一元二次方程的两个实数根分别为3、b,则a +b = 。
14、若23x ≤≤3x - 可化简为 。
15、某中学摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x 名学生,则根据题意列出的方程是 。
云南省楚雄彝族自治州双柏县九年级上学期数学期中试题及答案
云南省楚雄彝族自治州双柏县九年级上学期数学期中试题及答案考试时间:120分钟 满分:100分一、选择题(本大题共12个小题,每小题只有一个正确选项,每小题3分,共36分)1. 一元二次方程220x x -=根是( )A. 0x = B. 2x =C. 0x =或2x = D. 2x =±【答案】C 【解析】【分析】根据因式分解法解方程即可.【详解】解:220x x -=,∴(2)0x x -=,∴0x =或2x =.故选C .【点睛】本题考查解一元二次方程.熟练掌握解一元二次方程的方法是解题的关键.2. 下列关于菱形的说法中正确的是( )A. 对角线互相垂直的四边形是菱形 B. 菱形的对角线互相垂直且平分C. 菱形的对角线相等且互相平分 D. 对角线互相平分的四边形是菱形【答案】B 【解析】【分析】根据菱形的性质及判定,逐项进行判断即可.【详解】解:A.对角线互相垂直平分的四边形是菱形,故A 错误;B 、C.菱形的对角线互相垂直且平分,故B 正确,C 错误;D.对角线互相平分的四边形是平行四边形,故D 错误.故选:B .【点睛】本题主要考查了菱形的判定和性质,解题的关键是熟记菱形的对角线垂直且互相平分,对角线互相垂直平分的四边形是菱形.3. 正方形具有而矩形不一定有的性质是( )A. 对角线互相垂直 B. 对角线相等C. 对角互补 D. 四个角相等【答案】A 【解析】【分析】根据正方形的性质,矩形的性质逐一进行判断即可.的【详解】解:A中对角线互相垂直,是正方形具有而矩形不具有,故符合题意;B中对角线相等,正方形具有而矩形也具有,故不符合题意;C中对角互补,正方形具有而矩形也具有,故不符合题意;D中四个角相等,正方形具有而矩形也具有,故不符合题意;故选:A.【点睛】本题考查了正方形的性质,矩形的性质.解决本题的关键是对正方形,矩形性质的灵活运用.4. 用配方法解一元二次方程x2﹣6x=﹣5的过程中,配方正确的是()A. (x+3)2=1B. (x﹣3)2=1C. (x+3)2=4D.(x﹣3)2=4【答案】D【解析】【分析】先把方程两边都加上9,然后把方程左边写成完全平方的形式即可.【详解】x2﹣6x+9=4,(x﹣3)2=4.故选D.5.有五张卡片的正面分别写有“喜”“迎”“二”“十”“大”,五张卡片洗匀后将其反面朝上放在桌面上,小明从中任意抽取两张卡片,恰好是“二十”的概率是()A.110B.120C.25D.15【答案】A【解析】【分析】根据题意列出表格表示出所有等可能的结果,再找出符合题意的结果,最后由概率公式计算即可.【详解】根据题意可列表格如下,喜迎二十大喜喜,迎喜,二喜,十喜,大迎迎,喜迎,二迎,十迎,大二二,喜二,迎二,十二,大十十,喜十,迎十,二十,大大大,喜大,迎大,二大,十根据表格可知共有20种等可能的结果,其中恰好抽到“二”和“十”的结果有2种,∴从中任意抽取两张卡片,恰好是“二十”的概率是212010=.故选:A .【点睛】本题考查列表法或画树状图法求概率.正确的列出表格或画出树状图是解题关键.6.如图所示,已知矩形ABCD 的边AD 长为8cm ,边AB 长为6cm ,从中截去一个矩形(图中阴影部分),如果所截矩形与原矩形相似,那么所截矩形的面积是( )A. 21cm 2B. 24cm 2C. 27cm 2D. 30cm 2【答案】C 【解析】【分析】矩形AEFB 与矩形ABCD 相似,得到AD ABAB AE =,代入数值求得92AE =,即可求得所截矩形的面积.【详解】解:∵矩形AEFB 与矩形ABCD 相似,∴AD ABAB AE=,∴866AE=,∴92AE =,∴矩形AEFB 的面积96272⨯=.故选:C .【点睛】此题主要考查了相似多边形,熟练掌握相似多边形的性质是解题的关键.7. 已知线段2a =,3b =,4c =,如果线段a ,b ,c ,d 成比例,则线段d 的长为()A. 2 B. 3C. 4D. 6【答案】D 【解析】【分析】根据a ,b ,c ,d 成比例列比例式,代入数值计算即可.【详解】解:∵a ,b ,c ,d 成比例,∴a cb d=,∵2a =,3b =,4c =,∴243d=,∴6d =.故选:D .【点睛】此题考查了成比例线段,熟练掌握比例的基本性质是解题的关键.8. 已知关于x 的方程x 2+3x+a=0有一个根为﹣2,则另一个根为( )A. 5 B. ﹣1C. 2D. ﹣5【答案】B 【解析】【分析】根据关于x 的方程x 2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x 的方程x 2+3x+a=0有一个根为-2,设另一个根为m ,∴-2+m=−31,解得,m=-1,故选B .9. 等边三角形的一边与这边上的高的比是( )21C. 2D. 1【答案】C 【解析】10. 如图,已知点D 是ABC 的边AC 上的一点,根据下列条件,可以得到ABC BDC △△的是( )A. AB CD BD BC =B. AC CB CA CD =C. 2BC AC DC =D. 2BD CD DA =【答案】C 【解析】【分析】根据相似三角形的判定即可得到结论.【详解】解:在ABC 和BDC 中,∵ACB BCD ∠=∠,∴只要AC BCBC DC=,即2BC AC DC = ,则ABC BDC △△,故选:C .【点睛】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.11. 某电视机厂计划两年后产量为现在的2倍,如果每年增长率为x ,则可得方程( )A. ()212x += B. 12x +=C. 122x += D. ()213x +=【答案】A 【解析】【分析】设现在的产量为1,那么两年后的产量为2,根据等量关系式:今年生产量×()21x +=两年后的生产量,列出方程即可.【详解】解:设现在的产量为1,那么两年后的产量为2,根据题意,可得方程为()2112x ⨯+=,即()212x +=,故A 正确.故选:A .【点睛】本题主要考查了一元二次方程的应用,解题的关键是找出题目中的等量关系式.12.如图,AB 是斜靠在墙上的梯子,梯脚距墙2米,梯子上的点D 距墙1.8米,BD 长0.6米,则梯子的长为( )A. 5.6米B. 6米C. 6.1米D. 6.2米【答案】B 【解析】【详解】分析:由题意易得DE∥BC,那么可得△ADE∽△ABC,利用对应边成比例可得AB 的长.详解:如图:∵DE⊥AC,BC⊥AC,∴DE∥BC,∴△ADE∽△ABC,∴AB BCAD DE=,且DE=1.8,BC=2,AB-AD=0.6.∴AB=6.故选B.点睛:本题考查了相似三角形的应用:三边对应成比例.二、填空题(本大题共6个小题,每小题3分,共18分)13. 一个菱形的两条对角线长分别为7cm 和8cm ,则这个菱形面积为__________.【答案】282cm 【解析】【分析】根据菱形的面积计算公式计算即可.【详解】解:菱形的面积=78228⨯÷=(2cm ).故答案为:228cm .【点睛】本题主要考查了菱形的面积计算,准确记住公式并正确计算是解题的关键.菱形的面积等于两对角线乘积的一半.14. 已知1x ,2x 是一元二次方程2210x x --=的两根,则1211x x +=________.【答案】2-【解析】【分析】韦达定理得出两根关系,再将所给式子变形为与两根有关的式子即可解答.【详解】x 1+x 2=2,x 1x 2=-1,所以121212x +x 112+===-2x x x x -1,所以答案为-2.【点睛】本题考查了根与系数的关系,将根与系数的关系与代数式相结合解题是解决本题的关键.15. 若关于x 的方程x 2-2x +m =0有实数根,则m 的取值范围为________;【答案】m≤1##1m ≥【解析】【分析】根据判别式的意义得到Δ=(﹣2)2﹣4×1×m≥0,然后解不等式即可.【详解】解:根据题意得Δ=(﹣2)2﹣4×1×m≥0,解得:m≤1.故答案为:m≤1.【点睛】本题主要考查了一元二次方程ax 2+bx+c =0(a≠0)的根的判别式Δ=b 2﹣4ac,当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.16. 已知23x y =,则2x yy -=___________.【答案】13【解析】【分析】由比例的性质可设2x k =,则3y k =,再代入2x yy-中,求值即可.【详解】解:由题意可设2x k =,则3y k =,∴423133k k k x y y -=-=.故答案为:13.【点睛】本题考查根据比例式求代数式的值,通过设比例参数是解决本类问题的常用方法.17.一副扑克牌去掉大小王后,只剩下52张牌,从中任取一张,记下花色,随着试验次数的增加,出现红桃花色的频率将稳定在___________左右.【答案】14##025【解析】【分析】根据多次试验的频率与概率的关系解答即可.【详解】解:∵一副扑克牌去掉大小王后,剩下52张牌中,四种花色都是13张,∴从中任取一张,记下花色,随着试验次数的增加,出现红桃花色的频率将稳定在14左右.故答案为:14.【点睛】本题主要考查了频率和概率的关系,即大量重复实验后频率稳定在概率附近.18. 如图所示,AB BD ⊥于点B ,CD BD ⊥于点D ,916AB CD BD ===,,,点E 在BD 上移动,当以E C D ,,为顶点的三角形与ABE 相似时,求DE 的长为__________.【答案】3或35【解析】【分析】设DE x =,则6BE BD DE x =-=-.由题意可得出90B D ∠=∠=︒,即可分类讨论:当CAB DE BE D =时,ABE EDC ∽;当AB BECD DE =时,ABE CDE ∽,即可分别列出关于x 的等式,解出x ,即得出答案.【详解】解:设DE x =,则6BE BD DE x =-=-.∵AB BD ⊥于点B ,CD BD ⊥于点D ,∴90B D ∠=∠=︒.分类讨论:当C AB DE BED =时,ABE EDC ∽,即9x =61x-,解得:123x x ==;.当AB BECD DE =时,ABE CDE ∽,即91=6x x -,解得35x =.综上可知DE 的长为3或35.故答案为:3或35.【点睛】本题考查三角形相似的判定和性质.利用分类讨论的思想是解题关键.三、解答题(本大题共6个小题,满分46分)19. 用适当的方法解下列方程:(1)24+2=0x x -(2)3(1)22x x x -=-【答案】(1)12x =+,22x =+ (2)11x =,223x =-【解析】【分析】对于(1),将原方程配方,再开方得出答案即可;对于(2),等式右边提出2,再移项,然后提出公因式(1-)x ,得因式乘积的形式,即可求解.【小问1详解】整理,得2442x x -+=, 即2(2)2x -=,2x -=,∴12x =,22x =;【小问2详解】整理,得3(1)2(1)0x x x ---=,即(1)(32)0x x -+= ,则10x -=或320x +=,∴11x =,223=-x .【点睛】本题主要考查了解一元二次方程,灵活的选择合适的方法是解题的关键.20.深圳市某商场销售某女款上衣,刚上市时每件可盈利100元,销售一段时间后开始滞销,经过连续两次降价后,每件盈利为81元,平均每天可售出20件.(1)求平均每次降价盈利的百分率;(2)为扩大销售量,尽快减少库存,在“双十一”期间该商场决定再次采取适当的降价措施,经调查发现,一件女款上衣每降价1元,每天可多售出2件.若商场每天要盈利2940元,每件应降价多少元?【答案】(1)10%;(2)60元【解析】【分析】(1)设每次下降的百分率为a ,根据刚上市每件利润100元和连续两次降价后每件利润81元,可列方程为:100(1﹣a)2=81,即可求解;(2)设每件应降价x 元,则降价后的利润为()81x -,因降价后销量为()202x +,根据总利润=利润⨯销量,列方程进而求解.【详解】(1)设每次下降的百分率为a ,根据题意,得:100(1﹣a)2=81,解得:a =1.9(舍)或a =0.1=10%,答:每次下降的百分率为10%;(2)设每件应降价x 元,根据题意,得(81﹣x)(20+2x )=2940,解得:x 1=60,x 2=11,∵尽快减少库存,∴x=60,答:若商场每天要盈利2940元,每件应降价60元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题关键.21.小李和小王两位同学做游戏,在一个不透明的口袋中放入1个红球、2个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是多少?(2)两人约定:从袋中一次摸出两个球,若摸出的两个球是-红一黑,则小李获胜:若摸出的两个球都是白色,则小王获胜,请用列举法(画树状图或列表)分析游戏规则是否公平.【答案】(1)14;(2)见解析【解析】【分析】(1)根据4个小球中红球个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到-红一黑,以及两个球都是白色的情况数,求出它们的概率,即可做出判断.【详解】解:(1)4个小球中有1个红球,则任意摸出1个球,恰好摸到红球的概率是:11 1214= ++(2)列表如下:红白白黑红---(白,红)(白,红)(黑,红)白(红,白)---(白,白)(黑,白)白(红,白)(白,白)---(黑,白)黑(红,黑)(白,黑)(白,黑)---所有等可能的情况有12种,其中两次都摸到一红一黑有2种可能,摸出的两个球都是白色的有有2种可能,则P(小李获胜)=21126=,P(小王获胜)=21126=,故游戏公平.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22. 如图,在▱ABCD中,对角线AC,BD相交于点O,且OA=OB.(1)求证:四边形ABCD是矩形;(2)若AD=4,∠AOD=60°,求AB的长.【答案】(1)证明见解析;(2)【解析】的【分析】(1)由▱ABCD 得到OA=OC ,OB=OD ,由OA=OB ,得到;OA=OB=OC=OD ,对角线平分且相等的四边形是矩形,即可推出结论;(2)根据矩形的性质借用勾股定理即可求得AB 的长度.【详解】(1)证明:在平行四边形ABCD 中,OA=OC=12AC ,OB=OD=12BD ,又∵OA=OB,∴AC=BD,∴平行四边形ABCD 是矩形. (2)∵四边形ABCD 是矩形,∴∠BAD=90°,OA=OD .又∵∠AOD=60°,∴ AOD 是等边三角形,∴OD=AD=4,∴BD=2OD=8,在Rt ABD 中,==.23.如图,在菱形ABCD 中,对角线AC 和BD 交于点O ,E 为AB 上一动点,过点E 作EF∥BD交AD 于点F ,连接BF 、DE .(1)若∠ABD=40°,求∠CAD的度数;(2)求证:BF =DE .【答案】(1)50︒;(2)证明见解析.【解析】【分析】(1)由菱形的性质可知,AC BD ⊥,继而得到BAO CAD ∠=∠,故可求出90CAD ABD ∠=︒-∠.(2)根据菱形的性质可得到BE=DF ,再证明BEF DFE ≅ ,即可得出结论.【详解】(1)在菱形ABCD 中,AC BD⊥40ABD ∠=︒ 50BAO ∴∠=︒BAO CAD ∠=∠ 50CAD ∴∠=︒(2)证明:在菱形ABCD 中,//EF BDBE FD BEF EBD EFD FDB∴=∠+∠=∠+∠,EBD FDB ∠=∠ BEF DFE∴∠=∠在BEF 和DFE 中,有: EF EF BEF DFEBE FD ==⎧⎪∠=∠⎨⎪=⎩BEF DFE ∴≅ BF DE ∴=.【点睛】本题主要考察了菱形性质、全等三角形的判定与性质,熟练掌握菱形性质及证明三角形全等是解题的关键.24. 如图,已知矩形DEFG 的边DE 在ABC 的边BC 上,顶点G ,F 分别在边AB ,AC 上.ABC 的高AH 交GF 于点I .(1)求证:BD EH DH CE ⋅=⋅;(2)设DE n EF =⋅(n 为正实数),求证:11n BC AH EF+=.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)证明,BDG BHA CEF CHA ∆∆∆∆∽∽,根据相似三角形的性质列出比例关系,整理即可证得结论;(2)要证明11n BC AH EF +=只需证明1nEF EF BC AH +=即1DE EF BC AH+=,证明△AGF∽△ABC,根据相似三角形的性质以及比例的性质即可证明.【详解】解:(1)证明:∵四边形DEFG 为矩形,ABC 的高AH 交GF 于点I ,的∴GD=EF,90GDH GDB FEC FEB AHB AHC ∠=∠=∠=∠=∠=∠=︒,又∵∠B=∠B,∠C=∠C,∴,BDG BHA CEF CHA ∆∆∆∆∽∽,∴GD BD BD AH BH BD DH ==+EF CE CEAH CH CE EH ==+,∴=BD CEBD DH CE EH++,∴BD EH DH CE ⋅=⋅;(2)证明:∵四边形DEFG 为矩形,∴,//GF DE GF BC =,90FEB EFG ∠=∠=︒,∴,AGF B AFG C ∠=∠∠=∠,∴△AGF∽△ABC,∵AH为△ABC的高,∴∠AIF=∠AHC=90°,GF AI BC AH =,即DE AIBC AH=,∵90FEB EF C G AH ∠=∠=∠=︒,∴四边形IHEF 为矩形,∴EF=IH,∵DE n EF =⋅,∴1nEF EF DE IH AI IH AI IH AHBC AH BC AH AH AH AH AH++=+=+===,∴11n BC AH EF+=.【点睛】本题考查相似三角形的性质与判定,矩形的性质和判断.本题中相似三角形有很多,能结合结论判断是需要证明哪组三角形相似是解题关键.,。
上学期九年级数学期中试题
上学期九年级数学期中试题在初三的时候我们要做准备好我们的数学去考试哦,今天小编就给大家参考一下九年级数学,希望大家来收藏阅读哦九年级数学上册期中试题参考一、选择题(共10小题,每小题3分,本大题满分30分. 每一道小题有A、B、C、D的四个选项,其中有且只有一个选项最符合题目要求,把最符合题目要求的选项的代号直接填涂在答题卡内相应题号下的方框中,不涂、涂错或一个方框内涂写的代号超过一个,一律得0分.)1.二次函数y=x2-2x+2的顶点坐标是A.(1,1)B.(2,2)C.(1,2)D.(1,3)2.平面直角坐标系内与点P(-2,3)关于原点对称的点的坐标是A.(3,-2)B.(2,3)C.(2,-3)D.(-3,-3)3.已知抛物线C的解析式为y=ax2+bx+c,则下列说法中错误的是A.a确定抛物线的开口方向与大小B.若将抛物线C沿y轴平移,则a,b的值不变C.若将抛物线C沿x轴平移,则a的值不变D.若将抛物线C沿直线l:y=x+2平移,则a、b、c的值全变4.如图,B,C是⊙O上两点,且∠α=96°,A是⊙O上一个动点(不与B,C重合),则∠A为A.48°B.132°C.48°或132°D.96°5.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为A.2.3B.2.4C.2.5D.2.66.如图,将半径为6cm的圆折叠后,圆弧恰好经过圆心,则折痕的长为A. B. C. 2 D. 34题图 5题图 6题图7.若二次函数y=mx2-4x+m有最大值-3,则m等于A.m=4B.m=-4C.m=1D.m=-18.在平面直角坐标系中,将点P(-3,2)绕点A(0,1)顺时针旋转90°,所得到的对应点P′的坐标为A.(-1,-2)B.(3,-2)C.(1,4)D.(1,3)9.如图,在△ABC中,∠ACB=90°,AC=BC= ,将△ACB绕点A逆时针旋转60°得到△AC′B′,则CB′的长为A. B. C.3 D.9题图 10题图10.如图,已知二次函数y=ax2+bx+c的图象经过点(0,3),(x1,0),其中,2A.②③④B.①②③C.②④D.②③二、填空题(共6小题,每小题3分,共18分)11.已知二次函数y=ax2+4ax+c的图象与x轴的一个交点为(-1,0),则它与x轴的另一个交点的坐标是 .12.抛物线的部分图象如图所示,则当y>0时,x的取值范围是_________________.13.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B'C,连接AA',若∠1= 20°,则∠B的度数为 .14.如图,C是⊙O的弦BA延长线上一点,已知∠COB=130°,∠C=20°,OB=2,则AB的长为________.第12题图第13题图第14题图第15题图第16题图15.如图,正方形ABCD的边长为4 cm,以正方形的一边BC为直径在正方形ABCD内作半圆,再过点A作半圆的切线,与半圆切于点F,与CD交于点E,则S梯形ABCE= cm2.16.如图,△ABC中,∠C=90°,AC=8,BC=6,E,F分别在边AC,BC,若以EF为直径作圆经过AB上某点D,则EF长的取值范围为 .三、解答题(共8小题,共72分)17.(5分)已知抛物线的顶点坐标是(-1,-4),与y轴的交点是(0,-3),求这个二次函数的解析式.18.(8分)如图所示,△ABC与点O在10×10的网格中的位置如图所示.(1) 画出△ABC绕点O逆时针旋转90°后的图形.(2) 若⊙M能盖住△ABC,则⊙M的半径最小值为________.19. (7分)河上有一座桥孔为抛物线形的拱桥(如图1),水面宽6m时,水面离桥孔顶部3m,因降暴雨水面上升1m.(1)建立如下的坐标系,求暴雨后水面的宽;(2)一艘装满物资的小船,露出水面部分高为0.5m、宽4m(横断面如图2所示),暴雨后这艘船能从这座拱桥下通过吗?(注:结果保留根号.)图1 图220.(7分)已知y关于x二次函数y=x2-(2k+1)x+(k2+5k+9)与x 轴有交点.(1)求k的取值范围;(2)若x1,x2是关于x的方程x2-(2k+1)x+(k2+5k+9)=0的两个实数根,且x12+x22=39,求k的值.21.(7分)如图,台风中心位于点A,并沿东北方向AC移动,已知台风移动的速度为50千米/时,受影响区域的半径为130千米,B市位于点A的北偏东75°方向上,距离A点240千米处.(1)说明本次台风会影响B市;(2)求这次台风影响B市的时间.22.(8分)某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价为x元(x为整数).(1)直接写出每天游客居住的房间数量y与x的函数解析式.(2)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?23.(8分)如图,⊙O是△ABC的外接圆,AB为直径,D是⊙O上一点,且,CE⊥DA交DA的延长线于点E.(1)求证:∠CAB=∠CAE;(2)求证:CE是⊙O的切线;(3)若AE=1,BD=4,求⊙O的半径长.24.(10分)如图1,已知△ABC中,∠ACB=90°,CA=CB,点D,E分别在CB,CA上,且CD=CE,连AD,BE,F为AD的中点,连CF.(1)求证:CF= BE,且CF⊥BE;(2)将△CDE绕点C顺时针旋转一个锐角(如图2),其它条件不变,此时(1)中的结论是否仍成立?并证明你的结论.图1 图225.(12分)如图1,抛物线y=ax2+bx+c 的图象与x轴交于A(-3,0)、B(1,0)两点,与y轴交于点C,且OC=OA.(1)求抛物线解析式;(2)过直线AC上方的抛物线上一点M作y轴的平行线,与直线AC 交于点N.已知M点的横坐标为m,试用含m的式子表示MN的长及△ACM的面积S,并求当MN的长最大时S的值;(3)如图2,D(0,-2),连接BD,将△OBD绕平面内的某点(记为P)逆时针旋转180°得到△O′B′D′,O、B、D的对应点分别为O′、B′、D′.若点B′、D′两点恰好落在抛物线上,求旋转中心点P的坐标.图1 图2答案:1-10 A C D C B A B C B D11、(-3,0);12、-117、y=(x+1)2-418、(1)略;(2) (以AC为直径)19、因为当水面宽AB=6m时,水面离桥孔顶部3m,所以点A的坐标是(3,-3).把x=3,y=-3代入y=ax2得-3=a×32,解得 a= .把y=-2代入y= x2,得, .解得, .所以,点C、D的坐标分别为( ,-2)、(- ,-2),CD=2 .答:水位上升1m时,水面宽约为2 m.(2)当x=2时,y= ,因为船上货物最高点距拱顶1.5米,且| |<1.5,所以这艘船能从桥下通过.20、解:(1)∵y关于x二次函数y=x2-(2k+1)x+(k2+5k+9)与x 轴有交点,∴△≥0,即[-(2k+1)]2-4×1×(k2+5k+9)≥0,解得k≤ ;(2)根据题意可知x1+x2=2k+1,x1x2=k2+5k+9,∵x12+x22=39,∴(x1+x2)2-2x1x2=39,∴(2k+1)2-2(k2+5k+9)=39,解得k=7或k=-4,∵k≤ ,∴k=-4.21、解:(1)作BD⊥AC于点D.在Rt△ABD中,由条件知,AB=240,∠BAC=75°﹣45°=30°,∴BD=240× =120<130,∴本次台风会影响B市.(2)如图,以点B为圆心,以130为半径作圆交AC于E,F,若台风中心移动到E时,台风开始影响B市,台风中心移动到F 时,台风影响结束.由(1)得BD=240,由条件得BE=BF=130,∴EF=2 =100,∴台风影响的时间t= =2(小时).故B市受台风影响的时间为2小时.22、解:(1)y=50- =-0.1x+62;(2)w=(x-20)(-0.1x+62)=-0.1x2+64x-1240=-0.1(x-320)2+9000,∴当x=320时,w取得最大值,最大值为9000,答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是9000元.23、证明:(1)∵ ,∴∠CDB=∠CBD,∵∠CAE=∠CBD,∠CAB=∠CDB,∴∠CAB=∠CAE;(2)连接OC∵AB为直径,∴∠ACB=90°=∠AEC,又∵∠CAB=∠CAE,∴∠ABC=∠ACE,∵OB=OC,∴∠BCO=∠CBO,∴∠BCO=∠ACE,∴∠ECO=∠ACE+∠ACO=∠BCO+∠ACO=∠ACB=90°,∴EC⊥OC,∵OC是⊙O的半径,∴CE是⊙O的切线.(3)过点C作CF⊥AB于点F,∵∠CAB=∠CAE,CE⊥DA,∴AE=AF,在△CED和△CFB中,,∴△CED≌△CFB,∴ED=FB,设AB=x,则AD=x-2,在△ABD中,由勾股定理得,x2=(x-2)2+42,解得,x=5,∴⊙O的半径的长为2.5.24、解:(1)在△ACD和△BCE中,∵ ,∴△ACD≌△BCE(SAS),∴AD=BE、∠CAD=∠CBE,∵F为AD中点,∠ACD=90°,∴FC=AF= AD,∴CF= BE,∠CAD=∠ACF,∴∠CBE=∠ACF,∴∠CBE+∠BCF=∠ACF+∠BCF=∠BCE=90°,∴CF⊥BE;(2)此时仍有CF= BE、CF⊥BE,延长CF至G,使FG=CF,连接GA,在△CDF和△GAF中,∵ ,∴△DFC≌△AFG(SAS),∴GA=CD,∠FDC=∠FAG,∴AG∥DC,AG=CE,∴∠GAC+∠DCA=180°,又∵∠BCE+∠DCA=∠BCA+∠ACD+∠ECA=∠BCA+∠ECD=180°,∴∠GAC=∠BCE,在△BCE和△CAG中,∵ ,∴△BCE≌△CAG(SAS),∴CG=BE,∠CBE=∠ACG,∴CF= BE,∠CBE+∠BCF=∠BCA=90°,∴CF⊥BE.解:(1)设抛物线解析式为y=a(x+3)(x-1),将C(0,3)代入解析式得,-3a=3,解得a=-1,∴抛物线解析式为y=-x2-2x+3.(2)如图1中,∵A(﹣3,0),C(0,3),∴直线AC解析式为y=x+3,OA=OC=3,设M(m,-m2-2m+3),则N(m,m+3),则MN=-m2-2m+3-(m+3)=-m2-3m(-3,MN=-m2-3m=-(m+ )2+ ,∵a=-1<0, -3∴m=- 时,MN最大,此时S= ;(3)如图2中,旋转180°后,对应线段互相平行且相等,则BD与B′D′互相平行且相等.设B′(t,-t2-2t+3),则D′(t+1,-t2-2t+3+2)∵B′在抛物线上,则-(t+1)2-2(t+1)+3=-t2-2t+3+2,解得,t= ,则B′的坐标为( , ),P是点B和点B′的对称中心,∴P( , ).初三九年级数学上学期期中试卷一、选择题(每题4分,共40分).1.下列根式是最简二次根式的是( )A. B. C. D.2.下列计算,正确的是( )A. B. C. D.3.若是方程的一个根,则的值为( )A. B. C. D.4.用配方法解方程时,配方结果正确的是( )A. B. C. D.5.已知,则的值为( )A. B. C. D.6.下列各组线段的长度成比例的是( )A.2cm,3cm,4cm,5cmB.1cm, cm,2cm, cmC.1.5cm,2.5cm,4.5cm,6.5cmD.1.1cm,2.2cm,3.3cm,4.4cm7.如图,某小区计划在一块长为,宽为的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为 .若设道路的宽为,则下面所列方程正确的是( )A. B.C. D.8.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形的边在轴上,的中点是坐标原点固定点,,把正方形沿箭头方向推,使点落在轴正半轴上点处,则点的对应点的坐标为( )A. B. C. D.9.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是( )A.∠C=∠EB.∠B=∠ADEC.D.10.如图,已知△ABC的周长为1,连结△ABC三边的中点构成第二个三角形,再连结第二个三角形三边的中点构成第三个三角形,依此类推,则第2016个三角形的周长为( )A. B. C. D.二、填空题(每题4分,共24分).11.使有意义的的取值范围是.12.方程的根是13.小明的身高为1.6米,他的影长是2米,同一时刻某古塔的影长是5米,则古塔的高度是米.14.已知215.如图,在△ABC中,点D是BC的中点,点G为△ABC的重心,AG=2,则DG= .16.如图,点B、C是线段AD上的点,△ABE、△BCF、△CDG都是等边三角形,且AB=4,BC=6,已知△ABE与△CDG的相似比为2:5.则①CD=; ②图中阴影部分面积为.三、解答题(共86分).17.计算:(8分)(1)(212-418+348)×52; (2)18-22-82+(5-1)0.18.解方程: (8分)19.先化简,再求值:,其中 (8分)20.已知:关于x的一元二次方程x2﹣(2m+1)x+m2+m﹣2=0.求证:不论m取何值,方程总有两个不相等的实数根.(8分)21.求证:两边成比例且夹角相等的两个三角形相似。
广东省韶关市翁源县2024-2025学年九年级上学期11月期中考试数学试题(含答案)
2024-2025学年度第一学期期中考试九年级数学注意事项:1.全卷共6页,满分为120分,考试用时为120分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号,用2B 铅笔把对应的号码的标号涂黑.3.在答题卡上完成作答,答案写在试卷上无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.关于的一元二次方程的二次项系数、一次项系数、常数项分别是( )A .1,2,5B .C .D .3.已知和关于原点对称,则的值为( )A .B .1C .D .54.二次函数的图象顶点坐标是( )A .B .C .D .5.将抛物线先向下平移1个单位长度,再向右平移3个单位长度,所得到的抛物线为( )A .B .C .D .6.如图,已知点,将线段绕点按顺时针方向旋转,旋转后点的对应点坐标为( )A .B .C .D .7.如图,已知一菜园为长10米,宽7米的矩形,为了方便浇水和施肥,修建了同样宽的四条互相垂直的“井”x 2250x x -+-=1,2,5--1,2,5-1,2,5-(),2A a ()3,B b a b +5-1-23(1)2y x =-+-()1,2-()1,2-()1,2()1,2--22y x =+2(3)1y x =++2(3)3y x =-+2(3)3y x =++2(3)1y x =-+()1,2P PO O 90︒P ()1,2-()2,1-()2,1-()2,1字形道路,余下的部分种青菜,已知种植青菜的面积为54平方米,设小路的宽为米,则根据题意列出的方程是( )A .B .C .D .8.关于的一元二次方程的一个根是1,则的值为( )A .1或B .C .1D .9.设是抛物线上的三点,则的大小关系为( )A .B .C .D .10.如图,在正方形中,点的坐标分别是,点在抛物线的图象上,则的值是( )A .B.C .D .二、填空题:本大题共5小题,每小题3分,共15分.11.若方程是关于的一元二次方程,则的取值范围是_______.12.若二次函数与轴只有1个交点,则_______.13.数学课堂上,为探究旋转的性质,同学们进行了如下操作:如图所示,将一个三角形硬纸板,放置在一张白纸上,描出硬纸板的形状,并用图钉固定点,将三角形硬纸板绕点顺时针旋转一定角度后,再描出形状得到,经测量,则_______.x ()()1027254x x --=()()10754x x --=()()107254x x --=()()1027254x x +-=x ()22120a x x a -++-=a 2-2-1-()()()1233,,2,,2,A y B y C y --22y x x c =--+123,,y y y 321y y y >>123y y y >>132y y y >>213y y y >>ABCD A C 、()()1,17,3-、D 21y x bx =+-b 32-3212-12()2230a x x -+-=x a 22y x x m =-+x m =ABC △A A ADE △50,15BAC CAD ∠=︒∠=︒CAE ∠=14.设是方程的两个实数根,则的值为_______.15.如图,在中,,将绕点逆时针旋转得到,当点的对应点恰好落在边上时,则的长为_______三、解答题(一):本大题共3小题,每小题7分,共21分.16.(7分)解方程:17.(7分)如图,在平面直角坐标系中,点的坐标分别为.(1)画出关于点的中心对称图形;(2)将绕点顺时针方向旋转后得,画出.18.(7分)如图,是二次函数的图象.12,x x 23210x x --=1212x x x x --ABC △3,1AB AC ==ABC △C 90︒CDE △A D AB AE ()330x x x --+=A B C 、、()()()1,1,2,3,4,2ABC △O 111A B C △111A B C △O 90︒222A B C △222A B C △2y ax bx c =++(1)求二次函数解析式;(2)根据图象直接写出关于的不等式的解集.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)如图,四边形为矩形,,将对角线绕点逆时针旋转得,作交于点.(1)证明:;(2)连接,求的长.20.(9分)乐昌马蹄是广东韶关的特产,韶关乐昌有着“马蹄之乡”的美称.乐昌马蹄以个头大、清甜多汁、爽脆无渣为特点而闻名全国,畅销国内外.某农产品商以每斤5元的价格收购乐昌马蹄,若按每斤10元出售,平均每天可售出100斤.市场调查反映:如果每斤降价1元,每天销售量相应增加50斤.(1)若该农产品商想要日销售利润达到600元,测每斤马蹄应降低多少元?(2)日销售利润能否达到700元?如果能,请计算出每斤马蹄降价多少元;如果不能,请说明理由.21.(9分)为解方程,我们可以将视为一个整体,然后设,则原方程化为,解此方程得.当时,.当时,原方程的解为.以上方法叫做换元法解方程,达到了降次的目的,体现了转化思想.根据以上阅读材料内容,解决下列问题,并写出解答过程.(1)请用上述方法解方程:.x 20ax bx c ++>ABCD 3,4AB BC ==AC A 90︒AF FE AD ⊥AD E ABC AEF △≌△DF DF ()()22237360x x ---+=23x -23x t -=2760t t -+=121,6t t ==1t =231,2x x -=∴=±6t =236, 3.x x -=∴=±∴12342,2,3,3x x x x ==-==-42540x x -+=(2)已知实数满足,求的值.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22.(13分)如图,直线与抛物线相交于和.(1)求抛物线的解析式;(2)点是线段上的动点,过点作轴,交抛物线于点.是否存在这样的点,使线段的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)轴上是否存在点,使得为等腰三角形?若存在,求出点的坐标;若不存在,请说明理由.23.(14分)【阅读理解】半角模型是指有公共顶点,锐角等于较大角的一半,且组成这个较大角的两边相等.通过旋转或截长补短,将角的倍分关系转化为角的相等关系,并进一步构成全等三角形,用以解决线段关系、角度、面积等问题,【初步探究】如图1,在正方形中,点分别在边上,连接.若,将绕点顺时针旋转,点与点重合,得到.易证:.(1)根据以上信息,填空:(1)_______°;(2)线段之间满足的数量关系为_______;【迁移探究】(2)如图2,在正方形中,若点在射线上,点在射线上,,猜想线段之间的数量关系,请证明你的结论;【拓展探索】(3)如图3,已知正方形的边长为,连接分别交于点,若点恰好为线段的三等分点,且,求线段的长.,x y ()()2222222222150x y x y +-+-=22x y +2y x =-()220y ax bx a =++≠()1,1A -(),2B m C AB C CD x ⊥D C CD x M ABM △M ABCD ,E F ,BC CD ,,AE AF EF 45EAF ∠=︒ADF △A 90︒D B ABG △AEF AEG △≌△EAG ∠=BE EF DF 、、ABCD E CB F DC 45EAF ∠=︒BE EF DF 、、ABCD 45EAF ∠=︒BD AE AF 、M N 、M BD BM DM <MN2024-2025学年度第一学期期中考试九年级数学参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.1-5CBADD 6-10CABDB二、填空题:本大题共5小题,每小题3分,共15分.11. 12.1 13. 14. 15三、解答题(一):本大题共3小题,每小题7分,共21分.解答要求写出文字说明、证明过程或演算步骤.16.解:.解得:.(方法不唯一,酌情给分)17.解:(1)如图所示:即为所求.(2)如图所示:即为所求.18.解:(1)设二次函数解析式为:2a ≠35︒1-()()330x x x -+-=()()130x x +-=121,3x x =-=111A B C △111A B C △()()()240y a x x a =+-≠把点代入得:解得:(2).四、解答题(二):本大题共3小题,每小题9分,共27分.解答要求写出文字说明、证明过程或演算步骤.19.(1)证明:四边形为矩形绕点逆时针旋转得,,,在和中.(2)解:四边形为矩形,,,在中,根据勾股定理得:20.解:(1)设每斤马蹄降价元根据题意得解得答:若该农商想要日销售利润达到600元,则每斤马蹄应降低1元或2元.(2)日销售利润不能达到700元.理由如下:设每斤马蹄降价元则化简得方程无实数根日销售利润不能达到700元.()0,484a -=12a =-24x -<< ABCD 90B BAD ∴∠=∠=︒90BAD CAD ∴∠+∠=︒AC A 90︒AF,90BC EF CAF ∴=∠=︒90EAF CAD ∴∠+∠=︒BAD EAF∴∠=∠FE AD ⊥ 90AEF ∴∠=︒B AEF∴∠=∠ABC △AEF △BAD EAF B AEFAC AF ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABC AEF ∴△≌△ ABCD 4AD BC ∴==ABC AEF △≌△3,4AB AE BC EF ∴====431DE AD AE ∴=-=-=FE AD ⊥ 90DEF ∴∠=︒Rt DEF △DF ===x ()()10510050600x x --+=111,2x x ==a ()()10510050700a a --+=2340a a -+=2(3)4470=--⨯=-<△∴∴21.解:(1)设则原方程化为:解得:当时当时原方程的解为:(2)设则原方程化为:解得:,,.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.解答要求写出文字说明、证明过程或演算步骤.22.解:(1)把代入直线得,,在抛物线上,,解得,抛物线的解析式为.(2)存在.理由如下:设动点的坐标为,则点的坐标为,点是线段上的动点,当时,线段有最大值且为.(3)存在.设点①当时,2y x=2540y y -+=121,4y y ==1y =2,1,1x x =∴=±4y =2,4,2x x =∴=±∴12341,1,2,2x x x x ==-==-2222w x y=+22150w w --=125,3w w ==-22220x y +≥ 22225x y ∴+=2252x y ∴+= (),2B m 2y x =-4m =()4,2B ∴()()1,14,6A B - 、22y ax bx =++2116422a b a b ++=-⎧∴⎨++=⎩14a b =⎧⎨=-⎩∴242y x x =-+C (),2n n -D ()2,42n n n -+()()2242PC n n n ∴=---+254n n =-+-25924n ⎛⎫=--+ ⎪⎝⎭ C AB 14n ∴≤≤∴52n =PC 94(),0M c AB AM =解得:或.②当时,解得:或.③当时,解得:,综上所述,为等腰三角形时,点的坐标为或或或或23.(1)①45 ②.(2)解:.证明如下:如图在上截取,连接,和中,,,,即,,,在和中,,2222(14)(12)(1)(10)c -+--=-+--121,1c c =+=+)1,0M ∴+()1,0M +AB BM =2222(14)(12)(4)(20)c -+--=-+-124,4c c =+=)4,0 M ∴+()4,0M +AM BM =2222(1)(10)(4)(20)c c -+--=-+-3c =()3,0M ∴∴ABM △M )1,0+()1,0+)4,0+()4,0+()3,0BE DF EF +=BE EF DF +=DC DH BE =AH ABE △ADH △,AB AD ABE D BE DH =⎧⎪∠=∠⎨⎪=⎩()SAS ABE ADH ∴△≌△,AE AH BAE DAH ∴=∠=∠90BAE BAH BAH DAH ∴∠+∠=∠+∠=︒90EAH BAD ∠=∠=︒45EAF ∠=︒ 45EAF FAH ∴∠=∠=︒EAF △HAF △AE AH EAF HAF AF AF =⎧⎪∠=∠⎨⎪=⎩,,,,(3)将绕点顺时针旋转得到,连接,由旋转可得,,又,,,设,则,在中,,,解得,;()SAS EAF HAF ∴△≌△EF HF ∴=DF DH HF =+ DF BE EF ∴=+ADN △A 90︒ABK △KM 90AB AD ADC ==∠=︒6BD ∴==12,43BM BD DM BD BM ∴===-=,90ADN ABK KAN ∠=︒△≌△,,45AK AN BK DN ABK ADB ∴==∠=∠=︒90KBM ABK ABD ∴∠=∠+∠=︒90,45KAN MAN ∠=︒∠=︒45KAM MAN ∴∠=∠=︒AM AM = AMK AMN ∴△≌△KM MN ∴=∴MK MN x ==4BK DN x ==-Rt BMK △222BK BM MK +=222(4)2x x ∴-+=2.5x = 2.5MN ∴=。
江西省九江市修水县2024届九年级上学期期中考试数学试卷(含答案)
2023—2024学年度上学期其中考试试题卷九年级数学说明:1.全卷满分120分,考试时间120分钟.2.请将答案写在答题卡上,否则不给分.一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列关于x的方程中,一定是一元二次方程的为()A.B.C.D.2.下列说法中错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.对角线互相垂直的四边形是菱形D.有一组邻边相等的矩形是正方形3.如图,在中,点在边上,过点作,交于点.若,,则的值是()A.B.C.D.第3题图4.某校举办文艺会演,在主持人选拔环节中,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是()A.B.C.D.5.如图,四边形是正方形,延长到点,使,则的度数是()A.B.C.D.第5题图6.两千多年前,我国学者墨子和他的学生做了小孔成像的实验.他们的做法是:在一间黑暗屋子里的一面墙上开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小宇在学习了小孔成像的原理后,利用如图所示装置来观察小孔成像的现象.已知一根点燃的蜡烛距小孔(P)20cm,光屏在距小孔30cm处,小宇测得蜡烛的火焰高度为4cm,则光屏上火焰所成像的高度为()A.8cm B.6cm C.5cm D.4cm第6题图二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程配方后得,则的值是______.8.已知,若,则______.9.一个不透明的布袋中装有红色、蓝色、白色球共60个,这些球除颜色外其他完全相同.小明通过多次摸球试验后发现,摸到红色球的频率稳定在,则布袋中红色球可能有______个.10.如图,和是以点为位似中心的位似图形,相似比为,则和的面积比是______.11.已知关于x的一元二次方程的两个实数根分别为,则的值为______.12.在菱形中,,点在上,.若点是菱形四条边上异于点的一点,,则的长为______.三、(本大题共5小题,每小题6分,共30分)13.解方程:(1);(2).14.已知关于x的方程,当该方程的一个根为时,求m的值及方程的另一个根.15.为了落实“双减”政策,弘扬非遗(非物质文化遗产)传统文化,某校拟组织课外兴趣班的同学参观以下项目:A(修水陶艺),B(修水采茶戏),C(九江山歌),D(德安潘公戏).小明和小涵随机报名参观其中一项.(1)“小明参观九江山歌”这一事件是______;(请将正确答案的序号填写在横线上)①必然事件;②不可能事件;③随机事件.(2)请用列表或画树状图的方法,求小明和小涵参观的项目都是修水的非物质文化遗产的概率.16.如图,在矩形中,分别是的中点,请仅用无刻度的直尺按下列要求作图.(1)在图1中,作出的边上的中线;(2)在图2中,以为边作一个菱形.图1图217.台风“杜苏芮”牵动着全国人民的心.某单位开展了“一方有难,八方支援”赈灾捐款活动,第一天收到捐款3000元,第三天收到捐款4320元.(1)如果第二天、第三天收到的捐款的增长率相同,求捐款的增长率.(2)按照(1)中收到的捐款的增长速度,第四天该单位能收到多少捐款?四、(本大题共3小题,每小题8分,共24分)18.如图,,交于点,且.(1)求的长.(2)求证:.19.如图,在中,,为的中线,,,连接.(1)求证:四边形为菱形.(2)连接,若,,求的长.20.如图,在中,,为的中点,四边形是平行四边形,相交于点.(1)求证:四边形是矩形.(2)若,,求的长.五、(本大题共2小题,每小题9分,共18分)21.已知关于x的方程.(1)求证:无论取何实数值,方程总有实数根.(2)若等腰三角形的一边长,另两边长恰好是这个方程的两个根,求的周长.22.如图,,,是边上一点,且.(1)求证:.(2)若,求的长.(3)当时,请写出线段之间的数量关系,并说明理由.六、(本大题共12分)23.将正方形与正方形按图1所示方式放置,点在同一条直线上,点在边上,,连接.(1)线段的关系为______.(2)将正方形绕点顺时针旋转一个锐角后,如图2,(1)中的结论是否仍然成立?请说明理由.(3)在正方形绕点顺时针旋转一周的过程中,是否存在的时刻?若存在,请直接写出此时AE 的长;若不存在,请说明理由.图1图22023—2024学年度上学期期中考试九年级数学参考答案1.C2.C3.A4.A5.D6.B7.18.209.910.11.212.13.解:(1),配方得.∴或.∴.(2),.因式分解得.∴.14.解:将代入原方程,得,∴.∴方程为.由根与系数的关系可知,∴方程的另一个根为1.∴的值为,方程的另一个根为1.15.解:(1)③(2)根据题意,列表如下:A B C DABCD由表可知,共有16种等可能的结果,其中小明和小涵参观的项目都是修水的非物质文化遗产的结果有4种.∴(小明和小涵参观的项目都是修水的非物质文化遗产).16.解:(1)如图1,即为所求.(2)如图2,四边形即为所求.图1图217.解:(1)设捐款的增长率为,根据题意可列方程.解得(不合题意,舍去).因此,捐款的增长率为20%.(2).因此,第四天该单位能收到5184元捐款.18.(1)解:∵,∴.∵,∴易得.∴.∴.(2)证明:∵,,∴.∵,∴.19.(1)证明:∵,,∴四边形为平行四边形.∵,为的中线,∴.∴四边形为菱形.(2)解:连接,交于点,如图.∵四边形为菱形,,∴,,.∵,∴.∴.∴.∴.20.(1)证明:∵四边形是平行四边形,∴.∵为的中点,∴.∴四边形是平行四边形.∵,为的中点,∴.∴平行四边形是矩形.(2)解:∵四边形是矩形,∴.∵,,∴是等边三角形.∴.∵,∴.21.(1)证明:∵,∴无论取何值,方程总有实数根.(2)解:①若为底边长,则为腰长,则.∴,解得.此时原方程化为,∴,即.此时的三边长为6,2,2,不能构成三角形,故舍去.②若为腰长,则中一个为腰长,不妨设,代入方程得,∴.则原方程化为,,∴,即.此时的三边长为6,6,2,能构成三角形.综上所述,的三边长为6,6,2.∴周长为.22.(1)证明:∵,∴.∵,∴.∴.∴.∴.(2)解:在中,∵,∴.∵,∴.由(1)得,∴.∴.∴.(3)解:线段之间的数量关系是.理由:过点作于点.∵,∴.∵,,∴∴.同理可得,∴.∴.23.解:(1)(2)结论仍然成立.理由如下:如图,设交于点.∵四边形和四边形是正方形,∴.∴,即.∴.∴,.∵,∴.∴,即.∴.∴(1)中的结论仍然成立.(3)存在的时刻,此时或.提示:①如图,当点旋转到线段上时,过点作于点.∵,,.∴是等腰直角三角形.∴.在中,,∴.∴.②如图,当点旋转到线段的延长线上时,过点作于点,则.∵,∴.∴是等腰直角三角形.∴.在中,,∴.∴.∵,∴.综上所述,的长为或.。
重庆市重点中学九年级上学期期中考试数学试卷及答案(共三套)
重庆市重点中学九年级上学期期中考试数学试卷(一)时间:120分钟总分:150分一.选择题(每题4分,共48分)1.实数﹣5,0,﹣,3中最大的数是A.﹣5 B.0 C.﹣ D.32.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠23.如图图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为A.20° B.40° C.60° D.80°5.计算(﹣2x2y)2的结果是()A.﹣2x4y2 B.4x4y2 C.﹣4x2y D.4x4y6.估计+1的值应在()(第4题图)A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间7.将抛物线y=x2向上平移3个单位后所得的解析式为()A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2D.y=(x﹣3)28.下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑥个图形中正方形的个数为()A.50 B.48 C.43 D.409.在Rt△ABC中,∠C=90°,AB=13,AC=12,则cosA=()A. B. C. D.10.已知二次函数y=x2+bx+c的图象过点A(1,m),B(3,m),若点M(﹣2,y 1),N(﹣1,y2),K(8,y3)也在二次函数y=x2+bx+c的图象上,则下列结论正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y211.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度(第11题图) 约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)A.8.1米 B.17.2米C.19.7米 D.25.5米12.若整数a使关于x的不等式组无解,且使关于x的分式方程=﹣2有整数解,那么所有满足条件的a值的和是()A.﹣20 B.﹣19 C.﹣15 D.﹣13二.填空题(每题4分,共16分)13.我国参加今年北京田径世锦赛的志愿者超过3500000人,把3500000用科学记数法表示为.14.已知二次函数y=(m﹣2)x2的图象开口向下,则m的取值范围是.15.如图是某市1月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择1月1日至1月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量是重度污染的概率是.(第15题)(第16题)16.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为.(结果保留π)17.甲、乙两车在依次连通A、B、C三地的公路上行驶,甲车从B地出发匀速向C地行驶,同时乙车人B地出发匀速向A地行驶,到达A地并在A地停留1小时后,调头按原速向C地行驶.在两车行驶的过程中,甲、乙两车与B地的距离y (千米)与行驶时间x(小时)之间的函数图象如图所示,当甲、乙两车相遇时,所用时间为小时.(第17题)(第18题)18.如图,正方形ABCD的边长为3,延长CB到点M,使BM=1,连接AM,过点B 作BN⊥AM,垂足为N,O是对角线AC、BD的交点,连接ON,则ON的长为.三.解答题(每题8分,共16分)19.如图,已知AB∥CD,EF交AB于点E,交CD于点F,FG平分∠EFD,交AB于点G.若∠1=50°,求∠BGF的度数.(第19题)20.有专家指出:人为型空气污染(如汽车尾气排放等)是雾霾天气的重要成因.某校为倡议“每人少开一天车,共建绿色家园”,想了解学生上学的交通方式.九年级(8)班的5名同学联合设计了一份调查问卷.对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,扇形统计图中“骑自行车”所在扇形的圆心角度数是度,请补全条形统计图;(2)已知这5名学生中有2名女同学,要从这5名学生中任选两名同学汇报调查结果.请用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.(第20题)四、解答题(每题10分,共40分)21.化简:(1)(x+2y)2﹣(x+2y)(x﹣2y);(2)÷(+﹣1)22.如图,已知一次函数y1=k1x+6与反比例函数y2=相交于A、B,与x轴交于点C,过点B作BD⊥x轴于点D,已知sin∠DBC=,OC:CD=3:1.(1)求y1和y2的解析式;(2)连接OA,OB,求△AOB的面积.23.服装厂准备生产某种样式的服装40000套,分黑色和彩色两种.(1)若生产黑色服装的套数不多于彩色服装套数的,问最多生产多少套黑色服装?(2)目前工厂有100名工人,平均每人生产400套,由于展品会上此种样式服装大受欢迎,工厂计划增加产量;由于条件发生变化,人均生产套数将减少1.25a%(20<a<30),要使生产总量增加10%,则工人需增加2.4a%,求a的值.24.如图,在正方形ABCD的对角线AC上取点E,使得∠CDE=15°,连接BE.延长BE到F,连接CF,使得CF=BC.(1)求证:DE=BE;(2)求证:EF=CE+DE.五、解答题(25题10分,26题12分,共22分)25.任意写一个个位数字不为零的四位正整数A,将该正整数A的各位数字顺序颠倒过来,得到四位正整数B,则称A和B为一对四位回文数.例如A=2016,B=6102,则A和B就是一对四位回文数,现将A的回文数B从左往右,依次顺取三个数字组成一个新数,最后不足三个数字时,将开头的一个数字或两个数字顺次接到末尾,在组成三位新数时,如遇最高位数字为零,则去掉最高位数字,由剩下的两个或一个数字组成新数,将得到的所有新数求和,把这个和称为A的回文数B作三位数的和.例如将6102依次顺取三个数字组成的新数分别为:610,102,26,261,它们的和为:610+102+26+261=999,把999称为2016的回文数作三位数的和.(1)请直接写出一对四位回文数:猜想一个四位正整数的回文数作三位数的和能否被111整除?并说明理由;(2)已知一个四位正整数(千位数字为1,百位数字为x且0≤x≤9,十位数字为1,个位数字为y且0≤y≤9)的回文数作三位数的和能被27整除,请求出x与y的数量关系.26.如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于点C,已知A (﹣1,0),且tan∠ABC=(1)求抛物线的解折式.(2)在直线BC下方抛物线上一点P,当四边形OCPB的面积取得最大值时,求此时点P的坐标.(3)在y轴的左侧抛物线上有一点M,满足∠MBA=∠ABC,若点N是直线BC上一点,当△MNB为等腰三角形时,求点N的坐标.数学试题答案一.选择题(共12小题)1.D.2.D.3.D.4.D.5.B.6.B.7.A.8.C.9.C.10.B.11.A.12.D 二.填空题(共6小题)13. 3.5×106. 14.m<2 . 15..16.π+2.. 17.10 小时. 18..17解:由题意可得,甲车的速度为:600÷12=50千米/时,乙车的速度为:(200×2+600)÷(11﹣1)=100千米/时,乙车从B地到A地然后回到B地用的时间为:200×2÷100+1=5(小时),设甲乙两车相遇用的时间为x小时,50x=100(x﹣5),解得,x=10,18题详解解:∵AB=3,BM=1,∴AM=,∵∠ABM=90°,BN⊥AM,∴△ABN∽△BNM∽△AMB,∴AB2=AN×AM,BM2=MN×AM,∴AN=,MN=,∵AB=3,CD=3,∴AC=,∴A O=,∵,,∴,且∠CAM=∠NAO∴△AON∽△AMC,∴,∴ON=.三.解答题(共8小题)19.解:∵AB∥CD,∠1=50°,∴∠CFE=∠1=50°. --------------2分∵∠CFE+∠EFD=180°,∴∠EFD=180°﹣∠CEF=130°.---------4分∵FG平分∠EFD,∴∠DFG=∠EFD=65°.--------------6分∵AB∥CD,∴∠BGF+∠DFG=180°,∴∠BGF=180°﹣∠DFG=180°﹣65°=115°.-----------8分20.解:(1)本次接受调查的总人数为160÷40%=400(人),扇形统计图中“骑自行车”所在扇形的圆心角度数为×360°=54°,--2分乘私家车的人数=400﹣60﹣160﹣80=100(人),补全条形统计图为:----------------4分(2)画树状图为:共有20种等可能的结果数,其中选出1名男生和1名女生的结果数为12种,---------6分所以恰好选出1名男生和1名女生的概率==. --------8分21.化简:(1)(x+2y)2﹣(x+2y)(x﹣2y);(2)÷(+﹣1)解:(1)原式=x2+4xy+4y2﹣(x2﹣4y2)-----------2分=x2+4xy+4y2﹣x2+4y2 ----- ---------------------3分=4xy+8y2; ----------------5分(2)原式=÷--------------7分=•--------------------------9分=.-----------------------------10分22.解:(1)y1=k1x+6与y轴的交点E的坐标为(0,6),∴OE=6,-----------------------------1分∵BD⊥x轴,∴OE∥BD,∴==,∴BD=2,------------------------2分∵sin∠DBC=,∴设CD=x,则BC=5x,由勾股定理得,(5x)2=(x)2+4,解得,x=,则CD=x=1,则BC=5x=,∴点B的坐标为(4,﹣2),----------------4分﹣2=k1×4+6,解得,k1=﹣2,则y1=﹣2x+6,y2=﹣;------------------6分(2),解得,,,-----------------8分则△AOB的面积=×3×8+3×2=15.-------------------10分23.解:(1)设生产黑色服装x套,则彩色服装为(40000﹣x)套-------1分由题意得:x≤(40000﹣x),---------------------------3分解得x≤8000.--------------------------------------4分故最多生产黑色服装8000套.--------------------------------5分(2)40000(1+10%)=400(1﹣1.25a%)100(1+2.4a%),--------8分设t=a% 化简得:60t2﹣23t+2=0…(8分)解得t1=(舍去),t2=.a%=, a=25.------------------------9分答:a的值是25.-----------------------10分24.证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=90°,∠BAC=∠DAC=45°.∵在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),---------3分∴BE=DE.-------------------------4分(2)在EF上取一点G,使EG=EC,连结CG,-----------5分∵△ABE≌△ADE,∴∠ABE=∠ADE.∴∠CBE=∠CDE,∵BC=CF,∴∠CBE=∠F,∵∠CDE=15°,∴∠CBE=15°,∴∠CEG=60°.∵CE=GE,∴△CEG是等边三角形.-----------7分∴∠CGE=60°,CE=GC,∴∠GCF=45°,∴∠ECD=GCF.∵在△DEC和△FGC中,,∴△DEC≌△FGC(SAS),∴DE=GF.------------------------------------9分∵EF=EG+GF,∴EF=CE+ED.-------------------------------------10分25.解:(1)一个四位正整数的回文数作三位数的和能否被111整除.例如A=1234和B=4321是一对四位回文数,------------------2分设一个4位数为(A,B,C,D为整数),则这个数的回文数为,则由题知这个回文数作三位数的和为+++=111(A+B+C+D),∵A,B,C,D为整数,∴A+B+C+D为整数,∴一个四位正整数的回文数作三位数的和能被111整除;---------4分(2)正整数的回文数是y1x1,则回文数作三位数的和为:100y+10+x+100+10x+1+100x+10+y+100+10y+1=100x+100y+222=111(x+y+2),----------7分由题意得,x+y+2=9或x+y+2=18,则x+y=7或x+y=16.------------10分26.解:(1)由抛物线y=ax2+bx﹣2可知C的坐标为(0,﹣2),∴OC=2,∵tan∠ABC==∴OB=3,∴B(3,0),------2分∵A(﹣1,0),把A、B的坐标代入y=ax2+bx﹣2得:解得,∴抛物线的解折式为y=x2﹣x﹣2;-----------4分(2)过点P作y轴的平行线与BC交于点Q,与OB交于点E,设P(x,x2﹣x﹣2),-------------------------5分由B(3,0),C(0,﹣2)可求得直线BC的解析式为y=x﹣2.∴Q点的坐标为(x,x﹣2),------------------6分∴S四边形OBPC =S△OBC+S△BPQ+S△CPQ=OB•OC+QP•OE+QP•EB=×3×2+(2x﹣x2)×3=﹣x2+3x+3=﹣(x﹣)2+,∴当x=时,四边形ABPC的面积最大. 此时P点的坐标为(,﹣).-----------8分(3)设直线AM交y轴于D,∵∠MBA=∠ABC,∴OD=OC=2,∴D(0,2),设直线AM的解析式为y=mx+2,代入B(3,0)得0=3m+2,解得m=﹣,∴直线AM的解析式为y=﹣x+2,解得或,∴M(﹣2,),设N(x,x﹣2),∵BM2=(3+2)2+()2,MN2=(x+2)2+(x﹣2﹣)2,BN2=(x﹣3)2+(x﹣2)2,当MB=BN时,N(﹣2,﹣)或(8,);当MB=MN时,则(3+2)2+()2=(x+2)2+(x﹣2﹣)2,整理得13x2﹣28x﹣33=0,解得x1=3,x2=﹣,∴N(﹣,﹣);当BN=MN时,(x+2)2+(x﹣2﹣)2=(x﹣3)2+(x﹣2)2,整理得10x=﹣35,解得x=﹣∴N(﹣,﹣);综上,点N的坐标为(﹣2,﹣)或(8,)或(﹣,﹣)或(﹣,﹣).-------------12分重庆市重点中学九年级上学期期中考试数学试卷(二)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D.的四个答案,其中只有一个是正确的,请将正确答案填写在答题卡上.1.4的倒数是()A.﹣4 B.4 C.﹣D.2.下列交通指示标识中,不是轴对称图形的是()A.B. C.D.3.下列方程中,是关于x的一元二次方程为()A.x2﹣4x+5=0 B.x2+x+1=y C.+8x﹣5=0 D.(x﹣1)2+y2=34.抛物线y=﹣(x+1)2﹣2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)5.若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是()A.a<1 B.a≤4 C.a≤1 D.a≥16.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对7.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A.200(1+a%)2=148 B.200(1﹣a%)2=148 C.200(1﹣2a%)=148 D.200(1﹣a2%)=1488.函数的自变量x的取值范围是()A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠39.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c11.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是()A.43 B.45 C.51 D.5312.如图,是二次函数 y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是()A.①②B.②③C.①③D.①②③④二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.14.计算:|﹣3|+(﹣1)2﹣= .15.若函数y=x2﹣6x+m的图象与x轴只有一个公共点,则m= .16.如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长是.17.甲、乙两人分别从两地同时出发登山,甲、乙两人距山脚的竖直高度y(米)与登山时间x(分)之间的图象如图所示,若甲的速度一直保持不变,乙出发2分钟后加速登山,且速度是甲速度的4倍,那么他们出发分钟时,乙追上了甲.18.如图,正方形ABCD的边长为4+2,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长是.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19.(8分)解方程(1)x2﹣2x=5(2)2(x﹣3)=3x(x﹣3)20.(8分)如图,AB∥CD,BD=CD,∠D=36°,求∠ABC的度数.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.21.(10分)2016年9月,某手机公司发布了新款智能手机,为了调查某小区业主对该款手机的购买意向,该公司在某小区随机对部分业主进行了问卷调查,规定每人只能从A类(立刻去抢购)、B类(降价后再去买)、C类(犹豫中)、D类(肯定不买)这四类中选一类,并制成了以下两幅不完整的统计图,由图中所给出的信息解答下列问题:(1)扇形统计图中B类对应的百分比为%,请补全条形统计图;(2)若该小区共有4000人,请你估计该小区大约有多少人立刻去抢购该款手机.22.(10分)如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD 沿CE折叠后,点B落在AD边的点F上,求DF的长为多少?23.(10分)如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m 的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.24.(10分)设a,b是任意两个实数,规定a与b之间的一种运算“⊕”为:a⊕b=,例如:1⊕(﹣3)==﹣3,(﹣3)⊕2=(﹣3)﹣2=﹣5,(x2+1)⊕(x﹣1)=(因为x2+1>0)参照上面材料,解答下列问题:(1)2⊕4= ,(﹣2)⊕4= ;(2)若x>,且满足(2x﹣1)⊕(4x2﹣1)=(﹣4)⊕(1﹣4x),求x的值.五、解答题:(本题共2小题,25题10分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.(10分)某商店经销一种成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克.若销售价每涨1元,则月销售量减少10千克.(1)要使月销售利润达到最大,销售单价应定为多少元?(2)要使月销售利润不低于8000元,请画出草图结合图象说明销售单价应如何定?26.(12分)如图,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,﹣1),图象与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的解析式;(2)设抛物线对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;(3)点E为直线BC上的任意一点,过点E作x轴的垂线与抛物线交于点F,问是否存在点E使△DEF为直角三角形?若存在,求出点E坐标,若不存在,请说明理由.2017-2018学年重庆市江北区联盟校九年级(上)期中数学试卷参考答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D.的四个答案,其中只有一个是正确的,请将正确答案填写在答题卡上.1.D;2.C;3.A;4.D;5.C;6.B;7.B;8.A;9.C;10.A;11.C;12.C;二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.1.1×104; 14.6; 15.9; 16.15; 17.; 18.2;三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19.20.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.21.22.23.24.五、解答题:(本题共2小题,25题10分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.26.;重庆市重点中学九年级上学期期中考试数学试卷(三) 考试时间120分钟 总分 150分一、选择题(4x12分)1、一元二次方程0322=--x x 的两个根分别为( )3,1.21==x x A 3,1.21-==x x B 3,1.21=-=x x C 3,1.21-=-=x x D 2、有下列判断:(1)直径是圆的对称轴。
九年级上学期期中考试数学试题 及答案
(本卷共五个大题,满分150分,考试时间:120分钟)一、选择题(本大题10个小题,每小题4分,共40分) 1.下列根式中,不是最简二次根式的是( )A. 10B. 8C. 6D. 2 2.下列运算正确的是( )=1=C. 2=(111-=3. 若最简二次根式a 是同类二次根式,则ab 的值是( ) A.2 B.1 C.0 D. 1-4.若23x ≤≤3x - 可化简为( ) A. 25x - B. 21x - C. 12x - D.15.若实数x 、y 满足2222(2)(1)0x y x y +++-=,则22x y +的值是( ) A.1 B. 2- C.2或1- D. 2-或16.万州科华水泥一月份总产量为1000吨,三月份的总产量为1440吨,若平均每月的增长率为x , 则可列方程( ) A .1000(1)1440x +=B .21000(1)1440x +=C .21000(1)1440x +=D. 21440(1)1000x +=7.方程29180x x -+=的两根是等腰三角形的底和腰,则这个等腰三角形的周长是( )A .12B .12或15C .15D .不能确定 8.如果ABC ∆相似于111A B C ∆,且相似比为23,111A B C ∆相似于222A B C ∆,且相似比为54, 则ABC ∆与222A B C ∆的相似比是( ) A.56 B. 65 C. 158 D. 8159.如图,已知第一个三角形的周长是1,它的三条中线又组成第二个三角形,第二个三角形的三条中线又组成第三个三角形。
以此类推,第2009个三角形的周长是( ) A.200712B.200812C.200912D.20101210.在直角梯形ABCD 中,AD//BC , 90BAD ∠= ,AB=BC ,E 为AB 边上一点,15BCE ∠=,且AE=AD 。
连接DE 交对角线AC 于点H ,连接BH ,下列结论:①ACD ACE ∆≅∆ ;②CDE ∆ 为等边三角形;③2EH BE =; ④EBC EHC S AHS CH∆∆= 。
辽宁省鞍山市铁西区2024-2025学年九年级上学期期中测试数学试题(含答案)
九年级数学学情调查(十一月)2024(本试卷共23道题 满分120分 考试时间120分钟)考生注意:所有试题必须在答题卡指定区域内作答,在本试卷上作答无效第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知关于x 的一元二次方程的一个根是,则m 的值为( )A .1B .-2C .-1D .32.在平行四边形ABCD 中,AB ,BC 的长分别等于一元二次方程两根之和与两根之积,则对角线AC 长的取值范图是( )A .AC >1B .1<AC <5C .5<AC <19D .AC >5或<93.二次函数的图象如图所示,对称轴是直线,则过点和点的直线一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.将抛物线平移得到抛物线,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向下平移2个单位D .先向右平移1个单位,再向上平移2个单位5.观察表格,估算一元二次方程的近似解:1.4 1.5 1.6 1.7 1.8-0.44-0.25-0.040.190.44由此可确定一元二次方程的一个近似解x 的范围是( )A .B .C .D .6.随着我国航天领域的快速发展,从“天宫一号”发射升空,到天和核心舱归位,我国正式迈入了“空间站时代”.下面是有关我国航天领域的图标,其图标既是轴对称图形又是中心对称图形的是( )2520x x m +-=1x =27120x x -+=2y ax bx c =++1x =-(,2)M c a b -()24,N b ac a b c --+23y x =-23(1)2y x =---210x x --=x21x x --210x x --=1.4 1.5x << 1.5 1.6x << 1.6 1.7x << 1.7 1.8x <<A .B .C .D .7.如图,在△ABC 中,∠B =40°,将△ABC 绕点A 逆时针旋转得到△ADE ,点D 恰好落在BC 的延长线上,则旋转角的度数为( )A .100°B .90°C .80°D .70°8.如图,正方形ABCD 中,E 为AD 边上一点,连接BE ,将BE 绕点E 逆时针旋转90°得到EF .连接DF 、BF ,若∠DFE =,则∠CBF 一定等于( )A .B .C .D.9.如图,△ABC 和△CDE 两个全等的直角三角形,∠B =∠CDE =90°,连结AD 交CE 于点F .若,则的值为( )A .B .C .D .10.如图,在矩形ABCD 中,AB =4,延长CD 到点E ,连接BE 交AD 于点G ,点F 为BE 的中点,连接CE ,以点C 为圆心,CF 长为半径的圆弧经过点G ,连接CG ,若BE =10,则DG 的长为( )α45α- α903a - 12α12AB BC =DF AF13122523A .4B .5C .6D .3第二部分 非选择题二、填空题(本题共6小题,每小题3分,共15分)11.若a 是一元二次方程的一个根,则的值是 .12.2023年德尔塔(Delta )是一种全球流行的新冠病毒变异毒株,其传染性极强.某地有1人感染了德尔塔,因为没有及时隔离治疗,经过两轮传染后,一共有169人感染了德尔塔病毒,那每轮传染中平均一个人传染了 个人;如果不及时控制,照这样的传染速度,经过三轮传染后,一共有 人感染德尔塔病毒.13.下列命题:①若时,一元二次方程一定有实数根;②若方程有两个不相等的实数根,则方程也一定有两个不相等实数根;③若二次函数,当取时,函数值相等,则当x 取时函数值为0;④若,则二次函数图象与坐标轴的公共点的个数是2或3,其中正确结论的个数是 (填序号)14.如图所示,△ABC 中,∠C =90°,AC =8cm ,BC =6cm ,点D 从B 点开始沿BC 向B 点以1cm /s 的速度移动,点E 从C 点开始沿 CA 边向A 点以2cm /s 速度移动,如果D 、E 分别从B 、A 同时出发,那么 秒后,线段DE 将△ABC 分成面积1:2的两部分.15.如图,在△ABC 中,∠BAC =120°,AB =2,AC =4,将BC 绕点C 顺时针旋转120°得到CD ,则线段AD 的长度是.250x x +-=23310a a +-b a c =+20ax bx c ++=20ax bx c ++=20cx bx a ++=2y ax c =+()1212,x x x x ≠12x x +240b ac ->2y ax bx c =++三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分)解下列方程:(1);(2).17.(8分)如图所示,某市公园有一块长方形绿地长20,宽16,在绿地中开辟三条等宽的道路后,剩余绿地的面积为224,求道路的宽x 是多少米?18.(8分)如图,在矩形ABCD 中,AB =2AD ,∠DAB 的平分线交CD 于E .F 为BC 的中点,连结AE ,AF ,分别交BD 于点G , H .连结EF .(1)求证:BD =2EF ;(2)当EF =6时,求GH 的长.19.(8分)“弗里热”(Phryge )是2024年巴黎奥运会和残奥会吉祥物,是法国传统的弗里古亚帽的拟人化形象,在《蓝精灵》动画片中,蓝精灵戴的便是弗里吉亚帽.吉祥物“弗里热”小钥匙扣广受欢迎,成为热销商品,某商家以每套40元的价格购进一批“弗里热”小钥匙扣.当该商品每套的售价是50元时,每天可售出200套,若每套的售价每提高2元,则每天少卖4套.(1)设“弗里热”小钥匙扣每套的售价定为x 元,求该商品销售量y 与x之间的函数关系式.22125x x -+=257311x x x ++=+m m 2m(2)每天销售所获的利润W 能否恰好达到3000元?请说明理由.20.(8分)如图,鞍钢博物馆广场边,有两个高炉模型,小明同学用自制的直角三角形纸板ADE 量高炉的高度BF .他调整自己的位置,设法使斜边AE 持水平,AE 的延长线交BF 于C ,并且边AD 与点B 在同一直线上,已知纸板的两条直角边AD =40cm .DE =20cm .测得边AE 离地面的高度AG =1.5,CD =20.求高炉的高BF .21.(8分)如图,钢球从斜面顶端由静止开始沿斜面滚下,速度每秒增加1.5.(1)写出滚动的距离s (单位:)关于滚动的时间t (单位:)的函数解析式.(提示:本题中,距离=平均速度×时间t ,,其中,是开始时的速度,是t 秒时的速度.)(2)如果斜面的长是3,钢球从斜面顶端滚到底端用多长时间?22.(12分)如图,在Rt△ABC 中,∠ABC =90°,把边CB绕点C 旋转到CF .(1)若AB =.BC .当点F 落在BC 的垂直平分线上时,请直接写出以A 、B 、C 、F 为顶点的四边形的面积 .(2)如图1,连接AF ,当点F 在AC 的垂直平分线上时,若BC =2AB =4,求F 到AC 的距离;(3)如图2,连接FB 交AC 于点D ,当AC ⊥BF 时,BC 的垂直平分线分别交BC 、AC 、CF 于E 、H 、M ,交BF 的延长线于G .判断:BE 、GM 、MC 三条线段的关系,并给予证明.m m m m s v 02t v v v +=0v t v m图1 图223.(13分)已知y 关于x 的一次函数.当时,我们称一次函数为“原函数”,一次函数“原函数”的“相关函数”,“原函数”的图象记为直线,它的“相关函数”的图象记为直线.例如:“原函数”的“相关函数”为.(1)直接写出“相关函数”的“原函数”表达式;(2)请说明:直线,直线与x 轴的交点是同一个点;(3)若“原函数”的表达式为,点A 在直线上,点B 在直线上,轴,AB =2,求点A 的坐标;(4)“原函数”的表达式为.①点在直线上,点在直线上,若,求t 的取值范围;②若直线,直线与y 轴围成的图形面积为12,点E 在直线上,过E 作轴交直线于点F ,过E 作轴交直线于点H ,过F 作轴交直线于点G ,连接GH .设点E 的横坐标为,四边形 EFGH 的周长为C .直接写出C 关于a的函数表达式.y kx b =+0,0k b >>y kx b =+y kx b =--1l 2l 2y x =+2y x =--213y x =--1l 2l 112y x =+1l 2l AB y ∥2y mx m =+(),C C t y 1l ()2,D D t y -2l 0D C y y <<1l 2l 1l EF y ∥2l EH x ∥2l FG x ∥1l (0)a a >九年级数学质量测试(十一月)2024答案及评分标准说明:1.此答案仅供参考,阅卷之前请做答案.2.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、单项选择题(每题只有一个选项正确.每小题3分,共30分)1.D2.C3.C4.C5.C6.B7.A8.B9.C 10.D二、填空题(每小题3分,共15分)11.512.12 2197 13.①③ 14.2或4 15.三、解答题(8道题共75分)16.(10分)解:(1)..…………………………5分(2).整理,得...…………………………5分17.(8分)解:依题意可列…………………………3分……………………………………5分(含)………………………………7分答:道路的宽是2米.…………………………8分18.(8分)(1)证明:∵四边形ABCD 是矩形,AB =2AD,22125x x -+=2(1)25x -=15x -=±126,4x x ==-257311x x x ++=+224x x +=2215x x ++=2(1)5x +=1x +=121,1x x =-=-(202)(16)224x x --=226480x x -+=12224,x x ==∴CD //AB ,AB =CD =2AD ,AD =BC ,∴∠DEA =∠BAE∵AE 平分∠DAB∴∠DAE =∠BAE ,∴∠DEA =∠DAE ,∴DE =AD∵CD =2AD∴CD =2DE .∴DE =CE∵F 为BC 的中点,∴EF 是△BCD 的中位线,∴BD =2EF ;…………………………………4分(2)解:由(1)知,BD =2EF ,∵EF =6∴BD =12∵AB =CD =2AD =2DE ,AD =BC ,F 为BC 的中点,∴.在矩形ABCD 中,CD //AB ,AD //BC ,∴△DEG ∽△BAG ,△FBH ∽△ADH ,,.∴DG =4,BH =4∴GH =BD -DG -BH =4……………………………………………………8分19.(8分)解:(1)根据题意:.∴y 与x 之间的函数关系式:;…………………………4分(2)根据题意得:.整理得:.∵.∴方程有两个不相等的实数根,∴每天销售所获的利润W 能达到3000元.………………………………8元20.(8分)…………………………………………8分21.(8分)解:(1)由已知得11,22DE BP AB AD ==11,22DE DG BH BF AB BG DH AD ∴====11,122122DG BH DG BH ∴==--50200423002x y x -=-⨯=-+2300y x =-+(40)(2300)3000x x --+=219075000x x -+=2Δ(190)41750061000=--⨯⨯=>11.5m 00 1.5 1.5t v v at t t=+=+=,即………………………………4分(2)把代入中,得(舍去)即钢球从斜面顶端滚到底端用.答:钢球从斜面顶端滚到底端用.……………………………………8分22.(12分)解:(12分解:(2)如图1,过点F作FG⊥AC于G,∵FA=FC,∴CG=AG=AC∵∠ABC=90°,∴∴.∵CF=BC=4..∴点F到AC;……………………6分(2)BE+GM=MC…………………………7分证明:如图2,延长EG至K.使KG=AB.连接AK.∵AB⊥BC,EG⊥CB.∴EG∥AB,∴四边形ABKG是平行四边形,∴AK=BC,∠AKG=∠ABD.∵FC=CB∴∠FCD=∠ACB∵∠ABC=∠BGE=90°.∴∠BAC+∠ACB=90°.∵∠BDC=90°,∴∠ACB+∠EBG=90°,∴∠BAC=∠EBG.∵AB=BE∴△ABC≌△BEG(ASA)∴AC=BG.1.5t3t224tv vv+∴===233244tv v ts vt t t t+∴==⋅=⋅=234s t=3s=234s t=2t=2t=-2s2s12AC===CG=FG∴===∴AK =AC .∴∠AKC =∠ACK同理可得,∠ABD =∠ACB∴∠ABD =∠FCD∴∠AKG =∠FCD .∴∠AKC -∠AKG =∠ACK -∠FCD .∴∠MKC =∠MCK .∴CM =KM =CK +GM =BE +GM …………………………………12分图1 图223.解:(1);……………………………………1分(2)在“原函数”中,令.则.∴直线与x 轴交点为在它的“相关函数”,令,则∴直线与x 轴交点为∴直线,直线与x 轴的交点为同一个点;…………………………4分(3)∵“原函数”的表达式为∴它的“相关函数”表达式为.令∴.∴直线与直线的交点为∵点A 在直线上.213y x =+y kx b =+0kx b +=b x k =-1l ,0b k ⎛⎫- ⎪⎝⎭y kx b =--0kx b --=bx k =-2l ,0b k ⎛⎫- ⎪⎝⎭1l 2l 112y x =+112y x =--111122x x +=--2x =-1l 2l (2,0)-1l∴设,如图1,当时,点A 在点B 上方∵AB ∥y 轴.∴∴点,,当时,点A 在点B 的下方,A (-4,-1)综上所述,点A 的坐标为A (0,1)或A (-4,-1);………………………………8分(4)①∵“原函数”为.∴它的“相关函数“为.令..∴直线与直线交点为(-2,0);如图2,∵点C 在直线上,点D 在直线,且.,且,,.,∴t 的取值范围为.……………………11分1,12A a a ⎛⎫+ ⎪⎝⎭2a >-A B x x a==1,12B a a ⎛⎫-- ⎪⎝⎭1111222a a ∴+++=0a ∴=(0,1),A ∴2a <-2y mx m =+2y mx m =--20mx m +=2x ∴=-1l 2l 1l 2l 0D C y y <<222t t -<-⎧∴⎨>-⎩20t ∴-<<2,(2)2c D y mt m y m t m =+=--- D Cy y <(2)22m t m mt m ∴---<+22mt m ∴>-20m > 1t ∴>-10t -<<②如图3,直线与直线交点为Q (-2,0),∴OQ =2,OM =ON =2m ,∴MN =4m ,,∴m =3,∴“原函数“表达式为.它的“相关函数”表达式为,轴交于点F ,,∵EH ∥x 轴,,,,..∵FG ∥x 轴,,.1l 2l 1122MN OQ ∴⋅=142122m ∴⨯⨯=36y x =+36y x =--(,36)E a a ∴+EF y ∥2l (,36),F a a ∴--36(36)612EF a a a ∴=+---=+36E H y y a ∴==+3636a x ∴+=--4x a ∴=--(4,36)H a a ∴--+(4)24EH a a a ∴=---=+36G F y y a ∴==--3636a x ∴--=+4x a ∴=--(4,36)G a a ∴----.又∵轴,轴,∴FG∥EH,∴四边形EFGH为平行四边形,. (13)分(4)2 4.FG a a a∴=---=+2 4.FG EH a∴==+//FG x//EH x2()2(61224)1632 C EF FG a a a∴=+=+++=+。
九年级上学期数学期中考试卷及答案精选全文
可编辑修改精选全文完整版第一学期期中考试九年级数学试题1. 计算()23-的结果是()A.3B.3- C.3±2. 若P(x;-3)与点Q(4;y)关于原点对称;则x+y=()A、7B、-7C、1D、-13. 下列二次根式是最简二次根式的是()4. 一元二次方程22350xx++=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断5. 用配方法解方程0142=++xx;则配方正确的是()A、3)2(2=+x B、5)2(2-=+xC、3)2(2-=+x D、3)4(2=+x6. 如图;AB、AC都是圆O的弦;OM⊥AB;ON⊥AC;垂足分别为M、N;如果MN=3;那么BC=(). A. 4 B.5 C. 6 D.7二、填空题(共8小题;每小题3分;满分24分)7. 2-x在实数范围内有意义;则x的取值范围是.8. 221x-=的二次项系数是 ;一次项系数是 ;常数项是 .9. 一只蚂蚁沿图中所示的折线由A点爬到了C点;则蚂蚁一共爬行了______cm.(图中小方格边长代表1cm)NMOCBA10. 关于x 的一元二次方程04)2(22=-+-+m mx x m 有一根为0;则m= . 11. 对于任意不相等的两个数a;b;定义一种运算*如下:ba b a b a -+=*;如523232*3=-+=;那么)5(*3-= .12. 有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心的弦;④在同圆或等圆中;相等的两条弦所对的弧是等弧;其中真命题是_________。
13. 有两个完全重合的矩形;将其中一个始终保持不动;另一个矩形绕其对称中心O 按逆时针方向进行旋转;每次均旋转22.5︒;第.2.次.旋转后得到图①;第.4.次.旋转后得到图②…;则第20次旋转后得到的图形与图①~图④中相同的是____. (填写序号)14. 等腰三角形两边的长分别为方程02092=+-x x 的两根;则三角形的周长是 .三、解答题(共4小题;每小题6分;共24分) 15. 解方程:x(x-2)+x-2=016. 计算:0)15(282218-+--图① 图② 图③ 图④ OOOO17. 下面两个网格图均是4×4正方形网格;请分别在两个网格图中选取两个白色的单位正方形并涂黑;使整个网格图满足下列要求. 18. 如图;大正方形的边长515+;小正为方形的边长为515-;求图中的阴影部分的面积.四、(本大题共2小题;每小题8分;共16分)19. 数学课上;小军把一个菱形通过旋转且每次旋转120°后得到甲的图案。
九年级上学期期中考试(数学)试题含答案
九年级上学期期中考试(数学)(考试总分:100 分)一、单选题(本题共计10小题,总分30分)1.(3分)在在在在在在在在在,在P(4,-2)在在在在在在在在在在在在( )A.(-4,2)B.(4,2)C.(-2,4)D.(-4,-2)2.(3分)在在在在在,在在在在在在在在在在在 在A. B. C. D.3.(3分)在在在y=(x在1)2+2在在在在在在3在在在在在,在在在在在在在在在在在在( )A.y=x2+2B.y=(x﹣1)2+1C.y=(x+2)2+2D.y=(x﹣1)2﹣34.(3分)在在在在在在在在在在在,在在在在在在在在在“1”,“2”,“3”“4”,“5”,“6”,在在在在在在在,在在在在在在在在在,在在在在在在在在A. B. C. D.5.(3分)在在,在在在在在,在在在在在在在在在在在在在在在在在在在在在,在在在在在在在在在在在在在,在在在在在在,在在在在在在在在在在.在在在在在在在在在在在,在在在在在在在在在在在,在在在在在在A. B.C. D.6.(3分)在在在在在在在在在在在,在在在在在在A. B. C. D.7.(3分)在在,在在,在在在,在,在在在在A.6B.9C.12D.158.(3分)在在在在在在在在在在在在在在在在在在在在在在在在在在A. B. C. D.9.(3分)236410589535在在,BC在在在在在在在在在,在在在在在在在3m,在在在6m,在在在在在在在B在在在在在在在在在在在AC在在在P.在在在在在在在在在在在( )A.3B.C.D.410.(3分)在在,在在ABCD在,AB=8cm,BC=6cm,在P在在A在在,在1cm/s在在在在A→D→C在在在在在在,在在在Q在在A在在,在2cm/s在在在在A→B→C在在在在在在,在在在在在在在C在,在在在在在在在在在.在在在在在在t(s),在APQ在在在在S(cm2),在在在在在在在S在t在在在在在在在在在在( )A. B.C. D.二、填空题(本题共计5小题,总分15分)11.(3分)在在在在在在在在在在在在在72°,在在在在在在在在在在在在___________.12.(3分)在在,在在在在在在,在在在在 _________.13.(3分)在在,在在在在,在在在,在在在在在.在在,在,在______.14.(3分)在在在在在在在在在在8,在在在在在在在在在在,在在在在在在在在______.15.(3分)在在,在在在在在在在在在,在在在在1在在在在OABC在在O在在在在在45°在在在在在在OA1B1C1,在在在在,在在O在在在在2021在在在在在在OA2021B2021C2021,在在在A2021在在在在_______.三、解答题(本题共计7小题,总分55分)16.(6分)在在在在在在在.(1)在m在在(2)在在在在在在在在在在在在在在在在在在在在.17.(6分)在在,在在在在在在在在在在在在在在在1在在在在在,在在在在在在在在在在在在在在在在在在在,在ABC在在在在在在在在.(1)在在ABC在在在在6在在在在在在在在A1B1C1,在在在在A1B1C1;(2)在在在A1B1C1在在在O在在在在在在在在A2B2C2;(3)在在在ABC在在在在在在在在在在A2B2C2,在在在在在在在在在______.18.(8分)在在在在在在在在在在在在在,在在在在在在在在在在在4在在在在在在在在在在,在在在在在在在在在在在在在在在在在在在,在在在在在A在B在C在D在在在在在(在在在在在在在,在在在在在在).在在在在在在在在在在在,在在在在.(1)在在在在在在在在在在在在在“在在在在”在在在在在在?(2)在在在在在在在在在在在在(在在在),在在在在在在在在在在在在在在,在在在在在在在在在在在在在在在在在在在在在在在在“在在在在”在“在在在在”在在在.(在在在在在在在在在在在在在A在B在C在D在在)19.(6分)在在在(x-1)2-5(x-1)+4=0在,在在在在在x-1在在在在在在,在x-1=y,在在在在在在在y2-5y+4=0,在在,在y=1在,在x-1=1,在在:x=2;在y=4在,在x-1=4,在在:x=5,在在在在在在在:在在在在在在在在在在(2x+5)2-7(2x+5)+12=0在在20.(8分)A.如图,在在BCE中,点A是边BE上一点,以AB为直径的在O与CE相切于点D,AD在OC,点F为OC与在O的交点,连接A(1)在在:CB在在O在在在;(2)在在ECB=60°,AB=6,在在在在在在在在在在.21.(10分)在在在在在在在在在在在在在,在在在在在在在在50在.在在在在在在在在在在在在,在在在在在,在在在在在在y(在)在在在在在在x(在)在在在在在在在在,在在在在在在在:(1)在在y在x在在在在在在在在;(在在在在在在在x在在在在在)(2)在在在在在在在在在在在在在在在在在在24000在,在在在在在在在在在,在在在在在在在在在在?(3)在在在在在在,在在在在在在在在在在在在在在在在在50%,在在在在在在在在在在在在在在w(在),在w在x在在在在在在在在,x在在在在,w在在在在,在在在在在在在?22.(11分)A.如图,已知二次函数y=a x2+b x+3的图象与x轴交于点A(-1,0)、B(4,0),与y的正半轴交于点(1)在在在在在y=a x2+b x+3在在在在.(2)在Q(m,0)在在在OB在在在,在在Q在y在在在在在,在BC在在在M,在在在在在在在N,在在CN,在在:在在在在在Q,在在MN=MC?在在在,在在在在Q在在在;在在在在,在在在在在.(3)在在E在在在在在在在在,在在E在在在在在在在在BC在在在在F,在EF=,在在在在E在在在.答案一、单选题(本题共计10小题,总分30分)1.(3分)在在在在A2.(3分)在在在在C3.(3分)在在在在C4.(3分)在在在在D5.(3分)在在在在D6.(3分)在在在在A7.(3分)在在在在C8.(3分)在在在在B9.(3分)在在在在B10.(3分)在在在在A二、填空题(本题共计5小题,总分15分)11.(3分)在在在在512.(3分)在在在在1313.(3分)在在在在27°14.(3分)在在在在2015.(3分)在在在在(−√22,−√22)三、解答题(本题共计7小题,总分55分)16.(6分)(1)m=-1(2)在在在在在在在: x =在在在在:17.(6分)(1)在在,在A1B1C1 在在在在;(2)在在,在A2B2C2 在在在在;(3)在在在在在在在在(-3,0).18.(8分)(1)在在在在在在在在在在在在在在在在在在在在在在在在在在,在在在在在在在在在在在在在在“在在在在”在在在在(2)在在在在在在:在在 12 在在在在在在在,在在在在在在在在在在“在在 在在”在“在在在在”在在在 2 在,在在在在在在在在在在在“在在在在”在“在在在在”在在 在19.(6分)在在在在在:在 2x+5=y,在在在在在在在 y2-7y+12=0,在在 y 1=3 y2 =4 在 y=3 在,在2x+5=3,在在:x=-1;在 y=4 在,在 2x+5=4,在在: x=在在在在在在在:x1 = -1 x2 =20.(8分)(1)在在:在在 OD,在 AF 在在在在 G,在CE 在在O 在在在在 D, 在OD在CE,在在CDO=90°, 在AD在OC,在在ADO=在COD,在DAO=在COB, 在OA=OD,在在ADO=在DAO,在在COD=在COB, 在OB=OD,OC=OC,在在CDO在在CBO,在在CBO=在CDO=90°, 在OB在BC在CB 在在O 在在在.(2)S 在=S 在在 ODF=21.(10分)(1)在 y 在 x 在在在在在在在在在 y=kx+b(k≠0),在 y在 x 在在在在在在在在在 y=-20x+2600;(2)(x-50)(-20x+2600)=24000,在在,x1=70,x2=110(在在在在,在在), 在在在在在在在在,在在在在在在在在 70 在;(3)在在在在在,w=(x-50)(-20x+2600),=-20x 2+3600x-130000, w=-20(x-90)2+32000,在在在在在在在在在在在在在在在在在在 50%,在在在在在在在在在在,在在在,50≤x≤75,在a=-20 < 0,在在在在在在在,在在在:x=90 在 x < 90 在,w 在 x 在在在在在在在在 x=75 在,w 在在在在在,在在 w=27500, 在:在在在在 75 在在,在在在在在在在,在在在在在 27500 在.22.(11分)(1)在 A(-1,0),B(4,0)在在 y=ax 2+bx+3,在:在在在在在在在在在在(2)在在,在在在在:在 x=0 在,y=3, 在在 C 在在在在(0,3). 在在在 BC 在在在在在在在 y=kx+c(k≠0), 在B(4,0),C(0,3)在在 y=kx+c,在:,在在:在在在 BC 在在在在在在在在在 Q 在在在在(x,0),在在 M 在在在在在 N 在在在在在MN=MC. 在在 C 在在在在(0,3),在在在:x=0( 在在)在在在 Q在在在在在在在在 Q在在 MN=MC.(3)在在 E 在 EP在在在 BC,在 y 在在在 P,在在在在 P 在在在,在在 P1,P2,在在 2 在在.在OB=4,OC=3,在在在 O 在在在 BC 在在在在=在在 E 在在在在在在在在 BC 在在在在 F,在在在 E 在在在 BC 在在在在,在在 P1在在在 OC 在在在,在在 P1在在在在在CP1=CP2,在在 P2在在在在在在在 BC在在在在在在在在在在 EP 在在在在在在在在在在在 EP在在在在在在在在在在在在在在,在:在在在E 在在在在:。
山东省泰安市新泰市2023-2024学年九年级上学期期中数学试题(含答案)
九年级上学期期中检测数学试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,满分150分.考试时间120分钟.注意事项:1.答题前,请考生仔细阅读答题卡上的注意事项,并务必按照相关要求作答.2.考试结束后,监考人员将本试卷和答题卡一并收回.第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,在每小题给出的选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1的值等于()A .BC .3D2.若点是反比例函数图象上一点,则此函数图象一定经过点( )A .B .C .D .3.如图,在Rt 中,于点,下列结论正确的是()A .B .C .D .4.已知二次函数,则关于该函数的下列说法正确的是( )A .该函数图象与轴的交点坐标是B .当时,的值随值的增大而减小C .当取0和2时,所得到的的值相同D .当时,有最大值是15.已知三个点在反比例函数的图象上,其中,下列结论中正确的是()A .B .C .D .60︒32(2,3)ky x=(2,3)-(3,2)-(1,6)-(1,6)--ABC △90,BAC AD BC ∠=︒⊥D sin CD C AC=sin AB C BC=sin AD C DC=sin AD C AB=2(1)1y x =-+y (0,1)1x >y x x y 1x =y ()()()112233,,,,,x y x y x y 6y x=1230x x x <<<312y y y <<123y y y <<132y y y <<213y y y <<6.如图,一次函数与反比例函数的图象交于点,过点作轴于点,连接OP ,下列结论错误的是()A .B .C .的面积是3D .点在上,当时,7.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为31°,缆车速度为每分钟40米,从山脚下A 到达山顶B 缆车需要15分钟,则山的高度BC 为()A .米B.米C .米D .米8.已知二次函数的图象如图所示,则一次函数的图象大致为()A .B .C .D .9.函数的共同性质是( )A .它们的图象都经过原点B .它们的图象都不经过第二象限C .在的条件下,都随的增大而增大D .在的条件下,都随的增大而减小10.如图,一辆小车沿着坡度为的斜坡向上行驶了100米,则此时该小车上升的高度为()1y kx =+6(0)y x x=>(2,)P t P PA x ⊥A 3t =1k =OAP △(,)B m n 6(0)y x x=>2m >n t >600si *n 31︒600tan 31︒600*tan 31︒600sin 31︒2(0)y ax bx a =+≠(0)y ax b a =+≠212,,y x y y x x=-==-0x >y x 0x >y x 1:i =A .50米B .米C .米D .100米11.如图,在中,,则的长为( )A .3BC .D .412.新定义:在平面直角坐标系中,对于点,当点满足时,称点是点的“关联点”.已知点,有下列结论:①点都是点的“关联点”;②若直线上的点是点的“关联点”,则点的坐标为;③抛物线上存在两个点是点的“关联点”;其中,正确结论的个数是( )A .0B .1C .2D .3第Ⅱ卷(非选择题 102分)二、填空题(每小题4分,共24分,只要求填最后结果)13.若则锐角∠A =_______°.14.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,加压后气体对汽缸壁所产生的压强p (kPa )与汽缸内气体的体积V (mL )成反比例,p 关于V 的函数图象如图所示,若压强由75kPa 加压到100kPa ,则气体体积压缩了_______mL .15.如图,在Rt △ABC 中,∠ABC =90°,BD ⊥AC 于点D ,AC =10,,那么AD =_______.ABC △35,2,sin 5AB BC B ===AC ()11,P x y ()22,Q x y ()12122x x y y +=+()22,Q x y ()11,P x y 1(1,0)P 12(4,10),(2,4)Q Q --1P 2y x =+A 1P A (0,2)223y x x =--1P 1cos 2A =3cos 5C =第15题图16.如图,点A 是反比例函数的图象上的一点,过点A 作AB ⊥x 轴,垂足为B ,点C 为y 轴上的一点,连接AC ,BC .若△ABC 的面积为6,则k 的值是_______.第16题图17.某商厦将进货单价为70元的某种商品,按销售单价100元出售时,每天能卖出20个,通过市场调查发现,这种商品的销售单价每降价1元,日销量就增加1个,为了获取最大利润,该种商品的销售单价应降_______元.18.如图,抛物线与直线y =mx +n 交于A (-1,p ),B (3,q )两点,则不等式的解集是_______.三、解答题(本题共7个小题,共78分,解答题写出文字说明、证明过程或推演步骤)19.(9分)如图,在△ABC 中,BD ⊥AC ,AB =6,,∠A =30°.①求BD 和AD 的长;ky x=2y ax c =+2ax mx c n -+>AC =②求tan C 的值.20.(10分)求二次函数在范围内的最小值和最大值.21.(10分)在一座小山山顶建有与地平线垂直的电视发射塔AB .为测量该小山的铅直高度,某数学兴趣小组在地平线上的C 处测得电视发射塔顶A 的仰角为45°,后沿地平线向山脚方向行走20米到达D 处,在D 处测得电视发射塔的底部B 的仰角为30°,如图,若电视发射塔的高度AB 为60米,测角仪的高度忽略不计,求小山的铅直高度(精确到1米))22.(10分)如图,一次函数y =ax +b 与反比例函数的图象交于点A (1,3),B (m ,-1).(1)求反比例函数和一次函数的表达式.(2)根据图象,当x 取何值时,一次函数的值大于反比例函数的值?23.(12分)2023年杭州亚运会在我国成功举办.如图,城市广场上一个圆形喷水池的中央竖直安装了一个柱形喷水装置OA ,,从A 处向外喷出的水流在各个方向上沿形状相同的抛物线路径落下,王芳同学根据题意在图中建立如图所示的坐标系,水流喷出的高度y (m )与水平距离x (m )之间的关系式是y =ax 2+bx +c (x >0),已知水流的最高点到OA 的水平距离是,最高点离水面是.(1)求二次函数表达式;(2)若不计其他因素,水池的半径至少为多少米,才能使喷出的水流不至于落在池外?24.(13分)小明在阅读了九上数学课本21页“读一读”《换一个角度看》后,组织了数学建模小组在综合实践课上探究面积为4,周长为m 的矩形问题.发现矩形的面积与周长存在一定的关系,在解决此问题时既可以采用“代数”的方法解决,但也可以从“图形”的角度来研究它.构建模型223y x x =--03x ≤≤ 1.41= 1.73=ky x=1m 2OA =1m 49m 16(1)当m =10时,设矩形的长和宽分别为x ,y ,则xy =4,2(x+y )=10,满足要求的(x ,y )可以看成反比例函数(x >0)的图象与一次函数y =-x +5在第一象限内的交点坐标,从图①中观察到,交点坐标为_______,即满足当矩形面积为4时,周长是10的矩形是存在的;问题探究(2)根据(1)的结论,当xy =4,2(x +y )=m 时,满足要求的(x ,y ),可以看成反比例函数(x >0)的图象与一次函数的_______交点坐标,而此一次函数图象可由直线y =-x 平移得到,请在图②的平面直角坐标系中直接画出直线y =-x .当直线平移到与反比例函数的图象有唯一交点时,周长m 的值为_______;拓展应用(3)写出周长m 的取值范围.图① 图②25.(14分)如图,在平面直角坐标系中,直线l 与x 轴交于点A (6.0),与轴交于点B (0,-6),抛物线经过点A ,B ,且对称轴是直线x =1.(1)求直线l 的解析式;(2)求抛物线的解析式;(3)点P 是直线l 下方抛物线上的一动点,过点P 作PC ⊥x 轴,垂足为C ,交直线l 于点D ,过点P 作PM ⊥l ,垂足为M的最大值及此时P 点的坐标.九年级上学期期中检测数学参考答案1.C 2.D 3.B 4.C 5.C 6.D 7.A 8.C 9.D 10.A 11.B 12.D 13.60 14.20 15. 16. 17.5 18.x <-1或x >319.(9分)解:(1)∵BD ⊥AC ,∠ADB =90°,在Rt △ADB 中,AB =6,∠A =30°,4y x=4y x=PD +32512-∴,;(2),在Rt 中,20.(10分)解:,∴抛物线的对称轴为x =1,顶点坐标为(1,4),∵,∴当x =1时,取得最小值y =-4;当x =3时,取得最大值y =021.(10分)解:延长AB 交直线CD 于点E ,由题意得,CD =20米,AB =60米,∠ACE =45°,∠BDE =30°,∠AEC =90°,设BE =x 米,则AE =(60+x)米,在Rt △BDE 中,,经检验,是原方程的解且符合题意,∴米,在Rt △ACE 中,∵∠ACE =45°,∴AE =CE ,∴,解得.∴小山的铅直高度约为55米.22.(10分)解:(1)将代入得:,则反比例解析式为,将代入,得:,,将与坐标代入中,得:,解得:,则一次函数解析式为;(2)观察图象,当或时,一次函数的值大于反比例函数的值.23.(12分)解:(1)水流的最高点到OA 的水平距离是,最高点离水面是,132BD AB ==AD ∴==CD AC AD =-=-=BCD △tan BD C CD ∠===2223(1)4y x x x =--=-- 03x ≤≤tan 30BE x DE DE ︒===DE =DE =()20CE =6020x +=55x =≈(1,3)A ky x=3k =3y x =(,1)B m -3y x=3m =-(3,1)B ∴--A B y ax b =+331a b a b +=⎧⎨-+=-⎩12a b =⎧⎨=⎩2y x =+30x -<<1x > 1m 491m,m 162OA =拋物线的顶点坐标为故设抛物线的解析式为,,解得,拋物线的解析式为,拋物线的解析式为.(2)令得到,解得(舍去),故水池的半径至少为1米.24.(13分)解:(1)根据图象可得,交点为,故答案为:;(2),当时,,,解得,反比例函数的图象与一次函数有一个交点,故答案为:,8;(3)由(2)可得.图②25.(14分)解:(1)设直线的解析式为,∵直线l 与x 轴交于点A (6.0),与y 轴交于点B (0,-6),,解得:,∴191,,0,4162A ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭219416y a x ⎛⎫=-+ ⎪⎝⎭211902416a ⎛⎫∴=-+ ⎪⎝⎭1a =-∴219416y x ⎛⎫=--+ ⎪⎝⎭∴21122y x x =-++0y =211022x x -++=12112,x x ==(1,4)(4,1)、(1,4)(4,1)、2()x y m += 1, 2y x m ∴=-+142x x m -+=21402x mx -+=211604m ∴∆=-=8m =± 4(0)y x x =>12y x m =-+8,m ∴=12y x m =-+8m ≥l (0)y mx n m =+≠606m n n +=⎧∴⎨=-⎩16m n =⎧⎨=-⎩直线的解析式为;(2)设抛物线的解析式为,抛物线的对称轴是直线,,抛物线经过点,解得:,抛物线的解析式为;(3)∵A (6,0),B (0,-6),∴OA =OB =6,在△AOB 中,∠AOB =90°,∴∠OAB =∠OBA =45°∵PC ⊥x 轴,PM ⊥l ,∴∠PCA =∠PND =90°,在Rt △ADC 中,∵∠PCA =90°,∠OAB =45°,∴∠ADC =45°,∴∠PDM =∠ADC =45°,在Rt △PMD 中,∠PMD =90°,∠PDM =45°,设点,,当时,有最大值是最大,的最大值为,当时,的最大值为,此时点.∴l 6y x =-2()(0)y a x h k a =-+≠ 1x =2(1)y a x k ∴=-+ 250,,6a k A B a k +=⎧∴⎨+=-⎩14254a k ⎧=⎪⎪⎨⎪=-⎪⎩∴2125(1)44y x =--sin 45,, 2 PD. PM PM PD PD PD ∴︒=∴=+=2212511(1)6,4442y x x x =--=--∴ 211,6,(,6)42P t t t D t t ⎛⎫--∴- ⎪⎝⎭22211131966(3)424244PD t t t t t t ⎛⎫∴=----=-+=--+ ⎪⎝⎭10,4-<∴ 3t =PD 94PD +PD +923t =211112121,6936,3,424244t t P ⎛⎫--=⨯-⨯-=-∴- ⎪⎝⎭PD +92213,4P ⎛⎫- ⎪⎝⎭。
浙江省温州市乐清市山海联盟2024-2025学年上学期九年级期中考试数学试卷[含答案]
乐清市山海联盟2024学年第一学期九年级期中考试数学试卷【注意事项】本试卷分试题卷和答题卷两部分,满分100分.考试时间共90分钟.一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.若⊙O 的半径为6,点P 在⊙O 内,则OP 的长可能是( )A .5B .6C .7D .82.抛物线257y x x =-+与y 轴的交点坐标是( )A .()7,0B .()5,0-C .()0,7D .()0,5-3.某班从4名男生和2名女生中任选1人参加演讲比赛,则选中男生的概率是( )A .12B .13C .14D .234.将抛物线23y x =向左平移1个单位长度,平移后抛物线的解析式为( )A .()231y x =+B .()231y x =-C .231y x =+D .231y x =-5.如图,四边形ABCD 是O e 的内接四边形,其中100A Ð=°,则C Ð的度数为( )A .120°B .100°C .80°D .50°6.一条排水管的截面如图所示, 已知排水管的半径5OB =, 水面宽8AB =, 则截面圆心O 到水面的距离OC 是( )A .4B .3C .2D .17.若()14,A y -,()22,B y -,()31,C y 为二次函数245y x x =--+图象上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y <<B .321y y y <<C .312y y y <<D .213y y y <<8.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,把Rt △ABC 绕着点A 逆时针旋转,使点C 落在AB 边的C ′上,C'B 的长度是( )A .1B .32C .2D .529.如图,⊙O 是ABC V 的外接圆,边BC 的垂直平分线与 AC 相交于D 点,若74B Ð=°,46C Ð=°,则 AD 的度数为( )A .23°B .28°C .30°D .37°10.已知抛物线()2212y x mx m =--££经过点(),A p t 和点()2,B p t +,则t 的最小值是( )A .3-B .1-C .0D .1二、填空题(本大题有6小题,每小题3分,共18分)11.抛物线2(2)3y x =-+的顶点坐标为.12.若扇形的圆心角为30°,半径为6,则扇形的面积为 .13.在一个不透明的盒子中装有红球和白球共20个,这些球除颜色外无其它差别,随机从盒子中摸出一个球,记下球的颜色后,放回并摇匀.通过大量的实验后发现摸出白球的频率稳定在0.4,则盒子中白球大约有个.14.如图,正五边形ABCDE 内接于O e ,P 为 DE 上的一点(点P 不与点D 重合),则CPD Ð= °.15.二次函数2(0)y ax bx c a =++¹的部分对应值如下表:x (3)-2-0135…y…708-9-5-7…则二次函数2y ax bx c =++在2x =时,y =.16.如图,AB 为O e 的直径,且26AB =,点C 为O e 上半圆的一点,CE AB ^于点E ,OCE Ð的角平分线交O e 于点D ,弦10AC =,那么ACD V 的面积是.三、解答题(本题共有6小题,共52分,解答时需要写出必要的文字说明、演算步骤或证明过程)17.如图,已知函数2y x bx c =-++图象经过点()1,0A -,B (0,3)(1)求b ,c 的值;(2)在图中画出这个函数的图象;(不必列表)(3)观察图像,当03x ££时,函数值y 的取值范围是 .18.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明“.小李同学购买了“二十四节气”主题邮票,他将A (小雪)、B (寒露)、C (秋分)、D (立秋)四张纪念邮票(除正面不同外,其余均相同)背面朝上洗匀.(1)小李从中随机抽取一张邮票,抽中是B (寒露)的概率是 .(2)小李先从中随机抽取一张邮票,记下内容后,正面朝下放回,重新洗匀后再随机抽取一张邮票.请用树状图或列表的办法求小李两次抽取的邮票中至少有一张是D (立秋)的概率.19.如图是由小正方形组成的88´网格.每个小正方形的顶点叫做格点,请用一把无刻度直尺及圆规借助网格根据要求作图,要求保留作图痕迹.(1)仅用一把无刻度直尺画出ABC V 的外心点O .并用圆规面出外接圆O e ;(2)仅用一把无刻度直尺画弦BD ,使得BD 平分ABC Ð.20.如图,AB 是O e 的直径,弦CD 交AB 于点E .连接AC AD 、.已知35BAC Ð=°.(1)求D Ð的度数;(2)若点C 为 ACD 的中点,求CEB Ð的度数.21.如图,某跳水运动员进行10米跳台跳水训练,水面边缘点C 的坐标为3,102æö--ç÷èø.运动员(将运动员看成一点)在空中运动的路线是经过原点O 的抛物线.在跳某个规定动作时,运动员在空中最高处A 点的坐标为51,4æöç÷èø,正常情况下,运动员在距水面高度5米以前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误.(1)求运动员在空中运动时对应抛物线的解析式并求出入水处B 点的坐标;(2)若运动员在空中调整好入水姿势时,恰好距点C 的水平距离为5米,问该运动员此次跳水会不会失误?通过计算说明理由.22.如图1,ABC V 内接于O e ,10AB AC ==,12BC =,点E 为 AC 上一点,点F 为 CE的中点,连结BF 并延长与AE 交于点G ,连AF ,CF .(1)求证:AFC AFG Ð=Ð.(2)如图2,当BG 经过圆心O 时,①求FG 的长;②记AFG V ,BFC △的面积分别为12,S S .则12:S S = .1.A【详解】点在圆内,点到圆心的距离小于半径,又因为圆的半径为6,所以OP 的长小于6,因为5<6,所以选项A 符合题意,故选A 2.C【分析】根据题意,求0x =时的函数值即可.本题考查了抛物线与y 轴的交点,熟练掌握求交点的基本方法是解题的关键.【详解】解:根据题意,当0x =时,0077y =-+=,故抛物线与y 轴的交点坐标为()0,7.故选:C .3.D【分析】根据简单地概率公式计算解答即可.本题考查了简单地概率公式计算概率,熟练掌握公式是解题的关键.【详解】解:根据题意,得选中男生的概率是:42423=+.故选:D .4.A【分析】本题考查了抛物线的平移,根据平移规律:左加右减,上加下减,即可求解,掌握抛物线的平移规律是解题的关键.【详解】解:∵抛物线23y x =向左平移1个单位长度,∴平移后抛物线的解析式为()231y x =+,故选:A .5.C【分析】本题主要考查了圆内接四边形的性质,根据圆内接四边形的对角互补,列式计算即可,熟练掌握圆内接四边形的性质是解决此题的关键.【详解】∵四边形ABCD 为圆内接四边形,∴180A C Ð+Ð=°,∵100A Ð=°,∴180********C A Ð=°-Ð=°-°=°,故选:C .6.B【分析】根据垂径定理求出BC ,根据勾股定理求出OC 即可.【详解】解: ∵OC 是圆心O 到水面的距离∴OC AB ^, ∴142BC AC AB ===,在Rt OCB V 中,由勾股定理得:3OC =, 故选:B .【点睛】本题考查了勾股定理和垂径定理的应用;由垂径定理求出BC 是解决问题的关键.7.C【分析】二次函数抛物线向下,且对称轴为x =2ba- =−2.根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【详解】∵二次函数y =−x 2−4x +5=−(x +2)2+9,∴该二次函数的抛物线开口向下,且对称轴为:x =−2.∵点 A(−4,y 1) , B(-2,y 2) , C(1,y 3) 都在二次函数y =−x 2−4x +5的图象上,而三点横坐标离对称轴x =−2的距离按由远到近为:(1,y 3)、(−4,y 1)、(−2,y 2),∴y 3<y 1<y 2.故选C .【点睛】此题主要考查二次函数图象上点的坐标特征,关键是根据函数关系式,找出对称轴.8.A【分析】首先由勾股定理求出AB =5,再由旋转的性质得出4AC AC ¢==,从而可求出BC ¢的长.【详解】解:在Rt △ABC 中,∠C =90°,AC =4,BC =3,∴222AB AC BC =+∴5AB ===由旋转的性质得,4AC AC ¢==∴541C B AB AC ¢¢=-=-= 故选:A .【点睛】此题主要考查了旋转的性质和勾股定理的运用,运用勾股定理求出AB =5是解答此题的关键.9.B【分析】连接OA 、OB 、OC ,利用三角形的内角和定理、圆周角定理求出120BOC Ð=°,92AOB Ð=°,再由垂直平分线的性质,得到120BOD Ð=°,即可求出答案.【详解】解:如图,连接OA 、OB 、OC ,∵74ABC Ð=°,46ACB Ð=°,∴180744660BAC Ð=°-°-°=°,∴2260120BOC BAC Ð=Ð=´°=°,224692AOB ACB Ð=Ð=´°=°,∵OD 垂直平分边BC ,∴1(360120)1202BOD COD Ð=Ð=°-°=°,∴1209228AOD BOD AOB Ð=Ð-Ð=°-°=°,∴ AD 的度数为28°.故选:B .【点睛】本题考查了圆周角定理,三角形的内角和定理,垂直平分线的性质,解题的关键是熟练掌握所学的知识,正确的求出所需角的度数.10.A【分析】本题考查了二次函数的对称性和增减性,根据抛物线的对称轴以及对称轴公式确定1p m +=,即可得到1p m =-,由抛物线()2212y x mx m =--££经过点(),A p t 和点()2,B p t +得到()()22221211t p mp m m m m ==--=--+-,结合12m -££即可确定t 的最小值.【详解】解:∵抛物线22y x mx =-,∴抛物线的对称轴为直线221mx m -=-=´,∵抛物线()2212y x mx m =--££经过点(),A p t 和点()2,B p t +,∴点(),A p t 和点()2,B p t +关于对称轴对称,22t p mp =-,∴22p p m ++=,即1p m +=,∴1p m =-,∴()()221211t m m m m =---=-+,∵12m -££,∴2m =时,t 有最小值为:413-+=-.故选:A .11.(2,3)【分析】本题主要考查了二次函数的顶点式,根据形如2()y a x h k =-+的抛物线的顶点坐标是(,)h k 解答即可.【详解】解:抛物线2(2)3y x =-+的顶点坐标是(2,3).故答案为:(2,3).12.3p【分析】本题主要考查了求扇形的面积,根据扇形的面积公式计算即可.2360扇p =n R S ,其中n是圆心角的度数,R 是扇形的半径.【详解】∵30,6n R =°=,∴22306==3360360n R S p p p ´=扇.故答案为:3p .13.8【分析】直接用总数乘以频率即可得到答案.【详解】解:白球大约有200.48´=(个),故答案为:8.【点睛】本题考查频率估计概率,当进行大量重复试验时,频率可近似等于概率.14.36【分析】连接OC ,OD ,求出COD Ð的度数,再根据圆周角定理即可解决问题.【详解】解:如图,连接OC ,OD ,∵多边形ABCDE 是正五边形,∴360725COD °Ð==°,∴11723622CPD COD Ð=Ð=´°=°,∴CPD Ð的度数为36°.故答案为:36.【点睛】本题考查正多边形和圆,圆周角定理等知识.解题的关键是掌握中心角和圆周角定理.15.8-【分析】根据表格可知,3x =-和5x =的函数值相等,可以得到抛物线的对称轴,再利用抛物线的对称性,找到表格中与2x =关于对称轴对称的x 对应的函数值,即为所求.【详解】解:由表格可知,3x =-和5x =的函数值相等,∴抛物线的对称轴为:3512x -+==,∴2x =与0x =的函数值相等,即:当2x =时,y =8-;故答案为:8-.【点睛】本题考查二次函数的对称性.通过表格确定二次函数的对称轴,是解题的关键.16.85【分析】设AB ,CD 的交点为F ,连接OD ,证明CFE DFO V V ∽,继而得到OD AB ^,利用勾股定理,三角函数,计算,AF CE 的长,结合()1·2ACD ACF ADF S S S AF CE OD =+=+V V V ,计算解答即可.【详解】解:设AB ,CD 的交点为F ,连接OD ,∵ OD OC =,∴ODC OCD Ð=Ð;∵OCE Ð的角平分线交O e 于点D ,∴CEF OCD Ð=Ð;∴CEF ODC Ð=Ð;∵CFE DFO Ð=Ð,∴ODC OCD Ð=Ð;∴CFE DFO V V ∽,∴,EF CE CEF DOF FO DO=Ð=Ð,∵CE AB ^,∴OD AB ^,∵AB 为O e 的直径,∴90ACB Ð=°,∵26AB =, 10AC =,∴113,242OA OD AB BC =====,∴512sin ,cos 1313AC BC ABC ABC AB AB Ð==Ð==,∴120288sin ,cos 1313CE BC ABC BE BC ABC =Ð==Ð=g g ,∴5013AE AB BE =-=,∴11913OE AO AE =-=,∴120289EF CE EO DO CE ==+,∴12011984028913221EF =´=,∴1690221AF AE EF =+=,∴()1·2ACD ACF ADF S S S AF CE OD =+=+V V V 1169028985222113=´´=..【点睛】本题考查了圆的性质,三角形相似的判定和性质,勾股定理,三角函数,等腰三角形的判定和性质,熟练掌握性质,活用相似和三角函数是解题的关键.17.(1)b 的值为2,c 的值为3(2)见解析(3)04y ££【分析】(1)利用待定系数法依次解答即可;(2)根据列表,描点,连线画图象即可.(3)利用数形结合思想,根据函数的增减性,最值解答即可.【详解】(1)解:∵函数2y x bx c =-++图象经过点()1,0A -,B (0,3),∴103b c c --+=ìí=î,解得23b c =ìí=î,∴b 的值为2,c 的值为3.(2)解:由(1)得函数解析式为223y x x =-++,画图象如下:.(3)解:由(1)得函数解析式为()222314y x x x =-++=--+,∵抛物线开口向下,∴函数有最大值,且当1x =时,取得最大值,最大值为4,当0x =时,3y =,当3x =时,0y =,∴04y ££.【点睛】本题考查了待定系数法求解析式,数形结合思想,二次函数的增减性应用,二次函数的最值应用,熟练掌握二次函数的增减性应用,二次函数的最值应用是解题的关键.18.(1)14(2)716【分析】本题主要考查了概率公式,画树状图求概率,(1)根据概率公式计算;(2)画出树状图,确定所有可能出现的结果,符合题意的结果,再根据概率公式得出答案.【详解】(1)解:一共有4张邮票,符合题意的有1张,所以,抽中B 的概率是14.故答案为:14;(2)画树状图如下:一共有16种可能出现的结果,每种结果出现的可能性相同,符合题意的有7种,所以两次抽取邮票中至少有一张是D 的概率是716.19.(1)详见解析(2)详见解析【分析】本题主要考查了作图−应用与设计作图,角平分线的性质,垂直平分线的性质,垂径定理的推论,圆周角定理,三角形的外接圆与外心等知识,(1)画出BC的垂直平分线与AB的垂直平分线,两线交点O,以OC为半径作圆O即可得解;e于点D,连接BD即可(2)作AC所在矩形的对角线交于一点,过圆心和这点作射线交O得解;解题的关键是理解题意,灵活运用所学知识解决问题.【详解】(1)如图,∵BC的垂直平分线与AB的垂直平分线,两线交点O,∴点O到三角形三顶点的距离相等,e和点O即为所求;∴以OC为半径作的O(2)如图,∵矩形对角线的交点平分每一条对角线,∴过圆心和这点的射线必平分弦AC所对的 AC,∴=,AD CDÐ=Ð,∴ABD CBDÐ,∴BD平分ABC∴弦BD即为所求.20.(1)55°(2)105°【分析】本题主要考查了圆周角定理,等腰三角形的性质,三角形外角的性质,对于(1),根据圆周角定理求出BOC Ð,进而求出AOC Ð,再根据圆周角定理求出答案即可;对于(2),先根据“弧,弦,圆心角”之间的关系得AC CD =,即可求出ACD Ð,再根据三角形外角的性质得出答案.【详解】(1)如图所示,连接OC ,∵35BAC Ð=°,∴2=70BOC BAC Ð=а,∴18070110AOC Ð=°-°=°,∴1552D AOC Ð=Ð=°;(2)∵点C 是 ACD 的中点,∴ AC CD=,∴AC CD =,∴180270ACD D Ð=°-Ð=°.∵CEB Ð是ACE △的外角,∴3570105CEB CAE ACE Ð=Ð+Ð=°+°=°.21.(1)()255144y x =--+;()4,10B -(2)本次跳水失误,见解析【分析】(1)设抛物线的解析式为()2514y a x =-+,把原点坐标代入解析式,确定a 值,结合函数值计算即可;(2)根据3,102C æö--ç÷èø,运动员在空中调整好入水姿势时,恰好距点C 的水平距离为5米,则此时该点的横坐标为37522-=米,计算对应的纵坐标,结合标准判断即可.本题考查了待定系数法,抛物线的应用,熟练掌握待定系数法,性质是解题的关键.【详解】(1)解:根据题意,设抛物线的解析式为()2514y a x =-+,把原点坐标代入解析式,得504a +=,解得54a =-,故抛物线的解析式为()255144y x =--+;∵水面边缘点C 的坐标为3,102æö--ç÷èø,C ,B 在一条直线上,∴点B 的纵坐标为10-,根据题意,得()25510144x -=--+,解得124,2x x ==-(舍去),故点()4,10B -.(2)解:根据3,102C æö--ç÷èø,运动员在空中调整好入水姿势时,恰好距点C 的水平距离为5米,则此时该点的横坐标为37522-=米,当72x =时,2575105142416y æö=--+=-ç÷èø,由()105551051<616---=,根据运动员在距水面高度5米以前,必须完成规定的翻腾、打开动作,并调整好入水姿势,故本次跳水失误.22.(1)见解析(2)①72;②12【分析】(1)根据圆的内接四边形的性质,等腰三角形的性质,圆周角的性质,平角的定义,证明AFC AFG Ð=Ð即可.(2)①先证明()ASA AFC AFG V V ≌,得FG FC =,在利用垂径定理,勾股定理,计算FC 的长即可;②根据前面解答,得21171221222S BC FC ==´´=g ,过点A 作AK BF ^于点K ,利用勾股定理,圆周角定理,三角形的面积公式,求得112FG AK S =g ,再计算12:S S 即可.【详解】(1)证明:∵四边形ABCF 内接于O e ,∴180AFC ABC Ð=°-Ð;∵AB AC =,∴ACB ABC Ð=Ð;∵ACB AFB Ð=Ð,∴AFB ABC Ð=Ð;∴180180AFB ABC °-Ð=°-Ð;∵180AFB AFG °-Ð=Ð,∴AFC AFG Ð=Ð.(2)①解:∵点F 为 CE的中点,∴FAC FAG Ð=Ð.∵FAC FAG AF AF AFC AFG Ð=Ðìï=íïÐ=Ðî,∴()ASA AFC AFG V V ≌,∴FG FC =,设BC 的中点为H ,连接AH ,∵10AB AC ==,12BC =,∴162BH CH BC ===,AH BC ^,∴点O 一定AH上,8AH =,设O e 的半径为x ,则,8OB x OH x ==-,根据勾股定理,得()22268x x =+-,解得254x =,故252BF =,∵BF 是直径,∴90BCF Ð=°,∴72FC ==,∴72FG =.②解:根据前面解答,得21171221222S BC FC ==´´=g ,过点A 作AK BF ^于点K ,∵BF 是直径,252BF =,10AB =,∴90BAF Ð=°,∴152AF ==,∴6AB AF AK BF ==g ,∴11172162222S FG AK ==´´=g ,∴12211:2122:S S ==.【点睛】本题考查了圆周角定理,垂径定理,勾股定理,三角形全等的判定和性质,熟练掌握圆的性质,勾股定理,垂径定理是解题的关键.。
九年级数学上学期期中考试试题(附答案)
九年级数学上学期期中考试试题(一)一、单选题1.下列图标中,是中心对称的是( )A. B. C. D.2.抛物线2(2)3y x 的顶点坐标是( ) A.(23),-B.23-,-C.(23),D.(23),3.已知32x y ,那么下列式子中一定成立的是( )A. B.32xyC.23x y D.32x y 4.如图,在ABC 中,点D E ,分别在AB AC ,边上,//DE BC ,若6AD ,2BD ,9AE ,则EC 的长是( )A.3B.6C.4D.85.如图,将绕直角顶点C 顺时针旋转90,得到A B C ,连接AA ,若125,则BAC 的度数是( )A.10B.20C.30D.406.二次函数231y x =-+的图象如图所示, 将其沿x 轴翻折后得到的 抛物线的解析式为( )A.231y x =-B.23y x =C.231y x =+D.231y x =--7.将抛物线2(1)2y x =+-向上平移a 个单位后得到的抛物线恰好与x 轴只有一个公共点,则a的值为( ) A.1-B.1C.2-D.28.如图,二次函数20y ax bx c a=++的图象经过点A B C ,,.现有下面四个推断:①抛物线开口向下; ②当2x时,y 取最大值;③当4m 时,关于x 的一元二次方程2ax bx c m 必有两个不相等的实数根; ④直线0y kx c k经过点A C ,,当2kx c ax bx c 时,x 的取值范围是40x -;其中推断正确的是( ) A.①②B.①③C.①③④D.②③④二、解答题9.已知二次函数23y x bx 的图象过点1,0.求该二次函数的解析式和顶点坐标.10.如图,将ABC 绕点B 旋转得到DBE ,且A ,D ,C 三点在同一条直线上.求证:DB 平分ADE ∠.11.已知:如图在ABC 中,D 是AC 上一点,E 是AB 上一点,且AEDC .(1)求证:AED ACB ∽;(2)若6AB ,4AD ,5AC ,求AE 的长. 12.若二次函数2yax bx c 的x 与y 的部分对应值如下表:EDCBA(1)求此二次函数的解析式; (2)画出此函数图象(不用列表).(3)结合函数图象,当41x <时,写出y 的取值范围.13.如图,在平面直角坐标系中,ABC 的顶点坐标分别为(20)A ,,(32)B ,,(52C ,).以原点O 为位似中心,在y 轴的右侧将ABC 放大为原来的两倍得到A B C .(1)画出A B C ;(2)分别写出B C ,两点的对应点B C ,的坐标. 14.已知二次函数2––1y x kx k (2)k >. (1)求证:抛物线21yx kx k (2)k >与x 轴必有两个交点;(2)抛物线与x 轴交于A B ,两点(点A 在点B 的左侧),与y 轴交于点C ,若OAC 的面积是32,求抛物线的解析式. 15.如图,在等边ABC 中,D E F ,,分别为边AB BC CA ,,上的点,且满足60DEF .(1)求证:BE CE BD CF ⋅=⋅;(2)若DE BC 且DE EF ,求BEEC的值. 16.某文具店销售一种进价为每本10元的笔记本,为获得高利润,以不低于进价进行销售,结果发现每月销售量y 与销售单价x 之间的关系可以近似地看作一次函数:5150yx(1)该文具店这种笔记本每月获得利润为w 元,求每月获得的利润w 元与销售单价x 之间的函数关系式;(2)当销售单价定为多少元时,每月可获得最大利润,最大利润为多少元?17.小左同学想利用影长测量学校旗杆的高度,如图,她在某一时刻立一长度为1米的标杆,测得其影长为0.8米,同时旗杆AC 投影的一部分在地上,另一部分在某一建筑物的墙上,测得旗杆与建筑物的距离CD 为10米,旗杆在墙上的影高BD 为2米,请帮小左同学算出学校旗杆AC 的高度.18.在平面直角坐标系xOy 中,点()4,2A --,将点A 向右平移6个单位长度,得到点B .(1)直接写出点B 的坐标;(2)若抛物线2y x bx c =-++经过点,A B ,求抛物线的表达式;(3)若抛物线2y x bx c =-++的顶点在直线2y x =+上移动,当抛物线与线段AB 有且只有一个公共点时,求抛物线顶点横坐标t 的取值范围.19.已知:在等腰直角三角形ABC 中,AB BC ,90ABC .D 是平面上一点, 连结BD .将线段BD 绕点B 逆时针旋转90得到线段BE ,连结AE CD ,.(1)在图1中补全图形,并证明:AECD .(2)当点D 在平面上运动时,请猜测线段AD CE AB BD ,,,之间的数量关系.(3)如图2,作点A 关于直线BE 的对称点F ,连结AD DF BF ,,.若11AB ,7BD ,14AD ,求线段DF 的长20.定义:对于平面直角坐标系xOy 上的点,P a b 和抛物线,我们称,P a b 是抛物线的相伴点,抛物线是点,P a b 的相伴抛物线. 如图,已知点2,2A,4,2B ,1,4C .(1)点A 的相伴抛物线的解析式为_________; 过,A B 两点的抛物线的相伴点坐标为_______;(2)设点,P a b 在直线AC 上运动:①点,P a b 的相伴抛物线的顶点都在同一条抛物线Ω上,求抛物线Ω的解析式. ②当点,P a b 的相伴抛物线的顶点落在ABC 内部时,请直接写出a 的取值范围. 三、填空题21.请写出一个开口向上,并且与y 轴交于点(01),的抛物线的解析式__________. 22.函数2y ax bx c =++的图象如图所示,则ac _________0.(填“>”,“”,或“<”)23.如图, 在ABC 中,,D E 分别是AB AC ,边上的中点,连接DE ,那么ADE 与ABC 的面积之比是________.24.点121,,1,A y B y 在二次函数223y x x =+-的图象上,则1y 与2y 的大小关系是1y _______2y (用“>”、“<”、“”填)25.如图是小孔成像原理的示意图,根据图中标注的尺寸,如果物体AB 的高度为18cm ,那么它在暗盒中所成的像CD 的高度应为______cm.26.北京紫禁城是中国古代宫廷建筑之精华.经测算发现,太和殿,中和殿,保和殿这三大殿的矩形宫院ABCD (北至保和殿,南至太和门,西至弘义阁,)东至体仁阁与三大殿下的工字形大台基所在的矩形区域EFGH 为相似形,若比较宫院与台基之间的比例关系,可以发现接近于9:5,取“九五至尊”之意.根据测量数据,三大殿台基的宽(EF )为40丈,请你估算三大殿宫院的宽(AB )为__________丈.27.已知二次函数212yax bx 自变量x 的部分取值和对应的函数值y 如下表,则在实数范围内能使得1y >成立的x 的取值范围是__________.AO 逆时针旋转90得到AO,当O 恰好落在抛物线上时,点A 的坐标为______.参考答案1.答案:C 解析:2.答案:B 解析:3.答案:C 解析:4.答案:A 解析:5.答案:B 解析:6.答案:A 解析:7.答案:A 解析:8.答案:B 解析:9.答案:223y x x 顶点14,解析:10.答案:将ABC 绕点B 旋转得到DBE ,ABC DBE BA BD .A ADB A BDE , ADBBDE ,DB 平分ADE解析:11.答案:(1)证明:AEDC ,AA ,AED ACB ∽(2)AED ACB ∽,=AE ADAC AB6AB ,4AD ,5AC ,4=56AE 103AE解析: 12.答案:(1)214y x(2)(3) 54y解析:13.答案:(1)以原点O 为位似中心在y 轴的右侧将ABC 放大为原来的两倍得到A B C ,4,0A ,(6,4)B ,(104)C ,- 如图画出A B C(2)由(1)得:(6,4)B ,'(104)C , 解析:14.答案:(1)证明:2()41(1)k k 2(2)k ,又2k2(2)0k >,即0> 抛物线21yx kx k 与x 轴必有两个 (2)解:抛物线21y x kx k 与x 轴交于A B ,两点令0y ,有210x kx k ,解得1?x k 或x 1, 2k ,点A 在点B 的左侧(1,0)A ,(1,0)B k抛物线与y 轴交于点C , (0,1)C k在Rt AOC 中,tan 3OCOACOA∠,131k ,解得4k 抛物线的表达式为243y x x解析: 15.答案:(1)ABC 是等边三角形,60BC 又60DEFDEF B ∠∠DEC 是DBE 的外角DEC B BDE 即DEFFECBBDEDEF B ∠∠BDE CEF , 又BCΔBDE CEFBD BECECFBE CEBD CF (2)BDECEFBD DECEEF又DE EF ,即1?DEEFBD CE DEBC90DEB ∠ 60B ∠30BDE ∠12BEBD 12BE BE EC BD 解析: 16.答案:(1)51030wx x(2)20x ,w 最大500元. 解析: 17.答案:14.5 解析:18.答案:(1)2,2B (2)226yx x (3)43t 或05t解析:19.答案:(1)略 (2)222222AD CE AB BD(3)12DF 解析: 20.答案:(1)222yx x ;2,10Py x x(2)①242②4420<<a解析:y x21.答案:21解析:22.答案:>解析:23.答案:1:4解析:24.答案:>解析:25.答案:8解析:26.答案:72解析:27.答案:1x>x<或3解析:,28.答案:2,2或21解析:九年级数学上学期期中考试试题(二)一、单选题1.已知一组数2,x ,4,6众数为4,则这组数据的平均数为( ) A.3B.4C.5D.62.一组数据4,5,7,7,8,6的中位数和众数分别是( ) A.7,7 B.7,6.5C.6.5,7D.5.5,73.若关于x 的方程有一个根为-1,则a 的值为( )A.-4B.-2C.2D.44.从全市5000份数学试卷中随机抽取400份试卷,其中360份成绩合格,那么可以估计全市数学成绩合格的学生大约有多少人?( ) A.4500 B.4000 C.3600 D.48005.ABC 和DEF 相似,且相似比为23,那么它们的周长比是( ) A.23B.32C.49D.946.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为80分、85分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( ) A.255分 B.84.5分C.85.5分D.86.5分7.如果一个等腰三角形的两边长分别为方程2540x x +=-的两根,则这个等腰三角形的周长为( ) A.6B.9C.6或9D.以上都不正确8.若ABC 的三边长是a b c ,,,且满足||||0a b a c -+-=,则ABC 是( ) A.钝角三角形 B.直角三角形 C.等腰直角三角形 D.等边三角形9.若一元二次方程220x x m ++=有实数解,则m 的取值范围是( ) A.1m ≤- B.1m ≤C.12m ≤D.4m ≤10.某公司前年缴税20万元,今年缴税24.2万元.若该公司这两年的年均增长率相同,设这个增长率为x ,则列方程( ) A.320(1)24.2x +=B.220(1)24.2x -=C.22020(1)24.2x ++=D.220(1)24.2x +=11.已知一棵树的影长是30m ,同一时刻一根长1.5m 的标杆的影长为3m ,则这棵树的高度是( ).A.15mB.60mC.20mD.12.如图,ABC 中,////DF EG BC ,且AD DE EB ==,ABC 被,DF EG 分成三部分,且三部分面积分别为1S ,2S ,3S ,则123::S S S =( )A.1:1:1B.1:2:3C.1:3:5D.1:4:913.有一人患了流感,经过两轮传染后共有100人患了流感,每轮传染中平均一个人传染的人数x 满足的方程为( )A.1(1)100x x x +++=B.(1)100x x +=C.21100x x ++=D.2100x =14.如图,DE 是ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则NM MC ∶等于( )A.1∶2B.1∶3C.1∶4D.1∶5二、解答题15.按要求解方程(1)2320x x --=.(方法自选) (2)22410x x -=-(配方法)16.如图,在边长均为1的小正方形网格纸中,ABC 的顶点,,A B C 均在格点上,O 为直角坐标系的原点,点(1,0)A -在x 轴上.(1)以O 为位似中心,将ABC 放大,使得放大后的111A B C 与ABC 的相似比为2:1,要求所画111A B C 与ABC 在原点两侧;(2)分别写出11,B C 的坐标.17.某中学开展“头脑风暴”知识竞赛活动,八年级1班和2班各选出5名选手参加初赛,两个班选手的初赛成绩(单位:分)分别是: 1班85;80;75;85;100 2班80;100;85;80;80(1)根据所给信息将下面的表格补充完整;班初赛成绩18.如图,在宽为20、长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分作为草坪,要使草坪的面积为2540m ,求道路的宽.19.如图,已知关于x 的方程()22220x a b x c ab +++=-有两个相等的实数根,其中,a b c ,为ABC 的三边长.(1)试判断ABC 的形状,并说明理由;(2)若CD 是AB 边上的高,21AC AD ==,,求BD 的长.20.如图:在ABC 中,BC AC >,点D 在BC 上,且DC AC =,ACB ∠的平分线CF 交AD 于点F ,点E 是AB 的中点,连接EF .(1)求证://EF BC ;(2)若ABD 的面积是6,求四边形BDFE 的面积.三、填空题21.为了了解金东初中九年级480名学生的体重情况,从中抽取了200名学生的体重进行分析,在这个问题中,样本容量是________.22.已知450x y -=,则:x y 的值为__________.23.已知线段4cm,9cm a b ==,则,a b 的比例中项是_____________.24.一组数据12345,,,,x x x x x 方差是b ,则数据12345,,,,m x m x m x m x m x +++++方差是________. 25.如图,在ABC 中,,D E 分别是,AC AB 边上的点,,6,4,5AED C AB AD AC ∠=∠===,则AE 的长为_____________.26.如图,ABC 与A B C '''是位似图形,点O是位似中心,若3,9ABCOA AA s'==,则A B C S'''=________.参考答案1.答案:B解析:2.答案:C解析:3.答案:C解析:4.答案:A解析:5.答案:A解析:6.答案:D解析:7.答案:B解析:8.答案:D解析:9.答案:B解析:10.答案:D解析:11.答案:A解析:12.答案:C解析:13.答案:A解析:14.答案:B解析:15.答案:(1)原方程可化为:(1)(3)0x x +-= 10x +=或30x -=.解得121,3x x =-=.(2)2122x x -=, 2223212x x -+=, 3223(1)2x -=,1x -=所以1211x x ==. 解析:16.答案:(1)所画图形如下所示:(2)1111,B B C C 的坐标分别为:(4,4)(4,4),(6,2)(6,2)----. 解析:17.答案:(1)平均数中位数众数方差分别为85;80;85;60.(2)2班的初赛成绩较为稳定.因为1班与2班初赛的平均成绩相同,而2班初赛成绩的方差较小,所以2班的初赛成绩较为稳定. 解析:18.答案:设道路的宽为m x , 根据题意,得20325)(0(4)x x =--, 2521000x x ∴+=-12250x x ∴==,(不合题意,舍去)∴道路的宽为2米.解析: 19.答案:(1)两根相等,∴可得:224()4(2)0a b c ab -++=,222a b c ∴+=, ABC ∴是直角三角形(2)由(1)可得:2AC AD AB =⨯, 21AC AD ==,,4AB ∴=,3BD AB AD ∴=-=.解析:20.答案:(1)证明:在ACD 中,DC AC =,CF 平分ACD ∠;AF FD ∴=,即F 是AD 的中点;又E 是AB 的中点,EF ∴是ABD 的中位线;//EF BC ∴;(2)由(1)易证得:AEF ABD ∽;2(:)1:4AEFABDS SAE AB ∴==:,46ABDAEFS S ∴==,1.5AEFS∴=.6 1.5 4.5ABDAEFBDFE S S S∴=-=-=四边形.解析: 21.答案:200 解析: 22.答案:54解析:23.答案:6cm 解析: 24.答案:b 解析: 25.答案:103解析: 26.答案:16 解析:。
2023-2024学年山东省济南市长清区九年级上学期数学期中试题及答案
2023-2024学年山东省济南市长清区九年级上学期数学期中试题及答案本试卷分第I卷(选择题)和第II卷(非选择题)两部分.本试题共7页,满分150分,考试时间为120分钟.答卷前请考生务必将自己的姓名和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.第I卷选择题(共40分)一、选择题(本题共10小题,满分40分.在每小题列出的选项中,只有一项是符合题目要求的)1. 如图是《九章算术》中“堑堵”的立体图形,它的左视图为()A. B.C. D.【答案】A【解析】【分析】根据左视图的意义和画法可以得出答案.【详解】解:∵该几何体为放倒的三棱柱,∴根据左视图的画法,从左往右看,看到的是一个直角在左边的直角三角形,故选:A.【点睛】本题考查简单几何体的三视图,熟练掌握简单几何体的三视图是解答本题的关键.从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图.2.如图,123l l l ∥∥,直线AC 、DF 与这三条平行线分别交于点A 、B 、C 和点D 、E 、F ,若AB =4,DE =3,EF =6,则AC 的长是( )A. 4B. 6C. 8D. 12【答案】D 【解析】【分析】利用平行线分线段成比例定理求出BC ,可得结论.【详解】解:∵123l l l ∥∥,∴=AB DE BC EF ,∴436BC ,∴BC=8,∴AC=AB+BC =4+8=12,故选:D .【点睛】本题考查了平行线段成比例,解决本题的关键是掌握平行线段成比例的性质.3. 随机掷一枚均匀的硬币两次,两次正面都朝上的概率是( ).A.14B. 12C.34D. 1【答案】A 【解析】【分析】首先利用列举法,列得所有等可能的结果,然后根据概率公式即可求得答案.【详解】解:随机掷一枚均匀的硬币两次,可能的结果有:正正,正反,反正,反反,∴两次正面都朝上的概率是14.故选:A .【点睛】此题考查了列举法求概率的知识.解题的关键是注意不重不漏的列举出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.4.近年来,由于新能源汽车的崛起,燃油汽车的销量出现了不同程度的下滑,经销商纷纷开展降价促销活动.某款燃油汽车今年3月份售价为23万元,5月份售价为16万元.设该款汽车这两月售价的月均下降率是x ,则所列方程正确的是( )A. ()216123x += B. ()223116x -=C. ()22323116x --= D. ()2231216x -=【答案】B 【解析】【分析】设该款汽车这两月售价的月均下降率是x ,根据“今年3月份售价为23万元,5月份售价为16万元”即可列出方程.【详解】解:设该款汽车这两月售价的月均下降率是x ,由题意可得()223116x -=,故选:B【点睛】此题考查了一元二次方程的应用,读懂题意,找到等量关系,正确列出方程是解题的关键.5. 关于x 的一元二次方程220x kx -+=有实数根,则k 可能是( )A. 3- B. 2- C. 1D.32【答案】A 【解析】【分析】先根据根的判别式的意义28k ≥,然后分别把3k =-、2-、1、32代入进行计算,如果满足28k ≥就符合题意.【详解】解:根据题意得△2()420k =--⨯≥,即28k ≥,只有3k =-满足28k ≥,而2k =-、1、32都不满足28k ≥.故选:A .【点睛】本题考查了根的判别式:一元二次方程20(0)ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.6.已知点()()()1232,,1,,1,A y B y C y --均在反比例函数3y x=的图象上,则123,,y y y 的大小关系是( )A. 123y y y << B. 213y y y <<C. 312y y y << D. 321y y y <<【答案】B 【解析】【分析】根据反比例函数的图象与性质解答即可.详解】解:∵30k =>,∴图象在一三象限,且在每个象限内y 随x 的增大而减小,∵2101-<-<<,∴2130y y y <<<.故选:B .【点睛】本题考查了反比例函数的图象与性质,反比例函数ky x=(k 是常数,0k ≠)的图象是双曲线,当0k >,反比例函数图象的两个分支在第一、三象限,在每一象限内,y 随x 的增大而减小;当0k <,反比例函数图象的两个分支在第二、四象限,在每一象限内,y 随x 的增大而增大.7. 设x 1,x 2是方程x 2+5x -3=0的两个根,则x 1+x 2的值为( )A. 5 B. -5C. 3D. -3【答案】B 【解析】【详解】试题解析:试题解析:由韦达定理可得:【12 5.bx x a+=-=-故选B.点睛:一元二次方程根与系数的关系:1212,.b cx x x x a a+=-⋅=8. 一本书的宽与长之比为黄金比,书的长为14cm ,则它的宽为( )A. ()7cm + B. (21cm -C. ()21cm - D. ()7cm-【答案】D 【解析】【分析】根据黄金比例求解即可.【详解】解:∵一本书的宽与长之比为黄金比,书的长为14cm ,∴它的宽()147cm ==-,故选:D .是解题的关键.9.如图,B 、C 两点分别在函数5(0)y x x=> 和1y x=-(0x <)的图象上,线段BC y ⊥轴,点A 在x 轴上,则ABC 的面积为( )A. 9B. 6C. 3D. 4【答案】C 【解析】【分析】本题考查了反比例函数k 的意义,三角形等积求解;连接OB 、OC ,由等底同高的三角形面积相等得ABC OBC S S =△△,再由反比例函数k 的意义得111522OBC S =⨯-+⨯ ,即可求解;理解“过反比例函数图象上任一点作坐标轴的垂线,连接此点与坐标原点,所围成的三角形面积为12k .”是解题的关键.【详解】解:如图,连接OB 、OC ,BC y ⊥轴,BC x \∥轴,ABC OBC S S ∴= ,111522OBC S =⨯-+⨯ 3=,3ABC S ∴= ;故选:C .10.如图,将正方形纸片ABCD 沿PQ 折叠,使点C 的对称点E 落在边AB 上,点D 的对称点为点F ,EF 为交AD 于点G ,连接CG 交PQ 于点H ,连接CE .下列四个结论中:①PBE QFG △∽△;②CEG CBE CDQH S S S =+ 四边形;③EC 平分BEG ∠;④22EG CH GQ GD -=⋅,正确的是( )A. ①③B. ①③④C. ①④D.①②③④【答案】B 【解析】【分析】①利用有两个角对应相等的两个三角形相似进行判定即可;②过点C 作CM EG ⊥于M ,通过证明BEC MEC ≅ ,进而说明CMG CDG ≅ ,可得CEG BEC CDG BEC CDQH S S S S S =++ 四边形>,可得②不正确;③由折叠可得:GEC DCE ∠=∠,由AB CD ∥可得BEC DCE ∠=∠,结论③成立;④连接DH MH HE ,,,由BEC MEC ≌,CMG CDG ≌可知:BCE MCE ∠=∠,MCG DCG ∠=∠,所以1452ECG ECM GCM BCD ∠=∠+∠=∠=︒,由于EC HP ⊥,则45CHP ∠=︒,由折叠可得:45EHP CHP ∠=∠=︒,则EH CG ⊥;利用勾股定理可得222EG EH GH -=;由CM EG EH CG ⊥⊥,,得到90EMC EHC ∠=∠=︒,所以E ,M ,H ,C 四点共圆,所以45HMC HEC ∠=∠=︒,通过CMH CDH ≌,可得45CDH CMH ∠=∠=︒,这样,45GDH ∠=︒,因为45GHQ CHP ∠=∠=︒,易证GHQ GDH ∽,则得2GH GQ GD =⋅,从而说明④成立.【详解】解:①∵四边形ABCD 是正方形,∴90A B BCD D ∠=∠=∠=∠=︒.由折叠可知:9090GEP BCD F D ∠=∠=︒∠=∠=︒,. ∴90BEP AEG ∠+∠=︒,∵90A ∠=︒,∴90AEG AGE ∠+∠=︒,∴BEP AGE ∠=∠.∵FGQ AGE ∠=∠,∴BEP FGQ ∠=∠.∵90B F ∠=∠=︒,∴PBE QFG △△.故①正确;②过点C 作CM EG ⊥于M ,由折叠可得:GEC DCE ∠=∠,∵AB CD ∥,∴BEC DCE ∠=∠,∴BEC GEC ∠=∠,在BEC 和MEC 中,==90==B EMC BEC GEC CE CE ∠∠︒⎧⎪∠∠⎨⎪⎩,∴()AAS BEC MEC ≌∴BEC MEC CB CM S S == ,.∵CG CG =,∴CMG CDG ≌R t R t ,∴CMG CDG S S = ,∴CEG BEC CDG BEC CDQH S S S S S =+>+ 四边形,∴②不正确;③由折叠可得:GEC DCE ∠=∠,∵AB CD ∥,∴BEC DCE ∠=∠,∴BEC GEC ∠=∠,即EC 平分BEG ∠.∴③正确;④连接DH MH HE ,,,如图,∵BEC MEC CMG CDG ≌≌,,∴BCE MCE MCG DCG ∠=∠∠=∠,,∴1452ECG ECM GCM BCD ∠=∠+∠=∠=︒,∵EC HP ⊥,∴45CHP ∠=︒.∴45GHQ CHP ∠=∠=︒.由折叠可得:45EHP CHP ∠=∠=︒,∴EH CG ⊥.∴222EG EH GH -=.由折叠可知:EH CH =.∴222EG CH GH -=.∵CM EG EH CG ⊥⊥,,∴90EMC EHC ∠=∠=︒,∴E M H C ,,,四点共圆,∴45HMC HEC ∠=∠=︒.在CMH 和CDH △中,===CM CD MCG DCG CH CH ⎧⎪∠∠⎨⎪⎩,∴CMH CDH ≌.∴45CDH CMH ∠=∠=︒,∵90CDA ∠=︒,∴45GDH ∠=︒,∵45GHQ CHP ∠=∠=︒,∴45GHQ GDH ∠=∠=︒.∵HGQ DGH ∠=∠,∴GHQ GDH ∽,∴GQ GHGH GD=,∴2GH GQ GD =⋅,∴22GE CH GQ GD -=⋅.∴④正确;综上可得,正确的结论有:①③④.故选:B .【点睛】本题主要考查了相似形的综合题,正方形的性质,翻折问题,勾股定理,三角形全等的判定与性质,三角形的相似的判定与性质,四点共圆,由翻折得到对应角相等,对应边相等是解题的关键.第II 卷 非选择题 (共110分)二、填空题(本题共6小题,满分24分)11. 若23x y =,则x y y +的值为______.【答案】53【解析】【分析】本题考查比例的性质,先根据题意得到23x y =,然后代入约分是解题的关键.【详解】解:∵23x y =,∴23x y =,∴2533y yx y y y ++==,故答案为:53.12. 已知2x =是一元二次方程280x mx +-=的一个根,则方程的另一个根是______.【答案】4x =-【解析】【分析】将2x =代入280x mx +-=,解得2m =,即得出原一元二次方程为2280x x +-=,再根据因式分解法解方程即得出方程的另一个根.【详解】将2x =代入280x mx +-=,得:22280m +-=,解得:2m =,∴原一元二次方程为2280x x +-=,(2)(4)0x x -+=,解得:1224x x ==-,,∴方程的另一个根是4x =-.故答案为:4x =-.【点睛】本题考查一元二次方程的解和解一元二次方程.掌握方程的解就是使方程成立的未知数的值是解题关键.13.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能的是__________.【答案】5【解析】【分析】根据红球出现的频率和球的总数,可以计算出红球的个数.【详解】解:由题意可得,20×0.25=5(个),即袋子中红球的个数最有可能是5个,故答案是:5.【点睛】本题考查利用频率估计概率,解答本题的关键是明确题意,利用概率公式计算出红球的个数.14.如图①是用杠杆撬石头的示意图,当用力压杠杆时,杠杆绕着支点转动,另一端会向上撬起,石头就被撬动了.在图②中,杠杆的D 端被向上撬起的距离8cm BD =,动力臂OA 与阻力臂OB 满足3OA OB =(AB 与CD 相交于点O ),要把这块石头撬起,至少要将杠杆的C 点向下压_____cm .【答案】24【解析】【分析】本题考查了三角形相似判定及性质,由两角对应相等的三角形相似得AOC BOD ∽,由三角形相似的性质得OA AC OB BD=,即可求解;掌握判定方法及性质是解题的关键.【详解】解:90A D ∠=∠=︒,AOC BOD ∠=∠,AOC BOD ∴△∽△,OA AC OB BD∴=,38AC ∴=,解得:24AC =,故答案:24.15.如图,是一个长为30m ,宽为20m 的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为468m 2,那么小道进出口的宽度应为 ___m .【答案】2【解析】【分析】设小道进出口的宽度应为xm ,则剩余部分可合成长为(30﹣2x)m ,宽为(20﹣x )m 的矩形,根据矩形的面积计算公式,结合种植花草的面积为468m 2,即可得出关于x 的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:设小道进出口的宽度应为xm ,则剩余部分可合成长为(30﹣2x)m ,宽为(20的﹣x)m 的矩形,依题意得:(30﹣2x)(20﹣x)=468,整理得:x 2﹣35x+300=0,解得:x 1=2,x 2=35.当x =2时,30﹣2x=26,符合题意;当x =35时,30﹣2x=﹣40<0,不合题意,舍去.故答案为:2.【点睛】本题主要考查了一元二次方程的实际应用,解题的关键在于找到等量关系列出方程.16. 如图,矩形ABCD 中,48AD AB ==,,EF AC ,交AB CD 、于E 、F ,则AF CE +的最小值是_____.【答案】10【解析】【分析】因AF 与EC 两条线段不在同一条直线上,只需将两条线段转换在同一条直线上即可,作∥CG EF ,且CG EF =,连接AG ,又因点F 在DC 上是一动点,由边与边关系AF FG AG +≥,只有当点F 在直线AG 上时AF FG +的和最小,由平行四边形CEFF 可知FG EC =时可求AF CE +的最小值.【详解】解:设DF x =,则8FC x =-;过点C 作∥CG EF ,且CG EF =连接FG ,当点A 、F 、G 三点共线时,AF FG +的最值小;如图:,CG EF CG EF = ∥,∴四边形CEFG 是平行四边形:,EC FG EC FG ∴=∥,∵点A 、F 、G 三点共线,AF EC ∴∥.∵四边形ABCD 是矩形.,90,AE DC D ∴∠=︒∥∴四边形AECF 是平行四边形.,,OA OC OE OF ∴==又,EF AC ⊥ 8,AF CF x ==-在Rt ADF 中,由勾股定理得:222,AD DF AF +=2224(8),x x ∴+=-解得∶3x =,835AF CF ∴==-=在Rt ADC 中,由勾股定理得:222,AD DC AC +=4,8,AD DC AB ===AC ∴=AO ∴=又,OF CG ∥,AOF ACG ∴△∽△,AO AF AC AG∴=10,AG ∴=又,,AG AF FG FG EC =+=10,AF EC ∴+=故答案为:10.【点睛】本题主要考查了矩形的性质,平行四边形的判定与性质,三角形相似的判定与性质,勾股定理和最短距离问题等知识点,重点掌握相似三角形的判定与性质,求AG 的长时也可以用三角形的中位线求解,难点是作辅助线,三点共线时两条线段的和最小.三.解答题(共10小题,共86分)17. 解方程: x 2﹣2x﹣3=0.【答案】x 1=﹣1,x 2=3【解析】【分析】用因式分解法解方程即可.【详解】解:x 2﹣2x﹣3=0,(x+1)(x﹣3)=0,x+1=0或x﹣3=0,x 1=﹣1,x 2=3.【点睛】本题考查一元二次方程的解法,解题关键是熟练运用因式分解法解方程.18.如图,//AB CD ,AD 、BC 相交于点O ,若2OA =,4OD =,3AB =.求CD 的长度.【答案】6【解析】【分析】由AB∥CD得到∠A=∠D,∠B=∠C,根据相似三角形的判定方法得到△OAB∽△ODC ,然后利用相似比可计算出CD .【详解】解:∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△OAB∽△ODC,∴AB OA CD OD =,即324CD =,∴CD=6.【点睛】本题考查了相似三角形的判定与性质:有两组角对应相等的两个三角形相似;相似三角形的对应角相等,对应边的比相等.19. 如图,平面直角坐标系中,ABC 三个顶点坐标分别为()2,1A - ,()1,4B -,()3,2C -.(1)画出ABC 关于y 轴对称的图形111A B C ∆,并直接写出1C 点坐标;(2)以原点O 为位似中心,位似比为12∶,在y 轴的左侧,画出ABC 放大后的图形222ΔA B C ,并直接写出2C 点坐标;【答案】(1)作图见解析,点1C 的坐标为()3,2;(2)作图见解析,点2C 的坐标为()6,4-.【解析】【分析】(1)根据关于对称的点的坐标特征:纵坐标相同,横坐标互为相反数,得到对称点1A 的坐标为()2,1,点1B 的坐标为()1,4,点1C 的坐标为()3,2,顺次连接点111A B C 、、,得到111A B C △,111A B C △即为所求;(2)根据位似图形的性质,分别找到点222A B C 、、的位置,顺次连接222A B C 、、,得到222A B C △,222A B C △即为所求,由图可得到点2C 的坐标;本题考查了作轴对称图形和位似图形,掌握轴对称图形和位似图形的性质是解题的关键.【小问1详解】解:如图,111A B C △即为所求,由图可得点1C 的坐标为()3,2.【小问2详解】解:如图,222A B C △即为所求,由图可得,点2C 坐标为()6,4-.20.某网店销售台灯,成本为每盏30元.销售大数据分析表明:当每盏台灯售价为40元时,平均每月售出600盏,若售价每下降1元,其月销售量就增加200盏.为迎接“双十一”,该网店决定降价促销,在库存为1210盏台灯的情况下,若预计月获利恰好为8400元,求每盏台灯的售价.【答案】每个台灯的售价为37元.【解析】【分析】根据已知条件列出一元二次方程求解即可;【详解】解:方法一:设每个台灯的售价为x 元.根据题意,得(x-30)[(40-x )×200+600]=8400,的解得x1=36(舍),x2=37.当x=36时,(40-36)×200+600=1400>1210;当x=37时,(40-37)×200+600=1200<1210;答:每个台灯的售价为37元.方法二:设每个台灯降价x元.根据题意,得(40-x-30)(200x+600)=8400,解得x1=3,x2=4(舍).当x=3时,40-3=37,(40-37)×200+600=1200<1210;当x=4时,40-3=36,(40-36)×200+600=1400>1210;答:每个台灯的售价为37元.【点睛】本题主要考查了一元二次方程的应用,准确计算是解题的关键.21.小红想利用阳光下的影长测量学校旗杆AB的高度.如图,他在某一时刻在地面上竖直立一个2米长的标杆CD,测得其影长DE=0.4米.(1)请在图中画出此时旗杆AB在阳光下的投影BF.(2)如果BF=1.6,求旗杆AB的高.【答案】(1)见解析 (2) 8m【解析】【分析】(1)利用太阳光线为平行光线作图:连接CE,过A点作AF∥CE交BD于F,则BF为所求;(2)证明△ABF∽△CDE,然后利用相似比计算AB的长.【详解】(1)连接CE,过A点作AF∥CE交BD于F,则BF为所求,如图;(2)∵AF∥CE,∴∠AFB=∠CED,而∠ABF=∠CDE=90°,∴△ABF∽△CDE,∴AB BF CD DE =, 即 1.620.4AB , ∴AB=8(m ),答:旗杆AB 的高为8m .22. 某校项目式学习小组开展项目活动,过程如下:项目主题:测量旗杆高度问题驱动:能利用哪些科学原理来测量旗杆的高度?组内探究:由于旗杆较高,需要借助一些工具来测量,比如自制的直角三角形硬纸板,标杆,镜子,甚至还可以利用无人机…确定方法后,先画出测量示意图,然后实地进行测量,并得到具体数据,从而计算旗杆的高度.成果展示:下面是同学们进行交流展示时的部分测量方案:方案一方案二…测量工具标杆,皮尺自制直角三角板硬纸板,皮尺…测量示意图说明:线段AB 表示学校旗杆,小明的眼睛到地面的距离1.7m CD =,测点F 与B ,D 在同一水平直线上,D ,F ,B 之间的距离都可以直接测得,且A ,B ,C ,D ,E ,F 都在同一竖直平面内,点A ,C ,E 三点在同一直线上.说明:线段AB 表示旗杆,小明的身高 1.7m CD =,测点D 与B 在同一水平直线上,D ,B 之间的距离可以直接测得,且A ,B,C ,D ,E ,F ,G 都在同一竖直平面内,点A ,C ,E 三点在同一直线上,点C ,F ,G 三点在同一直线上.B ,D 之间的距离16.8m B ,D 之间的距离16.8m …D ,F 之间的距离 1.35m EF 的长度0.50m …测量数据EF 的长度 2.60m CE 的长度0.75m ………根据上述方案及数据,请你选择一个方案,求出学校旗杆AB 的高度.(结果精确到0.1m ).【答案】学校旗杆AB 的高度为12.9m【解析】【分析】本题考查的知识点是矩形的性质、相似三角形的判定与性质,解题关键是熟练掌握相似三角形对应边成比例.方案一中过C 作CH BD ∥交EF 于Q ,交AB 于H ,构造矩形CDFQ 和矩形CDBH ,易得CEQ CAH ∽,再根据对应边成比例即可求解;方案二中易得CEF CGA △∽△,根据对应边成比例即可求解.【详解】解:方案一:过C 作CH BD ∥交EF 于Q ,交AB 于H ,则四边形CDFQ ,四边形CDBH 都是矩形,1.35m CQ DF ∴==,16.8m CH BD ==,EQ AH ,CEQ A ∴∠=∠,ACH ECQ ∠=∠ ,CEQ CAH ∴∽△△,CQ EQ CH AH∴=,即:1.35 2.6 1.716.8 1.7AB -=-,解得:12.9m AB =.方案二:(1)ACG ACG ∠=∠ ,90CGA CEF ∠=∠=︒,CEF CGA ∴∽△△,CE EF CG GA∴=,即:0.750.516.8 1.7AB =-,解得:12.9m AB =.23. 如图,在ABC 和DEC 中,BCE ACD ∠=∠,B CED ∠=∠.(1)求证:ABC DEC ∽△△;(2)若:9:16ABC DEC S S =△△,12BC =,求EC 的长.【答案】(1)见解析 (2)16EC =【解析】【分析】本题考查了相似三角形的性质与判定.(1)先根据BCE ACD ∠=∠得到ACB DCE ∠=∠,再根据B CED ∠=∠即可证明ABC DEC ∽△△;(2)根据ABC DEC ∽△△得到29=16ABC DEC S BC S EC ⎛⎫= ⎪⎝⎭△△,进而得到34BC EC =,根据12BC =,即可求出16EC =.【小问1详解】解:∵BCE ACD ∠=∠,∴BCE ACE ACD ACE Ð+Ð=Ð+Ð,即ACB DCE ∠=∠,∵B CED ∠=∠,∴ABC DEC ∽△△;【小问2详解】解:∵ABC DEC ∽△△,∴29=16ABC DEC S BC S EC ⎛⎫= ⎪⎝⎭△△,∴34BC EC =,∵12BC =,∴1234EC =,∴16EC =.24.菜学校课后服务,为学生们提供了手工烹饪,文学赏析,体育锻炼,编导表演四种课程(依次用A,B,C,D表示),为了解学生对这四种课程的喜好情况,校学生会随机抽取部分学生进行了“你最喜欢哪一种课外活动(必选且只选一种)”的问卷调查.根据调查结果,小明同学绘制了如图所示的不完整的两个统计图.(1)请根据统计图将下面的信息补充完整:①参加问卷调查的学生共有________人;②腐形统计图中“D ”对应扇形的圆心角的度数为________.(2)若该校共有学生2000名,请你估计该校全体学生中最喜欢C课程的学生有多少人?(3)现从喜欢编导表演课程的甲、乙、丙、丁四名学生中任选两人搭档表演双人相声,请用树状图或列表法求“恰好甲和丁同学被选到”的概率.【答案】(1)①240,②36(2)600 (3)1 6【解析】【分析】本题主要考查了扇形统计图与条形统计图信息相关联,树状图法或列表法求解概率,用样本估计总体等等.(1)用最喜欢B的人数除以其人数占比求出参与调查的总人数,再用360度乘以最喜欢D的人数占比即可求出扇形统计图中“D”对应扇形的圆心角的大小;(2)先求出样本中最喜欢A的人数,进而求出样本中最喜欢C的人数,再用2000乘以样本中最喜欢C的人数占比即可得到答案;(3)先列出表格得到所有等可能性的结果数,再找到恰好甲和丁同学被选到的结果数,最后依据概率计算公式进行求解即可.【小问1详解】解:8435%240÷=人,∴参加问卷调查的学生人数是240人,∴扇形统计图中“D”对应扇形的圆心角的大小为2436036240︒⨯=︒,故答案为:240,36;【小问2详解】解:24025%60⨯=人,∴样本中最喜欢A 课程的人数为60人,∴样本中最喜欢C 课程的人数为24060842472---=人,∴估计该校全体学生中最喜欢C 课程的学生有722000600240⨯=人;【小问3详解】解:用A 、B 、C 、D 表示甲、乙、丙、丁四人,列表如下:A B C DA (B ,A )(C ,A )(D ,A )B (A ,B )(C ,B )(D ,B )C (A ,C )(B ,C )(D ,C )D (A ,D )(B ,D )(C ,D )由表格可知一共有12种等可能性的结果数,其中恰好甲和丁同学被选到的结果数有2种,∴恰好甲和丁同学被选到的概率为21126=.25.如图,在ABC 中,60m AC =,40m BC =,点A 开始沿AC 边向点C 以2m/s 的速度匀速移动(运动到C 即停止),同时另一点Q 由C 点开始以3m/s 的速度沿着CB 匀速移动(运动到B 即停止),设运动时间为t 秒.(1)当t 为何值时,PC CQ =?(2)当t 为何值时,50m PQ =?(3)几秒后,PCQ △与ABC 相似?求出t 的值.【答案】(1)当=12t 时,PC CQ =(2)当110t =,2t =11013 时,50m PQ = (3)当时间为12013秒时,PCQ △与ABC 相似【解析】【分析】本题主要考查相似三角形的判定与性质:(1)用t 表示出线段PC 和CQ 建立方程,解答即可;(2)根据勾股定理可得PQ 关于t 的方程,解答即可;(3)设x 秒后,PCQ △与ABC 相似,根据题意设出AP PC CQ ,,,分两种情况考虑:当CPQ A ∠=∠,90C C ∠=∠=︒时,CPQ CAB ∽ ;当CPQ B ∠=∠,90C C ∠=∠=︒时,CPQ CBA ∽△△;分别由相似得比例,求出x 的值,即可得到结果.【小问1详解】解:根据题意得,()602m 3 m PC t CQ t =-,=,6023t t -=,解得12t =,当12t =时,PC CQ =;【小问2详解】解:()602m 3 m PC t CQ t =-,=,在Rt PCQ △中,()()222222602350PQ PC QC t t =+=-+=,解得1210t t ==,11013,当1210t t ==,11013时,50m PQ =;【小问3详解】解:t 秒后,PCQ △与ABC 相似,根据题意得:2tm AP =,()602m 3 m PC t CQ t =-,=,分两种情况考虑:当90CPQ A C C ∠=∠∠=∠=︒,时,CPQ CAB ∽ ,此时有CP CQ CA CB =,即60236040t t -=,解得:12013t =,当90CPQ B C C ∠=∠∠=∠=︒,时,CPQ CBA ∽△△,此时CP CQ CB CA =,即60234060t t -=,解得:15t =,∵当15t =时,15345m 40m ⨯=>,应舍去,∴12013秒时,PCQ △与ABC 相似.26. 如图1,点G 在正方形ABCD 的对角线AC 上,GE BC ⊥于E ,GF CD ⊥于F .(1)证明与推断:①求证:四边形CEGF 是正方形;②推断:AG BE=___________;(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(045α︒<<︒),如图2,试探究线段AG 与BE 之间数量关系,并说明理由;(3)拓展与运用:正方形CEGF 在旋转过程中,当B 、E 、F 三点在一条直线上时,如图3,延长CG 交AD 于点H ,若3AG =,GH =,求BC 的长.【答案】(1(2)AG =,理由见解析 (3【解析】【分析】(1)①由GE BC ⊥,GF CD ⊥,结合90BCD ∠=︒可得四边形CEGF 是矩形,再由45ECG ∠=︒,即可得证;②由正方形性质知90CEG B ∠=∠=︒、45ECG ∠=︒,据此可得CG CE=,GE AB ∥,利用平行线分线段成比例定理可得;(2)连接CG ,只需证ACG BCE △△∽即可得;(3)证AHG CHA ∽ 得AG GH AH AC AH CH==,设BC CD AD a ===,知AC =,由AG GH AC AH =得23AH a =、13DH a =、CH =,由AG AH AC CH =可得a 的值,即可求得BC 的值.【小问1详解】①证明∵四边形ABCD 是正方形,90BCD ∴∠=︒,45BCA ∠=︒,GE BC ⊥ ,GF CD ⊥,90CEG CFG ECF ∴∠=∠=∠=︒,∴四边形CEGF 是矩形,45CGE ECG ∠=∠=︒,EG EC ∴=,∴四边形CEGF 是正方形;的②解:AG BE=理由如下:由①知四边形CEGF 正方形,90CEG B ∴∠=∠=︒,45ECG ∠=︒,CG CE∴=GE AB ∥,AG CG BE CE ∴==;【小问2详解】解:AG =,理由如下:如图,连接GC ,∵四边形ABCD 是正方形,四边形CEGF是正方形,AC C ∴=,GC =,45ACB GCE ∠=∠=︒,BCE ACG ∴∠=∠,AC GC BC CE==,AGC BEC ∴∽,AG AC BE BC∴==,AG ∴=;【小问3详解】解:45CEF ∠=︒ ,点B 、E 、F 三点共线,135BEC ∴∠=︒,ACG BCE ∽ ,是135AGC BEC ∴∠=∠=︒,45AGH CAH ∴∠=∠=︒,CHA AHG ∠=∠ ,AHG CHA ∴∽ ,AG GH AH AC AH CH∴==,设BC CD AD a ===,则AC =,则由AG GH AC AH ==,23AH a ∴=,则13DH AD AH a =-=,CH ===,∴由AG AH AC CH ==,解得:a =,即BC =【点睛】本题主要考查了相似形的综合题,正方形的判定与性质,旋转的性质,勾股定理,解题的关键是掌握正方形的判定与性质、相似三角形的判定与性质等知识点.。
2023-2024学年第一学期期中质量检测数学试题及答案
注意事项:1、本试卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共8页,满分120分,考试时间120分钟.2、答案全部在答题卡上完成,答在本试卷上无效.2023-2024学年第一学期九年级期中质量监测试题(卷)数学3、考试结束后,只收回答题卡.第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该选项涂黑)1.下列方程是关于x 的一元二次方程的是A.B.02342=++xx 0122=--y x C.D.0122=++x ax ()024=-x x 2.如图,将含有30°角的三角尺ABC (∠BAC =30°),以点A 中心,顺时针方向旋转,使得点C ,A ,B ′在同一直线上,则旋转角的大小是A.30°B.60°C.120°D.150°3.方程的两个实数根是x x =2A.x 1=x 2=1B.x 1=1,x 2=-1C.x 1=0,x 2=1D.x 1=0,x 2=-14.将关于x 的方程配方成的形式,则的值是0862=+-x x ()p x =-23p A.1B.28C.17D.445.如果关于x 的一元二次方程有两个实数根,则k 的取值范围是032=+-k x x A.k≥B.k≤C.k>D.k<49494949C′B′CB A6.将二次函数的图象先向左平移2个单位,再向上平移1个单()2122---=x y 位,则所得到的二次函数的解析式是A.B.()1322---=x y ()1122-+-=x y C.D.()3122-+-=x y ()3322---=x y 7.冠状病毒属的病毒是具有囊膜、基因组为线性单股正链的RNA 病毒,是自然界广泛存在的一大类病毒,冠状病毒可感染多种哺乳动物、鸟类和人.在某次冠状病毒感染中,有3只动物被感染,后来经过两轮感染后共有363只动物被感染.若每轮感染中平均一只动物会感染x 只动物,则下面所列方程正确的是A.3x(x+1)=363B.3+3x+3x ²=363C.3(1+x)²=363D.3+3(1+x)+3(1+x)²=3638.已知二次函数(c 为常数)的图象与x 轴的一个交点为(1,0),c x x y +-=42则关于x 的一元二次方程的两个实数根是042=+-c x x A.x 1=1,x 2=-1B.x 1=-1,x 2=2C.x 1=-1,x 2=0D.x 1=1,x 2=39.二次函数的图象上部分点的坐标(x,y)对应值列表如下:c bx ax y ++=2则关于该二次函数的图象与性质,下列说法正确的是A.开口方向向上B.当x>-2时,y 随x 增大而增大C.函数图象与x 轴没有交点D.函数有最小值是-210.在同一平面直角坐标系中,二次函数与一次函数的图bx ax y +=2a bx y +=象可能是x …-3-2-101…y…-3-2-3-6-11…第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共15分)11.如图,在⊙O 中,AC =BC ,半径OC 与AB 交于点D ,若AB =8cm,OB =5cm,则CD =▲cm.13.已知点A (4,y 1)和点B (-1,y 212.2022年2月4日—2月20日,北京冬奥会隆重开幕,北京成为世界上第一个既举办过夏季奥运会,又举办过冬季奥运会的国家.下面图片是在北京冬奥会会徽征集过程中,征集到的一副图片,整个图片由“京字组成的雪花图案”、“beijing2022”、“奥运五环”三部分组成.对于图片中的“雪花图案”,至少旋转▲°能与原雪花图案重合.)是二次函数(m 为常数)()m x y +-=21-215.如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,若四边形EFGH 是矩形,且其周长是20,则四边形ABCD 的图象上两点,则y 1和y 2的大小关系是▲.14.2021年我国高速铁路总里程为2.9万公里,2023年我国高速铁路总里程达到3.8万公里,高速铁路已经覆盖了全国80%以上的大城市,形成以“八纵八横”主通道为骨架、区域连接线衔接、城际铁路补充的高速铁路网.若设2021年到2023年我国高速铁路总里程的平均年增长率为x,则依题意可列方程为▲.的面积的最大值是▲.HG FED CBA⌒⌒三、解答题(本大题共8个小题,共75分.解答题应写出文字说明、证明过程或演算步骤)16.解方程(每小题5分,共10分)(1)()910-=+x x (2)()12832+=+x x x 17.(本小题5分)如图,以□ABCD 的顶点A 为圆心,AB 为半径作⊙A ,分别交BC ,AD 于E ,F 两点,交BA 的延长线于点G .求证:EF =FG .18.(本小题8分)在平面直角坐标系中,△ABC 三个顶点的坐标分别为A (5,4),B (1,3),C (3,1).点P (a,b)是△ABC 内的一点.(1)以点O 为中心,把△ABC 顺时针旋转90°,画出旋转后的△A 1B 1C 1,并写出A 1,B 1,C 1的坐标:A 1▲,B 1▲,C 1▲.注:点A 与A 1,B 与B 1,C 与C 1分别是对应点.(2)点P 的对应点P 1的坐标是▲;(3)若以点O 为中心,把△ABC 逆时针旋转则点P 的对应点P 2的坐标是▲,点P 1与点P2关于▲对称.(填写“x 轴、y 轴或原点”)⌒⌒19.(本小题8分)阅读下列材料,并完成相应学习任务:一元二次方程在几何作图中的应用如图1,在矩形ABCD 中,AB =3,BC =4.求作一个矩形,使其周长和面积分别是矩形ABCD 的周长和面积的2倍.因为矩形ABCD 的周长是14,面积是12,所以所求作的矩形周长是28,面积是24.若设所求作的矩形一边的长为x,则与其相邻的一边长为14-x.所以,得x(14-x)=24.解得x 1=2,x 2=12.当x=2时,14-x=12;当x=12时,14-x=2.所以求作的矩形相邻两边长分别是2和12.如图2,在边AB 的延长线取点G ,使得AG =4AB .在AD 上取AE =AD .21以AG 和AE 为邻边作出矩形AGFE .则矩形AGFE 的周长和面积分别是矩形ABCD 的周长和面积的2倍.学习任务:(1)在作出矩形AGFE 的过程中,主要体现的数学思想是▲;(填出序号即可)A.转化思想B.数形结合思想C.分类讨论思想D.归纳思想(2)是否存在一个矩形,使其周长与面积分别是矩形ABCD 的周长和面积的?21若存在,请在图1中作出符合条件的矩形;若不存在,请说明理由.图1 图2GFEDCBA D CB A20.(本小题9分)漪汾桥是太原市首座对称双七拱吊桥,每个桥拱呈大小相等的抛物线型,桥拱如长虹出水,屹立于汾河之上,是太原市地标性建筑之一.如图2所示,单个桥拱在桥面上的跨度OA =60米,在水面的跨度BC =80米,桥面距水面的垂直距离OE =7米,以桥面所在水平线为x 轴,OE 所在直线为y 轴建立平面直角坐标系.(1)求桥拱所在抛物线的函数关系表达式;(2)求桥拱最高点到水面的距离是多少米?21.(本小题10分)下面是小明解决某数学问题的过程,请认真阅读并解决相应学习任务:数学问题:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:“,”现已知商品的进价为每件40元,如何定价才能使每个星期的利润达到6080元,且顾客能够得到更大的实惠?解:设….根据题意,所列出方程:.()6080402300-20=⎪⎭⎫⎝⎛⨯+x x …根据小明所列方程,完成下列任务:(1)填空:数学问题中“”处短缺的条件是▲,小明所列方程中未知数x 的实际意义是▲.(2)请你重新设一个未知数,要求所设未知数与小明所列方程中未知数的意义不同,并结合所补充的条件,解决上面的数学问题.图1图222.(本小题12分)综合与实践问题情境:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD 中,点E 是边CD 上一点,将△ADE 以点A 为中心,顺时针旋转90°,得到△ABF ,连接EF .过点A 作AG ⊥EF ,垂足为G .试猜想FG 与GE 的数量关系,并证明.(1)独立思考:请你解决老师所提出的问题;(2)拓展探究:智慧小组在老师所提问题的基础上,连接DG ,他们认为DG 平分∠ADC .请你利用图2说明,智慧小组所提出的结论是否正确?请说明理由;(3)问题解决:在图2中,若AD +DE =28,则四边形AGED 的面积为▲.(直接写出答案即可)图1 图2AB CDEFGGFEDCBA23.(本小题13分)综合与探究已知抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 32-2-=x x y 轴交于点C ,点D 是y 轴右侧抛物线上一个动点.(1)求出点A ,B ,C 的坐标;(2)如图1,当点D 在第四象限时,求出△BCD 面积的最大值,并求出这时点D 坐标;(3)当∠DAB =∠ABC 时,求出点D的坐标.图1 备用图一、选择题:1—10:DDCAB BCDCC二、填空题:11.2;12.60°;13.y 1<y 2;14.2.9(1+x)²=3.8;15.50.三、解答题:16.解:(1)x 1=-1,x 22023~2024学年第一学期九年级期中质量监测试题数学参考答案=-9;…………………………………………………………5分(2)x 1=,x 2=4.…………………………………………………………………5分23-注:阅卷组自行制定评分细则17.证明:∵AB=AE,∴∠B=∠AEB.……………………………………………………………………1分∵四边形ABCD 是平行四边形,∴AD∥BC,……………………………………………………………………2分∴∠B=∠GAF,∠FAE=∠AEB,……………………………………………………………………3分∴∠GAF=∠FAE,…………………………………………………………………4分∴EF=FG.……………………………………………………………………5分18.解:(1)画图略,画图正确.………………………………………………2分A 1(4,-5),B 1(3,-1),C 1(1,-3).………………………………………5分(2)(b,-a).……………………………………………………………………6分(3)(-b,a),原点.………………………………………………………………8分19.解:(1)B;…………………………………………………………………2分(2)不存在.……………………………………………………………………3分理由如下:若存在矩形,其周长与面积分别是矩形ABCD 的周长和面积的,21则所求的矩形周长为7,面积为6.………………………………………………4分设所求的矩形一边长为x,则与其相邻的另一边的长为-x.………………5分27所以,得x(-x)=6.……………………………………………………………6分27整理,得2x ²-7x+12=0.…………………………………………………………7分因为△=(-7)²-4×2×12=49-96<0.所以该方程无解.…………………………………………………………8分所以,不存在矩形,其周长与面积分别是矩形ABCD 的周长和面积的……9分21⌒⌒20.解:(1)设桥拱所在抛物线的函数关系表达式为y=ax ²+bx.………………1分∵OA=60,∴A 点坐标为(60,0).∵BC=80,根据对称性可知,点C 坐标为(70,-7).…………………………2分把A(60,0),B(70,-7)代入y=ax ²+bx,得………3分⎩⎨⎧-=+=+77049000603600b a b a 解得………………………………………………………………4分⎪⎩⎪⎨⎧=-=531001b a ∴桥拱所在抛物线的函数关系表达式是.………………5分x x y 5310012+-=(2)∵x x y 5310012+-=……………………………………………………7分().93010012+--=x ∴该函数的顶点为(30,9).……………………………………………………8分∵9+7=16.∴桥拱最高点到水面的距离是16米.…………………………………………9分21.解:(1)每件商品的售价每降价2元,每个星期的销售量可增加40件;每件商品的售价降了x 元.………………………………………………………………2分(2)设每件商品的定价为x 元,根据题意可列方程…………………………3分.………………………………………6分()60804026030040=⎪⎭⎫ ⎝⎛⨯-+-x x 整理,得x ²-115x+3304=0.……………………………………………………7分解得x 1=59,x 2=56.……………………………………………………………8分为了让每位顾客得到更大的实惠,所以x=59舍去.…………………………9分答:每件商品的定价为56元,每个星期的利润能达到6080元,且顾客能够得到更大的实惠.…………………………………………………………………10分22.(1)FG=EG.………………………………………………………………1分证明:∵△ABF 是由△ADE 顺时针方向旋转90°得到的,∴△ABF≌△ADE,………………………………………………………………2分∴AF=AE.………………………………………………………………3分∵AG⊥EF,∴FG=EG.………………………………4分(2)连接CG.……………………………5分∵四边形ABCD 是正方形,∴AD=CD,∠FCE=90°.……………………6分由(1)可知,FG=EG,∴CG=EF.………………………………7分21∵∠EAF=90°,∴AG=EF.………………………………8分21∴AG=CG.∵DG=DG,∴△ADG≌△CDG,………………………………………………………………9分∴∠ADG=∠CDG,即DG 平分∠ADC.…………………………………………10分(3)196………………………………………………………………………12分23.解:(1)当y=0时,.032-2=-x x 解得x 1=-1,x 2=3.∴点A(-1,0),B(3,0).……………………………………………………2分当x=0时,y=-3,∴点C(0,-3)……………………………………………………………………3分(2)如图,过点D 作DE⊥x 轴,垂足为E,并且交直线BC 于点F.过点C 作CH⊥DE,垂足为H.……………………4分设BC 的解析式为y=kx+b.把点B(3,0),点C(0,-3)代入,得,⎩⎨⎧-==+33b b k 解得k=1,b=-3.∴直线BC 的解析式为y=x-3.……………………5分设点D(m,m ²-2m-3),则点F(m,m-3).则DF=m-3-(m ²-2m-3)=-m ²+3m.……………6分∵S △BCD =S △CDF +S △BDF =×DF×CH+×DF×BE=×DF(CH+BE)=21212121ACDEFG∴S △BCD =(-m ²+3m)×3=-m ²+m.………………………………7分212329=-(m-)²+.(0<m<3)…………………………………………8分2323827∵-<0,∴当m=时,S △BCD 有最大值,S △BCD 的最大值为.………9分2123827(3)∵点B(3,0),点C(0,-3).∴OB=OC.∵∠BOC=90°,∴∠OBC=∠OCB=45°.设点D(m,m ²-2m-3).如图,当点D 在x 轴下方时,过点D 作DP⊥OB,垂足为P.∵∠DAB=∠ABC=45°,∠APD=90°.∴∠PDA=∠PAD,∴PA=PD.∴m-(-1)=-(m ²-2m-3).……………………10分解得m=2或m=-1(舍去).当m=2时,m ²-2m-3=-3.∴点D 坐标为(2,-3).…………………………11分如图,当点D 在x 轴上方时,过点D 作DQ⊥OB,垂足为Q.∵∠DAB=∠ABC=45°,∠AQD=90°.∴∠QDA=∠QAD,∴QA=QD.∴m-(-1)=m ²-2m-3.…………………………………………………………12分解得m=4或m=-1(舍去).当m=4时,m ²-2m-3=5.∴点D 坐标为(4,5).∴当∠DAB=∠ABC 时,点D(2,-3)或(4,5) (13)分。
2024-2025学年广东省深圳市九年级上学期期中数学试题及答案
2024-2025学年深圳市九年级上册期中考试模拟试卷数学试卷注意事项:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.本卷考试时间90分钟,满分100分.考试范围:九年级上册3.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔将答写在答题卡指定区域内.作答综合题时,把所选题号的信息点框涂黑,并作答.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,将答题卡交回.第Ⅰ卷(选择题)一、单选题(24分)1. 方程x 2=2x 的根是( ) A 0B. 2C. 0 或 2D. 无解2. 一元二次方程2230x x +−=两根分别为12x x 、,则12x x ⋅的值为( ) A. 2B. 2−C. 3−D. 33. 关于x 的一元二次方程()21230k x x −+=有两个不同的实根,则k 的取值范围是( ) A. 43k <B. 43k <且1k ≠ C. 403k <<D. 1k ≠4. 若关于x 的一元二次方程方程kx 2﹣2x ﹣1=0有实数根,k 的取值范围是( ) A. k >﹣1B. k ≥﹣1且k ≠0C. k <﹣1D. k <1且k ≠05. 对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长我们称为该图形的宽,矩形铅垂方向的边长我们称为该图形的高.如图2,已知菱形ABCD 的边长为1,菱形的边AB 水平放置,如果该菱形的高是宽的23,那么菱形的宽是( ).的A.1813B.139C.32D. 26. 设a 、b 是两个整数,若定义一种运算“ ”,2a b a ab =+ ,则方程()212x x −=的实数根是( ) A. 12x =−,23x =B. 1 2x =,23x =−C. 11x =−,26x =D. 1 1x =,26x =−7. 已知3是关于x 的方程220x ax a −+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A 9B. 12C. 12或15D. 158.我们把宽与长的比值等于黄金比例12−的矩形称为黄金矩形.如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AEAD等于( )AB.C.D.第Ⅱ卷(非选择题)二、填空题(12分)9. 现有4种没有标签的无色溶液(蒸馏水、烧碱、稀盐酸、纯碱),任取其中两种滴加无色酚酞溶液(友情提示:酚酞遇蒸馏水、稀盐酸不变色,酚酞遇烧碱、纯碱变红色)颜色恰好都发生变化的概率是________.10. 一元二次方程()()2311x x +−=解为 __. 11. 已知a b ≠,且满足22510a a −+=,22510b b −+=,那么b aa b+的值为______. 12. 如图,矩形ABCD 中,15AD =,12AB =,E 是AAAA 上一点,且8AE =,F 是BC 上一动点,若将EBF △沿EF 对折后,点B 落在点P 处,则点P 到点D 的最短距离为______...的三、解答题(62分)13. 某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,求该厂家一月份到三月份的口罩产量的月平均增长率.14. “当你背单词时,阿拉斯加的鳕鱼正跃出水面;当你算数学时,南太平洋的海鸥正掠过海岸;当你晚自习时,地球的极圈正五彩斑斓;但少年,梦要你亲自实现,那些你觉得看不到的人和遇不到的风景都终将在你生命里出现.”这是直播带货新平台“东方甄选”带货王董宇辉在推销鳕鱼时的台词.所推销鳕鱼的成本为每袋50元,当售价为每袋90元时,每分钟可销售100袋. 为了吸引更多顾客,“东方甄选”采取降价措施.据市场调查反映:销售单价每降1元,则每分钟可多销售10袋. (1)每袋鳕鱼的售价为多少元时,每分钟的销量为150袋?(2)“东方甄选”不忘公益初心,热心教育事业,其决定从每分钟利润中捐出500元帮助留守儿童,为了保证捐款后每分钟利润达到5500元,且要最大限度让利消费者,求此时鳕鱼的销售单价为多少元? 15. 某公司去年10月份的营业额为2500万元,按计划12月的营业额要达到3600万元,那么该公司11月、12月两个月营业额的月均增长率是多少?(请列方程解答)16. 如图,Rt ABC 中,90ACB ∠=°,点D ,E 分别是AB ,AC 的中点,点F 在BC 的延长线上,且CEF A ∠=∠.(1)求证:DE CF =;(2)若1BC =,3AB =,求四边形DCFE 的周长.17. 如图,ABCD 中,对角线AC 与BD 相交于点,E 点G 为AD 的中点,连接,CG CG 的延长线交BA 的延长线于点,F 连接FD .(1)求证:AGF DGC ≌;(2)若,120,AG AB BAD =∠=°判断四边形ACDF 的形状,并证明你的结论.2024-2025学年深圳市九年级上册期中考试模拟试卷数学试卷注意事项:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.本卷考试时间90分钟,满分100分.考试范围:九年级上册3.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔将答写在答题卡指定区域内.作答综合题时,把所选题号的信息点框涂黑,并作答.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,将答题卡交回.第Ⅰ卷(选择题)一、单选题(24分)1. 方程x 2=2x 的根是( ) A. 0 B. 2C. 0 或 2D. 无解【答案】C 【解析】【详解】解:移项可得:22x 0x −=, 因式分解可得:x (x -2)=0, 解得:x=0或x=2, 故选C .2. 一元二次方程2230x x +−=的两根分别为12x x 、,则12x x ⋅的值为( ) A. 2 B. 2−C. 3−D. 3【答案】C 【解析】【分析】根据一元二次方程根与系数的关系求解即可. 【详解】解:∵该一元二次方程为2230x x +−=,∴12331cx x a −⋅===−. 故选C .【点睛】本题考查一元二次方程根与系数的关系.熟记一元二次方程20(a 0)++=≠ax bx c 根与系数的关系:12b x x a +=−和12c x x a⋅=是解题关键. 3. 关于x 的一元二次方程()21230k x x −−+=有两个不同的实根,则k 的取值范围是( ) A. 43k <B. 43k <且1k ≠ C. 403k <<D. 1k ≠【答案】B 【解析】【分析】本题考查了根的判别式:一元二次方程200ax bx c a ++=≠()的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根.根据题意可得()1044310k k −≠ =−×−>再解不等式组,从而可得答案;【详解】解: 关于x 的一元二次方程()21230k x x −−+=有两个不相等的实数根, ()1044310k k −≠ ∴ =−×解得:43k <且1k ≠ , 故选:B .4. 若关于x 的一元二次方程方程kx 2﹣2x ﹣1=0有实数根,k 的取值范围是( ) A. k >﹣1 B. k ≥﹣1且k ≠0C. k <﹣1D. k <1且k ≠0【答案】B 【解析】【分析】根据一元二次方程根有实数根,可得ΔΔ≥0,代入系数解不等式,需要注意k ≠0. 【详解】∵一元二次方程有实数根 ∴()()2=2410k ∆−−⋅−≥ ,解得1k ≥−,又∵一元二次方程二次项系数不为0,∴0k ≠, ∴k 的取值范围是1k ≥−且0k ≠. 故选B.【点睛】本题考查一元二次方程的定义和根的判别式,当0∆>时,方程有两个不相等的实数根,当=0∆时,方程有两个相等的实数根,当∆<0时,方程无实数根,熟记概念是解题的关键.5. 对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长我们称为该图形的宽,矩形铅垂方向的边长我们称为该图形的高.如图2,已知菱形ABCD 的边长为1,菱形的边AB 水平放置,如果该菱形的高是宽的23,那么菱形的宽是( )A.1813B.139C.32D. 2【答案】A 【解析】【分析】先根据要求画图,设AF =x ,则CF =23x ,根据勾股定理列方程可得结论. 【详解】解:在菱形上建立如图所示的矩形EAFC , 设AF =x ,则CF =23x , 在Rt △CBF 中,CB =1,BF =x -1, 由勾股定理得:BC 2=BF 2+CF 2, 12=(x −1)2+(23x )2, 解得:x =1813或0(舍), 则该菱形的宽是1813,故选A .【点睛】本题考查了新定义、矩形和菱形的性质、勾股定理,理解新定义中矩形的宽和高是关键.6. 设a 、b 是两个整数,若定义一种运算“ ”,2a b a ab =+ ,则方程()212x x −=的实数根是( ) A. 12x =−,23x =B. 1 2x =,23x =−C. 11x =−,26x =D. 1 1x =,26x =−【答案】A 【解析】【分析】根据题目中的新定义的运算规则,将所求方程化为一元二次方程方程,解方程即可解答. 【详解】解:∵2a b a ab =+ , ∴x △(x-2)=x 2 +x (x-2)=12, 整理得:2x 2-2x-12=0, 解得:x 1=-2,x 2=3. 故选A.【点睛】本题考查了新定义运算及一元二次方程的解法,根据新定义的运算规则将所求方程化为一元二次方程方程是解决本题的关键.7. 已知3是关于x 的方程220x ax a −+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A 9 B. 12C. 12或15D. 15【答案】D 【解析】【分析】把x =3代入已知方程求得a 的值,然后求出该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可. 【详解】解:把x =3代入方程得:220x ax a −+=, 解得a =9,则原方程为29180x x −+=,解得:123,6x x ==, 因为这个方程的两个根恰好是等腰△ABC 的两条边长, ①当△ABC 的腰为3,底边为6时,不符合三角形三边关系②当△ABC 的腰为6,底边为3时,符合三角形三边关系,△ABC 的周长为6+6+3=15, 综上所述,△ABC 的周长为15. 故选:D .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了解一元二次方程、等腰三角形的性质以及三角形三边关系..8. .如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AEAD等于( )A.B.C.D.【答案】B 【解析】【分析】利用黄金矩形的定理求出ADAB= ,再利用矩形的性质得1AE AB BE AB AD AB ADAD AD AD −−===−,代入求值即可解题. 【详解】解:∵矩形ABCD 中,AD=BC,根据黄金矩形的定义可知AD AB , ∵BE BC =,∴11AE AB BE AB AD ABAD AD AD AD −−−=−==== 故选B【点睛】本题考查了黄金矩形这一新定义,属于黄金分割概念的拓展,中等难度,读懂黄金矩形的定义,表示出边长比是解题关键.第Ⅱ卷(非选择题)二、填空题(12分)9. 现有4种没有标签的无色溶液(蒸馏水、烧碱、稀盐酸、纯碱),任取其中两种滴加无色酚酞溶液(友情提示:酚酞遇蒸馏水、稀盐酸不变色,酚酞遇烧碱、纯碱变红色)颜色恰好都发生变化的概率是________. 【答案】16【解析】【分析】蒸馏水、烧碱、稀盐酸、纯碱分别记为A B C D 、、、,画出树状图,找出颜色恰好都发生变化的等可能情况和所有等可能情况,根据概率公式进行求解即可.【详解】解:蒸馏水、烧碱、稀盐酸、纯碱分别记为A B C D 、、、,画树状图如下:∵颜色恰好都发生变化的是取到B D 、的情况有两种,共有12种等可能情况, ∴颜色恰好都发生变化的概率是21126=, 故答案为:16【点睛】此题考查了树状图或列表法求概率,找出所有等可能情况数是解题的关键.10. 一元二次方程()()2311x x +−=的解为 __.【答案】1x =,2x =【解析】【分析】先化为一般形式,再用一元二次方程求根公式即可得到答案.【详解】解:()()2311x x +−=, 化为一般形式得:2240x x +−=, ()2142433=−××−=△,∴x =∴1x =2x =故答案为:1x =2x = 【点睛】本题考查解一元二次方程,解题的关键是掌握一元二次方程的求根公式. 11. 已知a b ≠,且满足22510a a −+=,22510b b −+=,那么b aa b+的值为______. 【答案】212【解析】【分析】本题考查了根与系数的关系,牢记“两根之和等于ba −、两根之积等于c a”是解题的关键.由a 、b 满足的条件可得出a 、b 为方程22510x x −+=的两个实数根,根据根与系数的关系可得出52a b +=、12ab =,将其代入()22a b ab b a a b ab+−+=中可求出结论. 【详解】解: a b ≠,且满足22510a a −+=,22510b b −+=,∴a 、b 为方程22510x x −+=的两个实数根,52a b ∴+=,12ab =,()222212221212252a b ab b a a b ab ab a b−× +−+ =∴+=== 故答案为:212. 12. 如图,矩形ABCD 中,15AD =,12AB =,E 是AAAA 上一点,且8AE =,F 是BC 上一动点,若将EBF △沿EF 对折后,点B 落在点P 处,则点P 到点D 的最短距离为______.【答案】13 【解析】【分析】连接PD ,DE,易得17DE,4EB AB AE =−=,由翻折可得4PE EB ==,由EP DP DE +≥可知,当E ,P ,D 三点共线时,DP 最小,进而可得出答案.【详解】解:连接PD ,DE ,四边形ABCD 为矩形, 90A ∴∠=°,15AD = ,8AE=,17DE ∴=,12AB = ,4EB AB AE ∴=−=,由翻折可得PE EB =,4PE ∴=,EP DP DE +≥ ,∴当E ,P ,D 三点共线时,DP 最小,17413DP DE EP ∴=−=−=最小值.故答案:13.【点睛】本题考查翻折变换(折叠问题)、矩形的性质,熟练掌握翻折的性质是解答本题的关键.三、解答题(62分)13. 某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,求该厂家一月份到三月份的口罩产量的月平均增长率.【答案】该厂家一月份到三月份的口罩产量的月平均增长率为30%.【解析】【分析】设该厂家一月份到三月份的口罩产量的月平均增长率为x ,根据一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,列出方程,解方程即可得到答案.【详解】解:设该厂家一月份到三月份的口罩产量的月平均增长率为x ,由题意得,()230150.7x +=解得10.3x =,1 2.3x =−(不合题意,舍去)∴该厂家一月份到三月份口罩产量的月平均增长率为30%.【点睛】此题考查了一元二次方程的应用,读懂题意,准确列出方程是解题的关键.14. “当你背单词时,阿拉斯加的鳕鱼正跃出水面;当你算数学时,南太平洋的海鸥正掠过海岸;当你晚自习时,地球的极圈正五彩斑斓;但少年,梦要你亲自实现,那些你觉得看不到的人和遇不到的风景都终将在你生命里出现.”这是直播带货新平台“东方甄选”带货王董宇辉在推销鳕鱼时的台词.所推销鳕鱼的成本为每袋50元,当售价为每袋90元时,每分钟可销售100袋. 为了吸引更多顾客,“东方甄选”采取降价措施.据市场调查反映:销售单价每降1元,则每分钟可多销售10袋.(1)每袋鳕鱼的售价为多少元时,每分钟的销量为150袋?(2)“东方甄选”不忘公益初心,热心教育事业,其决定从每分钟利润中捐出500元帮助留守儿童,为为的了保证捐款后每分钟利润达到5500元,且要最大限度让利消费者,求此时鳕鱼销售单价为多少元?【答案】(1)每袋鳕鱼的售价为85元时,每分钟的销量为150袋.(2)鳕鱼的销售单价为70元.【解析】【分析】本题考查一元一次方程和一元二次方程的应用,解题的关键是根据题意,找到等量关系,列出方程,进行解答.(1)设每袋鳕鱼的售价为x 元,根据题意,则()1090100150x −+=,解出x ,即可; (2)设此时鳕鱼的销售单价为y 元,根据题意,则方程为()()5010901005005500y y −×−+−=,解出方程,即可.【小问1详解】解:设每袋鳕鱼的售价为x 元,每分钟的销售量为150袋,∴()1090100150x −+=, 解得:85x =,答:每袋鳕鱼的售价为85元时,每分钟的销售量为150袋.【小问2详解】解:设此时鳕鱼的销售单价为y 元,∴()()5010901005005500y y −×−+=, 解得:170y =,280y =,∵要最大限度让利消费者,∴70y =,答:此时鳕鱼的销售单价为70元.15. 某公司去年10月份的营业额为2500万元,按计划12月的营业额要达到3600万元,那么该公司11月、12月两个月营业额的月均增长率是多少?(请列方程解答)【答案】20%【解析】【分析】本题考查了一元二次方程应用中的增长率问题,找准等量关系,正确列出一元二次方程是解题的关键;根据该公司10月份和12月份的营业额,即可得到关于x 的一元二次方程,解方程取其正值即可.【详解】解:设该公司11月、12月两个月营业额的月均增长率是x ,根据题意得:的的()2250013600x += 解得:10.220%x ==,2 2.2x =−(不合题意,舍去),答:该公司11月、12月两个月营业额的月均增长率是20%.16. 如图,Rt ABC 中,90ACB ∠=°,点D ,E 分别是AB ,AC 的中点,点F 在BC 的延长线上,且CEF A ∠=∠.(1)求证:DE CF =;(2)若1BC =,3AB =,求四边形DCFE 的周长.【答案】(1)见解析 (2)4【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CD AD BD ==,进而证明四边形DCEF 是平行四边形,根据平行四边形的性质即可得证;(2)根据直角三角形斜边上的中线等于斜边的一半求得CD ,根据中位线的性质求得DE ,根据平行四边形的性质即可求解.【小问1详解】证明:90ACB ∠=° ,点D 是AB 中点,CD AD BD ∴==,DAC DCA ∴∠=∠,CEF A ∠=∠ ,CEF DCE ∴∠=∠,CD EF ∴∥,点E 是AC 中点,DE CF ∴∥,∴四边形DCEF 是平行四边形,DE CF ∴=;【小问2详解】解:1BC = ,3AB =,AD BD = ,AE CE =,1122DE BC CF ∴===, 3AB = ,四边形DCEF 是平行四边形,1322CD EF AB ∴===, ∴四边形DCFE 的周长为132422 +×=. 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三角形中位线的性质,平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键.17. 如图,ABCD 中,对角线AC 与BD 相交于点,E 点G 为AD 的中点,连接,CG CG 的延长线交BA 的延长线于点,F 连接FD .(1)求证:AGF DGC ≌;(2)若,120,AG AB BAD =∠=°判断四边形ACDF 的形状,并证明你的结论. 【答案】(1)见解析;(2)四边形ACDF 是矩形,理由见解析.【解析】【分析】(1)先根据平行四边形的性质和平行线的性质得出FAG GDC ∠=∠,然后利用ASA 即可证明;(2)首先根据全等三角形的性质得出AF CD =,进而可证四边形ACDF 是平行四边形,然后利用平行四边形的性质和角度之间的关系得出AFG 是等边三角形,则有AG GF =,进而得出AD FC =,最后利用对角线相等的平行四边形是矩形即可证明.【详解】()1证明: 四边形ABCD 是平行四边形,//AB CD ∴,FAG GDC ∴∠=∠.点G 是AD 的中点,GA GD ∴=.又AGF DGC ∠=∠ ,()AGF DGC ASA ∴≅ ;()2解:四边形ACDF 是矩形.理由:AGF DGC ≌,AF CD ∴=,FG CG =.又//AB CD ,∴四边形ACDF 是平行四边形.四边形ABCD 是平行四边形,AB CD ∴=,AB AF ∴=.又AG AB = ,AG AF ∴=.120BAD ∠=° ,60FAG ∴∠=°,AFG ∴ 是等边三角形,AG GF ∴=.2,2AD AG FC FG == ,AD FC ∴=,∴四边形ACDF 是矩形.【点睛】本题主要考查平行四边形的判定及性质,矩形的判定,全等三角形的判定及性质,等边三角形的判定及性质,掌握矩形的判定,全等三角形的判定及性质是解题的关键.。
苏科版九年级上册数学期中考试试卷附答案
苏科版九年级上册数学期中考试试题一、单选题1.下列方程为一元二次方程的是()A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x 2+8x +7=0变形为(x +h)2=k 的形式应为()A .(x +4)2=-7B .(x -4)2=-7C .(x +4)2=9D .(x -4)2=93.⊙O 的半径为1,同一平面内,若点P 与圆心O 的距离为1,则点P 与⊙O 的位置关系是()A .点P 在⊙O 外B .点P 在⊙O 上C .点P 在⊙O 内D .无法确定4.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的A .方差B .众数C .平均数D .中位数5.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x ,则下面所列方程正确的是()A .()2501182=+x B .()250501182=++x C .()()505015012182=++++x x D .()()250501501182=++++x x 6.如图,AB 为⊙O 的直径,C 为⊙O 上一点,其中AB =4,∠AOC =120°,P 为⊙O 上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为()A .3B .C .D .7.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若38P ∠=︒,则B Ð的度数为()A .22°B .24°C .26°D .28°8.如图,若干相同正五边形排成环状.图中已经排好前3个五边形,还需()个五边形完成这一圆环.A .6B .7C .8D .99.若关于x 的一元二次方程()2200ax bx a ++=≠有一根为2019x =,则一元二次方程()()2112a x b x -+-=-必有一根为()A .2018B .2019C .2020D .202110.如图,点A 、B 、C 在⊙O 上,且∠ACB=100o ,则∠α度数为()A .160oB .120oC .100oD .80o二、填空题11.将方程x 2-2=7x 化成x 2+bx +c =0的形式,则b =___.12.一组数据:﹣1,﹣2,0,1,2,则这组数据的极差是______.13.数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学平均成绩是____分.14.关于x 的方程x 2+px +q =0的两个根分别为-1、4,则p +q 的值为_____.15.已知三角形三边长为6,8,10,则它的内切圆半径是________.16.若圆锥的底面半径为3cm ,母线长是5cm ,则它的侧面展开图的面积为_______cm 2.17.若关于x 的一元二次方程2840ax x -+=有两个不相等的实数根,则a 的取值范围是_____.18.如图,AB ,AC 分别为⊙O 的内接正六边形,内接正方形的一边,BC 是圆内接n 边形的一边,则n 等于_____.三、解答题19.解下列方程:(1)x 2﹣2x ﹣3=0;(2)x ﹣5=(x ﹣5)2.20.已知关于x 的方程x 2-(m +2)x +(2m -1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根21.八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.22.如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A 、B 、C ,请在网格图中进行下列操作(以下结果保留根号):(1)利用网格确定该圆弧所在圆的圆心D 点的位置,并写出D 点的坐标为;(2)连接AD 、CD ,⊙D 的半径为,∠ADC 的度数为;(3)若扇形DAC 是一个圆锥的侧面展开图,求该圆锥底面半径.23.如图,AB 为O 的直径,点C D ,在O 上,AC 与OD 交于点E ,AE EC OE ED ==,,连接BC CD ,.求证:(1)AOE CDE ∆≅∆;(2)四边形OBCD 是菱形.24.如图,四边形ABCD 与AEGF 均为矩形,点E 、F 分别在线段AB 、AD 上.若BE =FD =2cm ,矩形AEGF 的周长为20cm .(1)图中阴影部分的面积为cm 2.(2)若空白部分面积与阴影部分面积一样大,求矩形ABCD 边长.25.如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =60BCD ∠=︒,求图中阴影部分的面积.26.甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数;②月利润=月租车费﹣月维护费;③两公司月利润差=月利润较高公司的利润﹣月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是元;当每个公司租出的汽车为辆时,两公司的月利润相等;(2)求租出汽车多少辆时,两公司月利润差恰为18400元?参考答案1.C2.C3.B4.D5.D6.D7.C8.B9.C10.A11.-7【详解】将方程x2-2=7x化成x2-7x-2=0∴b=-7,故填:-7.【点睛】此题主要考查一元二次方程的一般式,解题的关键是熟知等式的性质.12.4【分析】用这组数据的最大值减去最小值即得结果.【详解】解:这组数据的级差是:2(2)4--=.故答案为4.【点睛】本题考查了极差的定义,属于基础概念题,掌握极差的定义是关键.13.93分【分析】按3:3:4的比例算出本学期数学学期平均成绩即可.【详解】小红一学期的数学平均成绩是9031003343490⨯⨯⨯++++=93(分),故填:93.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.14.-7【分析】根据根与系数的关系得到-1+4=−p ,-1×4=q ,然后解方程即可得到p 和q 的值,即可得到结论.【详解】根据题意得-1+4=−p ,-1×4=q ,所以p =−3,q =-4.故p +q =−7,故填:-7.15.2【分析】先根据勾股定理的逆定理判断出△ABC 的形状,设△ABC 内切圆的半径为R ,切点分别为D 、E 、F ,再根据题意画出图形,先根据正方形的判定定理判断出四边形ODCE 是正方形,再根据切线长定理即可得到关于R 的一元一次方程,求出R 的值即可.【详解】如图所示:ABC ∆中,68AB 10AC BC ===,,,2226810+= ,即222AC BC AB +=,ABC ∴∆是直角三角形,设ABC ∆的内切圆半径为R ,切点分别为D ,E ,F ,CD CE = ,BE BF =,AF AD =,OE BC OD AC ⊥⊥ ,,∴四边形ODCE 是正方形,即CD CE R ==AC CD AB BF ∴-=-,即610R BF -=-BC CE BE BF -==,即8R BF-=联立解得:R=2.故答案为2.16.15π【详解】解:底面半径为3cm ,则底面周长=6πcm ,侧面面积=12×6π×5=15πcm 2.故答案为:15π.17.4a <且0a ≠【分析】根据根的判别式即可求出答案,当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.【详解】解:由题意可知:64160a ∆=->,4a ∴<,0a ≠ ,4a ∴<且0a ≠,故答案为4a <且0a ≠18.12【详解】连接AO ,BO ,CO ,如图所示:∵AB 、AC 分别为⊙O 的内接正六边形、内接正方形的一边,∴∠AOB=3606︒=60°,∠AOC=3604︒=90°,∴∠BOC=30°,∴n=36030︒︒=12,故答案为:12.19.(1)x 1=3,x 2=﹣1;(2)x 1=5,x 2=6.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:(1)x 2﹣2x ﹣3=0,(x ﹣3)(x+1)=0,∴x ﹣3=0或x+1=0,∴x 1=3,x 2=﹣1;(2)x ﹣5=(x ﹣5)2,(x ﹣5)﹣(x ﹣5)2=0,(x ﹣5)[1﹣(x ﹣5)]=0,∴x ﹣5=0,1﹣(x ﹣5)=0,∴x 1=5,x 2=6.20.(1)证明见解析;(2)3【分析】(1)利用方程的判别式求解即可;(2)将x=2代入方程求出m=2,得到方程为2430x x -+=,求出方程的解121,3x x ==,由此得到答案.【详解】解:(1)∵[]22(2)4(21)(2)40m m m ∆=-+--=-+>,∴方程恒有两个不相等的实数根;(2)将x=1代入方程,得12210m m --+-=,∴20m -=,解得m=2,∴方程为2430x x -+=,解得121,3x x ==,∴方程的另一个根3.【点睛】此题考查一元二次方程根的判别式,方程的解,解一元二次方程,熟记一元二次方程根的判别式的三种情况、正确解一元二次方程是解题的关键.21.(1)9.5,10;(2)平均成绩9分,方差1;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:110×(10×4+8×2+7+9×3)=9,则方差是:110×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…xn的平均数为x,则方差S2=1n[(x1−x)2+(x2−x)2+…+(xn−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22.(1)圆心D点的位置见解析,(2,0);(2)90°;(3.【分析】(1)利用垂径定理可作AB和BC的垂直平分线,两线的交点即为D点,可得出D 点坐标;(2)在△AOD中AO和OD可由坐标得出,利用勾股定理可求得AD和CD,过C作CE⊥x 轴于点E,则可证得△OAD≌△EDC,可得∠ADO=∠DCE,可得∠ADO+∠CDE=90°,可得到∠ADC的度数;(3)先求得扇形DAC的面积,设圆锥底面半径为r,利用圆锥侧面展开图的面积=πr•AD,可求得r .【详解】解:(1)如图1,分别作AB 、BC 的垂直平分线,两线交于点D,∴D 点的坐标为(2,0),故答案为:(2,0);(2)如图2,连接AD 、CD ,过点C 作CE ⊥x 轴于点E,则OA =4,OD =2,在Rt △AOD 中,可求得AD=即⊙D的半径为且CE =2,DE =4,∴AO =DE ,OD =CE ,在△AOD 和△DEC 中,AOD CED OD AO D CE E ∠∠=⎧⎪⎨⎪⎩==,∴△AOD ≌△DEC (SAS ),∴∠OAD =∠CDE ,∴∠CDE+∠ADO =90°,∴∠ADC =90°,故答案为90°;(3)弧AC 的长=90180π×,设圆锥底面半径为r 则有2πr,解得:r,.【点睛】本题考查了垂径定理,弧长公式,勾股定理以及全等三角形的判定与性质等知识,要能够根据垂径定理作出圆的圆心,根据全等三角形的性质确定角之间的关系,掌握圆锥的底面半径的计算方法.23.(1)见解析;(2)见解析【分析】(1)由已知条件根据全的三角形的判定即可证明;(2)首先根据平行四边形的判定证明四边形OBCD 是平行四边形,然后根据一组邻边相等的平行四边形是菱形即可证明.【详解】解:(1)在AOE 和CDE 中,∵AE CE AEO CED OE DE =⎧⎪∠=∠⎨⎪=⎩,∴()AOE CDE SAS ≅ ;(2)∵AB 为O 的直径,∴AO BO =,∵AOE CDE ≅ ,∴OAC DCA ∠=∠,AO CD =,∴BO ∥CD ,BO CD =,∴四边形OBCD 是平行四边形.∵BO DO =,∴四边形OBCD 是菱形.【点睛】本题考查了全等三角形的判定及性质、菱形的判定、圆的基础知识,掌握全等三角形的判定和特殊平行四边形的判定是解题的关键.24.(1)24;(2)6cm 和8cm .【分析】(1)由面积关系列出关系式可求解;(2)设矩形的AEGF 一边长为xcm ,由矩形的面积公式列出方程并解答.【详解】解:(1)∵矩形AEGF 的周长为20cm ,∴AF+AE=10cm,∵AB=AE+BE,AD=AF+DF,BE=FD=2cm,∴阴影部分的面积=AB×AD﹣AE×AF=(AE+2)(AF+2)﹣AE×AF=24(cm2),故答案为:24;(2)设矩形的AEGF一边长为xcm,得x(10﹣x)=24.解之得x1=4,x2=6.4+2=6或6+2=8.答:矩形的ABCD边长为6cm和8cm.【点睛】本题考查了矩形的性质、一元二次方程的应用,利用面积和差关系列出关系式是解题的关键.25.(1)相切,理由见解析;(2)π【分析】(1)过点B作BF⊥CD,证明△ABD≌△FBD,得到BF=BA,即可证明CD与圆B相切;(2)先证明△BCD是等边三角形,根据三线合一得到∠ABD=30°,求出AD,再利用S△ABD-S扇形ABE求出阴影部分面积.【详解】解:(1)过点B作BF⊥CD,∵AD∥BC,∴∠ADB=∠CBD,∵CB=CD,∴∠CBD=∠CDB,∴∠ADB=∠CDB,又BD=BD,∠BAD=∠BFD=90°,∴△ABD≌△FBD(AAS),∴BF=BA,则点F在圆B上,∴CD与圆B相切;(2)∵∠BCD=60°,CB=CD ,∴△BCD 是等边三角形,∴∠CBD=60°∵BF ⊥CD ,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=23∴AD=DF=tan 30AB ⋅︒=2,∴阴影部分的面积=S △ABD-S 扇形ABE =(2302312322360π⨯⨯⨯-=23π.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.26.(1)48000;37;(2)当每个公司租出的汽车为45辆时,两公司月利润差恰为18400元.【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金,再乘以10,减去维护费用可得甲公司的月利润;设每个公司租出的汽车为x 辆,根据月利润相等得到方程,解之即可得到结果;(2)设两公司的月利润分别为y 甲,y 乙,月利润差为y ,由(1)可得y 甲和y 乙的表达式,再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况,列出y 关于x 的表达式,根据题意列出方程,并解答.【详解】解:(1)[(50﹣10)×50+3000]×10﹣200×10=48000元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出的汽车为x 辆,由题意可得:[(50﹣x )×50+3000]x ﹣200x =3500x ﹣1850,解得:x =37或x =﹣1(舍),∴当每个公司租出的汽车为37辆时,两公司的月利润相等.故答案是:48000;37;(2)设每个公司租出的汽车为x 辆,两公司的月利润分别为y 甲,y 乙,则y 甲=[(50﹣x )×50+3000]x ﹣200x ,y 乙=3500x ﹣1850.当甲公司的利润大于乙公司时,0<x <37,y 甲﹣y 乙=18400,即[(50﹣x )×50+3000]x ﹣200x ﹣(3500x ﹣1850)=﹣50x 2+1800x+1850=18400,整理,得x 2﹣36x+331=0此方程无解.故此情况不存在;当乙公司的利润大于甲公司时,37<x≤50,y 乙﹣y 甲=18400,即3500x ﹣1850﹣[(50﹣x )×50+3000]x+200x =50x 2﹣1800x ﹣1850=18400,整理,得(x ﹣45)(x+9)=0,解得x 1=45,x 2=﹣9(舍去)所以当每个公司租出的汽车为45辆时,两公司月利润差恰为18400元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前九年级上学期期中考试数学试题试卷副标题题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、单选题1.下列方程中,是一元二次方程的是()A.23x y=- B.2(1)3x+= C.22311x x x+-=+D.20x=2.下列图形是中心对称图形的是()A. B. C. D.3.方程()33xx x+=+的解是()A.1x= B.3x=- C.120,3x x==- D.121,3x x==-4.如图,△ABC绕着点O逆时针旋转到△DEF的位置,则旋转中心及旋转角分别是()A. 点B, ∠ABOB. 点O, ∠AOBEDOCBAF○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………5.由二次函数22(3)1y x =-+,可知( ) A .其图象的开口向下B .其图象的对称轴为直线3x =-C .其最小值为1D .当x<3时,y 随x 的增大而增大6.已知⊙O 的半径为3,圆心O 到直线l 的距离PO=2,则直线l 与⊙O 的位置关系是( )A .相切B .相离C .相交D .无法判断7.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =59°,则∠C 等于( )A .29°B .31°C .59°D .62°8.如图,△ABC 是直角三角形,∠A=90°,AB=8cm ,AC=6cm 。
点P 从点A 出发,沿AB 方向以2cm/s 的速度向点B 运动,同时点Q 从点A 出发,沿AC 方向以1cm/s 的速度向点C 运动,其中一个动点到达终点则另一个动点也停止运动,则△APQ 的最大面积是( )A.0cm 2B.8cm 2C.16cm 2D.24 cm 2第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人 得分二、填空题9.若关于x 的一元二次方程 2x x k -+= 的一个根是0,则另一个根是________. 10.二次函数()2y x 1b =-+的图象与y 轴交于点(0,1),则b 的值为________. 11.已知两个数的差为3,它们的平方和等于65,设较小的数为x ,则可列出方程________.12.如图,点O 是△ABC 的外心,∠A=50°,则∠OBC=________°.13.如图,正方形ABCD 中,点G 为对角线AC 上一点,AG=AB .∠CAE=15°且AE=AC ,连接GE .将线段AE 绕点A 逆时针旋转得到线段AF ,使DF=GE ,则∠CAF 的度数为________.评卷人 得分三、解答题14.解方程(1)22210x x --= (2)()2122xx -=- 15.如图,在画有方格图的平面直角坐标系中,△ABC 的三个顶点均在格点上. (1)将△ACB 绕点B 顺时针方向旋转90o ,在方格图中用直尺画出旋转后对应的△A 1C 1B ,则A 1点的坐标是(_________),C 1点的坐标是(_________).(2)在方格图中用直尺画出△ACB 关于原点O 的中心对称图形△A 2C 2B 2,则A 2点的坐标是(_________),C 2点的坐标是(_________).○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………16.已知二次函数y=a (x ﹣1)2+k 的图象经过A (﹣1,0)、B (4,5)两点. (1)求此二次函数的解析式;(2)当x 为何值时,y 随x 的增大而减小? (3)当x 为何值时,y >0?17.如图,在⊙O 中,AD 是直径,弧AB=弧AC ,求证:AO 平分∠BAC .18.已知 ,αβ 是关于x 的一元二次方程 ()22230x m xm +++= 的两个不相等的实数根,且满足111αβ+=- ,求m 的值.19.某花圃销售一批名贵花卉,平均每天可售出20盆,每盆盈利40元,为了增加盈利并尽快减少库存,花圃决定采取适当的降价措施,经调查发现,如果每盆花卉每降1元,花圃平均每天可多售出2盆.(1)若花圃平均每天要盈利1200元,每盆花卉应降价多少元? (2)每盆花卉降低多少元时,花圃平均每天盈利最多,是多少? 20.如图所示,AB 为⊙O 的直径,CD 为弦,且CD ⊥AB ,垂足为H . (1)如果⊙O 的半径为4,CD =3BAC 的度数;(2)若点E 为弧ADB 的中点,连接OE ,CE .求证:CE 平分∠OCD .21.如图1,四边形ABCD是边长为32的正方形,矩形AEFG中AE=4,∠AFE=30°。
将矩形AEFG绕点A顺时针旋转15°得到矩形AMNH(如图2),此时BD与MN相交于点O.(1)求∠DOM的度数;(2)图2中,求D、N两点间的距离;(3)若将矩形AMNH绕点A再顺时针旋转15°得到矩形APQR,此时点B在矩形APQR的内部、外部还是边上?并说明理由.22.在平面直角坐标系xOy中,抛物线y=x2﹣(m﹣1)x﹣m(m>0)与x轴交于A,B 两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;=15时,求该抛物线的表达式;(2)当S△ABC(3)在(2)的条件下,经过点C的直线l:y=kx+b(k<0)与抛物线的另一个交点为D.该抛物线在直线l上方的部分与线段CD组成一个新函数的图象.请结合图象回答:若新函数的最小值大于﹣8,求k的取值范围.○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………参考答案1.D【解析】一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.故A.是二元一次方程;B.是一元一次方程;C.是一元一次方程;D.x2=0符合要求。
故选:D.2.A【解析】根据中心对称图形的概念可知:A.是中心对称图形,本选项符合题意;B.不是中心对称图形,本选项不符合题意;C.不是中心对称图形,本选项不符合题意;D.不是中心对称图形,本选项不符合题意。
故选:B.3.D【解析】【详解】x(x+3)=x+3,移项得:x(x+3)-(x+3)=0,分解因式得:(x+3)(x-1)=0,∴x+3=0,x-1=0,解方程得:x1=-3,x2=1.故选:D.4.D【解析】根据旋转的定义和性质可知,两组对应点连线的交点是旋转中心,对应点与旋转中心所连线段的夹角等于旋转角,即可得出答案.解:由题给图形得:△ABC 绕着点O 逆时针旋转到△DEF 的位置,则旋转中心及旋转角分别是点O 和∠AOD . 故选D .本题考查了旋转,旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合 5.C 【解析】 【分析】根据二次函数的性质,直接根据a 的值得出开口方向,再利用顶点坐标的对称轴和增减性,分别分析即可. 【详解】由二次函数22(3)1y x =-+,可知: A .∵a >0,其图象的开口向上,故此选项错误; B .∵其图象的对称轴为直线x=3,故此选项错误; C .其最小值为1,故此选项正确;D .当x <3时,y 随x 的增大而减小,故此选项错误. 故选C . 6.C 【解析】∵O 的半径为3,圆心O 到直线L 的距离为2, ∴3>2,即:d<r ,∴直线L 与O 的位置关系是相交. 故选:C. 7.B 【解析】∵AB 是O 的直径, ∴∠ADB=90°, ∵∠ABD=59°, ∴∠A=90°−∠ABD=31°,∴∠C=∠A=31° 故选:B. 8.C 【解析】根据题意,沿AB 方向以2cm/s 的速度向点B 运动;同时点Q 从点A 出发,沿AC 方向以1cm/s 的速度向点C 运动, ∴AP=2t ,AQ=t , S △APQ =t 2, ∵0<t ⩽4,∴三角形APQ 的最大面积是16. 故选:C.点睛:本题主要考查二次函数的应用,借助三角形的面积建立函数,利用函数探讨最值问题. 9.1 【解析】设x 1,x 2是关于x 的一元二次方程x 2−x+k=0的两个根, ∵关于x 的一元二次方程x 2−x+k=0的一个根是0, ∴由韦达定理,得x 1+x 2=1,即x 2=1, 即方程的另一个根是1. 故答案为:1. 10.0 【解析】∵二次函数y=(x−1)2+b 的图象过点(0,1), ∴(0−1)2+b=1, 解得b=0. 故答案为:0.11.22(3)65x x ++= 【解析】由较小的数为x 可知较大的数为x+3, 故它们的平方和为x 2+(x+3)2再根据它们的平方和是65可得x2+(x+3)2=65,故答案为:x2+(x+3)2=65.12.40【解析】∵∠A=50°,∴∠BOC=100°,∵BO=CO,∴∠OBC=(180°−100°)÷2=40°,故答案为:40.13.30或60【解析】∵线段AE绕点A逆时针旋转得到线段AF,∴AE=AF,∵四边形ABCD是正方形,∴AB=AD,∵AG=AB,∴AD=AG,在△AGE和△ADF中,A D A GA E A FD F G E=⎧⎪=⎨⎪=⎩,∴△AGE≌△ADF(SSS),∴∠DAF=∠CAE=15°,∵AC为正方形ABCD的对角线,∴∠CAD=45°,点F在AD的下方时,∠CAF=∠CAD−∠DAF=45°−15°=30°点F 在AD 的上方时,∠CAF=∠CAD+∠DAF=45°+15°=60° 综上所述,∠CAF 的度数为30°或60°. 故答案为:30°或60°点睛:此题考查了旋转的性质、正方形的性质、全等三角形的判定与性质,熟记性质并求出∠DAF 的度数是解题的关键,作出图形更形象直观.14.(1)1x=2x =;(2)121,3x x ==【解析】试题分析:(1)先求出b 2-4ac 的值,再代入公式求出即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.解:(1)∵a=2,b=-2,c=-1 ,∴()()2Δ2421120=--⨯⨯-=> ,x ∴∴1x =,2x = (2)()()x12x10---=, ()()x 1x 30--=, ∴12x 1x 3==,. 15.(4,0) (3,-2) (-2,-4) (-4,-3)【解析】试题分析:(1)按题意要求在方格图上作图,找出相应点的坐标即可;(2)找出点A 、B 、C 关于原点O 的对称点A 2、B 2\ C 2的位置,然后顺次连接即可; 试题解析:如图所示,(1)A 1点的坐标是(4,0), C 1点的坐标是(3,-2),(2)A 2点的坐标是(-2,-4), C 2点的坐标是(-4,-3).16.(1)223y x x =--;(2)x <1时,y 随x 的增大而减小;(3)x <-1或x >3时,y >0. 【解析】试题分析:(1)把A (-1,0)、B (4,5)直接代入()2y ax 1k =-+,解得a 、k 的值即可.(2)利用(1)中的解析式可求出抛物线的对称轴,由函数的对称轴即可知道它的增减性. (3)求出抛物线和x 轴的交点坐标,结合函数的图象即可得到当x 为何值时,y >0. 解:(1)把A(-1,0)和B(4,5)代入, 联立方程组解得,14a k =⎧⎨=-⎩, ∴()2y x 14=--即2y x 2x 3=--; (2)由(1)可知抛物线的对称轴为x=1,∵a=1,∴函数图象开口向上,∴当x<1时,y 随x 的增大而减小;(3)设y=0,则x 2−2x−3=0,解得:x=3或−1,∴函数和x 轴的交点坐标为(3,0)和(−1,0),∵a=1,∴函数图象开口向上,∴x>3或x<−1时,y>0.17.见解析【解析】试题分析:由等弧所对的圆周角相等得∠AOB=∠AOC ,由边角边证得△AOB ≌△AOC ,再由全等三角形的对应角相等得证.试题解析:∵弧AB=弧AC ,∴∠AOB=∠AOC ,在△AOB 与△AOC 中,OA=OA ,∠AOB=∠AOC ,OB=OC ,∴△AOB ≌△AOC (SAS ).∴∠OAB=∠OAC.∴AO 平分∠BAC.18.3m =【解析】试题分析:先求出两根之积与两根之和的值,再将11αβ+化简成两根之积与两根之和的形式,然后代入求值.试题解析:∵方程有两个不相等的实数根,∴()22Δ2m 34m0=+->, 解得:3m 4>-, 依题意得:()2αβ2m 3αβm +=-+=,, ∴()22m 311αβ1αβαβm-+++===-. 解得:12m 1m 3=-=,, 经检验:12m 1m 3=-=,是原方程的解, ∵3m 4>-, ∴m 3=.19.(1)若花圃平均每天要盈利1200元,每盆花卉应降价20元;(2)每盆花卉降低15元时,花圃每天盈利最多为1250元.【解析】【分析】(1)设每件衬衫应降价x 元,然后根据题意列出方程,可得:(40-x )(20+2x )=1200,解出方程,求出答案.(2)设每件衬衫降价x 元时,商场平均每天赢利最多为y ,根据题意列出y 与x 的方程,化简可知:y =-2(x -15)2+1250,即根据二次函数的最值问题,求出答案.【详解】(1)解:设每件衬衫应降价x 元,则(40-x )(20+2x )=1200,x 2-30x+200=0,x 1=10,x 2=20.(2)设每件衬衫降价x 元时,商场平均每天赢利最多为y ,则y=-2x 2+60x+800=-2(x 2-30x )+800=-2[(x -15)2-225]+800=-2(x -15)2+1250. ∵-2(x -15)2≤0,∴x=15时,赢利最多,y=1250元.答:略【点睛】本题主要考查一元二次方程在实际问题中的应用,以及二次函数的最值问题,难度中等. 20.(1)30°;(2)答案见解析.【解析】试题分析:(1)先求出CH 的长,利用三角形的角边关系求出∠COH ,然后就可求出∠BAC ;(2)利用等腰三角形的性质得出∠E=∠OCE ,再利用平行线的判定得出OE ∥CD 即可证明CE 平分∠OCD.试题解析:(1)∵AB 为⊙O 的直径,CD ⊥AB ,∴CH=12CD=,在Rt △COH 中,2=,∴1OH OC 2=, ∴O C H 30∠=︒,∴∠COH=60°,∵OA=OC,弧BC=弧BC,∴∠BAC=12∠COH=30°;(2)∵点E是弧ADB的中点,∴OE⊥AB,∴OE∥CD,∴∠ECD=∠OEC,又∵∠OEC=∠OCE,∴∠OCE=∠DCE,∴CE平分∠OCD.21.(1)120°;(2(3)点B在矩形APQR的内部.【解析】试题分析:(1)由旋转的性质,可得∠BAM=15°,即可得∠OKB=∠AOM=75°,又由正方形的性质,可得∠ABD=45°,然后利用外角的性质,即可求得∠DOM的度数;(2)首先连接AM,交BD于I,连接AN,由特殊角的三角函数值,求得∠HAN=30°,又由旋转的性质,即可求得∠DAN=45°,即可证得A,C,N共线,然后由股定理求得答案;(3)在Rt△ARK中,利用三角函数即可求得AK的值,与AB比较大小,即可确定B的位置.试题解析:(1)依题意得:∠BAM=15°,设MN与AB交于K,∵四边形AMNH是矩形,∴∠M=90°,∴∠AKM=90°-∠BAM=75°.∴∠BKO=∠AKM=75°.∵四边形ABCD是正方形,∴∠ABD=45°.∴∠DOM=∠BKO+∠ABD=75°+45°=120°.(2)连接AN,交BD于I,连接DN∵AE=4,∠AFE=30°,∠AEF=90°, ∴AN=AF=2AE=8.由旋转得:∠DAH=15°,∴∠DAN=45°.∵正方形ABCD 中,∠DAC=45°. ∴A 、C 、N 共线.∵正方形ABCD 中,BD ⊥AC ,AD=AB=32,∴DI=AI=2211A C A B C D 322=+=. ∴NI=AN-AI=8-3=5.∴Rt △DIN 中,22D ND I N I 34=+=. (3)点B 在矩形APQR 的内部,理由如下:如图,依题意得:∠BAP=15°+15°=30°, ∵∠P=90°, ∴AK=2PK.∵AP=4,AP2+PK2=AK2,解得:AK=,∵AB=<∴点B在矩形APQR的内部.点睛:此题考查了旋转的性质、正方形的性质、矩形的西in这个hi、勾股定理以及特殊角的三角函数问题.此题难度较大,注意数形结合思想的应用,注意正确作出辅助线是解此题的关键.22.(1)(﹣1,0);(2)y=x2﹣4x﹣5;(3)当﹣1<k<0时新函数的最小值大于﹣8.【解析】试题分析:(1)对于抛物线解析式,令y=0得到关于x的方程,求出方程的解,根据A在B的左侧且m大于0,求A的坐标即可;(2)由(1)的结果表示出B的坐标,根据抛物线与y轴交于点C,表示出C坐标,进而表示出AB与OC,由三角形ABC面积为15,利用三角形面积公式列出关于m的方程,求出方程的解得到m的值,即可确定出抛物线解析式;(3)由(2)中m的值确定出C坐标,设直线l解析式为y=kx+b,把C坐标代入求出b的值,抛物线解析式配方后,经判断得到当点D在抛物线对称轴右侧时,新函数的最小值有可能大于-8,令y=-8求出x的值,确定出抛物线经过点(3,-8),把(3,-8)代入一次函数解析式求出k的值,由图象确定出满足题意k的范围即可.试题解析:(1)∵抛物线y=x2﹣(m﹣1)x﹣m(m>0)与x轴交于A、B两点,∴令y=0,即x2﹣(m﹣1)x﹣m=0,解得:x1=﹣1,x2=m,又∵点A在点B左侧,且m>0,∴点A的坐标为(﹣1,0);(2)由(1)可知点B的坐标为(m,0),∵抛物线与y轴交于点C,∴点C的坐标为(0,﹣m),∵m>0,∴AB=m+1,OC=m,∵S△ABC=15,∴12m(m+1)=15,即m2+m﹣30=0,解得:m=﹣6或m=5,∵m>0,∴m=5;则抛物线的表达式为y=x2﹣4x﹣5;(3)由(2)可知点C的坐标为(0,﹣5),∵直线l:y=kx+b(k<0)经过点C,∴b=﹣5,∴直线l的解析式为y=kx﹣5(k<0),∵y=x2﹣4x﹣5=(x﹣2)2﹣9,∴当点D在抛物线顶点处或对称轴左侧时,新函数的最小值为﹣9,不符合题意;当点D在抛物线对称轴右侧时,新函数的最小值有可能大于﹣8,令y=﹣8,即x2﹣4x﹣5=﹣8,解得:x1=1(不合题意,舍去),x2=3,∴抛物线经过点(3,﹣8),当直线y=kx﹣5(k<0)经过点(3,﹣8)时,可求得k=﹣1,由图象可知,当﹣1<k<0时新函数的最小值大于﹣8.点睛:此题属于二次函数综合题,涉及的知识点有:待定系数法确定函数解析式,坐标与图形的性质,抛物线与x轴的交点以及二次函数的图象与性质,熟练掌握二次函数的图形与性质是解本题的关键.。