热分析实验课件
第七章 热分析技术ppt课件
3、DTA曲线的影响因素 差热分析是一种热动态技术,在测试过程中体系的温度不 断变化,引起物质热性能变化。因此,许多因素都可影 响DTA曲线的基线、峰形和温度。归纳起来,影响DTA 曲线的主要因素有下列几方面:
(1)仪器方面的因素:包括加热炉的形状和尺寸,坩埚材料 及大小,热电偶的位置等。
ppt课件完整
3
简
介
热分析技术分类
ppt课件完整
4
简
介
差热分析、差示扫描量热分析、热重分析和机械热分析是 热分析的四大支柱;
应用:用于研究物质的物理现象,如晶形转变、熔化、升 华、吸附等; 化学现象,如脱水、分解、氧化、还原等, 几乎在所有自然科学中得到应用;
不仅可以对物质进行定性、定量分析,而且从材料的研究 和生产角度来看,既可以为新材料的研制提供热性能数据, 又可达到指导生产、控制产品质量的目的。ppt课件Βιβλιοθήκη 整177.1差热分析
7.1.1差热分析的基本原理
2、差热分析的基本理论
ΔH=KS
差热曲线的峰谷面积S和 反应热效应△H成正比, 反应热效应越大,峰谷 面积越大。
具有相同热效应的反应, 传热系数K越小,峰谷面 积越大,灵敏度越高。
ppt课件完整
18
7.1差热分析
7.1.2差热分析曲线
1、DTA曲线的特征 DTA曲线是将试样和参比物
对比试样的加热曲线与差热曲 线可见:
当试样在加热过程中有热效应变化 时,则相应差热曲线上就形成了一 个峰谷。
不同的物质由于它们的结构、成 分、相态都不一样,在加热过程中 发生物理、化学变化的温度高低和 热焓变化的大小均不相同,因而在 差热曲线上峰谷的数目、温度、形 状和大小均不相同,这就是应用差 热分析进行物相定性、定量分析的 依据。
热分析ppt幻灯片课件
结果解析与讨论
峰归属与物质鉴定
根据峰位、峰形等信息推断物质种类及结构 。
热稳定性评价
通过比较不同物质的热分解温度、热稳定性 参数等评估其热稳定性。
反应动力学分析
研究物质在加热过程中的反应速率、活化能 等动力学参数,揭示反应机理。
结果可靠性验证
采用多种方法对数据结果进行交叉验证,确 保结果准确性和可靠性。
04
原理
在程序控制温度下,测量 物质的质量与温度的关系 。
应用
用于研究物质的热稳定性 、分解过程、挥发过程等 热性质,以及进行物质的 定性和定量分析。
优点
设备简单,操作方便,可 测量宽温度范围内的热性 质。
缺点
对样品的均匀性要求较高 ,易受气氛影响。
热机械分析法
原理
在程序控制温度下,测量物质的尺寸或形状 变化与温度的关系。
反应平衡常数测定
利用热分析数据,可以计算化学反应的平衡常数 ,进而研究反应在不同温度下的平衡状态。
3
热化学方程式推导
基于热分析实验结果,可以推导化学反应的热化 学方程式,明确反应物和生成物之间的热力学关 系。
化学反应动力学研究
01
反应速率常数测定
通过热分析技术,可以测定化学 反应的速率常数,了解反应在不 同温度下的速率变化。
优点
可直观观察物质的尺寸或形状变化,对研究 物质的热机械性能有重要意义。
应用
用于研究物质的热膨胀、收缩、相变等热性 质,以及进行物质的定性和定量分析。
缺点
设备较复杂,操作要求较高,对样品的形状 和尺寸有一定要求。
04
热分析数据处理与解 析
数据处理基本方法
数据平滑处理
消除随机误差,提高数据信噪比。
热分析实验 ppt课件
(DMA242)
介电分析法
(DEA) DEA230 DEA231
导热系数仪 热流法:
HFM436系列
激光闪射法:
LFA427 LFA447 LFA457
测量物理与化学过 程(相转变,化学 反应等)产生的热
效应; 比热测量
测量由分解 、挥发、气 固反应等过 程造成的样 品质量随温 度/时间的
TG 方法常用于测定:
• 质量变化 • 热稳定性 • 分解温度 • 组份分析 • 脱水、脱氢 • 腐蚀 / 氧化 • 还原反应 • 反应动力学
差示扫描.
Q PR
Ref er.
DT
在程序温度过程中,当样品发生热效应时,在样品端与参比端之间产 生了温度差(热流差),通过热电偶对这一温度差(热流差)进行测 定。
基本概念dmdt质量变化分解的速率dtgtg曲线对时间坐标作一次微分计算得到的微分曲线质量变化速率最大点作为质量变化分解过程的特征温tonsettg台阶的起始点对分解过程可作为热稳定性的表征热重分析法记录的是在程序温度升降恒温下样品的质量质量变化随温度时间的函数关系tg曲线图中所示的反应单从tg曲线上看有点像一个单一步骤的过程dtg曲线但从微分dtg曲线则明显区分出分解分为两个相邻的阶段setaramtgdscdtasta449c同步测试tgdsc或tgdtapetgdta热重分析仪tg原理图furnacebalancenetzsch热重分析仪
• 根据CuSO4.5H2O的结构,试讨论其脱水 的机理。
CuSO4.5H2O的结构示意图
m icro fu rn a ce sa m p le
sa m p le ca rrie r T G ce ll
热分析课件
韩国新科Scinco公司 DSC6200
DSC曲线:
图3-2 聚乳酸纤维的DSC曲线
3-3 典型的DTA和DSC曲线
DSC应用:
1.玻璃化转变温度Tg的测定
无定形高聚物或结晶高聚物无定形部分在升温达到它 们的玻璃化转变时,被冻结的分子微布朗运动开始, 因而热容变大,用 DSC 可测定出其热容随温度的变 化而改变。
影响DTA曲线的主要因素:
操作因素是指操作者对样品与仪器操作条件选取 不同而对分析结果的影响。
主要包括: 1. 升温速率 2. 试样的用量、粒度与形状、装填密度等 3. 参比物与试样的对称性 4. 压力和气氛
1. 升温速率
研究和实践表明,在DTA实验中,升温速率是对DTA曲线 产生最明显影响的操作因素之一。 当升温速率增大时,单位时间产生的热效应增大,峰顶 温度通常向高温方向移动,峰的面积也会增加。
程序控温条件下,测量在 升温、降温或恒温过程中 样品质量发生的变化 程序控温条件下,测量在 升温、降温或恒温过程中 样品尺寸发生的变化 程序控温条件下,测量在 温度、时间、频率或应力 等状态变化过程中,材料 力学性质的变化
热焓
-170~ 725
20~ 1000 -150~ 600 -170~ 600
1)取基线及曲线弯曲部的外延线的交点 2)取曲线的拐点
2.混合物和共聚物的成分检测
脆性的聚丙烯往往与聚乙烯共混或共聚增加它的柔性。因为在 聚丙烯和聚乙烯共混物中它们各自保持本身的熔融特性,因此该共 混物中各组分的混合比例可分别根据它们的熔融峰面积计算。
3.结晶度的测定
高分子材料的许多重要物理性能是与其结晶度 密切相关的。所以百分结晶度成为高聚物的特 征参数之一。由于结晶度与熔融热焓值成正比, 因此可利用DSC测定高聚物的百分结晶度,先 根据高聚物的 DSC 熔融峰面积计算熔融热焓 ΔHf,再按下式求出百分结晶度。
2024版热分析法PPT课件
热分析法PPT课件•热分析法概述•热分析法的实验技术•热分析法的数据处理与解析•热分析法在材料科学中的应用目•热分析法在化学领域的应用•热分析法的优缺点及发展前景录热分析法概述热分析法的定义与原理定义原理材料科学用于研究材料的热稳定性、相变、热分解等性质,以及材料的组成和结构。
化学分析用于确定物质的组成、纯度、热稳定性等,以及研究化学反应的热力学和动力学。
生物医学用于研究生物组织的热性质、生物大分子的热稳定性以及药物的热分析。
环境科学用于研究环境污染物的热性质、热分解以及环境样品的热分析。
早期阶段发展阶段现代阶段热分析法的实验技术定义热重分析(Thermogravimetric Analysis ,TGA )是在程序控制温度下,测量物质的质量与温度关系的一种技术。
要点一要点二原理物质在加热过程中会伴随质量的变化,这种变化是由于物质的分解、挥发、升华等物理或化学过程引起的。
通过测量物质质量随温度的变化,可以得到物质的热稳定性、热分解温度、热分解过程等信息。
应用热重分析广泛应用于无机物、有机物及聚合物的热分解研究,以及固体物质的成分分析等领域。
要点三定义01原理02应用03差示扫描量热法定义原理应用热机械分析定义原理应用热分析法的数据处理与解析数据采集数据预处理数据转换030201数据处理的基本步骤数据解析的方法与技巧峰识别与解析01基线选择与调整02动力学参数计算03数据可视化与报告生成数据可视化结果解读与讨论报告生成热分析法在材料科学中的应用热重分析(TGA)通过测量材料在升温过程中的质量变化,研究其热分解、氧化等反应,评估材料的热稳定性。
差热分析(DTA)记录材料在升温或降温过程中的热量变化,分析材料的热效应,判断其热稳定性。
热机械分析(TMA)测量材料在温度变化过程中的形变和应力,研究材料的热膨胀、收缩等性能,评估其热稳定性。
材料热稳定性的研究材料相变过程的探究差示扫描量热法(DSC)热光分析X射线衍射分析(XRD)体积热膨胀系数测定测量材料在升温过程中的体积变化,计算其体积热膨胀系数,了解材料的热膨胀特性。
热分析技术(最新版)PPT课件
特点
设备简单、操作方便、试样用量少; 但精度较低、分辨率差。
应用
研究物质的物理变化(晶型转变、熔 融、升华和吸附等)和化学变化(脱 水、分解、氧化和还原等)。
差示扫描量热法
原理
在程序控制温度下,测量输入到 物质和参比物的功率差与温度的
关系。
应用
测定多种热力学和动力学参数, 如比热容、反应热、转变热等; 研究高分子材料的结晶、熔融和
流体中由于温度差异引起的密度变 化而产生的宏观运动,是热量传递 的一种重要方式。
热辐射
物体通过电磁波的形式发射和吸收 能量,其辐射强度与物体温度、表 面性质等因素有关。
热分析中的物理量与单位
温度
热力学系统的一个物理属性,表示物体冷 热的程度,常用单位有摄氏度、华氏度、
开尔文等。
热容
物体在温度变化时所吸收或放出的热量与 其温度变化量之比,常用单位有焦耳/摄氏
环境科学领域应用
大气污染物分析
利用热分析技术可以对大气中的 污染物进行分析和鉴定,揭示大 气污染物的来源和危害。
土壤污染物分析
通过热分析技术可以分析土壤中 的污染物,评价土壤的污染程度 和生态风险。
环境样品热性质研究
利用热分析技术可以研究环境样 品的热性质,如热稳定性、热分 解温度等,为环境科学研究和环 境保护提供技术支持。
热机械分析法
原理
01
在程序控制温度下,测量物质在非振动载荷下的形变与温度的
关系。
应用
02
研究材料的热膨胀系数、玻璃化转变温度、流动温度等;评估
材料的尺寸稳定性、内应力和热震稳定性等。
特点
03
能直接测量材料的形变,反映材料的机械性能随温度的变化;
课件热分析
利用热分析技术可以评价催化剂在化学反应中的活性表现 ,了解催化剂对反应速率和选择性的影响,为催化剂的筛 选和改性提供参考。
工业生产过程控制中的应用
产品质量控制
通过热分析技术可以对工业生产过程中的产品质量进行实时监控, 了解产品的成分、结构和性能等信息,确保产品质量符合标准要求 。
工艺过程优化
04 差示扫描量热法
CHAPTER
差示扫描量热法原理
热流型差示扫描量热法
在程序控制温度下,测量输入到物质和参比物的功率差与温 度的关系。
功率补偿型差示扫描量热法
在程序控制温度下,测量输入到物质和参比物的功率差与温 度的关系,但试样和参比物分别放在试样支持器和参比物支 持器上,通过差热放大电路和差动热量补偿放大器,使流入 补偿电热丝的电流发生变化。
实验条件与样品制备
实验条件
温度范围、升温速率、气氛等。
样品制备
样品用量、粒度、装样方式等。
数据处理与结果分析
要点一
数据处理
基线处理、峰识别、峰面积计算等。
要点二
结果分析
通过比较样品的DSC曲线与标准曲线或已知物质的DSC曲 线,可以确定样品的热性质,如熔点、结晶温度、玻璃化 转变温度等。同时,还可以根据峰面积计算样品的热焓变 化。
课件热分析
目录
CONTENTS
• 热分析概述 • 热重分析法 • 差热分析法 • 差示扫描量热法 • 热机械分析法 • 热分析技术应用实例
01 热分析概述
CHAPTER
热分析定义与目的
定义
热分析是在程序控制温度下,测 量物质的物理性质与温度关系的 一类技术。
目的
通过对物质在加热或冷却过程中 的物理和化学变化的研究,揭示 物质的组成、结构、性质以及变 化规律。
热分析PPT课件
热力学基础知识
热力学系统
研究对象,与周围环境有能量和 物质交换的体系
状态函数
描述系统状态的物理量,如温度、 压力、体积等
热力学第一定律
能量守恒定律在热力学中的应用, 表达式为ΔU=Q+W
热力学第二定律
热量不可能自发地从低温物体传 到高温物体,表达为ΔS≥0
热分析方法分类与特点
差热分析(DTA)
在程序控制温度下,测量物质与参比物之间的温度差随温 度变化的技术
06
热分析技术在材料科学中应用
材料性能表征与评估
热重分析(TGA)
通过测量材料在升温过程中的质量变化,研究其热稳定性、分解温 度、氧化稳定性等。
差热分析(DTA)
记录样品与参比物之间的温度差随温度变化的曲线,用于研究材料 的热效应、相变、反应动力学等。
差示扫描量热法(DSC)
测量样品与参比物之间的功率差随温度变化的曲线,用于研究材料 的熔点、结晶度、玻璃化转变温度等。
材料相变过程研究
01
相变温度的确定
通过热分析方法确定材料的固固相变、固-液相变、液-气相变 等相变温度。
02
相变动力学研究
03
相变机理探讨
研究材料在相变过程中的动力学 行为,如相变速率、相变活化能 等。
结合热分析数据与其他表征手段, 探讨材料相变的机理和影响因素。
材料老化、失效预测和寿命评估
热氧化稳定性评估
数据处理
将实验数据导入计算机,利用相关软件进行数据处理和 分析,如绘制热机械曲线、计算热膨胀系数等。
应用实例及优缺点分析
应用实例
研究材料的热稳定性、热膨胀性、相变等。
优点
可测量物质在宽温度范围内的热机械性能,提供丰富 的信息;实验操作简单,结果可靠。
热分析技术PPT课件
峰顶温度Tp:吸、 放热峰的峰形顶 部的温度,该点 瞬间
d(ΔT)/dt=0;
峰宽—— B′D′;
峰高—— CF;
峰面积——BCDB; 外推起始点(出峰点)一峰前沿最大斜率点与
基线延长线的交点(G),对应温度最为接近 热力学平衡温度。
3、DTA数据的记录方式
理想
实际
K[Al3(OH)6](SO4)2 热重曲线
• 结晶硫酸铜的热分析
实验条件为试样质量为10.8mg,升温 速率为10℃/min,采用静态空气,在
mo=10.8mg。曲线bc为第一台
铝坩埚中进行
阶,质量损失率为:
曲线de 为第二台阶,质量损失 率为:
曲线fg为第三台阶,质量损失率:
推导出CuSO4·5H2O 的脱水方程如下:
4、影响TG曲线的主要因素
任何一种分析测量技术都必须考虑到测定结 果的准确可靠性和重复性。为了要得到准确性和复 现性好的热重测定曲线,就必须对能影响其测定结 果的各种因素仔细分析。
① 升温速度: ② 试样周围气氛:C02、空气中或N2气氛 ③ 坩埚和支架的影响: ④ 试样因素:试样量、粒度大小 ⑤ 走纸速度:
据。 ⑩ 标明试样重量和试样稀释程度。 ⑪ 标明所用仪器的型号、商品名称及热电偶的几何
形状、材料和位置。 ⑫ 纵坐标刻度用测定温度下每度的偏移表示,吸热
峰指向下方,放热峰指向上方。
2023/9/13
4、DTA曲线的影响因素
① 升温速率不同,得到的峰的形状会有些差异,升温速率不 稳,则会造成基线偏移、弯曲、甚至造成假峰。
(Differential Scanning Calorimetry)
3、 热分析应用范围
热分析技术 (Thermal Analysis)ppt课件
充油体系
常用芳香油Tg 232K (-41C) 或萘油Tg208 K。芳香油Tg 高于SBR,使 Tg升高,萘油 使Tg降低。
Tg oil-extended rubber C
K为两种均聚物热胀系数之比
精选ppt
32
wii(Tg - Tg i) = 0
三组分体系
w11(Tg - Tg1) + w22(Tg - Tg2) + w33(Tg - Tg3) = 0
Tg (w11 + w22 + w33 ) = w11Tg1 + w22Tg2+ w33Tg3
Tg
w11Tg1 w22Tg2 w33Tg3 w11 w22 w33
精选ppt
7
精选ppt
8
精选ppt
9
精选ppt
10
精选ppt
11
示差扫描量热测定时记录的热谱图称之为DSC 曲线,其纵坐标是试样与参比物的功率差dH/dt, 也称作热流率,单位为毫瓦(mW),横坐标为温 度(T)或时间(t)。在DSC热谱图中,必须标明 吸热(endothermic) 与放热(exothermic)效应的方向
精选ppt
28
研究实例:轮胎橡胶Tg测定
轮胎橡胶Tg的重要性: Tg值高(约 -40C),抓着性高,但滚动阻力大,耐磨 差,耐低温性差
Tg低(约 -90C),滚动阻力小,耐磨高,耐低温性高, 但抓着性差
因此轮胎橡胶都是不同胶的共混物
精选ppt
29
常用的轮胎胶
ESBR SSBR BR NR IR
丁苯橡胶
国际标准ISO 11357-1:
DSC是测量输入到试样和参比物的热流量差或功率 差与温度或时间的关系
《热分析法》课件
检测材料相变
热分析法可以检测材料在加热或 冷却过程中的相变温度和相变热 量,有助于了解材料的热性能和 相变行为。
评估材料热导率
通过热分析法可以测量材料的热 导率,这对于材料在高温或低温 环境下的热传导性能评估具有重 要意义。
化学领域的应用
反应动力学研究
热分析法可以用于研究化学反应的动 力学过程,通过测量反应速率常数和 活化能等参数,有助于理解反应机理 和反应速率控制步骤。
加强热分析标准化和规范化的宣传与培训,提高相关人员的意识和素质,促进热分析的广泛应用和深入发展。
THANK YOU
随着科学技术的不断发展,热分析与光谱、色谱、质谱等分 析方法的联用将进一步提高热分析的准确性和可靠性。
热分析软件的开发
未来将有更多专门针对热分析的软件出现,这些软件将能够 实现数据的自动采集、处理、分析和可视化,提高热分析的 效率和精度。
交叉学科的研究与应用
热分析与材料科学的交叉
随着材料科学的快速发展,热分析将在材料性能表征、材料合成与制备等领域发 挥更加重要的作用。
03息量。ຫໍສະໝຸດ 热分析法的优势与局限性• 可用于研究物质在温度变化时的 性质变化,具有较高的灵敏度和 准确性。
热分析法的优势与局限性
01
局限性
02 对测试条件要求较高,如温度控制、气氛 控制等。
03
对于某些物质,可能存在较大的热历史效 应,影响测试结果的准确性。
04
对于某些复杂体系,可能需要结合其他分 析方法进行综合分析。
《热分析法》ppt课件
• 热分析法简介 • 热分析法的基本类型 • 热分析法的实验技术与操作 • 热分析法的应用实例 • 热分析法的未来发展与展望
01
热分析法简介
《热分析技术》课件
热重-差示扫描量热联用技术
热重-差示扫描量热联用技术结合了热重分析技术和差示扫描量热技术,可以同时测量样品的质量变 化和热量变化。
1
热重分析
测量样品的质量变化。
2
差示扫描量热
பைடு நூலகம்
测量样品和参比样品在相同条件下的热量差。
3
联用分析
通过分析质量变化和热量变化,研究样品的物化性质和反应动力学。
热分析技术的应用
通过测量样品的热导率来研究 其热传导性能。
热容测定
通过测量样品的热容来研究其 储热特性。
热稳定性测定
通过测量样品在高温条件下的 热分解和氧化特性来评估其热 稳定性。
热膨胀技术
热膨胀技术是一种通过测量材料在不同温度下的尺寸变化来研究材料的热膨 胀性质的方法。
• 线膨胀系数测定:测量材料在不同温度下的长度变化。 • 体膨胀系数测定:测量材料在不同温度下的体积变化。 • 表面膨胀系数测定:测量材料在不同温度下的表面面积变化。
《热分析技术》PPT课件
欢迎来到《热分析技术》的PPT课件,本课件将介绍热分析技术的概述和其在 各个领域中的应用,让您深入了解这一领域的知识。
热分析技术的概述
热分析技术是一种通过对样品施加热量并测量样品的物理和化学性质的变化来研究材料性质的方法。
热重分析技术
通过测量物质的质量变化 来研究热分解、燃烧等过 程。
热分析技术在各个领域中都有重要的应用,以下是一些示例应用领域。
无机化学研究
研究无机材料的热稳定性、热分解特性等。
有机化学研究
研究有机化合物的燃烧性质、热解特性等。
材料科学研究
研究材料的热膨胀性质、热传导性能等。
环境科学研究
研究环境样品的热稳定性、热解过程等。
热分析ppt
两类不同的DSC示意图 两类不同的 示意图
热流法 在给予样品和参比相同的功率下, 在给予样品和参比相同的功率下,测定样品和参比两端的温 差∆T,然后根据热流方程,将∆T(温差)换算成∆Q(热量 ,然后根据热流方程, (温差)换算成∆ ( 作为信号的输出。 差)作为信号的输出。 功率补偿法 功率补偿型DSC的原理是,在程序升温的过程中,始终保持 的原理是, 功率补偿型 的原理是 在程序升温的过程中, 试样与参比物的温度相同, 试样与参比物的温度相同,为此试样和参比物各用一个独立 的加热器和温度检测器。当试样发生吸热效应时, 的加热器和温度检测器。当试样发生吸热效应时,由补偿加 热器增加热量,使试样和参比物之间保持相同温度; 热器增加热量,使试样和参比物之间保持相同温度;反之当 试样产生放热效应时,则减少热量, 试样产生放热效应时,则减少热量,使试样和参比物之间仍 保持相同温度。 保持相同温度。
影响DTA曲线的主要因素 曲线的主要因素 影响
差热分析曲线的峰形、出峰位置和峰面积等受多种因素影响, 大体可分为仪器因素和操作因素, 仪器因素是指与差热分析仪有关的影响因素。主要包括: 炉子的结构与尺寸; 坩埚材料与形状; 热电偶性能等。
操作因素: 操作因素:
操作因素是指操作者对样品与仪器操作条件选取不同而对 分析结果的影响: 样品粒度:影响峰形和峰值,尤其是有气相参与的反应; 试样要尽量均匀,最好过筛 参比物与样品的对称性:包括用量、密度、粒度、比热容 及热传导等,两者都应尽可能一致,否则可能出现基线偏 移、弯曲,甚至造成缓慢变化的假峰; 气氛:气氛的成分对DTA和DSC曲线的影响很大,可以被 氧化的试样在空气或氧气氛中会有很大的氧化放热峰,在 氮气或其它惰性气体中就没有氧化峰了。
② 试样皿的影响 理想的皿:皿材料是惰性的,不失重, 理想的皿:皿材料是惰性的,不失重,不是试样的 催化剂; 催化剂; 试样摊成薄层,有利于热传导、 试样摊成薄层,有利于热传导、扩散和 挥发。 挥发。 ③ 挥发物冷凝的影响 影响的原因:试样分解、升华、 影响的原因:试样分解、升华、逸出的挥发性物质 在仪器的温度较低位置处冷凝, 在仪器的温度较低位置处冷凝,特 别挥发物冷凝在称重的体系中( 别挥发物冷凝在称重的体系中(如悬 ),这部分残留的冷凝物的质量变 丝),这部分残留的冷凝物的质量变 化将叠加到待测试样中。 化将叠加到待测试样中。 实 验 技 巧:减少试样用量 选择适当的冲洗气流量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
31
仪器的校正
校正的含义 校正温度与能量的对应关系
校正的原理 方法:测定标准物质,使测定值等于理论值 手段:能量、温度区间、温度绝对值
什么时候需要校正 1. 样品池进行过清理或更换 2. 进行过基线最佳化处理后
32
实验中的影响因素
33
扫描速度的影响
灵敏度随扫描速度提高而增加 分辨率随扫描速度提高而降低 技巧: 增加样品量得到所要求的灵敏度 低扫描速度得到所要求的分辨率
7
热分析技术分类
8
热分析四大支柱
差热分析、热重分析、 差示扫描量热分析、热机械分析
——用于研究物质的晶型转变、融化、升华、吸附 等物理现象以及脱水、分解、氧化、还原等化学 现象。 ——快速提供被研究物质的热稳定性、热分解产物、 热变化过程的焓变、各种类型的相变点、玻璃化 温度、软化点、比热、纯度、爆破温度和高聚物 的表征及结构性能等。
热流型(Heat Flux) 在给予样品和参比品相同的功率下,测定样品和参比品 两端的温差T,然后根据热流方程,将T(温差)换 算成Q(热量差)作为信号的输出。
24
量热仪内部示意图
Sample
Platinum Alloy PRT Sensor
Platinum Resistance Heater
Heat Sink
纵坐标信号的大小与升温速度成正比
27
功率补偿型 DSC的优点
Sample
Platinum Alloy PRT Sensor
Platinum Resistance Heater
Heat Sink
Reference
> 精确的温度控制和测量 > 更快的响应时间和冷却速度
> 高分辨率
28
热流型 DSC的优点
22
DSC的基本原理
DSC 是指按照一定程序控制试样和参比物的 温度变化,并将输入给两物质的热流差作为 温度的函数进行测量的技术。
23
功率补偿型(Power Compensation) 在样品和参比品始终保持相同温度的条件下,测定为满 足此条件样品和参比品两端所需的能量差,并直接作为 信号Q(热量差)输出。
几种主要的热分析方法
9
10
差热分析
差热分析(Differential Thermal Analysis),简称DTA ——是在程序控制温度下测定物质和参比物之 间的温度差和温度关系的一种技术。
参比物: 在测定条件下不产生任何热效应 的惰性物质
1. 差热分析原理
11
热电效应与热电偶
两种不同材料的金属丝两端牢靠地接触在一起,组成图 所示的闭合回路,当两个接触点(称为结点)温度T和T0不 相同时,回路中既产生电势,并有电流流通,这种把 热能转换成电能的现象称为热电效应。
14
15
16
17
18
19
20
影响DTA曲线的因素
21
仪器因素
试样因素
炉子尺寸 坩埚大小和形状 差热电偶性能 热电偶与试样相对位置 记录系统精度
操作因素
加热速度 压力和气氛
热容量和热导率的变化 试样的颗粒度:100目-300目(0.04-0.15mm) 试样的结晶度、纯度和离子取代 试样的用量 试样的装填 热中性体(参比物)
1903年,Tammann首次提出“热分析”术语
1915年,日本的本多光太郎,在分析天平的基础上研制了 “热天平”即热重法(TG),后来法国人也研制了热天平技 术。
4
热分析的起源及发展
1945年,首批商品化热分析天平生产。 1964年,美国的Watson和O’Neill在DTA技术的基础上发明了差 示扫描量热法(DSC),美国P-E公司最先生产了差示扫描量 热仪,为热分析热量的定量作出了贡献。
1965年,英国的Mackinzie (Redfern等人发起,召开了第一次国 际热分析大会,并于1968年成立了国际热分析协会(ICTA)。 1979年,中国成立中国化学会化学热力学和热分析专业委员会。
5
6
ICTA 热分析方法的九类
质量
尺寸
光学
温度
力学
电学
热量
声学
磁学
DSC Differential Scanning Calorimeter
37
DSC应用举例
共混物的相容性 热 历 史 效 应 结晶度的表征 增塑剂的影响 固化过程的研究
Reference
Sample
Furnace
Thermocouples
功率补偿型 DSC
热流型 DSC
Hale Waihona Puke 5工作原理简图功率补偿型 DSC
热流型 DSC
26
dQ/dt = dQ/dT dT/dt Q :热量 t :时间 T :温度 dQ/dt: 纵坐标信号,mW; dT/dt :程序温度变化速率,C/min;
两个结点中与被测介质接触的一个称为测量端或工作端、 热端,另一个称为参考端或自由端、冷端。
12
差热分析原理
热电偶与差热电偶 将两个反极性的热电偶串联起来,就构成了可用于
测定两个热源之间温度差的温差热电偶。
13
差热分析原理
——在程序控制温 度下,测定物质 和参比物之间的 温度差和温度关 系的一种技术。
Sample
> 基线稳定 > 高灵敏度
29
基线与仪器的校正
30
基线
基线的重要性 1. 样品产生的信号及样品池产生的信号必须加以区分; 2. 样品池产生的信号依赖于样品池状况、温度等; 3. 平直的基线是一切计算的基础。 如何得到理想的基线 干净的样品池、仪器的稳定、池盖的定位、清洗气; 选择好温度区间,区间越宽,得到理想基线越困难; 进行基线最佳化操作。
34
扫描速度的影响
35
样品制备的影响 样品几何形状:
样品与器皿的紧密接触
样品皿的封压:
底面平整、样品不外露
合适的样品量:
灵敏度与分辨率的折中
36
仪器损坏的主要来源
1. 用力过大,造成样品池不可挽救的损坏; 2. 操作温度过高(铝样品皿,温度>600℃); 3. 样品池底部电接头短路和开路; 4. 样品未被封住,引起样品池污染。
1
热分析技术简介
2
热分析
国际热分析协会(ICTA)热分析定义: 在程序控制温度下,测量物质的物理性质与温度关
系的一种技术。
3
热分析的起源及发展
1780年,英国的Higgins使用天平研究石灰粘结剂和生石灰受 热重量变化。
1899年,英国的Roberts-Austen第一次使用了差示热电偶和 参比物,大大提高了测定的灵敏度。正式发明了差热分析 (DTA)技术。