高数极限求法总结
高数中求极限的16种方法
高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
高数知识点总结公式
高数知识点总结公式1.极限相关公式:(1)λ-δ定义:对于任意正实数ε,其中λ和δ为常数,如果当0<|x-a| <δ时,|f(x)-L|<ε,则称函数f(x)在x趋于a时以L为极限,记为limx→af(x)=L。
(其中ε、δ、λ具有一定联系)(2)夹逼准则:设f(x)≤g(x)≤h(x) (a<x<a+δ),且limx→af(x) = limx→ah(x) = L,则有limx→ag(x)=L。
(3)左右极限定义:右极限limx→+0f(x)=L:对任意ε>0,存在δ>0,当0<x<a时,有|f(x)-L|<ε。
左极限limx→-0f(x)=L:对任意ε>0,存在δ>0,当a<x<0时,有|f(x)-L|<ε。
(4)无穷大定义:对于任意M>0,都存在δ>0,使得当0<|x-a|<δ时,有f(x)>M或f(x)<-M,称f(x)当x趋于a时趋于正无穷或负无穷,记为limx→af(x)=+∞或-∞。
(5)无穷小定义:如果在x→a 的极限过程中,函数f(x)的值变化趋向于0,则称函数f(x)为x→a时的无穷小,记作f(x)=o(1)或limx→af(x)=0,其中o(1)是第一个震荡频率。
(6)洛必达法则:设函数f(x),g(x)具有一阶导函数,且存在limx→a f(x)=limx→ag(x)=0,当x→a时,g'(x)≠0,则limx→af(x) / g(x) = limx→a f'(x) / g'(x)。
2.微分相关公式(1)导数的定义:函数y=f(x)在点x处的导数是指当x沿着x轴正方向变动一个无穷小量Δx时,函数值f(x)所发生的变化量Δy与Δx的比值,即:f' (x) = limΔx→0 (f (x+Δx)−f (x)) / Δx。
(2)常见函数的导数:sin x的导数是cos xcos x的导数是-sin xtan x的导数是sec^2 xcot x的导数是-csc^2 xln x的导数是1 / xe^x的导数是e^x(3)导数的运算法则和法则:(u+v)'=u'+v'差法则:(u-v)'=u'-v'乘法法则:(uv)'=u'v+uv'除法法则:(u/v)'=(u'v-uv') / v^2复合函数求导:设y=f(u),u=g(x),则y=f[g(x)]的导数为dy / dx = dy / du * du / dx(4)高阶导数的定义:如果函数y=f(x)在某点x0的邻域内存在导数y',则f(x)在x0处有一阶导数;如果f(x)在x0的某邻域内存在一阶导数y',且y'在x0处也有导数,则称f(x)在x0处存在二阶导数,记为y''),y''=(y')';一般地,如果f(x)的n-1阶导数f^(n-1)(x)在x0的邻域内存在,且f^(n-1)(x)可导,则称f(x)在x0处存在n阶导数,记为fn(x0),f^(n)(x0)或(dn / dx^n)f(x0)。
高等数学极限求法总结
04 极限求法之洛必达法则
洛必达法则基本思想
利用导数求解极限
在一定条件下,通过分子分母分别求导的方式,简化极限运 算。
转化无穷大比无穷大型
对于0/0型或∞/∞型的极限,通过洛必达法则可转化为其他 类型进行求解。
适用条件及典型例题
适用条件
适用于0/0型和∞/∞型的极限,且分子分母 在求导后极限存在或为无穷大。
05 极限求法之泰勒公式法
泰勒公式基本概念及展开式
泰勒公式定义
泰勒公式是用多项式逼近一个函数的方法,将一个在闭区间上可导的函数展开成多项式 的形式。
泰勒展开式
f(x) = f(a) + f'(a)(x-a) + f''(a)/2! * (x-a)^2 + ... + f^n(a)/n! * (x-a)^n + Rn(x),其 中Rn(x)为余项。
适用于连续函数情况
连续函数定义
若函数在某点的极限值等于该点的函 数值,则称函数在该点连续。对于连 续函数,我们可以直接将其自变量代 入函数表达式来求解极限。
适用范围
直接代入法适用于一元和多元函数的 极限求解,但要求函数在求极限的点 是连续的。
注意事项及典型例题
注意事项:在使用直接代入 法求极限时,需要注意以下
该方法不需要复杂的数学变换和技巧,易于掌握。
缺点
直接代入法仅适用于连续函数的极限问题,对于非连续函 数或复杂函数可能无法求解。
在某些情况下,即使函数在求极限的点连续,直接代入也 可能导致分母为零等无法计算的情况,需要结合其他方法 进行处理。
03 极限求法之因式分解法
适用于多项式函数情况
0/0型极限
大学高数极限运算法则
1.极限法则:极限是一个数列取极限值的概念,它表示一个数包含在另一个数中时,前者的值趋于后者。
2.链式法则:链式法则是极限的一种计算方法,即从一个已知限的出发,由此推出另外一个极限。
3.运算法则:
(1)可积性法则:假设函数有连续的极限,则在极限中乘以另外一个函数后再求极限,则取得的极限结果等于先求出两个函数的极限再相乘;
(2)可逆性法则:假设函数有连续的极限,则在极限中除以另外一个函数后再求极限,则取得的极限结果等于先求出两个函数的极限再相除;
(3)可幂次性:假设对函数求极限,则取出的极限结果等于该函数的幂次方的极限。
求函数极限的方法总结
求函数极限的方法总结求函数极限的方法总结考研高数求极限是考研数学的重要考点,下面求函数极限的方法总结,欢迎阅读参考!求函数极限的方法总结:利用函数连续性:直接将趋向值带入函数自变量中,此时要要求分母不能为0;通过已知极限:两个重要极限需要牢记;采用洛必达法则求极限:洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。
函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。
函数极限性质的合理运用。
常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。
1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。
全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。
首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x 趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。
高等数学极限求法总结
高等数学极限求法总结高等数学极限求法总结极限的判断定义是:单调递增有上界则有极限,单调递减有下界则有极限。
下面是小编整理的高等数学极限求法总结,希望对你有帮助!函数极限可以分成而运用ε-δ定义更多的见诸于已知的极极限值的证明题中。
掌握这类证明对初学者深刻理解运用极限定义大有裨益。
限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x时的极限。
1.利用极限的四则运算法则:极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。
方能利用极限四则运算法则进行求之。
不满足条件者,不能直接利用极限四则运算法则求之。
但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。
而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。
例 1 求 lim( x 2 3x + 5).x→ 2解: lim( x 2 3x + 5) = lim x 2 lim 3x + lim 5= (lim x) 2 3 lim x + lim 5= 2 2 3 2 + 5 = 3.x→2 x →2 x →2 x →2 x →2 x →2 x →22.利用洛必达法则洛必达(L Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。
一般用在求导后为零比零或无穷比无穷的类型。
利用洛必达求极限应注意以下几点:设函数f(x)和F(x)满足下列条件:(1)x→a时,lim f(x)=0,lim F(x)=0;(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;(3)x→a时,lim(f(x)/F(x))存在或为无穷大则x→a时,lim(f(x)/F(x))=lim(f(x)/F(x))例1:1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2xsinx = 2xsin(x/2)cos(x/2)原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x对分子分母同时求导(洛必达法则)(tgx) = 1 / (cosx)^2(x) = 1原式 = lim 1/(cosx)^2当 x --> 0 时,cosx ---> 1原式 = 13.利用两个重要极限:应用第一重要极限时,必须同时满足两个条件:① 分子、分母为无穷小,即极限为 0 ;② 分子上取正弦的角必须与分母一样。
高数大一函数的极限知识点
高数大一函数的极限知识点一、极限的定义在数学中,极限是指函数在某一点上逼近特定值的过程。
对于大一学生来说,了解极限的定义对于后续的数学学习至关重要。
根据极限的定义,给定一个函数和一个点,当该函数的自变量无限接近这个点时,函数值趋近于某个确定的值,这个确定的值就是函数在该点的极限。
二、常用的极限运算法则在计算函数极限时,我们可以使用一些常用的运算法则,这些法则可以简化计算过程,提高效率。
1. 基本极限法则:- 常数函数的极限:若k为常数,则lim(f(x)) = k (x-->a)- 恒等函数的极限:lim(x) = a (x-->a)- 幂函数的极限:lim(x^n) = a^n (x-->a),其中n为正整数- 指数函数的极限:lim(a^x) = a^a (x-->a),其中a为正实数2. 四则运算法则:- 和差的极限:lim(f(x)±g(x)) = lim(f(x)) ± lim(g(x)) (x-->a)- 积的极限:lim(f(x)g(x)) = lim(f(x)) · lim(g(x)) (x-->a)- 商的极限:lim(f(x)/g(x)) = lim(f(x))/lim(g(x)) (x-->a),其中g(x) ≠ 03. 复合函数的极限法则:- 复合函数的极限:lim(f(g(x))) = lim(f(u)) (u-->lim(g(x)))三、函数的一致性对于大一函数的极限,函数的一致性也是需要注意的重要概念。
一致性是指当自变量趋于某个特定值时,函数的极限是唯一确定的。
具体来说,对于一个函数f(x),当x趋于a时,如果极限值是L,在邻域内的所有点都有f(x)趋于L,那么函数f(x)在点a处是连续的。
四、无穷极限除了有限极限之外,函数还可能存在无穷极限。
无穷极限包括正无穷大、负无穷大以及无穷小。
当函数在某一点的极限是正无穷大时,我们可以表示为lim(f(x)) = +∞ (x-->a);当极限是负无穷大时,我们可以表示为lim(f(x)) = -∞ (x-->a);当极限是无穷小时,我们可以表示为lim(f(x)) = 0 (x-->a)。
高数基本极限公式大全
高数基本极限公式大全高数(Calculus)是计算和求解数学问题的重要工具,是研究通过数学方法估算未知量的学科。
在日常的科学研究中,用到的最多的就是求解极限问题,而极限问题求解利用的就是高数基本极限公式。
高数基本极限公式是极限的基本性质,是求解极限问题的基础,具有普适性,且它们之间又有一定的联系。
因此,学习和熟悉这些极限公式是高数学习的基础。
一般来说,高数基本极限公式可以分为两大类:一类是关于函数极限的公式,另一类是关于导数极限的公式。
关于函数极限的公式主要包括:夹紧定理、连续定理、超越定理和反弹定理;关于导数极限的公式主要包括:梯形定理和著名的八戒定理。
夹紧定理:如果函数f(x)在点x0处可导,且满足:对任意的ε>0,存在一个δ>0,使得:若x∈(x0-δ,x0+δ),则当x不等于x0时,函数f(x)满足|f(x)-f(x0)|;则说函数f(x)在x0处有极限,极限值等于f(x0)。
连续定理:若函数f(x)在x0处可导,则f(x)在x0处连续。
超越定理:若函数f(x)在x0处可导,且存在极限:limx→x0f(x)=L,则函数f(x)在x0点可以任意大小的超越值,但不可以超过极限L。
反弹定理:若函数f(x)在x0处连续且可导,且存在极限:limx →x0f(x)=L,则有f(x0)≤L,f(x)只可能在x0点反弹,即从小于L 变为大于L,或者从大于L变为小于L。
梯形定理:若函数f(x)在区间[a,b]内连续且可导,则有:∫f(x)dx=F(b)-F(a),其中F(x)是函数f(x)的原函数。
八戒定理:若函数f(x)在区间[a,b]内具有n阶导数,则有:∫f(x)dx=1/n!*[f^n(x)]^b_a由于高数基本极限公式具有普适性,因此它们也被广泛应用于科学研究、技术实际和工程应用中。
比如,在物理学中,常用夹紧定理、连续定理、梯形定理等极限公式来求解具有不确定性的物理量;在工程实际上,经常利用极限公式来分析和估算系统的稳定性和可靠性。
高数中求极限的16种方法
千里之行,始于足下。
高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。
为了解决各种极限问题,数学家们总结出了很多方法和技巧。
以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。
2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。
3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。
4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。
5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。
6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。
7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。
8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。
9.利用积分计算:将极限式子进行积分计算,以求出极限。
10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。
第1页/共2页锲而不舍,金石可镂。
11.利用积素等价:将极限式子进行积素等价,以求出极限。
12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。
13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。
14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。
15.利用导数性质:利用函数的导数性质,对极限进行计算。
16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。
除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。
这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。
大一高数求极限的方法总结
大一高数求极限的方法总结极限是高数学中一个重要的概念。
学习高数,理解和计算极限是大学生必须掌握的能力之一。
极限不仅可以用于理论推导,而且还可以帮助学生更好地应用极限,来解决实际数学问题。
极限有两种计算方法:一种是柱状法,一种是流程。
柱状法指的是使用微积分的方法来解决问题;而流程指的是通过分析函数的特征,从而求取极限的方法。
第一,柱状法。
柱状法是基于极限定义的,在求取极限的时候,可以利用定义,来确定极限的值。
例如求函数$y=frac{2x^{2}+5x+1}{(x-1)}$的极限,首先我们需要将函数分成上下两部分:$y_1=2x^{2}+5x+1$,$y_2=x-1$,分别给出它们的极限:$lim_{x to 1^{+}}y_1=6$,$lim_{x to 1^{-}}y_2=2$,然后将它们带入极限定义:$lim_{x to 1}y=lim_{x to1}frac{y_1}{y_2}=frac{lim_{x to 1^{+}}y_1}{lim_{x to1^{-}}y_2}=frac{6}{2}=3$,即得出极限值为$3$。
第二,流程。
流程是使用分析函数特征来求取极限的方法,常用于求一元函数(如指数函数、对数函数等)的极限。
例如求函数$y={frac{sqrt{x+2}-2}{x-3}}$的极限,在求这个函数的极限之前,我们可以先分析函数的特征,此函数在$x=3$处发生拐点,因此可以推测函数在$x=3$处的极限值应该为无穷大。
然后,我们可以使用流程法,将函数中的分子除以分母,将形式变成$frac{k_1}{0}$的形式,从而得到极限值无穷大。
最后,我们总结柱状法和流程法的不同之处。
在求取极限的时候,柱状法是依据定义求取极限的,而流程法则是利用函数的特征来求解极限。
因此,建议大家在学习高数的时候,还是要了解柱状法和流程法,将两种方法结合起来,更好地求取极限,并能够更好地应用到实际数学问题中去。
以上就是有关极限的求解方法总结。
高数上极限知识点总结
高数上极限知识点总结
高数上极限是一门比较重要的学科,本文将对极限学科的知识点进行总结。
极限的定义:定义极限的本质是无限,极限的定义为某个函数的值,当函数的变量的值趋
于某一特定的值时,函数的值也趋于一个特定的值,此时称该特定的值为函数的极限。
求极限的方法:
(1)指定极限法:采用指定极限法时,必须先观察函数f(x)在x趋近某一特定值c时,函数f(x)的变化趋势,即当夹着c来看时,函数f(x)是否以c为界限,左易右难或右
易左难,亦或有任何其他的趋势。
(2)量化极限法:在量化极限法中,将函数的表达式改写为形如分母项加1的形式,然
后用幂级数来对其进行展开,再将n无限次方相邻项折叠出,可以把极限证明问题,转换
成求解一系列多项式极限问题,进而求解待证明函数极限。
(3)唯一有理极限法:当等式中存在分子分母中各有两个不同幂次或以上的多项式,而
又这两者有共同的系数幂次时,就可以利用唯一有理极限法来求解该多项式的极限。
以上是极限学科的知识点的总结,其中的概念和方法的应用非常重要,是高数的重要组成
部分。
为高数的学习和理解提供了重要的基础,希望学生们能够仔细学习,把握极限的知识点,加深认识,从而充分发挥函数在高数中的重要作用。
高数极限与数列公式定理总结大全
高数极限与数列公式定理总结大全高数极限与数列公式定理总结大全一、极限1.极限的定义:当一个数列中的项数n无限增大时,如果数列的项趋近于一个确定的数值,则称这个数值为这一数列的极限。
2.极限的性质:极限具有唯一性、有界性、收敛性。
3.极限的求法:通常有直接观察法、定义法、等价无穷小代换法、洛必达法则、泰勒公式等方法。
4.重要极限:lim(1+1/n)^n=e;lim(sinx/x)=1(x趋向于无穷)。
二、数列1.等差数列:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,则称这个数列为等差数列。
这个常数叫做等差数列的公差。
2.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,则称这个数列为等比数列。
这个常数叫做等比数列的公比。
3.数列的求和:通常有公式求和法、分组求和法、倒序相加法、裂项相消法等方法。
4.数列的通项公式:通常有直接观察法、构造法、递推关系式法等方法。
5.数列的极限:当数列的项数n无限增大时,如果数列的项趋近于一个确定的数值,则称这个数值为这一数列的极限。
三、导数与微分1.导数的定义:导数是函数在某一点的变化率,反映了函数在这一点附近的局部性质。
2.导数的几何意义:在曲线上某点的切线斜率即为该点的导数值。
3.导数的运算:导数的四则运算法则包括加法、减法、乘法和除法。
4.微分的定义:微分是函数在某一点附近的近似值,可以用来近似计算函数在某一点的值。
5.微分的应用:微分主要用于近似计算和误差估计等方面。
四、积分1.定积分的定义:定积分是函数在区间上的积分和,表示函数在这个区间上的平均值。
2.定积分的性质:定积分具有非负性、可加性、可减性等性质。
3.微积分基本定理:微积分基本定理说明了定积分与被积函数的原函数之间的关系。
4.不定积分的定义:不定积分是函数的一组原函数,表示该函数的无穷多个可能的值。
5.不定积分的性质:不定积分具有线性性、可加性等性质。
6.积分的应用:积分在物理、工程、经济等领域都有广泛的应用,如求面积、体积、长度等。
大学数学如何求极限
高数求极限的方法⒈利用函数极限的四则运算法则来求极限定理1①:假设极限)(lim 0x f x x →和)(lim x g xx →都存在,则函数)(x f ±)(x g ,)()(x g x f ⋅当0x x →时也存在且①[])()()()(lim lim lim 0.0x g x f x g x f x x x x x →→→±=±②[])()()()(lim lim lim 0x g x f x g x f x x x x x x →→→⋅=⋅又假设0)(lim 0≠→x g x x ,则)()(x g x f 在0x x →时也存在,且有 )()()()(limlim lim 0x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如∞∞、00等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。
例1:求2422lim ---→x x x解:原式=()()()02222lim lim22=+=-+---→→x x x x x x⒉用两个重要的极限来求函数的极限①利用1sin lim=→xxx 来求极限 1sin lim 0=→x xx 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有()()1sin lim 0=→x g x g x x 或()()1sin lim =∞→x g x g x例2:xxx -→ππsin lim解:令t=x -π.则sinx=sin(-π t)=sint, 且当π→x 时0→t 故 1sin sin lim lim==-→→t tx x t x ππ例3:求()11sin 21lim --→x x x解:原式=()()()()()()()211sin 1111sin 122121lim lim =--⋅+=-+-+→→x x x x x x x x x ②利用e x x =+∞→)11(lim 来求极限e x x =+∞→)11(lim 的另一种形式为e =+→ααα1)1(lim .事实上,令.1x =α∞→x .0→⇔α所以=+=∞→x x x e )11(lim e =+→ααα10)1(lim例4: 求xx x 1)21(lim +→的极限解:原式=221210)21()21(lim e x x xx x =⎥⎦⎤+⋅⎢⎣⎡+→利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。
高等数学极限求解方法(共7篇)
高等数学极限求解方法(共7篇)以下是网友分享的关于高等数学极限求解方法的资料7篇,希望对您有所帮助,就爱阅读感谢您的支持。
高等数学求极限的方法篇1对于求解极限的方法可以归结为以下几类: (1)常用等价无穷小记住以下常用等价无穷小-例1 求极限limx →0x (1-cos x ) 【解】原式=x →0 =x →0=x →01==x →02例2 求下列极限1+cos x 2x() -1x (I)w =lim (II ) w =limx →0x →0ln(1+2x 3)4(2)等价无穷小的性质定理:有限个无穷小的代数和仍为无穷小. 定理:有界函数与无穷小的乘积是无穷小. 推论:常数与无穷小的乘积是无穷小. 推论:有限个无穷小的乘积也是无穷小.1【解】lim =0 , lim sin 为有界量,∴原式=0x →0x →0x【注】本题也可以利用常用的等价无穷小公式.(3)常用的极限sin x x sin x x lim =lim =1 lim =0 lim 极限不存在x →0x →0x →∞x →∞x sin x x sin x11x ln(1+x )lim(1+) =lim(1+x ) x =e lim =1x →∞x →0x →0x xlim =1 lim =1n →∞n →∞11例4 求w=lim(+2x ) xx →∞x(4)极限存在的两个准则(1)夹逼准则如果数列{x n },{y n }及{z n }满足下列条件:(1)y n ≤x n ≤z n (n =1, 2,3,...) ;(2)li m y n =lim z n =a , 那么数列{x n }的极限存在,且lim x n =a .n →∞n →∞n →∞(2)单调有界准则单调有界数列必有极限.(5)极限的定义(6)洛必达法则【解】(7)变量替换11方法2 w =lim(+2x ) x =e A ,而x →∞x01t1(t +2-1) x =1/t 0A =lim(+2x -1) −−−→lim −−→lim(1+2t ln 2) =1+l n 2, x →∞x t →0t →0t 故w =e 1+ln 2=2e(8)泰勒公式高等数学中极限的求解方法篇2龙源期刊网高等数学中极限的求解方法作者:曲波来源:《速读下旬》2014年第05期摘要:本文介绍了利用两个重要极限、无穷小量代换、洛比达法则、等求极限的方法,并结合具体的例子,指出了在解题过程中常遇见的一些问题。
高数数学极限总结
高数数学极限总结.doc高等数学极限总结引言极限是高等数学中的核心概念之一,它描述了函数在某一点附近的行为,是微积分学的基础。
本文档旨在总结高等数学中极限的基本概念、性质、计算方法以及应用。
极限的定义函数的极限设函数( f(x) )定义在点( a )的某个去心邻域内,如果存在常数( L ),对于任意给定的正数( \epsilon )(无论多么小),总存在正数( \delta ),使得当( 0 < |x - a| < \delta )时,都有( |f(x) - L| < \epsilon ),则称( L )是函数( f(x) )当( x )趋于( a )时的极限,记作( \lim_{x \to a} f(x) = L )。
无穷远处的极限函数( f(x) )在( x )趋于无穷大时的极限,如果存在常数( L ),使得对于任意给定的正数( \epsilon ),总存在正数( M ),使得当( |x| > M )时,都有( |f(x) - L| < \epsilon ),则称( L )是函数( f(x) )当( x )趋于无穷大时的极限,记作( \lim_{x \to \infty} f(x) = L )。
极限的性质唯一性极限存在且唯一。
保号性如果( \lim_{x \to a} f(x) = L ),且( L > 0 ),则存在( \delta > 0 ),使得当( 0 < |x - a| < \delta )时,( f(x) >0 )。
有界性如果( \lim_{x \to a} f(x) = L ),则存在( \delta > 0 ),使得当( 0 < |x - a| < \delta )时,( f(x) )是有界的。
极限的计算方法直接代入法如果函数( f(x) )在点( a )处连续,则可以直接代入( x = a )来求极限。
高数求数列极限的方法
高数求数列极限的方法
求解数列的极限通常可以采用以下方法:
1. 通过数列的通项公式来进行推导。
如果能够找到数列的通项公式,那么可以直接将自变量趋于无穷大或其他特定值,从而得到极限值。
2. 利用数列的性质来进行分析。
有些数列具有特定的性质,比如递推关系、对称性、特定的递增递减性等,可以利用这些性质来推导数列的极限。
3. 使用重要的极限定理。
比如夹逼定理、单调有界数列极限定理、柯西收敛原理等。
这些定理可以用于判断数列是否有极限,以及求得极限值。
4. 利用等比数列或等差数列的性质。
对于等比数列和等差数列,常常可以通过求和公式或差分公式来求得数列的极限。
5. 运用洛必达法则。
当遇到不定型的极限表达式时,可以利用洛必达法则将其转化为极限值已知的形式,从而求得极限。
需要注意的是,求解数列极限的方法并不限于以上几种,具体问题需要具体分析,并根据数列的特点选择相应的方法。
高数极限
1. 代入法, 分母极限不为零时使用.先考察分母的极限,分母极限是不为零的常数时即用此法.【例1】lim[x-->√3](x^2-3)/(x^4+x^2+1)lim[x-->√3](x^2-3)/(x^4+x^2+1)=(3-3)/(9+3+1)=0【例2】lim[x-->0](lg(1+x)+e^x)/arccosxlim[x-->0](lg(1+x)+e^x)/arccosx=(lg1+e^0)/arccos0=(0+1)/1=12. 倒数法,分母极限为零,分子极限为不等于零的常数时使用.【例3】lim[x-->1]x/(1-x)∵lim[x-->1] (1-x)/x=0 ∴lim[x-->1] x/(1-x)= ∞以后凡遇分母极限为零,分子极限为不等于零的常数时,可直接将其极限写作∞.3. 消去零因子(分解因式)法,分母极限为零,分子极限也为零,且可分解因式时使用.【例4】lim[x-->1](x^2-2x+1)/(x^3-x)lim[x-->1](x^2-2x+1)/(x^3-x)=lim[x-->1](x-1)^2/[x(x^2-1)=lim[x-->1](x-1)/x=0【例5】lim[x-->-2](x^3+3x^2+2x)/(x^2-x-6)lim[x-->-2] (x^3+3x^2+2x)/(x^2-x-6)= lim[x-->-2]x(x+1)(x+2)/[(x+2)(x-3)]= lim[x-->-2]x(x+1) / (x-3)=-2/5【例6】lim[x-->1](x^2-6x+8)/(x^2-5x+4)lim[x-->1](x^2-6x+8)/(x^2-5x+4)= lim[x-->1](x-2)(x-4)/[(x-1)(x-4)]= lim[x-->1](x-2) /[(x-1)=∞【例7】lim[h-->0][(x+k)^3-x^3]/hlim[h-->0][(x+h)^3-x^3]/h= lim[h-->0][(x+h) –x][(x+h)^2+x(x+h)+h^2]/h= lim[h-->0] [(x+h)^2+x(x+h)+h^2]=2x^2这实际上是为将来的求导数做准备.4. 消去零因子(有理化)法,分母极限为零,分子极限也为零,不可分解,但可有理化时使用.可利用平方差、立方差、立方和进行有理化.【例8】lim[x-->0][√1+x^2]-1]/xlim[x-->0][√1+x^2]-1]/x= lim[x-->0][√1+x^2]-1] [√1+x^2]+1]/{x[√1+x^2]+1]}= lim[x-->0][ 1+x^2-1] /{x[√1+x^2]+1]}= lim[x-->0] x / [√1+x^2]+1]=0【例9】lim[x-->-8][√(1-x)-3]/(2+x^(1/3))lim[x-->-8][√(1-x)-3]/(2+x^(1/3))=lim[x-->-8][√(1-x)-3] [√(1-x)+3] [4-2x^(1/3)+x^(2/3)] ÷{(2+x^(1/3))[4-2x^(1/3)+x^(2/3)] [√(1-x)+3]}=lim[x-->-8](-x-8) [4-2x^(1/3)+x^(2/3)]/{(x+8)[√(1-x)+3]} =lim[x-->-8] [4-2x^(1/3)+x^(2/3)]/[√(1-x)+3]=-25. 零因子替换法.利用第一个重要极限:lim[x-->0]sinx/x=1,分母极限为零,分子极限也为零,不可分解,不可有理化,但出现或可化为sinx/x时使用.常配合利用三角函数公式.【例10】lim[x-->0]sinax/sinbxlim[x-->0]sinax/sinbx=lim[x-->0]sinax/(ax)*lim[x-->0]bx/sinbx*lim[x-->0]ax/(bx) =1*1*a/b=a/b【例11】lim[x-->0]sinax/tanbxlim[x-->0]sinax/tanbx= lim[x-->0]sinax/ sinbx*lim[x-->0]cosbx=a/b6. 无穷转换法,分母、分子出现无穷大时使用,常常借用无穷大和无穷小的性质.【例12】lim[x-->∞]sinx/x∵x-->∞∴1/x是无穷小量∵|sinx|∞]sinx/x=0【例13】lim[x-->∞](x^2-1)/(2x^2-x-1)lim[x-->∞](x^2-1)/(2x^2-x-1)= lim[x-->∞](1 -1/x^2)/(2-1/x-1/ x^2)=1/2【例14】lim[n-->∞](1+2+……+n)/(2n^2-n-1)lim[n-->∞](1+2+……+n)/(2n^2-n-1)=lim[n-->∞][n( n+1)/2]/(2n^2-n-1)=lim[n-->∞][ (1+1/n)/2]/(2-1/n-1/n^2)=1/4【例15】lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50= lim[x-->∞][(2x-3)/ (5x+1)]^20[(3x+2)/ (5x+1)]^30= lim[x-->∞][(2-3/x)/ (5+1/ x)]^20[(3+2/ x)/ (5+1/ x)]^30 =(2/5)^20(3/5)^30=2^20*3^30/5^50。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。
树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。
为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。
函数的性质表现在各个方面
首先对极限的总结如下
极限的保号性很重要就是说在一定区间内函数的正负与极限一致
1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)
2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记
(x趋近无穷的时候还原成无穷小)
2落笔他法则(大题目有时候会有暗示要你使用这个方法)
首先他的使用有严格的使用前提!!!!!!
必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件
(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)
必须是 0比0 无穷大比无穷大!!!!!!!!!
当然还要注意分母不能为0
落笔他法则分为3中情况
1 0比0 无穷比无穷时候直接用
2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了
3 0的0次方 1的无穷次方无穷的0次方
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)
3泰勒公式 (含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)
E的x展开 sina 展开 cos 展开 ln1+x展开
对题目简化有很好帮助
4面对无穷大比上无穷大形式的解决办法
取大头原则最大项除分子分母!!!!!!!!!!!
看上去复杂处理很简单!!!!!!!!!!
5无穷小于有界函数的处理办法
面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!
6夹逼定理(主要对付的是数列极限!)
这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)
8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)
可以使用待定系数法来拆分化简函数
9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化
10 2 个重要极限的应用。
这两个很重要!!!!!对第一个而言是X趋近0时候的sinx 与x比值。
地2个就如果x趋近无穷大无穷小都有对有对应的形式
(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)
11 还有个方法,非常方便的方法
就是当趋近于无穷大时候
不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!
x的x次方快于 x!快于指数函数快于幂数函数快于对数函数(画图也能看出速率的快慢) !!!!!!
当x趋近无穷的时候他们的比值的极限一眼就能看出来了
12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中
13假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的
14还有对付数列极限的一种方法,
就是当你面对题目实在是没有办法走投无路的时候可以考虑转化为定积分。
一般是从0到1的形式。
15单调有界的性质
对付递推数列时候使用证明单调性!!!!!!
16直接使用求导数的定义来求极限,
(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见
了有特别注意)
(当题目中告诉你F(0)=0时候 f(0)导数=0的时候就是暗示你一定要用导数定义!!!!)
(从网上发现,谢谢总结者)。