数学分析教案(华东师大版)第二十二章曲面积分
华东师范大学数学系《数学分析》(第4版)(下册)课后习题-曲面积分(圣才出品)
的上半部分并取外侧为正向;
其中 S 是球面
并取外侧
为正向。
解:(1)因
所以原积分 (2)由对称性知只需计算其中之一即可。 由于
因此原积分=3 × 8=24。 (3)由对称性知,
(4)作球坐标变换,令
则
故
4 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台
(5)由轮换对称知只计算
面所围的立方体表面并取外侧为正向; 其中 S 是以原点为中心,边长为 2 的立方体
表面并取外侧正向; 其中 S 是由平面 x=y=z=0 和 x+y+z=1 所围的四面
3 / 19
圣才电子书
体表面并取外侧为正向;
十万种考研考证电子书、题库视频学习平台
其中 S 是球面
解:(1)因
从而
(2)面积 S 由两部分 组成,其中 面上的投影区域都是
由极坐标变换可得
它们在:xOy
1 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台
2.求均匀曲面 解:设质心坐标为
x≥0,y≥0,z≥0 的质心。 ,由对称性有:
其中 S 为所求曲面的面积, 而
解:
十万种考研考证电子书、题库视频学习平台
由柱面坐标变换
z=z,0≤0≤2π,0≤r≤h,r≤z≤h
(5)原曲线不封闭,故添加辅助曲面
有
2.应用高斯公式计算三重积分
≤1 与
所确定的空间区域。
解:
其中 V 是由 x≥0,y≥0,0≤z
3.应用斯托克斯公式计算下列曲线积分: 其中 L 为 x+y+z=1 与三坐标面的交线,
则
D 为 S 在 xOy 面投影
所以质心坐标为
数学分析第二十二章 曲面积分
Dxy
2. 若曲面 : y y( x, z), 则
f ( x, y, z)dS f [ x, y( x, z), z] 1 yx2 yz2 dxdz;
Dxz
3. 若曲面 : x x( y, z) 则
f ( x, y, z)dS f [ x( y, z), y, z] 1 xy2 xz2 dydz.
Dxy
一投: 将曲面向 xoy 面投影,得Dxy .
二换: dS 1 z2x ( x, y) z2y ( x, y) dxdy; 三代: f ( x, y, z) : z z( x, y) f ( x, y, z( x, y));
2. 若曲面 : y y(x, z) 则
f ( x, y, z)dS f [ x, y( x, z), z] 1 yx2 yz2 dxdz;
D yz
一投: 将曲面向 yoz 面投影,得Dyz .
二换:
dS
1
x
2 y
(
y,
z)Biblioteka xz2 (y,z)
dydz;
三代: f ( x, y, z) : x x( y, z) f ( x( y, z), y, z);
1. 若曲面 : z z( x, y); 则
f ( x, y, z) dS f [ x, y, z( x, y)] 1 zx2 zy2 dxdy;
原式 xyz dS 4 xy 3(1 x y)dxdy Dxy
其 中 D xy {( x , y ) | x y 1 , x 0 , y 0 }
xyzdS
1
1 x
3 xdx (1 x y)dy
0
0
1 (1 x) 3
3 0 x 6 dx
数学分析教学大纲
《数学分析》教学大纲第一部分说明一、本课程的目的、任务。
本课程是数学与应用数学和信息与计算科学两个专业的一门主要基础课,通过本课程的教学,一方面为后续课程,如:实变函数、复变函数、泛函分析,微分方程、微分方程的数值解、微分几何、概率论、理论力学等课程及有关的选修课等提供必要的基础知识,另一方面为培养学生的独立工作能力提供必要的训练,为学生进一步深造以及指导中学数学的教学打下良好基础。
本课程的任务是使学生获得有关函数、极限、函数的连续性、一元函数微积分、多元函数微积分、级数理论及其应用等方面的基本概念、基本理论与基本方法,从而能用更高的观点深入理解和分析处理中学数学教材的能力和解决实际问题的能力。
并通过大量习题的训练,培养学生的运算技能和对数学问题的思维、论证能力。
二、本课程的教学要求。
通过本课程的学习,使学生掌握极限理论、级数理论、微分理论及积分理论的基本概念和基本理论,熟练的掌握本课程所要求的基本计算方法和能力,基本的推理论证能力,抽象思维能力,逻辑思维能力,增强运用数学手段解决实际问题的能力。
教学重点:准确掌握极限、连续、微分和积分的概念、性质及计算;熟练掌握微分理论、积分理论和级数理论中的基本定理(实数完备性定理、中值定理、微积分基本定理、函数项级数的收敛理论、隐函数定理、曲面及曲线的积分定理);正确地应用这些基本定理解决数学、物理及其他方面的实际问题。
教学难点:主要集中在极限论和级数论的内容中。
训练设计方案:(1)布置课后作业注重锻炼学生的解题能力,适当布置思考题培养学生分析问题的能力和创新能力。
(2)指定问题课后讨论。
自学指导方案:(1)对下节课所讲内容作课前预习;(2)对部分章节的了解性的内容提出问题让学生自学并课上讨论;(3)指定课外参考书让学生阅读或让学生上网查阅相关资料加深对课程理解。
与其它课程的联系:为后续课程常微分方程,概率论与数理统计,偏微分方程,复变函数,计算方法,实变函数与泛函分析等提供理论基础和工具。
第二型曲面积分
正侧, 内侧作为负侧.
数学分析 第二十二章 曲面积分
高等教育出版社
§2 第二型曲面积分 曲面的侧
概念
计算
两类曲面积分的联系
第二型曲面积分的概念
先考察一r 个计算流量的问题. 设某流体以流速 v P( x, y, z) i +Q( x, y, z) j +R( x, y, z) k
S : y y(z, x), (z, x) D(zx) 上连续时, 有
Q( x, y, z)dzdx Q( x, y(z, x), z)dzdx. (4)
S
Dzx
这里 S 是取法线方向与 y 轴的正向成锐角的那一
侧为正侧.
数学分析 第二十二章 曲面积分
高等教育出版社
§2 第二型曲面积分 曲面的侧
Pdydz Qdzdx Rdxdy
S
k
Pdydz Qdzdx Rdxdy . i 1 Si
数学分析 第二十二章 曲面积分
高等教育出版社
§2 第二型曲面积分 曲面的侧
概念
计算
两类曲面积分的联系
第二型曲面积分的 计 算
定理22.2
设 R( x, y, z)是定义在光滑曲面 S : z z( x, y),( x, y) D( xy).
H P( x, y, z)dydz Q( x, y, z)dzdx R( x, y, z)dxdy .
S
数学分析 第二十二章 曲面积分
高等教育出版社
§2 第二型曲面积分 曲面的侧
概念
计算
两类曲面积分的联系
若以 S 表示曲面 S 的另一侧, 由定义易知
Pdydz Qdzdx Rdxdy
《数学分析》教案(华师大版)《数学分析》教案(华师大版)
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸
数学与计算机科学学院教案专用纸。
数学分析第二十二章曲面积分
§1 第一型曲面积分
一、概念的引入
实例 若 曲 面 是 光 滑 的 ,它 的 面 密 度 为 连 续 函 数 (x,y,z), 求 它 的 质 量 .
所谓曲面光滑 即曲面上各点处都 有切平面,且当点在 曲面上连续移动时, 切平面也连续转动.
匀质之质量 M S.
(2)第一型曲面积分具有与第一型曲线积分相类似的性质.
2.对面积的曲面积分的性质
(1) kf ( x, y, z) dS k f ( x, y, z) dS;
(2) [ f ( x, y, z) g( x, y, z)] dS
f ( x, y, z) dS g( x, y, z) dS;
二换:
dS
1
y
2 x
(
x
,
z)
yz2( x,
z)
dxdz;
三代: f ( x, y, z) : y y( x, z) f ( x, y( x, z), z);
3. 若曲面:x x( y, z), 则
f (x, y, z)dS
f [x( y, z), y, z]
1
x
2 y
x
2 z
dydz.
a4.
例3 计算 xyz dS , 其中 是由平面 x 0, y 0,
z 0, 及 x y z 1 所围成的四面体的整个边
界曲面.
z
解 1 2 3 4.
xyz dS xyz dS xyz dS
1
2
1 1
2
o
1y
xyz dS xyz dS
3
4
x 1 3 4
非匀质之质量,用元素法解决
分割 把 分成n 小块Si (Si 也 表示第i 小块曲面的面积).
第二型曲面积分
§2 第二型曲面积分教学目的:掌握第二型曲面积分的定义和计算公式.教学内容:曲面的侧;第二型曲面积分的定义和计算公式.(1) 基本要求:掌握用显式方程的第二型曲面积分的定义和计算公式.(2) 较高要求:掌握用隐式方程或参量表示的曲面的第二型曲面积分计算公式,掌握两类曲面积分的联系. 教学建议:(1) 本节的重点是要求学生必须掌握第二型曲面积分的定义和计算公式,要强调一、二型曲面积分的区别,要讲清确定有向曲面侧的重要性.(2) 本节的难点是用隐式方程或参数方程给出的曲面的第二型曲面积分的计算公式以及两类曲面积分的联系,可对较好学生要求他们掌握. 教学程序: 曲面的侧双侧曲面的概念、曲面的侧的概念背景:求非均匀流速的物质流单位时间流过曲面块的流量时,利用均匀流速的物质流单位时间流过平面块的流量的方法,通过“分割、近似、求和、取极限”的步骤,来得到结果.一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义. 一 第二型曲面积分的概念与性质定义 设函数P ,Q ,R 与定义在双侧曲面S 上的函数.在S 所指定的一侧作分割T 它把S 分成n 个小曲面n S S S ,,21 (n i ,,2,1 =),分割T 的细度{}的直径i ni S T ≤≤=1max ,以yzi S ∆,zx i S ∆,xy i S ∆分别为i S 在三个坐标上的投影区域的面积,它们的符号由i S 的方向来确定.如iS 的法线正向与z 轴正向成锐角时,i S 在xy 平面上的投影区域的面积xy i S ∆为正,反之,如i S 的法线正向与z 轴正向成钝角时,i S 在xy 平面上的投影区域的面积xyi S ∆为负(n i ,,2,1 =).在每个小曲面i S 任取一点()i i i ζηξ,,,若极限 ()∑=→∆ni i iiiT yzSP 1,,limζηξ+()∑=→∆ni i iiiT zxSQ 1,,limζηξ+()∑=→∆ni i iiiT xySR 1,,limζηξ存在且与分割T 与点()i i i ζηξ,,的取法无关,则称此极限为函数P ,Q ,R d 曲面S 所指定的一侧的第二型曲面积分,记为()()()⎰⎰++Sdxdy z y x R dzdx z y x Q dydz z y x P ,,,,,, (1)上述积分(1)也可写作()⎰⎰Sdydz z y x P ,,+()⎰⎰Sdzdx z y x Q ,,+()⎰⎰Sdxdy z y x R ,,第二型曲面积分的性质(1) 若⎰⎰++S i i i dxdy R dzdx Q dydz P (n i ,,2,1 =)都存在,i c (n i ,,2,1 =),为常数,则有dxdy R c dzdz Q c dydz P c n i i i n i i i S n i i i ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∑∑⎰⎰∑===111=∑⎰⎰=++ni Si i i i dxdy R dzdx Q dydz p c 1(2)若曲面S 由两两无公共内点的曲面块21,S S …n S 所组成,⎰⎰++iS RdxdyQdzdx Pdydz (n i ,,2,1 =)都存在,则()()()⎰⎰++Sdxdy z y x R dzdx z y x Q dydz z y x P ,,,,,,也存在,且()()()⎰⎰++Sdxdy z y x R dzdx z y x Q dydz z y x P ,,,,,,=∑⎰⎰=++ni S iRdxdy Qdzdx Pdydz 1二 第二型曲面积分的计算定理22.2设R 为定义在光滑曲面S :()()xy D y x y x z z ∈=,,,上的连续函数,以S 的上侧为正侧(这时S 的法线正向与z 轴正向成锐角 ),则有()⎰⎰Sdxdy z y x R ,,=()()⎰⎰xyD dxdy y x z y x R ,,, (2)证 由第二型曲面积分的定义()⎰⎰Sdxdy z y x R ,,=()∑=→∆n i i iiiT xyS R 1,,limζηξ=()()∑=→∆ni i iiiid xyS R 1,,,lim ηξζηξ这里()xyiS d ∆=max ,因{}的直径i ni S T ≤≤=1max 0→,立刻可推得()xyi S d ∆=max 0→,由相关函数的连续性及二重积分的定义有()()⎰⎰xyD dxdy y x z y x R ,,,=()()∑=→∆ni i iiiid xySR 1,,,limηξζηξ所以()⎰⎰Sdxdy z y x R ,,=()()⎰⎰xyD dxdy y x z y x R ,,,类似地:P 为定义在光滑曲面S :()()yz D z y z y x x ∈=,,上的连续函数时,而S 的法线方向与x 轴的正向成锐角的那一侧为正侧,则有()⎰⎰Sdydz z y x P ,,=()()⎰⎰xyD dydz z y z y x P ,,,Q 为定义在光滑曲面S :()()zx D x z x z y y ∈=,,上的连续函数时,而S 的法线方向与y 轴的正向成锐角的那一侧为正侧,则有()⎰⎰Sdzdx z y x Q ,,=()()⎰⎰ZXD dzdx y x z y x Q ,,,注:按第二型曲面积分的定义可以知道,如果S 的法线方向与相应坐标轴的正向成钝角的那一侧为正侧,则相应的公式右端要加“-”号例1计算⎰⎰Sxyzdxdy ,其中S 是球面1222=++z y x 在0,0≥≥y x 部分并取球面外侧. 解 曲面在第一,五卦限间分的方程分别为1S : 2211y x z --=,()(){0,0,1,,22≥≥≤+=∈y x y x y x D y x xy 2S :2221y x z ---=,()(){0,0,1,,22≥≥≤+=∈y x y x y x D y x xy ,⎰⎰Sxyzdxdy =⎰⎰1S xyzdxdy +⎰⎰2S xyzdxdy=⎰⎰--xyD dxdy y x xy 221⎰⎰----xyD dxdy y x xy 221 =⎰⎰--xyD dxdy y x xy 2212=⎰⎰=-201231521sin cos 2πϑθθdr r r d .例2 计算积分⎰⎰∑++-++dxdy x z dzdx z y dydz y x )3()()(, ∑为球面2222R z y x =++取外侧.解 对积分⎰⎰∑+dydzy x )(, 分别用前∑和后∑记前半球面和后半球面的外侧, 则有前∑ : ,222z y R x --= 222 :R z y D yz ≤+; 后∑: ,222z y R x ---= 222 :R z y D yz ≤+. 因此, ⎰⎰∑+dydzy x )(=⎰⎰∑前+⎰⎰∑后=()⎰⎰-+--=yzD dydz y z y R 222()⎰⎰=+---yzD dydz y z y R 222=-===========--=⎰⎰⎰⎰≤+==2222022sin ,cos 222 82R z y Rr z r y rdr r R d dydz z y R πθθθ()323223432214R r R R r r ππ=⎥⎦⎤⎢⎣⎡⋅--===.对积分dx dz z y ⎰⎰∑-)(, 分别用右∑和左∑记右半球面和左半球面的外侧, 则有右∑: ,222x z R y --= 222 :R z x D zx ≤+; 左∑: ,222x z R y ---= 222 :R z x D zx ≤+. 因此, =-⎰⎰∑dydz z y )(⎰⎰∑右+⎰⎰∑左=()()⎰⎰⎰⎰--------=zxzxD D dzdx z x z R dzdx z x z R 222222⎰⎰≤+=--=2223222342R z x R dzdx x z R π.对积分dxdy x z ⎰⎰∑+)3(, 分别用上∑和下∑记上半球面和下半球面的外侧, 则有 上∑: ,222y x R z --= 222 :R y x D xy ≤+;下∑: ,222y x R x ---= 222 :R y x D xy ≤+. 因此, dxdy x z ⎰⎰∑+)3(=⎰⎰∑上+⎰⎰∑下=()()⎰⎰⎰⎰=+----+--=xyxyD D dxdy x y x R dxdy x y x R33222222⎰⎰≤+=--=2223222342R y x R dxdy y x R π.综上,⎰⎰∑++-++dxdy x z dzdx z y dydz y x )3()()(=334343R R ππ=⨯作业P 289:1;2.。
数学分析教案-(华东师大版)第二十二章 曲面积分
第二十二章 曲面积分§22.1 第一曲面积分教学目标:掌握第一型曲面积分的概念及计算。
教学重点:第一型曲面积分的概念及计算。
教学难点:第一型曲面积分的概念及计算。
教学方法:讲练结合。
一、问题的提出 物质曲面的质量问题:设S 为面密度非均匀的物质曲面, 其面密度为ρ(x , y , z ), 求其质量: 把曲面分成n 个小块: ∆S 1, ∆S 2 , ⋅ ⋅ ⋅, ∆S n (∆S i 也代表曲面的面积); 求质量的近似值:i i i i ni S ∆=∑),,(1ζηξρ((ξi , ηi , ζi )是∆S i 上任意一点);取极限求精确值: ||||01lim(,,)niiiiT i M Sρξηζ→==∆∑(||T||为各小块曲面直径的最大值).二、第一型曲面积分的概念与性质定义 设曲面S 是光滑的, 函数f (x , y , z )在S 上有界.把S 任意分成n 小块: ∆S 1, ∆S 2 , ⋅ ⋅ ⋅, ∆S n (∆S i 也代表曲面的面积),在∆S i 上任取一点(ξi , ηi , ζi ), 如果当各小块曲面的直径的最大值||T||→0时, 极限||||01lim(,,)niiiiT i f Sξηζ→=∆∑总存在, 则称此极限为函数f (x , y , z )在曲面S 上的第一型曲面积分, 记作(,,)Sf x y z dS ⎰⎰, 即||||01(,,)lim (,,)niiiiT i Sf x y z dS f S ξηζ→==∆∑⎰⎰.其中f (x , y , z )叫做被积函数, S 叫做积分曲面. 第一型曲面积分的存在性:当f (x , y , z )在光滑曲面S 上连续时对面积的曲面积分是存在的. 今后总假定f (x , y , z )在S 上连续.根据上述定义面密度为连续函数ρ(x , y , z )的光滑曲面∑的质量M 可表示为ρ(x , y , z )在S 的第一型曲面积分:(,,)SM f x y z dS =⎰⎰如果S 是分片光滑的我们规定函数在S 上对面积的曲面积分等于函数在光滑的各片曲面上对面积的曲面积分之和. 例如设S 可分成两片光滑曲面S 1及S 2(记作S =S 1+S 2)就规定1212(,,)(,,)(,,)S S S S f x y z dS f x y z dS f x y z dS +=+⎰⎰⎰⎰⎰⎰.第一型曲面积分的性质: (1)设c 1、c 2为常数, 则1212[(,,)(,,)](,,)(,,)SSSc f x y z c g x y z dS c f x y z dS c g x y z dS +=+⎰⎰⎰⎰⎰⎰;(2)若曲面S 可分成两片光滑曲面S 1及S 2, 则12(,,)(,,)(,,)SS S f x y z dS f x y z dS f x y z dS =+⎰⎰⎰⎰⎰⎰;(3)设在曲面S 上f (x , y , z )≤g (x , y , z ), 则(,,)(,,)SSf x y z dSg x y z dS ≤⎰⎰⎰⎰;(4)SdS A =⎰⎰, 其中A 为曲面S 的面积. 三、第一曲面积分的计算 计算方法:化曲面积分为二重积分设曲面S 由方程z =z (x , y )给出, S 在xOy 面上的投影区域为D xy , 函数z =z (x , y )在D xy 上具有连续偏导数, 被积函数f (x , y , z )在S 上连续, 则(,,)[,,(,xySD f x y z dS f x y z x y =⎰⎰⎰⎰.如果积分曲面S 的方程为y =y (z , x ), D zx 为S 在zOx 面上的投影区域, 则函数f (x , y , z )在S 的第一型曲面积分为(,,)[,(,),zxSD f x y z dS f x y z x z =⎰⎰⎰⎰.如果积分曲面S 的方程为x =x (y , z ), D yz 为S 在yOz 面上的投影区域, 则函数f (x , y , z )在S 的第一型曲面积分为(,,)[(,),,yzSD f x y z dS f x y z y z =⎰⎰⎰⎰.例1 计算曲面积分1SdS z ⎰⎰, 其中S 是球面x 2+y 2+z 2=a 2被平面z =h (0<h <a )截出的顶部.解S 的方程为222y x a z --=, D xy : x 2+y 2≤a 2-h 2. 因为 222yx a x z x ---=, 222y x a y z y ---=,dxdy yx a a dxdy z z dS y x 222221--=++=,所以2221xyS D a dS dxdy z a x y =--⎰⎰⎰⎰ ⎰⎰--=πθ202222h a r a rdr d a 22022)]ln(21[2h a r a a ---=πh a a ln 2π=.提示:222222222222211yx a a y x a y y x a x z z yx --=--+--+=++. 例2 计算SxyzdS ⎰⎰, 其中S 是由平面x =0, y =0, z =0及x +y +z =1所围成的四面体的整个边界曲面.解 整个边界曲面S 在平面x =0、y =0、z =0及x +y +z =1上的部分依次记为S 1、S 2、S 3及S 4, 于是1234SS S S S xyzdS xyzdS xyzdS xyzdS xyzdS =+++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰4000S xyzdS =+++⎰⎰⎰⎰--=xyD dxdy y x xy )1(3⎰⎰---=1010)1(3xdy y x y xdx ⎰-⋅=1036)1(3dx x x 1203=.提示: S 4: z =1-x -y , dxdy dxdy z z dS y x 3122='+'+=教学要求:掌握第二型曲面积分的概念及计算。
最新22数学分析课件曲面积分
22数学分析课件曲面积分第二十二章曲面积分目的与要求:1. 掌握第一型曲面积分的定义和计算公式;2. 掌握第二型曲面积分的定义和计算公式,要强调一、二型曲面积分的区别,要讲清确定有向曲面侧的重要性.以及两类曲面积分的联系,3. 学会用高斯公式计算第二型曲面积分,用斯托克斯公式计算第二型曲线积分.重点与难点:本章重点是掌握第一、二型曲面积分的定义和计算公式和用高斯公式计算第二型曲面积分,用斯托克斯公式计算第二型曲线积分.;难点则是用隐式方程或参数方程给出的曲面的第二型曲面积分的计算公式以及两类曲面积分的联系.第一节第一型曲面积分一第一型曲面积分的概念与性质1 背景:求具有某种非均匀密度物质的曲面块的质量时,利用求均匀密度的平面块的质量的方法,通过“分割、近似、求和、取极限”的步骤来得到结果.一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义.2 第一型曲面积分的定义定义设«Skip Record If...»为空间上可求面积的曲面块,«Skip Record If...»为定义在«Skip Record If...»上的函数.对曲面«Skip Record If...»作分割«Skip Record 仅供学习与交流,如有侵权请联系网站删除谢谢2If...»,它把«Skip Record If...»分成«Skip Record If...»个可求面积的小曲面«Skip Record If...»«Skip Record If...»,«Skip Record If...»的面积记为«Skip Record If...»,分割«Skip Record If...»的细度为«Skip Record If...»,在«Skip Record If...»上任取一点«Skip Record If...»«Skip Record If...».若有极限«Skip Record If...»=«Skip Record If...»且«Skip Record If...»的值与分割«Skip Record If...»与点«Skip Record If...»的取法无关,则称此极限为«Skip Record If...»在«Skip Record If...»上的第一型曲面积分,记作«Skip Record If...»(1)3 第一型曲面积分的性质1.线性性: 设«Skip Record If...»,«Skip Record If...»存在,«Skip Record If...», 则«Skip Record If...»存在,且«Skip Record If...»«Skip Record If...»«Skip Record If...»2.可加性: 设«Skip Record If...»存在,«Skip Record If...»,则«Skip Record If...»,«Skip Record If...»存在,且«Skip Record If...»«Skip Record If...»«Skip Record If...»;反之亦然.«Skip Record If...»二第一型曲面积分的计算仅供学习与交流,如有侵权请联系网站删除谢谢3仅供学习与交流,如有侵权请联系网站删除 谢谢4定理22.1 设有光滑曲面«Skip Record If...»:«Skip Record If...»,«Skip Record If...», «Skip Record If...»为定义在«Skip Record If...»上的连续函数,则«Skip Record If...»=«Skip Record If...»证 略例1 计算«Skip Record If...»,其中«Skip Record If...»是球面«Skip Record If...»被平面«Skip Record If...»所截的顶部.解 «Skip Record If...»:«Skip Record If...», «Skip Record If...»«Skip Record If...»«Skip Record If...»=«Skip Record If...»=«Skip Record If...» =«Skip Record If...»=«Skip Record If...»=«Skip Record If...»作业 P282 1,2,3,4.第二节第二型曲面积分一曲面的侧双侧曲面的概念、曲面的侧的概念背景:求非均匀流速的物质流单位时间流过曲面块的流量时,利用均匀流速的物质流单位时间流过平面块的流量的方法,通过“分割、近似、求和、取极限”的步骤,来得到结果.一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义.二第二型曲面积分的概念1 第二型曲面积分的定义定义设函数«Skip Record If...»,«Skip Record If...»,«Skip Record If...»与定义在双侧曲面«Skip Record If...»上的函数.在«Skip Record If...»所指定的一侧作分割«Skip Record If...»它把«Skip Record If...»分成«Skip Record If...»个小曲面«Skip Record If...»,分割«Skip Record If...»的细度«Skip Record If...»,以«Skip Record If...»,«Skip Record If...»,«Skip Record If...»分别为«Skip Record If...»在三个坐标上的投影区域的面积,它们的符号由«Skip Record If...»的方向来确定.如«Skip Record If...»的法线正向与«Skip Record If...»轴正向成锐角时,«Skip Record If...»在«Skip Record If...»平面上的投影区域的面积«Skip Record If...»为正,反之,如«Skip Record If...»的法线正向与«Skip Record If...»轴正向成钝角时,«Skip Record If...»在«Skip Record If...»平面上的投影区域的面仅供学习与交流,如有侵权请联系网站删除谢谢5仅供学习与交流,如有侵权请联系网站删除 谢谢6积«Skip Record If...»为负«Skip Record If...».在每个小曲面«Skip Record If...»任取一点«Skip Record If...»,若极限«Skip Record If...»+«Skip Record If...»+«Skip Record If...»存在且与分割«Skip Record If...»与点«Skip Record If...»的取法无关,则称此极限为函数«Skip Record If...»,«Skip Record If...»,«Skip Record If...»在曲面«Skip Record If...»所指定的一侧上的第二型曲面积分,记为«Skip Record If...» (1)上述积分(1)也可写作«Skip Record If...»+«Skip Record If...»+«Skip Record If...»2 第二型曲面积分的性质1.若«Skip Record If...» «Skip Record If...»都存在,«Skip Record If...»«Skip RecordIf...»,为常数,则有«Skip Record If...»=«Skip Record If...»2.若曲面«Skip Record If...»由两两无公共内点的曲面块«Skip Record If...»所组成,«Skip Record If...» «Skip Record If...»都存在,则«Skip Record If...»也存在,且«Skip Record If...»=«Skip Record If...»仅供学习与交流,如有侵权请联系网站删除 谢谢7三 第二型曲面积分的计算定理22.2设«Skip Record If...»为定义在光滑曲面«Skip Record If...»:«Skip Record If...»,«Skip Record If...»,上的连续函数,以«Skip Record If...»的上侧为正侧(这时«Skip Record If...»的法线正向与«Skip Record If...»轴正向成锐角 ),则有«Skip Record If...»=«Skip Record If...» (2)证 由第二型曲面积分的定义«Skip Record If...»=«Skip Record If...»=«Skip Record If...»这里«Skip Record If...»,因«Skip Record If...»«Skip Record If...»,立刻可推得«Skip Record If...»«Skip Record If...»,由相关函数的连续性及二重积分的定义有«Skip Record If...»=«Skip Record If...»所以 «Skip Record If...»=«Skip Record If...»类似地:«Skip Record If...»为定义在光滑曲面«Skip Record If...»:«SkipRecord If...»,«Skip Record If...»上的连续函数时,而«Skip Record If...»的法线方向与«Skip Record If...»轴的正向成锐角的那一侧为正侧,则有«Skip Record If...»=«Skip Record If...»仅供学习与交流,如有侵权请联系网站删除 谢谢8«Skip Record If...»为定义在光滑曲面«Skip Record If...»:«Skip RecordIf...»,«Skip Record If...»上的连续函数时,而«Skip Record If...»的法线方向与«Skip Record If...»轴的正向成锐角的那一侧为正侧,则有«Skip Record If...»=«Skip Record If...»注:按第二型曲面积分的定义可以知道,如果«Skip Record If...»的法线方向与相应坐标轴的正向成钝角的那一侧为正侧,则相应的公式右端要加“-”号例1计算«Skip Record If...»,其中«Skip Record If...»是球面«Skip Record If...»在«SkipRecord If...»部分并取球面外侧.解 曲面在第一,五卦限间分的方程分别为«Skip Record If...»: «Skip Record If...», «Skip Record If...»«Skip Record If...»:«Skip Record If...»,«Skip Record If...», «Skip Record If...»=«Skip Record If...»+«Skip Record If...»=«Skip Record If...»«Skip Record If...»=«Skip Record If...»=«Skip Record If...»«Skip Record If...».例2计算积分«Skip Record If...»,其中«Skip Record If...»为球面«Skip Record If...»取外侧.解对积分«Skip Record If...», 分别用«Skip Record If...»和«Skip Record If...»记前半球面和后半球面的外侧, 则有«Skip Record If...»:«Skip Record If...»«Skip Record If...»;«Skip Record If...»:«Skip Record If...»«Skip Record If...».因此, «Skip Record If...»=«Skip Record If...»+ «Skip Record If...»= «Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...».对积分«Skip Record If...», 分别用«Skip Record If...»和«Skip Record If...»记右半球面和左半球面的外侧, 则有«Skip Record If...»:«Skip Record If...»«Skip Record If...»;«Skip Record If...»:«Skip Record If...»«Skip Record If...».仅供学习与交流,如有侵权请联系网站删除谢谢9因此, «Skip Record If...»«Skip Record If...»+«Skip Record If...»= «Skip Record If...»«Skip Record If...».对积分«Skip Record If...», 分别用«Skip Record If...»和«Skip Record If...»记上半球面和下半球面的外侧, 则有«Skip Record If...»:«Skip Record If...»«Skip Record If...»;«Skip Record If...»:«Skip Record If...»«Skip Record If...».因此, «Skip Record If...»=«Skip Record If...»+ «Skip Record If...»= «Skip Record If...»«Skip Record If...».综上, «Skip Record If...»=«Skip Record If...»作业 P289 1,2.仅供学习与交流,如有侵权请联系网站删除谢谢10第三节高斯公式与斯托克斯公式一高斯公式定理22.3 设有空间区域«Skip Record If...»由分片光滑的双侧闭曲面«Skip Record If...»围成.若函数«Skip Record If...»,«Skip Record If...»,«Skip Record If...»在«Skip Record If...»上连续,且具有一阶连续偏导数,则=«Skip Record If...»«Skip Record If...»其中«Skip Record If...»取外侧.称为高斯公式证只证«Skip Record If...»=«Skip Record If...»类似可证«Skip Record If...»=«Skip Record If...»和«Skip Record If...»=«Skip Record If...»这些结果相加便得到了高斯公式.先«Skip Record If...»设是一个«Skip Record If...»型区域,即其边界曲面«Skip Record If...»由曲面«Skip Record If...»:«Skip Record If...»,«Skip Record If...»«Skip Record If...»:«Skip Record If...»,«Skip Record If...»及垂直于«Skip Record If...»的边界的柱面«Skip Record If...»组成其中«Skip Record If...».于是按三重积分的计算方法有=«Skip Record If...»«Skip Record If...»=«Skip Record If...»=«Skip Record If...»«Skip Record If...»=«Skip Record If...»«Skip Record If...»=«Skip Record If...»«Skip Record If...»其中«Skip Record If...»,«Skip Record If...»都取上侧.又由于«Skip Record If...»在«Skip Record If...»平面上投影区域的面积为零,所以«Skip Record If...»因此=«Skip Record If...»«Skip Record If...»+«Skip Record If...»«Skip Record If...»=«Skip Record If...»对于不是«Skip Record If...»型区域的情形,则用有限个光滑曲面将它分割成若干个«Skip Record If...»型区域来讨论.详细的推导与格林相似.空间区域«Skip Record If...»的体积公式:=«Skip Record If...».«Skip Record If...»=«Skip Record If...»«Skip Record If...»例1 计算«Skip Record If...»,其中«Skip Record If...»是边长为«Skip Rec ord If...»的正立方体表面并取外侧.解应用高斯公式,所求曲面积分等于«Skip Record If...»«Skip Record If...»«Skip Record If...»=«Skip Record If...»=«Skip Record If...» 二 斯托克斯公式双侧曲面«Skip Record If...»的侧与其边界曲线«Skip Record If...»的方向的规定:右手法则.定理22.4 设光滑曲面«Skip Record If...»的边界«Skip Record If...»是按块光滑的连续曲线.若函数«Skip Record If...»,«Skip Record If...»,«Skip Record If...»在«Skip Record If...»(连同«Skip Record If...»)上连续,且有一阶连续偏导数,则«Skip Record If...»=«Skip Record If...» (2)其中«Skip Record If...»的侧与«Skip Record If...»的方向按右手法则确定.证 先证«Skip Record If...»=«Skip Record If...» (3)其中曲面«Skip Record If...»由方程«Skip Record If...»确定,它的正侧法线方向数为«Skip Record If...»,方向余弦为«Skip Record If...»,所以«Skip Record If...»,«Skip Record If...»若«Skip Record If...»在«Skip Record If...»平面上投影区域为«Skip Record If...»,«Skip Record If...»在«Skip Record If...»平面上的投影曲线为«Skip Record If...».现由第二型曲线积分的定义及格林公式有«Skip Record If...»=«Skip Record If...»=«Skip Record If...»因为«Skip Record If...»=«Skip Record If...»所以«Skip Record If...»=«Skip Record If...»由于«Skip Record If...»,从而«Skip Record If...»=«Skip Record If...»=«Skip Record If...»=«Skip Record If...».=«Skip Record If...»综合上述结果,便得所要证明的(3)式.同样对于曲面«Skip Record If...»表示为«Skip Record If...»和«Skip Record If...»时,可证得=«Skip Record If...»(4)«Skip Record If...»=«Skip Record If...»(5)«Skip Record If...»将(3),(4),(5)三式相加即得(2)式.如果曲面«Skip Record If...»不能以«Skip Record If...»的形式给出,则可用一些光滑曲线把«Skip Record If...»分割为若于小块,使每一小块能用这种形式来表示.因而这时(2)式也能成立.该公式称为斯托克斯公式,它也可写成如下形式:«Skip Record If...»=«Skip Record If...»例2 计算«Skip Record If...»,其中«Skip Record If...»为平面«Skip Record If...»与各坐标面的交,取逆时针方向为正向.解应用斯托克斯公式«Skip Record If...»=«Skip Record If...»=«Skip Record If...»=«Skip Record If...».单连通区域:如果区域«Skip Record If...»内任一封闭曲线皆可以不经过«Skip Record If...»以外的点收缩于属于«Skip Record If...»的一点,则称«Skip Record If...»为单连通区域.非单连通区域称为复连通区域.定理 22.5 设«Skip Record If...»为空间单连通区域.若函数«Skip Record If...»,«Skip Record If...»,«Skip Record If...»在上连续,且有一阶连续偏导数,则以下四个条件是等价的:(1)对于 内任一按段光滑的封闭曲线«Skip Record If...»,有«Skip Record If...»=0.(2)对于«Skip Record If...»内任一按段光滑的曲线«Skip Record If...»,曲线积分«Skip Record If...»与路线无关.只与«Skip Record If...»的起点及终点有关。
数学分析22.4场论初步(含习题及参考答案)
第二十二章 曲面积分4 场论初步一、场的概念概念:若对全空间或其中某一区域V 中每一点M ,都有一个数量(或向量)与之对应,则称V 上给定了一个数量场(或向量场).温度场和密度场都是数量场. 若数量函数u(x,y,z)的偏导数不同时为0, 则满足方程u(x,y,z)=c(常数)的所有点通常是一个曲面.曲面上函数u 都取同一个值时,称为等值面,如温度场中的等温面.重力场和速度场都是向量场. 设向量函数A(x,y,z)在三坐标轴上投影分别为:P(x,y,z), Q(x,y,z), R(x,y,z), 则A(x,y,z)=(P(x,y,z), Q(x,y,z), R(x,y,z)), 其中P , Q, R 为定义区域上的数量函数,且有连续偏导数.设向量场中的曲线L 上每点M 处的切线方向都与向量函数A 在该点的方向一致,即P dx =Q dy =Rdz, 则称曲线L 为向量场A 的向量场线. 如, 电力线、磁力线等都是向量场线.二、梯度场概念:梯度是由数量函数u(x,y,z)定义的向量函数grad u=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, 且grad u 的方向是使lu∂∂达到最大值的方向, 其大小为u 在这个方向上的方向导数. 所以可定义数量场u 在点M 处的梯度grad u 为在M 处最大的方向导数的方向,及大小为在M 处最大方向导数值的向量. 因为方向导数的定义与坐标系的选取无关,所以梯度定义也与坐标系选取无关. 由梯度给出的向量场,称为梯度场. 又数量场u(x,y,z)的等值面u(x,y,z)=c 的法线方向为⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, 所以 grad u 的方向与等值面正交, 即等值面法线方向. 引进符号向量: ▽=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ,,. 将之视为运算符号时, grad u=▽u.基本性质:若u,v 是数量函数, 则 1、▽(u+v)=▽u+▽v ;2、▽(uv)=u(▽v)+(▽u)v. 特别地▽u 2=2u(▽u);3、若r=(x,y,z), φ=φ(x,y,z), 则d φ=dr ▽φ;4、若f=f(u), u=u(x,y,z), 则▽f=f ’(u)▽u ;5、若f=f(u 1,u 2,…,u n ), u i =u i (x,y,z) (i=1,2,…,n), 则▽f=i ni iu u f∑=∇∂∂1. 证:1、▽(u+v)=⎪⎪⎭⎫ ⎝⎛∂+∂∂+∂∂+∂z v u y v u x v u )(,)(,)(=⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+∂∂∂∂+∂∂z v z u y v y u x v x u ,, =⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,+⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z v y v x v ,,=▽u+▽v. 2、▽(uv)=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z uv y uv x uv )(,)(,)(=⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+∂∂∂∂+∂∂z v u v z u y v u v y u x v u v x u ,,=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z v u y v u x v u,,+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂v z u v y u v x u ,,=u ⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z v y v x v ,,+⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,v=u(▽v)+(▽u)v. 当u=v 时,有▽u 2=▽(uv)=u(▽v)+(▽u)v =2u(▽u).3、∵dr=dx+dy+dz, ▽φ=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,, ∴dr ▽φ=(dx+dy+dz)⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,=dz z dy y dx x ∂∂+∂∂+∂∂ϕϕϕ=d φ. 4、∵▽f=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z f y f x f ,,=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u du df y u du df x u du df ,,, 又▽u=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, f ’(u)=du df, ∴f ’(u)▽u=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z u y u x u du df ,,=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z u du df y u du df x u du df ,,=▽f. 5、▽f =⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z f y f x f ,,=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂∑∑∑===n i i i n i i i n i i i z u u f y u u f x u u f 111,,=∑=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂ni i i i i i i z u u f y u u f x u u f 1,,=∑=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂n i i i i iz u y u x u u f1,,=i n i iu u f∑=∇∂∂1.例1:设质量为m 的质点位于原点, 质量为1的质点位于M(x,y,z), 记OM=r=222z y x ++, 求rm的梯度. 解:rm∇=⎪⎭⎫ ⎝⎛-r z r y r x r m ,,2.注:若以r 0表示OM 上的单位向量,则有r m∇=02r rm -, 表示两质点间引力方向朝着原点, 大小是与质量的乘积成正比, 与两点间的距离的平方成反比. 这说明引力场是数量函数r m 的梯度场. 所以称rm为引力势.三、散度场概念:设A(x,y,z)=(P(x,y,z), Q(x,y,z), R(x,y,z))为空间区域V 上的向量函数, 对V 上每一点(x,y,z), 定义数量函数D(x,y,z)=zRy Q x P ∂∂+∂∂+∂∂, 则 称D 为向量函数A 在(x,y,z)处的散度,记作D(x,y,z)=div A(x,y,z).设n 0=(cos α, cos β, cos γ)为曲面的单位法向量, 则=n 0dS 就称为曲面的面积元素向量. 于是得高斯公式的向量形式:⎰⎰⎰VdivAdV =⎰⎰⋅SdS A .在V 中任取一点M 0, 对⎰⎰⎰VdivAdV 应用中值定理,得⎰⎰⎰VdivAdV =div A(M*)·△V=⎰⎰⋅SdS A , 其中M*为V 中某一点,于是有div A(M*)=VdSA S∆⋅⎰⎰. 令V 收缩到点M 0(记为V →M 0) 则M*→M 0, 因此div A(M 0)=VdSA SM V ∆⋅⎰⎰→0lim.因⎰⎰⋅SdS A 和△V 都与坐标系选取无关,所以散度与坐标系选取无关.由向量场A 的散度div A 构成的数量场,称为散度场.其物理意义:div A(M 0)是流量对体积V 的变化率,并称它为A 在点M 0的流量密度.若div A(M 0)>0, 说明在每一单位时间内有一定数量的流体流出这一点,则称这一点为源.反之,若div A(M 0)<0, 说明流体在这一点被吸收,则称这点为汇. 若向量场A 中每一点皆有div A=0, 则称A 为无源场.向量场A 的散度的向量形式为:div A=▽·A.基本性质:1、若u,v 是向量函数, 则▽·(u+v)=▽·u+▽·v ; 2、若φ是数量函数, F 是向量函数, 则▽·(φF)=φ▽·F+F ·▽φ;3、若φ=φ(x,y,z)是一数量函数, 则▽·▽φ=222222zy x ∂∂+∂∂+∂∂ϕϕϕ.证:1、记u(P 1(x,y,z),Q 1(x,y,z),R 1(x,y,z)), v(P 2(x,y,z),Q 2(x,y,z),R 2(x,y,z)), 则▽·(u+v)=zR R y Q Q x P P ∂+∂+∂+∂+∂+∂)()()(212121 =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P z R y Q x P 222111=▽·u+▽·v. 2、▽·(φF)=z R y Q x P ∂∂+∂∂+∂∂)()()(ϕϕϕ=zR z R y Q y Q x P x P ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂ϕϕϕϕϕϕ =φ⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P +(P ,Q,R)⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z y x ϕϕϕ=φ▽·F+F ·▽φ. 3、∵▽φ=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,, ∴▽·▽φ=⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂z z y y x x ϕϕϕ=222222zy x ∂∂+∂∂+∂∂ϕϕϕ.注:算符▽的内积▽·▽常记作△=▽·▽=222222zy x ∂∂+∂∂+∂∂,称为拉普拉斯算符, 于是有▽·▽φ=△φ.例2:求例1中引力场F=⎪⎭⎫⎝⎛-r z r y r x r m,,2所产生的散度场.解:∵r 2=x 2+y 2+z 2, ∴F=3222)(z y x m ++-(x,y,z),▽·F=-m ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂333r z z r y y r x x =0.注:由例2知,引力场内每一点处的散度都为0(除原点处外).四、旋度场概念:设A(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))为空间区域V 上的向量函数, 对V 上每一点(x,y,z), 定义向量函数F(x,y,z)=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,, 称之为向量函数A 在(x,y,z)处的旋度, 记作rot A.设(cos α,cos β,cos γ)是曲线L 的正向上的单位切线向量t 0的方向余弦, 向量ds =(cos α,cos β,cos γ)ds= t 0dl 称为弧长元素向量. 于是有 斯托克斯公式的向量形式:⎰⎰SdS rotA ·=⎰Lds A ·.向量函数A 的旋度rot A 所定义的向量场,称为旋度场.在流量问题中,称⎰L A ·为沿闭曲线L 的环流量. 表示流速为A 的不可压缩流体在单位时间内沿曲线L 的流体总量,反映了流体沿L 时的旋转强弱程度. 当rot A=0时,沿任意封闭曲线的环流量为0,即流体流动时不成旋涡,这时称向量场A 为无旋场.注:旋度与坐标系的选择无关. 在场V 中任意取一点M 0,通过M 0作平面π垂直于曲面S 的法向量n 0, 且在π上围绕M 0作任一封闭曲线L, 记L 所围区域为D ,则有⎰⎰SrotA ·=⎰⎰DdS n rotA 0·=⎰LA ·. 又由中值定理有 ⎰⎰DdS n rotA 0·=(rotA ·n 0)M*μ(D)=⎰LA ·, 其中 μ(D)为区域D 的面积, M*为D 中的某一点. ∴(rotA ·n 0)M*=)(·D A Lμ⎰.当D 收缩到点M 0(记作D →M 0)时, 有M*→M 0, 即有 (rotA ·n 0)0M =)(·limD A LMD μ⎰→ .左边为rot A 在法线方向上的投影,即为旋度的另一种定义形式. 右边的极限与坐标系的选取无关,所以rot A 与坐标系选取无关.物理意义:⎰⎰DdS n rotA 0·=(rotA ·n 0)M*μ(D)=⎰LA ·, 表明向量场在曲面边界线上的切线投影对弧长的曲线积分等于向量场旋度的法线投影在曲面上对面积的曲面积分. 即流体的速度场的旋度的法线投影在曲面上对面积的曲面积分等于流体在曲面边界上的环流量.刚体旋转问题:设一刚体以角速度ω绕某轴旋转,则角速度向量ω方向沿着旋转轴,其指向与旋转方向的关系符合右手法则,即右手拇指指向角速度ω的方向,其它四指指向旋转方向. 若取定旋转轴上一点O 作为原点,则刚体上任一点P 的线速度v 可表示为v=ω×r, 其中r=OP 是P 的径向量. 设P 的坐标为(x,y,z),便有r=(x,y,z),设ω(ωx ,ωy ,ωz ), ∴v=(ωy z-ωz y,ωz x-ωx z,ωx y-ωy x), ∴rot v=(2ωx ,2ωy ,2ωz )=2ω或ω=21rot v.即线速度向量v 的旋度除去21, 就是旋转的角速度向量ω. 也即 v 的旋度与角速度向量ω成正比.基本性质:rot A=▽×A. 1、若u,v 是向量函数, 则 (1)▽×(u+v)=▽×u+▽×v ;(2)▽(u ·v)=u ×(▽×v)+v ×(▽×u)+(u ·▽)v+(v ·▽)u ; (3)▽·(u ×v)=v ·(▽×u)-u ·(▽×v);(4)▽×(u ×v)=(v ·▽)u-(u ·▽)v+(▽·v)u-(▽·u)v.2、若φ是数量函数, A 是向量函数, 则▽×(φA)=φ(▽×A)+▽φ×A.3、若φ是数量函数, A 是向量函数, 则 (1)▽·(▽×A)=0, ▽×▽φ=0,(2)▽×(▽×A)=▽(▽·A)-▽2A =▽(▽·A)-△A.证:1、记u(P 1(x,y,z),Q 1(x,y,z),R 1(x,y,z)), v(P 2(x,y,z),Q 2(x,y,z),R 2(x,y,z)),则(1)▽×(u+v)=⎪⎪⎭⎫⎝⎛∂+∂-∂+∂∂+∂-∂+∂∂+∂-∂+∂yP P xQ Q xR R zP P zQ Q yR R )()(,)()(,)()(212121212121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR 111111,,+⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q yR 222222,,=▽×u+▽×v. (2)∵▽(u ·v)=▽(P 1P 2+Q 1Q 2+R 1R 2)=⎪⎪⎭⎫⎝⎛∂++∂∂++∂∂++∂z R R Q Q P P y R R Q Q P P x R R Q Q P P )(,)(,)(212121212121212121 = ⎝⎛∂∂+∂∂+∂∂+∂∂+∂∂+∂∂,122112211221x RR x R R x Q Q x Q Q x P P x P P,122112211221y RR y R R y Q Q y Q Q y P P y P P ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂⎪⎭⎫∂∂+∂∂+∂∂+∂∂+∂∂+∂∂z R R z R R z Q Q z Q Q z P P z P P 122112211221.又u ×(▽×v)=u ×⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q yR 222222,, = ⎝⎛∂∂+∂∂-∂∂-∂∂,21212121xRR z P R y P Q xQ Q ⎪⎪⎭⎫∂∂+∂∂-∂∂-∂∂∂∂+∂∂-∂∂-∂∂z Q Q y R Q x R P z P P x R P z P P y P R x Q R 2121212121212121,. v ×(▽×u)= ⎝⎛∂∂+∂∂-∂∂-∂∂,12121212xR R zP R yP Q xQ Q ⎪⎪⎭⎫∂∂+∂∂-∂∂-∂∂∂∂+∂∂-∂∂-∂∂z Q Q y R Q x R P z P P x R P z P P y P R x Q R 1212121212121212,. (u ·▽)v=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P 111v =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y R Q x R P z Q R y Q Q x Q P z P R y P Q x P P 212121212121212121,,(v ·▽)u=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yR Q xR P zQ R yQ Q xQ P zP R yP Q xP P 121212121212121212,,; ∴▽(u ·v)=u ×(▽×v)+v ×(▽×u)+(u ·▽)v+(v ·▽)u. (3)∵▽·(u ×v)=▽·(Q 1R 2-R 1Q 2,R 1P 2-P 1R 2,P 1Q 2-Q 1P 2) =zP Q Q P y R P P R xQ R R Q ∂-∂+∂-∂+∂-∂)()()(212121212121=y P R y R P y R P y P R x R Q x Q R x Q R x R Q ∂∂-∂∂-∂∂+∂∂+∂∂-∂∂-∂∂+∂∂1221122112211221zQP z P Q z P Q z Q P ∂∂-∂∂-∂∂+∂∂+12211221.又v ·(▽×u)=v ·⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR 111111,,=yP R xQ R xR Q zP Q zQ P yR P ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂121212121212;u ·(▽×v)=yPR x Q R x R Q z P Q z Q P yR P ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂212121212121;∴▽·(u ×v)=v ·(▽×u)-u ·(▽×v).(4)∵▽×(u ×v)=▽×(Q 1R 2-R 1Q 2,R 1P 2-P 1R 2,P 1Q 2-Q 1P 2)=⎪⎪⎭⎫⎝⎛∂-∂-∂-∂∂-∂-∂-∂∂-∂-∂-∂y Q R R Q x R P P R x P Q Q P z Q R R Q z R P P R y P Q Q P )()(,)()(,)()(212121212121212121212121= ⎝⎛∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂,1221122112211221zP R zR P zR P zP R yQ P yP Q yP Q yQ P,1221122112211221x QP x P Q x P Q x Q P z R Q z Q R z Q R z R Q ∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂⎪⎪⎭⎫∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂y R Q y Q R y Q R y R Q x P R x R P x R P x P R 1221122112211221; 又(v ·▽)u=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yR Q xR P zQ R yQ Q xQ P zP R yP Q xP P 121212121212121212,,; (u ·▽)v=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y R Q x R P z Q R y Q Q x Q P z P R y P Q xP P 212121212121212121,,;(▽·v)u=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q xP 222u =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y Q R x P R z R Q y Q Q x P Q z R P y Q P xP P 212121212121212121,,; (▽·u)v=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yQ R xP R zR Q yQ Q xP Q zR P yQ P xP P 121212121212121212,,; ∴▽×(u ×v)=(v ·▽)u-(u ·▽)v+(▽·v)u-(▽·u)v. 2、记φ=φ(x,y,z), A=A(P(x,y,z),Q(x,y,z),R(x,y,z)), 则▽×(φA)=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR )()(,)()(,)()(ϕϕϕϕϕϕ=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-∂∂+∂∂∂∂-∂∂-∂∂+∂∂∂∂-∂∂-∂∂+∂∂P yyP Q xxQ R xxR P zzP Q zzQ R yyR ϕϕϕϕϕϕϕϕϕϕϕϕ,,=φ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂P yQ xR xP zQ zR yϕϕϕϕϕϕ,,=φ(▽×A)+▽φ×A.3、记φ=φ(x,y,z), A=A(P(x,y,z),Q(x,y,z),R(x,y,z)), 则(1)▽·(▽×A)=▽·⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂y P x Q z x R z P y z Q y R x=⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂y P z x Q z x R y z P y z Q x y R x =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂z Q x x Q z y P z z P y x R y y R x =0. ▽×▽φ=▽×⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂x y y x z x x z y z z y ϕϕϕϕϕϕ,,=0. (2)▽×(▽×A)=▽×⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,= ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂z Q y R y x R z P x y P x Q x z Q y R z x R z P z y P x Q y ,, =⎪⎪⎭⎫ ⎝⎛∂∂∂+∂∂-∂∂-∂∂∂∂∂∂+∂∂-∂∂-∂∂∂∂∂∂+∂∂-∂∂-∂∂∂z y Q y R x R z x P y x P x Q z Q y z R x z R z P y P x y Q 222222222222222222,,; 又▽(▽·A)=▽⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z R yQ xP=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂z R y Q x P z z R y Q x P y z R y Q x P x ,,, =⎪⎪⎭⎫⎝⎛∂∂+∂∂∂+∂∂∂∂∂∂+∂+∂∂∂∂∂∂+∂∂∂+∂∂222222222222,,z R y z Q x z P z y R y Q x y P x z R y x Q x P ; ▽2A=△A=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂+∂∂+∂∂∂+∂∂+∂∂222222222222222222,,z R y R x R z Q y Q x Q z P y P x P ;∴▽×(▽×A)=▽(▽·A)-▽2A =▽(▽·A)-△A.五、管量场与有势场概念:对无源场A ,即div A=0,由高斯公式知,此时沿任何闭曲面的曲面积分都为0,这样的向量场称为管量场. 因为 在向量场A 中作一向量管,即由向量线围成的管状曲面, 用断面S 1, S 2截它,以S 3表示所截出的管的表面,即得到 由S 1, S 2, S 3围成的封闭曲面S ,于是有⎰⎰⋅SdS A =⎰⎰⋅外侧1S dS A +⎰⎰⋅外侧2S dS A +⎰⎰⋅外侧3S dS A =0. 又由向量线与曲面S 3的法线正交知,⎰⎰⋅外侧3S dS A =0.∴⎰⎰⋅外侧1S dS A +⎰⎰⋅外侧2S dS A =0, 即⎰⎰⋅内侧1S dS A +⎰⎰⋅外侧2S dS A . 等式说明,流体通过向量管的任意断面流量相同,∴称场A 为管量场. 如例2,由梯度rm ∇所成的引力场F 是管量场.概念:对无旋场A ,即rot A=0,由斯托克斯公式知,这时在空间单连通区域内沿任何封闭曲线的曲线积分都等于0,该向量场称为有势场. 因为当rot A=0时,由定理22.7推得此时空间曲线积分与路线无关, 且有u(x,y,z), 使得du=Pdx+Qdy+Rdz, 即grad u=(P ,Q,R), u 称为势函数. 所以,若向量场A 的旋度为0,则必存在某势函数u ,使得grad u=A. 这也是一个向量场是某个数量场的梯度场的充要条件. 例1中引力势u=r m 就是势函数. ∴▽u=F=-⎪⎭⎫⎝⎛r z r y r x r m ,,2. 又▽×▽u ≡0, ∴▽×F=0, 它也是引力场F 是有势场的充要条件.若向量场A 既是管量场,又是有势场,则称其为调和场.例2中的引力场F 就是调和场. 若A 是一个调和场,则必有 ▽·A=0, ▽u=A. 显然▽·▽u=▽2u=△u=0, 即必有势函数u 满足222222z uy u x u ∂∂+∂∂+∂∂=0, 这时称函数u 为调和函数. 习题1、若r=222z y x ++, 计算▽r, ▽r 2, ▽r1, ▽f(r), ▽r n (n ≥3). 解:∵x r ∂∂=r x , y r ∂∂=r y , z r ∂∂=r z, ∴▽r=⎪⎭⎫ ⎝⎛r z r y r x ,,=r1(x,y,z); 记u=r 2=x 2+y 2+z 2, ∵x u ∂∂=2x, y u ∂∂=2y, zu ∂∂=2z, ∴▽r 2=▽u=2(x,y,z);记v=r1, ∵x v ∂∂=-3r x , y v ∂∂=-3r y , z v∂∂=-3rz , ∴▽r 1=▽v=31r -(x,y,z);∵x f ∂∂=f ’(r)r x , y f ∂∂=f ’(r)ry , z f∂∂=f ’(r)r z , ∴▽f(r)=f ’(r)r 1(x,y,z); ∴▽r n =nr n-1⎪⎭⎫ ⎝⎛r z r y r x ,,=nr n-2(x,y,z), (n ≥3).2、求u=x 2+2y 2+3z 2+2xy-4x+2y-4z 在O(0,0,0), A(1,1,1), B(-1,-1,-1)处的梯度,并求梯度为0的点. 解:∵x u ∂∂=2x+2y-4, y u ∂∂=4y+2x+2, zu∂∂=6z-4,∴在O(0,0,0), grad u=(-4,2,-4); 在A(1,1,1), grad u=(0,8,2); 在B(-1,-1,-1), grad u=(-8,-4,-10);又由2x+2y-4=0, 4y+2x+2=0, 6z-4=0, 解得x=5, y=-3, z=32, ∴在(5,-3,32), |grad u|=0.3、证明梯度的基本性质1~5. 证:见梯度的基本性质.4、计算下列向量场A 的散度与旋度:(1)A=(y 2+z 2,z 2+x 2,x 2+y 2);(2)A=(x 2yz,xy 2z,xyz 2);(3)A=⎪⎪⎭⎫⎝⎛++xy z zx y yz x . 解:(1)∵P=y 2+z 2, Q=z 2+x 2, R=x 2+y 2; ∴div A=x ∂∂(y 2+z 2)+y ∂∂(z 2+x 2)+z ∂∂(x 2+y 2)=0;又y ∂∂(x 2+y 2)-z ∂∂(z 2+x 2)=2y-2z; z ∂∂(y 2+z 2)-x∂∂(x 2+y 2)=2z-2x; x∂∂(z 2+x 2)-y ∂∂(y 2+z 2)=2x-2y. ∴rot A=2(y-z,z-x,x-y).(2)∵P=x 2yz, Q=xy 2z, R=xyz 2; ∴div A=x ∂∂(x 2yz)+y ∂∂(xy 2z)+z∂∂(xyz 2)=6xyz ;又y ∂∂(xyz 2)-z ∂∂(xy 2z)=x(z 2-y 2); z ∂∂(x 2yz)-x∂∂(xyz 2)=y(x 2-z 2); x∂∂(xy 2z)-y ∂∂(x 2yz)=z(y 2-x 2). ∴rot A=(x(z 2-y 2),y(x 2-z 2),z(y 2-x 2)).(3)A=⎪⎪⎭⎫ ⎝⎛++xy z zx y yz x . ∵P=yz x , Q=zxy, R=xy z ;∴div A=⎪⎪⎭⎫ ⎝⎛∂∂yz x x +⎪⎭⎫ ⎝⎛∂∂zx y y +⎪⎪⎭⎫ ⎝⎛∂∂xy z z =xyzx yz 111++; 又⎪⎪⎭⎫ ⎝⎛∂∂xy z y -⎪⎭⎫ ⎝⎛∂∂zx y z =22xy z xz y -; ⎪⎪⎭⎫ ⎝⎛∂∂yz x z -⎪⎪⎭⎫ ⎝⎛∂∂xy z x =22yz x y x z-; ⎪⎭⎫ ⎝⎛∂∂zx y x -⎪⎪⎭⎫ ⎝⎛∂∂yz x y =z x y z y x 22-. ∴rot A=⎪⎪⎭⎫⎝⎛---x y y x z x x z y z z y xyz 222222,,1.5、证明散度的基本性质1~3. 证:见散度的基本性质.6、证明旋度的基本性质1~3. 证:见旋度的基本性质.7、证明:场A=(yz(2x+y+z),zx(x+2y+z),xy(x+y+2z))是有势场并求其势函数.证:P=yz(2x+y+z), Q=zx(x+2y+z), R=xy(x+y+2z),y ∂∂[xy(x+y+2z)]-z∂∂[zx(x+2y+z)]=x 2+2xy+2xz-x 2-2xy-2xz=0; z ∂∂[yz(2x+y+z)]-x∂∂[xy(x+y+2z)]=2xy+y 2+2yz-2xy-y 2-2yz=0; x∂∂[zx(x+2y+z)]-y ∂∂[yz(2x+y+z)]=2xz+2yz+z 2-2xz-2yz-z 2=0.∴对空间任一点(x,y,z)都有rot A=(0,0,0)=0i+0j+0k=0, ∴A 是有势场. 由d[xyz(x+y+z)]=yz(2x+y+z)dx+xz(x+2y+z)dy+xy(x+y+2z)dz 知, 其势函数为u(x,y,z)=xyz(x+y+z)+C.8、若流体流速A=(x 2,y 2,z 2), 求单位时间内穿过81球面x 2+y 2+z 2=1, x>0,y>0,z>0的流量.解:设S 为所给81球面,S 1, S 2, S 3分别是S 在三个坐标面上的投影, 则 所求流量为:⎰⎰⋅SdS n A 0+⎰⎰⋅11S dS n A +⎰⎰⋅22S dS n A +⎰⎰⋅33S dS n A =⎰⎰⎰⎪⎭⎫ ⎝⎛球体81V divAdV=⎰⎰⎰++Vdxdydz z y x )(2=⎰⎰⎰++103202sin )cos sin sin cos (sin 2dr r d d ϕϕθϕθϕϕθππ=⎰⎥⎦⎤⎢⎣⎡++2021)sin (cos 421πθθθπd =83π.注:其中n 0, n 1, n 2, n 3分别是S, S 1, S 2, S 3的单位法矢,显然有A|n i (i=1,2,3),∴A ·n i =0,从而⎰⎰⋅iS i dS n A =0 (i=1,2,3), 于是所求流量为:⎰⎰⋅SdS n A 0=83π.9、设流速A=(-y,x,c) (c 为常数),求环流量: (1)沿圆周x 2+y 2 =1, z=0;(2)沿圆周(x-2)2+y 2 =1, z=0.解:(1)圆周x 2+y 2 =1, z=0的向径r 适合方程r=costi+sintj+0k(0≤t ≤2π). ∵A ·dr=(-sinti+costj+ck)·(-sinti+costj+0k)dt=dt, ∴所环流量为⎰⋅c dr A =⎰π20dt =2π.(2)圆周(x-2)2+y 2 =1, z=0的向径r=(2+cost)i+sintj+0k (0≤t ≤2π); ∵A ·dr=[-sinti+(2+cost)j+ck]·(-sinti+costj+0k)dt=(2cost+1)dt, ∴所环流量为⎰⋅c dr A =⎰+π20)1cos 2(dt t =2π.。
数学分析课本(华师大三版)-习题及答案第二十二章
第二十二章曲面积分一、证明题1.证明:由曲面S所包围的立体V的体积等于V=其中,,为曲面S的外法线方向余弦.2.若S为封闭曲面,L为任何固定方向,则=0其中n为曲面S的外法线方向.3. 证明公式=其中S是包围V的曲面,n为S的外法线方向.r=,r=(x,y,z).4.证明: 场A=,,是有势场并求其势函数.二、计算题1.计算下列第一型曲面积分:(1),其中S为上半球面=;(2),其中S为主体的边界曲面;(3),其中S为柱面被平面Z=0,Z=H所截取的P分;(4),其中S为平面在第一卦限中的部分.2.计算,其中S为圆锥表面的一部分.S:D:这里θ为常数(0<θ<).3.计算下列第二型曲面积分(1)++,其中S为x=y=z=0,x=y=z=a平成所围成的正方体并取处侧为正向;(2),其中S是以原点中心,边长为2的正方体表面并取外侧正向;(3),其中S是由平面x=y=z=0和x+y+z=1所围的四面体表面并取外侧为正向;(4),其中S是球面,=1的上半部分并取外侧为正向;(5),其中S是球面++=R2并取外侧为正向.4.设某流体的流速为V=(x,y,0),求单位时间内从球面x2+y2 +z2=4的内部流过球面的流量5.计算第二型曲面积分I=++其中S是平行分面体(,,)表面并取外侧,f(x),g(y),h(z)为S上的连续函数,6.设磁场强度为E(x,y,z),求从球内出发通过上半球面x2+y2 +z2=a2,z=0的磁通量,7.应用高斯公式计算下列曲面积分:(1),其中S为单位球面x2+y2+z2=1的外侧;(2),其中S是立方体x,y,z的表面取外侧;(3),其中S为锥面x2+y2 =z2与平面z=h所围的空间区域()的表面方向取外侧;(4),其中S是单位球面x2+y2+z2=1的外侧;(5),其中S为上半球面Z=的外侧.8.应用高斯公式计算三重积分其中v是由,,与所确定的空间区域.9.应用斯托克斯公式计算下列曲线积分(1)++,其中L为x+y+z=1与三坐标面的交线,它的走向使新围平面区域上侧在曲线的左侧;(2),其中为=1,x=y所交的椭圆的正向;(3)++,其中L是以A(a,0, 0),B(0,a,0),C(0,0,a)为顶点的三角形沿ABCA的方向.10.若L是平面++zcosr-p=0上的闭曲线,它所包围区域的面积为S,求其中L依正向进行.11.若r=,计算,,,(n=3)12.求u=+2xy-4y+2y-4z在点0(0,0,0),A(1, 1,1),B(―1,―1,―1)的梯度,并求梯度为零之点.13.计算下列向量场A的散度和旋度:(1)A=;(2)A=;(3)A=.14.流体流速A=求单位时间内穿过球面++=1(x>1,y>0,z>0)的流量.15.设流速A=(c为常数)求环流量(1)沿圆周=1,z=0;(2)沿圆周=1,z=0.三、考研复习题1.证明:若=++,S为包围区域V的同面的外例,则(1)=;(2)=+2.设S为光滑闭曲面,V为S所围的区域,在V上与S上函数u(x,y,z)二阶偏导连续,函数W(x,y,z)偏导连续,证明:(1)=;(2)=.3.设A=S为一封闭曲面,r=(x,y,z).证明当原点在曲面S外,上,内时分别有=0.2π,4π.4.证明公式:=。
数学分析讲义 - CH22(曲面积分)
S ru rv dudv
D
1 中国矿业大学理学院胡建华ຫໍສະໝຸດ 华师大数学分析(第四版)讲义
第 22 章
曲面积分
易计算
( y , z ) ( z , x ) ( x, y ) ru rv ( , , ) ( A, B, C ) (u , v) (u , v) (u , v) ru rv A2 B 2 C 2 EG F 2 , E ru ru , F ru rv , G rv rv
EG F 2 R 2 sin
S
D
EG F 2 d d R 2 sin d d d R 2 sin d 4 R 2
D 0 0
2
【例 2】 求以 (0, 0, 0) 为顶点,圆 x R cos , y R sin , z h 为底的圆锥面的面积。 解 r (t , ) ( Rt cos , Rt sin , ht ), D : 0 2 , 0 t 1
【例 1】 求半径为 R 的球面面积。 解 r ( , ) ( R sin cos , R sin sin , R cos ), D : 0 , 0 2
r ( R cos cos , R cos sin , R sin ) r ( R sin sin , R sin cos , 0)
4 中国矿业大学理学院胡建华
华师大数学分析(第四版)讲义
第 22 章
曲面积分
解
2 2 2 E xu yu zu cos 2 v sin 2 v 1,
数学分析22.2第二型曲面积分(含习题及参考答案)
第二十二章曲面积分2 第二型曲面积分一、曲面的侧概念:设连通曲面S上到处都有连续变动的切平面(或法线),M为曲面S上的一点,曲面在M处的法线有两个方向:当取定其中一个指向为正方向时,则另一个指向是负方向。
设M0为S上任一点,L为S上任一经过点M0,且不超出S边界的闭曲线。
动点M在M0处与M0有相同的法线方向,且有:当M从M0出发沿L连续移动时,它的法线方向连续地变动,最后当M沿L回到M0时,若这时M的法线方向仍与M0的法线方向相一致,则称曲面S是双侧曲面;若与M0的法线方向相反,则称S是单侧曲面.默比乌斯带:这是一个典型的单侧曲面例子。
取一矩形长纸带ABCD,将其一端扭转180°后与另一端黏合在一起(即让A与C重合,B与D 重合(如图).注:通常由z=z(x,y)所表示的曲面都是双侧曲面,当以其法线正方向与z轴的正向的夹角成锐角的一侧为正侧(也称为上侧)时,另一侧为负侧(也称为下侧). 当S为封闭曲面时,通常规定曲面的外侧为正侧,内侧为负侧.二、第二型曲面积分的概念引例:设流体以一定的流速v=(P(x,y,z),Q(x,y,z),R(x,y,z))从给定的曲面S 的负侧流向正侧,其中P ,Q,R 为所讨论范围上的连续函数,求单位时间内流经曲面S 的总流量E.分析:设在曲面S 的正侧上任一点(x,y,z)处的单位法向量为 n=(cos α,cos β,cos γ). 这里α,β,γ是x,y,z 的函数,则 单位时间内流经小曲面S i 的流量近似地等于v(ξi ,ηi ,ζi )·n(ξi ,ηi ,ζi )△S i =[P(ξi ,ηi ,ζi )cos αi ,Q(ξi ,ηi ,ζi )cos βi ,R(ξi ,ηi ,ζi )cos γi ]△S i , 其中(ξi ,ηi ,ζi )是S i 上任意取定的一点,cos αi ,cos βi ,cos γi 分别是S i 正侧上法线的方向余弦, 又△S i cos αi ,△S i cos βi ,△S i cos γi 分别是S i 正侧在坐标面yz, zx 和xy 上 投影区域的面积的近似值, 并分别记作△S iyz ,△S izx ,△S ixy , 于是 单位时间内由小曲面S i 的负侧流向正侧的流量也近似地等于 P(ξi ,ηi ,ζi )△S iyz +Q(ξi ,ηi ,ζi )△S izx +R(ξi ,ηi ,ζi )△S ixy ,∴单位时间内由曲面S 的负侧流向正侧的总流量为: E=}),,(),,(),,({lim 10ixy i i i ni izx i i i iyz i i i T S R S Q S P ∆+∆+∆∑=→ζηξζηξζηξ.定义1:设P , Q, R 为定义在双侧曲面S 上的函数,在S 所指定的一侧作分割T ,它把S 分成n 个小曲面S 1,S 2,…,S n 组,分割T 的细度T =ni ≤≤1max {S i 的直径}, 以△S iyz ,△S izx ,△S ixy 分别表示S i 在三个坐标面上的投影区域的面积, 它们的符号由S i 的方向来确定.若S i 的法线正向与z 轴正向成锐角时, S i 在xy 平面的投影区域的面积 △S ixy 为正. 反之,若S i 的法线正向与z 轴正向成钝角时, △S ixy 为负. 在各小曲面S i 上任取一点(ξi ,ηi ,ζi ). 若存在以下极限∑∑∑=→=→=→∆+∆+∆ni ixy iiiT ni izx iiiT ni iyz iiiT S R S Q S P 111),,(lim),,(lim),,(limζηξζηξζηξ,且与曲面S 的分割T 和(ξi ,ηi ,ζi )在S i 上的取法无关,则称此极限为 函数P , Q, R 在曲面S 所指定的一侧上的第二型曲面积分,记作:⎰⎰++Sdxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(, 或⎰⎰⎰⎰⎰⎰++SSSdxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(.注:1、流体以v=(P ,Q,R)在单位时间内从曲面S 的负侧流向正侧的总流量E=⎰⎰++Sdxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(.2、若空间磁场强度为(P(x,y,z),Q(x,y,z),R(x,y,z),), 则通过曲面S 的磁通量(磁力线总数) H=⎰⎰++Sdxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(.性质:1、若⎰⎰++S i i i dxdy R dzdx Q dydz P(i=1,2,…,k)存在,则有dxdy R c dzdx Q c dydz P c k i i i k i i i S k i i i ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∑∑⎰⎰∑===111=dxdy R dzdx Q dydz P c i i S i ki i ++⎰⎰∑=1,其中c i(i=1,2,…,k)是常数.2、若曲面S 是由两两无公共内点的曲面块S 1,S 2,…,S k 所组成,且⎰⎰++iS RdxdyQdzdx Pdydz(i=1,2,…,k)存在,则有⎰⎰++SRdxdy Qdzdx Pdydz =∑⎰⎰=++ki S Rdxdy Qdzdx Pdydz i1.三、第二型曲面积分的计算定理22.2:设连续函数R 定义在光滑曲面S :z=z(x,y), (x,y)∈D xy 上, 以S 的上侧为正侧(即S 的法线方向与z 轴正向成锐角),则有⎰⎰Sdxdy z y x R ),,(=⎰⎰xyD dxdy y x z y x R )),(,,(.证:由第二型曲面积分定义得⎰⎰Sdxdy z y x R ),,(=ixy ni iiiT S R ∆∑=→1),,(lim ζηξ=ixy ni i i i i d S z R ∆∑=→1)),(,,(lim ηξηξ,其中d=max{S ixy 的直径}. ∴由T =ni ≤≤1max {S i 的直径}→0, 可推得d →0, 又R 在S 上连续,z 在D xy 上连续(即曲面光滑),根据复合函数的连续性, R(x,y,z(x,y))在D xy 上也连续. 由二重积分的定义,有⎰⎰xyD dxdy y x z y x R )),(,,(=ixyni iiiid Sz R ∆∑=→1)),(,,(lim ηξηξ,∴⎰⎰Sdxdy z y x R ),,(=⎰⎰xyD dxdy y x z y x R )),(,,(.注:同理可得,当P 在光滑曲面S :x=x(y,z), (y,z)∈D yz 上连续时, 有 则有⎰⎰Sdydz z y x P ),,(=⎰⎰yzD dydz z y z y x P ),),,((.这里S 是以S 的法线方向与x 轴正向成锐角的那一侧为正侧. 当Q 在光滑曲面S :y=y(z,x), (z,x)∈D zx 上连续时, 有 则有⎰⎰Sdzdx z y x Q ),,(=⎰⎰zxD dzdx z x z y x Q )),,(,(.这里S 是以S 的法线方向与y 轴正向成锐角的那一侧为正侧.例1:计算⎰⎰Sxyzdxdy ,其中S 是球面x 2+y 2+z 2=1在x ≥0, y ≥0部分并取球面外侧.解:S 在第一、五卦限部分分别为:S 1:z 1=221y x --; S 2:z 2=-221y x --; D xy ={(x,y)|x 2+y 2≤1, x ≥0, y ≥0}, 依题意积分沿S 1上侧和S 2下侧进行, ∴⎰⎰Sxyzdxdy =⎰⎰1S xyzdxdy +⎰⎰2S xyzdxdy=⎰⎰--xyD dxdy y x xy 221-⎰⎰---xyD dxdy y x xy 221=2⎰⎰-201023cos sin 1πθθθdr r r d =⎰2022sin 151πθθd =152.注:如果光滑曲面S 由参量方程给出:S: ⎪⎩⎪⎨⎧===),(),(),(v u z z v u y y v u x x , (u,v)∈D.若在D 上各点的函数行列式),(),(v u y x ∂∂,),(),(v u z y ∂∂,),(),(v u x z ∂∂不同时为0,则有 ⎰⎰SPdydz =⎰⎰∂∂±Ddudv v u z y v u z v u y v u x P ),(),()),(),,(),,((, ⎰⎰SQdzdx =⎰⎰∂∂±Ddudv v u x z v u z v u y v u x Q ),(),()),(),,(),,((, ⎰⎰SRdxdy =⎰⎰∂∂±Ddudv v u y x v u z v u y v u x R ),(),()),(),,(),,((, 其中正负号分别对应S 的两个侧,特别当uv 平面的正方向对应于曲面S 的所选定的正向一侧时,取正号,否则取负号.例2:计算⎰⎰Sdydz x 3,其中S 为椭球面222222cz b y a x ++=1的上半部并选取外侧.解:把曲面表示为参数方程:x=asin φcos θ, y=bsin φsin θ, z=ccos φ, 0≤φ≤2π, 0≤θ≤2π. 则),(),(θϕ∂∂z y =sin cos sin sin cos ϕθϕθϕc b b -=bcsin 2φcos θ, 又积分在S 的正侧,∴⎰⎰Sdydz x 3=⎰⎰⋅20202333cos sin cos sin ππθθϕθϕϕd bc a d=⎰⎰2020453cos sin ππθθϕϕd d bc a =52πa 3bc.四、两类曲面积分的联系定理22.3:设S 为光滑曲面,正侧法向量为(cos α,cos β,cos γ), P(x,y,z), Q(x,y,z), R(x,y,z)在S 上连续,则⎰⎰++SRdxdy Qdzdx Pdydz =⎰⎰++SdS R Q P )cos cos cos (γβα.证:⎰⎰Sdxdy z y x R ),,(=ixy ni i i i T S R ∆∑=→1),,(lim ζηξ, 又△S i =dxdy ixyS ⎰⎰γcos 1. 由S 光滑知cos γ在区域S ixy 上连续. 应用中值定理,在S ixy 内必存在一点,使这点的法线方向与z 轴正向的夹角γi °满足 △S i =ixy i S ∆°cos 1γ,即△S ixy =cos γi °△S i .∴R(ξi ,ηi ,ζi )△S ixy =R(ξi ,ηi ,ζi )cos γi °△S i . 于是ixy ni i i i S R ∆∑=1),,(ζηξ=i ni i i i i S R ∆∑=1°cos ),,(γζηξ. 以cos γi 表示曲面S i 在点(x i ,y i ,z i )的法线方向与z 轴正向夹角的余弦,由cos γ的连续性,知当T →0时,i ni i i i i S R ∆∑=1°cos ),,(γζηξ的极限存在, ∴⎰⎰Sdxdy z y x R ),,(=⎰⎰SdS z y x R γcos ),,(. 同理可证:⎰⎰Sdydz z y x P ),,(=⎰⎰SdS z y x P αcos ),,(; ⎰⎰S dzdx z y x Q ),,(=⎰⎰SdS z y x Q βcos ),,(.∴⎰⎰++SRdxdy Qdzdx Pdydz =⎰⎰++SdS R Q P )cos cos cos (γβα.注:当改变曲面的侧时,左边积分改变符号,右边积分中的角要加减π以改变余弦的符号.定理22.4:设P , Q, R 是定义在光滑曲面S: z=z(x,y), (x,y)∈D 上的连续函数,以S 的上侧为正侧,则⎰⎰++Sdxdyz y x R dzdx z y x Q dydz z y x P ),,(),,(),,(=⎰⎰+-+-Dy x dxdy y x z y x R z y x z y x Q z y x z y x P ))),(,,()))(,(,,()))(,(,,(.证:cos α=221yx x z z z ++-, cos β=221yx y z z z ++-, cos γ=1, dS=221y x z z ++dxdy.∴⎰⎰++Sdxdyz y x R dzdx z y x Q dydz z y x P ),,(),,(),,(=⎰⎰++SdS z y x R z y x Q z y x P )cos ),,(cos ),,(cos ),,((γβα=⎰⎰+-+-Dy x dxdy y x z y x R z y x z y x Q z y x z y x P ))),(,,()))(,(,,()))(,(,,(.例3:计算⎰⎰++Szdxdy dydz z x )2(,其中S={(x,y,z)|z=x 2+y 2, z ∈[0,1]},取上侧.解:∵z x =2x, z y =2y,∴⎰⎰++Szdxdy dydz z x )2(=⎰⎰++++-Ddxdyy x y x x x )]()2(2[2222=⎰⎰++-+-Ddxdy y x x x )])(12(4[222=⎰⎰+-+-πθθθ2010323])1cos 2(cos 4[drr r r d=⎰+--πθθθ202)41cos 52cos (d =2π-.注:由于x(x 2+y 2)是奇函数,∴⎰⎰+Ddxdy y x x )(22=0,又由对称性有⎰⎰Ddxdy x 2=⎰⎰Ddxdy y 2,∴例3中也可化简⎰⎰++Szdxdy dydz z x )2(=⎰⎰++++-Ddxdyy x y xx x )]()2(2[2222=⎰⎰-Ddxdy x y )3(22=-⎰⎰Ddxdy x 22=-⎰⎰πθθ20123cos 2dr r d =-⎰πθθ202cos 21d =2π-. 习题1、计算下列第二型曲面积分:(1)⎰⎰+++-Sdxdy xz y dzdx x dydz z x y )()(22,其中S 为由x=y=z=0, x=y=z=a 六个平面围成的立方体表面并取外侧为正向; (2)⎰⎰+++++Sdxdy x z dzdx z y dydz y x )()()(,其中S 为以原点为中心,边长为2的立方体表面并取外侧为正向; (3)⎰⎰++Szxdxdy yzdzdx xydydz ,其中S 为由x=y=z=0, x+y+z=1所围的四面体表面并取外侧为正向; (4)⎰⎰Syzdzdx ,其中S 为球面x 2+y 2+z 2=1的上半部分并取外侧为正向;(5)⎰⎰++Sdxdy z dzdx y dydz x 222,其中S 为球面(x-a)2+(y-b)2+(z-c)2=R 2并取外侧为正向. 解:(1)∵⎰⎰-Sdydz z x y )(=⎰⎰⎰⎰+-aaaazdz ydy dz z a ydy 0000)(=24a ;⎰⎰Sdzdx x 2=⎰⎰⎰⎰-a aa a dx x dz dx x dz 002002=0;⎰⎰+Sdxdy xz y)(2=⎰⎰⎰⎰-+a aa a dy y dx dy ax y dx 022)(=24a .∴⎰⎰+++-S dxdy xz y dzdx x dydz z x y )()(22=24a +24a =a 4.(2)∵⎰⎰+Sdydz y x )(=⎰⎰⎰⎰----+--+11111111)1()1(dz dy y dz dy y =8,⎰⎰+Sdzdx z y )(=⎰⎰+Sdxdy x z )(=8,∴⎰⎰+++++Sdxdy x z dzdx z y dydz y x )()()(=24.(3)∵⎰⎰Sxydydz =⎰⎰---yydz z y dy 1010)1(=241,⎰⎰S yzdzdx =⎰⎰Szxdxdy =241. ∴⎰⎰++Szxdxdy yzdzdx xydydz =81.(4)令x=sin φcos θ, y=sin φsin θ, z=cos φ, 0≤φ≤2π, 0≤θ≤2π, 则),(),(θϕ∂∂x z =θϕθϕϕsin sin cos cos 0sin -=sin 2φsin θ, 又积分在S 的正侧,∴⎰⎰Syzdzdx =⎰⎰ππθθϕϕϕ202320sin sin cos d d =4π.(5)令x=Rsin φcos θ+a, y=Rsin φsin θ+b, z=Rcos φ+c, 0≤φ≤π, 0≤θ≤2π, 则),(),(θϕ∂∂z y =sin cos sin sin cos ϕθϕθϕR R R -=R 2sin 2φcos θ, 又积分在S 的正侧,∴⎰⎰Sdydz x 2=⎰⎰+ππθθϕθϕϕ202220cos sin )cos sin (d R a R d=⎰⎰++ππθθϕθϕθϕϕ202222333440)cos sin cos sin 2cos sin (d R a aR R d=⎰πϕϕπ033sin 2d aR=338aR π. 根据变换的对称性,可得:⎰⎰++Sdxdy z dzdx y dydz x 222=)(383c b a R ++π. 解法二:令x=rcos θ+a, y=rsin θ+b, 则⎰⎰Sdxdy z 2=rdr r R c d R ⎰⎰-+022220)(πθ-rdr r R c d R⎰⎰--022220)(πθ=4c dr r R r d R⎰⎰-02220πθ=338cR π. 根据变换的对称性,可得:⎰⎰++Sdxdy z dzdx y dydz x 222=)(383c b a R ++π.2、设某流体的流速为v=(k,y,0), 求单位时间内从球面x 2+y 2+z 2=4的内部流过球面的流量.解:E=⎰⎰+Sydzdx kdydz , 又⎰⎰S kdydz =⎰⎰S dydz k -⎰⎰Sdydz k =0(注:球前+球后).∴E=⎰⎰Sydzdx =⎰⎰ππθθϕϕ20230sin sin 8d d =π332.3、计算第二型曲面积分I=⎰⎰++Sdxdy z h dzdx y g dydz x f )()()(, 其中S 是平行六面体0≤x ≤a, 0≤y ≤b, 0≤z ≤c 的表面并取外侧为正向, f(x),g(y),h(z)为S 上的连续函数.解:⎰⎰Sdydz x f )(=⎰⎰-cbdz f a f dy 00)]0()([=bc[f(a)-f(0)],同理有:⎰⎰Sdzdx y g )(=ac[g(b)-g(0)],⎰⎰Sdxdy z h )(=ab[h(c)-h(0)],∴I=bc[f(a)-f(0)]+ac[g(b)-g(0)]+ab[h(c)-h(0)].4、设磁场强度为E(x,y,z)=(x 2,y 2,z 2), 求从球内出发通过上半球面x 2+y 2+z 2=a 2, z ≥0的磁通量.解:设磁通量为φ, 则φ=⎰⎰++Szdxdy ydzdx xdydz .利用球坐标变换有⎰⎰Szdxdy =⎰⎰ππθϕϕϕ202320sin cos d a d =323a π.又由变换后的对称性,有φ=3zdxdy=2πa3.S。
数学分析教案(华东师大版)第二十二章曲面积分
第二十二章曲面积分教学目的:1.理解第一、二型曲面积分的有关概念,并掌握其计算方法,同时明确它们的联系;2•掌握高斯公式与斯托克斯公式;3.理解有关场的概念,掌握梯度场、散度场、旋度场、管理场与有势场的性质及应用。
教学重点难点:本章的重点是曲面积分的概念、计算;难点是第二型曲面积分。
教学时数:18学时§ 1 第一型曲面积分一. 第一型面积分的定义:1.几何体的质量:已知密度函数,分析平面区域、空间几何体的质量定义及计算2.曲面的质量:3.第一型面积分的定义:定义及记法.,面积分J[血忙.4.第一型面积分的性质:第一型面积分的计算1. 第一型曲面积分的计算Th22.2设有光滑曲面-; .1,上二.T.:「为一7■上的连续函数,则例4 计算积分',其中■是球面iv J,-被平面_ : '工所截的顶部. P281§第二型曲面积分曲面的侧:1.单侧曲面与双侧曲面:2.双侧曲面的定向:曲面的上、下侧,左、右侧,前、后侧.设法向量为二二I…I . ■ ■ I,则上侧法线方向对应第三个分量 ...,即选+ ”号时,应有:«■■■ .■,亦即法线方向与[轴正向成锐角.类似确定其余各侧的法线方向闭合曲面分内侧和外侧.第二型曲面积分:1. 稳流场的流量:以磁场为例.P2842.第二型曲面积分的定义:P284 .闭合曲面上的积分及记法.3.第二型曲面积分的性质:线性,关于积分曲面块的可加性.第二型曲面积分与第一型曲面积分的关系:4.设丹为曲面£的指定法向,贝U^P{^y.z)dydz + Q(扎y ⑵沏x+ R(扎恥)必妙二心力益”刃+ R(x,y r2)cos(«,z)^.三第二型曲面积分的计算:----- 三.Th22!.2 设R(XJ⑵是定义在光滑曲面S :Z = Z(X J),(兀刃E D 0上的连续函数,以S的上侧为正侧(即co论⑵〉0),则有⑵必妙二禺如.证P类似地,对光滑曲面&廿⑵,(丿⑵E D』,在其前侧上的积分丿⑵妙必=卩(粉必)妙血.对光滑曲面J .m . J : - D :,在其右侧上的积分计算积分][--'■■-:-■ ' 「匚二 二…J 时,通常分开来计算三个积分为此,分别把曲面投影到YZ 平面,ZX 平面和XY 平面上化为二重积分进行计算•投影域的侧由曲面、的定向决定.P287 例2 计算积分二,_为球面-I ;-- 「— 取外侧.解 对积分 1分别用 石和 门记前半球面和后半球面的外侧,则有 -:f T…一计算积分 '/是球面"''7,- -丨在因此,外侧,因此,H—‘IL + It...=对积分则有\i ---亠",分别用二:「H」—=乍和一二记右半球面和左半球面的-2 1 ■S *J J0 -12 -y 2d^dy = -JZ S 3 . 综上,[]'- ■■§ 3 Gauss 公式和Stokes 公式一.Gauss 公式:Th22.6 设空间区域V 由分片光滑的双侧封闭曲面 J 围成.若函数P,Q,R 在 V上连续,且有连续的一阶偏导数,则对积分 分别用一和 :-记上半球面和下半球面的外侧 则有因此,『’八―J =—dxdydz = + Qdzdx + Bdxdy ,其中、取外侧•称上述公式为 Gauss 公式或 OcTporpa —G CKU 公式.设V 是矽型区域(即Z-型体),其边界曲面£由曲面:「一二〔:下侧,,> ■ --7; ■.>;;.-■; 上 侧,,■. ■< -.: [IT —」厂「「「Fa* 3曙dP dQ 3R dxdy __ 以及垂直于二'平面的柱面-. .(外侧)组成. 注意到只证dy az dxdydz-I ■■-.--'取外侧.解 一「: :- -■. .vi<, 一匚:卷1堂彳込1今兰+聖芒訂dx f dy f 3z dx dy dz由Gauss 公式 什’例2 计算积分\ [■-■ ■ ■ ■■'■ ■.■ -,其中J 是边 长为」的正方体V 的表面取外侧.V : :. .■ _ : _ i . P291解 应用Gauss 公式,有可类证 「F 必矽曲=妙也,[存dxdydz =只Qdzdx以上三式相加,即得Gauss 公式.一为球面面下方的部分,取外法线方向V 的表面外侧,由Gauss 公式,有=3j 『xdy 占二弘锥体v 的体积=3'yjr = 64兀;JJ xdydz + ydzdx + zdxdy = 4例1 设v 是三维空间的区域,其内任何封闭曲面都可不通过 v 外的点连续收缩为V 上的一点.又设函数「二二匚1、 J 二「匚I 和 工二二匚1在V 上有 连续的偏导数•「表示V 内任一不自交的光滑封闭曲面,•是:■的外法线•试证 明:对V 内任意曲面:'恒有£[Pc 阳(丹卫)+Q CO 5(MJ ) + Rc 阳(加⑵肉=0、3F 3Q SR A的充要条件是 1-在V 内处处成立.8x dy 3z a 位屮”)必妙必= ay^—a dy = a计算积分『一二一一…;,一为锥面二二在平解设:"为圆■ _' ■.■ : ■取上侧 则]•/构成由其所围锥体=64兀[0 + X )必= 因而,低户亦他耳+ 肮0£(科⑵= ^Pdydz + Qdzdx+ &te妙.—:由Gauss公式直接得到.-:反设不然,即存在点二:.「.二_二V使/ 3P 3Q QR r■ - - 亠,' 3x dy dz叫、、「、dP dQ dR yf w不妨设其.I.l.由■'' 在点丄,一连续,存在以点丄,一为中心且在V dy azf3P 3Q 3R、、一.内的小球f ,使在其内有.以一表示小球1::的表面外侧,5x dy dz就有IT J谄逍呼卜处>。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十二章曲面积分
教学目的:1.理解第一、二型曲面积分的有关概念,并掌握其计算方法,同时明
确它们的联系;2.掌握高斯公式与斯托克斯公式; 3.理解有关场的概念,掌握梯度场、散度场、旋度场、管理场与有势场的性质及应用。
教学重点难点:本章的重点是曲面积分的概念、计算;难点是第二型曲面积分。
教学时数:18学时
§1 第一型曲面积分
一. 第一型面积分的定义:
1.几何体的质量: 已知密度函数, 分析平面区域、空间几何体的质量
定义及计算
2.曲面的质量:
3.第一型面积分的定义: 定义及记法., 面积分.
4.第一型面积分的性质:
二. 第一型面积分的计算:
1.第一型曲面积分的计算:
Th22.2 设有光滑曲面.为上的连续函数,则.
例4 计算积分, 其中是球面被平面
所截的顶部 . P281
§2 第二型曲面积分
一. 曲面的侧:
1.单侧曲面与双侧曲面:
2. 双侧曲面的定向: 曲面的上、下侧,左、右侧,前、后侧. 设法向量
为,
则上侧法线方向对应第三个分量, 即选“+”号时,应有,亦即法线方向与轴正向成锐角. 类似确定其余各侧的法线方向闭合曲面分内侧和外侧.
二. 第二型曲面积分:
1. 稳流场的流量: 以磁场为例. P284
2. 第二型曲面积分的定义: P284 . 闭合曲面上的积分及记法.
3. 第二型曲面积分的性质: 线性, 关于积分曲面块的可加性.
4. 第二型曲面积分与第一型曲面积分的关系:
设为曲面的指定法向, 则
.
三. 第二型曲面积分的计算:
Th22.2 设是定义在光滑曲面
D
上的连续函数, 以的上侧为正侧( 即), 则有
.
证P
类似地, 对光滑曲面D, 在其前侧上的积分
.
对光滑曲面D, 在其右侧上的积分
.
计算积分时, 通常分开来计算三个积分
, , .
为此, 分别把曲面投影到YZ平面, ZX平面和XY平面上化为二重积分进行计算. 投影域的侧由曲面的定向决定.
例1 计算积分,其中是球面在部分取外侧. P287
例2 计算积分,为球面
取外侧.
解对积分, 分别用和记前半球面和后半球面的外侧, 则有
: ;
: .
因此, =+ =
.
对积分, 分别用和记右半球面和左半球面的外侧, 则有: ;
: .
因此, +=
.
对积分, 分别用和记上半球面和下半球面的外侧, 则有
: ;
: .
因此, =+ =
.
综上, =.
§3 Gauss公式和Stokes公式
一. Gauss公式:
Th22.6 设空间区域V由分片光滑的双侧封闭曲面围成 . 若函数在V
上连续, 且有连续的一阶偏导数, 则
,
其中取外侧.
―Gauss公式.
称上述公式为Gauss公式或Остроградский
证只证.
设V是型区域( 即型体) , 其边界曲面由曲面
下侧, D,
上侧, D. .
以及垂直于平面的柱面(外侧)组成. 注意到=, 有
=
=
.
可类证, .
以上三式相加, 即得Gauss公式.
例1 计算积分,为球面
取外侧.
解.
由Gauss公式.
例2 计算积分,其中是边长为的正方体V的表面取外侧. V : . P291 解应用Gauss公式, 有
.
例1计算积分,为锥面在平面下方的部分,取外法线方向 .
解设为圆取上侧, 则构成由其所围锥体V的表面外侧, 由Gauss公式, 有
=锥体V的体积;
而
因而, .
例1设V是三维空间的区域, 其内任何封闭曲面都可不通过V外的点连续收缩为V上的一点. 又设函数、和在V上有连续的偏导数. 表示V内任一不自交的光滑封闭曲面, 是的外法线. 试证明: 对V内任意曲面恒有
的充要条件是在V内处处成立.
证.
由Gauss公式直接得到 .
反设不然, 即存在点V, 使,
不妨设其. 由在点连续, 存在以点为中心且在V内的小球, 使在其内有. 以表示小球的表面外侧, 就有
,
与矛盾.
二. Stokes公式:
空间双侧曲面的正侧与其边界闭合曲线L正向的匹配关系: 右手螺旋法则, 即当人站在曲面的正侧上, 沿边界曲线L行走时, 若曲面在左侧, 则把人的前进方向定为L的正向.
1. Stokes定理:
Th22.7 设光滑曲面的边界L是按段光滑的连续曲线 . 若函数、和在( 连同L )上连续,且有一阶连续的偏导数, 则
.
其中的侧与L的方向按右手法则确定 .
称该公式为Stokes公式 .
证先证式. 具体证明参阅P292.
Stokes公式也记为.
例5 计算积分
,
其中L为平面与各坐标平面的交线, 方向为: 从平面的上方往下看为逆时针方向. P294
2. 空间曲线上第二型曲线积分与路径无关性:
空间单连通、复连通域.
Th 22.5 设R为空间单连通区域 . 若函数、和在上连续, 且有一阶连续的偏导数, 则以下四个条件等价:
ⅰ> 对于内任一按段光滑的封闭曲线L , 有;
ⅱ> 对于内任一按段光滑的封闭曲线L , 曲线积分
学习好资料欢迎下载
与路径无关;
ⅲ> 是内某一函数的全微分;
ⅳ> 在内处处成立 . P294
3. 恰当微分的原函数:
恰当微分的验证及原函数求法.
例6 验证曲线积分与路径无关, 并求被积表达式的原函数. P295。