创新设计(全国通用)高考数学二轮复习专题八数学思想方法第2讲分类讨论思想、转化与化归思想练习理
高考数学二轮专题 1-2-思想方法攻略
上一页
下一页
新课标高考第二轮总复习•理科数学
类型二 由性质、定理、公式的限制引起的分类讨论 [典题 2] 设等比数列{an}公比为 q,前 n 项和 Sn>0(n=1,2,3…),则 q 的取值范围 是__________. [答案] (-1,0)∪(0,+∞) [解析] 因为{an}是等比数列,Sn>0, 可得 a1=S1>0,q≠0.(确定需分类的目标与对象) 当 q=1 时,(确立分类标准 1) Sn=na1>0;(分类处理问题 1)
上一页
下一页
新课标高考第二轮总复习•理科数学
当 q≠1 时,(确立分类标准 2) Sn=a111--qqn>0,(分类处理问题 2) 即11--qqn>0(n=1,2,3,…),
则有11--qqn>>00, ①或11--qqn<<00,. ② 由①,得-1<q<1, 由②,得 q>1. 故 q 的取值范围是(-1,0)∪(0,+∞).(汇总分类问题)
上一页
下一页
新课标高考第二轮总复习•理科数学
本题易忽略对 q≠1 的讨论,而直接由a111--qqn>0,得 q 的取值范围.等比数列前 n 项和公式的使用时,注意要分 q=1,Sn=na1 和 q≠1,Sn=a111--qqn进行讨论.
上一页
下一页
新课标高考第二轮总复习•理科数学
类型三 由数பைடு நூலகம்运算要求引起的分类讨论 [典题 3] 中位数为 1 010 的一组数构成等差数列,其末项为 2 015,则该数列的首 项为__________. [答案] 5
上一页
下一页
新课标高考第二轮总复习•理科数学
[解析] n=3,则 1≤i≤2, 即 i=1 或 2.(确定分类标准) 当 i=1 时,aa21∈13,1,3; 当 i=2 时,aa32∈13,1,3.(分类处理问题)
高考数学二轮复习 上篇 专题整合突破 专题八 数学思想方法 第2讲 分类讨论思想、转化与化归思想练
创新设计(江苏专用)2017届高考数学二轮复习上篇专题整合突破专题八数学思想方法第2讲分类讨论思想、转化与化归思想练习理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(创新设计(江苏专用)2017届高考数学二轮复习上篇专题整合突破专题八数学思想方法第2讲分类讨论思想、转化与化归思想练习理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为创新设计(江苏专用)2017届高考数学二轮复习上篇专题整合突破专题八数学思想方法第2讲分类讨论思想、转化与化归思想练习理的全部内容。
专题八数学思想方法第2讲分类讨论思想、转化与化归思想练习理一、填空题1。
等比数列{a n}中,a3=7,前3项之和S3=21,则公比q的值是________。
解析当公比q=1时,a1=a2=a3=7,S3=3a1=21,符合要求.当q≠1时,a1q2=7,错误!=21,解之得,q=-错误!或q=1(舍去).综上可知,q=1或-错误!.答案1或-错误!2。
过双曲线错误!-错误!=1(a>0,b>0)上任意一点P,引与实轴平行的直线,交两渐近线于R,Q两点,则错误!·错误!的值为________.解析当直线PQ与x轴重合时,|错误!|=|错误!|=a.答案a23.方程sin2x+cos x+k=0有解,则k的取值范围是________.解析求k=-sin2x-cos x的值域.k=cos2x-cos x-1=错误!错误!-错误!.当cos x=错误!时,k min=-错误!,当cos x=-1时,k max=1,∴-54≤k≤1.答案错误!4。
若数列{a n}的前n项和S n=3n-1,则它的通项公式a n=________。
2017届高考数学二轮复习(全国通用)课件 专题八 数学思想方法 第2讲
思想概述·应用点拨
热点聚焦·题型突破 第二页,编归辑于纳星期总六:结二·点思二维十五升分。华
(3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、 基本不等式等. (4)由图形的不确定性而引起的分类讨论:如二次函数图象、 指数函数图象、对数函数图象等. (5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参
思想概述·应用点拨
热点聚焦·题型突破 第二十二页归,编纳辑于总星期结六·:思二点维二升十五华分。
[微题型2] 特殊与一般的转化
【例 2-2】 过抛物线 y=ax2(a>0)的焦点 F,作一直线交抛物
线于 P、Q 两点,若线段 PF 与 FQ 的长度分别为 p,q,则1p+
1q等于( )
1
A.2a
B.2a
思想概述·应用点拨
热点聚焦·题型突破 第十八页,归编辑纳于星总期六结:·二思点维二十升五分华。
因此 f1a>2a-2 等价于 ln a+a-1<0. 令 g(a)=ln a+a-1, 则 g(a)在(0,+∞)上单调递增, g(1)=0.于是,当 0<a<1 时, g(a)<0;当 a>1 时,g(a)>0. 因此,a 的取值范围是(0,1).
探究提高 由数学运算要求引起的分类整合法,常见的类型有除 法运算中除数不为零,偶次方根为非负,对数运算中真数与底数 的要求,指数运算中底数的要求,不等式两边同乘以一个正数、 负数问题,含有绝对值的不等式求解,三角函数的定义域等,根 据相应问题中的条件对相应的参数、关系式等加以分类分析,进 而分类求解与综合.
思想概述·应用点拨
热点聚焦·题型突破 第十三页,归编辑纳于星总期六结:·二思点维二十升五分华。
f(0)=m,f(1)=2-2m,当 m≥2-2m,又 m<43,即23≤m<43时, ymax=m.当 m<2-2m,又 m<43,即 m<23时,ymax=2(1-m). 当 4-3m<0,即 m>43时,二次函数 y 的图象开口向下,又它的 对称轴方程 x=4-13m<0,所以函数 y 在[0,1]上是减函数,于
高考数学二轮复习第一部分思想方法研析指导二分类讨论思想课件文
高考命题聚焦 从近五年的高考试题来看,分类讨论思想在高考试题中频繁出现, 已成为高考数学的一个热点,也是高考的难点.高考中经常会有几 道题,解题思路直接依赖于分类讨论,特别在解答题中(尤其导数与 函数)常有一道分类求解的压轴题,选择题、填空题也会出现不同 情形的分类讨论题.
思想方法诠释 1.分类讨论思想的含义 分类讨论思想就是当问题所给的对象不能进行统一研究时,需 要把研究对象按某个标准分类,然后对每一类分别研究,得出每一 类的结论,最后综合各类结果得到整个问题的解答.对问题实行分 类,分类标准等于是增加的一个已知条件,实现了有效增设,将大问 题分解为小问题,优化了解题思路,降低了问题难度. 2.分类讨论思想在解题中的应用 (1)由数学概念引起的分类讨论; (2)由性质、定理、公式的限制引起的分类讨论; (3)由数学运算要求引起的分类讨论; (4)由图形的不确定性引起的分类讨论; (5)由参数的变化引起的分类讨论.
D.-12
题后反思一般由图形的位置或形状变动引发的讨论包括:二
次函数对称轴位置的变动;函数问题中区间的变动;函数图象形状的
变动;直线由斜率引起的位置变动;圆锥曲线由焦点引起的位置变动 或由离心率引起的形状变动;立体几何中点、线、面的位置变动等.
答案D ������ + ������-2 ≥ 0,
解析 作出线性约束条件 ������������-������ + 2 ≥ 0,的可行域,当 k>0 时,如图①所
的取值范围是 (1,+∞) .
解析 设函数y=ax(a>0,且a≠1)和函数y=x+a,则函数f(x)=ax-x-a有两 个零点,就是函数y=ax与函数y=x+a的图象有两个交点.由图象(图 略)可知,当0<a<1时,两函数图象只有一个交点,不符合;当a>1时,因 为函数y=ax(a>1)的图象过点(0,1),而直线y=x+a所过的点一定在点 (0,1)的上方,所以一定有两个交点.故实数a的取值范围是(1,+∞).
高考数学二轮复习 第二部分应试高分策略 第1讲 数学思想方法 第2课时 分类讨论思想、转化与化归思想
x≥0, 2.已知变量 x,y 满足的不等式组y≥2x,
表示的是一个直
kx-y+1≥0
角三角形围成的平面区域,则实数 k=( D )
A.-12
B.12
C.0
D.-12或 0
x≥0, 解析:不等式组y≥2x,
表示的可行域如图(阴影部分)所示,
kx-y+1≥0
x≥0, 由图可知,若不等式组y≥2x,
[名师点评] 含有参数的问题,主要包括:(1)含有参数的不等式 的求解;(2)含有参数的方程的求解;(3)函数解析式中含参数的 最值与单调性问题;(4)二元二次方程表示曲线类型的判定等.求 解时,要结合参数的意义,对参数的不同取值或不同取值范围进 行分类讨论,分类要合理、要不重不漏、要符合最简原则.
3.(2015·长沙模拟)已知函数 f(x)=sin x,g(x)=mx-x63(m 为实 数).
(1)求曲线 y=f(x)在点 Pπ4 ,fπ4 处的切线方程;
(2)求函数 g(x)的单调递减区间.
解:(1)由题意得所求切线的斜率 k=f′π4 =cos
π4 =
2 2.
切点 Pπ4 , 22,则切线方程为 y- 22= 22x-π4 ,即 x- 2y
1.(2015·威海模拟)若 m 是 2 和 8 的等比中项,则圆锥曲线 x2+ ym2=1 的离心率是( D )
3 A. 2
B. 5
C.
23或
5 2
D. 23或 5
解析:因为 m 是 2 和 8 的等比中项,所以 m2=2×8=16,所以
m=±4.
当 m=4 时,圆锥曲线y42+x2=1 是椭圆,其离心率 e=ac= 23;
常见的化归与转化的方法
所以 f(x)的极小值为 f(0)=0. (2)f(x)=x(ex-ax-1),令 g(x)=ex-ax-1,则 g′(x)=ex-a. 若 a≤1,则 x∈(0,+∞)时,g′(x)>0,g(x)为增函数,而 g(0) =0,所以当 x≥0 时,g(x)≥0,从而 f(x)≥0. 若 a>1,则 x∈(0,ln a)时,g′(x)<0,g(x)为减函数,g(0)=0, 故 x∈(0,ln a)时,g(x)<0,从而 f(x)<0,不符合题意. 综上,实数 a 的取值范围是(-∞,1].
高考数学二轮专题复习 数学思想方法
高考数学二轮专题复习 数学思想方法【考纲解读】1.熟练掌握函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想.2.能够对所学知识进行分类或归纳,能应用数学思想方法分析和解决问题,系统地把握知识间的内在联系.【考点预测】1.函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点,也是高考的一个热点。
对函数试题的设计仍然会围绕几个基本初等函数和函数的性质、图象、应用考查函数知识;与方程、不等式、解析几何等内容相结合,考查函数知识的综合应用;在函数知识考查的同时,加强对函数方程、分类讨论、数形结合、等价转化等数学思想方法的考查。
2.预测在今年的高考中,数形结合与分类讨论思想仍是考查的一个热点,数形结合的考查方式常以数学式、数学概念的几何意义、函数图象、解析几何等为载体综合考查,分类讨论思想的考查重点为含有参数的函数性质问题、与等比数列的前n 项和有关的计算推证问题、直线与圆锥曲线的位置关系不定问题等。
3.预测在今年的高考中,运用化归与转化思想解题的途径主要有:借助函数、方程(组)、辅助命题、等价变换、特殊的式与数的结构、几何特征进行转化,其方法有:正反转化、数形转化、语义转化、等与不等、抽象问题与具体问题化归,一般问题与特殊问题化归,正向思维与逆向思维化归。
【要点梳理】1.函数与方程思想:我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n 项和的公式,都可以看成n 的函数,数列问题也可以用函数方法解决。
2.数形结合的思想:是解答高考数学试题的一种常用方法与技巧,特别是在解选择与填空题时发挥着奇特功效.具体操作时,应注意以下几点:(1)准确画图,注意函数的定义域;(2)用图象法讨论方程的解的个数.3.与分类讨论有关的知识点有:直线的斜率分为存在和不存在两种情形、等比数列中的公比1q =和1q ≠、由参数的变化引起的分类讨论、由图形的不确定性引起的分类讨论、指对函数的底数a 分为1a >和01a <<两种情形等。
高考数学专题复习分类讨论思想方法教案
高考数学专题复习——分类讨论思想方法教案一、教学目标1. 让学生理解分类讨论思想方法在解决数学问题中的应用。
2. 培养学生运用分类讨论解决数学问题的能力。
3. 提高学生对高考数学题型的应对策略。
二、教学内容1. 分类讨论思想方法的定义及作用。
2. 分类讨论思想方法在高中数学中的应用实例。
3. 高考数学题型中分类讨论思想方法的具体运用。
三、教学重点与难点1. 重点:分类讨论思想方法的理解与应用。
2. 难点:如何引导学生自主发现和运用分类讨论思想方法解决数学问题。
四、教学过程1. 导入:通过一个简单的数学问题引入分类讨论思想方法。
2. 新课:讲解分类讨论思想方法的定义、作用和应用实例。
3. 练习:让学生尝试解决一些运用分类讨论思想方法的高中数学问题。
五、课后作业2. 布置一些运用分类讨论思想方法的高中数学题目,让学生课后练习。
3. 鼓励学生查阅相关资料,了解分类讨论思想方法在高考数学题型中的应用。
六、教学策略1. 案例分析:通过分析典型的数学案例,让学生体会分类讨论思想方法的重要性。
2. 互动讨论:鼓励学生积极参与课堂讨论,分享自己在解决问题时运用分类讨论的经历。
3. 练习巩固:设计具有针对性的练习题,让学生在实践中掌握分类讨论思想方法。
4. 拓展延伸:引导学生关注高考数学题型的新动态,了解分类讨论思想方法在实际应用中的广泛性。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、思考问题和解决问题的能力。
2. 课后作业:评估学生对分类讨论思想方法的理解和应用能力。
3. 阶段测试:通过阶段测试,检验学生对分类讨论思想方法的掌握情况。
4. 学生反馈:收集学生对教学过程和教学内容的意见和建议,不断优化教学方法。
八、教学资源1. 教材:选用权威的高中数学教材,为学生提供系统的知识体系。
2. 案例素材:收集各类高中数学题目,作为教学案例。
3. 教学课件:制作精美的教学课件,辅助课堂教学。
4. 网络资源:利用互联网查找相关资料,为学生提供更多的学习资源。
分类讨论、方程函数、转化、数形结合——四大解题思想
分类讨论、方程函数、转化、数形结合——四大解题思想一、分类谈论初中数学中的分类讨论思想,是指把要研究的数学对象按照一定的标准划分为若干不同的类别,然后逐类进行研究、求解的一种数学解题思想。
分类讨论解题的实质,是将整体问题化为部分问题来解决,以增加题设条件分类讨论的原则是不重复、不遗漏。
讨论的方法是逐类进行,还必须注意综合讨论的结果,以使解题步骤完整二、方程函数思想方程思想是从数学问题的数量关系出发,将问题中的条件转化为各种数学模型。
函数思想是指用函数的概念和性质去分析问题、转化问题和解决问题,求解函数解析式和灵活运用函数的性质特点是把握函数思想的关键。
同时,函数与方程密切相关,通过实现函数与方程的互相转化、接轨,达到解决问题的目的函.数和方程思想可以使数学问题变得简捷、清晰,可以化紧为简、化难为易.三、转化思想转化与化归思想是指把待解决的问题通过转化归结为在已有范围内可解的问题的一种思维方式。
应用转化思想解题的原则应是化难为易、化生为熟、化繁为简,尽可能地等价转化。
常见的转化有:正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面的转化、常量与变量的转化、数学语言的转化等。
转化化归思想是解决数学问题的根本思想之一,解题的过程实际上就是转化的过程。
四、数形结合中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称为数形结合或形数结合。
作为一种数学思想方法,数形结合的应用大致又可分为两种情形:第一种情形是“以数解形”,而第二种情形是“以形助数”。
数形结合的思想可以使某些抽象的数学问题更直观、生动,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简便.。
新高考数学二轮复习全套思想方法汇总
思想概述
函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对 函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去 分析问题、转化问题,从而使问题得以解决. 方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组, 或者构造方程,通过解方程或方程组,或者运用方程的性质去分析问题、转 化问题,使问题得以解决.
所以y=3x+3-x在(0,+∞)上单调递增,
因为函数y=log3x为增函数, 所以g(x)在[0,+∞)上单调递增, 所以f(x)在[2,+∞)上单调递增, 因为f(a-1)≥f(2a+1), 所以|a-1-2|≥|2a+1-2|, 所以(a-3)2≥(2a-1)2,化简得(a+2)(3a-4)≤0, 解得-2≤a≤43. 所以实数 a 的取值范围为-2,43.
规
律 函数与方程的相互转化:对于方程f(x)=0,可利用函数y=f(x)的
方 法
图象和性质求解问题.
方法三 构造函数解决数学问题
在一些数学问题的研究中,可以通过建立函数关系式,把要研究的 问题转化为函数的性质,达到化繁为简、化难为易的效果.
例3 (2023·深圳模拟)已知ε>0,x,y∈ -π4,π4 ,且ex+εsin y=eysin x,则 下列关系式恒成立的为
规
律 方程的根可通过构造函数,转化为两函数的交点横坐标;不等式
方 法
f(x)<g(x)可转化为函数y=f(x)与y=g(x)图象的位置关系.
利用数学概念、表达式的几何意义 方法二 求解最值、范围问题
向量、复数、圆锥曲线等数学概念具有明显的几何意义,可利用图 形观察求解有关问题;灵活应用一些几何结构的代数形式,如斜率、距 离公式等.
创新设计(江苏专用)高考数学二轮复习上篇专题整合突破专题八数学思想方法教师用书理
专题八数学思想方法教师用书理第1讲函数与方程思想、数形结合思想高考定位函数与方程的思想一般通过函数与导数、三角函数、数列、解析几何等知识进行考查;数形结合思想一般在填空题中考查.1.函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的思想方法.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的思想方法.2.函数与方程的思想在解题中的应用(1)函数与不等式的相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)解析几何中的许多问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论.3.数形结合是一种数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:①借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图象来直观地说明函数的性质;②借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.4.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.数学中的知识,有的本身就可以看作是数形的结合.热点一函数与方程思想的应用[微题型1] 不等式问题中的函数(方程)法【例1-1】 (1)f(x)=ax3-3x+1对于x∈[-1,1],总有f(x)≥0成立,则a=________.(2)设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是________.解析 (1)若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x -1x.设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x4, 所以g (x )在区间⎝ ⎛⎦⎥⎤0,12上单调递增,在区间⎝ ⎛⎦⎥⎤12,1上单调递减,因此g (x )max =g ⎝ ⎛⎭⎪⎫12=4,从而a ≥4. 当x <0即x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3,设g (x )=3x 2-1x3,且g (x )在区间[-1,0)上单调递增,因此g (x )min =g (-1)=4, 从而a ≤4,综上a =4.(2)设F (x )=f (x )g (x ),由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,得F (-x )=f (-x )·g (-x )=-f (x )g (x )=-F (x ),即F (x )在R 上为奇函数.又当x <0时,F ′(x )=f ′(x )·g (x )+f (x )g ′(x )>0, 所以x <0时,F (x )为增函数.因为奇函数在对称区间上的单调性相同,所以x >0时,F (x )也是增函数. 因为F (-3)=f (-3)g (-3)=0=-F (3).所以,由图可知F (x )<0的解集是(-∞,-3)∪(0,3). 答案 (1)4 (2)(-∞,-3)∪(0,3)探究提高 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f (x )>0或f (x )<0恒成立,一般可转化为f (x )min >0或f (x )max <0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解.[微题型2] 数列问题的函数(方程)法【例1-2】 已知数列{a n }满足a 1=3,a n +1=a n +p ·3n(n ∈N *,p 为常数),a 1,a 2+6,a 3成等差数列.(1)求p 的值及数列{a n }的通项公式;(2)设数列{b n }满足b n =n 2a n ,证明:b n ≤49.(1)解 由a 1=3,a n +1=a n +p ·3n, 得a 2=3+3p ,a 3=a 2+9p =3+12p . 因为a 1,a 2+6,a 3成等差数列, 所以a 1+a 3=2(a 2+6), 即3+3+12p =2(3+3p +6),得p =2,依题意知,a n +1=a n +2×3n. 当n ≥2时,a 2-a 1=2×31,a 3-a 2=2×32,…, a n -a n -1=2×3n -1.将以上式子相加得a n -a 1=2(31+32+…+3n -1),所以a n -a 1=2×3×(1-3n -1)1-3=3n-3,所以a n =3n(n ≥2).又a 1=3符合上式,故a n =3n. (2)证明 因为a n =3n,所以b n =n 23n .所以b n +1-b n =(n +1)23n +1-n 23n =-2n 2+2n +13n +1(n ∈N *), 若-2n 2+2n +1<0,则n >1+32, 即当n ≥2时,有b n +1<b n , 又因为b 1=13,b 2=49,故b n ≤49.探究提高 数列最值问题中应用函数与方程思想的常见类型:(1)数列中的恒成立问题,转化为最值问题,利用函数的单调性或不等式求解.(2)数列中的最大项与最小项问题,利用函数的有关性质或不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1求解.(3)数列中前n 项和的最值:转化为二次函数,借助二次函数的单调性或求使a n ≥0(a n ≤0)成立时最大的n 值即可求解.[微题型3] 解析几何问题的方程(函数)法【例1-3】 设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与AB 相交于点D ,与椭圆相交于E 、F 两点. (1)若ED →=6DF →,求k 的值; (2)求四边形AEBF 面积的最大值.解 (1)依题意得椭圆的方程为x 24+y 2=1,直线AB ,EF 的方程分别为x+2y =2,y =kx (k >0).如图,设D (x 0,kx 0),E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2,且x 1,x 2满足方程(1+4k 2)x 2=4,故x 2=-x 1=21+4k2.①由ED →=6DF →知x 0-x 1=6(x 2-x 0), 得x 0=17(6x 2+x 1)=57x 2=1071+4k 2; 由D 在AB 上知x 0+2kx 0=2, 得x 0=21+2k. 所以21+2k =1071+4k 2,化简得24k 2-25k +6=0, 解得k =23或k =38.(2)根据点到直线的距离公式和①式知,点E ,F 到AB 的距离分别为 h 1=|x 1+2kx 1-2|5=2(1+2k +1+4k 2)5(1+4k 2), h 2=|x 2+2kx 2-2|5=2(1+2k -1+4k 2)5(1+4k 2). 又AB =22+12=5, 所以四边形AEBF 的面积为S =12·AB ·(h 1+h 2)=12·5·4(1+2k )5(1+4k 2)=2(1+2k )1+4k 2=21+4k 2+4k1+4k2≤22, 当4k 2=1(k >0),即当k =12时,上式取等号.所以S 的最大值为2 2.即四边形AEBF 面积的最大值为2 2.探究提高 解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决. 热点二 数形结合思想的应用[微题型1] 利用数形结合思想讨论方程的根或函数零点【例2-1】 (1)若函数f (x )=|2x-2|-b 有两个零点,则实数b 的取值范围是________. (2)设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=|x cos(πx )|,则函数h (x )=g (x )-f (x )在⎣⎢⎡⎦⎥⎤-12,32上的零点个数为________. 解析 (1)由f (x )=|2x-2|-b 有两个零点, 可得|2x-2|=b 有两个不等的实根,从而可得函数y =|2x-2|的图象与函数y =b 的图象有两个交点,如图所示.结合函数的图象,可得0<b <2,故填(0,2).(2)根据题意,函数y =f (x )是周期为2的偶函数且0≤x ≤1时,f (x )=x 3,则当-1≤x ≤0时,f (x )=-x 3,且g (x )=|x cos(πx )|,所以当x =0时,f (x )=g (x ).当x ≠0时,若0<x ≤12,则x 3=x cos(πx ),即x 2=cos πx .再根据函数性质画出⎣⎢⎡⎦⎥⎤-12,32上的图象,在同一个坐标系中作出所得关系式等号两边函数的图象,如图所示,有5个根.所以总共有6个.答案 (1)(0,2) (2)6探究提高 用图象法讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解(或函数零点)的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解(或函数零点)的个数. [微题型2] 利用数形结合思想解不等式或求参数范围【例2-2】 (1)若不等式9-x 2≤k (x +2)-2的解集为区间[a ,b ],且b -a =2,则k =________.(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.解析 (1)如图,分别作出直线y =k (x +2)-2与半圆y =9-x 2.由题意,知直线在半圆的上方,由b -a =2,可知b =3,a =1,所以直线y =k (x +2)-2过点(1,22),则k = 2.(2)作出y =|x -2a |和y =12x +a -1的简图,依题意知应有2a ≤2-2a ,故a ≤12.答案 (1) 2 (2)⎝⎛⎦⎥⎤-∞,12 探究提高 求参数范围或解不等式问题经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化数量关系来解决问题,往往可以避免繁琐的运算,获得简捷的解答. [微题型3] 利用数形结合思想求最值【例2-3】 (1)已知P 是直线l :3x +4y +8=0上的动点,PA 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,则四边形PACB 面积的最小值为________. (2)(2015·全国Ⅰ卷)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66),当△APF 周长最小时,该三角形的面积为________.解析 (1)从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形PAC 的面积S Rt △PAC =12PA ·AC=12PA 越来越大,从而S 四边形PACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S 四边形PACB 变小,显然,当点P 到达一个最特殊的位置,即CP 垂直直线l 时,S 四边形PACB 应有唯一的最小值,此时PC =|3×1+4×1+8|32+42=3, 从而PA =PC 2-AC 2=2 2.所以(S 四边形PACB )min =2×12×PA ×AC =2 2.(2)设双曲线的左焦点为F 1,连接PF 1,根据双曲线的定义可知PF =2+PF 1,则△APF 的周长为PA +PF +AF =PA +2+PF 1+AF =PA +PF 1+AF +2,由于AF +2是定值,要使△APF 的周长最小,则PA +PF 1最小,即P ,A ,F 1三点共线,如图所示.由于A (0,66),F 1(-3,0), 直线AF 1的方程为:x -3+y66=1,即x =y26-3,代入双曲线方程整理可得y 2+66y -96=0,解得y =26或y =-86(舍去),所以点P 的纵坐标为2 6.所以S △APF =S △AFF 1-S △PFF 1=12×6×66-12×6×26=12 6.答案 (1)2 2 (2)12 6探究提高 破解圆锥曲线问题的关键是画出相应的图形,注意数形结合的相互渗透,并从相关的图形中挖掘对应的信息加以分析与研究.直线与圆锥曲线的位置关系的转化有两种,一种是通过数形结合建立相应的关系式,另一种是通过代数形式转化为二元二次方程组的解的问题进行讨论.1.当问题中涉及一些变化的量时,就需要建立这些变化的量之间的关系,通过变量之间的关系探究问题的答案,这就需要使用函数思想.2.借助有关函数的性质,一是用来解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题,二是在问题的研究中,可以通过建立函数关系式或构造中间函数来求解.3.许多数学问题中,一般都含有常量、变量或参数,这些参变量中必有一个处于突出的主导地位,把这个参变量称为主元,构造出关于主元的方程,主元思想有利于回避多元的困扰,解方程的实质就是分离参变量.4.在数学中函数的图象、方程的曲线、不等式所表示的平面区域、向量的几何意义、复数的几何意义等都实现以形助数的途径,当试题中涉及这些问题的数量关系时,我们可以通过图形分析这些数量关系,达到解题的目的.5.有些图形问题,单纯从图形上无法看出问题的结论,这就要对图形进行数量上的分析,通过数的帮助达到解题的目的.6.利用数形结合解题,有时只需把图象大致形状画出即可,不需要精确图象.一、填空题1.直线3x -y +m =0与圆x 2+y 2-2x -2=0相切,则实数m =________. 解析 圆的方程(x -1)2+y 2=3,圆心(1,0)到直线的距离等于半径⇒|3+m |3+1=3⇒|3+m |=23⇒m =3或m =-3 3.答案 -33或 32.已知函数f (x )满足下面关系:①f (x +1)=f (x -1);②当x ∈[-1,1]时,f (x )=x 2,则方程f (x )=lg x 解的个数是________.解析 由题意可知,f (x )是以2为周期,值域为[0,1]的函数.又f (x )=lg x ,则x ∈(0,10],画出两函数图象, 则交点个数即为解的个数. 由图象可知共9个交点.答案 93.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为________.解析 f ′(x )>2转化为f ′(x )-2>0,构造函数F (x )=f (x )-2x , 得F (x )在R 上是增函数.又F (-1)=f (-1)-2×(-1)=4,f (x )>2x +4, 即F (x )>4=F (-1),所以x >-1. 答案 (-1,+∞)4.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是________.解析 如图,设OA →=a ,OB →=b ,OC →=c ,则CA →=a -c ,CB →=b -c .由题意知CA →⊥CB →,∴O ,A ,C ,B 四点共圆.∴当OC 为圆的直径时,|c |最大,此时,|OC →|= 2. 答案25.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________.解析 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞). 答案 (-∞,1]∪[2,+∞)6.(2015·全国Ⅱ卷改编)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为________.解析 如图,设双曲线E 的方程为x 2a 2-y 2b2=1(a >0,b >0),则AB =2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°, ∴BM =AB =2a ,∠MBN =60°,∴y 1=MN =BM sin ∠MBN =2a sin 60°=3a ,x 1=OB +BN =a +2a cos 60°=2a .将点M (2a ,3a )的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =c a=a 2+b 2a 2= 2. 答案27.已知e 1,e 2是平面内两个相互垂直的单位向量,若向量b 满足|b |=2,b ·e 1=1,b ·e 2=1,则对于任意x ,y ∈R ,|b -(x e 1+y e 2)|的最小值为________.解析 |b -(x e 1+y e 2)|2=b 2+x 2e 21+y 2e 22-2x b ·e 1-2y b ·e 2+2xy e 1·e 2=4+x 2+y 2-2x -2y =(x -1)2+(y -1)2+2≥2,当且仅当x =1,y =1时,|b -(x e 1+y e 2)|2取得最小值2,此时|b -(x e 1+y e 2)|取得最小值 2. 答案28.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是________. 解析 设直线l 的方程为x =ty +m ,A (x 1,y 1),B (x 2,y 2), 把直线l 的方程代入抛物线方程y 2=4x 并整理得y 2-4ty -4m =0,则Δ=16t 2+16m >0,y 1+y 2=4t ,y 1y 2=-4m ,那么x 1+x 2=(ty 1+m )+(ty 2+m )=4t 2+2m ,则线段AB 的中点M (2t 2+m ,2t ).由题意可得直线AB 与直线MC 垂直,且C (5,0). 当t ≠0时,有k MC ·k AB =-1, 即2t -02t 2+m -5·1t=-1,整理得m =3-2t 2, 把m =3-2t 2代入Δ=16t 2+16m >0, 可得3-t 2>0,即0<t 2<3.由于圆心C 到直线AB 的距离等于半径, 即d =|5-m |1+t2=2+2t21+t2=21+t 2=r ,所以2<r <4,此时满足题意且不垂直于x 轴的直线有两条. 当t =0时,这样的直线l 恰有2条,即x =5±r ,所以0<r <5. 综上,可得若这样的直线恰有4条,则2<r <4. 答案 (2,4) 二、解答题9.已知数列{a n }是一个等差数列,且a 2=1,a 5=-5. (1)求{a n }的通项a n ;(2)求{a n }前n 项和S n 的最大值.解 (1)设{a n }的公差为d ,由已知条件,⎩⎪⎨⎪⎧a 1+d =1,a 1+4d =-5,解得a 1=3,d =-2. 所以a n =a 1+(n -1)d =-2n +5. (2)S n =na 1+n (n -1)2d =-n 2+4n =4-(n -2)2.所以n =2时,S n 取到最大值4.10.椭圆C 的中心为坐标原点O ,焦点在y 轴上,短轴长为2,离心率为22,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=3PB →. (1)求椭圆C 的方程; (2)求m 的取值范围.解 (1)设椭圆C 的方程为y 2a 2+x 2b 2=1(a >b >0),设c >0,c 2=a 2-b 2,由题意,知2b =2,c a =22, 所以a =1,b =c =22. 故椭圆C 的方程为y 2+x 212=1.即y 2+2x 2=1.(2)当直线l 的斜率不存在时,由题意求得m =±12;当直线l 的斜率存在时,设直线l 的方程为y =kx +m (k ≠0),l 与椭圆C 的交点坐标为A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,2x 2+y 2=1,得(k 2+2)x 2+2kmx +m 2-1=0, Δ=(2km )2-4(k 2+2)(m 2-1) =4(k 2-2m 2+2)>0,(*)解上述方程后易得:x 1+x 2=-2km k 2+2,x 1x 2=m 2-1k 2+2.因为AP →=3 PB →,所以-x 1=3x 2.所以⎩⎪⎨⎪⎧x 1+x 2=-2x 2,x 1x 2=-3x 22. 所以3(x 1+x 2)2+4x 1x 2=0.所以3·⎝ ⎛⎭⎪⎫-2km k 2+22+4·m 2-1k 2+2=0.整理得4k 2m 2+2m 2-k 2-2=0, 即k 2(4m 2-1)+(2m 2-2)=0.当m 2=14时,上式不成立;当m 2≠14时,k 2=2-2m 24m -1,由(*)式,得k 2>2m 2-2, 又k ≠0,所以k 2=2-2m24m 2-1>0.解得-1<m <-12或12<m <1.综上,所求m 的取值范围为⎝⎛⎦⎥⎤-1,-12∪⎣⎢⎡⎭⎪⎫12,1. 11.设函数f (x )=ax 3-3ax ,g (x )=bx 2-ln x (a ,b ∈R ),已知它们在x =1处的切线互相平行.(1)求b 的值; (2)若函数F (x )=⎩⎪⎨⎪⎧f (x ),x ≤0,g (x ),x >0,且方程F (x )=a 2有且仅有四个解,求实数a 的取值范围.解 函数g (x )=bx 2-ln x 的定义域为(0,+∞), (1)f ′(x )=3ax 2-3a ⇒f ′(1)=0,g ′(x )=2bx -1x⇒g ′(1)=2b -1, 依题意得2b -1=0,所以b =12.(2)x ∈(0,1)时,g ′(x )=x -1x<0,即g (x )在(0,1)上单调递减,x ∈(1,+∞)时,g ′(x )=x -1x>0,即g (x )在(1,+∞)上单调递增,所以当x =1时,g (x )取得极小值g (1)=12;当a =0时,方程F (x )=a 2不可能有四个解;当a <0,x ∈(-∞,-1)时,f ′(x )<0,即f (x )在(-∞,-1)上单调递减,x ∈ (-1,0)时,f ′(x )>0, 即f (x )在(-1,0)上单调递增,所以当x =-1时,f (x )取得极小值f (-1)=2a ,又f (0)=0,所以F (x )的图象如图(1)所示, 从图象可以看出F (x )=a 2不可能有四个解. 当a >0,x ∈(-∞,-1)时,f ′(x )>0, 即f (x )在(-∞,-1)上单调递增,x ∈(-1,0)时,f ′(x )<0,即f (x )在(-1,0)上单调递减,所以当x =-1时,f (x )取得极大值f (-1)=2a . 又f (0)=0,所以F (x )的图象如图(2)所求,从图(2)看出,若方程F (x )=a 2有四个解,则12<a 2<2a ,得22<a <2, 所以,实数a 的取值范围是⎝⎛⎭⎪⎫22,2. 第2讲 分类讨论思想、转化与化归思想高考定位 分类讨论思想,转化与化归思想近几年高考每年必考,一般体现在解析几何、函数与导数及数列解答题中,难度较大.1.中学数学中可能引起分类讨论的因素(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等.(2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根被开方数为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列{a n }的前n 项和公式等.(3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、基本不等式等. (4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等. (5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等. 2.常见的转化与化归的方法转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.常见的转化方法有:(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的.(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题.(6)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(7)坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径. (8)类比法:运用类比推理,猜测问题的结论,易于确定. (9)参数法:引进参数,使原问题转化为熟悉的形式进行解决.(10)补集法:如果正面解决原问题有困难,可把原问题的结果看做集合A ,而把包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集∁U A 获得原问题的解决,体现了正难则反的原则.热点一 分类讨论思想的应用[微题型1] 由性质、定理、公式的限制引起的分类【例1-1】 (1)设数列{a n }的前n 项和为S n ,已知2S n =3n+3,求数列{a n }的通项a n =________.(2)(2016·苏北四市调研)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析 (1)由2S n =3n+3得:当n =1时,2S 1=31+3=2a 1,解得a 1=3;当n ≥2时,a n =S n -S n -1=12[(3n +3)-(3n -1+3)]=3n -1,由于n =1时,a 1=3不适合上式.∴数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n ≥2.(2)当a >0时,1-a <1,1+a >1, 这时f (1-a )=2(1-a )+a =2-a ,f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32,不合题意,舍去;当a <0时,1-a >1,1+a <1,这时f (1-a )=-(1-a )-2a =-1-a ,f (1+a )=2(1+a )+a =2+3a .由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.答案 (1)⎩⎪⎨⎪⎧3,n =1,3n -1,n ≥2(2)-34探究提高 由性质、定理、公式的限制引起的分类整合法往往是因为有的数学定理、公式、性质是分类给出的,在不同的条件下结论不一致的情况下使用,如等比数列的前n 项和公式、函数的单调性等.[微题型2] 由数学运算要求引起的分类【例1-2】 (1)(2016·苏、锡、常、镇调研改编)不等式|x |+|2x +3|≥2的解集是________. (2)已知m ∈R ,求函数f (x )=(4-3m )x 2-2x +m 在区间[0,1]上的最大值为________. 解析 (1)原不等式可转化为⎩⎪⎨⎪⎧x <-32,-x -(2x +3)≥2,或⎩⎪⎨⎪⎧-32≤x ≤0,-x +(2x +3)≥2或⎩⎪⎨⎪⎧x >0,x +(2x +3)≥2. 解得x ≤-53或-1≤x ≤0或x >0,故原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-53∪[-1,+∞). (2)①当4-3m =0,即m =43时,函数y =-2x +43,它在[0,1]上是减函数,所以y max =f (0)=43.②当4-3m ≠0, 即m ≠43时,y 是二次函数.当4-3m >0,即m <43时,二次函数y 的图象开口向上,对称轴方程x =14-3m >0,它在[0,1]上的最大值只能在区间端点取得(由于此处不涉及最小值,故不需讨论区间与对称轴的关系).f (0)=m ,f (1)=2-2m ,当m ≥2-2m ,又m <43,即23≤m <43时,y max =m .当m <2-2m ,又m <43,即m <23时,y max =2(1-m ).当4-3m <0,即m >43时,二次函数y 的图象开口向下,又它的对称轴方程x =14-3m <0,所以函数y 在[0,1]上是减函数,于是y max =f (0)=m .由①、②可知,这个函数的最大值为y max=⎩⎪⎨⎪⎧2-2m ,m <23,m ,m ≥23.答案 (1)⎝⎛⎦⎥⎤-∞,-53∪[-1,+∞)(2)y max=⎩⎪⎨⎪⎧2-2m ,m <23,m ,m ≥23探究提高 由数学运算要求引起的分类整合法,常见的类型有除法运算中除数不为零,偶次方根为非负,对数运算中真数与底数的要求,指数运算中底数的要求,不等式两边同乘以一个正数、负数问题,含有绝对值的不等式求解,三角函数的定义域等,根据相应问题中的条件对相应的参数、关系式等加以分类分析,进而分类求解与综合. [微题型3] 由参数变化引起的分类【例1-3】 (2015·全国Ⅱ卷)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝ ⎛⎦⎥⎤0,1a 上单调递增,在⎣⎢⎡⎭⎪⎫1a,+∞上单调递减.综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎦⎥⎤0,1a 上单调递增,在⎣⎢⎡⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a+a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a>2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).探究提高 由参数的变化引起的分类整合法经常用于某些含有参数的问题,如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,或对于不同的参数值要运用不同的求解或证明方法.热点二 转化与化归思想 [微题型1] 换元法【例2-1】 已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则a 的最大值是________. 解析 令b =x ,c =y ,则x +y =-a ,x 2+y 2=1-a 2. 此时直线x +y =-a 与圆x 2+y 2=1-a 2有交点, 则圆心到直线的距离d =|a |2≤1-a 2,解得a 2≤23,所以a 的最大值为63. 答案63探究提高 换元法是一种变量代换,也是一种特殊的转化与化归方法,是用一种变数形式去取代另一种变数形式,是将生疏(或复杂)的式子(或数),用熟悉(或简单)的式子(或字母)进行替换;化生疏为熟悉、复杂为简单、抽象为具体,使运算或推理可以顺利进行. [微题型2] 特殊与一般的转化 【例2-2】 已知f (x )=33x+3,则f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=________.解析 f (x )+f (1-x )=33x +3+331-x +3=33x +3+3x 3+3x =3x+33x+3=1,∴f (0)+f (1)=1,f (-2 015)+f (2 016)=1,∴f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=2 016. 答案 2 016探究提高 一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果. [微题型3] 常量与变量的转化【例2-3】 对任意的|m |≤2,函数f (x )=mx 2-2x +1-m 恒为负,则x 的取值范围为________. 解析 对任意的|m |≤2,有mx 2-2x +1-m <0恒成立,即|m |≤2时,(x 2-1)m -2x +1<0恒成立.设g (m )=(x 2-1)m -2x +1,则原问题转化为g (m )<0恒成立(m ∈[-2,2]).所以⎩⎪⎨⎪⎧g (-2)<0,g (2)<0,即⎩⎪⎨⎪⎧2x 2+2x -3>0,2x 2-2x -1<0.解得7-12<x <3+12,即实数x 的取值范围为⎝ ⎛⎭⎪⎫7-12,3+12. 答案 ⎝⎛⎭⎪⎫7-12,3+12探究提高 在处理多变元的数学问题时,我们可以选取其中的参数,将其看做是“主元”,而把其它变元看做是常量,从而达到减少变元简化运算的目的. [微题型4] 正与反的相互转化【例2-4】 若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m2+2x 2-2x 在区间(t ,3)上总不为单调函数,则实数m 的取值范围是________.解析 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t ,3)上总为单调函数,则①g ′(x )≥0在(t ,3)上恒成立,或②g ′(x )≤0在(t ,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t ,3)上恒成立,∴m +4≥2t-3t 恒成立,则m +4≥-1,即m ≥-5;由②得m +4≤2x-3x 在x ∈(t ,3)上恒成立,则m +4≤23-9,即m ≤-373.∴函数g (x )在区间(t ,3)上总不为单调函数的m 的取值范围为-373<m <-5.答案 ⎝⎛⎭⎪⎫-373,-5探究提高 否定性命题,常要利用正反的相互转化,先从正面求解,再取正面答案的补集即可,一般地,题目若出现多种成立的情形,则不成立的情形相对很少,从反面考虑较简单,因此,间接法多用于含有“至多”、“至少”及否定性命题情形的问题中.1.分类讨论思想的本质是“化整为零,积零为整”.用分类讨论的思维策略解数学问题的操作过程:明确讨论的对象和动机→确定分类的标准→逐类进行讨论→归纳综合结论→检验分类是否完备(即分类对象彼此交集为空集,并集为全集).做到“确定对象的全体,明确分类的标准,分类不重复、不遗漏”的分析讨论. 常见的分类讨论问题有: (1)集合:注意集合中空集∅讨论.(2)函数:对数函数或指数函数中的底数a ,一般应分a >1和0<a <1的讨论;函数y =ax2+bx +c 有时候分a =0和a ≠0的讨论;对称轴位置的讨论;判别式的讨论.(3)数列:由S n 求a n 分n =1和n >1的讨论;等比数列中分公比q =1和q ≠1的讨论. (4)三角函数:角的象限及函数值范围的讨论.(5)不等式:解不等式时含参数的讨论,基本不等式相等条件是否满足的讨论. (6)立体几何:点线面及图形位置关系的不确定性引起的讨论;(7)平面解析几何:直线点斜式中k 分存在和不存在,直线截距式中分b =0和b ≠0的讨论;轨迹方程中含参数时曲线类型及形状的讨论. (8)去绝对值时的讨论及分段函数的讨论等. 2.转化与化归思想遵循的原则:(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决.(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.(3)和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律. (4)正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决.一、填空题1.等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值是________. 解析 当公比q =1时,a 1=a 2=a 3=7,S 3=3a 1=21,符合要求.当q ≠1时,a 1q 2=7,a 1(1-q 3)1-q =21,解之得,q =-12或q =1(舍去).综上可知,q =1或-12. 答案 1或-122.过双曲线x 2a 2-y 2b2=1(a >0,b >0)上任意一点P ,引与实轴平行的直线,交两渐近线于R ,Q两点,则PR →·PQ →的值为________.解析 当直线PQ 与x 轴重合时,|PR →|=|PQ →|=a . 答案 a 23.方程sin 2x +cos x +k =0有解,则k 的取值范围是________. 解析 求k =-sin 2x -cos x 的值域.k =cos 2x -cos x -1=⎝⎛⎭⎪⎫cos x -122-54. 当cos x =12时,k min =-54,当cos x =-1时,k max =1,∴-54≤k ≤1.答案 ⎣⎢⎡⎦⎥⎤-54,1 4.若数列{a n }的前n 项和S n =3n-1,则它的通项公式a n =________. 解析 当n ≥2时,a n =S n -S n -1=3n-1-(3n -1-1)=2×3n -1;当n =1时,a 1=S 1=2,也满足式子a n =2×3n -1,∴数列{a n }的通项公式为a n =2×3n -1.答案 2×3n -15.已知a 为正常数,若不等式1+x ≥1+x2-x 22a对一切非负实数x 恒成立,则a 的最大值为________.解析 原不等式即x 22a ≥1+x2-1+x (x ≥0),(*)令1+x =t ,t ≥1,则x =t 2-1,所以(*)式可化为(t 2-1)22a ≥1+t 2-12-t =t 2-2t +12=(t -1)22对t ≥1恒成立,所以(t +1)2a≥1对t ≥1恒成立,又a 为正常数,所以a ≤[(t +1)2]min =4, 故a 的最大值是4. 答案 46.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数k 使得CA →+CB →=kCM →成立,则k 等于________.解析 ∵MA →+MB →+MC →=0,∴M 为已知△ABC 的重心,取AB 的中点D , ∴CA →+CB →=2CD →=2×32CM →=3CM →,∵CA →+CB →=kCM →,∴k =3. 答案 37.设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且PF 1>PF 2,则PF 1PF 2的值为________. 解析 若∠PF 2F 1=90°, 则PF 21=PF 22+F 1F 22,∵PF 1+PF 2=6,F 1F 2=25, 解得PF 1=143,PF 2=43,∴PF 1PF 2=72.若∠F 2PF 1=90°, 则F 1F 22=PF 21+PF 22 =PF 21+(6-PF 1)2, 解得PF 1=4,PF 2=2, ∴PF 1PF 2=2. 综上所述,PF 1PF 2=2或72. 答案 2或728.已知函数f (x )=ln x -14x +34x -1,g (x )=-x 2+2bx -4,若对任意的x 1∈(0,2),任意的x 2∈[1,2],不等式f (x 1)≥g (x 2)恒成立,则实数b 的取值范围是________. 解析 依题意,问题等价于f (x 1)min ≥g (x 2)max ,f (x )=ln x -14x +34x-1(x >0),所以f ′(x )=1x -14-34x 2=4x -x 2-34x2. 由f ′(x )>0,解得1<x <3,故函数f (x )单调递增区间是(1,3),同理得f (x )的单调递减区间是(0,1)和(3,+∞),故在区间(0,2)上,x =1是函数f (x )的极小值点,这个极小值点是唯一的,所以f (x 1)min =f (1)=-12.函数g (x 2)=-x 22+2bx 2-4,x 2∈[1,2]. 当b <1时,g (x 2)max =g (1)=2b -5; 当1≤b ≤2时,g (x 2)max =g (b )=b 2-4; 当b >2时,g (x 2)max =g (2)=4b -8. 故问题等价于⎩⎪⎨⎪⎧b <1,-12≥2b -5或⎩⎪⎨⎪⎧1≤b ≤2,-12≥b 2-4或⎩⎪⎨⎪⎧b >2,-12≥4b -8.。
创新设计江苏专用理科高考数学二轮专题复习——专题八 数学思想方法(课件+提升训练)(共30张PPT)
第1讲函数与方程思想、数形结合思想高考定位函数与方程思想、数形结合思想都是重要的数学思想,高考对函数与方程思想的考查,一般是通过函数与导数试题,三角函数试题、数列试题或解析几何试题进行考查,重点是通过构造函数解决最大值或者最小值问题,通过方程思想求解一些待定系数等,对数形结合思想的考查,一般体现在填空题中.1.函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的思想方法.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的思想方法.2.函数与方程的思想在解题中的应用(1)函数与不等式的相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)解析几何中的许多问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论.3.数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:(1)借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图象来直观地说明函数的性质;(2)借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.4.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.数学中的知识,有的本身就可以看作是数形的结合.热点一函数与方程思想的应用[微题型1] 运用函数与方程思想解决函数、方程、不等式问题【例1-1】 设函数f (x )=cos 2x +sin x +a -1,已知不等式1≤f (x )≤174对一切x ∈R 恒成立,求a 的取值范围.解 f (x )=cos 2x +sin x +a -1=1-sin 2x +sin x +a -1=-⎝ ⎛⎭⎪⎫sin x -122+a +14. 因为-1≤sin x ≤1,所以当sin x =12时,函数有最大值f (x )max =a +14,当sin x =-1时,函数有最小值f (x )min =a -2.因为1≤f (x )≤174对一切x ∈R 恒成立,所以f (x )max ≤174且f (x )min ≥1,即⎩⎪⎨⎪⎧a +14≤174,a -2≥1,解得3≤a ≤4, 所以a 的取值范围是[3,4].探究提高 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f (x )>0或f (x )<0恒成立,一般可转化为f (x )min >0或f (x )max <0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解.[微题型2] 运用函数与方程思想解决数列问题【例1-2】 已知数列{a n }满足a 1=3,a n +1=a n +p ·3n (n ∈N *,p 为常数),a 1,a 2+6,a 3成等差数列.(1)求p 的值及数列{a n }的通项公式;(2)设数列{b n }满足b n =n 2a n,证明:b n ≤49. (1)解 由a 1=3,a n +1=a n +p ·3n ,得a 2=3+3p ,a 3=a 2+9p =3+12p .因为a 1,a 2+6,a 3成等差数列,所以a 1+a 3=2(a 2+6),即3+3+12p =2(3+3p +6),得p =2,依题意知,a n +1=a n +2×3n .当n ≥2时,a 2-a 1=2×31,a 3-a 2=2×32,…,a n -a n -1=2×3n -1.将以上式子相加得a n -a 1=2(31+32+…+3n -1),所以a n -a 1=2×3×(1-3n -1)1-3=3n -3, 所以a n =3n (n ≥2).又a 1=3符合上式,故a n =3n .(2)证明 因为a n =3n,所以b n =n 23n . 所以b n +1-b n =(n +1)23n +1-n 23n =-2n 2+2n +13n +1(n ∈N *), 若-2n 2+2n +1<0,则n >1+32,即当n ≥2时,有b n +1<b n ,又因为b 1=13,b 2=49,故b n ≤49.探究提高 数列最值问题中应用函数与方程思想的常见类型:(1)数列中的恒成立问题,转化为最值问题,利用函数的单调性或不等式求解.(2)数列中的最大项与最小项问题,利用函数的有关性质或不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1求解. (3)数列中前n 项和的最值:转化为二次函数,借助二次函数的单调性或求使a n ≥0(a n ≤0)成立时最大的n 值即可求解.[微题型3] 运用函数与方程的思想解决解析几何中的问题【例1-3】 设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与AB 相交于点D ,与椭圆相交于E 、F 两点.(1)若ED→=6DF →,求k 的值; (2)求四边形AEBF 面积的最大值.解 (1)依题意得椭圆的方程为x 24+y 2=1,直线AB ,EF 的方程分别为x +2y =2,y =kx (k >0).如图,设D (x 0,kx 0),E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2,且x 1,x 2满足方程(1+4k 2)x 2=4,故x 2=-x 1=21+4k 2.① 由ED →=6DF →知x 0-x 1=6(x 2-x 0),得x 0=17(6x 2+x 1)=57x 2=1071+4k 2; 由D 在AB 上知x 0+2kx 0=2,得x 0=21+2k. 所以21+2k =1071+4k 2, 化简得24k 2-25k +6=0,解得k =23或k =38.(2)根据点到直线的距离公式和①式知,点E ,F 到AB 的距离分别为h 1=|x 1+2kx 1-2|5=2(1+2k +1+4k 2)5(1+4k 2), h 2=|x 2+2kx 2-2|5=2(1+2k -1+4k 2)5(1+4k 2). 又|AB |=22+1=5,所以四边形AEBF 的面积为S =12AB (h 1+h 2)=12·5·4(1+2k )5(1+4k 2)=2(1+2k )1+4k2 =21+4k 2+4k 1+4k 2≤22, 当4k 2=1(k >0),即当k =12时,上式取等号.所以S 的最大值为2 2.即四边形AEBF 面积的最大值为2 2.探究提高 解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决. 热点二 数形结合思想的应用[微题型1] 运用数形结合思想解决函数、方程问题【例2-1】 已知函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8,设H 1(x )=max{f (x ),g (x )},H 2(x )=min{f (x ),g (x )}(max{p ,q }表示p ,q 中的较大值,min{p ,q }表示p ,q 中的较小值),记H 1(x )的最小值为A ,H 2(x )的最大值为B ,则A -B =________.解析 H 1(x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).H 2(x )=min{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≤g (x ),g (x ),f (x )>g (x ).由f (x )=g (x )⇒x 2-2(a +2)x +a 2=-x 2+2(a -2)x -a 2+8,解得x 1=a -2,x 2=a +2.而函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8的图象的对称轴恰好分别为x =a +2,x =a -2.可见二者图象的交点正好在它们的顶点处,如图1所示,因此H1(x),H2(x)的图象分别如图2,图3所示(图中实线部分)可见,A=H1(x)min=f(a+2)=-4a-4,B=H2(x)max=g(a-2)=12-4a.从而A-B=-16.答案-16探究提高(1)用函数的图象讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解的个数.(2)数形结合思想在解决函数性质有关问题时常有以下几种类型:①研究函数的单调性与奇偶性:画出函数的图象,从图象的变化趋势看函数的单调性,从图象的对称看函数的奇偶性.②研究函数的对称性:画出函数的图象,可从图象的分布情况看图象的对称性.③比较函数值的大小:对于比较没有解析式的函数值大小,可结合函数的性质,画出函数的草图,结合图象比较大小.[微题型2]运用数形结合思想解决不等式中的问题【例2-2】若不等式9-x2≤k(x+2)-2的解集为区间[a,b],且b-a=2,则k=________.解析如图,分别作出直线y=k(x+2)-2与半圆y=9-x2.由题意,知直线在半圆的上方,由b-a=2,可知b=3,a=1,所以直线y=k(x+2)-2过点(1,22),则k= 2.答案 2探究提高不等式的解可转化为两个函数图象的一种相对位置关系,故利用数形结合将问题转化为对两个函数图象位置关系的研究,利用函数图象的几何特征,准确而又快速地求出参数的值或不等式的解集.[微题型3]运用数形结合思想解决解析几何中的问题【例2-3】已知P是直线l:3x+4y+8=0上的动点,PA、PB是圆x2+y2-2x-2y +1=0的两条切线,A、B是切点,C是圆心,则四边形PACB面积的最小值为________.解析从运动的观点看问题,当动点P沿直线3x+4y+8=0向左上方或右下方无穷远处运动时,直角三角形PAC的面积S Rt△PAC=12PA·AC=12PA越来越大,从而S四边形PACB也越来越大;当点P从左上、右下两个方向向中间运动时,S四边形PACB变小,显然,当点P到达一个最特殊的位置,即CP垂直直线l时,S四边形PACB应有唯一的最小值,此时PC=|3×1+4×1+8|32+42=3,从而PA=PC2-AC2=2 2.所以(S四边形PACB)min=2×12×|PA|×|AC|=2 2.答案2 2探究提高在几何的一些最值问题中,可以根据图形的性质结合图形上点的条件进行转换,快速求得最值.1.当问题中涉及一些变化的量时,就需要建立这些变化的量之间的关系,通过变量之间的关系探究问题的答案,这就需要使用函数思想.2.借助有关函数的性质,一是用来解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题,二是在问题的研究中,可以通过建立函数关系式或构造中间函数来求解.3.许多数学问题中,一般都含有常量、变量或参数,这些参变量中必有一个处于突出的主导地位,把这个参变量称为主元,构造出关于主元的方程,主元思想有利于回避多元的困扰,解方程的实质就是分离参变量.4.在数学中函数的图象、方程的曲线、不等式所表示的平面区域、向量的几何意义、复数的几何意义等都实现以形助数的途径,当试题中涉及这些问题的数量关系时,我们可以通过图形分析这些数量关系,达到解题的目的.5.有些图形问题,单纯从图形上无法看出问题的结论,这就要对图形进行数量上的分析,通过数的帮助达到解题的目的.6.利用数形结合解题,有时只需把图象大致形状画出即可,不需要精确图象.一、填空题1.直线3x-y+m=0与圆x2+y2-2x-2=0相切,则实数m=________.解析圆的方程(x-1)2+y2=3,圆心(1,0)到直线的距离等于半径⇒|3+m|3+1=3⇒|3+m|=23⇒m=3或m=-3 3.答案-33或 32.(2014·江苏卷)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是________.解析因为a8=a2q6,a6=a2q4,a4=a2q2,所以由a8=a6+2a4得a2q6=a2q4+2a2q2,消去a2q2,得到关于q2的一元二次方程(q2)2-q2-2=0,解得q2=2,a6=a2q4=1×22=4. 答案 43.若不等式|x-2a|≥12x+a-1对x∈R恒成立,则a的取值范围是________.解析作出y=|x-2a|和y=12x+a-1的简图,依题意知应有2a≤2-2a,故a≤12.答案 ⎝ ⎛⎦⎥⎤-∞,12 4.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值为________.解析 如图,设OA →=a ,OB →=b ,OC →=c ,则CA →=a -c ,CB →=b -c .由题意知CA →⊥CB →,∴O ,A ,C ,B 四点共圆.∴当OC 为圆的直径时,|c |最大,此时,|OC →|= 2.答案25.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为________.解析 f ′(x )>2转化为f ′(x )-2>0,构造函数F (x )=f (x )-2x ,得F(x)在R上是增函数.又F(-1)=f(-1)-2×(-1)=4,f(x)>2x+4,即F(x)>4=F(-1),所以x>-1.答案(-1,+∞)6.已知函数f(x)满足下面关系:①f(x+1)=f(x-1);②当x∈[-1,1]时,f(x)=x2,则方程f(x)=lg x解的个数为________.解析由题意可知,f(x)是以2为周期,值域为[0,1]的函数.又f(x)=lg x,则x∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.答案97.经过P(0,-1)作直线l,若直线l与连接A(1,-2),B(2,1)的线段总有公共点,则直线l的斜率k和倾斜角α的取值范围分别为________,________.解析如图所示,结合图形:为使l与线段AB总有公共点,则k PA≤k≤k PB,而k PB>0,k PA<0,又k PA =-2-(-1)1-0=-1,k PB =-1-10-2=1,∴-1≤k ≤1.又当0≤k ≤1时,0≤α≤π4; 当-1≤k <0时,3π4≤α<π.故倾斜角α的取值范围为α∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.答案 [-1,1] ⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π8.满足条件AB =2,AC =2BC 的三角形ABC 的面积的最大值是________. 解析 可设BC =x ,则AC =2x , 根据面积公式得S △ABC =x1-cos 2B ,由余弦定理计算得cos B =4-x 24x , 代入上式得S △ABC =x1-⎝⎛⎭⎪⎫4-x 24x 2=128-(x 2-12)216.由⎩⎪⎨⎪⎧2x +x >2,x +2>2x ,得22-2<x <22+2. 故当x =23时,S △ABC 的最大值为2 2. 答案 2 2 二、解答题9.已知数列{a n }是一个等差数列,且a 2=1,a 5=-5. (1)求{a n }的通项a n ;(2)求{a n }前n 项和S n 的最大值. 解 (1)设{a n }的公差为d ,由已知条件, ⎩⎨⎧a 1+d =1,a 1+4d =-5,解出a 1=3,d =-2. 所以a n =a 1+(n -1)d =-2n +5.(2)S n =na 1+n (n -1)2d =-n 2+4n =4-(n -2)2.所以n =2时,S n 取到最大值4.10.椭圆C 的中心为坐标原点O ,焦点在y 轴上,短轴长为2,离心率为22,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=3PB →.(1)求椭圆C 的方程; (2)求m 的取值范围.解 (1)设椭圆C 的方程为y 2a 2+x 2b 2=1(a >b >0),设c >0,c 2=a 2-b 2,由题意,知2b =2,c a =22,所以a =1,b =c =22.故椭圆C 的方程为y 2+x 212=1.即y 2+2x 2=1. (2)当直线l 的斜率不存在时,由题意求得m =±12;当直线l 的斜率存在时,设直线l 的方程为y =kx +m (k ≠0),l 与椭圆C 的交点坐标为A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y =kx +m ,2x 2+y 2=1,得(k 2+2)x 2+2kmx +m 2-1=0,Δ=(2km )2-4(k 2+2)(m 2-1)=4(k 2-2m 2+2)>0,(*)x 1+x 2=-2km k 2+2,x 1x 2=m 2-1k 2+2.因为AP →=3 PB →,所以-x 1=3x 2.所以⎩⎨⎧x 1+x 2=-2x 2,x 1x 2=-3x 22. 所以3(x 1+x 2)2+4x 1x 2=0. 所以3·⎝ ⎛⎭⎪⎫-2km k 2+22+4·m 2-1k 2+2=0.整理得4k 2m 2+2m 2-k 2-2=0, 即k 2(4m 2-1)+(2m 2-2)=0.当m 2=14时,上式不成立;当m 2≠14时,k 2=2-2m 24m 2-1,由(*)式,得k 2>2m 2-2,又k ≠0, 所以k 2=2-2m 24m 2-1>0.解得-1<m <-12或12<m <1.综上,所求m 的取值范围为⎝ ⎛⎦⎥⎤-1,-12∪⎣⎢⎡⎭⎪⎫12,1. 11.设函数f (x )=ax 3-3ax ,g (x )=bx 2-ln x (a ,b ∈R ),已知它们在x =1处的切线互相平行. (1)求b 的值;(2)若函数F (x )=⎩⎨⎧f (x ),x ≤0,g (x ),x >0,且方程F (x )=a 2有且仅有四个解,求实数a 的取值范围.解 函数g (x )=bx 2-ln x 的定义域为(0,+∞),(1)f ′(x )=3ax 2-3a ⇒f ′(1)=0,g ′(x )=2bx -1x ⇒g ′(1)=2b -1,依题意得2b -1=0,所以b =12.(2)x ∈(0,1)时,g ′(x )=x -1x <0,即g (x )在(0,1)上单调递减,x ∈(1,+∞)时,g ′(x )=x -1x >0,即g (x )在(1,+∞)上单调递增,所以当x =1时,g (x )取得极小值g (1)=12;当a=0时,方程F(x)=a2不可能有四个解;当a<0,x∈(-∞,-1)时,f′(x)<0,即f(x)在(-∞,-1)上单调递减,x∈(-1,0)时,f′(x)>0,即f(x)在(-1,0)上单调递增,所以当x=-1时,f(x)取得极小值f(-1)=2a,又f(0)=0,所以F(x)的图象如图(1)所示,从图象可以看出F(x)=a2不可能有四个解.当a>0,x∈(-∞,-1)时,f′(x)>0,即f(x)在(-∞,-1)上单调递增,x∈(-1,0)时,f′(x)<0,即f(x)在(-1,0)上单调递减,所以当x=-1时,f(x)取得极大值f(-1)=2a.又f(0)=0,所以F(x)的图象如图(2)所求,从图(2)看出,若方程F (x )=a 2有四个解,则12<a 2<2a , 所以,实数a 的取值范围是⎝ ⎛⎭⎪⎫22,2.第2讲 分类讨论思想、转化与化归思想高考定位 分类讨论思想、转化与化归思想近几年高考每年必考,一般都在解答题中体现,难度较大.1.在解某些数学问题时,我们常常会遇到这样一种情况:解到某一步之后,发现问题的发展是按照不同的方向进行的.当被研究的问题包含了多种情况时,就必须抓住主导问题发展方向的主要因素,在其变化范围内,根据问题的不同发展方向,划分为若干部分分别研究.其研究的基本方向是“分”,但分类解决问题之后,还必须把它们整合在一起,这种“合—分—合”的解决问题的思想,就是分类讨论法.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法. 2.中学数学中可能引起分类讨论的因素:(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等.(2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列{a n }的前n 项和公式等.(3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、基本不等式等.(4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等.(5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等.3.转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法.一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.转化与化归思想是实现具有相互关联的两个知识板块进行相互转化的重要依据,如函数与不等式、函数与方程、数与形、式与数、角与边、空间与平面、实际问题与数学问题的互化等,消去法、换元法、数形结合法等都体现了等价转化思想,我们也经常在函数、方程、不等式之间进行等价转化,在复习过程中应注意相近主干知识之间的互化,注重知识的综合性.4.常见的转化与化归的方法转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.常见的转化方法有:(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的.(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题.(6)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(7)坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径.(8)类比法:运用类比推理,猜测问题的结论,易于确定.(9)参数法:引进参数,使原问题转化为熟悉的形式进行解决.(10)补集法:如果正面解决原问题有困难,可把原问题的结果看做集合A,而把包含该问题的整体问题的结果类比为全集U,通过解决全集U及补集∁U A获得原问题的解决,体现了正难则反的原则.热点一 分类讨论思想的应用[微题型1] 运用分类讨论思想解决数列问题 【例1-1】 求和:1+2x +3x 2+…+nx n -1. 解 记S n =1+2x +3x 2+…+nx n -1 当x =0时,S n =1,当x =1时,S n =1+2+3+…+n =n (n +1)2,当x ≠0,x ≠1时,S n =1+2x +3x 2+…+nx n -1,①xS n =x +2x 2+3x 3+…+(n -1)x n -1+nx n .② ①-②得:(1-x )S n =1+x +x 2+…+x n -1-nx n =1-x n 1-x-nx n . ∴S n =1-x n (1-x )2-nx n1-x.综上,S n=⎩⎪⎨⎪⎧1,x =0,n (n +1)2,x =1,1-x n(1-x )2-nx n1-x ,x ≠0且x ≠1.探究提高 利用等比数列的前n 项和公式时,需要分公比q =1和q ≠1两种情况进行讨论,这是由等比数列的前n 项和公式决定的.一般地,在应用带有限制条件的公式时要小心,根据题目条件确定是否进行分类讨论.[微题型2] 运用分类讨论思想解决导数中的参数问题【例1-2】 已知函数f (x )=m ⎝ ⎛⎭⎪⎫x -1x +2ln x (m ∈R ).(1)若m =1,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)讨论函数f (x )的单调性.解 (1)当m =1时,函数f (x )=x -1x +2ln x ,函数的定义域为(0,+∞),且f ′(x )=x 2+2x +1x 2,所以f (1)=0,f ′(1)=4,所以曲线y =f (x )在点(1,f (1))处的切线方程为4x -y -4=0.(2)函数的定义域为(0,+∞),且f ′(x )=mx 2+2x +mx 2.(ⅰ)当m ≥0时,f ′(x )>0对x ∈(0,+∞)恒成立,所以f (x )在(0,+∞)上单调递增.(ⅱ)当m <0时,若m ≤-1,f ′(x )≤0对x ∈(0,+∞)恒成立,所以f (x )在(0,+∞)上单调递减.若-1<m <0,由f ′(x )=0,得x 1=-1+1-m 2m ,x 2=-1-1-m 2m ,且0<x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x ),f (x )在⎝ ⎛⎭⎪⎫-1+1-m 2m ,-1-1-m 2m 上单调递增. 综上所述:当m ≥0时,f (x )在(0,+∞)上单调递增.当m ≤-1时,f (x )在(0,+∞)上单调递减,当-1<m <0时,f (x )在⎝ ⎛⎭⎪⎫0,-1+1-m 2m 和⎝ ⎛⎭⎪⎫-1-1-m 2m ,+∞上单调递减,在⎝ ⎛⎭⎪⎫-1+1-m 2m ,-1-1-m 2m 上单调递增. 探究提高 分类讨论思想在解决导数中的参数问题时的常见类型:1.含参数的函数的单调性问题:对于含参数的不等式,应注意分类讨论的原因、标准、顺序.如一元二次不等式,应按“开口方向→相应方程有无实根→根的大小”进行讨论.2.含参数的函数的极值(最值)问题:常在以下情况下需要分类讨论:①导数为零时自变量的大小不确定需要讨论;②导数为零的自变量是否在给定的区间内不确定需要讨论;③端点处的函数值和极值大小不确定需要讨论;④参数的取值范围不同导致函数在所给区间上的单调性的变化不确定需要讨论.3.含参数的函数的零点个数问题:常需要根据参数与极值的大小关系分类讨论. [微题型3] 运用分类讨论思想解决圆锥曲线中的参数问题【例1-3】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点M (2,1),离心率为22.(1)求椭圆C 的方程;(2)过点Q (1,0)的直线l 与椭圆C 相交于A ,B 两点,点P (4,3),记直线PA ,PB 的斜率分别为k 1,k 2,当k 1·k 2最大时,求直线l 的方程.解 (1)由已知可得c 2a 2=a 2-b 2a 2=12,所以a 2=2b 2,又点M (2,1)在椭圆C 上,所以2a 2+1b 2=1,联立方程组⎩⎪⎨⎪⎧a 2=2b 2,2a 2+1b 2=1,解得⎩⎨⎧a 2=4,b 2=2.故椭圆C 的方程为x 24+y 22=1.(2)(ⅰ)当直线l 的斜率为0时,则k 1k 2=34-2×34+2=34; (ⅱ)当直线l 的斜率不为0时,设A (x 1,y 1),B (x 2,y 2),直线l 的方程为x =my +1,与椭圆x 24+y 22=1联立,整理得:(m 2+2)y 2+2my -3=0.则y 1+y 2=-2m m 2+2,y 1y 2=-3m 2+2, 又x 1=my 1+1,x 2=my 2+1,所以k 1k 2=3-y 14-x 1×3-y 24-x 2=(3-y 1)(3-y 2)(3-my 1)(3-my 2)=9-3(y 1+y 2)+y 1y 29-3m (y 1+y 2)+m 2y 1y 2=9-3×-2m m 2+2+-3m 2+29-3m ·-2m m 2+2+m 2·-3m 2+2=3m 2+2m +54m 2+6=34+4m +18m 2+12, 令t =4m +1,则k 1k 2=34+2t t 2-2t +25, 当t =0,即m =-14时,k 1k 2=34;当t ≠0时,k 1k 2=34+2t t 2-2t +25=34+2t +25t -2,当t <0时,k 1k 2显然不能取最大值,当t >0时.当且仅当t =5,即m =1时,k 1k 2取得最大值1.所以直线l 的方程为x -y -1=0.探究提高 与圆锥曲线有关的参数问题中应用分类讨论思想的常见类型:1.判断曲线的类型:判断曲线的类型,常依据二元方程对其参数进行分类讨论,分类标准一般考虑二次项系数的正负、大小关系.2.参数方程、不等式的求解:如求离心率、渐近线方程时对圆锥曲线焦点位置的讨论,或者对方程系数的讨论,或者求解过程中分母是否为0的讨论.3.直线与圆锥曲线位置关系的判定:对于含参数的直线与圆锥曲线位置关系问题的求解,如对直线斜率存在与否的讨论、消元后二次项系数是否为0的讨论,判别式与0的大小关系的讨论等.热点二 转化与化归思想的应用[微题型1] 特殊与一般的转化【例2-1】 已知f (x )=33x +3,则f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=________.解析 f (x )+f (1-x )=33x +3+331-x +3=33x +3+3x 3+3x =3x +33x +3=1,∴f (0)+f (1)=1,f (-2 015)+f (2 016)=1,∴f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=2 016.答案 2 016探究提高 一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.[微题型2] 常量与变量的转化【例2-2】 对任意的|m |≤2,函数f (x )=mx 2-2x +1-m 恒为负,则x 的取值范围为________.解析 对任意的|m |≤2,有mx 2-2x +1-m <0恒成立,即|m |≤2时,(x 2-1)m -2x +1<0恒成立.设g (m )=(x 2-1)m -2x +1,则原问题转化为g (m )<0恒成立(m ∈[-2,2]).所以⎩⎪⎨⎪⎧g (-2)<0,g (2)<0,即⎩⎪⎨⎪⎧2x 2+2x -3>0,2x 2-2x -1<0.解得7-12<x <3+12,即实数x 的取值范围为⎝ ⎛⎭⎪⎫7-12,3+12. 答案 ⎝ ⎛⎭⎪⎫7-12,3+12探究提高 在处理多变元的数学问题时,我们可以选取其中的常数(或参数),将其看做是“主元”,而把其它变元看做是常量,从而达到减少变元简化运算的目的.[微题型3] 换元转化问题【例2-3】 是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎣⎢⎡⎦⎥⎤0,π2上的最大值是1?若存在,则求出对应的a 的值;若不存在,则说明理由.解 y =sin 2x +a cos x +58a -32=1-cos 2x +a cos x +58a -32=-⎝ ⎛⎭⎪⎫cos x -a 22+a 24+58a -12. ∵0≤x ≤π2,∴0≤cos x ≤1,令cos x =t ,则y =-⎝ ⎛⎭⎪⎫t -a 22+a 24+58a -12,0≤t ≤1. 当a 2>1,即a >2时,函数y =-⎝ ⎛⎭⎪⎫t -a 22+a 24+58a -12在t ∈[0,1]上单调递增, ∴t =1时,函数有最大值y max =a +58a -32=1,解得a =2013<2(舍去);当0≤a 2≤1,即0≤a ≤2时,t =a 2函数有最大值,y max =a 24+58a -12=1,解得a =32或a =-4(舍去);当a 2<0,即a <0时,函数y =-⎝ ⎛⎭⎪⎫t -a 22+a 24+58a -12在t ∈[0,1]上单调递减,∴t =0时,函数有最大值y max =58a -12=1,解得a =125>0(舍去),综上所述,存在实数a =32使得函数在⎣⎢⎡⎦⎥⎤0,π2上有最大值1. 探究提高 换元法的特点是通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,把条件与结论联系起来,把陌生的形式转变为熟悉的形式.高中数学中主要换元法有整体换元、三角换元、对称换元、均值换元等等.换元法应用广泛,如解方程、解不等式、证明不等式、求函数的值域、求数列的通项与和等,在解析几何中也有广泛的应用.解题过程中要注意换元后新变量的取值范围.1.分类讨论思想的本质是“化整为零,积零为整”.用分类讨论的思维策略解数学问题的操作过程:明确讨论的对象和动机→确定分类的标准→逐类进行讨论→归纳综合结论→检验分类是否完备(即分类对象彼此交集为空集,并集为全集).做到“确定对象的全体,明确分类的标准,分类不重复、不遗漏”的分析讨论.常见的分类讨论问题有:(1)集合:注意集合中空集∅讨论.(2)函数:对数函数或指数函数中的底数a,一般应分a>1和0<a<1的讨论;函数y =ax2+bx+c有时候分a=0和a≠0的讨论;对称轴位置的讨论;判别式的讨论.(3)数列:由S n求a n分n=1和n>1的讨论;等比数列中分公比q=1和q≠1的讨论.(4)三角函数:角的象限及函数值范围的讨论.(5)不等式:解不等式时含参数的讨论,基本不等式相等条件是否满足的讨论.(6)立体几何:点线面及图形位置关系的不确定性引起的讨论;(7)平面解析几何:直线点斜式中k分存在和不存在,直线截距式中分b=0和b≠0的讨论;轨迹方程中含参数时曲线类型及形状的讨论.(8)去绝对值时的讨论及分段函数的讨论等.2.转化与化归思想遵循的原则:(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决.(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.(3)和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律.(4)正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决.一、填空题1.若数列{a n }的前n 项和S n =3n -1,则它的通项公式a n =________.解析 当n ≥2时,a n =S n -S n -1=3n -1-(3n -1-1)=2×3n -1;当n =1时,a 1=S 1=2,也满足式子a n =2×3n -1,∴数列{a n }的通项公式为a n =2×3n -1.答案 2×3n -1 2.过双曲线x 2a 2-y 2b 2=1上任意一点P ,引与实轴平行的直线,交两渐近线于R ,Q 两点,则PR →·PQ→的值为________. 解析 当直线PQ 与x 轴重合时,|PR→|=|PQ →|=a . 答案 a 23.等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值为________. 解析 当公比q =1时,a 1=a 2=a 3=7,S 3=3a 1=21,符合要求.当q ≠1时,a 1q 2=7,a 1(1-q 3)1-q=21,解之得,q =-12或q =1(舍去).综上可知,q =1或-12.答案 1或-124.方程sin 2x +cos x +k =0有解,则k 的取值范围是________.解析 求k =-sin 2x -cos x 的值域.k =cos 2x -cos x -1=⎝ ⎛⎭⎪⎫cos x -122-54. 当cos x =12时,k min =-54,当cos x =-1时,k max =1,∴-54≤k ≤1.答案 ⎣⎢⎡⎦⎥⎤-54,1 5.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC 等于________.解析 ∵S △ABC =12AB ·BC ·sin B =12×1×2sin B =12,∴sin B =22,∴B =π4或3π4.当B =3π4时,根据余弦定理有AC 2=AB 2+BC 2-2AB ·BC ·cos B =1+2+2=5,所以AC =5,此时△ABC 为钝角三角形,符合题意;当B =π4时,根据余弦定理有AC 2=AB 2+BC 2-2AB ·BC ·cos B =1+2-2=1,所以AC =1,此时AB 2+AC 2=BC 2,△ABC 为直角三角形,不符合题意.故AC = 5. 答案 56.在△ABC 中,AB =3,AC =4,BC =5.点D 是边BC 上的动点,AD→=xAB →+yAC →,当xy 取最大值时,|AD→|的值为________. 解析 ∵AB =3,AC =4,BC =5,∴△ABC 为直角三角形.。
高考数学二轮复习讲义 分类讨论思想方法
高考数学二轮复习讲义 分类讨论思想方法在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。
分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。
引起分类讨论的原因主要是以下几个方面:① 问题所涉及到的数学概念是分类进行定义的。
如|a|的定义分a>0、a =0、a<0三种情况。
这种分类讨论题型可以称为概念型。
② 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。
如等比数列的前n 项和的公式,分q =1和q ≠1两种情况。
这种分类讨论题型可以称为性质型。
③ 解含有参数的题目时,必须根据参数的不同取值范围进行讨论。
如解不等式ax>2时分a>0、a =0和a<0三种情况讨论。
这称为含参型。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。
进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。
其中最重要的一条是“不漏不重”。
解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。
一 例题1.集合A ={x||x|≤4,x ∈R},B ={x||x -3|≤a ,x ∈R},若A ⊇B ,那么a 的范围是( )。
A. 0≤a ≤1B. a ≤1C. a<1D. 0<a<12.若a>0且a ≠1,p =log a (a 3+a +1),q =log a (a 2+a +1),则p 、q 的大小关系是( )。
高考数学(理)二轮专题复习专题突破课件数学思想方法构建2 分类讨论思想在函数与导数中的应用
故当 t=1 时,g(t)取最大值 g(1)=1. 因此,当且仅当 a=1 时,①式成立. 综上所述,a 的取值集合为{1}.
当 t<0 时,F′(t)<0,F(t)单调递减; 当 t>0 时,F′(t)>0,F(t)单调递增. 故当 t≠0 时,F(t)>F(0)=0,即 et-t-1>0.
因为函数 y=φ(x)在区间[x1,x2]上的图象是连续不断的一条曲线, 所以存在 x0∈(x1,x2),使 φ(x0)=0,即 f′(x0)=k 成立.
思想方法2 函数、方程与不等式之间的转化与化归思想
函数、方程、不等式就像 “同胞三兄弟 ” ,解决方程、不等式 的问题离不开函数这个灵魂核心;解决函数问题也离不开方程 (不等式)这个工具.因此借助函数、方程(不等式)进行转化与化 归,达到化难为易,化繁为简的目的,开辟数学解题的新途 径.
【典例2】 (2012·湖南高考)已知函数f(x)=ex-ax,其中a>0. (1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合; (2)在函数f(x)的图象上取定两点A(x1,f(x1)),B(x2,f(x2))(x1<
x2) ,记直线AB的斜率为k.证明:存在x0∈(x1,x2),使f′(x0)
=k成立. [思路点拨] (1)对x∈R,f(x)≥1恒成立,转化为求f(x)min,使
f(x)min≥1,构建关于“a”的不等式a-aln a≥1,进一步构造 函数,利用函数方程思想获解.(2)利用零点存在定理,转化
为判定函数 φ(x) = f′(x) - k 在区间 (x1 , x2) 端点函数值的符
【典例1】 已知函数f(x)=x3+x2-ax(a∈R)
(1) 当 a = 0时,求与直线 x - y - 10 = 0 平行,且与曲线 y =f(x) 相切的直线方程;
高考数学二轮复习 专题十 数学思想方法 10.2 分类讨论思想、转化与化归思想素能演练提升 文
第二讲分类讨论思想、转化与化归思想1.抛物线y2=4px(p>0)的焦点为F,P为其上的一点,O为坐标原点,若△OPF为等腰三角形,则这样的点P的个数为( )A.2B.3C.4D.6解析:当|PO|=|PF|时,点P在线段OF的中垂线上,此时,点P的位置有两个;当|OP|=|OF|时,点P的位置也有两个;对|FO|=|FP|的情形,点P不存在.事实上,F(p,0),若设P(x,y),则|FO|=p,|FP|=,若=p,则有x2-2px+y2=0,因为y2=4px,所以x2+2px=0,解得x=0或x=-2p,这与点P在抛物线上或能与点O,F构成三角形矛盾.所以符合要求的点P一共有4个.故选C.答案:C2.(2014贵州六校第一次联考,3)在等比数列{a n}中,a5·a11=3,a3+a13=4,则=( )A.3B.-C.3或D.-3或-解析:a5a11=a3a13=3,a3+a13=4,所以a3,a13是方程x2-4x+3=0的两根,a3=1,a13=3或a3=3,a13=1.所以=3或.答案:C3.定义a*b=-ka-2,则方程x*x=0有唯一解时,实数k的取值范围是( )A.{-}B.[-2,-1]∪[1,2]C.[-]D.[-,-1]∪[1,]解析:由题意,方程x*x=0即为-kx-2=0,即=kx+2有唯一解.所以函数y=与y=kx+2有一个公共点.而y=,即x2-y2=1(y≥0)是双曲线在x轴上方的部分.如图所示.因为直线y=kx+2恒过点(0,2),结合图象知,只有1≤k≤2或-2≤k≤-1时只有一个公共点.答案:B4.若0<α<β<,sinα+cosα=a,sinβ+cosβ=b,则( )A.a<bB.a>bC.ab<1D.ab>2解析:若直接比较a与b的大小比较困难,若将a与b大小比较转化为a2与b2的大小比较就容易多了.因为a2=1+sin2α,b2=1+sin2β,又因为0<2α<2β<,所以sin2α<sin2β.所以a2<b2.又因为a,b>0,所以a<b.答案:A5.若a≥0,b≥0,且当时,恒有ax+by≤1,则以a,b为坐标的点P(a,b)所形成的平面区域的面积是( )A. B.C.1D.解析:画出可行域如图(1)阴影部分所示,令z=ax+by.当b=0时,z=ax.∵又0≤x≤1,∴只需a≤1即可.当a=0时,z=by.∵0≤y≤1,∴只需b≤1即可.当ab≠0时,线性目标函数化为y=-x+z,故只需保证线性目标函数过A(1,0)或B(0,1)点时z值不大于1即可,即综上所述,a,b应满足的线性约束条件是可行域如图(2)阴影部分所示,该面积等于1.答案:C6.(2014江西南昌三模,8)已知数列{a n}满足:a1=m(m为正整数),a n+1=若a6=1,则m所有可能的取值为( )A.4或5B.4或32C.5或32D.4,5或32解析:若a5为偶数,则a6==1,即a5=2.若a4为偶数,则a5==2,即a4=4;若a4为奇数,则有a4=(舍).若a3为偶数,则a3=8;若a3为奇数,则a3=1.若a2为偶数,则a2=16或a2=2;若a2为奇数,则a2=0(舍)或a2=(舍).若a1为偶数,则a1=32或a1=4;若a1为奇数,有a1=5或a1=(舍).若a5为奇数,有1=3a5+1,所以a5=0,不成立.综上可知,m可能的取值为4,5或32.答案:D7.(2014山西忻州高三联考,15)已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是.解析:由题意知圆x2+(y-4)2=1的圆心为C(0,4),半径为1,抛物线的焦点为F(1,0).根据抛物线的定义,点P到点Q的距离与点P到抛物线准线的距离之和即点P到点Q的距离与点P到抛物线焦点的距离之和,因此|PQ|+|PF|≥|PC|+|PF|-1≥|CF|-1=-1.答案:-18.已知a∈R,若关于x的方程x2+x++|a|=0有实根,则a的取值范围是.解析:当|a|=0时,a=0;当=0时,a=;当a<0时,方程化为x2+x+-a-a=0,即x2+x+-2a=0.判别式Δ=1-4=8a<0,所以方程无解.当0≤a≤时,方程化为x2+x+-a+a=0,即x2+x+=0,=0,所以x=-.所以0≤a≤.当a>时,方程化为x2+x+a-+a=0,即x2+x+2a-=0.判别式Δ=1-4=2-8a.因为2-8a<0,所以方程无解.综上,0≤a≤.答案:0≤a≤9.设F1,F2为椭圆=1的两个焦点,P为椭圆上一点.已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,求的值.解:若∠PF2F1=90°,则|PF1|2=|PF2|2+|F1F2|2.∵|PF1|+|PF2|=6,|F1F2|=2,∴|PF1|=,|PF2|=.∴.若∠F1PF2=90°,则|F1F2|2=|PF1|2+|PF2|2=|PF1|2+(6-|PF1|)2,∴|PF1|=4,|PF2|=2.∴=2.综上知,或2.10.(2014山西四校第二次联考,21)已知函数f(x)=.(1)讨论函数f(x)的单调性;(2)设g(x)=x2+2x+3,证明:对任意x1∈(1,2)∪(2,+∞),总存在x2∈R,使得f(x1)>g(x2).(1)解:f'(x)=,设h(x)=-2ln(x-1)+x-1-,则h'(x)=≥0,故h(x)在(1,+∞)上是单调递增函数.又h(2)=0,故当x∈(1,2)时,h(x)<0,则f'(x)<0,f(x)是单调递减函数;当x∈(2,+∞)时,h(x)>0,则f'(x)>0,f(x)是单调递增函数.综上,知f(x)在区间(1,2)上是单调递减函数,在(2,+∞)上是单调递增函数.(2)证明:对任意x1∈(1,2)∪(2,+∞),总存在x2∈R,使得f(x1)>g(x2)恒成立等价于f(x)>g(x)min恒成立,而g(x)min=2,即证f(x)>2恒成立,即证-2>0恒成立,也就是证>0,设G(x)=ln(x-1)+-2,G'(x)=≥0,故G(x)在(1,+∞)上是单调递增函数.又G(2)=0,故当x∈(1,2)时,G(x)<0,则>0,当x∈(2,+∞)时,G(x)>0,则>0.综上可得,对任意x1∈(1,2)∪(2,+∞),总存在x2∈R,使得f(x1)>g(x2).11.(2014江苏高考,19)已知函数f(x)=e x+e-x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(-+3x0)成立.试比较e a-1与a e-1的大小,并证明你的结论.(1)证明:因为对任意x∈R,都有f(-x)=e-x+e-(-x)=e-x+e x=f(x),所以f(x)是R上的偶函数.(2)解:由条件知m(e x+e-x-1)≤e-x-1在(0,+∞)上恒成立.令t=e x(x>0),则t>1,所以m≤-=-对任意t>1成立.因为t-1++1≥2+1=3,所以-≥-,当且仅当t=2,即x=ln2时等号成立.因此实数m的取值范围是.(3)解:令函数g(x)=e x+-a(-x3+3x),则g'(x)=e x-+3a(x2-1).当x≥1时,e x->0,x2-1≥0.又a>0,故g'(x)>0.所以g(x)是[1,+∞)上的单调增函数,因此g(x)在[1,+∞)上的最小值是g(1)=e+e-1-2a.由于存在x0∈[1,+∞),使-a(-+3x0)<0成立,当且仅当最小值g(1)<0,故e+e-1-2a<0,即a>.令函数h(x)=x-(e-1)ln x-1,则h'(x)=1-.令h'(x)=0,得x=e-1.当x∈(0,e-1)时,h'(x)<0,故h(x)是(0,e-1)上的单调减函数;当x∈(e-1,+∞)时,h'(x)>0,故h(x)是(e-1,+∞)上的单调增函数.所以h(x)在(0,+∞)上的最小值是h(e-1).注意到h(1)=h(e)=0,所以当x∈(1,e-1)⊆(0,e-1)时,h(e-1)≤h(x)<h(1)=0;当x∈(e-1,e)⊆(e-1,+∞)时,h(x)<h(e)=0.所以h(x)<0对任意的x∈(1,e)成立.①当a∈⊆(1,e)时,h(a)<0,即a-1<(e-1)ln a,从而e a-1<a e-1;②当a=e时,e a-1=a e-1;③当a∈(e,+∞)⊆(e-1,+∞)时,h(a)>h(e)=0,即a-1>(e-1)ln a,故e a-1>a e-1.综上所述,当a∈时,e a-1<a e-1;当a=e时,e a-1=a e-1;当a∈(e,+∞)时,e a-1>a e-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题八 数学思想方法 第2讲 分类讨论思想、转化与化归思想练习理一、选择题1.等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值是( ) A.1 B.-12C.1或-12D.-1或12解析 当公比q =1时,a 1=a 2=a 3=7,S 3=3a 1=21,符合要求.当q ≠1时,a 1q 2=7,a 1(1-q 3)1-q =21,解之得,q =-12或q =1(舍去).综上可知,q =1或-12.答案 C2.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)上任意一点P ,引与实轴平行的直线,交两渐近线于R ,Q 两点,则PR →·PQ →的值为( )A.a 2B.b 2C.2abD.a 2+b 2解析 当直线PQ 与x 轴重合时,|PR →|=|PQ →|=a ,故选A. 答案 A3.函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( ) A.0 B.1 C.2D.3解析 法一 函数f (x )=2x+x 3-2在区间(0,1)内的零点个数即函数y 1=2x-2与y 2=-x 3的图象在区间(0,1)内的交点个数.作图,可知在(0,+∞)内最多有一个交点,故排除C ,D 项;当x =0时,y 1=-1<y 2=0,当x =1时,y 1=0>y 2=-1,因此在区间(0,1)内一定会有一个交点,所以A 项错误.选B.法二 因为f (0)=1+0-2=-1,f (1)=2+13-2=1,所以f (0)·f (1)<0.又函数f (x )在(0,1)内单调递增,所以f (x )在(0,1)内的零点个数是1. 答案 B4.已知函数f (x )=ln x -14x +34x -1,g (x )=-x 2+2bx -4,若对任意的x 1∈(0,2),任意的x 2∈[1,2],不等式f (x 1)≥g (x 2)恒成立,则实数b 的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,142 B.(1,+∞) C.⎝⎛⎭⎪⎫1,142 D.⎣⎢⎡⎦⎥⎤1,142 解析 依题意,问题等价于f (x 1)min ≥g (x 2)max ,f (x )=ln x -14x +34x-1(x >0),所以f ′(x )=1x -14-34x 2=4x -x 2-34x2. 由f ′(x )>0,解得1<x <3,故函数f (x )单调递增区间是(1,3),同理得f (x )的单调递减区间是(0,1)和(3,+∞),故在区间(0,2)上,x =1是函数f (x )的极小值点,这个极小值点是唯一的,所以f (x 1)min =f (1)=-12.函数g (x 2)=-x 22+2bx 2-4,x 2∈[1,2]. 当b <1时,g (x 2)max =g (1)=2b -5; 当1≤b ≤2时,g (x 2)max =g (b )=b 2-4; 当b >2时,g (x 2)max =g (2)=4b -8. 故问题等价于⎩⎪⎨⎪⎧b <1,-12≥2b -5或⎩⎪⎨⎪⎧1≤b ≤2,-12≥b 2-4或⎩⎪⎨⎪⎧b >2,-12≥4b -8. 解第一个不等式组得b <1, 解第二个不等式组得1≤b ≤142, 第三个不等式组无解.综上所述,b 的取值范围是⎝ ⎛⎦⎥⎤-∞,142.故选A. 答案 A 二、填空题5.若数列{a n }的前n 项和S n =3n-1,则它的通项公式a n =________. 解析 当n ≥2时,a n =S n -S n -1=3n-1-(3n -1-1)=2×3n -1;当n =1时,a 1=S 1=2,也满足式子a n =2×3n -1,∴数列{a n }的通项公式为a n =2×3n -1.答案 2×3n -16.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →,若MN →=xAB →+yAC →,则x =________,y =________.解析 不妨设AC ⊥AB ,有AB =4,AC =3,以A 为坐标原点,AB ,AC 所在直线分别为x 轴,y 轴建立平面直角坐标系,如图所示.则A (0,0),B (4,0),C (0,3),M (0,2),N ⎝ ⎛⎭⎪⎫2,32, 那么MN →=⎝ ⎛⎭⎪⎫2,-12,AB →=(4,0),AC →=(0,3),由MN →=xAB →+yAC →,可得⎝ ⎛⎭⎪⎫2,-12=x (4,0)+y (0,3),即⎝ ⎛⎭⎪⎫2,-12=(4x ,3y ),则有⎩⎪⎨⎪⎧4x =2,3y =-12,解得⎩⎪⎨⎪⎧x =12,y =-16.答案 12 -167.设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|的值为________.解析 若∠PF 2F 1=90°, 则|PF 1|2=|PF 2|2+|F 1F 2|2, ∵|PF 1|+|PF 2|=6,|F 1F 2|=25, 解得|PF 1|=143,|PF 2|=43,∴|PF 1||PF 2|=72.若∠F 2PF 1=90°, 则|F 1F 2|2=|PF 1|2+|PF 2|2=|PF 1|2+(6-|PF 1|)2, 解得|PF 1|=4,|PF 2|=2,∴|PF 1||PF 2|=2. 综上所述,|PF 1||PF 2|=2或72.答案 2或728.已知a 为正常数,若不等式1+x ≥1+x2-x 22a对一切非负实数x 恒成立,则a 的最大值为________.解析 原不等式即x 22a ≥1+x2-1+x (x ≥0),(*)令1+x =t ,t ≥1,则x =t 2-1,所以(*)式可化为(t 2-1)22a ≥1+t 2-12-t =t 2-2t +12=(t -1)22对t ≥1恒成立,所以(t +1)2a≥1对t ≥1恒成立,又a 为正常数,所以a ≤[(t +1)2]min =4,故a 的最大值是4. 答案 4 三、解答题9.数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0. (1)求数列的通项公式;(2)设S n =|a 1|+|a 2|+…+|a n |,求S n . 解 (1)a n +2-2a n +1+a n =0, 所以a n +2-a n +1=a n +1-a n , 所以{a n +1-a n }为常数列,所以{a n }是以a 1为首项的等差数列, 设a n =a 1+(n -1)d ,a 4=a 1+3d , 所以d =2-83=-2,所以a n =10-2n .(2)因为a n =10-2n ,令a n =0,得n =5.当n >5时,a n <0; 当n =5时,a n =0;当n <5时,a n >0.所以当n >5时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =T 5-(T n -T 5)=2T 5-T n =n 2-9n +40,T n =a 1+a 2+…+a n ,当n ≤5时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =T n =9n -n 2.所以S n =⎩⎪⎨⎪⎧9n -n 2(n ≤5),n 2-9n +40 (n >5).10.已知函数g (x )=axx +1(a ∈R ),f (x )=ln(x +1)+g (x ). (1)若函数g (x )过点(1,1),求函数f (x )的图象在x =0处的切线方程; (2)判断函数f (x )的单调性.解 (1)因为函数g (x )过点(1,1),所以1=a 1+1,解得a =2,所以f (x )=ln(x +1)+2xx +1.由f ′(x )=1x +1+2(x +1)2=x +3(x +1)2,则f ′(0)=3,所以所求的切线的斜率为3.又f (0)=0,所以切点为(0,0),故所求的切线方程为y =3x .(2)因为f (x )=ln(x +1)+axx +1(x >-1), 所以f ′(x )=1x +1+a (x +1)-ax (x +1)2=x +1+a (x +1)2. ①当a ≥0时,因为x >-1,所以f ′(x )>0, 故f (x )在(-1,+∞)上单调递增; ②当a <0时,由⎩⎪⎨⎪⎧f ′(x )<0,x >-1,得-1<x <-1-a ,故f (x )在(-1,-1-a )上单调递减;由⎩⎪⎨⎪⎧f ′(x )>0,x >-1,得x >-1-a , 故f (x )在(-1-a ,+∞)上单调递增.综上,当a ≥0时,函数f (x )在(-1,+∞)上单调递增; 当a <0时,函数f (x )在(-1,-1-a )上单调递减, 在(-1-a ,+∞)上单调递增.11.已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点与抛物线y 2=43x 的焦点F 重合,且椭圆短轴的两个端点与点F 构成正三角形. (1)求椭圆的方程;(2)若过点(1,0)的直线l 与椭圆交于不同的两点P ,Q ,试问在x 轴上是否存在定点E (m ,0),使PE →·QE →恒为定值?若存在,求出E 的坐标,并求出这个定值;若不存在,请说明理由.解 (1)由题意,知抛物线的焦点为F (3,0), 所以c =a 2-b 2= 3.因为椭圆短轴的两个端点与F 构成正三角形, 所以b =3×33=1. 可求得a =2,故椭圆的方程为x 24+y 2=1.(2)假设存在满足条件的点E ,当直线l 的斜率存在时设其斜率为k ,则l 的方程为y =k (x -1).由⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x -1),得(4k 2+1)x 2-8k 2x +4k 2-4=0,设P (x 1,y 1),Q (x 2,y 2), 所以x 1+x 2=8k 24k +1,x 1x 2=4k 2-44k +1.则PE →=(m -x 1,-y 1),QE →=(m -x 2,-y 2), 所以PE →·QE →=(m -x 1)(m -x 2)+y 1y 2 =m 2-m (x 1+x 2)+x 1x 2+y 1y 2=m 2-m (x 1+x 2)+x 1x 2+k 2(x 1-1)(x 2-1)=m 2-8k 2m 4k 2+1+4k 2-44k 2+1+k 2⎝ ⎛⎭⎪⎫4k 2-44k 2+1-8k 24k 2+1+1=(4m 2-8m +1)k 2+(m 2-4)4k 2+1=(4m 2-8m +1)⎝⎛⎭⎪⎫k 2+14+(m 2-4)-14(4m 2-8m +1)4k 2+1 =14(4m 2-8m +1)+2m -1744k 2+1. 要使PE →·QE →为定值,令2m -174=0,即m =178,此时PE →·QE →=3364.当直线l 的斜率不存在时, 不妨取P ⎝ ⎛⎭⎪⎫1,32,Q ⎝ ⎛⎭⎪⎫1,-32, 由E ⎝⎛⎭⎪⎫178,0,可得PE→=⎝ ⎛⎭⎪⎫98,-32,QE →=⎝ ⎛⎭⎪⎫98,32, 所以PE →·QE →=8164-34=3364.综上,存在点E ⎝ ⎛⎭⎪⎫178,0,使PE →·QE →为定值3364.。