2020学年北京市各区初三数学试题分类汇编现场学习类
2020北京初三期末数学汇编现场学习汇编附答案
第1页(共18页)现场学习类题目汇编(2020西城期末)25.下面给出六个函数解析式:21=2y x,21y +,212y x x =--, 2=231y x x --,2=21y x x -++,234y x x =---.小明根据学习二次函数的经验,分析了上面这些函数解析式的特点,研究了它们的图象和性质.下面是小明的分析和研究过程,请补充完整: (1)观察上面这些函数解析式,它们都具有共同的特点,可以表示为形如y = ,其中x 为自变量;(2)如图,在平面直角坐标系xOy 中,画出了函数2=21y x x -++的部分图象,用描点法(3)对于上面这些函数,下列四个结论:① 函数图象关于y 轴对称② 有些函数既有最大值,同时也有最小值③ 存在某个函数,当x >m (m 为正数)时, y 随x 的增大而增大,当x <-m 时,y 随x 的增大而减小④ 函数图象与x 轴公共点的个数只可能是0个或2个或4个 所有正确结论的序号是 ; (4)结合函数图象,解决问题:若关于x 的方程221x x x k -++=-+有一个实数根为3,则该方程其它的实数根为 .第2页(共18页)西城25.解:(1)① 2y ax b x c =++,(a ,b ,c 是常数,0a ≠). (2)图象如图1所示.图1 图2(3)①③.(4)如图2,-1,0.(东城)25. 如图,P 是直径AB 上的一点,AB=6,CP ⊥AB 交半圆AB̂于点C ,以BC 为直角边构造等腰Rt △BCD ,∠BCD=90°,连接OD .小明根据学习函数的经验,对线段AP ,BC ,OD 的长度之间的关系进行了探究. 下面是小明的探究过程,请补充完整:(1)对于点P 在AB 上的不同位置,画图、测量,得到了线段AP ,BC ,OD 的长度的几组值,如下表:第3页(共18页)在AP ,BC ,OD 的长度这三个量中,确定________的长度是自变量,________的长度和________的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当OD=2BC 时,线段AP 的长度约为________.25. 解:(1)AP ,BC ,OD 或BC ,AP ,OD ; …………………………3分(2)如图1或图2所示:…………………………5分图1图2(3)线段AP 的长度约为4.67.…………………………6分x第4页(共18页)图3 图4(朝阳)25.如图,在矩形ABCD 中, E 是BA 延长线上的定点, M 为BC 边上的一个动点,连接ME ,将射线ME 绕点M 顺时针旋转76o ,交射线CD 于点F ,连接MD .小东根据学习函数的经验,对线段BM ,DF ,DM 的长度之间的关系进行了探究. 下面是小东探究的过程,请补充完整:xy123456789101112123456oxy12345678123456o(1)对于点M在BC上的不同位置,画图、测量,得到了线段BM,DF,DM的长度的位置1位置2位置3 位置4 位置5 位置6 位置7 位置8 位置9 BM/cm 0.00 0.53 1.00 1.69 2.17 2.96 3.46 3.79. 4.00 DF/cm 0.00 1.00 1.74 2.49 2.69 2.21 1.14 0.00 1.00 DM/cm 4.12 3.61 3.16 2.52 2.09 1.44 1.14 1.02 1.00 在BM,DF,DM的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合画出的函数图象,解决问题:当DF=2cm时,DM的长度约为cm.25.解:答案不唯一.(1)BM,DF,DM.(2)如图所示.(3)2.98,1.35.第5页(共18页)第6页(共18页)(大兴)24.如图,O 是所在圆的圆心,C 是上一动点,连接O C 交弦AB 于点D .已知AB=9.35cm ,设A ,D 两点间的距离为x cm ,O,D 两点间的距离为1y cm ,C ,D 两点间的距离为2y cm.小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1) 按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y与x 的几组对应值:(2)①在同一平面直角坐标系xOy 中,描出表中各组数值所对应的点(x ,1y ), (x ,②观察函数1y 的图象,可得 m cm(结果保留一位小数);(3)结合函数图象,解决问题:当OD=C D 时,AD 的长度约为______cm (结果保留一位小数).第7页(共18页)24. (2)①……………………………………………………………………3分② 3.1 ………………………………………………………………………………4分(3) 6.6cm 或2.8cm (6)分(石景山)25.如图,C 是¼AmB 上的一定点,D 是弦AB 上的一定点,P 是弦CB 上的一动点,连接DP ,将线段PD 绕点P 顺时针旋转90°得到线段PD ',射线PD '与¼AmB 交于 点Q .已知6cm BC =,设P ,C 两点间的距离为cm x ,P ,D 两点间的距离为1cm y ,P ,Q小石根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究,下面是小石的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几第8页(共18页)(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数据所对应的点1(,)x y , 2(,)x y ,并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:连接DQ ,当△DPQ 为等腰三角形时,PC 的长度 约为 cm .(结果保留一位小数) 25.解:本题答案不唯一,如:(1)2.44; ………………………… 1分(2)………………………… 4分 (3)1.3或5.7. ………………………… 6分第9页(共18页)(丰台)24.在二次函数的学习中,教材有如下内容:小聪和小明通过例题的学习,体会到利用函数图象可以求出方程的近似解.于是他们尝试利用图象法探究方程32210x x -+=的近似解,做法如下:请你选择小聪或小明的做法,求出方程32210x x -+=的近似解(精确到0.1). 24. 法1:选择小聪的作法,列表并作出函数3221y x x =-+的图象:(列表略)根据函数图象,得近似解为 10.6x ≈-,2 1.0x ≈,3 1.6x ≈.解法2:选择小明的作法,小聪的做法:令函数3221y x x =-+,列表并画出函数的图象,借助图象得到方程32210x x -+=的近似解.小明的做法: 因为0x ≠,所以先将方程32210x x -+=的两边同时除以x ,变形得到方程212x x x-=-,再令函数212y x x =-和21y x=-,列表并画出这两个函数的图象,借助图象得到方程32210x x -+=的近似解.y= x 3-2x +1yxO-1-2-3-1-2-3123123第10页(共18页)列表并作出函数212y x x =-和21y x=-的图象:(列表略)根据函数图象,得近似解为 10.6x ≈- ,2 1.0x ≈,3 1.6x ≈.(顺义)24.如图,A 是»BC 上一动点,D 是弦BC 上一定点,连接AB ,AC ,AD .设线段AB 的长是x cm ,线段AC 的长是y 1cm ,线段AD 的长是y 2cm .小腾根据学习函数的经验,分别对函数y 1,y 2随自变量x 的变化的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点A 在»BC上的不同位置,画图、测量,得到了y 1,y 2的长度与x 的几组值: 位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8 x /cm 0.00 0.99 2.01 3.46 4.98 5.84 7.07 8.00 y 1/cm 8.00 7.46 6.81 5.69 4.26 3.29 1.62 0.00 y 2/cm2.502.081.882.152.993.614.62m请直接写出上表中的m 值是______;(2)在同一平面直角坐标系xOy 中,描出补全后表中各组数据所对应的点(x ,y 1), (x ,y 2),并画出函数y 1,y 2的图象;y 2= -1xy 1= x 2-2xyxO -1-2-3-1-2-31231243(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为______cm;当AC=2AD时,AB的长度约为______cm.24.解:(1)表中的m值是 5.5 ;……………………………………1分(2)………………………… 3分(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为 5.7 cm;当AC=2AD时,AB的长度约为 4.2 cm.第11页(共18页)第12页(共18页)(平谷)24.如图,点P 是»AB 上一动点,连接AP ,作∠APC =45°,交弦AB 于点C .AB =6cm .小元根据学习函数的经验,分别对线段AP ,PC ,AC 的长度进行了测量. 下面是小元的探究过程,请补充完整:(1)下表是点P 是»AB 上的不同位置,画图、测量,得到线段AP ,PC ,AC 长度的几组值,的值是 (保留一位小数)②在AP ,PC ,AC 的长度这三个量中,确定______的长度是自变量,______的长度和 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数图象;(3)结合函数图象,解决问题:当△ACP 为等腰三角形时,AP 的长度约为 cm (保留一位小数).24.解:(1)①3.0; (1)②AP 的长度是自变量,PC 的长度和AC 的长度都是这个自变量的函数;(答案不唯一) ································································· (3)(2)如图(答案不唯一,和(1)问相对应); (5)(3)2.3或4.2 (7)第13页(共18页)(昌平)25.如图,»AB 是直径AB 所对的半圆弧,点P 是»AB 与直径AB 所围成图形的外部的一个定点,AB =8cm ,点C 是»AB 上一动点,连接PC 交AB 于点D . 小明根据学习函数的经验,对线段AD ,CD ,PD ,进行了研究,设A ,D 两点间的距离为x cm ,C ,D 两点间的距离为1y cm ,P ,D 两点之间的距离为2y cm .小明根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值:(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点,并画出函数2y 的图象:(3)结合函数图象解决问题:当AD=2PD时,AD的长度约为___________.25.(1)m=1.73 (2)分(2)如图…………………………………………………………… 4分(3)4.54 .…………………………………………………………………………………………………(门头沟)25.如图,»AB是直径AB所对的半圆弧,点C在»AB上,且∠CAB =30°,D为AB边上的动点(点D与点B不重合),连接CD,过点D作DE⊥CD交直线AC于点E.小明根据学习函数的经验,对线段AE,AD长度之间的关系进行了探究.下面是小明的探究过程,请补充完整:(1)对于点D在AB上的不同位置,画图、测量,得到线段AE,AD长度的几组值,如下表:第14页(共18页)第15页(共18页)在AE ,AD 的长度这两个量中,确定________的长度是自变量,_________的长度是这个自变量的函数;(2)在下面的平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合画出的函数图象,解决问题:当AE =12AD 时,AD 的长度约为_________cm (结果精确到0.1).25.(本小题满分6分)解:(1)AD ,AE .…………………………………………………………………………2分 (2)图象正确.…………………………………………………………………………4分 (3)2.2,3.3.…………………………………………………………………………6分(房山)25.如图,在正方形ABCD 中,AB =5cm ,点E 在正方形边上沿B →C →D 运动(含端点),连接AE ,以AE 为边,在线段右侧作正方形AEFG ,连接DF 、DG .小颖根据学习函数的经验,在点E 运动过程中,对线段AE 、DF 、DG 的长度之间的关系进行了探究. 下面是小颖的探究过程,请补充完整:(1)对于点E 在BC 、CD 边上的不同位置,画图、测量,得到了线段AE 、DF 、DG 的长度的几组值,如下表:cmy G FEDCBA在AE、DF 和DG的长度这三个量中,确定__________的长度是自变量,__________的长度和__________的长度都是这个自变量的函数.(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象:24.(1)DG ,AE ,DF…………3分(2)如图…………5分(3)7.07或5.00或5.65…………6分(密云)25.如图,点E是矩形ABCD对角线AC上的一个动点(点E可以与点A和点C 重合),连接BE.已知AB=3cm,BC=4cm.设A、E两点间的距离为xcm,BE的长度为ycm.某同学根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是该同学的探究过程,请补充完整:位置1位置2位置3位置4位置5位置6位置7AE /cm 5.00 5.50 6.007.07 5.99 5.50 5.00DF/cm 5.00 3.55 3.72 5.00 3.71 3.55 5.00DG/cm0.00 2.30 3.31 5.00 5.28 5.697.07第16页(共18页)(1)通过取点、画图、测量及分析,得到了x与y的几组值,如下表:(说明:补全表格时相关数值保留一位小数......)(2)建立平面直角坐标系,描出已补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当BE=2AE时,AE的长度约为cm.(结果保留一位小数........)第17页(共18页)(3)结合函数图像,解决问题:当△GDF为等腰三角形时,AE的长约为______________25.解:(1)2.5;………………………………2分(2)画图象………………………………5分(3)1.2(1.1—1.3均可)第18页(共18页)。
北京市各区2019-2020学年九年级上学期期末数学试卷精选汇编:现场学习类专题(含答案)
现场学习类专题(西城) 25.下边给出六个函数分析式:y= 1x 2, y= 3x21 , yx 21x ,22y=2x 23 x 1,y= 2,y 24.x 2 x 1 3x x 小明依据学习二次函数的经验,剖析了上边这些函数分析式的特色,研究了它们的图象和性质.下边是小明的剖析和研究过程,请增补完好:(1)察看上边这些函数分析式,它们都拥有共同的特色,能够表示为形如y= ,此中 x 为自变量;(2)如图,在平面直角坐标系xOy 中,画出了函数 y=x 2 2 x 1的部分图象, 用描点法将这个函数的图象增补完好;(3)对于上边这些 函数,以下四个结论:① 函数图象对于 y 轴对称② 有些函数既有最大值,同时也有最小值③ 存在某个函数,当x > m ( m 为正数)时, y 随 x 的增大而增大,当 x < - m 时, y随x 的增大而减小④ 函数图象与 轴公共点的个数只可能是 0个或 2个或 4个全部正确结论的序号是;(4)联合函数图象,解决问题:若对于 x 的方程 x 2 2 x 1 xk 有一个实数根为 3,则该方程其余的实数根为.25.解:( 1)① y ax 2b xc ,( a ,b , c 是常数, a 0 ).( 2)图象如图 1 所示.图1图2(3)①③.(4)如图 2, - 1, 0.············································6 分(东城) 25.如图, P 是直径 AB 上的一点, AB=6,CP⊥ AB 交半圆于点C,以BC为直角边结构等腰Rt△ BCD ,∠ BCD=90°,连结 OD .DCA P O B小明依据学习函数的经验,对线段AP, BC, OD的长度之间的关系进行了研究.下边是小明的研究过程,请增补完好:( 1)对于点 P 在 AB 上的不一样地点,绘图、丈量,获得了线段AP, BC,OD 的长度的几组值,以下表:地点 1地点 2地点 3地点 4地点 5地点6地点AP0.00 1.00 2.00 3.00 4.00 5.00BC 6.00 5.48 4.90 4.24 3.46 2.45OD 6.717.247.07 6.71 6.16 5.33在 AP, BC, OD 的长度这三个量中,确立 ________的长度是自变量, ________的长度和 ________的长度都是这个自变量的函数;( 2)在同一平面直角坐标系xOy 中,画出( 1)中所确立的函数的图象;( 3)联合函数图象,解决问题:当OD=2BC 时,线段AP 的长度约为 ________.(石景山) 25.如图,C是AmB上的必定点, D 是弦 AB 上的必定点,P 是弦CB上的一动点,连接DP ,将线段PD绕点P顺时针旋转获得线段PD,射线PD与 AmB 交于90°点Q .已知BC6cm,设P,两点间的距离为x cm,,两点间的距离为 y cm ,C P D1P ,Q两点间的距离为y2 cm .mCPQD'BA D小石依据学习函数的经验,分别对函数y1, y2随自变量 x 的变化而变化的规律进行了研究,下边是小石的研究过程,请增补完好:( 1)依据下表中自变量x 的值进行取点、绘图、丈量,分别获得了y1, y2与 x 的几组对应值:x / cm0123456y1 / cm 4.29 3.33 1.65 1.22 1.50 2.24y2 / cm0.88 2.84 3.57 4.04 4.17 3.200.982xOy( x, y1 ) ( x, y2 )y1 y2y/cm5y24321O123456x/cm 3DQ DPQ PCcm251 2.4412y/cm5y2432y11O12345 6 x/cm43 1.3 5.7624小聪和小明经过例题的学习,领会到利用函数图象能够求出方程的近似解. 于是他们试试利用图象法研究方程x32x210 的近似解,做法以下:小聪的做法:小明的做法:32 x21由于x0 ,因此先将方程 x32x2 1 0令函数y x,的两边同时除以x,变形得到方程列表并画出函数的图象,借助1x22x,再令函数y1x22x 和图象获得方程x32x210x的近似解 .y21x ,列表并画出这两个函数的图象,借助图象获得方程x32x21 0的近似解 .请你选择小聪或小明的做法,求出方程x3 2 x210 的近似解(精准到0.1). 24.解法 1 :选择小聪的作法,列表并作出函数y x3 2 x2 1 的图象:(列表略) 2 分y321y= x3-2x2+1-3 -2 -1 O123x-1-2-3依据函数图象,得近似解为x10.6 , x2 1.0, x3 1.6 ..... 5 分解法 2 :选择小明的作法,列表并作出函数y 1 x22x 和 y 21的图象:(列表略) 2 分xy312 y 1= x 2-2xy 2= -x1-3 -2 -1O 12 3 4x-1-2 -3依据函数图象,得近似解为 x 1 0.6 , x 2 1.0, x 3 1.6..5分(大兴) 24.如图, O 是所在圆的圆心, C 是上一动点,连结O C 交弦 AB 于点D .已知 AB=9.35cm ,设 A , D 两点间的距离为x cm , O,D 两点间的距离为y 1 cm ,C ,D 两点间的距离为 y 2 cm. 小腾依据学习函数的经验,分别对函数y 1 , y 2 随自变量 x 的变化而变化的规律进行了研究. 下边是小腾的研究过程,请增补完好:(1) 依据下表中自变量 x 的值进行取点、 绘图、丈量,分别获得了 y 1 ,y 2 与 x 的几组对应值:/cm0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.10 8.00 9.35 xy 1 /cm 4.933.99m2.281.701.592.042.883.674.93y 2 /cm0.00 0.94 1.832.653.23 3.34 2.89 2.05 1.26 0.00(2) ①在同一平面直角坐标系 xOy 中,描出表中各组数值所对应的点 ( x , y 1 ), ( x , y 2 ),并画出( 1)中所确立的函数y 1 , y 2 的图象;北京市各区2019-2020学年九年级上学期期末数学试卷精选汇编:现场学习类专题(含答案)y1mcm()3 OD=C D AD ______ cm24.23 3.14(3) 625AB AB P AB ABAB=8cm C x cm C D AB PC AB D AD CD PD A D y1cm P D y2cmy1y2x1x y1y2xx/cm0.00 1.00 2.00 3.00 3.20 4.00 5.00 6.00 6.507 008.00 y1/cm0.00 1.04 2.09 3.11 3.30 4.00 4.41 3.46 2.50 1 530.00 y2/cm 6.24 5.29 4.35 3.46 3.30 2.64 2.00m 1.80 2.00 2.652 xOy y23AD 2PD AD___________25. 1 m 1.73 2243.4.54 .6(房山) 25.如图,在正方形ABCD 中, AB=5cm,点 E 在正方形边上沿 B→ C→ D 运动(含端点),连结 AE,以 AE 为边,在G线段右边作正方形AEFG ,连结 DF 、 DG .DA小颖依据学习函数的经验,在点 E 运动过程中,对线段AE 、DF 、DG 的长度之间的关系进行了研究 .F下边是小颖的研究过程,请增补完好:B CE(1)对于点 E 在 BC、CD 边上的不一样地点,绘图、丈量,得到了线段 AE 、 DF、 DG 的长度的几组值,以下表:地点 1地点 2地点 3地点 4地点 5地点 6地点 7AE /cm 5.00 5.50 6.007.07 5.99 5.50 5.00DF /cm 5.00 3.55 3.72 5.00 3.71 3.55 5.00DG/cm0.00 2.30 3.31 5.00 5.28 5.697.07在 AE、DF 和 DG 的长度这三个量中,确立 __________的长度是自变量, __________的长度和__________ 的长度都是这个自变量的函数 .(2)在同一平面直角坐标系 xOy 中,画出( 1)中所确立的函数的图象:y987654321O123456789x 10(3)联合函数图像,解决问题:当△ GDF 为等腰三角形时,AE 的长约为 ______________(2)如图5分( 3) 7.07 或 5.00 或 5.65 6 分(顺义) 24.如图, A 是BC上一动点, D 是弦 BC 上必定点,连结AB ,AC, AD.设线段AB 的长是 xcm,线段 AC 的长是 y1cm,线段 AD 的长是 y2cm.小腾依据学习函数的经验,分别对函数y1,y2随自变量x 的变化的关系进行了研究.下边是小腾的研究过程,请增补完好:(1)对于点 A 在BC上的不一样地点,绘图、丈量,获得了y1,y2的长度与x 的几组值:地点 1地点 2地点 3地点 4地点 5地点 6地点 7地点 8 x/cm0.000.99 2.01 3.46 4.98 5.847.078.00 y1/cm8.007.46 6.81 5.69 4.26 3.29 1.620.00 y2/cm 2.50 2.08 1.88 2.15 2.99 3.61 4.62m 请直接写出上表中的m 值是______;(2)在同一平面直角坐标系xOy中,描出补全后表中各组数据所对应的点(x, y1),( x, y2),并画出函数y1,y2的图象;11(3)联合函数图象,解决问题:当 AC =AD 时, AB 的长度约为______ cm;当 AC =2 AD 时, AB 的长度约为______ cm.24.解:( 1)表中的 m 值是 5.5; 1 分(2)3 分( 3)联合函数图象,解决问题:当 AC = AD 时, AB 的长度约为 5.7cm;当 AC =2 AD 时, AB 的长度约为 4.2cm.5 分(旭日) 25.如图,在矩形ABCD 中, E 是 BA 延伸线上的定点,M 为 BC 边上的一个动点,连结ME,将射线ME 绕点 M 顺时针旋转76o,交射线CD 于点 F,连结 MD .小东依据学习函数的经验,对线段BM , DF , DM 的长度之间的关系进行了研究 .下边是小东研究的过程,请增补完好:( 1)对于点 M 在 BC 上的不一样地点,绘图、丈量,获得了线段BM,DF ,DM 的长度的几组值,以下表:地点 1地点地点 3地点地点 5地点 6地点 7地点 8地点 9 24BM/cm0.000.53 1.00 1.69 2.17 2.96 3.46 3.79. 4.00 DF /cm0.00 1.00 1.74 2.49 2.69 2.21 1.140.00 1.00 DM /cm 4.12 3.61 3.16 2.52 2.09 1.44 1.14 1.02 1.00在 BM , DF , DM 的长度这三个量中,确立的长度是自变量,的长度和的长度都是这个自变量的函数;( 2)在同一平面直角坐标系xOy中,画出(1)中所确立的函数的图象;( 3)联合画出的函数图象,解决问题:当DF= 2cm 时, DM 的长度约为cm.23.阅读下边资料:小军碰到这样一个问题:如图1,在△ABC 中, AB=AC, P 是△ ABC 内一点,∠PAC=∠ PCB=∠ PBA. 若∠ ACB =45°, AP=1 ,求 BP 的长 .图 1图 2小军的思路是:依据已知条件能够证明△ ACP∽△ CBP,进一步推理可得BP的长.请回答:∵ AB=AC,∴∠ ABC=∠ ACB.∵∠ PCB=∠ PBA,∴∠ PCA=.∵∠ PAC=∠ PCB,∴△ ACP∽△ CBP.∴AP PC AC. PC PB CB∵∠ ACB=45°,∴∠ BAC=90° .∴AC=. CB∵AP=1,∴PC= 2.∴PB=.参照小军的思路,解决问题:如图 1,在△ ABC 中, AB=AC, P 是△ABC 内一点,∠ PAC=∠ PCB =∠ PBA . 若∠ ACB=30°,求AP的值;BP(平谷)24.如图,点 P 是AB上一动点,连结 AP,作∠ APC=45°,交弦 AB 于点 C.AB=6cm .小元依据学习函数的经验,分别对线段AP ,PC,AC 的长度进行了丈量.下边是小元的研究过程,请增补完好:(1)下表是点 P 是AB上的不一样地点,绘图、丈量,获得线段 AP,PC,AC 长度的几组值,以下表:AP/cm0 1.00 2.00 3.00 4.00 5.00 6.00PC/cm0 1.21 2.09 2.69m 2.820AC/cm00.87 1.57 2.20 2.83 3.61 6.00①经丈量m 的值是(保存一位小数).②在 AP, PC, AC 的长度这三个量中,确立______的长度是自变量,______的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出( 1)中所确立的函数图象;(3)联合函数图象,解决问题:当△ACP为等腰三角形时,AP 的长度约为cm(保留一位小数).24.解:( 1)① 3.0; (1)②AP 的长度是自变量, PC 的长度和 AC 的长度都是这个自变量的函数;(答案不独一) ······································3(2)如图(答案不独一,和( 1)问相对应); (5)( 3) 2.3 或 4.2 (7)(门头沟)??25.如图,AB是直径 AB 所对的半圆弧,点 C 在AB上,且∠ CAB =30°, D 为 AB 边上的动点(点 D 与点 B 不重合),连结 CD,过点 D 作 DE⊥ CD交直线 AC于点 E.CEA D O B小明依据学习函数的经验,对线段AE, AD 长度之间的关系进行了研究.下边是小明的研究过程,请增补完好:( 1)对于点 D 在 AB 上的不一样地点,绘图、丈量,获得线段AE,AD 长度的几组值,如下表:地点 1地点 2地点 3地点 4地点 5地点 6地点 7地点 8地点 9AE/ cm0.000.410.77 1.00 1.15 1.000.00 1.00 4.04AD/ cm0.000.50 1.00 1.41 2.00 2.45 3.00 3.21 3.50在 AE,AD 的长度这两个量中,确立 ________的长度是自变量, _________的长度是这个自变量的函数;(2)在下边的平面直角坐标系xOy中,画出( 1)中所确立的函数的图象;y/cm54321O1234 5 x/cm( 3)联合画出的函数图象,解决问题:当AE= 1AD 时, AD 的长度约为 _________cm2(结果精准到0.1).(密云) 25.如图,点 E 是矩形 ABCD 对角线 AC 上的一个动点(点 E 能够与点 A 和点C 重合),连结 BE.已知 AB=3cm,BC=4cm.设A、E 两点间的距离为xcm, BE 的长度为 ycm.某同学依据学习函数的经验,对函数y 随自变量x的变化而变化的规律进行研究.下边是该同学的研究过程,请增补完好:(1)经过取点、绘图、丈量及剖析,获得了x 与y的几组值,以下表:x(cm)01 1.52 2.53 3.545y(cm) 3.00 2.68 2.94 3.26 4.00(说明:补全表格时有关数值保存一位小数)......(2)成立平面直角坐标系,描出已补全后的表中各对对应值为坐标的点,画出该函数的图象.y4321O12345x(3)联合画出的函数图象,解决问题:当BE=2AE时,AE的长度约为cm.(结果保存一位小数)........25. 解:(1) 2.5; 2 分(2 )绘图象5 分(3) 1.2( 1.1—1.3 均可) 6 分(燕山) 25.阅读下边资料:学习函数知识后,对于一些特别的不等式,我们能够借助函数图象来求出它的解集,比如求不等式 x34y1= x-3 与函数的解集,我们能够在同一坐标系中,画出直线4x1),察看图象可知:它们交于点A(- 1,- 4),B(4, 1).当- 1<y2的图象(如图x4x< 0,或 x> 4 时, y1> y2,即不等式x3的解集为- 1< x<0,或 x>4.xy4yy2=x5443y1=x -332B 211-4 -3-2 -1O1 2 3 4x-5 -4-3 -2 -1O 1 2 3 4 5 x - 1- 1- 2- 2- 3- 3A- 4- 4- 5九年级数学期末试卷第5页(共 8页)图 1图 2小东依据学习以上知识的经验,对求不等式x33x2x 3 0的解集进行了研究.下边是小东的研究过程,请增补完好:(1)将不等式按条件进行转变当 x= 0 时,原不等式不可立;当 x> 0 时,原不等式转变为x23x 13;x当 x< 0 时,原不等式转变为;(2) 结构函数,画出图象设 y3 x23x 1 ,y43,在同一坐标系 ( 图 2) 中分别画出这两个函数的图象.x(3)借助图象,写出解集察看所画两个函数的图象,确立两个函数图象交点的横坐标,联合(1)的议论结果,可知:不等式 x33x2x 3 0的解集为.26. 解:(1) 2.5; 2 分(2 )绘图象5 分(3) 1.2( 1.1—1.3 均可) 6 分。
2020年北京市中考数学试卷及答案解析(WORD精校版)
2020年北京市中考数学试卷一、选择题(本题共16分,每小题2分).1.(2分)(2020北京)如图是某几何体的三视图,该几何体是()A.圆柱B.圆椎C.三棱柱D.长方体2.(2分)(2020北京)2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A.0.36×105B.3.6×105C.3.6×104D.36×1033.(2分)(2020北京)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1>∠4+∠5 D.∠2<∠54.(2分)(2020北京)下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.5.(2分)(2020北京)正五边形的外角和为()A.180°B.360°C.540°D.720°6.(2分)(2020北京)实数a 在数轴上的对应点的位置如图所示,若实数b 满足-a <b <a ,则b 的值可以是( )A .2B .-1C .-2D .-37.(2分)(2020北京)不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( )A .14B .13C .12D .238.(2分)(2020北京)有一个装有水的容器,如图所示,容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系二、填空题(本题共16分,每小题2分)9.(2分)(2020北京)若代数式1x -7有意义,则实数x 的取值范围是 .10.(2分)(2020北京)已知关于x 的方程x 2+2x +k =0有两个相等的实数根,则k 的值是 .11.(2分)(2020北京)写出一个比2大且比15小的整数 .12.(2分)(2020北京)方程组⎩⎪⎨⎪⎧x -y =13x +y =7的解为 .13.(2分)(2020北京)在平面直角坐标系xOy 中,直线y =x 与双曲线y =m x 交于A ,B 两点.若点A ,B 的纵坐标分别为y 1,y 2,则y 1+y 2的值为 .14.(2分)(2020北京)如图,在△ABC 中,AB =AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明△ABD ≌△ACD ,这个条件可以是 (写出一个即可).15.(2分)(2020北京)如图所示的网格是正方形网格,A ,B ,C ,D 是网格线交点,则△ABC 的面积与△ABD 的面积的大小关系为:S △ABC S △ABD (填“>”,“=”或“<”).16.(2分)(2020北京)如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小,如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一个购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序 .三、解答题(本题共68分,第17-20题,每小题5分,第21题6分,第22题5分,第23-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)(2020北京)计算:(13)-1+18+|-2|-6sin45°.18.(5分)(2020北京)解不等式组:⎩⎪⎨⎪⎧5x -3>2x 2x -13<x 219.(5分)(2020北京)已知5x2-x-1=0,求代数式(3x+2)(3x-2)+x(x-2)的值.20.(5分)(2020北京)已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB.求作:线段BP,使得点P在直线CD上,且∠ABP=12∠BAC.作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP=.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=12∠BAC()(填推理的依据).∴∠ABP=12∠BAC.21.(6分)(2020北京)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF ⊥AB ,OG ∥EF . (1)求证:四边形OEFG 是矩形;(2)若AD =10,EF =4,求OE 和BG 的长.22.(5分)(2020北京)在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象由函数y =x 的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当x >1时,对于x 的每一个值,函数y =mx (m ≠0)的值大于一次函数y =kx +b 的值,直接写出m 的取值范围.23.(6分)(2020北京)如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,OF ⊥AD 于点E ,交CD 于点F . (1)求证:∠ADC =∠AOF ;(2)若sin C =13,BD =8,求EF 的长.24.(6分)(2020北京)小云在学习过程中遇到一个函数y=16|x|(x2-x+1)(x≥-2).下面是小云对其探究的过程,请补充完整:(1)当-2≤x<0时,对于函数y1=|x|,即y1=-x,当-2≤x<0时,y1随x的增大而,且y1>0;对于函数y2=x2-x+1,当-2≤x<0时,y2随x的增大而,且y2>0;结合上述分析,进一步探究发现,对于函数y,当-2≤x<0时,y随x的增大而.(2)当x≥0时,对于函数y,当x≥0时,y与x的几组对应值如下表:x0 121322523 …y0 116167161954872…结合上表,进一步探究发现,当x≥0时,y随x的增大而增大.在平面直角坐标系xOy中,画出当x≥0时的函数y的图象.(3)过点(0,m)(m>0)作平行于x轴的直线l,结合(1)(2)的分析,解决问题:若直线l与函数y=16|x|(x2-x+1)(x≥-2)的图象有两个交点,则m的最大值是.25.(5分)(2020北京)小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a.小云所住小区5月1日至30日的厨余垃圾分出量统计图:b.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段1日至10日11日至20日21日至30日平均数100 170 250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为(结果取整数);(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s12,5月11日至20日的厨余垃圾分出量的方差为s22,5月21日至30日的厨余垃圾分出量的方差为s32.直接写出s12,s22,s32的大小关系.26.(6分)(2020北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.27.(7分)(2020北京)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线AC 上一动点,连接DE.过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明.28.(7分)(2020北京)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A'B'(A',B' 分别为点A,B的对应点),线段AA' 长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是;在点P1,P2,P3,P4中,连接点A与点的线段的长度等于线段AB到⊙O的“平移距离”;(2)若点A,B都在直线y=3x+23上,记线段AB到⊙O的“平移距离”为d1,求d1的最小值;(3)若点A的坐标为(2,32),记线段AB到⊙O的“平移距离”为d2,直接写出d2的取值范围.2020年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)(2020北京)如图是某几何体的三视图,该几何体是()A.圆柱B.圆椎C.三棱柱D.长方体【解答】解:该几何体是长方体,故选:D.2.(2分)(2020北京)2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A.0.36×105B.3.6×105C.3.6×104D.36×103【解答】解:36000=3.6×104,故选:C.3.(2分)(2020北京)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1>∠4+∠5 D.∠2<∠5【解答】解:A.∵∠1和∠2是对顶角,∴∠1=∠2,故A正确;B.∵∠2=∠A+∠3,∴∠2>∠3,故B错误;C.∵∠1=∠4+∠5,故③错误;D.∵∠2=∠4+∠5,∴∠2>∠5;故D错误;故选:A.4.(2分)(2020北京)下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、既是中心对称图形,又是轴对称图形,符合题意.故选:D.5.(2分)(2020北京)正五边形的外角和为()A.180°B.360°C.540°D.720°【解答】解:任意多边形的外角和都是360°,故正五边形的外角和的度数为360°.故选:B.6.(2分)(2020北京)实数a在数轴上的对应点的位置如图所示,若实数b满足-a<b<a,则b的值可以是()A.2 B.-1 C.-2 D.-3【解答】解:因为1<a<2,所以-2<-a<-1,因为-a<b<a,所以b只能是-1.故选:B.7.(2分)(2020北京)不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A.14B.13C.12D.23【解答】解:列表如下:1 21 2 32 3 4由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果,所以两次记录的数字之和为3的概率为24=12,故选:C.8.(2分)(2020北京)有一个装有水的容器,如图所示,容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系【解答】解:设容器内的水面高度为h,注水时间为t,根据题意得:h=0.2t+10,∴容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系.故选:B.二、填空题(本题共16分,每小题2分)9.(2分)(2020北京)若代数式1x−7有意义,则实数x的取值范围是x≠7.【解答】解:若代数式1x−7有意义,则x-7≠0,解得:x≠7.故答案为:x≠7.10.(2分)(2020北京)已知关于x的方程x2+2x+k=0有两个相等的实数根,则k的值是1.【解答】解:∵关于x的方程x2+2x+k=0有两个相等的实数根,∴△=22-4×1×k=0,解得:k=1.故答案为:1.11.(2分)(2020北京)写出一个比√2大且比√15小的整数 2或3(答案不唯一) . 【解答】解:∵1<√2<2,3<√15<4,∴比√2大且比√15小的整数2或3(答案不唯一). 故答案为:2或3(答案不唯一). 12.(2分)(2020北京)方程组{x −y =13x +y =7的解为 {x =2y =1 .【解答】解:{x −y =1①3x +y =7②,①+②得:4x =8, 解得:x =2,把x =2代入①得:y =1,则方程组的解为{x =2y =1.故答案为:{x =2y =1.13.(2分)(2020北京)在平面直角坐标系xOy 中,直线y =x 与双曲线y =mx 交于A ,B 两点.若点A ,B 的纵坐标分别为y 1,y 2,则y 1+y 2的值为 0 . 【解答】解:∵直线y =x 与双曲线y =mx 交于A ,B 两点, ∴联立方程组得:{y =x y =m x ,解得:{x 1=√m y 1=√m ,{x2=−√my2=−√m,∴y 1+y 2=0, 故答案为:0.14.(2分)(2020北京)如图,在△ABC 中,AB =AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明△ABD ≌△ACD ,这个条件可以是 BD =CD (写出一个即可).【解答】解:∵AB =AC ,∴∠ABD =∠ACD , 添加BD =CD , ∴在△ABD 与△ACD 中 {AB =AC∠ABD =∠ACD BD =CD, ∴△ABD ≌△ACD (SAS ), 故答案为:BD =CD .15.(2分)(2020北京)如图所示的网格是正方形网格,A ,B ,C ,D 是网格线交点,则△ABC 的面积与△ABD 的面积的大小关系为:S △ABC = S △ABD (填“>”,“=”或“<”).【解答】解:∵S △ABC =12×2×4=4,S △ABD =2×5−12×5×1−12×1×3−12×2×2=4, ∴S △ABC =S △ABD , 故答案为:=.16.(2分)(2020北京)如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小,如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一个购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序 丙、丁、甲、乙 .【解答】解:根据题意,丙第一个购票,只能购买3,1,2,4号票, 此时,3号左边有6个座位,4号右边有5个座位,即甲、乙购买的票只要在丙的同侧,四个人购买的票全在第一排, ①第二个丁可以购买3号左边的5个座位,另一侧的座位甲和乙购买, 即丙(3,1,2,4)、丁(5,7,9,11,13)、甲(6,8)、乙(10,12,14), 或丙(3,1,2,4)、丁(5,7,9,11,13)、乙(6,8,10)、甲(12,14);②第二个由甲或乙购买,此时,只能购买5,7号票,第三个购买的只能是丁,且只能购买6,8,10,12,14号票,此时,四个人购买的票全在第一排,即丙(3,1,2,4)、甲(5,7)、丁(6,8,10,12,14)、乙(9,11,13),或丙(3,1,2,4)、乙(5,7,9)、丁(6,8,10,12,14)、甲(11,13),因此,第一个是丙购买票,丁只要不是最后一个购买票的人,都能使四个人购买的票全在第一排,故答案为:丙、丁、甲、乙.三、解答题(本题共68分,第17-20题,每小题5分,第21题6分,第22题5分,第23-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)(2020北京)计算:(13)-1+√18+|-2|-6sin45°.【解答】解:原式=3+3√2+2-6×√22=3+3√2+2-3√2=5.18.(5分)(2020北京)解不等式组:{5x−3>2x,2x−13<x2.【解答】解:解不等式5x-3>2x,得:x>1,解不等式2x−13<x2,得:x<2,则不等式组的解集为1<x<2.19.(5分)(2020北京)已知5x2-x-1=0,求代数式(3x+2)(3x-2)+x(x-2)的值.【解答】解:(3x+2)(3x-2)+x(x-2)=9x2-4+x2-2x=10x2-2x-4,∵5x2-x-1=0,∴5x2-x=1,∴原式=2(5x2-x)-4=-2.20.(5分)(2020北京)已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB.求作:线段BP,使得点P在直线CD上,且∠ABP=12∠BAC.作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP=∠BPC.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∠BAC(同弧所对的圆周角等于圆心角的一半)(圆周角定理)(填推理的∴∠BPC=12依据).∠BAC.∴∠ABP=12【解答】解:(1)如图,即为补全的图形;(2)证明:∵CD∥AB,∴∠ABP=∠BPC.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=1∠BAC(同弧所对的圆周角等于圆心角的一半),2∠BAC.∴∠ABP=12故答案为:∠BPC,同弧所对的圆周角等于圆心角的一半.21.(6分)(2020北京)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.【解答】解:(1)∵四边形ABCD是菱形,∴BD⊥AC,∠DAO=∠BAO,∵E是AD的中点,AD,∴AE=OE=12∴∠EAO=∠AOE,∴∠AOE=∠BAO,∴OE∥FG,∵OG∥EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴四边形OEFG是矩形;(2)∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,∴OE=AE=1AD=5;2由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF=√AE2−EF2=3,∴BG=AB-AF-FG=10-3-5=2.22.(5分)(2020北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.【解答】解:(1)∵一次函数y=kx+b(k≠0)的图象由直线y=x平移得到,∴k=1,将点(1,2)代入y=x+b,得1+b=2,解得b=1,∴一次函数的解析式为y=x+1;(2)把点(1,2)代入y=mx求得m=2,∵当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=x+1的值,∴m≥2.23.(6分)(2020北京)如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD于点E,交CD于点F.(1)求证:∠ADC=∠AOF;,BD=8,求EF的长.(2)若sin C=13【解答】解:(1)连接OD,∵AB为⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OF⊥AD,∴OF∥BD,∴∠AOF =∠B ,∵CD 是⊙O 的切线,D 为切点, ∴∠CDO =90°,∴∠CDA +∠ADO =∠ADO +∠BDO =90°, ∴∠CDA =∠BDO , ∵OD =OB , ∴∠ODB =∠B , ∴∠AOF =∠ADC ; (2)∵OF ∥BD ,AO =OB , ∴AE =DE ,∴OE =12BD =12×8=4, ∵sin C =OD OC =13,∴设OD =x ,OC =3x , ∴OB =x , ∴CB =4x , ∵OF ∥BD , ∴△COF ∽△CBD , ∴OCBC =OFBD , ∴3x4x =OF 8,∴OF =6,∴EF =OF -OE =6-4=2.24.(6分)(2020北京)小云在学习过程中遇到一个函数y =16|x |(x 2-x +1)(x ≥-2). 下面是小云对其探究的过程,请补充完整:(1)当-2≤x <0时,对于函数y 1=|x |,即y 1=-x ,当-2≤x <0时,y 1随x 的增大而 减小 ,且y 1>0;对于函数y 2=x 2-x +1,当-2≤x <0时,y 2随x 的增大而 减小 ,且y 2>0;结合上述分析,进一步探究发现,对于函数y ,当-2≤x <0时,y 随x 的增大而 减小 .(2)当x ≥0时,对于函数y ,当x ≥0时,y 与x 的几组对应值如下表:x 0 12 1322 52 3… y116167161 954872…结合上表,进一步探究发现,当x ≥0时,y 随x 的增大而增大.在平面直角坐标系xOy 中,画出当x ≥0时的函数y 的图象.(3)过点(0,m )(m >0)作平行于x 轴的直线l ,结合(1)(2)的分析,解决问题:若直线l 与函数y =16|x |(x 2-x +1)(x ≥-2)的图象有两个交点,则m 的最大值是 73 .【解答】解:(1)当-2≤x <0时,对于函数y 1=|x |,即y 1=-x ,当-2≤x <0时,y 1随x 的增大而减小,且y 1>0;对于函数y 2=x 2-x +1,当-2≤x <0时,y 2随x 的增大而减小,且y 2>0;结合上述分析,进一步探究发现,对于函数y ,当-2≤x <0时,y 随x 的增大而减小.故答案为:减小,减小,减小.(2)函数图象如图所示:(3)∵直线l 与函数y =16|x |(x 2-x +1)(x ≥-2)的图象有两个交点, 观察图象可知,x =-2时,m 的值最大,最大值m =16×2×(4+2+1)=73, 故答案为7325.(5分)(2020北京)小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a .小云所住小区5月1日至30日的厨余垃圾分出量统计图:b.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段1日至10日11日至20日21日至30日平均数100 170 250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为173(结果取整数);(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 2.9倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s12,5月11日至20日的厨余垃圾分出量的方差为s22,5月21日至30日的厨余垃圾分出量的方差为s32.直接写出s12,s22,s32的大小关系.【解答】解:(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为100×10+170×10+250×10≈173(千克),30故答案为:173;≈2.9(倍),(2)该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的17360故答案为:2.9;(3)由小云所住小区5月1日至30日的厨余垃圾分出量统计图知,第1个10天的分出量最分散、第3个10天分出量最为集中,∴s12>s22>s32.26.(6分)(2020北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.【解答】解:(1)由题意y1=y2=c,∴x1=0,∵对称轴x=1,∴M,N关于x=1对称,∴x2=2,∴x1=0,x2=2时,y1=y2=c.(2)∵抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,当x1+x2=3,且y1=y2时,对称轴x=3,2.观察图象可知满足条件的值为:t≤3227.(7分)(2020北京)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线AC 上一动点,连接DE.过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明.【解答】解:(1)∵D是AB的中点,E是线段AC的中点,BC,∴DE∥BC,DE=12∵∠ACB=90°,∴∠DEC=90°,∵DF⊥DE,∴∠EDF=90°,∴四边形CEDF是矩形,∴DE=CF=1BC,2∴CF=BF=b,∵CE=AE=a,∴EF=√CF2+CE2=√a2+b2;(2)AE2+BF2=EF2.证明:过点B作BM∥AC,与ED的延长线交于点M,连接MF,则∠AED =∠BMD ,∠CBM =∠ACB =90°, ∵D 点是AB 的中点, ∴AD =BD ,在△ADE 和△BDM 中, {∠AED =∠BMD∠ADE =∠BDM AD =BD, ∴△ADE ≌△BDM (AAS ), ∴AE =BM ,DE =DM , ∵DF ⊥DE , ∴EF =MF , ∵BM 2+BF 2=MF 2, ∴AE 2+BF 2=EF 2.28.(7分)(2020北京)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB =1.给出如下定义:平移线段AB ,得到⊙O 的弦A 'B '(A ',B ′分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 得到⊙O 的长度为1的弦P 1P 2和P 3P 4,则这两条弦的位置关系是 P 1P 2∥P 3P 4 ;在点P 1,P 2,P 3,P 4中,连接点A 与点 P 3 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =√3x +2√3上,记线段AB 到⊙O 的“平移距离”为d 1,求d 1的最小值;(3)若点A 的坐标为(2,32),记线段AB 到⊙O 的“平移距离”为d 2,直接写出d 2的取值范围.【解答】解:(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是P1P2∥P3P4;在点P1,P2,P3,P4中,连接点A与点P3的线段的长度等于线段AB到⊙O的“平移距离”.故答案为:P1P2∥P3P4,P3.(2)如图1中,作等边△OEF,点E在x轴上,OE=EF=OF=1,设直线y=√3x+2√3交x轴于M,交y轴于N.则M(-2,0),N(0,2√3),过点E作EH⊥MN于H,∵OM=2,ON=2√3,∴tan∠NMO=√3,∴∠NMO=60°,,∴EH=EM•sin60°=√32.观察图象可知,线段AB到⊙O的“平移距离”为d1的最小值为√32(3)如图2中,以A为圆心1为半径作⊙A,作直线OA交⊙O于M,交⊙A于N,以OA ,AB 为邻边构造平行四边形ABDO ,以OD 为边构造等边△ODB ′,等边△OB ′A ′,则AB ∥A ′B ′,AA ′的长即为线段AB 到⊙O 的“平移距离”, 当点A ′与M 重合时,AA ′的值最小,最小值=OA -OM =52−1=32, 当点B 与N 重合时,AA ′的长最大,如图3中,过点A ′作A ′H ⊥OA 于H .由题意A ′H =√32,AH =12+52=3,∴AA ′的最大值=√(√32)2+32=√392, ∴32≤d 2≤√392.。
2020年北京市各区初三数学二模试题分类汇编-填空(11区)
例函数的另一交点 3. 坐标系中找原点 4. 坐标系中的图形变换的三角形面积之和海淀14 平面直角坐标系中三角形的对称变换和平移变换20函数1. 求自变量的取值范围2. 含参的点在函数上,求参数的值3. 函数图像 丰台15 利用函数图像找到合适的需求关系 21 二次函数 海淀1622 方程燕山15 房山15选取我国古代数学名著中经典例题 23四边形通过自己动手画图和平行四边形相关判定来解决问题,同时考查了对任意、存在、至少存在的理解。
燕山1624 逻辑推理题目条件的表述有一定新意,在获取信息时会有一定难度平谷16 生活中实际问题(利润最大化卖家角度)东城16生活中实际问题(买家角度)丰台16 生活中实际问题(买卖双角度) 25 找规律顺义16(没有加粗的题目:本类型只有一道)多边形考察方法:(燕山)13.如图,∠1,∠2,∠3均是五边形ABCDE 的外角,AE ∥BC ,则∠1+∠2+∠3= °(西城)12.如图,∠A =∠ABC =∠C =∠D =∠E ,点F 在AB 的延长线上,则∠CBF 的度数是__.(密云)12.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的四个外角,若∠A =120°,则∠1+∠2+∠3+∠4= °.作图(丰台)12.小明把一副三角板摆放在桌面上,如图所示,其中边BC ,DF 在同一条直线上,可以得到 ∥ ,依据 .ABEF CDB CD FE A已知:平面内一点A . 求作:∠A ,使得∠A =30°.作法:如图,(1)作射线AB ;(2)在射线AB 上取一点O ,以O 为圆心,OA 为半径作圆,与射线AB 相交于点C ; (3)以C 为圆心,OC 为半径作弧,与⊙O 交于点D ,作射线AD . 则∠DAB 即为所求的角.(密云)15.已知:点A 、点B 在直线MN 的两侧. (点A 到直线MN 的距离小于点B 到直线MN 的距离). 如图,(1)作点B 关于直线MN 的对称点C ;(2)以点C 为圆心, 的长为半径作⊙C ,交BC 于点E ;(3)过点A 作⊙C 的切线,交⊙C 于点F ,交直线MN 于点P ; (4)连接PB 、PC .根据以上作图过程及所作图形,下列四个结论中: ① PE 是⊙C 的切线; ② PC 平分EF ; ③ PB=PC=PF ; ④ ∠APN=2∠BPN . 所有正确结论的序号是 .(房山)16.下面是“作一个30°角”的尺规作图过程.请回答:该尺规作图的依据是_______________________________________ .BC 21代数式化简求值(房山)13. 如果4=+n m ,那么代数式nm mn m n m +2•)2++(22的值为 .不等式(丰台)10.不等式组21>-,≤1⎧⎨⎩x x 的所有整数解是 .数轴(顺义)11.比较大小:12______0.5(填“>”或“<”). (平谷)14. 用一个a 的值说明命题“a -一定表示一个负数”是错误的,a 的值可以是____________.(燕山)12.用一个a 的值说明命题“若21a >,则1a >”是假命题,这个值可以是a= .(密云)13. 已知“若a >b ,则ac <bc ”是真命题,请写出一个满足条件的c 的值是 .统计(西城)15.某调查机构对某地互联网行业从业情况进行调查统计,得到当地互联网行业从业人员年龄分布统计图和当地90后从事互联网行业岗位分布统计图:互联网行业从业人员年龄分布统计图 90后从事互联网行业岗位分布图对于以下四种说法,你认为正确的是 (写出全部正确说法的序号) . ① 在当地互联网行业从业人员中,90后人数占总人数的一半以上 ② 在当地互联网行业从业人员中,80前人数占总人数的13%③ 在当地互联网行业中,从事技术岗位的90后人数超过总人数的20% ④ 在当地互联网行业中,从事设计岗位的90后人数比80前人数少代数式(西城)9.若代数式12x -在实数范围内有意义,则x 的取值范围是_______. 5%其它产品8%15%19%41%设计市场运营技术(房山)9. 若分式1-1+x x 值为0,则x 的值是 .(密云)10.若在实数范围内有意义,则实数x 的取值范围是 .(平谷)11.如果二次根式 1x -有意义,那么x 的取值范围是 .(朝阳)9.若分式1xx-的值为0,则x 的值为 .方差(房山)14. 已知一组数据1x ,2x ,3x ,…,n x 的方差是2S ,那么另一组数据3-1x ,3-2x ,3-3x ,…,3-n x 的方差是 .(东城)10.在“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲同学成绩的方差是15,乙同学成绩的方差是3,由此推断甲、乙两人中成绩稳定的是 . (朝阳)15.甲、乙两个芭蕾舞团演员的身高(单位:cm )如下表: 甲 164 164 165 165 166 166 167 167 乙163163165165166166168168两组芭蕾舞团演员身高的方差较小的是 .(填“甲”或“乙”)面积(东城)13.已知圆锥的母线长为5cm ,侧面积为15πcm 2,则这个圆锥的底面半径为cm.(密云)11.如图,已知菱形ABCD ,通过测量、计算得菱形ABCD 的面积约为 cm 2.(结果保留一位小数)(燕山)11.右图中的四边形均为矩形,根据图形的面积关系,写出一个正确的等式: .4x -(房山)12. 如图,一个大正方形被分成两个正方形和两个一样的矩形,请根据图形,写出一个含有a,b的正确的等式______________________.(顺义)10.右图中的四边形均为矩形,根据图形,写出一个正确的等式:.(朝阳)14.如图1,将矩形ABCD和正方形EFGH 的分别沿对角线AC和EG剪开,拼成如图2所示的平行四边形PQMN,中间空白部分的四边形KRST是正方形.如果正方形EFGH与正方形KRST的面积分别是16和1,则矩形ABCD的面积为.(平谷)12.如图,直线l∥m,点A、B是直线l上两点,点C、D是直线m上两点,连接AC、AD、BC、BD.AD、BC交于点O,设△AOC的面积为1S,△BOD的面积为2S,则1S2S(=填>,<或号)(朝阳)11.右图中的四边形都是矩形,根据图形,写出一个正确的等式: .网格(燕山)14.如图,边长为1的小正方形网格中,点A,B,C,D,E均在格点上,半径为2的⊙A与BC交于点F,则tan∠DEF=.第14题图FDACBEbaaaqxpx第14题图1第14题图2(东城)15.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,则sin ∠BAC 的值为 .(顺义)12.如图,在每个小正方形的边长为1cm 的网格中,画出了一个过格点A ,B 的圆,通过测量、计算,求得该圆的周长是 cm .(结果保留一位小数)(平谷)10. 如图所示,边长为1正方形网格中,点A 、B 、C 落在格点上, 则∠ACB +∠ABC 的度数为 .圆(丰台)13.如图,AB 为O e 中,弦CD ⊥AB . 如果10 AB ,=8CD ,那么OE 的长为 .(海淀)10. 如图,点A , B , C 在O e 上,点D 在O e 内,则∠ACB _____∠ADB .(填“>”,“=”或“<”)角度(丰台)9.如图,已知∠AOB ,用量角器度量∠AOB 的度数为 °.(房山)10.如图,扇形AOB ,通过测量、计算,得弧AB 的长约为 cm.AB OBCD OAAB(π取3.14 ,结果保留一位小数)三角函数(海淀)13. 如图,在△ABC 中,AB =BC ,∠ABC =120°,过点B 作BD ⊥BC ,交AC 于点D ,若AD =1,则CD 的长度为_________.(顺义)13.如图,30MAN ∠=︒,点B 在射线AM 上,且2AB =,则点B 到射线AN 的距离是 .(顺义)14.如图,Rt △ABC 中,∠C=90°,在△ABC 外取点D ,E ,使AD=AB ,AE=AC ,且α+β=∠B ,连结DE .若AB =4,AC =3,则DE = .(密云)14. 如图,小军在A 时测量某树的影长时,日照的光线与地面的夹角恰好是60°,当他在B 时测量该树的影长时,日照的光线与地面的夹角是30°,若两次测得的影长之差DE 为4m ,则树的高度为 m .(结果精确到0.1,参考数据: , )(朝阳)10.在某一时刻,测得一根高为2m 的竹竿的影长为3m ,同时测得一根旗杆的影长为21m ,那么这根旗杆的高度为 m .因式分解/整式乘除(燕山)10.分解因式:34x x -= . (西城)10.因式分解:3-a a =_______. (海淀)9.单项式23x y 的系数是_________.(东城)9.分解因式:3a 3-6a 2+3a = . (顺义)9.分解因式:222mn m -= .(密云)9.分解因式:= .2312ax a -D CBAA BC DEαβABNβαEDCBA3 1.732≈2 1.414(平谷)9.因式分解:29x y y -= .概率(丰台)11.一个不透明的盒子中装有3个黄球,6个红球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是黄球的概率为 .(西城)16.一个袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中任意取出两个球,如果先放入甲盒的球是红球,则另一个球放入乙盒;如果先放入甲盒的球是黑球,则另一个球放入丙盒.重复上述过程,直到袋中所有的球都被放入盒中.(1)某次从袋中任意取出两个球,若取出的球都没有放入丙盒,则先放入甲盒的球的颜色是 .(2)若乙盒中最终有5个红球,则袋中原来最少有 个球. (海淀)11. 下表记录了一名篮球运动员在罚球线上投篮的结果:)(顺义)15.数学活动课上,老师拿来一个不透明的袋子,告诉学生里面装有4个除颜色外均相同的小球,并且球的颜色为红色和白色,让学生通过多次有放回的摸球,统计摸出红球和白球的次数,由此估计袋中红球和白球的个数.下面是全班分成的三个小组各摸球20次的结果,请你估计袋中有 个红球.(朝阳)12.下表显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果.“正面向上”的频率m n0.457 0.466 0.479 0.490 0.495 0.500 0.499 0.501 0.498 0.502 估计此次实验硬币“正面向上”的概率是 .相似(东城)12.在平面直角坐标系xOy 中,△ABO 三个顶点的坐标分别为A (-2,4),B (-4,0),O (0,0).以原点O 为位似中心,把这个三角形缩小为原来的12,得到△CDO ,则点A 的对应点C 的坐标是 .(西城)11.如图,D ,E 分别是△ABC 的边AB ,AC 的中点,若△ADE 的面积为1,则△ABC 的面积等于______.反比例/一次/坐标系(丰台)14.如图,正比例函数y =kx 的图象和反比例函数1=y x的图象交于A ,B 两点,分别过点A ,B 作y 轴的垂线,垂足为C ,D ,则△AOC 与△BOD 的面积之和为 .(西城) 13.如图,双曲线ky x=与直线y =mx 交于A ,B 两点,若点A 的坐标为(2,3),则点B 的坐标为_______.(海淀)12. 函数1(0)y kx k =+≠的图象上有两点1122(1,),(1,)P y P y -,12y y <,写出一个符合题意的k 的值:_______.(朝阳)13.若点A (4,-3),B (2,m )在同一个反比例函数的图象上,则m 的值为 .(海淀)14. 如图,在平面直角坐标系xOy 中,已知点(3,2)C ,将△ABC 关于直线x =4对称,得到111A B C △,则点C 的对应点1C 的坐标为________; 再将111A B C △向上平移一个单位长度,得到222A B C △,则点1C 的对应点2C 的坐标为_________.xyAOBAE BCD xy 123456781234O CBA(房山)11. 如图,若在象棋棋盘上建立直角坐标系,使“帥”位于点(-3,-2),“炮”位于点(-2.0),则“兵”位于的点的坐标为.函数(燕山)9.函数2y x =-中,自变量x 的取值范围是 .(东城)11.若点(,10)a 在直线31y x =+上,则a 的值等于 .(丰台)15.经济学家在研究市场供求关系时,一般用纵轴表示产品单价(自变量),而用横轴表示数量(因变量),下列两条曲线分别表示某种产品的数量与单价之间的供求关系,一条是厂商希望的供应曲线,另一条是客户希望的需求曲线.其中表示客户希望的需求曲线的是 (填入序号即可).二次函数(海淀)16. 如图,在平面直角坐标系xOy 中,有五个点(2,0)A ,(0,2)B -,(2,4)C -,(4,2)D -,(7,0)E , 将二次函数2(2)y a x m =-+(0)m ≠的图象记为W . 下列的判断中① 点A 一定不在W 上;② 点B ,C ,D 可以同时在W 上;③ 点C ,E 不可能同时在W 上. 所有正确结论的序号是 .xy12345678–1–2–3–41234567–1–2–3OEDCBA方程(燕山)15.《算法统宗》是中国古代数学名著,作者是明代数学家程大位.其中有一个“绳索量竿”问题:“一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,问索长几尺”.译文:现有一根杆和一条绳索,用绳索去量杆,绳索比杆子长5尺;如果将绳索对折后再去量竿,就比竿子短5尺,问绳索长几尺?注:一托=5尺设绳索长x尺,竿子长y尺,依题意,可列方程组为.(西城)14.如图,用10个大小、形状完全相同的小矩形,拼成一个宽为50 cm的大矩形,设每个小矩形的长为x cm,宽为y cm,则可以列出的方程组是______.(房山)15. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中记载了一个“折竹抵地”问题:“今有竹高二丈,末折抵地,去本六尺,问折者高几何?”译文:“有一根竹子,原高二丈(1丈=10尺),现被风折断,竹梢触地面处与竹根的距离为6尺,问折断处离地面的高度为多少尺?”如图,我们用点A,B,C分别表示竹梢,竹根和折断处,设折断处离地面的高度BC为x尺,则可列方程为_________________.(海淀)15.小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行18 km,小明每小时骑行12 km,他们完成全部行程所用的时间,小明比小华多半小时. 设他们这次骑行线路长为x km,依题意,可列方程为______________.(平谷)15.图1中的小矩形长为x,宽为y,将四个同样的小矩形拼成如图2的正方形,则可列出关于x,y的方程组为.四边形(燕山)16.四边形ABCD的对角线AC,BD交于点O,点M,N,P,Q分别为边AB,BC,CD,DA的中点.有下列四个推断,①对于任意四边形ABCD,四边形MNPQ都是平行四边形;②若四边形ABCD是平行四边形,则MP与NQ交于点O;③若四边形ABCD 是矩形,则四边形MNPQ 也是矩形; ④若四边形MNPQ 是正方形,则四边形ABCD 也一定是正方形. 所有正确推断的序号是 .(朝阳)16.正方形ABCD 的边长为4,点M ,N 在对角线AC 上(可与点A ,C 重合),MN =2,点P ,Q 在正方形的边上.下面四个结论中, ①存在无数个四边形PMQN 是平行四边形; ②存在无数个四边形PMQN 是菱形; ③存在无数个四边形PMQN 是矩形; ④至少存在一个四边形PMQN 是正方形. 所有正确结论的序号是 .逻辑推理(平谷)16.某商场在端午节前以1元/个的价格购进1000个粽子,现有以下三种销售方式:不加工直接卖,对产品进行粗加工再卖,精加工后再卖.受加工能力和气温影响,粗加工一天只能加工200个,细加工一天只能加工100个,两种加工不能同时进行,且最多加工三天. 加工方式 加工成本 销售单位 售价 直接卖 0 个2元/个粗加工 1元/个 包装袋(一袋5个) 30元/袋 精加工2.5元/个礼盒(一盒10个) 85元/盒假设所有粽子均能全部售出,则以下销售方式中利润最大的是 . 方案一:不加工直接销售;方案二:三天全部进行精加工,剩下的直接卖; 方案三:两天精加工,一天粗加工,剩下的直接卖; 方案四:两天粗加工,一天精加工,剩下的直接卖.(密云)16.某校举办初中生数学素养大赛,比赛共设四个项目:七巧拼图、趣题巧解、数学应用和魔方复原,每个项目得分都按一定百分比折算后记入总分,并规定总分在85分以上(含85分)设为一等奖.下表为甲、乙、丙三位同学的得分情况(单位:分),其中甲的部分信息不小心被涂黑了.七巧拼图 趣题巧解 数学应用魔方复原 折算后总分 甲 66 95 68 乙6680606870项目得分项目学生据悉,甲、乙、丙三位同学的七巧拼图和魔方复原两项得分折算后的分数之和均为20分.设趣题巧解和数学应用两个项目的折算百分比分别为x和y,请用含x和y的二元一次方程表示乙同学“趣题巧解和数学应用”两项得分折算后的分数之和为;如果甲获得了大赛一等奖,那么甲的“数学应用”项目至少获得分.(东城)16.某快餐店外卖促销,佳佳和点点想点外卖,每单需支付送餐费5元,每种餐食促销活动:(1)汉堡套餐5折优惠,每单仅限一套;(2)全部商品(包括打折套餐)满20元减4元,满40元减10元,满60元减15元,满80元减20元.佳佳想要汉堡套餐、鸡翅、冰激凌、蔬菜沙拉各一份;点点想要汉堡套餐、鸡块、冰激凌各一份,若他们把想要的都买全,最少要花_______元(含送餐费).(丰台)16.小志自主创业,在网上经营一家水果店,销售的水果中有盒装草莓、荔枝、山竹,价格依次为40元/盒、60元/盒、80元/盒.为增加销量,小志对这三种水果进行网上促销:一次性购买水果的总价超过100元时,超过..的部分打5折,每笔订单限购3盒.顾客支付成功后,小志会得到支付款的80%作为货款.(1)顾客一笔订单购买了草莓、荔枝、山竹各一盒,小志收到的货款是元;(2)小志在两笔..是元...订单中共售出原价180元的水果,那么他收到的货款最少找规律(顺义)16.对于题目:“如图1,平面上,正方形内有一长为12 、宽为6 的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=14.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.2甲、乙、丙的思路和结果均正确的是.。
11.统计:2020年北京市各区初三数学二模试题分类整理(学生版)
202006初三数学二模试题整理:统计(学生版)一、数据的分析—平均数、众数、中位数、方差(选填题)1.(202006二模东城8)五名学生投篮球,每人投10次,统计他们每人投中的次数.得到五个数据,并对数据进行整理和分析,给出如下信息:则下列选项正确的是A.可能会有学生投中了8个B.五个数据之和的最大值可能为30C.五个数据之和的最小值可能为20D.平均数m一定满足4.2≤m≤5.8之间2.(202006二模东城10)在“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲同学成绩的方差是15,乙同学成绩的方差是3,由此推断甲、乙两人中成绩稳定的是.3.(202006二模西城8)张老师将自己2019年10月至2020年5月的通话时长(单位:分钟)的有关数据整理如下:①②2020年4月与2020年5月,这两个月通话时长的总和为1100分钟根据以上信息,推断张老师这八个月的通话时长的中位数可能的最大值为(A)550(B)580(C)610(D)6304.(202006二模丰台6)一组数据1,2,2,3,5,将这组数据中的每一个数都加上a(0a),得到一组新数据1+a,2+a,2+a,3+a,5+a,这两组数据的以下统计量相等的是(A)平均数(B)众数(C)中位数(D)方差5.(202006二模顺义7)7.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每个品种的10棵产量的平均数x(单位:千克)及方差2S(单位:千克2)今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是(A)甲(B)乙(C)丙(D)丁6.(2020朝阳二模15)甲、乙两个芭蕾舞团演员的身高(单位:cm )如下表:甲 164 164 165 165 166 166 167 167 乙163163165165166166168168 两组芭蕾舞团演员身高的方差较小的是 .(填“甲”或“乙”)二、数据的描述(统计图与统计表)(选填题)1.(202006西城二模15) 某调查机构对某地互联网行业从业情况进行调查统计,得到当地互联网行业从业人员年龄分布统计图和当地90后从事互联网行业岗位分布统计图:互联网行业从业人员年龄分布统计图 90后从事互联网行业岗位分布图对于以下四种说法,你认为正确的是 (写出全部正确说法的序号) . ① 在当地互联网行业从业人员中,90后人数占总人数的一半以上 ② 在当地互联网行业从业人员中,80前人数占总人数的13%③ 在当地互联网行业中,从事技术岗位的90后人数超过总人数的20% ④ 在当地互联网行业中,从事设计岗位的90后人数比80前人数少2.(202006二模房山5)李老师是一位运动达人,他通过佩戴智能手环来记录自己一个 月(30天)每天所走的步数,并绘制成如下统计表:在每天所走的步数这组数据中,众数和中位数分别是( )A .1.6,1.5B .1.7,1.6C .1.7,1.7D .1.7,1.555%其它产品8%12%15%19%41%设计市场运营技术80前80后41%90后56%3.(2020平谷二模7)某校开设了冰球选修课,12名同学被分成甲、乙两组进行训练,他们的身高(单位:cm )如下表所示:设两队队员身高的平均数依次为甲x ,乙x ,方差依次为2甲s ,2乙s ,下列关系中完全正 确的是A .甲x =乙x ,2甲s <2乙s B .甲x =乙x ,2甲s >2乙s C .甲x <乙x ,2甲s <2乙sD .甲x >乙x ,2甲s >2乙s4.(20200燕山二模8)“实际平均续航里程”是指电动汽车的行驶总里程与充电次数的比值,是反映电动汽车性能的重要指标.某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程”,收集了使用该型号电动汽车1年以上的部分客户的相关数据,按年龄不超过40岁和年龄在40岁以上将客户分为A ,B 两组,从A ,B 组各抽取10位客户的电动汽车的“实际平均续航里程”数据整理成下图,其中“⊙”表示A 组的客户,“*”表示B 组的客户.下列推断不正确的是A .A 组客户的电动汽车的“实际平均续航里程”的最大值低于B 组 B .A 组客户的电动汽车的“实际平均续航里程”的方差低于B 组C .A 组客户的电动汽车的“实际平均续航里程”的平均值低于B 组D .这20位客户的电动汽车的“实际平均续航里程”的中位数落在B 组**********7040506045040035030025030实际平均续航里程/km/岁O10202005.(2020平谷二模8)如图,是某企业甲、乙两位员工的能力测试结果网状图,以O为圆心的五个同心圆分别代表能力水平的五个等级,由低到高分别赋分1至5分,由原点出发的五条线段分别指向能力水平的五个维度,网状图能够更加直观的描述测试者的优势和不足,观察图形,有以下几个推断:①甲和乙的动手操作能力都很强;②缺少探索学习的能力是甲自身的不足;③与甲相比,乙需要加强与他人的沟通和合作能力;④乙的综合评分比甲要高.其中合理的是(A)①③(B)②④(C)①②③(D)①②③④三、统计推断(文字描述)(选填题)1.(2020朝阳二模8)在一次生活垃圾分类知识竞赛中,某校七、八年级各有100名学生参加,已知七年级男生成绩的优秀率为40%,女生成绩的优秀率为60%;八年级男生成绩的优秀率为50%,女生成绩的优秀率为70%.对于此次竞赛的成绩,下面有三个推断:①七年级男生成绩的优秀率小于八年级男生成绩的优秀率;②七年级学生成绩的优秀率一定小于八年级学生成绩的优秀率;③七、八年级所有男生成绩的优秀率一定小于七、八年级所有女生成绩的优秀率.所有合理推断的序号是(A)①②(B)①③(C)②③(D)①②③四、统计(解答题)1.(2020海淀二模22)坚持节约资源和保护环境是我国的基本国策,国家要求加强生活垃 圾分类回收与再生资源回收有效衔接,提高全社会资源产出率,构建全社会的资源循环利用体系.图1反映了2014-2019年我国生活垃圾清运量的情况.图2反映了2019年我国G 市生活垃圾分类的情况.图 2根据以上材料回答下列问题:(1)图2中,n 的值为________;(2)2014-2019年,我国生活垃圾清运量的中位数是________;(3)据统计,2019年G 市清运的生活垃圾中可回收垃圾约为0.02亿吨,所创造的经济总价值约为40亿元.若2019年我国生活垃圾清运量中,可回收垃圾的占比与G 市的占比相同,根据G 市的数据估计2019年我国可回收垃圾所创造的经济总价值是多少.图 10 2.52.32.22.01.91.83.22.41.60.82019201820172016201520142014-2019年我国生活垃圾清运量统计图清运量/亿吨年份厨余垃圾 55%其他垃圾 n %有毒有害垃圾7 %20 %2.(2020丰台二模24)2020年3月至5月,某校开展了一系列居家阅读活动. 学生利用“宅家”时光,在书海中遨游,从阅读中获得精神慰藉和自我提升. 为了解学生居家阅读的情况,学校分别随机抽取了七、八两个年级各50名学生,进行居家阅读情况调查.下面给出了部分数据信息:a. 两个年级学生平均每周阅读时长x(单位:小时)的频数分布直方图如下(数据分成4组:0≤x<3,3≤x<6,6≤x<9,9≤x≤12):图1 图2b. 七年级学生居家阅读每周平均时长在6≤x<9这一组的是:6 67 7 7 7 78 8 8 8 8 8 8 8 8 8c. 两个年级学生平均每周阅读时长的平均数、中位数、众数、方差如下:平均数中位数众数方差七年级 6.3m87.0八年级 6.077 6.3根据以上信息,回答下列问题:(1)补全图2;(2)写出表中m的值;(3)返校后,学校计划将平均每周阅读时长不低于9小时的学生授予“阅读之星”称号.小丽说:“根据频数直方图中的数据信息,估计七年级约有20%的学生获得该称号,八年级约有18%的学生获得该称号,所以七年级获得该称号的人数一定比八年级得该称号的人数多.”你认为她的说法;(填入“正确”或“错误”)(4)请你结合数据对两个年级的居家阅读情况进行评价.3.(2020密云二模24)“垃圾分类就是新时尚”.树立正确的垃圾分类观念,促进青少年养成良好的文明习惯,对于增强公共意识,提升文明素质具有重要意义.为了调查学生对垃圾分类知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制,单位:分),并对数据(成绩)进行了整理、描述和分析,下面给出了部分信息.a.甲、乙两校学生样本成绩频数分布表及扇形统计图如下:甲校学生样本成绩频数分布表(表1)乙校学生样本成绩扇形统计图(图1)成绩m(分)频数频率50≤m<60a0.1060≤m<70b c70≤m<8040.2080≤m<9070.3590≤m≤1002d合计20 1.0b.甲、乙两校学生样本成绩的平均分、中位数、众数、方差如下表所示:(表2)学校平均分中位数众数方差甲76.77789150.2乙78.180n135.3其中,乙校20名学生样本成绩的数据如下:54 72 62 91 87 69 88 79 80 6280 84 93 67 87 87 90 71 68 91请根据所给信息,解答下列问题:(1)表1中c=;表2中的众数n=;(2)乙校学生样本成绩扇形统计图(图1)中,70≤m<80这一组成绩所在扇形的圆心角度数是度;(3)在此次测试中,某学生的成绩是79分,在他所属学校排在前10名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是;(4)若乙校1000名学生都参加此次测试,成绩80分及以上为优秀,请估计乙校成绩优秀的学生约为人.4.(2020燕山二模25)某学校八、九年级各有学生200人,为了提高学生的身体素质,学校开展了主题为“快乐运动,健康成长”的系列体育健身活动.为了了解学生的运动状况,从八、九年级各随机抽取40名学生进行了体能测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.(说明:成绩80分及以上为优秀,70--79分为良好,60--69分为合格,60分以下为不合格)a.八年级学生成绩的频数分布直方图如下(数据分为五组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)/分b.八年级学生成绩在70≤x<80这一组的是:70 71 73 73 73 74 76 77 78 79c.九年级学生成绩的平均数、中位数、众数、优秀率如下:Array根据以上信息,回答下列问题:(1) 在此次测试中,小腾的成绩是74分,在年级排名是第17名,由此可知他是年级的学生(填“八”,或“九”);(2) 根据上述信息,推断年级学生运动状况更好,理由为;(至少从两个不同的角度说明推断的合理性)(3) 假设八、九年级全体学生都参加了此次测试,①预估九年级学生达到优秀的约有人;②如果年级排名在前70名的学生可以被评选为“运动达人”,预估八年级学生至少要达到分才可以入选.5.(2020朝阳二模22)为了解某地区企业信息化发展水平,从该地区中随机抽取50家企业调研,针对体现企业信息化发展水平的A和B两项指标进行评估,获得了它们的成绩(十分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a. A项指标成绩的频数分布直方图如下(数据分成6组:4≤x<5,5≤x<6,6≤x<7,7≤x<8,8≤x<9,9≤x≤10):b. A项指标成绩在7≤x<8这一组的是:c. A,B两项指标成绩的平均数、中位数、众数如下:根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次调研评估中,某企业A项指标成绩和B项指标成绩都是7.5分,该企业成绩排名更靠前的指标是(填“A”或“B”),理由是;(3)如果该地区有的500家企业,估计A项指标成绩超过7.68分的企业数量.平均数中位数众数A项指标成绩7.37m8.2B项指标成绩7.217.386.(2020平谷二模24)疫情期间某校学生积极观看网络直播课程,为了了解全校500名学生观看网络直播课程的情况,随机抽取50名学生,对他们观看网络直播课程的节数进行收集,并对数据进行了整理、描述和分析,下面给出了部分信息.观看直播课节数的频数分布表观看直播课节数的频数分布直方图节数x 频数频率0 ≤ x < 1080.1610 ≤ x < 20100.2020 ≤ x < 3016b30 ≤ x < 40a0.24x ≥ 4040.08总数501其中,节数在20 ≤ x < 30这一组的数据是:20 20 21 22 23 23 23 23 25 26 26 26 27 28 28 29请根据所给信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)随机抽取的50名学生观看直播课节数的中位数是;(4)请估计该校学生中观看网络直播课节数不低于30次的约有__人.7. (2020房山二模24)GDP是指一个国家(或地区)在一定时期内生产活动的最终成果,常被公认为是衡量经济状况的最佳指标. 截止2020年4月27日,对除西藏外的30个省区市第一季度有关GDP的数据进行收集、整理、描述和分析.下面给出了部分信息:a.各省区市GDP数据的频数分布直方图,如图24-1(数据分成6组,各组是0<x≤4,4<x≤8,8<x≤12,12<x≤16,16<x≤20,20<x≤24):图24-1b.2020年第一季度GDP数据在8≤<4x这一组的是:4.6 4.95.0 5.1 5.3 5.46.37.4 7.5 7.8 7.8c.30个省区市2020年第一季度及2019年GDP增速排名统计图,如图24-2:d.北京2020年第一季度GDP数据约为7.5千亿,GDP增速排名为第22.根据以上信息,回答下列问题:(1)在30个省区市中,北京2020年第一季度GDP的数据排名第_______.(2)在30个省区市2020年第一季度及2019年GDP增速排名统计图中,请在图中用“○”圈出代表北京的点.(3)2020年第一季度GDP增速排名位于北京之后的几个省份中,2019年GDP增速排名的最好成绩是第_______.(4)下列推断合理的是_______.①与2019年GDP增速排名相比,在疫情冲击下,2020年全国第一季度增速排名,部分省市有较大下滑,如D代表的湖北排名下滑最多.②A、B、C分别代表的新疆、广西、青海位于西部地区,多为人口净流出或少量净流入,经济发展主要依靠本地劳动力供给,疫后复工复产效率相对较高,相对于2019年GDP增速排名位置靠前.图24-28.(2020东城二模23)教育未来指数是为了评估教育系统在培养学生如何应对快速多变的未来社会方面所呈现的效果. 现对教育未来指数得分前35名的国家和地区的有关数据进行收集、整理、描述和分析后,给出了部分信息.a.教育未来指数得分的频数分布直方图(数据分成7组:20≤x< 30,30≤x<40,40≤x<50,50 ≤x<60,60≤x<70,70≤x<80,80 ≤x≤90);b.未来教育指数得分在60≤x<70这一组的是:61.2 62.8 64.6 65.2 67.2 67.3 67.5 68.5c.35个国家的人均国内生产总值和教育未来指数得分情况统计图d.中国和中国香港的未来教育指数得分分别为32.9和68.5.(以上数据来源于《国际统计年鉴(2018)》和国际在线网)根据以上信息,回答下列问题:(1)中国香港的教育未来指数得分排名世界第;(2)在35个国家和地区的人均国内生产总值和国家教育未来指数得分情况统计图中,包括中国香港在内的少数几个国家和地区所对应的点位于虚线l的上方,请在图中用“○”画出代表中国香港的的点;(3)在教育未来指数得分比中国高的国家和地区中,人均国内生产总值的最大值约为万美元;(结果保留一位小数)(4)下列推断合理的是.(只填序号即可)①相比于点A,C所代表的国家和地区,中国的教育未来指数得分还有一定差距,“十三五”规划提出"教育优先发展,教育强则国家强"的任务,进一步提高国家教育水平;②相比于点B,C所代表的国家和地区,中国的人均国内生产总值还有一定差距,中国提出"决胜全国建成小康社会"的奋斗目标,进一步提高人均国内生产总值.9.(2020西城二模22)某医院医生为了研究该院某种疾病的诊断情况,需要调查来院就诊的病人的两个生理指标x ,y ,于是他分别在这种疾病的患者和非患者中,各随机选取20人作为调查对象,将收集到的数据整理后,绘制统计图如下:注“●”表示患者,“▲”表示非患者.根据以上信息,回答下列问题:(1)在这40名被调查者中,① 指标y 低于0.4的有 人;② 将20名患者的指标x 的平均数记作1x ,方差记作21s ,20名非患者的指标x 的平均数记作2x ,方差记作22s ,则1x 2x ,21s 22s(填“>”,“=”或“<”) ;(2)来该院就诊的500名未患这种疾病的人中,估计指标x 低于0.3的大约有 人;(3)若将“指标x 低于0.3,且指标y 低于0.8”作为判断是否患有这种疾病的依据,则 发生漏判的概率是 .指标x 指标10.(2020顺义二模22)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药,12周后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者;同时记录了服药患者在4周、8周、12周后的指标z 的改善情况,并绘制成条形统计图.根据以上信息,回答下列问题: (1)从服药的50名患者中随机选出一人,求此人指标x 的值大于1.7的概率;(2)设这100名患者中服药者指标y 数据的方差为21S ,未服药者指标y 数据的方差为22S ,则21S 22S ;(填“>”、“=”或“<” )(3)对于指标z 的改善情况,下列推断合理的是 .①服药4周后,超过一半的患者指标z 没有改善,说明此药对指标z 没有太大作用; ②在服药的12周内,随着服药时间的增长,对指标z 的改善效果越来越明显.。
2020年北京市中考数学试卷(有详细解析)
2020年北京市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共8小题,共16.0分)1.如图是某几何体的三视图,该几何体是()A. 圆柱B. 圆椎C. 三棱柱D. 长方体2.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A. 0.36×105B. 3.6×105C. 3.6×104D. 36×1033.如图,AB和CD相交于点O,则下列结论正确的是()A. ∠1=∠2B. ∠2=∠3C. ∠1>∠4+∠5D. ∠2<∠54.下列图形中,既是中心对称图形也是轴对称图形的是()A. B.C. D.5.正五边形的外角和为()A. 180°B. 360°C. 540°D. 720°6.实数a在数轴上的对应点的位置如图所示,若实数b满足−a<b<a,则b的值可以是()A. 2B. −1C. −2D. −37.不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A. 14B. 13C. 12D. 238.有一个装有水的容器,如图所示,容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系二、填空题(本大题共8小题,共16.0分)9. 若代数式1x−7有意义,则实数x 的取值范围是______.10. 已知关于x 的方程x 2+2x +k =0有两个相等的实数根,则k 的值是______. 11. 写出一个比√2大且比√15小的整数______.12. 方程组{x −y =13x +y =7的解为______.13. 在平面直角坐标系xOy 中,直线y =x 与双曲线y =mx 交于A ,B 两点.若点A ,B 的纵坐标分别为y 1,y 2,则y 1+y 2的值为______.14. 如图,在△ABC 中,AB =AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明△ABD≌△ACD ,这个条件可以是______(写出一个即可).15. 如图所示的网格是正方形网格,A ,B ,C ,D 是网格线交点,则△ABC 的面积与△ABD 的面积的大小关系为:S △ABC ______S △ABD (填“>”,“=”或“<”).16. 如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小,如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一个购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.三、解答题(本大题共12小题,共68.0分) 17. 计算:(13)−1+√18+|−2|−6sin45°.18.解不等式组:{5x−3>2x, 2x−13<x2.19.已知5x2−x−1=0,求代数式(3x+2)(3x−2)+x(x−2)的值.20.已知:如图,△ABC为锐角三角形,AB=AC,CD//AB.求作:线段BP,使得点P在直线CD上,且∠ABP=12∠BAC.作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵CD//AB,∴∠ABP=______.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=12∠BAC(______)(填推理的依据).∴∠ABP=12∠BAC.21.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG//EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.22.在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.23.如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD于点E,交CD于点F.(1)求证:∠ADC=∠AOF;(2)若sinC=13,BD=8,求EF的长.24.小云在学习过程中遇到一个函数y=16|x|(x2−x+1)(x≥−2).下面是小云对其探究的过程,请补充完整:(1)当−2≤x<0时,对于函数y1=|x|,即y1=−x,当−2≤x<0时,y1随x的增大而______,且y1>0;对于函数y2=x2−x+1,当−2≤x<0时,y2随x的增大而______,且y2>0;结合上述分析,进一步探究发现,对于函数y,当−2≤x<0时,y随x的增大而______.x0121322523…y0116167161954872…结合上表,进一步探究发现,当x≥0时,随的增大而增大.在平面直角坐标系xOy中,画出当x≥0时的函数y的图象.(3)过点(0,m)(m>0)作平行于x轴的直线l,结合(1)(2)的分析,解决问题:若直线l与函数y=16|x|(x2−x+1)(x≥−2)的图象有两个交点,则m的最大值是______.25.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a.小云所住小区5月1日至30日的厨余垃圾分出量统计图:时段1日至10日11日至20日21日至30日平均数100170250);(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的______倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s12,5月11日至20日的厨余垃圾分出量的方差为s22,5月21日至30日的厨余垃圾分出量的方差为s32.直接写出s12,s22,s32的大小关系.26.在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.27.在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线AC上一动点,连接DE.过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明.28.在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A′B′(A′,B′分别为点A,B的对应点),线段AA′长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是______;在点P1,P2,P3,P4中,连接点A与点______的线段的长度等于线段AB到⊙O的“平移距离”;(2)若点A,B都在直线y=√3x+2√3上,记线段AB到⊙O的“平移距离”为d1,求d1的最小值;),记线段AB到⊙O的“平移距离”为d2,直接写出d2的(3)若点A的坐标为(2,32取值范围.答案和解析1.D解:该几何体是长方体,2.C解:36000=3.6×104,3.A解:A.∵∠1和∠2是对顶角,∴∠1=∠2,故A正确;B.∵∠2=∠A+∠3,∴∠2>∠3,故B错误;C.∵∠1=∠4+∠5,故③错误;D.∵∠2=∠4+∠5,∴∠2>∠5;故D错误;4.D解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、既是中心对称图形,又是轴对称图形,符合题意.5.B解:任意多边形的外角和都是360°,故正五边形的外角和的度数为360°.6.B解:因为1<a<2,所以−2<−a<−1,因为−a<b<a,所以b只能是−1.7.C解:列表如下:由表可知,共有种等可能结果,其中两次记录的数字之和为3的有2种结果, 所以两次记录的数字之和为3的概率为24=12,8. B解:设容器内的水面高度为h ,注水时间为t ,根据题意得: ℎ=0.2t +10,∴容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系.9. x ≠7解:若代数式1x−7有意义,则x −7≠0, 解得:x ≠7. 10. 1解:∵关于x 的方程x 2+2x +k =0有两个相等的实数根, ∴△=22−4×1×k =0, 解得:k =1.11. 2或3(答案不唯一)解:∵1<√2<2,3<√15<4,∴比√2大且比√15小的整数2或3(答案不唯一).12. {x =2y =1解:{x −y =1 ①3x +y =7 ②,①+②得:4x =8, 解得:x =2,把x =2代入①得:y =1, 则方程组的解为{x =2y =1.13. 0解:∵直线y =x 与双曲线y =mx 交于A ,B 两点, ∴联立方程组得:{y =xy =m x,解得:{x 1=√m y 1=√m ,{x 2=−√my 2=−√m,∴y 1+y 2=0,14. BD =CD解:∵AB =AC , ∴∠ABD =∠ACD , 添加BD =CD ,∴在△ABD 与△ACD 中 {AB =AC∠ABD =∠ACD BD =CD, ∴△ABD≌△ACD(SAS), 15. =解:∵S △ABC =12×2×4=4,S △ABD =2×5−12×5×1−12×1×3−12×2×2=4, ∴S △ABC =S △ABD ,16. 丙、丁、甲、乙解:根据题意,丙第一个购票,只能购买3,1,2,4号票, 此时,3号左边有6个座位,4号右边有5个座位,即甲、乙购买的票只要在丙的同侧,四个人购买的票全在第一排,①第二个丁可以购买3号左边的5个座位,另一侧的座位甲和乙购买, 即丙(3,1,2,4)、丁(5,7,9,11,13)、甲(6,8)、乙(10,12) 或丙(3,1,2,4)、丁(5,7,9,11,13)、乙(6,8)、甲(10,12);②第二个由甲或乙购买,此时,只能购买5,7号票,第三个购买的只能是丁,且只能购买6,8,10,12,14号票,此时,四个人购买的票全在第一排,即丙(3,1,2,4)、甲(5,7)、丁(6,8,10,12,14)、乙(9,11) 或丙(3,1,2,4)、乙(5,7)、丁(6,8,10,12,14)、甲(9,11),因此,第一个是丙购买票,丁只要不是最后一个购买票的人,都能使四个人购买的票全在第一排,17. 解:原式=3+3√2+2−6×√22=3+3√2+2−3√2 =5.18. 解:解不等式5x −3>2x ,得:x >1,解不等式2x−13<x2,得:x<2,则不等式组的解集为1<x<2.19.解:(3x+2)(3x−2)+x(x−2)=9x2−4+x2−2x=10x2−2x−4,∵5x2−x−1=0,∴5x2−x=1,∴原式=2(5x2−x)−4=−2.20.∠BPC同弧所对的圆周角等于圆心角的一半解:(1)如图,即为补全的图形;(2)证明:∵CD//AB,∴∠ABP=∠BPC.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=12∠BAC(同弧所对的圆周角等于圆心角的一半),∴∠ABP=12∠BAC.21.解:(1)∵四边形ABCD是菱形,∴BD⊥AC,∠DAO=∠BAO,∵E是AD的中点,∴AE=OE=12AD,∴∠EAO=∠AOE,∴∠AOE=∠BAO,∴OE//FG,∵OG//EF,∴四边形OEFG 是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴四边形OEFG 是矩形;(2)∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,∴OE=AE=12AD=5;由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF=√AE2−EF2=3,∴BG=AB−AF−FG=10−3−5=2.22.解:(1)∵一次函数y=kx+b(k≠0)的图象由直线y=x平移得到,∴k=1,将点(1,2)代入y=x+b,得1+b=2,解得b=1,∴一次函数的解析式为y=x+1;(2)把点(1,2)代入y=mx求得m=2,∵当x>1时,对于x的每一个值,函数y= mx(m≠0)的值大于一次函数y=x+1的值,∴m≥2.23.解:(1)连接OD,∵AB为⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OF⊥AD,∴OF//BD,∴∠AOF=∠B,∵CD是⊙O的切线,D为切点,∴∠CDO=90°,∴∠CDA+∠ADO=∠ADO+∠BDO=90°,∴∠CDA=∠BDO,∵OD=OB,∴∠ODB=∠B,∴∠AOF=∠ADC;(2)∵OF//BD,AO=OB,∴AE=DE,∴OE=12BD=12×8=4,∵sinC=ODOC =13,∴设OD=x,OC=3x,∴OB=x,∴CB=4x,∵OF//BD,∴△COF∽△CBD,∴OCBC =OFBD,∴3x4x =OF8,∴OF=6,∴EF=OF−OE=6−4=2.24.减小减小减小73解:(1)当−2≤x<0时,对于函数y1=|x|,即y1=−x,当−2≤x<0时,y1随x的增大而减小,且y1>0;对于函数y2=x2−x+1,当−2≤x<0时,y2随x的增大而减小,且y2>0;结合上述分析,进一步探究发现,对于函数y,当−2≤x<0时,y 随x的增大而减小.故答案为:减小,减小,减小.(2)函数图象如图所示:(3)∵直线l与函数y=16|x|(x2−x+1)(x≥−2)的图象有两个交点,观察图象可知,x=−2时,m的值最大,最大值m=16×2×(4+2+1)=73,故答案为7325.173 2.9解:(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为100×10+170×10+250×1030≈173(千克),故答案为:173;(2)该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的17360≈2.9(倍),故答案为:2.9;(3)由小云所住小区5月1日至30日的厨余垃圾分出量统计图知,第1个10天的分出量最分散、第3个10天分出量最为集中,∴s12>s22>s32.26.解:(1)由题意y1=y2=c,∴x1=0,∵对称轴x=1,∴M,N关于x=1对称,∴x2−2,∴x1=0,x2=2时,y1=y2=c.(2)∵抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,∴t≤32.27.解:(1)∵D是AB的中点,E是线段AC的中点,∴DE//BC,DE=12BC,∵∠ACB=90°,∴∠DEC=90°,∵DF⊥DE,∴∠EDF=90°,∴四边形CEDF是矩形,∴DE=CF=12BC,∴CF=BF=b,∵CE=AE=a,∴EF=√CF2+CE2=√a2+b2;(2)AE2+BF2=EF2.证明:过点B作BM//AC,与ED的延长线交于点M,连接MF,则∠AED=∠BMD,∠CBM=∠ACB=90°,∵D点是AB的中点,∴AD=BD,在△ADE和△BDM中,{∠AED=∠BMD ∠ADE=∠BDM AD=BD,∴△ADE≌△BDM(AAS),∴AE=BM,DE=DM,∵DF⊥DE,∴EF=MF,∵BM2+BF2=MF2,∴AE2+BF2=EF2.28.P1P2//P3P4P3解:(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是P1P2//P3P4;在点P1,P2,P3,P4中,连接点A与点P3的线段的长度等于线段AB到⊙O 的“平移距离”.故答案为:P 1P 2//P 3P 4,P 3.(2)如图1中,作等边△OEF ,点E 在x 轴上,OE =EF =OF =1,设直线y =√3x +2√3交x 轴于M ,交y 轴于N.则M(−2,0),N(0,2√3), 过点E 作EH ⊥MN 于H ,∵OM =2,ON =2√3,∴tan∠NMO =√3,∴∠NMO =60°,∴EH =EM ⋅sin60°=√32, 观察图象可知,线段AB 到⊙O 的“平移距离”为d 1的最小值为√32. (3)如图2中,作直线OA 交⊙O 于M ,N 过点O 作PQ ⊥OA 交,交⊙O 于P ,Q .以OA ,AB 为邻边构造平行四边形ABDO ,以OD 为边构造等边△ODB′,等边△OB′A′,则AB//A′B′,AA′的长即为线段AB 到⊙O 的“平移距离”,当点A′与M 重合时,AA′的值最小,最小值=OA −OM =52−1=32,当点A′与P 或Q 重合时,AA′的值最大最大值=√12+(52)2=√292, ∴32≤d 2≤√292.。
2020年北京市各区初三数学二模试题分类汇编-不等式(组)几综汇编
2020数学二模几何综合题汇编2020年几何综合题主要涉及的考点:1、在特殊图形(等腰/等边三角形、直角三角形、正方形、菱形)的背景下,根据题目意思补全图形(旋转、轴对称、角平分线、垂直平分线、特殊角的画法)2、利用三角形或四边形内角和或外角定理对判定两角相等或者进行角度的计算3、两条线段的数量关系:(1)已知两条线段的数量关系,然后去证明(2)先判断两条线段的数量关系,然后再证明。
一般是相等的关系或者是放在含有特殊角的直角三角形中得到的数量关系4、三条线段的数量关系:用等式表示出三条线段的数量关系,然后证明。
通过截长补短的方法构造全等三角形,将三条线段或者等长线段放在一个特殊三角形中。
学生需掌握的基本知识点:1、旋转、轴对称、角平分线、垂直平分线、特殊角的画法2、特殊图形(等腰/等边三角形、直角三角形、等腰直角三角形、正方形、菱形)的基本性质3、图形变换(旋转、轴对称)的性质4、全等三角形和相似三角形的判定与性质5、解直角三角形(特殊角的三角函数、勾股定理)推荐题目:1、西城:以正方形为背景,在熟练掌握正方形的性质下,不仅考查了对于角度相等的证明,还考察了两条线段的数量关系的判断与证明。
2、平谷:考查了旋转变换的画法与性质和简单的角度计算,在第三问证明线段相等时有给出几种想法引导学生思考,让学生有抓手。
3、房山:这道题中涉及到从特殊到一般的研究方法,而且一般情况下的探究也给出了几种方法进行引导。
东城27. 如图,在Rt △ABC 中,∠ABC =90°,将CA 绕点C 顺时针旋转45°得到CP ,点A 关于直线CP 的对称点为D ,连接AD 交直线CP 于点E ,连接CD . (1)根据题意补全图形; (2)判断△ACD 的形状并证明;(3)连接BE ,用等式表示线段AB ,BC ,BE 之间的数量关系,并证明. 温馨提示:在解决第(3)问的过程中,如果你遇到困难,可以参考下面几种解法的主要思路.解法1的主要思路:延长BC 至点F ,使CF =AB ,连接EF ,可证△ABE ≌△CEF ,再证△BEF 是等腰直角 三角形.解法2的主要思路:过点A 作AM ⊥BE 于点M ,可证△ABM 是等腰直角三角形,再证△ABC ∽△AME . 解法3的主要思路:过点A 作AM ⊥BE 于点M ,过点C 作CN ⊥BE 于点N ,设BN =a ,EN =b ,用含a 或b 的式子表示出AB ,BC . 海淀27.如图1,等边三角形ABC 中,D 为BC 边上一点,满足BD CD <, 连接AD , 以点A 为中心,将射线AD 顺时针...旋转60°,与△ABC 的外角平分线BM 交于点E . (1)依题意补全图1; (2)求证:AD =AE ;(3)若点B 关于直线AD 的对称点为F ,连接CF .① 求证:AE ∥CF ;② 若BE CF AB +=成立,直接写出∠BAD 的度数为__________°.AB CAB CM备用图图 1M燕山27.已知菱形ABCD 中,∠A =60°,点E 为边AD 上一个动点(不与点A ,D 重合),点F 在边DC 上,且AE =DF ,将线段DF 绕着点D 逆时针旋转120°得线段DG ,连接GF ,BF ,EF .(1) 依题意补全图形;(2) 求证:△BEF 为等边三角形;(3) 用等式表示线段BG ,GF ,CF 的数量关系,并证明.CBADE27.已知:MN 是经过点A 的一条直线,点C 是直线MN 左侧的一个动点,且满足60°<∠CAN <120°,连接AC ,将线段AC 绕点C 顺时针旋转60°,得到线段CD ,在直线MN 上取一点B ,使∠DBN=60°.(1)若点C 位置如图1所示.① 依据题意补全图1; ② 求证:∠CDB=∠MAC ;(2)连接BC ,写出一个BC 的值,使得对于任意一点C ,总有AB+BD=3,并证明. 平谷备用图图127.已知:在△ABC 中,∠ABC =90°,AB=BC ,点D 为线段BC 上一动点(点D 不与点B 、C 重合),点B 关于直线AD 的对称点为E ,作射线DE ,过点C 作BC 的垂线,交射线DE 于点F ,连接AE .(1)依题意补全图形;(2)AE 与DF 的位置关系是 ;(3)连接AF ,小昊通过观察、实验,提出猜想:发现点D 在运动变化的过程中,∠DAF 的度数始终保持不变,小昊 把这个猜想与同学们进行了交流,经过测量,小昊猜想 ∠DAF = °,通过讨论,形成了证明该猜想的两种 想法:想法1:过点A 作AG ⊥CF 于点G ,构造正方形ABCG ,然后可证△AFG ≌△AFE ……想法2:过点B 作BG ∥AF ,交直线FC 于点G ,构造□ABGF ,然后可证△AFE ≌△BGC ……请你参考上面的想法,帮助小昊完成证明(一种方法即可).B27. 在正方形ABCD 中,E 是CD 边上一点(CE >DE ),AE ,BD 交于点F .(1)如图1,过点F 作GH ⊥AE ,分别交边AD ,BC 于点G ,H .求证:∠EAB =∠GHC ;(2)AE 的垂直平分线分别与AD , AE , BD 交于点P ,M ,N ,连接CN .① 依题意补全图形;② 用等式表示线段AE 与CN 之间的数量关系,并证明.图1 备用图 房山27.点C 为线段AB 上一点,以AC 为斜边作等腰ADC Rt Δ,连接BD ,在ABD Δ外侧,以BD 为斜边作等腰Rt BED △,连接EC . (1)如图1,当30DBA =︒∠时:① 求证:AC BD =;② 判断线段EC 与EB 的数量关系,并证明;AFDCEBG HAFDCEBAC图1(2)如图2,当°45<∠<°0DBA时,EC与EB的数量关系是否保持不变?对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路:想法1:尝试将点D为旋转中心. 过点D作线段BD的垂线,交BE延长线于点G,连接CG;通过证明三角形ADBΔ≌CDGΔ全等解决以上问题;想法2:尝试将点D为旋转中心. 过点D作线段AB的垂线,垂足为点G,连接EG.通过证明ADBΔ∽GDEΔ解决以上问题;想法3:尝试利用四点共圆. 过点D作AB垂线段DF,连接EF,通过证明D、F、B、E四点共圆,利用圆的相关知识解决以上问题.请你参考上面的想法,证明EC=EB(一种方法即可)图2 EA。
2020年北京市各区初三数学二模试题分类汇编-选择题分类
2020年二模各区选择题分类汇编二模选择题重点考察知识点:科学记数法:用科学记数法把一个较大的数表示为a×10n的形式,会确定a和n 的值数轴:借助数轴比较实数大小;借助数轴理解相反数和绝对值的意义;能求实数的相反数、倒数绝对值;化简求值:利用分式的基本性质进行约分和通分;能进行简单的分式加、减、乘、除运算;选用适当的方法解决与分式有关的问题;统计图表与数据分析:用统计图表的有关内容解决一些简单的实际问题;对称图形:了解轴对称图形、中心对称图形的概念,能区分轴对称图形、中心对称图形推荐题目:平谷8:相较于常见的表格、条形图等,利用网状图对数据进行分析整理东城6:利用相似求阴影面积燕山2:利用三角板画钝角三角形的高顺义5:求多边形的面积1.科学记数法(丰台2)熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为(A)-4⨯(D)-30.15610⨯1.561015.610⨯(B)-31.5610⨯(C)-4(西城2)中国国家航天局2020年4月24日在“中国航天日”之际宣布,将中国行星探测任务命名为“天问”,将中国首次火星探测任务命名为“天问一号”. 火星具有与地球十分相近的环境,与地球最近的时候距离约5 500万千米,将5 500用科学记数法表示为 (A )40.5510⨯ (B )35.510⨯ (C )25.510⨯ (D )25510⨯ (房山1)在迎来庆祝新中国成立70周年之后,对于中国而言,2020年又将是一个新的时间坐标. 过去40年,中国完成了卓越的经济转型,八亿两千万人成功脱贫,这是人类发展史上具有里程碑意义的重大成就.将820000000用科学记数法表示为( ) A. 8.2 ×109 B. 0.82 ×109 C. 8.2 ×108 D. 82 ×107(密云2) 5G 是第五代移动通信技术,5G 网络下载速度可以达到每秒1300000KB 以上,这意味着下载一部高清电影只需1秒.将1300000用科学记数法表示应为( ) A .51310⨯B .51.310⨯C .61.310⨯D .71.310⨯(燕山1)2020年5月5日18时,长征五号B 运载火箭首飞成功,标志着我国空间站工程建设进入实质阶段.长征五号B 运载火箭运载能力超过22000千克,是目前我国近地轨道运载能力最大的火箭.将22000用科学记数法表示应为A .2.2×104B .2.2×105C .22×103D .0.22×105 (平谷3)聪聪在阅读一篇文章时看到水分子的直径约为0.4纳米,通过百度搜索聪聪又知道米纳米9-101=,则水分子的直径约为 (A) 米10-104⨯ (B) 米10-104.0⨯ (C)米9-104⨯ (D) 米8-104⨯(密云1)港珠澳大桥作为世界首例集桥梁、隧道和人工岛于一体的超级工程,创下了多项“世界之最”.它是世界上总体跨度最长的跨海大桥,全长55000米.其中海底隧道部分全长6700米,是世界最长的公路沉管隧道和唯一的深埋沉管隧道,也是我国第一条外海沉管隧道.其中,数字6700用科学记数法表示为( ) A .67×102 B .6.7×103C .6.7×104D .0.67×1042. 数轴(丰台3)实数a ,b ,c 在数轴上的对应点的位置如图所示,则下列结论正确的是 (A )a >b >c(B ) b >a(C )b +c <0(D ) ab >0(西城5)如图,实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是(A )3a > (B )10b -<-<(C )a b <- (D )0a b +>(房山3)实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .|b |<aB .﹣a <bC .a +b >0D .|a |>b(密云5)实数a ,b 在数轴上的对应点的位置如图所示,下列关系式不成立的是( )A. a -5 > b -5B .-a > -bC . 6a > 6bD .a -b > 0(燕山5)如图,在数轴上,实数a ,b 的对应点分别为点A ,B , 则ab =A .1.5B .1C .-1D .-4(平谷2)实数,,a b c 在数轴上的对应点的位置如图所示,若a 与c 互为相反数,则,,a b c 中绝对值最大的数是:(A) a (B) b (C) c (D) 无法确定(密云5)如图,在数轴上,点B 在点A 的右侧. 已知点A 对应的数为-1,点B 对应的数为m .若在AB 之间有一点C ,点C 到原点的距离为2,且AC -BC=2,则m 的值为( ) A. 4 B .3 C .2 D .1(门头沟4)实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是A .0a >B .2b >C .a b <D . a b =3.实数(东城1)在实数|-3.14|,-3,-3,π中,最小的数是 A.-3B.-3C.|-3.14|D.π4.倒数(顺义2)-5的倒数是(A )-5 (B )5 (C )15-(D )155. 相反数-1-2xAB12(朝阳1)3的相反数是(A )31(B )3 (C )-31(D )-3(门头沟2)3-的相反数是A .3B .3-C .3±D .136. 二元一次方程组和它的解(顺义2)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文:今有若干人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为(A )911616x y x y ì+=ïí+=ïî (B )911616x y x y ì-=ïí-=ïî(C )911616x y x y ì+=ïí-=ïî (D )911616x y x yì-=ïí+=ïî(密云7)《九章算术》中记载:“今有上禾三秉,益实六斗,当下禾十秉;下禾五秉,益实一斗,当上禾二秉. 问上、下禾实一秉各几何?”其大意是:今有上等稻子三捆,若打出来的谷子再加六斗,则相当于十捆下等稻子打出来的谷子;有下等稻子五捆,若打出来的谷子再加一斗,则相当于两捆上等稻子打岀来的谷子. 问上等、下等稻子每捆打多少斗谷子?设上等稻子每捆打x 斗谷子,下等稻子每捆打y 斗谷子,根据题意可列方程组为( ) A . B . C .D .(朝阳3)方程组12+5x y x y -=⎧⎨=⎩,的解为(A )21x y =⎧⎨=⎩ (B )12x y =⎧⎨=-⎩ (C )12x y =-⎧⎨=⎩ (D )21x y =-⎧⎨=⎩7. 不等式性质(东城3)判断命题“如果x <1,那么x 2-1<0”是假命题,只需举出一个反例.反例中的x 可以为A .-2B .-12C .0D .123610512x y y x +=⎧⎨+=⎩3610512x y y x -=⎧⎨-=⎩3610512y xx y +=⎧⎨+=⎩3610512y xx y -=⎧⎨-=⎩8. 化简求值(丰台5)如果26-=a a ,那么代数式21()+1-g a a a a 的值为(A )12 (B )6 (C )2(D )6-(顺义4)如果a 2+4a -4=0,那么代数式()()224231a a -+-+的值为(A )13 (B )-11 (C )3(D )-3(燕山7)若245a a +=,则代数式()()()2211a a a a ++--的值为A .1B .2C .4D .6 (朝阳5)如果23x x +=,那么代数式(1)(1)(2)x x x x +-++的值是 (A )2 (B )3 (C )5 (D )6(平谷)如果20x y +-=,那么代数式2211()xyy x x y-⋅-的值为(A )12-(B )-2 (C )12(D )2 (密云6)如果x 2+2x -2=0,那么代数式 的值为( ) A .-2 B .-1 C .1 D .2(门头沟6)如果2210x x -+=,那么代数式242x x x x +⎛⎫-÷ ⎪⎝⎭的值为A .0B .2C .1D . 1-9. 整式运算(西城4)下列运算中,正确的是(A )23⋅=a a a (B )623÷=a a a (C ) 2222-=a a (D )()22436=a a(密云2)下列各式计算正确的是( )A .326•a a a =B .5510a a a +=C .D .22(1)1a a -=-(门头沟5)下列运算中,正确的是 A .22423x x x += B .235x x x ⋅= C .()235x x = D .()22xy x y=10. 分式有意义的条件(海淀2)若代数式12x -有意义,则实数x 的取值范围是 ()33928aa =--244212+-+-⋅-x xx x x xA.0x =B.2x =C.0x ≠D. 2x ≠(门头沟3)如果代数式1x x-的值为0,那么实数x 满足 A .1x =B .x ≥1C .0x ≠D . x ≥011. 概率公式(燕山6)2019年10月20日,第六届世界互联网大会在浙江乌镇举行,会议发布了15项“世界互联网领先科技成果”,其中有5项成果属于芯片领域.小飞同学要从这15项“世界互联网领先科技成果”中任选1项进行了解,则他恰好选中芯片领域成果的概率为 A .15 B .13 C .110 D .11512. 频率估计概率(房山7)如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果:下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45. 其中合理的是( )抛掷次数A.①B.②C.①②D.①③(密云7)新冠疫情发生以来,为保证防控期间的口罩供应,某公司加紧转产,开设多条生产线争分夺秒赶制口罩,从最初转产时的陌生,到正式投产后达成日均生产100万个口罩的产能.不仅效率高,而且口罩送检合格率也不断提升,真正体现了“大国速度”.以下是质监局对一批口罩进行质量抽检的相关数据,统计如下:下面四个推断合理的是()A.当抽检口罩的数量是10000个时,口罩合格的数量是9213个,所以这批口罩中“口罩合格”的概率是0.921;B.由于抽检口罩的数量分别是50和2000个时,口罩合格率均是0.920,所以可以估计这批口罩中“口罩合格”的概率是0.920;C.随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩中“口罩合格”的概率是0.920;D.当抽检口罩的数量达到20000个时,“口罩合格”的概率一定是0.921.(朝阳8)在一次生活垃圾分类知识竞赛中,某校七、八年级各有100名学生参加,已知七年级男生成绩的优秀率为40%,女生成绩的优秀率为60%;八年级男生成绩的优秀率为50%,女生成绩的优秀率为70%.对于此次竞赛的成绩,下面有三个推断:①七年级男生成绩的优秀率小于八年级男生成绩的优秀率;②七年级学生成绩的优秀率一定小于八年级学生成绩的优秀率;③七、八年级所有男生成绩的优秀率一定小于七、八年级所有女生成绩的优秀率.所有合理推断的序号是(A)①②(B)①③(C)②③(D)①②③13.统计图表与数据分析(房山5)李老师是一位运动达人,他通过佩戴智能手环来记录自己一个月(30天)每天所走的步数,并绘制成如下统计表:在每天所走的步数这组数据中,众数和中位数分别是()A.1.6,1.5 B.1.7,1.6 C.1.7,1.7 D.1.7,1.55(丰台6)一组数据1,2,2,3,5,将这组数据中的每一个数都加上a(0a),得到一组新数据1+a,2+a,2+a,3+a,5+a,这两组数据的以下统计量相等的是(A)平均数(B)众数(C)中位数(D)方差(东城8)五名学生投篮球,每人投10次,统计他们每人投中的次数.得到五个数据,并平均数中位数众数m 6 7则下列选项正确的是A.可能会有学生投中了8个B.五个数据之和的最大值可能为30C.五个数据之和的最小值可能为20D.平均数m一定满足4.2≤m≤5.8之间(西城8)张老师将自己2019年10月至2020年5月的通话时长(单位:分钟)的有关数据整理如下:①2019年10月至2020年3月通话时长统计表时间10月11月12月1月2月3月时长(单位:分钟)520 530 550 610 650 660②2020年4月与2020年5月,这两个月通话时长的总和为1100分钟根据以上信息,推断张老师这八个月的通话时长的中位数可能的最大值为(A)550 (B)580 (C)610 (D)630(密云8)据统计表明,2019年中国电影总票房高达642.7亿元,其中动画电影发展优势逐渐显现出来.下面的统计表反映了六年来中国上映的动画电影的相关数据:年份国产动画影片数量(单位:部)国产动画影片票房(单位:亿元)进口动画影片数量(单位:部)进口动画影片票房(单位:亿元)根据上表数据得出以下推断,其中结论不正确...的是()A.2017年至2019年,国产动画影片数量均低于进口动画影片数量B.2019年与2018年相比,中国动画电影的数量增加了50%以上C.2014年至2019年,中国动画电影的总票房逐年增加D.2019年,中国动画电影的总票房占中国电影总票房的比例不足20%(燕山8)“实际平均续航里程”是指电动汽车的行驶总里程与充电次数的比值,是反映电动汽车性能的重要指标.某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程”,收集了使用该型号电动汽车1年以上的部分客户的相关数据,按年龄不超过40岁和年龄在40岁以上将客户分为A,B两组,从A,B组各抽取10位客户的电动汽车的“实际平均续航里程”数据整理成下图,其中“⊙”表示A组的客户,“*”表示B组的客户.下列推断不正确的是A.A组客户的电动汽车的“实际平均续航里程”的最大值低于B组B.A组客户的电动汽车的“实际平均续航里程”的方差低于B组C.A组客户的电动汽车的“实际平均续航里程”的平均值低于B组D.这20位客户的电动汽车的“实际平均续航里程”的中位数落在B组(平谷8)如图,是某企业甲、乙两位员工的能力测试结果网状图,以O为圆心的五个同心圆分别代表能力水平的五个等级,由低到高分别赋分1至5分,由原点出发的五条线段分别指向能力水平的五个维度,网状图能够更加直观的描述测试者的优势和不足,观察图形,有以下几个推断:①甲和乙的动手操作能力都很强;②缺少探索学习的能力是甲自身的不足;③与甲相比,乙需要加强与他人的沟通和合作能力;④乙的综合评分比甲要高.其中合理的是(A)①③(B)②④(C)①②③(D)①②③④14.平均数、方差(顺义7)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每个品种的10棵产量的平均数x(单位:千克)及方差2S(单位:千克2)如下表所示:甲乙丙丁x242423202S 1.9 2.12 1.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是(A)甲(B)乙(C)丙(D)丁(平谷7)某校开设了冰球选修课,12名同学被分成甲、乙两组进行训练,他们的身高(单位:cm)如下表所示:设两队队员身高的平均数依次为甲x ,乙x ,方差依次为2甲s ,2乙s ,下列关系中完全正确的是A .甲x =乙x ,2甲s <2乙s B .甲x =乙x ,2甲s >2乙s C .甲x <乙x ,2甲s <2乙sD .甲x >乙x ,2甲s >2乙s15. 方案选择(朝阳7)某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如下表:例如,购买A 类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40+2×50×(0.9×10)=940元. 若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为(A )购买A 类会员卡 (B )购买B 类会员卡 (C )购买C 类会员卡 (D )不购买会员卡(房山8)2020年是5G 爆发元年,三大运营商都在政策的支持下,加快着5G 建设的步伐.某通信公司实行的5G 畅想套餐,部分套餐资费标准如下:小武每月大约使用国内数据流量49GB ,国内主叫350分钟,若想使每月付费最少,则他应预定的套餐是( )A .套餐1B .套餐2C .套餐3D .套餐416. 坐标系中的点(顺义3)如图,平面直角坐标系xOy 中,有A 、B 、C 、D 四点.若有一直线l 经过点(1,3)-且与y 轴垂直,则l 也会经过的点是 (A )点A (B )点B(C )点C (D )点D17. 寻找规律(门头沟8)如图,动点P 在平面直角坐标系xOy 中,按图中箭头所示方向运动,第1次从原点运动到点(1,2),第2次接着运动到点(2,0),第3次接着运动到点(3,1),第4次接着运动到点(4,0),……,按这样的运动规律,经过第27次运动后,动点P 的坐标是A .(26,0)B .(26,1)C .(27,1)D .(27,2)18. 函数图象的理解(海淀8)在平面直角坐标系xOy 中,对于点P (a , b ),若ab >0,则称点P 为“同号点”. 下列函数的图象中不存在...“同号点”的是 A.1y x =-+B.22y x x =-C.2y x=-D.21y x x=+(丰台8)如图,抛物线21=-y x .将该抛物线在x 轴和x 轴下方的部分记作C 1,将C 1沿x轴翻折记作C 2,C 1和C 2构成的图形记作C 3.关于图形C 3,给出如下四个结论,其中错.误.的是 (A )图形C 3恰好经过4个整点(即横、纵坐标均为整数的点) (B )图形C 3上任意一点到原点的距离都不超过1 (C )图形C 3的周长大于2π(D )图形C 3所围成的区域的面积大于2且小于πxy……(1,2)(3,1)(5,2)(7,1)(9,2)(11,1)(12,0)(10,0)(8,0)(6,0)(4,0)(2,0)O123-1-1321A BCDxyO(密云8)如图,点C 、A 、M 、N 在同一条直线l 上.其中,△ABC 是等腰直角三角形,∠B=90°,四边形MNPQ 为正方形,且AC =4,MN =2,将等腰Rt △ABC 沿直线l 向右平移.若起始位置为点A 与点M 重合,终止位置为点C 与点N 重合. 设点A 平移的距离为x ,两个图形重叠部分的面积为y ,则y 与x 的函数图象大致为( )19. 函数的性质(东城4)若点1(1,)A y ,2(2,)B y 在抛物线2(1)2y a x =++(0a <)上,则下列结论正确的是 A .122y y >>B .212y y >>C .122y y >>D .212y y >>(顺义8)正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D .设AE=x ,矩形ECFG 的面积为y ,则y 与x 之间的关系描述正确的是A .y 与x 之间是函数关系,且当x 增大时,y 先增大再减小B .y 与x 之间是函数关系,且当x 增大时,y 先减小再增大C . y 与x 之间是函数关系,且当x 增大时,y 一直保持不变D . y 与x 之间不是函数关系20. 立体图形的展开图(丰台1)右图是某个几何体的展开图,该几何体是(A )三棱柱(B )三棱锥(C )圆柱(D )圆锥(西城3)图1是某个几何体的平面展开图,该几何体是(A ) (B ) (C ) (D )GF ED CB A图1(海淀1)下面的四个图形中,是圆柱的侧面展开图的是A B C D(密云6)如图,点A,B是正方体上的两个顶点,将正方体按图中所示方式展开,则在展开图中B点的位置为()A.1B B.2BC.3B D.4B(燕山4)如图是某几何体的展开图,则该几何体是A.四棱锥B.三棱锥C.四棱柱D.长方体21.立体图形的三视图(房山2)如图是某个几何体的三视图,该几何体是()A.长方体B.三棱柱C.正方体D.圆柱(平谷4)下列几何体中主视图为矩形的是(A) (B) (C) (D)(门头沟1)如图,是某个几何体的三视图,该几何体是A.三棱锥B.三棱柱C.圆柱D.圆锥22.图形变换(西城1)下列各组图形中,能将其中一个图形经过平移变换得到另一个图形的是俯视图左视图主视图(A)(B )(C)(D)(东城2)如图,在平面直角坐标系xOy中,已知点A(2,1),点B(3,-1),平移线段AB,使点A落在点A1(-2,2)处,则点B的对应点B1的坐标为A.(-1,-1)B. (-1,0)C. (1,0)D.(3,0)23.用图形解释整式乘法或因式分解(密云4)如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是()A.(a+b)2=a2+2ab+b2B.(a+b)2=a2+2ab-b2C.(a-b)2=a2-2ab+b2D.(a-b)2=a2-2ab-b224.角度计算(密云1)下列四个角中,有可能与70°角互补的角是()A.B.C.D.25.三角形中角度计算(丰台4)如图,在△ABC中,∠B=60°,∠C=50°,如果AD平分∠BAC,那么∠ADB的度数是(A)35°(B)70°(C) 85°(D)95°(海淀5)如图,在△ABC中,EF∥BC,ED平分∠BEF,且∠DEF=70°,则∠B的度数为A.70°B.60°C.50°D.40°C BADB EDFCACb a bbb26. 三角形的面积计算(海淀3)如图,在△ABC 中,AB = 3 cm ,通过测量,并计算△ABC 的面积,所得面积与下列数值最接近的是A.1.5 cm 2B.2 cm 2C.2.5 cm 2D.3 cm 2(东城6)把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为 A .31B .41C .51 D .6127. 平行线间的距离(顺义1)如图所示,1l ∥2l ,则平行线1l 与2l 间的距离是 (A )线段AB 的长度 (B )线段BC 的长度 (C )线段CD 的长度 (D )线段DE 的长度(朝阳2)如图,直线1l ∥2l ,它们之间的距离是 (A )线段P A 的长度 (B )线段PB 的长度 (C )线段PC 的长度 (D )线段PD 的长度28. 三角形的高(燕山2)如图,用三角板作△ABC 的边AB 上的高线,下列三角板的摆放位置正确的是A .B .C .D .l 2l 1A B C DEC BAABCCBA CBAABClABCD29.相似三角形的性质(房山6)如图,在□ABCD 中,延长AD 至点E ,使AD=2DE ,连接BE 交CD 于点F ,交AC 于点G ,则AGCG 的值是( )A .32B .31C .21D .4330. 方向角(东城5)如图,小明从A 处出发沿北偏东40°方向行走至B 处,又从B 处沿南偏东70°方向行走至C 处,则∠ABC 等于A .130°B .120°C .110°D .100°31. 四边形中角度计算(顺义5)如图,四边形ABCD 中,过点A 的直线l 将该四边形分割成 两个多边形,若这两个多边形的内角和分别为α和β, 则αβ+的度数是(A )360︒(B )540︒(C )720︒(D )900︒32. 多边形内角和(朝阳4)五边形的内角和为(A )360° (B )540° (C )720° (D )900°33. 多边形外角和(平谷6)如图,螺丝母的截面是正六边形,则∠1的度数为 (A )30° (B )45° (C )60° (D )75°34. 对称图形(燕山3)下列防控疫情的图标中,既是轴对称图形,又是中心对称图形的是GFDAEA .B .C .D .(密云4)下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A .科克曲线B .笛卡尔心形线C .赵爽弦图D .斐波那契螺旋线(房山4)《北京市生活垃圾管理条例》对生活垃圾分类提出更高要求,于2020年5月1日起施行,施行的目的在于加强生活垃圾管理,改善城乡环境,保障人体健康.下列垃圾分类标志,是中心对称图形的是( )A B C D(海淀2)右图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①, ②, ③, ④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在A .区域①处B .区域②处C .区域③处D .区域④处(朝阳6)下列图形中,是中心对称图形而不是..轴对称图形的是(A ) (B ) (C ) (D )④③②①(平谷1)垃圾分类功在当代利在千秋,下列垃圾分类指引标志图形中,是轴对称图形又是中心对称图形的是(A) (B) (C) (D) (密云2)第二十四届冬季奥林匹克运动会将于2022年在北京举行,北京将成为历史上第一座既举办过夏奥会,又举办过冬奥会的城市.下面的图形是各届冬奥会会徽中的部分图案,其中是.轴对称图形,但不是..中心对称图形的是( ) (B) (C) (D)A .B .C .D .35. 尺规作图(密云3)如图,小林利用圆规在线段CE 上截取线段CD ,使CD=AB .若点D 恰好为CE 的中点,则下列结论中错误..的是( ) A .CD=DE ; B .AB= DE ;C . ;D .CE= 2AB . (密云4)如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是( )A .(a+b )2 =a 2+2ab+b 2B .(a+b )2 =a 2+2ab -b 2C .(a -b )2=a 2-2ab+b 2D .(a -b )2=a 2-2ab -b 236.圆的有关概念和性质(东城7)如图,正五边形ABCDE 内接于⊙O ,连接BD ,则∠ABD 的度数是A .60°B .70°C .72°D .144°12CE CDCba b ab b(西城6)如图,△ABC 内接于⊙O ,若∠A =45°,OC =2,则BC 的长为 (A)2 (B )22(C )23(D )4(海淀7)如图,⊙O 的半径等于4,如果弦AB 所对的圆心角等于90°,那么圆心O 到弦AB 的距离为A.2B. 2C. 22D. 32(丰台7)如图,点A ,B 是⊙O 上的定点,点P 为优弧AB 上的动点(不与点A ,B 重合),在点P 运动的过程中,以下结论正确的是 (A )∠APB 的大小改变(B )点P 到弦AB 所在直线的距离存在最大值 (C )线段P A 与PB 的长度之和不变 (D )图中阴影部分的面积不变(门头沟7)如图,线段AB 是⊙O 的直径,C ,D 为⊙O 上两点,如果AB =4,AC = 2, 那么∠ADC 的度数是 A .15°B .30°C .45°D .60°BO AOCBA CD O。
12、2020年北京初三数学二模分类汇编:网格(学生版)
2020中考二模网格目录1. (东城15题) (1)2. (平谷10题) (1)3. (门头沟15题) (1)4. (顺义3题) (1)5. (顺义10题) (2)6. (顺义12题) (2)7. (燕山11题) (2)8. (燕山14题) (2)网格1.(东城15题)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC 的值为.2.(平谷10题)如图所示,边长为1正方形网格中,点A、B、C落在格点上,则∠ACB+∠ABC的度数为 .3.(门头沟15题)如图,在方格纸中,图形②可以看作是图形①经过若干次图形变化(平移、轴对称、旋转)得到的,写出一种由图形①得到图形②的变化过程:.4.(顺义3题)如图,平面直角坐标系xOy中,有A、B、C、D四点.若有一直线l经过点(1,3)且与y轴垂直,则l也会经过的点是(A)点A(B)点B (C)点C(D)点D123-1-1321ABCDx yO5. (顺义10题)右图中的四边形均为矩形,根据图形,写出一个正确的等式: .6. (顺义12题)如图,在每个小正方形的边长为1cm 的网格中,画出了一个过格点A ,B 的圆,通过测量、计算,求得该圆的周长是 cm .(结果保留一位小数)7. (燕山11题)右图中的四边形均为矩形,根据图形的面积关系,写出一个正确的等 式: .8. (燕山14题)如图,边长为1的小正方形网格中,点A ,B ,C ,D ,E 均在格点上,半径为2的⊙A 与BC 交于点F ,则tan ∠DEF = .qxpxba aa。