关于韦达定理的证明方法
根的判别式与韦达定理
九年级数学讲义根的判别式与韦达定理知识要点:1. 根的判别式:设一元二次方程ax 2+bx+c=0(a ≠0),其根的判别式为Δ=b 2-4acΔ>0 ⇔方程有两个不相等的实数根 Δ=0⇔方程有两个相等的实数根 Δ<0 ⇔方程没有实数根2. 根与系数的关系:设一元二次方程ax 2+bx+c=0(a ≠0)的两个根分别为x 1,x 2x 1+x 2=-a b x 1·x 2=ac例1、关于x 的两个方程x 2+4mx +4m 2+2m +3=0,x 2+(2m +1)x +m 2=0中至少有一个方程有实数根,求m 的取值范围。
例2、求证:m 为任何实数时,方程21402x m x m +-+-=()有两个不相等的实数根。
例3、已知x 1、x 2是方程x 2+3x -5=0的两根。
则x x -2122+4x 1-2x 2= 。
例4、已知方程x 2+px +q =0的两根之积比两根的和大5,且两根的平方和为25,求p 和q 的值。
例5、已知α、β是方程x 2+5x +2=0的两根求αββα+的值。
例6、已知a 、b 、c 均为实数,且a +b +c=0,abc=1。
求证:a 、b 、c 中必有一个大于23。
练习:1、不解方程,判断下列方程的根的情况。
()127302x x +-= ( )()221202()()y y y -++=( )()3912402x x ++= ( )()423402x x --= ( )()551702()x x +-= ( )()62102x mx --= ( )2、一元二次方程ax x 2210-+=有实数根,那么a 的取值范围是 。
3、方程380312x x m m -+==的两根之比为,则:。
4、已知: 方程x x p p 226250-+-+=一根为2,则p =_______,它的另一个根为_________。
5、设0342,2=-+x x 是方程βα的两个根,那么ααββ223-+= 。
关于判别式法与韦达定理的论述
关于判别式法与韦达定理论述weiqingsong摘要:判别式法与韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,讨论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
关键词:判别式法 韦达定理在中学解题中判别式法与韦达定理的应用极其普遍,因此系统的研究一下利用判别式法与韦达定理解题是有必要的。
别式法与韦达定理说明了一元二次方程中根和系数之间的关系。
它们都有着广泛的应用在整个中学阶段。
一、韦达定理的由来法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。
历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
判别式法与韦达定理在方程论中有着广泛的应用。
二、对判别式法的介绍及概括一般的关于一元二次方程ax^2+bx+c=0(a 、b 、c 属于R ,a≠0)根的判别,△=b^2-4ac ,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
关于x 的一元二次方程x^2+mx+n=0有两个相等的实数根,求符合条件的一组的实数值。
这是应注意以下问题:如果说方程有实数根,即应当包括方程只有一个实根和有两个不等实根或有两个相等实根三种情况;如果方程不是一般形式,要化为一般形式,再确定a 、b 、c 的值;使用判别式的前提是方程为一元二次方程,即二次项系数a≠0;当二次项系数含字母时,解题时要加以考虑。
判别式的主要应用有:不解方程就可以直接判定方程的根的情况;已知方程根的情况,确定方程中未知系数(或参数)的取值范围;判别或证明一元二次方程的根的性质;判别二次三项式ax^2+bx+c(a≠0)能否在实数范围内分解因式(1) 当△≥0 时,二次三项式在实数范围内能分解因式;(2)当△≤0 时,二次三项式在实数范围内不能分解因式。
02--韦达定理--高一暑假
韦达定理韦达定理虽是初二一元二次方程时的内容,但因为考试没有要求,很多学校都没怎么系统的讲过,很多学生还不是很了解韦达定理,更别提掌握和灵活运用了。
而韦达定理在高中阶段运用的非常频繁,许多知识点都要结合韦达定理来做,希望通过本章学习让学生能够理解掌握韦达定理.韦达定理实际上就是一元二次方程中根与系数的关系,韦达定理简单的形式中包含了丰富的数学内容,应用广泛,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.一、 运用韦达定理,求方程中参数的值【例1】已知方程5x 2+kx -6=0的一个根是2,求它的另一个根及k 的值.【巩固训练】1.1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 的值范围是 .2.0519998081999522=++=+-b b a a 及已知,求ba 的值.知识梳理例题解析二、运用韦达定理,求代数式的值【例2】若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根.(1) 求|x 1-x 2|的值; (2) 求222111x x +的值; (3) 求31x +32x 的值.【例3】已知α、β是方程x 2+2x -5=0的两个实数根,则α2+αβ+2α的值为_______.【例4】关于x 的方程240x x m ++=的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值.【巩固训练】1.已知α、β是方程210x x --=的两个实数根,则代数式)2(22-+βαα的值为 .2.设a ,b 是相异的两实数,满足a b b a b b a a 2222,34,34++=+=求的值.3.设实数a ,b 分别满足,01999,01991922=++=++b b a a 且ba ab ab 14,1++≠求的值.三、利用韦达定理并结合根的判别式,讨论根的情况【例5】已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.【例6】已知x 1、x 2是关于x 的一元二次方程4x 2+4(m -1)x +m 2=0的两个非零实数根,问x 1和x 2能否同号?若能同号,请求出相应的m 的取值范围;若不能同号,请说明理由.【例7】一元二次方程240x x a -+=有两个实根,一个比3大,一个比3小,求a 的取值范围.【例8】已知一元二次方程222(9)560x a x a a +-+-+=一个根小于0,另一根大于2,求a 的取值范围.【巩固训练】1.已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .2.设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x + 有最小值?并求出这个最小值.3.已知关于x 的方程:04)2(22=---m x m x . (1) 求证:无论m 取什么实数值,这个方程总有两个不相等的实根.(2) 若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x .4.若关于x 的方程20x x a ++=的两个根,一个大于1、另一根小于1,求实数a 的取值范围.四、 利用韦达定理逆定理,构造一元二次方程辅助解题等【例9】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么b a a b +的值为( ) A .22123 B .22125或2 C .22125 D .22123或2【例10】解方程121193482232222=+-++-++x x x x x x x x .【巩固训练】1.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .2.已知:四边形ABCD 中,AB∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根. (1) 当m =2和m >2时,四边形ABCD 分别是哪种四边形? 并说明理由;(2) 若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ=1,且AB<CD ,求AB 、CD 的长;(3) 在(2)的条件下,AD=BC=2,求一个一元二次方程,使它的两个根分别是tan ∠BDC 和tan ∠BCD .3.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD=m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求:m ,n 为整数时,一次函数y =mx +n 的解析式.韦达定理在高中阶段是一种非常常用且重要的解题手段,同学们一定要在充分理解的基础上加以掌握及灵活运用.同学们要能掌握根与系数的关系,知道韦达定理的常见变式与常规题型,注重设而不解,注重整体,通过整体带入来解决问题.一、选择题1.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程的两根,则p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,32.在R t △ABC 中,∠C=90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )A .23 B .25 C .5 D .23.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p 的值是 ( )A .1B .-lC .21-D .214.两个质数a 、b 恰好是整系数方程x 2-99x +m =0的两个根,则ba ab +的值是 ( ) 02=++p qx x 课后练习 反思总结A .9413B .1949413 C .999413 D .979413 5.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )A .0232=---m x xB .0232=--+m x xC .02412=---x m xD .02412=+--x m x6.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43 C .143≤<m D .43≤m ≤1二、填空题7.关于x 的一元二次方程22(1)10m x x m -++-=有一根为0,则m 的值为______8.CD 是R t △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 .9.已知α、β是方程012=--x x 的两个根,则βα34+的值为 .10.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .三、解答题11. 若关于x 的一元二次方程3x 2+3(a +b )x +4ab =0的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?12.已知关于x 的方程01)32(22=++--k x k x .(1) 当k 为何值时,此方程有实数根;(2) 若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值.13.设m 是不小于1-的实数,使得关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .(1) 若62221=+x x ,求m 的值.(2) 求22212111x mx x mx -+-的最大值.14.设a 、b 、c 为三个不同的实数,使得方程210xax ++=和20x bx c ++=有一个相同的实数根,并且使方程20x x a ++=和20x cx b ++=也有一个相同的实数根,试求a b c ++的值.。
第三讲 因式分解法与韦达定理
第三讲 因式分解法与韦达定理知识点一、因式分解法解一元二次方程如果两个因式的积等于0,那么这两个方程中至少有一个等于0,即若pq=0时,则p=0或q=0。
用因式分解法解一元二次方程的一般步骤:(1)将方程的右边化为0;(2)将方程左边分解成两个一次因式的乘积。
(3)令每个因式分别为0,得两个一元一次方程。
(4)解这两个一元一次方程,它们的解就是原方程的解。
常用方法有:提公因式法,公式法(平方差公式,完全平方公式),十字相乘法等。
知识点二、一元二次方程的根与系数的关系若21,x x 是一元二次方程()002≠=++a c bx ax 的两个根,则有a b x x -=+21,a b x x =21 ,根据一元二次方程的根与系数的关系求值常用的转化关系:(1)()2122122212x x x x x x -+=+ (2)21212111x x x x x x +=+ (3)()2212121))((a x x a x x a x a x +++=++;(4)│21x x -│=()221x x -=()212214x x x x -+例题:1.用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1.2.用适当方法解下列方程:(1)3(1-x )2=27; (2)x 2-6x -19=0; (3)3x 2=4x +1;(4)y 2-15=2y ; (5)5x (x -3)-(x -3)(x +1)=0; (6)4(3x +1)2=25(x -2)2.3.已知x 2-xy -2y 2=0,且x ≠0,y ≠0,求代数式22225252y xy x y xy x ++--的值.4.若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2) 1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.5.解方程组6.已知关于x 的方程221(1)104x k x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =7.已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.提升练习:1.方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-82.下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A ..x =21 B .x =2 C .x =1 D .x =-1 3.方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3 4.方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对5.方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=56.一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( ) A .1 B .2 C .-4 D .47.已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .118.方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .39.一元二次方程2(1)210k x x ---=有两个不相等的实数根,则k 的取值范围是( )A .2k >B .2,1k k <≠且C .2k <D .2,1k k >≠且 10.若12,x x 是方程22630x x -+=的两个根,则1211x x +的值为( ) A .2 B .2- C .12D .92 11.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22(21)30x m x m +-++=的根,则m 等于() A .3- B .5 C .53-或 D .53-或12.若t 是一元二次方程20 (0)ax bx c a ++=≠的根,则判别式24b a c ∆=-和完全平方式2(2)M a t b =+的关系是( )A .M ∆=B .M ∆>C .M ∆<D .大小关系不能确定 13.若实数a b ≠,且,a b 满足22850,850a a b b -+=-+=,则代数式1111b a a b --+--的值为( )A .20-B .2C .220-或D .220或 14.方程t (t +3)=28的解为_______.15.方程(2x +1)2+3(2x +1)=0的解为__________.16.方程(2y +1)2+3(2y +1)+2=0的解为__________.17.关于x 的方程x 2+(m +n )x +mn =0的解为__________.18.方程x (x -5)=5 -x 的解为__________.19..如果方程2()()()0b c x c a x a b -+-+-=的两根相等,则,,a b c 之间的关系是 ______20..已知一个直角三角形的两条直角边的长恰是方程22870x x -+=的两个根,则这个直角三角形的斜边长是 _______ .21.若方程22(1)30x k x k -+++=的两根之差为1,则k 的值是 _____ .22.设12,x x 是方程20x px q ++=的两实根,121,1x x ++是关于x 的方程20x qx p ++=的两实根,则p = _____ ,q = _____ .23.已知实数,,a b c 满足26,9a b c ab =-=-,则a = _____ ,b = _____ ,c = _____ .24.用因式分解法解下列方程:(1)x 2+12x =0; (2)4x 2-1=0; (3)x 2=7x ;(4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x 2-x -3=0; (8)(x -1)2-4(x -1)-21=0.25.已知x 2+3xy -4y 2=0(y ≠0),试求yx y x +-的值.26.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.27.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.28.对于二次三项式21036x x -+,小明得出如下结论:无论x 取什么实数,其值都不可能等于10.您是否同意他的看法?请您说明理由.29.若0n >,关于x 的方程21(2)04x m n x mn --+=有两个相等的的正实数根,求m n 的值.30.已知关于x 的一元二次方程2(41)210x m x m +++-=. (1) 求证:不论为任何实数,方程总有两个不相等的实数根; (2) 若方程的两根为12,x x ,且满足121112x x +=-,求m 的值.31.已知关于x 的方程221(1)104x k x k -+++=的两根是一个矩形两边的长.(1) k 取何值时,方程存在两个正实数根?(2)k 的值.32.已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根12,x x 。
(3)韦达定理2
根与系数的关系(韦达定理)若一元二次方程ax2+bx+c=0(a≠0)有两个实数根.所以,一元二次方程的根与系数之间存在下列关系:如果ax2+bx+c=0(a≠0)的两根分别是x1,x2,那么x1+x2=ba,x1·x2=ca.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x2+px+q=0,若x1,x2是其两根,由韦达定理可知x1+x2=-p,x1·x2=q,即p=-(x1+x2),q=x1·x2,所以,方程x2+px+q=0可化为x2-(x1+x2)程x2+px+q=0的两根,出k的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k的值.解法一:∵2是方程的一个根,∴5×22+k×2-6=0,∴k=-7.所以,方程就为5x2-7x-6=0,解得x1=2,x2=-35.所以,方程的另的平方和比两个根的积大21得到关于m的方程,从而解得m的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x1,x2是方程的两根,由韦达定理,得x1+x2=-2(m-2),x1·x2=m2+4.∵x12+x22-x1·x2=21,∴(x1+x2)2-3 x1·x2=21,即[-2(m-2)]2-3(m2+4)=21,化简,得m2-16m-17=0,解得m=-1,或m=17.当m=-1时,方程为x2+6x+5=0,Δ>0,满足题意;当m=17时,方程为x2+30x+293=0,Δ=302-4×1×293<0,不合题意,舍去.综上,m=17.说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m的值,取满足条件的m的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元大方向个数分别为x,y,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x,y,则x+y=4,①xy=-12.②由①,得y=4-x,代入②,得x(4-x)=-12,即x2-4x-12=0,∴x1=-2,x2=6.∴112,6,x y =-⎧⎨=⎩ 或226,2.x y =⎧⎨=-⎩因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程 x 2-4x -12=0 的两个根.解这个方程,得x 1=-2,x 2=6. 所以,这两个数是-2和6. 说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷. 例5 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1)求| x 1-x 2|的值;(2)求221211x x +的值; (3)x 13+x 23.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,∴1252x x +=-,1232x x =-)22221212122222221212125325()2()3()2113722439()9()24x x x x x x x x x x x x --⨯-+++-+=====⋅-.(3)x 13+x 23=(x 1+x 2)( x 12-x 1x 2+x 22)=(x 1+x 2)[ ( x 1+x 2) 2-3x 1x 2]=(-52)×[(-52)2-3×(32-)]=-2158. 说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则,2242b b ac x a---=,∴| x 1-x 2|=2224424222b b ac b b ac b aca a a-+------=24||||b ac a a -∆==. 于是有下面的结论:若x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则| x 1-x 2|=||a ∆(其中Δ=b 2-4ac ).今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.例6 若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围.解:设x 1,x 2是方程的两根,则x 1x 2=a -4<0, ①且Δ=(-1)2-4(a -4)>0. ② 由①得 a <4,由②得 a <174.∴a 的取值范围是a <4.练 习 1.选择题:(1)方程222330x kx k -+=的根的情况是 ( ) (A )有一个实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )没有实数根(2)若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是 ( ) (A )m <14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-14,且m ≠02.填空:(1)若方程x 2-3x -1=0的两根分别是x 1和x 2,则1211x x += . (2)方程mx 2+x -2m =0(m ≠0)的根的情况是 . (3)以-3和1为根的一元二次方程是 .3.已知2816|1|0a a b +++-=,当k 取何值时,方程kx 2+ax +b =0有两个不相等的实数根?4.已知方程x 2-3x -1=0的两根为x 1和x 2,求(x 1-3)( x 2-3)的值.习题2.1 A 组1.选择题:(1)已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是( ) (A )-3 (B )3 (C )-2 (D )2 (2)下列四个说法:①方程x 2+2x -7=0的两根之和为-2,两根之积为-7; ②方程x 2-2x +7=0的两根之和为-2,两根之积为7;③方程3 x 2-7=0的两根之和为0,两根之积为73-; ④方程3 x 2+2x =0的两根之和为-2,两根之积为0.其中正确说法的个数是 ( ) (A )1个 (B )2个 (C )3个 (D )4个(3)关于x 的一元二次方程ax 2-5x +a 2+a =0的一个根是0,则a 的值是( )(A )0 (B )1 (C )-1 (D )0,或-12.填空:(1)方程kx 2+4x -1=0的两根之和为-2,则k = .(2)方程2x 2-x -4=0的两根为α,β,则α2+β2= .(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是.(4)方程2x 2+2x -1=0的两根为x 1和x 2,则| x 1-x 2|= .3.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1) x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.B 组1.选择题:若关于x 的方程x 2+(k 2-1) x +k +1=0的两根互为相反数,则k 的值为( )(A )1,或-1 (B )1 (C )-1 (D )0 2.填空:(1)若m ,n 是方程x 2+2005x -1=0的两个实数根,则m 2n +mn 2-mn 的值等于 .(2)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是 .3.已知关于x 的方程x 2-kx -2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围. 4.一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1和x 2.求: (1)| x 1-x 2|和122x x +; (2)x 13+x 23.5.关于x 的方程x 2+4x +m =0的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值.C 组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,则这个直角三角形的斜边长等于 ( )(A )3 (B )3 (C )6 (D )9 (2)若x 1,x 2是方程2x 2-4x +1=0的两个根,则1221x x x x +的值为 ( ) (A )6 (B )4 (C )3 (D )32(3)如果关于x 的方程x 2-2(1-m )x +m 2=0有两实数根α,β,则α+β的取值范围为( ) (A )α+β≥12 (B )α+β≤12(C )α+β≥1 (D )α+β≤1 (4)已知a ,b ,c 是ΔABC 的三边长,那么方程cx 2+(a +b )x +4c=0的根的情况是( )(A )没有实数根 (B )有两个不相等的实数根 (C )有两个相等的实数根 (D )有两个异号实数根 2.填空:若方程x 2-8x +m =0的两根为x 1,x 2,且3x 1+2x 2=18,则m = . 3. 已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根.(1)是否存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立?若存在,求出k 的值;若不存在,说明理由;(2)求使1221x x x x +-2的值为整数的实数k 的整数值; (3)若k =-2,12xx λ=,试求λ的值.4.已知关于x 的方程22(2)04m x m x ---=. (1)求证:无论m 取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x 1,x 2满足|x 2|=|x 1|+2,求m 的值及相应的x 1,x 2. 5.若关于x 的方程x 2+x +a =0的一个大于1、零一根小于1,求实数a 的取值范围.2.1 一元二次方程练习1. (1)C (2)D2. (1)-3 (2)有两个不相等的实数根 (3)x 2+2x -3=0 3.k <4,且k ≠04.-1 提示:(x 1-3)( x 2-3)=x 1 x 2-3(x 1+x 2)+9习题2.1 A 组1. (1)C (2)B 提示:②和④是错的,对于②,由于方程的根的判别式Δ<0,所以方程没有实数根;对于④,其两根之和应为-23.(3)C 提示:当a =0时,方程不是一元二次方程,不合题意.2. (1)2 (2)174(3)6 (3)33.当m >-14,且m ≠0时,方程有两个不相等的实数根;当m =-14时,方程有两个相等的实数根;当m <-14时,方程没有实数根.4.设已知方程的两根分别是x 1和x 2,则所求的方程的两根分别是-x 1和-x 2,∵x 1+x 2=7,x 1x 2=-1,∴(-x 1)+(-x 2)=-7,(-x 1)×(-x 2)=x 1x 2=-1,∴所求的方程为y 2+7y -1=0.B 组1.C 提示:由于k =1时,方程为x 2+2=0,没有实数根,所以k =-1. 2.(1)2006 提示:∵m +n =-2005,mn =-1,∴m 2n +mn 2-mn =mn (m +n -1)=-1×(-2005-1)=2006.(2)-3 提示;∵a +b =-1,ab =-1,∴a 3+a 2b +ab 2+b 3=a 2(a +b )+b 2(a +b )=(a +b )( a 2+b 2)=(a +b )[( a +b ) 2-2ab ]=(-1)×[(-1)2-2×(-1)]=-3.3.(1)∵Δ=(-k )2-4×1×(-2)=k 2+8>0,∴方程一定有两个不相等的实数根. (2)∵x 1+x 2=k ,x 1x 2=-2,∴2k >-2,即k >-1.4.(1)| x 1-x 2|=24||b ac a -,122x x +=2b a -;(2)x 13+x 23=333abc b a -. 5.∵| x 1-x 2|=164242m m -=-=,∴m =3.把m =3代入方程,Δ>0,满足题意,∴m =3.C 组1.(1)B (2)A(3)C 提示:由Δ≥0,得m ≤12,∴α+β=2(1-m )≥1. (4)B 提示:∵a ,b ,c 是ΔABC 的三边长,∴a +b >c ,∴Δ=(a +b )2-c 2>0. 2.(1)12 提示:∵x 1+x 2=8,∴3x 1+2x 2=2(x 1+x 2)+x 1=2×8+x 1=18,∴x 1=2,∴x 2=6,∴m =x 1x 2=12.3.(1)假设存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立.∵一元二次方程4kx 2-4kx +k +1=0有两个实数根, ∴k ≠0,且Δ=16k 2-16k (k +1)=-16k ≥0,∴k <0. ∵x 1+x 2=1,x 1x 2=14k k+, ∴ (2x 1-x 2)( x 1-2 x 2)=2 x 12-51x 2+2 x 22 =2(x 1+x 2)2-9 x 1x 2=2-9(1)4k k+=-32,即9(1)4k k +=72,解得k =95,与k <0相矛盾,所以,不存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立.(2)∵1221x x x x +-2=222212121212121212()2()224x x x x x x x x x x x x x x ++-+-=-=- =444(1)44111k k k k k k -+-==-+++, ∴要使1221x xx x +-2的值为整数,只须k +1能整除4.而k 为整数,∴k +1只能取±1,±2,±4.又∵k <0,∴k +1<1, ∴k +1只能取-1,-2,-4,∴k =-2,-3,-5.∴能使1221x x x x +-2的值为整数的实数k 的整数值为-2,-3和-5. (3)当k =-2时,x 1+x 2=1,① x 1x 2=18, ②①2÷②,得1221x x x x ++2=8,即16λλ+=,∴2610λλ-+=,∴322λ=±. 4.(1)Δ=22(1)20m -+>;(2)∵x 1x 2=-24m ≤0,∴x 1≤0,x 2≥0,或x 1≥0,x 2≤0.①若x 1≤0,x 2≥0,则x 2=-x 1+2,∴x 1+x 2=2,∴m -2=2,∴m =4.此时,方程为x 2-2x -4=0,∴115x =+,215x =-.②若x 1≥0,x 2≤0,则-x 2=x 1+2,∴x 1+x 2=-2,∴m -2=-2,∴m =0.此时,方程为x 2+2=0,∴x 1=0,x 2=-2.5.设方程的两根为x 1,x 2,则x 1+x 2=-1,x 1x 2=a , 由一根大于1、另一根小于1,得(x 1-1)( x 2-1)<0, 即 x 1x 2-(x 1+x 2)+1<0, ∴ a -(-1)+1<0,∴a <-2. 此时,Δ=12-4×(-2) >0, ∴实数a 的取值范围是a <-2.。
高次韦达定理
高次韦达定理高次韦达定理的内容是,不可以用“公比”来代替“ 1”,韦达定理说明的是关于两个集合间的关系。
这和我们平时说的“在公式中,只要符合条件的就是等价条件,没有的不是等价条件”这个概念有所不同,大家对这些概念不要搞混了。
一、韦达定理,英文为“ a rate theorem”,其表示任何一个不超过两个集合,且他们之间的元素关系,都可以由下面这组等价条件表示出来:二、韦达定理与基本韦达定理的关系。
1。
因为,两个集合具有等价关系,如果存在一个集合A,使得如果对集合B的每一个元素X,若存在集合C,使得X,但是,对集合A的每一个元素Y,不一定存在集合C,使得Y,这样,只要对集合B的元素X,存在集合C,使得X,那么,对集合A的每一个元素Y,必定也存在集合C,使得Y。
3。
因为,任何一个集合与另外一个集合都是等价的,所以,存在一个集合A,使得对集合B的元素X,存在集合C,使得X,如果存在另一个集合C,使得Y,则必须存在一个集合D,使得X,如果对集合B的元素X,存在集合C,使得X,但是,对集合C的每一个元素Y,并不一定存在集合D,使得Y,这样,只要对集合B的元素X,存在集合C,使得X,则一定存在集合D,使得Y。
4。
韦达定理说明的是两个集合之间的关系,而基本韦达定理说明的是两个集合的相互包含关系,如果A、 B互相包含,则A必定包含B,反之亦然。
5。
因为集合A包含集合B,所以,只要集合B包含集合C,则必然存在集合D,使得X,而这个集合的最小者,就是集合B。
6。
对于一个非空的集合B,假设一个元素X存在于集合B中,那么,我们把元素X称为X集合的基数。
7。
在集合B中,每一个元素都可以写成基数值加上非零元素的个数。
8。
如果集合B不能由集合A或集合C的一个元素构成,则必须存在一个非基数,使得集合B可以构成集合A或集合C 的一个元素。
9。
不是集合A或集合C的元素的集合是基数。
3。
因为,任何一个集合与另外一个集合都是等价的,所以,存在一个集合A,使得对集合B的元素X,存在集合C,使得X,如果存在另一个集合C,使得Y,则必须存在一个集合D,使得X,如果对集合B的元素X,存在集合C,使得X,但是,对集合C的每一个元素Y,并不一定存在集合D,使得Y,这样,只要对集合B的元素X,存在集合C,使得X,则一定存在集合D,使得Y。
超级韦达定理公式
超级韦达定理公式
1超级韦达定理
超级韦达定理,即“Weierstrass定理”,是一个在欧几里德几何和解析几何中十分重要的一个定理,它是1885年Stategies大师Karl Weierstrass提供的定理。
它指出任何通过任何给定点和曲线外点的关系,都可以用多项式来表示。
2多项式的定义
多项式是由一个或多个未知数,乘以一系列不同的幂的常数因子,组成的有限项的可化简的数学等式。
比如,f(x)=ax^2+bx+c 是一个二项式,因为a,b和c是常数因子(未知数),x是一元未知数,且可以化简为一个有限项数学等式。
3超级韦达定理公式
基于以上定义,超级韦达定理的核心公式可以表达为:任何一条连接曲线上任意两点的弧线都可以用相应的多项式来表示,而且存在一个无穷多的多项式来表示这样的弧线。
这里的“无穷多”就是指任意两个点上的弧线,可以用穷尽的多项式表示,而且这个多项式对所有的定点和解析空间中所有的弧线都成立。
4关于超级韦达定理的重要作用
超级韦达定理对欧几里德几何以及解析几何有着十分重要的作用,它有助于建立优化几何学的基础,建立了有关优化几何学的公理
推理体系。
它极大地丰富了数学思想,使人们可以更容易地理解、探索和利用数学。
5结论
超级韦达定理是数学中最基本的定理之一,它引出了多项式的基本运行思想,对欧几里德几何以及解析几何的研究有着重要的作用,它的研究结果也为日后的数学及应用科字提供了基础性研究。
韦达定理方程
韦达定理方程
韦达定理说明了一元二次方程中根和系数之间的关系。
对于方程ax^2 + bx + c = 0(其中 a ≠ 0),韦达定理指出方程的两个实数根x1和x2满足以下关系:
x1 + x2 = -b/a
x1 * x2 = c/a
此外,韦达定理还可以用于判断方程的根的情况。
当判别式b^2 - 4ac > 0时,方程有两个不相等的实数根;当判别式b^2 - 4ac = 0时,方程有两个相等的实数根;当判别式b^2 - 4ac < 0时,方程没有实数根。
韦达定理的证明可以通过一元二次方程的求根公式来推导。
求根公式为:
x = (-b ±√(b^2 - 4ac)) / (2a)
根据求根公式,我们可以得到两个根x1和x2的表达式,然后计算它们的和与积,最终得到韦达定理的结论。
韦达定理在数学中有广泛的应用,可以用于解方程、判断方程的根的情况、计算方程的系数等。
同时,韦达定理也是数学中其他定理和公式的基础,具有重要的数学意义。
浅谈韦达定理在解题中的应用
浅谈韦达定理在解题中的应用韦达定理是反映一元二次方程根与系数关系的重要定理.纵观近年各省、市的中考(竞赛)试题可以发现,关于涉及此定理的题目屡见不鲜,且条件隐蔽.在证(解)题时,学生往往因未看出题目中所隐含的韦达定理的条件而导致思路闭塞,或解法呆板,过程繁琐冗长.下面举例谈谈韦达定理在解题中的应用,供大家参考.一、直接应用韦达定理若已知条件或待证结论中含有a+b和a·b形式的式子,可考虑直接应用韦达定理.例1 在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,D是AB边上一点,且BC=DC,设AD=d.求证:(1)c+d=2bcosA;(2)c·d=b2-a2.分析:观察所要证明的结论,自然可联想到韦达定理,从而构造一元二次方程进行证明.证明:如图,在△ABC和△ADC中,由余弦定理,有a2=b2+c2-2bccosA;a2=b2+d2-2bdcosA(CD=BC=a).∴ c2-2bccosA+b2-a2=0,d2-2bdcosA+b2-a2=0.于是,c、d是方程x2-2bxcosA+b2-a2=0的两个根.由韦达定理,有c+d=2bcosA,c·d=b2-a2.例2 已知a+a2-1=0,b+b2-1=0,a≠b,求ab+a+b的值.分析:显然已知二式具有共同的形式:x2+x-1=0.于是a和b可视为该一元二次方程的两个根.再观察待求式的结构,容易想到直接应用韦达定理求解.解:由已知可构造一个一元二次方程x2+x-1=0,其二根为a、b.由韦达定理,得a+b=-1,a·b=-1.故ab+a+b=-2.二、先恒等变形,再应用韦达定理若已知条件或待证结论,经过恒等变形或换元等方法,构造出形如a+b、a·b 形式的式子,则可考虑应用韦达定理.例3若实数x、y、z满足x=6-y,z2=xy-9.求证:x=y.证明:将已知二式变形为x+y=6,xy=z2+9.由韦达定理知x、y是方程u2-6u+(z2+9)=0的两个根.∵ x、y是实数,∴△=36-4z2-36≥0.则z2≤0,又∵z为实数,∴z2=0,即△=0.于是,方程u2-6u+(z2+9)=0有等根,故x=y.由已知二式,易知x、y是t2+3t-8=0的两个根,由韦达定理三、已知一元二次方程两根的关系(或系数关系)求系数关系(或求两根的关系),可考虑用韦达定理例5 已知方程x2+px+q=0的二根之比为1∶2,方程的判别式的值为1.求p与q之值,解此方程.解:设x2+px+q=0的两根为a、2a,则由韦达定理,有a+2a=-P,①a·2a=q,②P2-4q=1.③把①、②代入③,得(-3a)2-4×2a2=1,即9a2-8a2=1,于是a=±1.∴方程为x2-3x+2=0或x2+3x+2=0.解得x1=1,x2=2,或x1=-1,x2=-2.例6 设方程x2+px+q=0的两根之差等于方程x2+qx+p=0的两根之差,求证:p=q或p+q=-4.证明:设方程x2+px+q=0的两根为α、β,x2+qx+P=0的两根为α'、β'.由题意知α-β=α'-β',故有α2-2αβ+β2=α'2-2α'β'+β'2.从而有(α+β)2-4αβ=(α'+β')2-4α'β'.①把②代入①,有p2-4q=q2-4p,即p2-q2+4p-4q=0,即(p+q)(p-q)+4(p -q)=0,即(p-q)(p+q+4)=0.故p-q=0或p+q+4=0,即p=q或p+q=-4.四、关于两个一元二次方程有公共根的题目,可考虑用韦达定理例7 m为问值时,方程x2+mx-3=0与方程x2-4x-(m-1)=0有一个公共根?并求出这个公共根.解:设公共根为α,易知,原方程x2+mx-3=0的两根为α、-m-α;x2-4x-(m-1)=0的两根为α、4-α.由韦达定理,得α(m+α)=3,①α(4-α)=-(m-1).②由②得m=1-4α+α2,③把③代入①得α3-3α2+α-3=0,即(α-3)(α2+1)=0.∵α2+1>0,∴α-3=0即α=3.把α=3代入③,得m=-2.故当m=-2时,两个已知方程有一个公共根,这个公共根为3.。
关于韦达定理
如果你没兴趣就别看了.......我们已经知道一元二次方程)0(02≠=++a c bx ax 的韦达定理是⎪⎩⎪⎨⎧=-=+.,2121a c x x a b x x 我们也可以通过一元二次方程的求根公式来证明以上公式,但实际上,一元二次方程的韦达定理并不需要求根公式就可以证明.证明:引理:如果方程()0=x f 与方程()0=x g 有同样的根,那么必有:()()x g x f k =][.(这里f(x),g(x)分别代表一种关于x 的运算.)引理证明:由()0=x f ,()0=x g 肯定可以推出()()x g x f =,但这并不是唯一的结果.因为. 由()0=x f 可得()0][=x f m ,同样的,也有().0][=x g n 显然,若0≠mn ,则上面两个等式必定成立,从而()[]()[]x g n x f m =,得()[]()x g x f nm =.令k n m =,就有()()x g x f k =][.显然,当1=k 时,就可以得到上面的()()x g x f =.不过,虽然n m ,可以取无穷多个值,即有k 可以取无穷多个值,但在有些情况下,k 却可以确定. 就如对一元二次方程的韦达定理证明一样.引理证明完毕.下面正式证明:设方程)0(02≠=++a c bx ax 的两个根为21,x x ,则()()00,01121=--⇒=-=-x x x x x x x x 或.显然.方程)0(02≠=++a c bx ax ()()021=--x x x x 具有相同的根21,x x , 于是()()c bx ax x x x x k ++=--221. 即()c bx ax x kx x x x k kx ++=++-221212. 得(),.,2121⎪⎩⎪⎨⎧==+-=c x kx b x x k a k 于是⎪⎩⎪⎨⎧=-=+.,2121a c x x a b x x 故命题得证.这样,我们就在不求出方程根的情况下证明了一元二次方程的韦达定理,由于我口语不大好,所以上述过程讲起来可能有点复杂.但是,若能理解这种方法,任何高次方程的韦达定理都可以求出.另外,我们还可以得到,任何一个一元二次方程都可以表示为()()021=--x x x x a 的形式,当然,a 是不等于0的.如一元三次方程的韦达定理求法:设一元三次方程()0023≠=+++a d cx bx ax 的三个根为321,,x x x , 易知()()()0321=---x x x x x x a ,于是()()()d cx bx ax x x x x x x a +++=---23321. 两边除以a 并展开左边,得()().2332113322123213ad x a c x a b x x x x x x x x x x x x x x x x +++=-+++++- 于是()⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=++=++-.,,321133221321a d x x x a c x x x x x x a b x x x 得⎪⎪⎪⎩⎪⎪⎪⎨⎧-==++-=++.,,321133221321a d x x x a c x x x x x x a b x x x 即是一般一元三次方程的韦达定理.你也可以自行尝试一下求一元四次方程的韦达定理.。
人教九上:专题三--韦达定理的应用(含解析)
专题三韦达定理的应用1.设x1、x2是关于x的方程x2+kx+2=0的两个实数根,求代数式1x1+1x2+k2的值.2.已知关于x的一元二次方程x2−(k+3)x+3k=0.(1)求证:无论k为何值,此方程总有一个根是定值;(2)若直角三角形的一边为4,另两边恰好是这个方程的两根,求k的值.3.已知关于x的一元二次方程x2+(2k−3)x+k2−1=0的两个实数根分别为x1,x2.(1)求k的取值范围;(2)若x1,x2满足x21+x22=1+x1⋅x2,求实数k的值.4.已知关于x的方程x2−2x+m−1=0.有一个实数根是5,求此方程的另一个根以及m的值.5.关于x的一元二次方程x2−6x+k=0,若方程的一个根x1=2,求k的值和方程的另一个根x2.6.若关于x的一元二次方程x2−bx+2=0有一个根是x=1,求b的值及方程的另一个根.7.关于x的一元二次方程x2+2x−3m=0有两个不相等的实数根.(1)求m的取值范围;(2)当m=1时,求方程的根.8.已知x1,x2是关于x的一元二次方程.x2+2x+c=0的两个不相等的实数根.(1)求c的取值范围;(2)若x1x2=−1,直接写出c的值;(3)若x1=−3,直接写出c的值.9.若关于x的一元二次方程x2+4x+m−1=0有两个相等的实数根,求m的值及方程的根.10.已知3,t是方程2x2+2mx−3m=0的两个实数根,求m及t的值.11.若关于x的一元二次方程x2+bx−6=0有一个根是x=2,求b的值及方程的另一个根.12.已知关于x的一元二次方程x2−(m+1)x+m+6=0的其中一个根为3.求m的值及方程的另一个根.13.关于x的一元二次方程x2−8x+m=0有一个根是x=3,求m的值及方程的另一个根.14.已知关于x的方程x2−kx+12=0的一个根为3,求k的值及它的另一个根.15.若关于x的一元二次方程x2−4x+m+3=0有两个相等的实数根,求m的值及此方程的根.16.关于x的一元二次方程x2+2x−m=0有两个不相等的实数根.(1)求m的取值范围:(2)当m=8时,求方程的根.17.已知:关于x的方程x2+mx−8=0有一个根是−4,求另一个根及m的值.18.已知x=−1是一元二次方程x2−2x+c=0的一个根,求c的值及方程另一个根.参考答案1.0【分析】利用根与系数的关系求出x1+x2=−k,x1x2=2,然后根据分式的加减对原式进行变形,整体代入计算即可求出答案.【详解】解:∵x1、x2是关于x的方程x2+kx+2=0的两个实数根,∴x1+x2=−k,x1x2=2,又∵边长k>0,∴k=7,综上所述,k的值为5或7.3.(1)k≤1312(2)k=1【分析】本题主要考查了一元二次方程根的判别式,一元二次方程根与系数的关系,解一元二次方程,对于一元二次方程ax2+bx+c=0(a≠0),若Δ=b2−4ac>0,则方程有两个不相等的实数根,若Δ=b2−4ac=0,则方程有两个相等的实数根,若Δ=b2−4ac<0,则方程没有实数根,若x1,x2是该方程的两个实数根,则x1+x2=−b,x1x2=c a.a(1)根据题意可得Δ=(2k−3)2−4(k2−1)≥0,据此可得答案;(2)根据根与系数的关系得到x1+x2=−(2k−3),x1⋅x2=k2−1,再由已知条件和完全平方公式的变形得到(2k−3)2−3(k2−1)=1,解方程即可得到答案.【详解】(1)解:∵关于x的一元二次方程x2+(2k−3)x+k2−1=0的两个实数根分别为x1,x2,∴Δ=(2k−3)2−4(k2−1)≥0,∴4k2−12k+9−4k2+4≥0,∴k≤13;12(2)解:∵关于x的一元二次方程x2+(2k−3)x+k2−1=0的两个实数根分别为x1,x2,∴x1+x2=−(2k−3),x1⋅x2=k2−1,∵x21+x22=1+x1⋅x2,∴x21+x22−x1⋅x2=1∴(x1+x2)2−3x1x2=1,∴(2k−3)2−3(k2−1)=1,∴4k2−12k+9−3k2+3=1,∴k2−12k+11=0解得:k1=1,k2=11(舍去)∴k=1.4.x2=−3;m=−14.【分析】本题考查了一元二次方程的解以及根与系数的关系,代入x=5可求出m的值,再利用两根之和等于−b,即可求出方程的另一个根,解题的关键是熟练掌握一元二次方程根与系数的关系.a【详解】解:当x=5时,原方程为52−2×5+m−1=0,解得:m=−14,设方程的另一个实数根为x2,∵5+x2=2,∴x2=−3,∴方程的另一个根为−3,m的值为−14.5.k=8,x2=4【分析】利用根与系数的关系表示出两根之和与两根之积,由一个根为2,求出另一根,进而确定出k的值.【详解】设另一根为x2,∴2+x2=6,2x2=k,则x2=4,k=8,则6∴1把则7(2)((【详解】(1)解:∵一元二次方程有两个不相等的实数根,∴Δ=b2−4ac=4−4×1×(−3m)>0,解得:m>−1,3(2)当m=1时,方程为x2+2x−3=0,(x+3)(x−1)=0,解得x1=−3,x2=1.8.(1)c<1(2)c=−1(3)c=−3【分析】本题考查了根与系数的关系、根的判别式以及一元二次方程的解.(1)根据方程的系数,结合根的判别式Δ<0,可得出关于c的一元一次不等式,解之即可得出c的取值范围;(2)利用根与系数的关系,可得出x1x2=c,结合x1x2=−1,即可得出c的值;(3)代入x1=−3,即可求出c的值.【详解】(1)解:∵关于x的一元二次方程x2+2x+c=0有两个不相等的实数根,∴Δ=22−4×1×c>0,解得:c<1,∴c的取值范围是c<1;(2)解:∵x1,x2是关于x的一元二次方程x2+2x+c=0的两个不相等的实数根,∴x1x2=c,又∵x1x2=−1,∴c=−1;(3)解:将x1=−3代入原方程得9+2×(−3)+c=0,解得:c=−3,∴若x1=−3,则c的值为−3.9.m=5,x1=x2=−2【分析】本题考查一元二次方程根的判别式及解法,根据当Δ=0时,方程有两个相等的实数根求得m 值,进而解一元二次方程即可求解.【详解】解:∵一元二次方程x2+4x+m−1=0有两个相等的实数根,∴Δ=42−4(m−1)=0,则m=5,∴x2+4x+4=0,解得x1=x2=−2.10.t=3,m=−6【分析】利用根与系数的关系,建立二元一次方程组进行求解.【详解】解:∵3,t是方程2x2+2mx−3m=0的两个实数根,∴3+t=−2m2,3t=−3m2,3+t=−m①2t=−m②,∴3+t=2t,解得:t=3,∴m=−2×3=−6,答:t=3,m=−6.【点睛】本题考查了根与系数的关系,二元一次方程组,解题的关键是能利用根与系数的关系建立二元一次方程组.11.b=1,方程的另一个根为−3【分析】本题考查了一元二次方程的根及解一元二次方程.将x=2代入x2+bx−6=0求得b的值,然后解方程组即可.【详解】∵x=2是方程x2+bx−6=0有一个根,∴4+2b−6=0,∴b=1当b=1时,原方程为x2+x−6=0,解得x1=2,x2=−3.∴b=1,方程的另一个根为−3.12.m=6,另一个根为4【分析】把x=3代入方程求出m的值,然后解方程求出另一个根即可.【详解】解:把x=3代入x2−(m+1)x+m+6=0,得9−3(m+1)+m+6=0,解得m=6,把m=6代入原方程得x2−7x+12=0,∴(x−3)(x−4)=0,∴x1=3,x2=4,即方程的另一个根为4.【点睛】本题考查了一元二次方程的解,以及一元二次方程的解法,熟练掌握一元二次方程的解法是解答本题的关键.13.m的值为15,另一根为5【分析】本题考查一元二次方程的根与系数的关系,掌握ax2+bx+c=0(a≠0)的两根为x1,x2,则有x1+x2=−ba ,x1x2=ca是解题的关键.【详解】解:设另一根为a,则a+3=8,3a=m,解得:a=5,m=15,∴m的值为15,另一根为5.14.k=7,另一根为4【分析】由于一根为3,把x=3代入方程即可求得k的值.然后根据两根之积即可求得另一根.【详解】解:∵方程x2−kx+12=0的一个根为3,∴32−k×3+12=0,解得k=7,设另一根为x,∵3x=12,∴x=4,∴另一根为4.【点睛】本题考查了一元二次方程的解和根与系数的关系,解题时可利用根与系数的关系使问题简化,难度不大.15.m=1,x1=x2=2【分析】本题考查的是一元二次方程根的判别式的应用以及解一元一次方程,根据Δ=0时,方程有两个相等的两个实数根列出方程,解方程求出m,利用因式分解法解方程求出方程的根.【详解】解:∵关于x的方程x2−4x+m+3=0有两个相等的实数根,∴△=b2−4ac=(−4)2−4×1×(m+3)=4−4m=0,解得,m=1,∴方程为x2−4x+4=0,∴(x−2)2=0解得:x1=x2=2.16.(1)m>−1(2)x1=−4,x2=2【分析】本题考查一元二次方程根的判别式及解一元二次方程,对于一元二次方程ax2+bx+c=0(a≠0),判别式Δ>0时方程有两个不相等的实数根;Δ=0时方程有两个相等的实数根;Δ<0时方程没有实数根;熟练掌握一元二次方程根与判别式的关系及解一元二次方程的方法是解题关键.(1)根据方程x2+2x−m=0有两个不相等的实数根可得判别式Δ>0,列不等式求出m的取值范围即可;(2)把m=8代入x2+2x−m=0,利用因式分解法解一元二次方程即可.【详解】(1)解:∵关于x的一元二次方程x2+2x−m=0有两个不相等实数根,∴Δ=b2−4ac=22−4×1×(−m)>0,解得:m>−1.∴m的取值范围为m>−1.(∴∴x17∴∴18∴1∴c设另一个根为x2,则−1⋅x2=−3,∴x2=3,∴c的值是−3,另一个根是x=3.。
韦达定理及其应用
韦达定理及其应用一、知识要点1、若一元二次方程()002≠=++a c bx ax 中,两根为1x ,2x 。
则ab x x -=+21, a c x x =•21,;补充公式ax x ∆=-21 2、以1x ,2x 为两根的方程为()021212=•+++x x x x x x 3、用韦达定理分解因式()()2122x x x x a a c x a b x a c bx ax --=⎪⎭⎫⎝⎛++=++ 二、例题1、 不解方程说出下列方程的两根和与两根差:(1)01032=--x x (2)01532=++x x (3)0223422=--x x2、 已知关于x 的方程02)15(22=-++-k x k x ,是否存有负数k ,使方程的两个实数根的倒数和等于4?若存有,求出满足条件的k 的值;若不存有,说明理由。
3、 已知方程0252=-+x x ,作一个新的一元二次方程,使它的根分别是已知方程各根的平方的倒数。
4、 解方程组⎪⎩⎪⎨⎧=-=-212111xy y x5、 分解因式:(1)=--2532x x (2)=-+1842x x三、练习1、 在关于x 的方程()()07142=-+--m x m x 中,(1)当两根互为相反数时m 的值;(2)当一根为零时m 的值;(3)当两根互为倒数时m 的值2、 求出以一元二次方程0232=-+x x 的两根的和与两根的积为根的一元二次方程。
3、 解方程组⎪⎩⎪⎨⎧==+23xy y x4、 分解因式(1)6542--x x= (2)=--2222y xy x四、聪明题1、 已知一元二次方程022=+-c bx ax 的两个实数根满足221=-x x ,a ,b ,c 分别是ABC ∆的A ∠,B ∠,C ∠的对边。
(1)证明方程的两个根都是正根;(2)若c a =,求B ∠的度数。
2、在ABC ∆中,︒=∠90C ,斜边AB=10,直角边AC ,BC 的长是关于x 的方程0632=++-m mx x 的两个实数根,求m 的值。
二元一次方程判别式与韦达定理专题
二元一次方程判别式与韦达定理专题知识小结:1、对于一个一元二次方程ax 2+bx +c =0(a ≠0).我们把把b 2-4ac 叫做一元二次方程ax 2+bx +c =0的根的判别式,通常用符号“△”表示. 当△>0时,有两个不相等的实数根; 当△=0时,有两个相等的实数根;当△<0时,没有实数根. 反之亦然.2、韦达定理:如果方程ax 2+bx+c=0(a ≠0)的两个根是X 1 , X 2 ,那么acx x a b x x =•-=+2121,(能用韦达定理的前提条件为△≥0 )巩固练习: 一、填空题1.已知2-240x x c -+=的一个根,则方程的另一个根是 . 2.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,(x 1-x 2)2= 。
3.已知关于x 的方程10x 2-(m+3)x+m -7=0,若有一个根为0,则m= ,这时方程的另一个根是 ;若两根之和为-35 ,则m= ,这时方程的两个根为 . 4.若关于x 的方程(m 2-2)x 2-(m -2)x +1=0的两个根互为倒数,则m = 。
5.方程2x(mx -4)=x 2-6没有实数根,则最小的整数m= ;6.已知方程2(x -1)(x -3m)=x(m -4)两根的和与两根的积相等,则m= ;7.设关于x 的方程x 2-6x+k=0的两根是m 和n ,且3m+2n=20,则k 值为 ; 三、解答题8.已知方程012=--x x 的两个实数根为21,x x ,求:(1) (2) (3)x 12+ x 1x 2+2 x 110.关于x 的方程04)2(2=+++kx k kx 有两个不相等的实数根. (1)求k 的取值范围。
(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由11.已知关于x 的一元二次方程x 2+(m -1)x -2m 2+m=0(m 为实数)有两个实数根1x 、2x .(1)当m 为何值时,12x x ≠;(2)若22122x x += ,求m 的值.12.已知12,x x 是方程220x x a -+=的两个实数根,且1223x x +=(1)求12,x x 及a 的值;(2)求32111232x x x x -++的值.13.已知关于x 的方程222(1)230x m x m m -++--=的两个不相等的实数根中有一个根为0,是否存在实数k ,使关于x 的方程22()520x k m x k m m ----+-=的两个实数根1x 、2x 之差的绝对值为1?若存在,求出k 的值;若不存在,请说明理由。
判别式-韦达定理经典题型讲解
1、(海淀中考)已知:关于x的一元二次方程ax2+2ax+c=0的两个实数根之差的平方为m.
(1)试分别判断当a=1,c=-3与a=2,c= 时,m≥4是否成立,并说明理由;
(2)若对于任意一个非零的实数a,m≥4总成立,求实数c及m的值.
2、已知下列n(n为正整数)个关于x的一元二次方程:①x2-1=0,②x2+x-2=0,③x2+2x-3=0,…(n)x2+(n-1)x-n=0.
家长签字:
【典例3】.已知关于x的一元二次方程与有一个相同的根,求k的值。
【典例4】已知方程
(1)若方程两根之差为5,求k。
(2)若方程一根是另一根2倍,求这两根之积。
【典例5】已知方程两根之比为1:3,判别式值为16,求a、b的值。
【典例6】(06黑龙江)已知关于x的方程kx2-2(k+1)x+k-1=0有两个不相等的实数根.
(6)方程x+8x-1=0的两个根为α,β,则3α+2αβ+8α-9=_______
5、已知a-3a=1,b-3b=1,求 + 的值。
6、三角形ABC 的三边长分别为 a,b,c,满足b=8-c, a-12a-bc+52=0,试判断三角形ABC的形状。
7、s,t满足19s+99s+1=0,t+99t+19=0 ,并且st≠1,求 的值。
学生姓名
赵琦
年级
九年级
上课时间
07月15日16:30~18:30
教学目标
教学重难点
1、求根公式:
2、根的判别式:
3、韦达定理:
根的判别式
【典例1】.关于 的方程 的一个根是-2,则方程的另一根是_____; =______。
公式法及韦达定理
学生: 科目:数学 教师: 第 阶段第 次课 2013年 月 日课 题:公式法及韦达定理 授课内容: 一、基础知识(一)公式法解方程根的判别式及应用(24b ac ∆=-):一元二次方程20(0)ax bx c a ++=≠根的情况:①当0∆>时,方程有两个不相等的实数根; ②当0∆=时,方程有两个相等的实数根; ③当0∆<时,方程无实数根.公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x(二)韦达定理:如一元二次方程20(0)ax bx c a ++=≠的两根为12,x x ,则12b x x a +=-,12cx x a⋅= 适用题型:(1)已知一根求另一根及未知系数;(2)求与方程的根有关的代数式的值;(3)已知两根求作方程;(4)已知两数的和与积,求这两个数;(5)确定根的符号:(12,x x 是方程两根);(6)题目给出两根之间的关系,如两根互为相反数、互为倒数、两根的平方和或平方差是多少、两根是Rt ∆的两直角边求斜边等情况.注意:(1)222121212()2x x x x x x +=+-⋅ (2)22121212()()4x x x x x x -=+-⋅; 2121212()4x x x x x x -=+-⋅(3)①方程有两正根,则1212000x x x x ∆≥⎧⎪+>⎨⎪⋅>⎩;②方程有两负根,则1212000x x x x ∆≥⎧⎪+<⎨⎪⋅>⎩ ;③方程有一正一负两根,则120x x ∆>⎧⎨⋅<⎩;④方程一根大于1,另一根小于1,则12(1)(1)0x x ∆>⎧⎨--<⎩(4)应用韦达定理时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方程时,一般把所求作得方程的二次项系数设为1,即以12,x x 为根的一元二次方程为21212()0x x x x x x -++⋅=;求字母系数的值时,需使二次项系数0a ≠,同时满足∆≥0;求代数式的值,常用整体思想,把所求代数式变形成为含有两根之和12x x +,•两根之积12x x ⋅的代数式的形式,整体代入。
关于韦达定理的证明方法
说起韦达定理,其实就是一元二次方程中根与系数的关系,说到这,你可能会想,难道这也算是定理吗?不就是把两个根加起来一次,乘起来一次吗?要是我出生的比韦达早,那这个定理就要改名了。
其实不是这样的,这个定理可以推广到n次方程,根据代数基本定理,n次方程有n个根,那么你还会求出这n个根来相加,相乘吗,不说很高次的,就比如说一元三次方程,其求根公式是:
其中(i² = - 1),那么他的根与系数的关系是
给你笔你有本事算算啊,还能是一加一乘就算出来吗?
到了五次以上的方程就没有求根公式了你还怎么算,找规律吗?
我个人认为,书上给出的韦达定理的证明那根本不叫证明而是验证
会误导学生..
接下来我会写出5种韦达定理的别样证法,其中1种为几何方法的证明
那么,接下来是几何证法,说是几何但需要借助平面直角坐标系的帮助
那么,到这里就结束了。
然后,补充一种与上面相似的几何证法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说起韦达定理,其实就是一元二次方程中根与系数的关系,说到这,你可能会想,难道这也算是定理吗?不就是把两个根加起来一次,乘起来一次吗?要是我出生的比韦达早,那这个定理就要改名了。
其实不是这样的,这个定理可以推广到n次方程,根据代数基本定理,n次方程有n个根,那么你还会求出这n个根来相加,相乘吗,不说很高次的,就比如说一元三次方程,其求根公式是:
其中(i² = - 1),那么他的根与系数的关系是
给你笔你有本事算算啊,还能是一加一乘就算出来吗?
到了五次以上的方程就没有求根公式了你还怎么算,找规律吗?
我个人认为,书上给出的韦达定理的证明那根本不叫证明而是验证
会误导学生..
接下来我会写出5种韦达定理的别样证法,其中1种为几何方法的证明
那么,接下来是几何证法,说是几何但需要借助平面直角坐标系的帮助
那么,到这里就结束了。
然后,补充一种与上面相似的几何证法。