中考数学一轮总复习讲解 第五章 四边形与圆

合集下载

人教版2020年中考数学一轮复习《与圆有关的证明和计算》大题专项练习含答案解析

人教版2020年中考数学一轮复习《与圆有关的证明和计算》大题专项练习含答案解析

中考专题——与圆有关的证明和计算纵观近几年全国各地中考题,圆的有关概念以及性质等一般以填空题,选择题的形式考查并占有一定的分值;圆的有关性质,如垂径定理,圆周角,切线的判定与性质等综合性问题的运用一般以计算证明的形式考查;一般在10分-15分左右,以后发展中利用圆的知识与其他知识点如函数,方程等相结合作为中考压轴题将会占有非常重要的地位。

考查的类型:(1)线段、角以及切线的证明;(2)利用勾股定理、相似以及锐角三角函数进行线段,比值和阴影面积的求解.例题精讲:1、如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC 交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).2、如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.3、如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.4、如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=,BE=1.求阴影部分的面积.5、如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.补充练习:1、如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC,AC于点D,E,过点D作DF⊥AC于点F.(1)求证:DF是⊙O的切线;(2)若∠C=60°,⊙O的半径为2,求由弧DE,线段DF,EF围成的阴影部分的面积(结果保留根号和π)2、如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).3、如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.4、如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB 的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)5、如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD交AB的延长线于点E.(1)判断CE与⊙O的位置关系,并说明理由;(2)若∠DBA=30°,CG=8,求BE的长.6、如图,AB为⊙O的直径,C,E为⊙O上的两点,若AC平分∠EAB,CD⊥AE于点D.(1)求证:DC是⊙O的切线;3,求DE的长;(2)若AO=6,DC=33,求图中阴影部分面积.(3)过点C作CF⊥AB于F,如图2,若AD-OA=1.5,AC=3答案解析例题精讲:1、(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB;(2)设EO与AD交于点M,连接ED.∵∠BAC=60°,OA=OE,∴∠AEO是等边三角形,∴AE=OA,∠AOE=60°,∴AE=A0=OD,又由(1)知,AC∥OD即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,∴S△AEM=S△DMO,∴S阴影=S扇形EOD==.2、(1)证明:∵∵ABC=∵APC,∵BAC=∵BPC,∵APC=∵CPB=60°,∵∵ABC=∵BAC=60°,∵∵ABC是等边三角形.(2)解:∵∵ABC是等边三角形,AB=2,∵AC=BC=AB=2,∵ACB=60°.在Rt∵PAC中,∵PAC=90°,∵APC=60°,AC=2,∵AP=AC•cot∵APC=2.在Rt∵DAC中,∵DAC=90°,AC=2,∵ACD=60°,∵AD=AC•tan∵ACD=6.∵PD=AD﹣AP=6﹣2=4.3、(1)证明:∵BE平分∠BAC,AD平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB;(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC==4,∴△ABC外接圆的半径=×4=2.4、(1)证明:连接OD,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,∵OF⊥AC,∴OF=OD,∴AC是⊙O的切线;(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,∴r2+()2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°,在Rt△AOD中,AD=OD=,∴阴影部分的面积=2S△AOD﹣S扇形DOF=2××1×﹣=﹣.5、(1)证明:∵AB 是⊙O 的直径,∴∠ACB =∠ACD =90°,∵点F 是ED 的中点,∴CF =EF =DF ,∴∠AEO =∠FEC =∠FCE ,∵OA =OC ,∴∠OCA =∠OAC ,∵OD ⊥AB ,∴∠OAC+∠AEO =90°, ∴∠OCA+∠FCE =90°,即OC ⊥FC ,∴CF 与⊙O 相切;(2)解:∵OD ⊥AB ,AC ⊥BD ,∴∠AOE =∠ACD =90°,∵∠AEO =∠DEC ,∴∠OAE =∠CDE =22.5°, ∵AO =BO ,∴AD =BD ,∴∠ADO =∠BDO =22.5°,∴∠ADB =45°,∴∠CAD =∠ADC =45°,∴AC =CD .补充练习:1、(1)如图,连接OD ∵AB 为⊙O 的直径∴AD ⊥BC ∵AB=AC ∴BD=CD ,D 为BC 中点∵O 为AB 中点∴OD ∥AC ∵DF ⊥AC ∴DF ⊥OD ∴DF 为⊙O 的切线(2)如图,连接OE 、OD ∵AB=AC ,∠C=60°∴△ABC 为等边三角形∴∠B=∠A=60°,AB=AC=BC=2⨯2=4∵OA=OB=OD=OE ∴△OAE ,△OBD 都是等边三角形∴∠ODB=∠BOD=∠AOE -∠OEA=∠C=60° ∴∠DOE=180°-2⨯60°=60°,OD ∥AC ,OE ∥BC ∴四边形ODCE 是平行四边形∴OD=CE=BD=CD=2∴DF=CDsin60°=3232=⨯,CF=CDcos60°=1212=⨯ ∴ππ32-323360260-3121-32--2=⨯⨯⨯⨯==∆ODE CDF S S S S 扇形平行四边形阴影2、(1)证明:连接DE 、OD ∵BC 相切⊙O 于点D ∴∠CDA=∠AED ∵AE 为直径∴∠ADE=90°∵AC ⊥BC ∴∠ACD=90°∴∠DAO=∠CAD ∴AD 平分∠BAC(3)在Rt △ABC 中,∠C=90°,AC=BC ∴∠B=∠BAC=45°∵BC 相切⊙O 于点D ∴∠ODB=90°∴OD=BD ,∠BOD=45°设BD=x ,则OD=OA=x ,0B=3x ∴BC=AC=x+1∵AC 2+BC 2=AB 2∴22)2()12x x x +=+( 所以x=2∴BD=OD=2 ∴()4-1360245-22212ππ=⨯⨯=-∆=DOE S BOD S S 扇形阴影3、(1)证明:连接OD ,∵AB=AC ,∴∠B=∠C 。

2021年中考数学复习 第5章 四边形

2021年中考数学复习  第5章  四边形

第五章四边形第一节多边形(建议用时:40分钟)考点1多边形的性质1.一个多边形的边数由原来的3增加到n(n>3,且n为正整数),则它的外角和( D )A.增加(n-2)×180°B.减小(n-2)×180°C.增加(n-1)×180°D.没有改变2.[2020广东]若一个多边形的内角和是540°,则该多边形的边数为( B )A.4B.5C.6D.73.如图,已知∠1,∠2,∠3是五边形ABCDE的三个外角,边CD,AE的延长线交于点F,如果∠1+∠2+∠3=225°,那么∠DFE的度数是45°.考点2正多边形的性质4.[2020承德二模]把边长相等的正五边形ABCDE和正方形ABFG,按照如图所示的方式放置,连接AD,则∠DAG= ( A ) A.18° B.20°C.28°D.30°5.[2020 邢台二模]如图,有n个全等的正五边形按如下方式拼接,使相邻的两个正五边形有一个公共顶点,所夹的锐角为24°,拼接一圈后,中间形成一个正多边形,则n的值为( B )A.5B.6C.8D.106.[2020石家庄新华区一模]连接正八边形的三个顶点,得到如图所示的图形,则下列说法错误的是( D )A.四边形AFGH与四边形CFED的面积相等B.连接BF,则BF平分∠AFC和∠ABCC.整个图形是轴对称图形,但不是中心对称图形D.△ACF是等边三角形7.[2020江苏扬州]如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3 cm,则螺帽边长a=√3cm.8.[2020江苏连云港]如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2,B3,则直线l与A1A2的夹角α=48°.9.如图,在正八边形中,四边形BCFG的面积为2a cm2,则正八边形的面积为4a cm2(用含a的代数式表示).10.[2020湖南株洲]一蜘蛛网如图所示,若多边形 ABCDEFGHI为正九边形,其中心为点O,点M,N分别在射线OA,OC上,则∠MON=80°.11.[2020福建]如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC等于30度.12.若将n个边长为1的正m边形进行拼接,相邻的两个正m边形有一条公共边,围成一圈后中间恰好形成一个正n边形.(1)当m=8时,围成的图形如图所示,则该图形外轮廓的周长为20;(2)当n=3时,围成的图形的外轮廓的周长是27;(3)当m=5时,得到的正n边形的周长是10.13.[2019 唐山丰南区二模]关于n边形,甲、乙、丙三位同学有以下三种说法:甲:五边形的内角和为520°.乙:正六边形每个内角为130°.丙:七边形共有14条对角线.(1)判断三种说法是否正确,并对其中你认为不对的说法用计算进行说明;(2)若n边形的对角线共有35条,求该n边形的内角和.解:(1)甲、乙的说法不正确,丙的说法正确.正五边形的内角和为 180×(5-2)=540°.正六边形外角和为 360°,每个外角为 360÷6=60°,故每个内角为 180°-60°=120°.=35,(2)由题意知n(n−3)2解得n=10或n=-7(不合题意,舍去),180°×(10-2)=1 440°,故该n边形的内角和为1 440°.第二节平行四边形基础分点练(建议用时:45分钟)考点1平行四边形的判定1.下列条件中,不能判定四边形ABCD为平行四边形的是( C )A.AB平行且等于CDB.∠A=∠C,∠B=∠DC.AB=AD,BC=CDD.AB=CD,AD=BC2.[2019广西河池]如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE的延长线上,连接CF.添加一个条件,使四边形ADFC为平行四边形,则这个条件可以是( B )A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF3.如图,四边形ABCD的对角线AC,BD相交于点O,BO=DO,点E,F分别在AO,CO上,且BE∥DF,AE=CF.求证:四边形ABCD为平行四边形.证明:∵BE∥DF,∴∠BEO=∠DFO,又BO=DO,∠BOE=∠DOF,∴△BEO≌△DFO,∴EO=FO.∵AE=CF,∴AE+EO=CF+FO,即AO=CO.又BO=DO,∴四边形ABCD为平行四边形.考点2平行四边形的性质4.在▱ABCD中,若∠A=2∠B,则∠D的度数为( C )A.30°B.45°C.60°D.120°5.[2019 石家庄十八县联考]证明:平行四边形对角线互相平分.已知:四边形ABCD是平行四边形,如图所示.求证:AO=CO,BO=DO.以下是排乱的证明过程:①∴∠ABO=∠CDO,∠BAC=∠DCA.②∵四边形ABCD是平行四边形.③∴AB∥CD,AB=DC.④∴△AOB≌△COD.⑤∴OA=OC,OB=OD.正确的顺序应是( C ) A.②①③④⑤ B.②③⑤①④C.②③①④⑤D.③②①④⑤6.[2020浙江温州]如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为( D )A.40°B.50°C.60°D.70°7.小宇利用尺规在▱ABCD内作出点E,又在BC边上作出点F,作图痕迹如图所示,若EF=2,则AB,CD之间的距离为( C )A.2B.3C.4D.58.[2019海南]如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为( C ) A.12 B.15 C.18 D.219.[2019保定定州二模]如图,已知点M为▱ABCD的边AB的中点,线段CM交BD于点E,S△BEM=1,则图中阴影部分的面积为( C )A.2B.3C.4D.510.[2020陕西]如图,在▱ABCD 中,AB=5,BC=8.E 是边BC 的中点,F 是▱ABCD 内一点,且∠BFC=90°.连接AF 并延长,交CD 于点G.若EF ∥AB,则DG 的长为( D )A.52B.32C.3D.211.[2020山东潍坊]如图,点E 是▱ABCD 的边AD 上的一点,且DE AE =12,连接BE 并延长交CD 的延长线于点F,若DE=3,DF=4,则▱ABCD 的周长为( C )A.21B.28C.34D.4212.[2020广西河池]如图,在▱ABCD 中,CE 平分∠BCD,交AB 于点E,连接DE,EA=3,EB=5,ED=4,则CE 的长是( C )A.5√2B.6√2C.4√5D.5√513.[2020贵州黔东南州]以▱ABCD 对角线的交点O 为原点,平行于BC 边的直线为x 轴,建立如图所示的平面直角坐标系.若A 点坐标为(-2,1),则C 点坐标为 (2,-1) .14.[2019广西梧州]如图,▱ABCD 中,∠ADC=119°,BE ⊥DC 于点E,DF ⊥BC 于点F,BE 与DF 交于点H,则∠BHF= 61 度.15.[2020浙江金华]如图,平移图形M,与图形N 可以拼成一个平行四边形,则图中α的度数是 30 °.综合提升练(建议用时:25分钟)1.[2019广东广州]如图,▱ABCD 中,AB=2,AD=4,对角线AC,BD 相交于点O,且E,F,G,H 分别是AO,BO,CO,DO 的中点,则下列说法正确的是( B )A.EH=HGB.四边形EFGH 是平行四边形C.AC ⊥BDD.△ABO的面积是△EFO的面积的2倍2.[2020重庆A卷]如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为点E,F,AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.(1)解:∵AE⊥BD,∴∠AEO=90°.∵∠AOE=50°,∴∠EAO=40°.又∵AC平分∠DAE,∴∠OAD=∠EAO=40°.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ACB=∠OAD=40°.(2)证明:∵四边形ABCD是平行四边形,∴AO=CO.∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°.在△AEO和△CFO中,{∠AEO=∠CFO,∠EOA=∠FOC, AO=CO,∴△AEO≌△CFO,∴AE=CF.3.如图,在四边形ABCD中,AD∥CB,E为BD的中点,延长CD到点F,使DF=CD.(1)求证:AE=CE;(2)求证:四边形ABDF为平行四边形;(3)若CD=1,AF=2,∠BEC=2∠F,求四边形ABDF的面积.(1)证明:∵AD∥CB,∴∠DAC=∠BCA.∵E为BD的中点,∴DE=BE,在△ADE和△CBE中,{∠DAC=∠BCA,∠AED=∠CEB, DE=BE,∴△ADE≌△CBE,∴AE=CE.(2)证明:由(1)得,AE=CE,BE=DE,∴四边形ABCD是平行四边形,∴AB∥CD,AB=CD.又∵DF=CD,∴AB=DF,∴四边形ABDF为平行四边形.(3)∵四边形ABDF为平行四边形,∴∠F=∠DBA,BD=AF=2.又∵∠BEC=2∠F,∠BEC=∠DBA+∠BAC,∴∠DBA=∠BAC,∴AE=BE=DE,∴∠BAD=90°.∵AB=CD=1,∴AD=√BD2-AB2=√3,∴四边形ABDF的面积为AB×AD=√3.新角度[2020江苏扬州]如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长DF=1DE,以EC,EF为邻边构造▱EFGC,连接EG,则EG的最小值为9√3.4第三节矩形、菱形、正方形课时一:矩形的性质与判定基础分点练(建议用时:30分钟)考点1矩形的判定1.[2020湖北十堰]已知平行四边形ABCD,有下列条件:①AB=BC;②AC=BD;③AC⊥BD;④AC平分∠BAD.其中能说明平行四边形ABCD是矩形的是( B )A.①B.②C.③D.④2.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.证明:∵∠BAD=∠CAE,∴∠BAD-∠BAC=∠CAE-∠BAC,即∠CAD=∠BAE.又∵AB=AC,AD=AE,∴△BAE≌△CAD,∴∠ABE=∠ACD,BE=CD.又∵DE=CB,∴四边形BCDE是平行四边形,∴BE∥CD.∵AB=AC,∴∠ABC=∠ACB,∴∠EBC=∠DCB.∵BE∥CD,∴∠EBC+∠DCB=180°,∴∠EBC=∠DCB=90°,∴四边形BCDE是矩形.考点2与矩形性质有关的证明与计算3.[2020湖南怀化]如图,在矩形ABCD中,AC,BD相交于点O,若△AOD的面积为2,则矩形ABCD的面积为( C )A.4B.6C.8D.104.[2020 江苏连云港]如图,将矩形纸片ABCD沿BE折叠,使点A落在对角线BD上的A'处,若∠DBC=24°,则∠A'EB等于( C )A.66°B.60°C.57°D.48°5.[2019广东广州]如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为( A )A.4√5B.4√3C.10D.86.[2020贵州黔东南州]如图,矩形ABCD中,AB=2,E为CD的中点,连接AE,BD交于点P,过点P作PQ⊥BC于点Q,则PQ=4.37.[2020山东菏泽]如图,矩形ABCD中,AB=5,AD=12,点P在对角线BD上,且BP=BA,连接AP并延长,交DC的延长线于点Q,连接BQ,则BQ的长为3√17.8.[2020 湖南长沙]如图,在矩形ABCD中,E为DC边上一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F处.(1)求证:△ABF∽△FCE.(2)若AB=2√3,AD=4,求EC的长.(3)若AE-DE=2EC,记∠BAF=α,∠FAE=β.求tan α+tanβ的值.(1)证明:∵∠AFE=∠D=90°,∴∠AFB+∠EFC=90°.∵四边形ABCD为矩形,∴∠B=∠C=90°,∴∠AFB+∠BAF=90°,∴∠EFC=∠BAF,∴△ABF∽△FCE.(2)由翻折的性质可得AF=AD=4,在Rt△ABF中,由勾股定理得,BF=√42-(2√3)2=2,∴FC=BC-BF=4-2=2.由(1)知△ABF ∽△FCE,∴AB FC =BFCE ,即2√32=2CE ,∴CE=2√33. (3)设EC=1,DE=x,则AE=x+2,AB=x+1,FE=x, ∴BC=AD=√AE 2-DE 2=√(x +2)2-x 2=2√x +1,FC=√FE 2-CE 2=√x 2-1,∴BF=BC-FC=2√x +1-√x 2-1.由(1)知△ABF ∽△FCE,∴AB FC =BFCE ,∴AB·CE=FC·BF, 即x+1=√x 2-1×(2√x +1-√x 2-1), 得x+1=2(x+1)√x −1-x 2+1, 整理,得x 2=4(x-1),解得x 1=x 2=2, ∴AB=3,BF=√3,AF=2√3, ∴tan α+tan β=BF AB +EF AF =√33+2√3=2√33.内蒙古呼和浩特]如图,把某矩形纸片ABCD 沿EF,GH 折叠(点E,H 在AD 边上,点F,G 在BC 边和点C 落在AD 边上同一点P 处,A 点的对称点为A',D 点的对称点为D',若∠FPG=90°,S △A'EP =8,S △D′PH =2,则矩形ABCD 的长为( D )A.6√5+10B.6√10+5√2C.3√5+10D.3√10+5√22.新角度[2020江西]如图,矩形纸片ABCD 中,AD=8 cm,AB=4 cm,折叠纸片使折痕经过点B,交AD 边于点E,点A 落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其他线段.当图中存在30°角时,AE 的长为 43 √3,4√3或(8-4√3) cm.课时二:菱形的判定与性质基础分点练(建议用时:40分钟)考点1 菱形的判定1.[2020浙江嘉兴]如图,平行四边形ABCD 的对角线AC,BD 相交于点O,请添加一个条件: AD=DC(答案不唯一) ,使平行四边形ABCD 是菱形.2.[2020广西玉林]如图,将两张对边平行且等宽的纸条交叉叠放在一起,则重合部分构成的四边形ABCD 是 菱形(填“是”或“不是”).3.[2020 山东滨州]如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB,BC,CD,DA 于点P,M,Q,N.(1)求证:△PBE≌△QDE;(2)顺次连接点P,M,Q,N,求证:四边形PMQN是菱形.(1)证明:∵四边形ABCD是平行四边形,且对角线AC与BD的交点为E,∴AB∥CD,BE=DE,∴∠PBE=∠QDE,∠BPE=∠DQE,∴△PBE≌△QDE.(2)证明:如图.由(1)可得PE=QE,同理可得ME=NE,∴四边形PMQN是平行四边形.又∵PQ⊥MN,∴▱PMQN是菱形.考点2与菱形的性质有关的计算4.[2020黑龙江绥化]如图,四边形ABCD是菱形,E,F分别是BC,CD两边上的点,不能保证△ABE和△ADF一定全等的条件是( C )A.∠BAF=∠DAEB.EC=FCC.AE=AFD.BE=DF5.[2020湖北黄冈]若菱形的周长为16,高为2,则菱形两邻角的度数之比为( B )A.4∶1B.5∶1C.6∶1D.7∶16.[2020黑龙江龙东地区]如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为( A ) A.4 B.8 C.√13 D.67.[2020四川乐山]如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD 于点E,连接OA.则四边形AOED的周长为( B )A.9+2√3B.9+√3C.7+2√3D.88.[2020辽宁抚顺]如图,四边形ABCD 是菱形,对角线AC,BD 相交于点O,AC=8,BD=6,点E 是CD 上一点,连接OE,若OE=CE,则OE 的长是( B ) A.2B.52C.3D.49.[2020四川南充]如图,面积为S 的菱形ABCD 中,点O 为对角线的交点,点E 是线段BC 的中点,过点E 分别作EF ⊥BD 于点F,EG ⊥AC 于点G,则四边形EFOG 的面积为( B )A.14SB.18SC.112S D.116S10.[2020广东]如图,在菱形ABCD 中,∠A=30°,取大于12AB 的长为半径,分别以点A,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD 的度数为 45° .11.[2020陕西]如图,在菱形ABCD 中,AB=6,∠B=60°,点E 在边AD 上,且AE=2.若直线l 经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF 的长为 2√7 .12.[2020北京]如图,菱形ABCD 的对角线AC,BD 相交于点O,E 是AD 的中点,点F,G 在AB 上,EF ⊥AB,OG ∥EF.(1)求证:四边形OEFG 是矩形; (2)若AD=10,EF=4,求OE 和BG 的长.(1)证明:∵四边形ABCD 为菱形,∴点O 为BD 的中点. 又∵点E 为AD 的中点,∴OE 为△ABD 的中位线, ∴OE ∥FG.又∵OG∥EF,∴四边形OEFG为平行四边形.又∵EF⊥AB,∴四边形OEFG为矩形.AD=5.(2)∵点E为AD的中点,AD=10,∴AE=12又∵∠EFA=90°,EF=4,∴AF=√AE2-EF2=√52-42=3.AB=5.∵四边形ABCD为菱形,∴AB=AD=10,∴OE=12∵四边形OEFG为矩形,∴FG=OE=5,∴BG=AB-AF-FG=10-3-5=2.动态型[2020浙江绍兴]如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B 停止,延长EO交CD于点F,则四边形AECF形状的变化依次为( B )A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形课时三:正方形的性质和判定基础分点练(建议用时:40分钟)考点1正方形的判定1.[2020石家庄新华区一模]如图,已知线段AB,按下列步骤作图:分别以点A,B为圆心、大于1AB的长为半径画2弧,两弧相交于点M,N,作直线MN,交AB于点O,连接MA,MB,NA,NB,若四边形MANB是正方形,则需要添加的条件是( A )A.AO=MOB.MA∥NBC.MA=NBD.AB平分∠MAN2.[2020山东滨州]下列命题是假命题的是( D )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形3.[2020山东威海]如图,在▱ABCD中,BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB上一点,连接EO并延长交CD于点F,连接DE,BF.下列结论不成立的是( D )A.四边形DEBF为平行四边形B.若AE=3.6,则四边形DEBF为矩形C.若AE=5,则四边形DEBF为菱形D.若AE=4.8,则四边形DEBF为正方形考点2正方形的性质4.[2020浙江湖州]四边形具有不稳定性,对于四条边长确定的四边形,当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC'D'.若∠D'AB=30°,则菱形ABC'D'的面积与正方形ABCD的面积之比是( B )A.1B.12C.√22D.√325.[2019内蒙古鄂尔多斯]如图,以AB为边在正方形ABCD外部作等边三角形ABE,连接DE,则∠BED的度数为( C )A.15°B.35°C.45°D.55°6.[2020邢台二模]如图,在正方形ABCD中,AB=6,点Q是AB边上的一个动点(点Q不与点B重合),点M,N分别是DQ,BQ的中点,则线段MN= ( A )A.3√2B.3√22C.3D.67.[2020湖北恩施州]如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE 周长的最小值为( B )A.5B.6C.7D.88.[2020浙江湖州]七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形木板可以制作一副中国七巧板或一副日本七巧板,如图(1)所示.分别用这两副七巧板试拼如图(2)中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是( D )图(1)图(2)A.1和1B.1和2C.2和1D.2和29.[2020河南]如图,在边长为2√2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.10.[2020甘肃天水]如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为2.11.[2020张家口桥东区一模]如图,将边长分别为a,b的两个正方形放在一起.a(a+b);(1)图中阴影部分的三角形的面积为12(2)△ABC的面积为1b2.2(用含a,b的代数式表示)12.[2020四川自贡]如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE,BF交于点M.求证:AE=BF.证明:∵四边形ABCD 为正方形, ∴AB=BC=CD,∠ABE=∠BCF=90°.又∵CE=DF,∴CE+BC=DF+CD,即BE=CF.在△ABE 和△BCF 中,{BE =CF,∠ABE =∠BCF,AB =BC,∴△ABE ≌△BCF,∴AE=BF.13.[2020浙江杭州]如图,在正方形ABCD 中,点E 在BC 边上,连接AE,∠DAE 的平分线与CD 边交于点G,与BC 的延长线交于点F.设CEEB =λ(λ>0).(1)若AB=2,λ=1,求线段CF 的长. (2)连接EG,若EG ⊥AF, ①求证:点G 为CD 边的中点. ②求λ的值.(1)解:因为在正方形ABCD 中,AD ∥BC,所以∠DAF=∠F.因为AG 平分∠DAE,所以∠DAF=∠EAF,所以∠EAF=∠F,所以EA=EF. 因为λ=1,BC=AB=2,所以BE=EC=1. 在Rt △ABE 中,由勾股定理,得EA=√5, 所以CF=EF-EC=EA-EC=√5-1.(2)①证明:由(1)可知EA=EF,又因为EG ⊥AF, 所以AG=GF.又因为∠AGD=∠FGC,∠DAG=∠F, 所以△DAG ≌△CFG.所以DG=CG, 所以点G 为CD 边的中点.②不妨设CD=2,则AD=2,CG=1.由①得CF=AD=2. 易证△FGC ∽△GEC,所以EC CG =CG CF =12, 所以EC=12,所以BE=32,所以λ=CE EB =13.综合提升练(建议用时:30分钟)1.[2020湖南常德]如图(1),已知四边形ABCD 是正方形,将△DAE,△DCF 分别沿DE,DF 向内折叠得到图(2),此时DA 与DC 重合(点A,C 都落在点G 处),若GF=4,EG=6,则DG 的长为 12 .2.[2020山东青岛]如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是.AE的中点,连接OF交AD于点G,连接DF.若DE=2,OF=3,则点A到DF的距离为4√553.[2020湖北咸宁]如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是①②③.(把正确结论的序号都填上)4.[2020唐山路南区二模]如图,在边长为2的正方形ABCD中,动点F,E以相同的速度分别从点D,C同时出发向点C,B运动(任何一个点到达终点时,两点都停止运动).连接AE,BF,AE与BF交于点P,过点P分别作PM∥CD 交BC于点M,PN∥BC交CD于点N,连接MN,在运动过程中,(1)AE和BF的数量关系为AE=BF;(2)MN长度的最小值为√5-1.5.[2020湖南株洲]如图所示,△BEF的顶点E在正方形ABCD对角线AC的延长线上,AE与BF交于点G,连接AF,CF,满足△ABF≌△CBE.(1)求证:∠EBF=90°;(2)若正方形ABCD的边长为1,CE=2,求tan∠AFC的值.(1)证明:∵△ABF≌△CBE,∴∠ABF=∠CBE.∵∠ABF+∠CBF=90°,∴∠CBF+∠CBE=90°,∴∠EBF=90°.(2)∵△ABF ≌△CBE,∴∠AFB=∠CEB. 又∵∠FGA=∠EGB,∴∠FAC=∠EBF=90°. ∵正方形的边长为1,CE=2,∴AC=√2,AF=CE=2, ∴tan ∠AFC=AC AF =√22.6.[2020四川南充]如图,边长为1的正方形ABCD 中,点K 在AD 上,连接BK,分别过点A,C 作BK 的垂线,垂足分别为点M,N,点O 是正方形ABCD 的中心,连接OM,ON.(1)求证:AM=BN.(2)请判定△OMN 的形状,并说明理由.(3)设AK=x,若点K 在线段AD 上运动(不包括端点),△OMN 的面积为y,求y 关于x 的函数解析式(写出此时x 的范围);若点K 在射线AD 上运动,且△OMN 的面积为110,请直接写出AK 长. (1)证明:∵AM ⊥BM,CN ⊥BN,∴∠AMB=∠BNC=90°. 又∵∠ABC=90°,∴∠MAB+∠MBA=∠CBN+∠MBA=90°, ∴∠MAB=∠CBN.又AB=BC,∴△AMB ≌△BNC,∴AM=BN. (2)△OMN 是等腰直角三角形.理由:连接OB,如图.∵O 为正方形的中心,∴∠OAB=∠OBC,OA=OB,∴∠MAB-∠OAB=∠NBC-∠OBC,即∠MAO=∠OBN.又∵AM=BN,∴△AMO ≌△BNO, ∴OM=ON,∠AOM=∠BON.易知∠AOB=∠AON+∠BON=90°, ∴∠MON=∠AON+∠AOM=90°, ∴△OMN 是等腰直角三角形.(3)在Rt △ABK 中,BK=√AK 2+AB 2=√x 2+1. 易知BK·AM=AB·AK,则BN=AM=AB·AK BK=√x 2+1.∵∠AKM=∠BKA,∠AMK=∠BAK=90°,∴△AKM ∽△BKA,∴AK BK =KMAK,∴KM=AK 2BK=2√x 2+1,∴MN=BK-BN-KM=√x 2+1-√x 2+1-2√x 2+1=√x 2+1,∴S △OMN =12×(√22MN)2=14MN 2=(1-x)24x 2+4,即y=x 2-2x+14x 2+4(0<x<1).若点K 在射线AD 上运动,S △OMN =110,则AK 长为13或3.湖北孝感]如图(1),四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图(2)所示的图形,记阴影部分的面积为S 1,空白部分的面积为S 2,大正方形的边长为m,小正方形的边长为n,若S 1=S 2,则nm 的值为 √3-12.图(1) 图(2)参考答案第一节 多边形1.D 因多边形的外角和等于360°,与边数无关,故选D.2.B 设该多边形的边数是n,由多边形的内角和公式,得180°×(n-2)=540°,解得n=5.故选B.3.45° ∵多边形的外角和为360°,∴∠DEF+∠EDF=360°-225°=135°.∵∠DEF+∠EDF+∠DFE=180°,∴∠DFE=180°-135°=45°.4.A 正五边形的每一个内角为(5-2)×180°5=108°,即∠AED=∠EAB=108°.又EA=ED,∴∠EAD=180°−108°2=36°,∴∠DAB=∠EAB-∠EAD =72°.在正方形ABFG 中,∠GAB=90°,故∠DAG=∠GAB-∠DAB =18°.故选A. 5.B 正五边形每一个内角的度数为(5-2)×180°5=108°,所以中间形成的正多边形的每一个内角的度数为360°-24°-108°-108°=120°.易得120°n=(n-2)×180°,解得n=6.故选B.6.D 易知该图形关于直线BF 对称,四边形AFGH 与四边形CFED 关于直线BF 对称,故S 四边形AFGH =S 四边形CFED ,BF 平分∠AFC和∠ABC.因△ACF 不是中心对称图形,故整个图形不是中心对称图形.设该正八边形的中心为点O,连接OA,OC,则∠AFC=12∠AOC=12×360°4=45°,故△ACF 不是等边三角形.7.√3 如图,作螺帽的外接圆,连接AB,AC,则AC 是其直径,易知∠BAC=30°,∠ABC=90°,∴BC=√33AB=√3 cm.8.48 如图,由正五边形内角和为(5-2)×180°=540°,可知∠1=108°.又A 3A 4∥B 3B 4,∴∠2=∠1=108°,∴∠3=72°.在四边形A 2A 3MN 中,∠3+∠4+∠A 2+∠A 3=360°,∠A 2=∠A 3=120°,∴α=∠4=48°.9.4a 如图,连接HE,AD,分别交BG 于点M,N,正八边形每个内角的度数为(8-2)×180°8=135°.易得∠DAH=∠CBG=90°,∴∠BAN=∠ABN=45°,∴AN=BN,AB=√2AN=√2BN.设AN=BN=x,则AB=BC=AH=HG=√2x,MG=x,∴S 四边形BCFG =BC×BG=√2x·(2x+√2x)=2(√2+1)x 2=2a,∴S 四边形ABGH =12(AH+BG)×AN=12(√2x+2x+√2x)·x=(√2+1)x 2=a,故正八边形的面积为a×2+2a=4a(cm 2).10.80 正九边形的中心角度数为360°÷9=40°,即∠AOB=40°,∴∠MON=2∠AOB=2×40°=80°. 11.30 如图,∵六边形花环是用六个全等的直角三角形拼成的,∴六边形ABMNEF 是正六边形,∴∠ABM=(6-2)×180°6=120°.又∠CBM=90°,∴∠ABC=120°-90°=30°.12.20 27 10 (1)每个正八边形的周长为8,故题中图形外轮廓的周长为(8-3)×4=20.(2)设正m 边形的一个内角的度数为α,依据题意,得2α+60°=360°,解得α=150°,∴m=360°÷(180°-150°)=12,∴当n=3时,围成的图形的外轮廓的周长是(12-3)×3=27.(3)正五边形一个内角的度数为180°-360°÷5=108°,∴得到的正n 边形的一个内角的度数为360°-108°-108°=144°,一个外角的度数为180°-144°=36°,∴n=360°÷36°=10,∴得到的正n 边形的周长是10. 13.略第二节 平行四边形 基础分点练 1.C2.B 在△ABC 中,D,E 分别是AB,BC 的中点,∴DE 是△ABC 的中位线,∴DE ∥AC.当∠B=∠BCF 时,AD ∥CF.根据平行四边形的定义可知此时四边形ADFC 是平行四边形.故选B.3.略4.C ∵四边形ABCD 为平行四边形,∴AD ∥BC,∠B=∠D,∴∠A+∠B=180°.∵∠A=2∠B,∴2∠B+∠B=180°,∴∠B=60°,∴∠D=60°.故选C. 5.C ∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=DC,∴∠ABO=∠CDO,∠BAC=∠DCA,∴△AOB ≌△COD,∴OA=OC,OB=OD.故正确的顺序为②③①④⑤,故选C.6.D ∵AB=AC,∠A=40°,∴∠C=∠ABC=70°.又∵四边形BCDE 为平行四边形,∴∠E=∠C=70°.故选D.7.C 如图,过点E 作EM ⊥BA 交BA 的延长线于点M,延长ME 交CD 于点N.∵四边形ABCD 是平行四边形,∴AB ∥CD,∴EN ⊥CD.由尺规作图的痕迹可知,BE,CE 分别平分∠ABC,∠BCD,EF ⊥BC, ∴EM=EF=2, EN=EF=2,∴MN=4,即AB,CD 之间的距离为4.故选C.8.C ∵四边形ABCD 是平行四边形,∴∠D=∠B=60°,CD=AB=3.由折叠的性质可知AE=AD,DC=CE,又D,C,E 三点共线,∴△ADE 是等边三角形.又∵DE=DC+CE=6,∴△ADE 的周长为6×3=18.9.C ∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD.易得△BEM ∽△DEC,∴BE DE =EM EC =BM CD =12, ∴S △DEM =2S △EBM =2,S △EBC =2S △EBM =2,∴S 阴影=2+2=4,故选C.10.D 如图,延长EF 交AD 于点H,则AB ∥EH ∥CD,∴四边形ABEH 和四边形CDHE 都是平行四边形,∴EH=AB=5,AH=BE,HD=EC.∵∠BFC=90°,E 是边BC 的中点,BC=8,∴EF=BE=EC=12×8=4, ∴AH=HD,FH=EH-EF=5-4=1.易得FH 是△ADG 的中位线,∴DG=2FH=2.11.C ∵四边形ABCD 是平行四边形,∴AB ∥CF,AB=CD,∴△ABE ∽△DFE,∴AB DF =AEDE =2,又∵DE=3,DF=4, ∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴▱ABCD 的周长为(8+9)×2=34.故选C. 12.C ∵CE 平分∠BCD,∴∠BCE=∠DCE.∵四边形ABCD 是平行四边形,∴AB=CD,AD=BC,AB ∥CD,∴∠BEC=∠DCE,∠CDE=∠AED,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5.又∵EA=3,ED=4,∴EA 2+ED 2=AD 2,∴∠AED=90°,∴∠CDE=90°.又CD=AB=3+5=8,∴CE=√DE 2+DC 2= √42+82=4√5.故选C.13.(2,-1) ∵▱ABCD 对角线的交点O 为坐标原点,∴点A 与点C 关于原点O 中心对称.又点A 的坐标为(-2,1),∴点C 的坐标为(2,-1).14.61 ∵四边形ABCD 是平行四边形,∴AD ∥BC,DC ∥AB.∵∠ADC=119°,DF ⊥BC, ∴∠ADF=∠DFC=90°, ∠EDH=29°.∵BE ⊥DC,∴∠DEH=90°,∴∠BHF=∠DHE=90°-29°= 61°. 15.30 如图,由题意可知α+∠BCD=180°.过点B 作BF ∥CD,则BF ∥AE,∴∠ABF=180°-∠A=110°, ∴∠CBF=140°- ∠ABF=30°,∴∠BCD=180°-∠CBF=150°,∴α=180°-∠BCD=30°.综合提升练1.B ∵四边形ABCD 是平行四边形,∴BC ∥AD,AB ∥CD.∵E,F,G,H 分别是AO,BO,CO,DO 的中点,∴EH ∥AD,EH=12AD,EF ∥AB,EF=12AB,FG ∥BC,FG=12BC,GH ∥CD,GH=12CD,∴EH ∥FG,EF ∥HG,∴四边形EFGH 是平行四边形,故B 中的说法正确.∵AB=2,AD=4,∴EH=2,HG=1,故A 中的说法错误.∵AB ≠AD,∴平行四边形ABCD 不是菱形,故AC 与BD 不垂直,故C 中的说法错误.由EF ∥AB,得△OEF ∽△OAB,∴S △ABO S △EFO=(ABEF )2=4.故D 中的说法错误.2.略3.略 全国视野创新练9√3 设CD 与EG 交于点O.∵四边形EFGC 是平行四边形,∴EF=CG,EF ∥CG,∴△DOE ∽△COG,∴OE OG =DECG .又∵DF=14DE,∴DE CG =45,即OE OG =45,∴OE EG =49,即EG=94OE,∴当OE 最小时,EG 也最小.当OE ⊥AB 时,OE 取最小值.如图,过点C 作CH ⊥AB 于点H.在Rt △BCH 中,BC=8,∠B=60°,∴CH=sin B×BC=4√3,∴OE 的最小值为4√3,∴EG 的最小值为94×4√3=9√3.第三节 矩形、菱形、正方形 课时一:矩形的性质与判定基础分点练1.B AB=BC,邻边相等的平行四边形是菱形;AC=BD,对角线相等的平行四边形是矩形;AC ⊥BD,对角线互相垂直的平行四边形是菱形;由AC 平分∠BAD,可推得平行四边形ABCD 是菱形.故选B.2.略3.C 由四边形ABCD 是矩形,对角线AC,BD 相交于点O,得OA=OB=OC=OD,故S △AOB =S △COB =S △COD =S △AOD =2,所以矩形ABCD 的面积为4S △AOD =8,故选C.4.C 由折叠可得∠ABE=∠A'BE,∠BA'E=∠A=90°.∵∠DBC=24°,∴∠ABA'=90°-24°=66°,∴∠A'BE=33°, ∴∠A'EB=90°-33°=57°.5.A 如图,连接AE,设AC,EF 交于点O,∵四边形ABCD 是矩形,∴AD ∥BC,∴∠DAC=∠ACB.∵直线EF 垂直平分AC,∴OA=OC,AE=EC,又∵∠AOF=∠COE,∴△AOF ≌△COE,∴AE=CE=AF=5,∴BC=BE+EC=8.在Rt △ABE 中,AB=√AE 2-BE 2=√52-32=4.在Rt △ABC 中,AC=√AB 2+BC 2=√42+82=4√5,故选A.6.43 根据矩形的性质得到AB ∥CD,AB=CD.∵点E 为CD 的中点,∴DE=12CD=12AB.易得△ABP ∽△EDP,则PB PD =ABDE =2,∴PB BD =23.易得△BPQ ∽△BDC,则PQ CD =BP BD =23,∴PQ=23CD=43. 7.3√17 在矩形ABCD 中,AB=5,AD=12,∠BAD=90°,根据勾股定理,可得BD=13.∵BP=BA=5,∴PD=BD-BP=8,∠BAP=∠BPA=∠DPQ.∵AB ∥CD,∴∠BAP=∠DQP,∴∠DPQ=∠DQP,∴DQ=DP=8,∴CQ=DQ-CD=DQ-AB=8-5=3.在Rt △BCQ 中,BC=AD=12,CQ=3,根据勾股定理,得BQ=3√17.8.略全国视野创新练1.D ∵四边形ABCD 是矩形,∴AB=CD,AD=BC.设AB=CD=x,由折叠的性质可知,PA'=AB=x,PD'=CD=x.易证△A'EP ∽△D'PH,∴A'P 2∶D'H 2=8∶2,∴A'P ∶D'H=2∶1,∴D'H=12x.∵S △D'PH =12D'P·D'H=12·x·12x=2,∴x=2√2(负值已舍去),∴D'P=A'P=2√2,DH=D'H=√2,∴A'E=2D'P=4√2,∴PE=√(4√2)2+(2√2)2=2√10,PH=√(2√2)2+(√2)2=√10,∴AD=4√2+2√10+√10+√2=3√10+5√2. 2.43√3,4√3或(8-4√3) ①如图(1),当∠ABE=30°时,在Rt △ABE 中,AB=4,tan ∠ABE=AE AB ,∴AE=AB·tan ∠ABE=4×tan 30°=43√3.②如图(2),当∠AEB=30°时,在Rt △ABE中,tan ∠AEB=AB AE ,∴√33=4AE,∴AE=4√3.③如图(3),当∠ABA'=30°时,∠DEA'=30°,由折叠的性质可知,AE=A'E, A'B=AB=4,过点A'作FG ⊥BC 于点G,交AD 于点F,则FG=AB=4.∵AB ∥FG,∴∠BA'G=∠ABA'=30°, ∴BG=12A'B=2.∵tan ∠BA'G=BG A'G =√33,∴A'G=2√3,∴A'F=FG-A'G=4-2√3.在Rt △A'EF 中,sin ∠FEA'=A'F A'E =12,∴AE=A'E=8-4√3.综上所述,AE 的长为43√3,4√3或(8-4√3)cm.图(1) 图(2)图(3)课时二:菱形的判定与性质基础分点练 1.AD=DC(答案不唯一)2.是 如图,∵AB ∥CD,AD ∥BC,∴四边形ABCD 是平行四边形.过点A 作AE ⊥BC 于点E,AF ⊥DC 于点F,∵两张纸条等宽,∴AE=AF,又S ▱ABCD =BC·AE=DC·AF,∴BC=DC,∴四边形ABCD 是菱形.3.略4.C 由四边形ABCD 是菱形,得AB=AD,∠B=∠D.选项A 中,由∠BAF=∠DAE,得∠BAE=∠DAF,故△ABE ≌△ADF.选项B 中,由EC=FC,得BE=DF,∴△ABE ≌△ADF.选项C 中,添加条件AE=AF,不能保证△ABE 和△ADF 一定全等.选项D 中,由BE=DF,易得△ABE ≌△ADF.故选C.5.B 如图,∵菱形ABCD 的周长为16,高为2,∴AB=4,AH=2.在Rt △ABH 中,sin B=AH AB =24=12,∴∠B=30°. ∵AB ∥CD,∴∠C=150°,∴∠C ∶∠B=5∶1.6.A ∵四边形ABCD 是菱形,OA=6,∴AC=2OA=12,OB=OD.又DH ⊥AB,∴OH=12BD.∵S 菱形ABCD =48,∴12AC·BD=48,∴BD=8,∴OH=4. 7.B ∵四边形ABCD 是菱形,O 是对角线BD 的中点,∴AO ⊥BD,AD=AB=4,AB ∥DC.又∵∠BAD=120°, ∴∠CDB=∠ABD=∠ADB=30°,∴AO=12AD=2,∴DO=√AD 2-AO 2=2√3.又OE ⊥CD,∴OE=12OD=√3, DE=√32OD=3, ∴四边形AOED 的周长为AO+OE+DE+AD=2+√3+3+4=9+√3.8.B ∵四边形ABCD 是菱形,∴OC=12AC=4,OD=12BD=3,∠COD=90°.在Rt △OCD 中,根据勾股定理可知,CD=√OD 2+OC 2=5.∵∠EOC=∠ECO,∠EOC+∠EOD=90°,∠ECO+∠EDO=90°,∴∠EOD=∠EDO,∴DE=OE.又OE=CE,∴DE=OE=CE,∴OE=12CD=52.9.B 方法一:如图(1),连接OE.∵四边形ABCD 是菱形,∴AC ⊥BD,AO=OC,BO=DO, ∴S △BOC =S △AOB =S △AOD = S △DOC = 14S.由点E 是BC 的中点,EF ⊥BD,EG ⊥AC,∠BOC=90°,易知点F 是BO 的中点,点G 是CO 的中点, S △BOE = S △COE =12S △BOC ,∴S △OEF =12S △BOE ,S △OEG =12S △COE ,∴S 四边形EFOG = S △OEF +S △OEG =12S △BOE +12S △COE =12S △BOC =18S,故选B.图(1) 图(2)方法二:如图(2),连接FG.∵四边形ABCD 是菱形,∴AC ⊥BD,AO=OC,BO=DO,∴S △BOC =S △AOB =S △AOD =S △DOC =14S.由点E 是BC 的中点,EF ⊥BD,EG ⊥AC,∠BOC=90°,易知点F 是BO 的中点,点G 是CO 的中点,∴FG 是△OBC 的中位线,∴FG ∥BC,FG=12BC,∴△OFG ∽△OBC,∴S △OFG =14S △OBC =116S.易知S △OFG =S △EFG =12S 四边形EFOG ,∴S 四边形EFOG =2S △OFG =18S.故选B.10.45° 设尺规作图所作直线与AB 交于点F,由尺规作图可知,EF 是线段AB 的垂直平分线,∴AE=BE,∴∠A=∠EBA=30°.由菱形的性质可知AB=AD,∴∠ABD=∠ADB=75°,∴∠EBD=∠ABD-∠EBA=75°-30°=45°. 11.2√7 在线段BC 上取点F,使CF=AE=2,如图,则EF 平分菱形ABCD 的面积,理由:∵四边形ABCD 为菱形,∴AD ∥BC,AD=BC=AB=6,∴DE=BF=6-2=4.过点A 作AG ⊥BC 于点G,过点E 作EH ⊥BC 于点H,则四边形AGHE 是矩形,∴AG=EH,GH=AE=2.∵S 梯形ABFE =12(AE+BF)·AG,S 梯形EFCD =12(CF+DE)·EH,∴S 梯形ABFE =S 梯形EFCD ,即EF 平分菱形ABCD 的面积.∵在Rt △ABG 中,AG=ABsin B=6×√32=3√3,BG=ABcos B=6×12=3, ∴EH=AG=3√3, CH=BC-BG-GH=1,∴FH=CF-CH=1,∴在Rt △EFH 中,EF=√FH 2+EH 2=√12+(3√3)2=2√7.12.略全国视野创新练B 连接AC,由对角线互相平分的四边形为平行四边形可知,点E 在运动过程中,四边形AECF 始终为平行四边形.特殊地,当EF ⊥AC 时,四边形AECF 为菱形,当点E 与点B 重合时,四边形AECF 是矩形.故四边形AECF 的形状依次为平行四边形→菱形→平行四边形→矩形.故选B.课时三:正方形的性质和判定基础分点练1.A 由作图痕迹可知MA=MB=NA=NB,∴四边形MANB 是菱形,故可添加条件AB=MN 或AO=MO.2.D 对角线互相垂直且平分的四边形是菱形,不是正方形.故选D.3.D ∵点O 为BD 的中点,∴OB=OD.∵四边形ABCD 为平行四边形,∴DC ∥AB,∴∠FDO=∠EBO,∠DFO=∠OEB,∴△FDO ≌△EBO,∴OE=OF,∴四边形DEBF 为平行四边形,故选项A 中的结论成立.对于选项B,当AE=3.6时,∵AB=10,AD=6,∴AE AD =35,AD AB =35,∴AE AD =AD AB ,又∵∠DAE=∠BAD, ∴△DAE ∽△BAD,∴∠AED=∠ADB=90°,∴∠DEB=90°,∴▱DEBF 为矩形.故选项B 中的结论成立.对于选项C,当AE=5时,∵AB=10,∴BE=5,又∵∠ADB=90°,∴DE=12AB=5,∴DE=BE,∴▱DEBF 为菱形.故选项C 中的结论成立.对于选项D,当AE=4.8时,∠DEB ≠90°,∴四边形DEBF 不是正方形.故选D.4.B 根据题意可知菱形ABC'D'的AB 边上的高等于AB 的一半,所以菱形ABC'D'的面积为12AB 2,正方形ABCD 的面积为AB 2,故菱形ABC'D'的面积与正方形ABCD 的面积之比是12.故选B.5.C ∵四边形ABCD 是正方形,∴AB=AD,∠BAD=90°.∵△ABE 是等边三角形,∴AB=AE,∠BAE=∠AEB=60°, ∴AD=AE.在△ADE 中,AD=AE,∠DAE=∠BAD+∠BAE=90°+60°=150°,∴∠AED=12(180°-150°)=15°,∴∠BED=∠AEB-∠AED=60°-15°=45°.故选C.6.A 连接BD,在等腰直角三角形ABD 中,BD=√2AB=6√2.根据点M,N 分别是DQ,BQ 的中点可得,MN 是△BDQ 的中位线,所以MN=12BD=3√2.故选A.。

2020年中考数学一轮复习之圆的综合(切线证明、面积、动点问题)(解析版)

2020年中考数学一轮复习之圆的综合(切线证明、面积、动点问题)(解析版)

2020年中考数学一轮复习之圆的综合(切线证明、面积、动点问题)1.如图1,已知四边形ABCD内接于⊙O,AC为⊙O的直径,AD=DB,AC与BD交于点E,且AE=BC.(1)求证:AB=CB;(2)如图2,△ABC绕点C逆时针旋转35°得到△FGC,点A经过的路径为弧AF,若AC=4,求图中阴影部分的面积.(1)证明:∵AD=BD,∠DAE=∠DBC,AE=BC,∴△ADE≌△BDC(SAS),∴∠ADE=∠BDC,∴=.∴AB=BC.(2)解:S阴=S扇形CAF+S△CFG﹣S△ABC=S扇形CAF==.2.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:CG=3:2,AB=16.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=30°,将沿弦CE翻折,交CB于点F,求图中阴影部分的面积.解:(1)连接AO,如右图所示,∵CD为⊙O的直径,AB⊥CD,AB=16,∴AG==8,∵OG:CG=3:2,∴OG:OC=3:5,AB⊥CD,垂足为G,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+82=(5k)2,解得,k=2或k=﹣2(舍去),∴5k=10,即⊙O的半径是10;(2)如图所示,将阴影部分沿CE翻折,点F的对应点为M,∵∠ECD=30°,由对称性可知,∠DCM=60°,S阴影=S弓形CBM,连接OM,则∠MOD=120°,∴∠MOC=60°,过点M作MN⊥CD于点N,∴MN=MO•sin60°=10×=5,∴S阴影=S扇形OMC﹣S△OMC=﹣×10×5=﹣25.3.如图1,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过点C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线.(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF井延长交EC的延长线于点G.①试探究线段CF与CD之间满足的数量关系;②若CD=4,BD=2,求线段FG的长.(1)证明:如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵CD⊥AB,∴∠OBC+∠BCD=90°,∵∠BCE=∠BCD,∴∠OCB+∠BCE=90°,即OC⊥CE,∴CE是⊙O的切线;(2)解:①线段CF与CD之间满足的数量关系是:CF=2CD,理由如下:如图2,过O作OH⊥CF于点H,∴CF=2CH,∵∠FCE=2∠ABC=2∠OCB,且∠BCD=∠BCE,∴∠OCH=∠OCD,∵OC为公共边,∴△COH≌△COD(AAS),∴CH=CD,∴CF=2CD;②∵CD=4,BD=2,∴BC==2,由①得:CF=2CD=8,设OC=OB=x,则OD=x﹣2,在Rt△ODC中,OC2=OD2+CD2,∴x2=(x﹣2)2+42,解得:x=5,即OB=5,∵OC⊥GE,∴∠OCF+∠FCG=90°,∵∠OCD+∠COD=90°,∠FCO=∠OCD,∴∠GCF=∠COB,∵四边形ABCF为⊙O的内接四边形,∴∠GFC=∠ABC,∴△GFC∽△CBO,∴=,∴=,∴FG=.4.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s 的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动.设运动时间为t秒.(1)当t=2时,△DPQ的面积为28 cm2;(2)在运动过程中△DPQ的面积能否为26cm2?如果能,求出t的值,若不能,请说明理由;(3)运动过程中,当A、P、Q、D四点恰好在同一个圆上时,求t的值;(4)运动过程中,当以Q为圆心,QP为半径的圆,与矩形ABCD的边共有4个交点时,直接写出t的取值范围.解:(1)∵四边形ABCD是矩形,∴AD=BC=12,CD=AB=6,∠A=∠B=∠C=90°,由题意得:AP=t,BQ=2t,∴BP=AB﹣AP=6﹣t,CQ=BC﹣BQ=12﹣2t,当t=2时,AP=2,BQ=4,BP=AB﹣AP=4,CQ=BC﹣BQ=8,∴△DPQ的面积=12×6﹣×12×2﹣×4×4﹣×6×8=28(cm2),故答案为:28;(2)不能;理由如下:根据题意得:△DPQ的面积=,整理得:t2﹣6t+10=0,∵b2﹣4ac=﹣4<0,∴方程无实数根,∴△DPQ的面积不可能为26cm2;(3)∵∠A=90°,∴A、P、D三点在以DP为直径的圆上,若点Q也在圆上,则∠PQD=90°,∵PQ2=(6﹣t)2+(2t)2,DQ2=62+(12﹣2t)2,DP2=t2+122,PQ2+DQ2=DP2,∴(6﹣t)2+(2t)2+62+(12﹣2t)2=t2+122;解得t1=6,t2=,∴t=6或时A、P、Q、D四点恰好在同一个圆上.(4)如图1,⊙Q与边AD相切时,过点Q作QE⊥AD,∵⊙Q与边AD相切,∴QE=QP,由勾股定理得:62=(6﹣t)2+(2t)2;解得t1=0(舍去),t2=,如图2,⊙Q过点D时,则QD=QP,由勾股定理得:(6﹣t)2+(2t)2=62+(12﹣2t)2;解得:(舍去)∴当<t<时,⊙Q与矩形ABCD的边共有四个交点.5.如图,已知直线l的函数表达式为y=x+3,它与x轴、y轴的交点分别为A、B两点.(1)若⊙O的半径为2,说明直线AB与⊙O的位置关系;(2)若△ABO的内切圆圆心是点M,外接圆圆心是点N,则MN的长度是;(直接填空)(3)设F是x轴上一动点,⊙P的半径为2,⊙P经过点B且与x轴相切于点F,求圆心P的坐标.解:(1)∵直线l的函数表达式为y=x+3,它与x轴、y轴的交点分别为A、B两点,∴当x=0时,y=3;当y=0时,x=4;∴A(﹣4,0),B(0,3),∴OB=3,OA=4,AB===5,过点O作OC⊥AB于C,如图1所示:∵sin∠BAO==,∴=,∴OC=>2,∴直线AB与⊙O的位置关系是相离;(2)设⊙M分别与OA、OB、AB相切于C、D、E,连接MC、MD、ME、BM,如图2所示:则四边形OCMD是正方形,DE⊥AB,BE=BD,∴MC=MD=ME=OD=(OA+OB﹣AB)=×(4+3﹣5)=1,∴BE=BD=OB﹣OD=3﹣1=2,∵∠AOB=90°,∴△ABO外接圆圆心N在AB上,∴AN=BN=AB=,∴NE=BN﹣BE=﹣2=,在Rt△MEN中,MN===;故答案为:;(3)连接PB、PF,作PC⊥OB于C,如图3所示:则四边形OCPF是矩形,∴OC=PF=BP=2,BC=OB﹣OC=3﹣2=1,∴PC===,∴圆心P的坐标为:(,2).6.联想我们曾经学习过的三角形外心的概念,我们可引入准外心的定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.请回答下面的三个问题:(1)如图1,若PB=PC,则点P为△ABC的准外心,而且我们知道满足此条件的准外心有无数多个,你能否用尺规作出另外一个准外心Q呢?请尝试完成;(2)如图2,已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长;(3)如图3,点B既是△EDC又是△ADC的准外心,BD=BA=BC=2AD,BD∥AC,CD=,求AD的值.解:(1)能用尺规作出另外一个准外心Q,作AB的垂直平分线MN,在MN上取点Q,如图1所示:则QA=QB,点Q为△ABC的准外心;(2)连接BP,如图2所示:∵△ABC为直角三角形,斜边BC=5,AB=3,∴AC===4,∵准外心P在AC边上,①当PB=PC时,设PB=PC=x,则PA=4﹣x,在Rt△ABP中,由勾股定理得:32+(4﹣x)2=x2,解得:x=,∴PA=4﹣=;②当PA=PC时,PA=AC=2;③当PA=PB时,∵△ABC是直角三角形,此情况不存在;综上所述,准外心P在AC边上,PA的长为或2;(3)∵BD=BA=BC,∴∠BAC=∠BCA,点D、A、C在以B为圆心,AB长为半径的圆上,如图3所示:则∠ABD=2∠ACD,作BE⊥CD于E,BF⊥AD于F,则DE=CE=CD=,DF=AF=AD,∠ABD=2∠DBF,∠BEC=∠DFB=90°,∵BD∥AC,∴∠ABD=∠BAC=∠BCA=2∠ACD=2∠DBF=2∠BCE,∴∠DBF=∠BCE,在△BDF和△CBE中,,∴△BDF≌△CBE(ASA),∴DF=BE,设DF=BE=x,则AD=2x,BD=2AD=4x,在Rt△BDE中,由勾股定理得:x2+()2=(4x)2,解得:x=,∴AD=2x=.7.如图,在平面直角坐标系中,AB=AC=10,线段BC在x轴上,BC=12,点B的坐标为(﹣3,0),线段AB交y轴于点E,过A作AD⊥BC于D,动点P从原点出发,以每秒3个单位的速度沿x轴向右运动,设运动的时间为t秒.(1)当△BP E是等腰三角形时,求t的值;(2)若点P运动的同时,△ABC以B为位似中心向右放大,且点C向右运动的速度为每秒2个单位.△ABC放大的同时高AD也随之放大,当以EP为直径的圆与动线段AD 所在直线相切时,求t的值和此时点C的坐标.解:(1)∵AB=AC,AD⊥BC,∴BD=CD=BC=6,∴AD===8,∵点B的坐标为(﹣3,0),∴OB=3,∴OD=BD﹣OB=6﹣3=3,∴A(3,8),设直线AB的解析式为:y=kx+b,则,解得:,∴直线AB的解析式为:y=x+4,∴E(0,4),∴OE=4,BE===5,当△BPE是等腰三角形有三种情况:①当BE=BP时,则3+3t=5,解得:t=;②当BE=EP时,则3t=3,解得:t=1;③当BP=PE时,∵BP=PE,AB=AC,∠ABC=∠PBE,∴∠PEB=∠ACB=∠ABC,∴△PBE∽△ABC,∴=,即=,解得:t=;综上所述,当△BPE是等腰三角形时,t的值为或1或;(2)由题意得:C(9+2t,0),∴BC=12+2t,BD=CD=6+t,OD=3+t,设F为EP的中点,连接OF,作FH⊥AD于H,FG⊥OP于G,如图所示:则四边形FGDH是矩形,FG∥EO,∴FG是△POE的中位线,∴PG=OG=OP=t,FG=OE=2,∴F(t,2),∵四边形FGDH是矩形,∴FH=GD=OD﹣OG=3+t﹣t=3﹣t,∵以EP为直径的圆与动线段AD所在直线相切,∴FH=EP=3﹣t,在Rt△POE中,EP2=OP2+OE2,即:4(3﹣t)2=(3t)2+42,解得:t=1或t=﹣(不合题意舍去),∴C(11,0),∴以EP为直径的圆与动线段AD所在直线相切时,t的值为1,此时点C的坐标为(11,0).8.如图1,在△ABC中,∠ACB=90°,∠ABC的角平分线交AC上点E,过点E作BE 的垂线交AB于点F,△BEF的外接圆⊙O与CB交于点D.(1)求证:AC是⊙O的切线;(2)若BC=9,EH=3,求⊙O的半径长;(3)如图2,在(2)的条件下,过C作CP⊥AB于P,求CP的长.(1)证明:连接OE.如图1所示:∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC⊥OE,∴AC是⊙O的切线;(2)解:∵∠ACB=90°,∴EC⊥BC,∵BE平分∠ABC,EH⊥AB,∴EH=EC,∠BHE=90°,在Rt△BHE和Rt△BCE中,,∴Rt△BHE≌Rt△BCE(HL),∴BH=BC=9,∵BE⊥EF,∴∠BEF=90°=∠BHE,BF是圆O的直径,∴BE===3,∵∠EBH=∠FBE,∴△BEH∽△BFE,∴=,即=,解得:BF=10,∴⊙O的半径长=BF=5;(3)解:连接OE,如图2所示:由(2)得:OE=OF=5,EC=EH=3,∵EH⊥AB,∴OH===4,在Rt△OHE中,cos∠EOA==,在Rt△EOA中,cos∠EOA==,∴OA=OE=,∴AE===,∴AC=AE+EC=+3=,,∵AB=OB+OA=5+=,∠ACB=90°,∴△ABC的面积=AB×CP=BC×AC,∴CP===.9.【操作体验】如图①,已知线段AB和直线1,用直尺和圆规在1上作出所有的点P,使得∠APB=30°,如图②,小明的作图方法:第一步:分别以点A,B为圆心,AB长为半径作弧,两弧在AB上方交于点O第二步:连接OA,OB;第三步:以O为圆心,OA长为半径作⊙O,交l于P1,P2;所以图中P1,P2即为所求的点(1)在图②中,连接P1A,P1B,说明∠AP1B=30°【方法迁移】(2)如图③,用直尺和圆规在矩形ABCD内作出所有的点P,使得∠BPC=45°(不写作法,保留作图痕迹);【深入探究】(3)已知矩形ABCD,BC=2,AB=m,P为AD边上的点,若满足∠BPC=45°的点P恰有两个,求m的取值范围;(4)已知矩形ABCD,AB=3,BC=2,P为矩形ABCD内一点,且∠BPC=120°,若点P绕点A逆时针旋转60°到点Q,求PQ的最小值.解:(1)如图②,连接AP1,BP1,∵OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠AP1B=∠AOB=30°;(2)如图③,①以B、C为圆心,以BC为半径作圆,交AB、DC于E、F,②作BC的中垂线,连接EC,交于O,③以O为圆心,OE为半径作圆,则上所有的点(不包括E、F两点)即为所求;(3)如图④,同理作⊙O,∵BE=BC=2,∴CE=4,∴⊙O的半径为2,即OE=OG=2,∵OG⊥EF,∴EH=,∴OH=,∴GH=2﹣,∴BE≤AB<MB,∴3≤m<2+,故答案为:3≤m<2+;(4)如图⑤,构建⊙O,使∠COB=120°,在优弧上取一点H,则∠CHB=60°∴∠CPB=120°,由旋转得:△APQ是等边三角形,∴PQ=AP,∴PQ取最小值时,就是AP取最小值,当P与E重合时,即A、P、O在同一直线上时,AP最小,则PQ的值最小,在Rt△AFO中,AF=,OF=3+1=4,∴AO==,∴AE=﹣2=AP,∴PQ=AP=﹣2.10.如图,线段AB是⊙O的直径,C、D是半圆的三等分点,过点C的直线与AD的延长线垂直,垂足为点E,与AB的延长线相交于点F,连接OE,交AC于点G.(1)求证:FC是⊙O的切线;(2)连接DC、CO,判断四边形ADCO的形状,并证明;(3)求OG与GE的比值.(1)证明:连接OC,∵C、D是半圆的三等分点,∴==,∴∠DAC=∠CAB,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴OC∥AE,∴∠OCF=∠AEC=90°,∴OC⊥EF,∴FC是⊙O的切线;(2)解:四边形ADCO是菱形,理由如下:连接DC、DO,由(1)知==,∴∠AOD=∠DOC=COB=×180°=60°,又∵OA=OD=OC,∴△OAD与△OCD是等边三角形,∴OA=OD=AD,OD=OC=DC,∴OA=AD=DC=OC,∴四边形ADCO是菱形;(3)解:由(1)知,OC∥AE,∴△OCG∽△EAG,△FCO∽△FEA,∠COF=∠EAF=60°,∴=,=,∴=,在Rt△OCF中,∠F=30°,设OC=r,则OF=2r,∴==,∴=,∴OG与GE的比值为.11.已知:CD为△ABC的外角平分线,交△ABC的外接圆O于D.(1)如图1,连接0A,OD,求证:∠AOD=2∠BCD;(2)如图2.连接BC,若CB平分∠ACD,求证:AB=BD;(3)如图3,在(2)的条件下,在AB上取一点E,BD上取一点F.连接DE、AF交于点M,连接EF,若∠DMF=60°,AC=EF=7,CD=8(DF>BF),求AE的长.解:(1)如图1,连接BD,∵CD为△ABC的外角平分线,∴∠HCD=∠BCD,∵∠HCD=∠ABD,∴∠ABD=∠BCD,∵∠AOD=2∠ABD,∴∠AOD=2∠BCD;(2)∵CB平分∠ACD,∴∠ACB=∠DCB,∴=,∴AB=BD;(3)如图3,作FG⊥AB于G,EP⊥AF于P,CN⊥AC交AC的延长线于N.在Rt△CDN中,∵∠DCN=60°,CD=8,∴∠CDN=30°,∴CN=CD=4,DN=4,∴AD===13,∵AB=BD,∠B=60°,∴∠ABC是等边三角形,∴AD=DB=BD=13,∠DAB=60°,∵∠DMF=∠ADM+∠MAD=60°,∠MAE+∠MAD=60°,∴∠ADE=∠BAF,∵∠DAE=∠B,∴△ADE≌△BAF(ASA),∴AE=BF,设AE=BF=x,则BE=13﹣x,BG=x,EG=13﹣x,FG=x,在Rt△EFG中,72=(13﹣x)2+(x)2,解得x=5或8(舍弃),∴AE=BF=5.12.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长A0与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)证明:OA2=OD•OP;(3)若BC=6,tan∠F=,求cos∠ACB的值.(1)证明:连接OB,如图1所示:∵PB为⊙O的切线,∴OB⊥PB,∴∠OBP=90°,∵BA⊥PF,∴AD=BD,即OP垂直平分AB,∴PA=PB,∴∠PAB=∠PBA,∵OA=OB,∴∠OAB=∠OBA,∴∠PAB+∠OAB=∠PBA+∠OBA=90°,即∠OAP=90°,∴OA⊥PA,∴直线PA为⊙O的切线;(2)∵∠ADO=∠OAP=90°,∠AOD=∠POA,∴△OAD∽△OPA,∴=,∴OA2=OD•OP;(3)解:连接AE,如图2所示:∵AC为直径,∴∠ABC=90°,∵OD垂直平分AB,∴OD∥BC,∴OD是△ABC的中位线,∴OD=BC=3,设DE=x,则OE=OA=OF=3+x,∵OD垂直平分AB,∴=,∴∠F=∠DAE,∴tan∠DAE=tan∠F=,∴AD=2DE=2x,在Rt△ADF中,tan∠F==,∴=,解得:x=2,∴AD=4,BC=6,OA=OE=5,在Rt△ABC中,AC=2OA=10,∴cos∠ACB===.13.如图1,在矩形ABCD中,AB=18cm,BC=24cm.在Rt△GEF中,∠GFE=90°.EF =12cm,GF=16cm.E,F两点在BC边上,GE,GF两边分别与矩形ABCD对角线BD交于M,N两点.现矩形ABCD固定不动,△GEF从点F与点B重合的位置出发,沿BC以2cm/s的速度向点C运动,点P从点F出发,在折线FG﹣GE上以4cm/s的速度向点E运动.⊙G是以G为圆心.GP的长为半径的圆.△GEF与点P同时出发,当点E到达点C 时,△GEF和点P同时停止运动.设运动的时间是t(单位:s).(1)当t=2s时,PN= 5 cm,GM=cm;(2)当△PGE为等腰三角形时,求t的值;(3)当⊙G与BD相切时,求t的值.解:(1)当t=2时,BF=2×2=4(cm),FP=2×4=8(cm),∵四边形ABCD是矩形,∴∠C=90°,AB=CD=18cm,tan∠DBC===,∵∠GFE=90°,∴∠BFN=90°=∠C,∴GF∥CD,∴△BFN∽△BCD,∴=,即=,解得:FN=3cm,∴PN=FP﹣FN=5cm;GN=GF﹣FN=16﹣3=13(cm),∵Rt△GEF中,∠GFE=90°.EF=12cm,GF=16cm,∴GE==20cm,tan∠G===,∴∠DBC=∠G,∵∠BFN=180°﹣90°=90°,∴∠DBC+∠BNF=90°,∵∠GNM=∠BNF,∴∠G+∠GNM=90°,∴∠GMN=90°,∴△GNM∽△GEF,∴=,即=,∴GM=cm,故答案为:5,;(2)由题意得:当△PGE为等腰三角形时,PG=PE,如图2所示:设PF=x,则PE=PG=(16﹣x)cm,在Rt△PEF中,由勾股定理得:122+x2=(16﹣x)2,解得:x=,∴PF=,∴t=÷4=(s);(3)由勾股定理得:BD==30cm,由(1)得:∠GMN=90°,∴GM⊥BD,∵GP是⊙G的半径,∴当⊙G与BD相切时,GM=GP,∵∠BME=∠C=90°,∠DBC=∠EBM,∴△BME∽△BCD,∴=,即=,解得:ME=(2t+12),∴GM=GE﹣ME=20﹣(2t+12)=,分两种情况:①当0<t≤4时,∵GP=16﹣4t,∴=16﹣4t,解得:t=;②当4<t≤6时,P与M重合,GP=4t﹣16,∴=4t﹣16,解得:t=;综上所述,当⊙G与BD相切时,t的值为s或s.14.如图1,已知AB是⊙O的直径,AM和BN是⊙O的两条切线,∠是⊙O的半圆弧上一动点(不与A,B重合),过点E的直线分别交射线AM、BN于D、C两点,且CB=CE.(1)求证:CD为⊙O的切线;(2)求证:AB2=4AD•BC;(3)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积.(1)证明:如图1,连接OE,OC,在△BCO与△ECO中,,∴△BCO≌△ECO(SSS),∴∠OEC=∠OBC,∵BN是⊙O的切线,∴AB是⊙O的直径,∴AB⊥BN,∴∠ABC=90°,∴∠OEC=90°,∴CD为⊙O的切线;(2)证明:连接OC、OD,如图1所示:∵AM和BN是它的两条切线,∴AM⊥AB,BN⊥AB,∴AM∥BN,∴∠ADE+∠BCE=180°∵DC切⊙O于E,∴∠ODE=∠ADE,∠OCE=∠BCE,∴∠ODE+∠OCE=90°,∴∠DOC=90°,∴∠AOD+∠COB=90°,∵∠AOD+∠ADO=90°,∴∠AOD=∠OCB,∵∠OAD=∠OBC=90°,∴△AOD∽△BCO,∴=,∴OA2=AD•BC,∴(AB)2=AD•BC,∴AB2=4AD•BC;(2)解:连接OD,OC,如图2所示:∵∠ADE=2∠OFC,∴∠ADO=∠OFC,∵∠ADO=∠BOC,∠BOC=∠FOC,∴∠OFC=∠FOC,∴CF=OC,∴CD垂直平分OF,∴OD=DF,在△COD和△CFD中,,∴△COD≌△CFD(SSS),∴∠CDO=∠CDF,∵∠ODA+∠CDO+∠CDF=180°,∴∠ODA=60°=∠BOC,∴∠BOE=120°,在Rt△DAO,AD=OA,Rt△BOC中,BC=OB,∴AD:BC=1:3,∵AD=1,∴BC=3,OB=,∴图中阴影部分的面积=2S△OBC﹣S扇形OBE=2×××3﹣=3﹣π.15.如图,A(﹣5,0),B(﹣3,0)点C在y的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°,点P从点A出发,沿x轴向右以每秒1个单位长度的速度运动,运动时间为t秒.(1)当时t=1,求PC的长;(2)当∠BCP=15°时,求t的值;(3)以线段PC为直径的⊙Q随点P的运动而变化,当⊙Q与四边形ABCD的边(或边所在的直线)相切时,求t的值.解:(1)A(﹣5,0),B(﹣3,0),∴OA=5,OB=3,当t=1时,AP=1,∴OP=OA﹣AP=4,∵∠CBO=45°,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠OCB=45°,OC=OB=3,∴PC===5;(2)分两种情况:如图1所示:①当P在点B的左侧时,∵∠CBO=45°,∠BCP=15°∴∠OCP=∠OCB+∠BCP=45°+15°=60°,∴∠OPC=30°,∴OP=OC=3,∴AP=OA﹣OP=5﹣3,∵点P沿x轴向右以每秒1个单位的速度运动,∴t=5﹣3,②当P在点B的右侧时,∵∠OCB=45°,∠BCP=15°∴∠OCP=∠OCB﹣∠BCP=45°﹣15°=30°,∴OP=OC=,∴AP=OA﹣OP=5﹣,∵点P沿x轴向右以每秒1个单位的速度运动,∴t=5﹣;综上所述,当∠BCP=15°时,t的值为(5﹣3)秒或(5﹣)秒;(3)如图2中,由题意知,若该圆与四边形ABCD的边相切,有以下三种情况:①当该圆与BC相切于点C时,有∠BCP=90°,从而∠OCP=45°,得到OP1=OC=3,此时AP1Q=5+3=8,∴t=8;②当该圆与CD相切于点C时,有P2C⊥CD,即点P2与点O重合,此时AP2=5,∴t=5;③当该圆与AD相切时,设P3(5﹣t,0),则Q(,),半径r2=()2+()2,作QH⊥AD于点H,则QH=,∵QH2=r2,∴()2=()2+()2,解得t=,综上所述,t的值为8秒或5秒或秒.。

初中数学知识点:正多边形和圆知识点

初中数学知识点:正多边形和圆知识点

初中数学知识点:正多边形和圆知识点新一轮的中考复习又开始了,本站编辑为此特为大家整理了正多边形和圆知识点,希望可以帮助大家复习,预祝大家取得优异的成绩~正多边形和圆知识点1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。

2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

典型例题粉笔是校园中最常见的必备品.图1是一盒刚打开的六角形粉笔,总支数为50支.图2是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD的周长约为_____mm.(,结果精确到1mm)答案:300解析:把图形中的边长的问题转化为正六边形的边长、边心距之间的计算即可.解:作B′M′∥C′D′,C′M′⊥B′M′于点M′.粉笔的半径是6mm.则边长是6mm.∵∠M′B′C′=60°∴B′M′=B′C′?cos60°=6×=3.边心距C′M′=6sin60°=3mm.则图(2)中,AB=CD=11×3=33mm.AD=BC=5×6+5×12+3=93mm.则周长是:2×33+2×93=66+186≈300mm.故答案是:300mm.同步练习题1判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2填空题:①一个外角等于它的一个内角的正多边形是正____边形.[②正八边形的中心角的度数为 ____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm ,面积是____cm.④面积等于 cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D. :1④正六边形的两条平行边间距离是1,则边长是( )A . B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1: :C. 1: :3D.1:2:四、计算1.已知正方形面积为8cm2,求此正方形边心距 .3.已知圆内接正三角形边心距为 2cm,求它的边长.距长.长.8.已知圆外切正方形边长为2cm ,求该圆外切正三角形半径.10.已知圆内接正方形边长为m,求该圆外切正三角形边长.长.12.已知正方形边长为1cm,求它的外接圆的外切正六边形外接圆的半径.13.已知一个正三角形与一个正六边形面积相等,求两者边长之比.15.已知圆内接正六边形与正方形面积之差为11cm2,求该圆内接正三角形的面积.16.已知圆O内接正n边形边长为an,⊙O半径为R,试用an,R表示此圆外切正n边形边长bn.。

备考2022年中考数学一轮复习-图形的性质_圆_正多边形的性质-填空题专训及答案

备考2022年中考数学一轮复习-图形的性质_圆_正多边形的性质-填空题专训及答案

备考2022年中考数学一轮复习-图形的性质_圆_正多边形的性质-填空题专训及答案正多边形的性质填空题专训1、(2018南京.中考真卷) 如图,五边形是正五边形,若,则________.2、(2018扬州.中考模拟) 如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则弧BF的长为________.(结果保留π)3、(2018苏州.中考模拟) 如图,正五边形的边长为2,连接对角线AD,BE,CE,线段AD分别与BE和CE相交于点M,N,给出下列结论:①∠AME=108°;②;③MN= ;④ .其中正确结论的序号是________.4、(2019福田.中考模拟) (2019·深圳模拟) 如图在平面直角坐标系中,周长为12的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上.点B,在反比例函数y=位于第一象限的图象上.则k的值为________.5、(2019福田.中考模拟) 如图,在平面直角坐标系中,边长为4的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点F在反比例函数y=位于第四象限的图象上,则k的值为________.6、(2020西安.中考模拟) 如图,在正五边形ABCDE中,AC与BE相交于点F,则∠A FE 的度数为________.7、(2019白云.中考模拟) 如图,正六边形的顶点分别在正方形的边上,则的度数是________.如果,那么的长为________.8、(2020孝感.中考模拟) 如图,正五边形ABCDE的各条对角线的交点为M,N,P,Q,R,它们分别是各条对角线的黄金分割点.若AB=2,则MN的长为________.9、(2020陕西.中考模拟) 如图,在正六边形ABCDEF中,连接BD、BE、DF,则的值为________.10、(2020南宁.中考模拟) 我国魏晋时期著名的数学家刘徽在《九章算术》中提出了“割圆术——割之弥细,所失弥少,隔之又割,以至不可割,则与圆周合体,而无所失也.”也就是利用圆的内接多边形逐步逼近圆的方法来近似计算圆的面积和周长.如图1,若用圆的内接正六边形的面积来近似估计半径为1的⊙O 的面积,再用如图2的圆的内接正十二边形的面积来近似估计半径为1的⊙O 的面积,则________.(结果保留根号)(2020岐山.中考模拟) 如图,在正六边形中,的度数为________.12、(2020长春.中考模拟) 一个正方形与一个正六边形如图放置,正方形的一条边与正六边形的一条边完全重合,则∠1的度数为________度.13、(2020定兴.中考模拟) 如图,下列正多边形都满足BA1=CB1,在正三角形中,我们可推得:∠AOB1=60°;在正方形中,可推得:∠AOB1=90°;在正五边形中,可推得:∠AOB1=108°,依此类推在正八边形中,AOB1=________°,在正n(n≥3)边形中,∠AOB1=________°.14、(2020玉林.中考真卷) 如图,在边长为3的正六边形ABCDEF中,将四边形ADEF 绕顶点A顺时针旋转到四边形AD'E'F′处,此时边AD′与对角线AC重叠,则图中阴影部分的面积是________.(2020龙湾.中考模拟) 如图,在正五边形ABCDE中,AC为对角线,以点A为圆心,AE为半径画圆弧交AC于点F,连结EF,则∠1的度数为。

二、解答重难题型突破+题型5 圆的综合++++课件+2025年中考数学总复习人教版(山东)

二、解答重难题型突破+题型5 圆的综合++++课件+2025年中考数学总复习人教版(山东)
2
P在半圆弧AB上运动(不与A,B两点重合),过点C作直线PB的垂线CD交PB于点D.
(1)如图1,求证:△PCD∽△ABC.
(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由.
(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.
28
【解析】(1)∵AB是☉O的直径,
∴∠BCD=30°.
31
本课结束
∴BF=BE=5.
∵∠ABE=∠AMF=90°,∠BAE=∠MAF,
∴△AMF∽△ABE,


∴ = ,即 = = =2.


设MF=x,则AM=2x,
∴BM=10-2x.
5
∵BM2+MF2=BF2,
∴(10-2x)2+x2=52,解得x=3,x=5(不符合题意,舍去),即MF=3.
∴∠PCD=60°.
∵四边形ABDC内接于☉O,
∴∠B=∠PCD=60°.
9

(2)∵点C为的中点,
∴∠CAD=∠CDA,∴AC=CD.
∵∠ADB=90°,
∴∠CDA+∠CDP=90°.
在Rt△ADP中,∠CAD+∠P=90°,
∴∠CDP=∠P,
∴CD=PC=2 ,
∴AC=CD=PC=2 ,
෽ ,对角线AC为☉O

【例2】(2024·济南三模)如图,四边形ABCD内接于☉O,=
的直径,延长BC交过点D的切线于点E.
(1)求证:DE⊥BE;
3
(2)若☉O的半径为5,tan∠DAC= ,求DE的长.
4
12
【自主解答】(1)连接DO并延长交AB于F,

备考2021年中考一轮复习数学几何压轴专题:圆的综合(切线证明、长度与面积问题)

备考2021年中考一轮复习数学几何压轴专题:圆的综合(切线证明、长度与面积问题)

备考2021年中考一轮复习数学几何压轴专题:圆的综合练习一:1.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC 于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是的中点,求DF的长为;②取的中点H,当∠EAB的度数为30°时,求证:四边形OBEH为菱形.2.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,AB=10,AD=8,求AC的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.3.如图,AB是⊙O的直径,且AB=4,点C,D,E均在⊙O上(不与A,B重合),EA 的延长线交DC的延长线于点F,过点A作⊙O的切线AG交DF于点G,连接AC,AD,DE,DB.(1)求证:∠DAG=∠FCA.(2)填空:①当DB=,△ACG是等腰直角三角形;②当DB=,四边形ODCA是平行四边形.4.如图,等边△ABC内接于⊙O,P是弧AB上任一点(点P不与点A、B重合),连接AP、BP,过点C作CM∥BP交PA的延长线于点M.(1)求∠APC的度数.(2)求证:△PCM为等边三角形.(3)若PA=1,PB=3,求△PCM的面积.5.以△ABC的边AB为直径作⊙O交BC于D.(1)如图1,过点D作⊙O的切线交AC于E,若点E为线段AC中点,求证:AC与⊙O相切.(2)在(1)的条件下,若BD=6,AB=10,求△ABC的面积.(3)如图2,连OC交⊙O于E,BE的延长线交AC于F,若AB=AC,CE=AF=4,求CF的长.练习二:6.如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O与BC相切于点E,与AC相交于点F.连接AE.(1)求证:AE平分∠CAD;(2)连接DF,交AE于点G,若⊙O的直径是12,AE=10,求EG的长;(3)连接CD,若∠B=30°,CE=2,求CD的长.7.如图,Rt△ABC中,∠B=90°,它的内切圆分别与边BC,CA,AB相切于点D、E、F.(1)设AB=c,BC=a,AC=b,求证:内切圆半径r=(a+c﹣b)(2)若AD交圆于P,PC交圆于H,FH∥BC,求∠CPD;(3)若r=3,PD=18,PC=27,求△ABC各边长.8.如图,四边形ABCD内接于⊙O.AC为直径,AC、BD交于E,=.(1)求证:AD+CD=BD;(2)过B作AD的平行线,交AC于F,求证:EA2+CF2=EF2;(3)在(2)条件下过E,F分别作AB、BC的垂线垂足分别为G、H,连GH、BO交于M,若AG=3,S四边形AGMO:S四边形CHMO=8:9,求⊙O半径.9.如图,AB是⊙O的直径,弦CD⊥AB于点E,且BE=2,CD=8,点G是⊙O上一动点,连结AD,AG,GD,BC.(1)求直径AB的长;(2)若G是上任意一动点,请找出图中和∠G相等的角(不在原图中添加线段或字母),并说明理由;(3)当△ADG和△CEB相似时,求此时AG的长.10.如图,AB为⊙O的直径,且AB=m(m为常数),点C为的中点,点D为圆上一动点,过A点作⊙O的切线交BD的延长线于点P,弦CD交AB于点E.(1)当DC⊥AB时,则=;(2)①当点D在上移动时,试探究线段DA,DB,DC之间的数量关系;并说明理由;②设CD长为t,求△ADB的面积S与t的函数关系式;(3)当=时,求的值.练习三:11.如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:AB•CP=BD•CD;(3)当AB=5cm,AC=12cm时,求线段PC的长.12.P是以AB为直径的半圆上一动点(P与A、B不重合),O为圆心,CO⊥AP,OC、BC与AP分别相交于D、E两点,AB=12.(1)若∠ABC=35°,求∠PAB的度数;(2)若AP平分线段BC,求弦AP的长度;(3)是否存在点P,使△PBC的面积为整数,如果存在,这样的P点有几个?(直接写出结果,不需写出解题过程.)13.如图,四边形ABCD内接于⊙O,BC=CD,∠C=2∠BAD.(1)求∠BOD的度数;(2)求证:四边形OBCD是菱形;(3)若⊙O的半径为r,∠ODA=45°,求△ABD的面积(用含r的代数式表示).14.定义:有一个角是其对角两倍的圆的内接四边形叫做圆美四边形,其中这个角叫做美角.已知四边形ABCD是圆美四边形(1)求美角∠C的度数;(2)如图1,若⊙O的半径为2,求BD的长;(3)如图2,若CA平分∠BCD,求证:BC+CD=AC.15.如图,AB是⊙O的直径,弦BC=OB,点D是上一动点,点E是CD中点,连接BD分别交OC,OE于点F,G.(1)求∠DGE的度数;(2)若=,求的值;(3)记△CFB,△DGO的面积分别为S1,S2,若=k,求的值.(用含k的式子表示)参考答案1.解:(1)证明:如图1,∵BA=BC,∠ABC=90°,∴∠BAC=45°∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠ADF=∠BDG=90°∴∠DAF+∠BGD=∠DBG+∠BGD=90°∴∠DAF=∠DBG∵∠ABD+∠BAC=90°∴∠ABD=∠BAC=45°∴AD=BD∴△ADF≌△BDG(ASA);(2)①如图2,过F作FH⊥AB于H,∵点E是的中点,∴∠BAE=∠DAE∵FD⊥AD,FH⊥AB∴FH=DF,∵sin∠ABD==sin45°=,∴,即BF=FD,∵AB=4,∴BD=4cos45°=2,即BF+FD=2,∴,∴=4﹣2.故答案为:4﹣2.②证明:如图3,连接OH,EH,OE,∵∠AEB=90°,∠EAB=30°,∴∠ABE=60°,∵点H是的中点,∴∠AOH=∠HOE=60°,∵OH=OE=OB,∴△OEH和△OBE都是等边三角形,∴OB=OH=HE=BE,∴四边形OBEH为菱形.2.(1)证明:连接OC,如图1所示:∵AB是⊙O的直径,∴∠ACB=90°,∵OC=OB,∴∠B=∠OCB,∵∠DCA=∠B,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠OCA=∠OCB+∠OCA=∠ACB=90°,∴CD⊥OC,∴CD是⊙O的切线;(2)解:∵AD⊥CD∴∠ADC=∠ACB=90°又∵∠DCA=∠B∴△ACD∽△ABC∴=,即=,∴AC=4,即AC的长为4;(3)解:AC=BC+EC;理由如下:在AC上截取AF使AF=BC,连接EF、BE,如图2所示:∵AB是直径,∴∠ACB=∠AEB=90°,∵∠DAB=45°,∴△AEB为等腰直角三角形,∴∠EAB=∠EBA=∠ECA=45°,AE=BE,在△AEF和△BEC中,,∴△AEF≌△BEC(SAS),∴EF=CE,∠AFE=∠BCE=∠ACB+∠ECA=90°+45°=135°,∴∠EFC=180°﹣∠AFE=180°﹣135°=45°,∴∠EFC=∠ECF=45°,∴△EFC为等腰直角三角形.∴CF=EC,∴AC=AF+CF=BC+EC.3.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠DBA+∠DAB=90°,∵AG是⊙O的切线,∴∠OAG=90°,即∠DAG+∠DAB=90°,∴∠DBA=∠DAG,∵四边形ACDB是⊙O的内接四边形,∴∠DCA+∠DBA=180°,又∵∠DCA+∠FCA=180°,∴∠FCA=∠DBA,∴∠DAG=∠FCA;(2)解:①如图1所示:∵△ACG是等腰直角三角形,∴CG=AG,AG⊥CG,∴∠CAG=∠GCA=45°,∵AG是⊙O的切线,∴∠CBA=∠CDA=∠CAG=45°,∴点D与点C重合,∵AB是⊙O的直径,∴∠ADB=90°,∴△ABD是等腰直角三角形,∴BD=AB=×4=2,故答案为:2;②如图2所示:连接OC,∵四边形ODCA是平行四边形,∵OA=OD,∴平行四边形ODCA是菱形,∴OC=OA=AC,∴△OAC是等边三角形,∴∠BAD=∠OAC=×60°=30°,∵AB是⊙O的直径,∴∠ADB=90°,∴DB=AB=×4=2,故答案为:2.4.解:(1)∵△ABC是等边三角形,∴∠ABC=60°,∴∠APC=∠ABC=60°;(2)∵∠BPC=∠BAC=60°,∵CM∥BP,∴∠PCM=∠BPC=60°,又由(1)得∠APC=60°,∴△PCM为等边三角形;(3)解:∵△ABC是等边三角形,△PCM为等边三角形,∴∠PCA+∠ACM=∠BCP+∠PCA,∴∠BCP=∠ACM,在△BCP和△ACM中,,∴△BCP≌△ACM(SAS),∴CM=CP,AM=BP=3,∴CM=PM=1+3=4,作PH⊥CM于H,在Rt△PMH中,∠PMH=60°,PM=4,∴PH=2,∴S △PCM=PH•CM=×4×2=4.5.证明:(1)连接OD,OE,AD,∵AB为直径,∴∠ADB=90°,∴∠ADC=90°,∵点E为线段AC中点,∴AE=EC,∴AE=DE,在△ODE与△OAE中,∴△ODE≌△OAE(SSS),∴∠ODE=∠OAE,∵⊙O的切线交AC于E,∴∠ODE=90°,∴∠OAE=90°,∴OA⊥AC,即AC与⊙O相切;(2)如图1,连接AD,∵AB是直径,∴∠ADB=90°,∴AD===8,∵tan∠ABD=,∴∴AC=,∴S△ABC=×AC×AB==;(3)如图,作FH∥AB交OC于H,设半径为r△FEH为等腰三角形∵AC=AB=2r∴CF=2r﹣4∵△CFH∽△OAC∴∴HF=r﹣2∴EH=r﹣2∴HC=4﹣(r﹣2)=6﹣r∵△CFH∽△OAC∴∴∴r=1±∴r=1+∴CF=2r﹣4=2﹣26.证明:(1)连接OE,∵OA=OE,∴∠OAE=∠OEA,∵BC是⊙O切线∴OE⊥BC∴∠OEB=90°,且∠ACB=90°∴OE∥AC∴∠CAE=∠AEO∴∠CAE=∠EAO∴AE平分∠CAD(2)连接DE,∵AD是直径∴∠AED=90°,∵AD=12,AE=10∴DE==2∵∠EDF=∠EAC=∠EAD,∠AED=∠AED ∴△DEG∽△AED∴∴DE2=AE×EG∴44=10×EG∴EG=4.4(3)如图,过点D作DP⊥BC于点P∵∠B=30°,∠ACB=90°∴∠BAC=60°,AB=2AC∵AE平分∠CAB∴∠CAE=∠BAE=30°∴∠B=∠EAB=30°∴AE=BE,∵∠CAE=30°,CE=2,∠ACB=90°∴AE=2CE=4,AC=CE=6,∴AB=2AC=12∵∠AED=90°,∠EAD=30°,AE=4∴DE=4,AD=8∴BD=AB﹣AD=12﹣8=4∵PD⊥BC,∠B=30°,BD=4∴PD=2,PB=2,∴CP=CE+BE﹣PB=2+4﹣2=4在Rt△CDP中,CD==27.解:(1)证明:设圆心为O,连接OD、OE、OF,∵⊙O分别与BC、CA、AB相切于点D、E、F∴OD⊥BC,OE⊥AC,OF⊥AB,AE=AF,BD=BF,CD=CE ∴∠B=∠ODB=∠OFB=90°∴四边形BDOF是矩形∵OD=OF=r∴矩形BDOF是正方形∴BD=BF=r∴AE=AF=AB﹣BF=c﹣r,CE=CD=BC﹣BD=a﹣r∵AE+CE=AC∴c﹣r+a﹣r=b整理得:r=(a+c﹣b)(2)取FH中点O,连接OD∵FH∥BC∴∠AFH=∠B=90°∵AB与圆相切于点F,∴FH为圆的直径,即O为圆心∵FH∥BC∴∠DOH=∠ODB=90°∴∠CPD=∠DOH=45°(3)设圆心为O,连接DO并延长交⊙O于点G,连接PG,过O作OM⊥PD于M ∴∠OMD=90°∵PD=18∴DM=PD=9∵BF=BD=OD=r=,∴OM=∴tan∠MOD=∵DG为直径∴∠DPG=90°∴OM∥PG,∠G+∠ODM=90°∴∠G=∠MOD∵∠ODB=∠ADB+∠ODM=90°∴∠ADB=∠G∴∠ADB=∠MOD∴tan∠ADB==tan∠MOD=3∴AB=3BD=3r=∴AE=AF=AB﹣BF=设CE=CD=x,则BC=+x,AC=+x ∵AB2+BC2=AC2∴解得:x=∴BC=12,AC=15∴△ABC各边长AB=,AC=,BC=8.解:(1)延长DA至W,使AW=CD,连接WB,∵=,∴∠ADB=∠CDB=45°,AB=BC,∵四边形ABCD内接于⊙O.∴∠BAD+∠BCD=180°,∵∠BAD+∠WAB=180°,∴∠BCD=∠WAB,在△BCD和△BAW中,,∴△BCD≌△BAW(SAS),∴BW=BD,∴△WBD是等腰直角三角形,∴AD+DC=DW=BD;(2)如图2,设∠ABE=α,∠CBF=β,则α+β=45°,过B作BE的垂线BN,使BN=BE,连接NC,在△AEB和△CNB中,,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°,∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN,∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;(3)如图3,延长GE,HF交于K,由(2)得EA2+CF2=EF2,∴EA2+CF2=EF2,∴S△AGE+S△CFH=S△EFK,∴S△AGE+S△CFH+S五边形BGEFH=S△EFK+S五边形BGEFH,即S△ABC=S矩形BGKH,∴S△ABC=S矩形BGKH,∴S△GBH=S△ABO=S△CBO,∴S△BGM=S四边形COMH,S△BMH=S四边形AGMO,∵S四边形AGMO:S四边形COMH=8:9,∴S△BMH:S△BGM=8:9,∵BM平分∠GBH,∴BG:BH=9:8,设BG=9k,BH=8k,∴CH=3+k,∴AE=3,CF=(k+3),EF=(8k﹣3),∴(3)2+[(k+3)]2=[(8k﹣3)]2,整理,得7k2﹣6k﹣1=0,解得:k1=﹣(舍去),k2=1,∴AB=12,∴AO=AB=6,∴⊙O半径为6.9.解:(1)如图1,连接OC,设⊙O的半径为r,则OB=OC=r,∵BE=2,∴OE=r﹣2,∵直径AB⊥CD,∴CE=CD=4,在Rt△OEC中,根据勾股定理得,OC2﹣OE2=CE2,∴r2﹣(r﹣2)2=16,∴r=5,∴AB=2r=10,即:直径AB的长为10;(2)∠AGD=∠ABC=∠ADC,理由:∵直径AB⊥CD,∴,∴∠ABC=∠AGD(等弧所对的圆周角相等),∵∠ADC=∠ABC,∴∠AGD=∠ABC=∠ADC;(3)∵CD⊥AB,∴∠BEC=90°,由(2)知,∠AGD=∠CBE,∵△ADG与△CEB相似,∴∠ADG=∠BEC=90°或∠DAG=∠BEC=90°,①当∠ADG=90°时,∴AG是⊙O的直径,∴点G和点B重合,此时,AG=AB=10;②当∠DAG=90°时,∴DG是⊙O的直径,DG=10,如图2,在Rt△BEC中,BE=2,CE=4,∴BC==2,∵△DAG∽△CEB,∴,∴,∴AG=2,即:当△ADG和△CEB相似时,AG的长为10或2.10.解:(1)如图1,∵AB为⊙O的直径,∴∠ADB=90°,∵C为的中点,∴,∴∠ADC=∠BDC=45°,∵DC⊥AB,∴∠DEA=∠DEB=90°,∴∠DAE=∠DBE=45°,∴AE=BE,∴点E与点O重合,∴DC为⊙O的直径,∴DC=AB,在等腰直角三角形DAB中,DA=DB=AB,∴DA+DB=AB=CD,∴=;(2)①如图2,过点A作AM⊥DC于M,过点B作BN⊥CD于N,连接AC,BC,由(1)知,∴AC=BC,∵AB为⊙O的直径,∴∠ACB=∠BNC=∠CMA=90°,∴∠NBC+∠BCN=90°,∠BCN+∠MCA=90°,∴∠NBC=∠MCA,在△NBC和△MCA中,,∴△NBC≌△MCA(AAS),∴CN=AM,∵AC=BC,∴∠BDC=∠CDA=∠DAM=45°,∴AM=DA,DN=DB,∴DC=DN+NC=DB+DA=(DB+DA),即DA+DB=DC;②在Rt△DAB中,DA2+DB2=AB2=m2,∵(DA+DB)2=DA2+DB2+2DA•DB,且由①知DA+DB=DC=t,∴(t)2=m2+2DA•DB,∴DA•DB=t2﹣m2,∴S△ADB=DA•DB=t2﹣m2,∴△ADB的面积S与t的函数关系式S=t2﹣m2;(3)如图3,过点E作EH⊥AD于H,EG⊥DB于G,则HE=GE,四边形DHEG为正方形,由(1)知,∴AC=BC,∴△ACB为等腰直角三角形,∴AB=AC,∵,设PD=9,则AC=20,AB=20,∵∠DBA=∠DBA,∠PAB=∠ADB,∴△ABD∽△PBA,∴,∴,∴DB=16,∴AD==12,设NE=ME=x,∵S△ABD=AD•BD=AD•NE+BD•ME,∴×12×16=×12•x+×16•x,∴x=,∴DE=HE=x=,又∵AO=AB=10,∴=×=.11.(1)证明:连接OD.∵∠BAD=∠CAD,∴=,∴∠BOD=∠COD=90°,∵BC∥PA,∴∠ODP=∠BOD=90°,∴OD⊥PA,∴PD是⊙O的切线.(2)证明:∵BC∥PD,∴∠PDC=∠BCD.∵∠BCD=∠BAD,∴∠BAD=∠PDC,∵∠ABD+∠ACD=180°,∠ACD+∠PCD=180°,∴∠ABD=∠PCD,∴△BAD∽△CDP,∴=,∴AB•CP=BD•CD.(3)解:∵BC是直径,∴∠BAC=∠BDC=90°,∵AB=5,AC=12,∴BC==13,∴BD=CD=,∵AB•CP=BD•CD.∴PC==.12.解:如图连接BP,CP,OP,(1)∵∠ABC=35°,∴∠AOC=2∠ABC=70°,∵CO⊥AP,∴∠PAB=90°﹣70°=20°;(2)∵AB是圆的直径,∴BP⊥AP,∵CO⊥AP,∴OC∥BP,∠CDE=∠BPE=90°,∵CE=BE,∠CED=∠BEP,∴△BPE≌△CDE,∴CD=BP,∵AO=BO,OC∥BP,∴2OD=BP,∴CD=2OD,∵OC=AB=6,∴OD=2,BP=4,由勾股定理可得,AP===8;(3)∵OC∥BP,∴S△BPC=S△BOP,∵OB=6,∴当点P到OB距离为,,…,6时,S△BPC为整数,∴这样的P点有35个.13.解:(1)∵四边形ABCD内接于⊙O,∴∠C+∠BAD=180°,∵∠C=2∠BAD,∴∠C=120°,∠BAD=60°,∴∠BOD=2∠BAD=120°;(2)如图1连接OC,∵BC=CD,∴∠BOC=∠DOC=60°,∵OB=OC=OD,∴△BOC和△DOC都是等边三角形,∴OB=OC=OD=BC=DC,∴四边形OBCD是菱形,(3)如图2,连接OA,过点A作BO的垂线交BO的延长线于点N,∵∠BOD=120°,OB=OD,∴∠ODM=30°,∵∠BOM=∠DOM,∴OM⊥BD,∴OM=r,DM=r,∴BD=2DM=r,∴,∵∠ODA=45°,OA=OD,∴∠OAD=∠ODA=45°,∴∠AOD=90°,∴,∵∠BOD=120°,∠AOD=90°,∴∠AOB=150°,∴∠AON=30°,∴AN=OA=r,∴S△AOB=r2,∴△ABD的面积为r2+r2+r2=(+)r2.14.解:(1)∵四边形ABCD是圆美四边形,∴∠C=2∠A,∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∴∠A+2∠A=180°,∴∠A=60°,∴∠C=120°;(2)由(1)知,∠A=60°,如图1,连接DO并延长交⊙O于E,连接BE,∴∠E=∠A=60°,∵⊙O的半径为2,∴DE=2×2=4,在Rt△DBE中,BD=DE•sin E=4×=6;(3)如图2,在CA上截取CF=CB,由(1)知,∠BCD=120°,∵CA平分∠BCD,∴∠BCA=∠ACD=∠BCD=60°,∴△BCF是等边三角形,∴BC=BF,∠BFC=60°,∴∠AFB=120°,∠AFB=∠BCD,在△ABF和△BCD中,,∴△ABF≌△DBC(AAS),∴AF=DC,∴AC=CF+AF=BC+CD.15.解:(1)∵BC=OB=OC,∴∠COB=60°,∴∠CDB=∠COB=30°,∵OC=OD,点E为CD中点,∴OE⊥CD,∴∠GED=90°,∴∠DGE=60°;(2)过点F作FH⊥AB于点H设CF=1,则OF=2,OC=OB=3∵∠COB=60°∴OH==1,∴HF=OH=,HB=OB﹣OH=2,在Rt△BHF中,BF==,由OC=OB,∠COB=60°得:∠OCB=60°,又∵∠OGB=∠DGE=60°,∴∠OGB=∠OCB,∵∠OFG=∠CFB,∴△FGO∽△FCB,∴,∴GF=,∴;(3)过点F作FH⊥AB于点H,设OF=1,则CF=k,OB=OC=k+1,∵∠COB=60°,∴OH=,∴HF=,HB=OB﹣OH=k+,在Rt△BHF中,BF=,由(2)得:△FGO∽△FCB,∴,即,∴GO=,过点C作CP⊥BD于点P∵∠CDB=30°∴PC=CD,∵点E是CD中点,∴DE=CD,∴PC=DE,∵DE⊥OE,∴.。

2021年山西省中考数学一轮复习 解答题重难点集训 阅读理解类型四 与圆有关的问题 课件

2021年山西省中考数学一轮复习 解答题重难点集训 阅读理解类型四 与圆有关的问题 课件

解:(2)BD=ID.理由:∵点I是△ABC的内心,∴∠BAD=∠CAD,∠CBI =∠ABI,∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+ ∠CBI,∴∠BID=∠DBI,∴BD=ID;
(3)由(2)知BD=ID,∴IA·ID=DE·IF,∵E·IF=IM·IN,∴2R·r=(R+ d)(R-d),∴R2-d2=2Rr,∴d2=R2-2Rr.
任务:(1)请按照上面的证明思路,写出该证明的剩余部分; (2)如图③,AB与⊙O相切于点A,当圆心O在∠BAC的外部时,请写出弦切 角定理的证明过程.
解:(1)如图①,∵AD是⊙O直径,∴∠DEA=90°.∵AB与⊙O相切于点A, ∴∠DAB=90°,∴∠CED+∠DEA=∠CAD+∠DAB,即∠CEA=∠CAB, ∴弦切角的度数等于它所夹弧所对的圆周角度数;
DE CD
,∴DE=
3 2
CD,∴BD=2DE=
3 CD,由托勒密定理:AC·BD=
AD·BC+CD·AB,∴AC· 3 CD=5CD+3CD,∴AC=8 3 3 .
下面是弦切角定理的部分证明过程: 证明:如图①,AB 与⊙O 相切于点 A,当圆心 O 在弦 AC 上时,容易得 到∠CAB=90°,所以弦切角∠BAC 的度数等于它所夹半圆所对的圆周角度 数. 如图②,AB 与⊙O 相切于点 A,当圆心 O 在∠BAC 的内部时,过点 A 作直径 AD 交⊙O 于点 D,在 AC 上任取一点 E,连接 EC,ED,EA,则∠CED =∠CAD,……
解:(1)上述证明过程中的“依据1”是同弧所对的圆周角相等;“依据2” 是两角分别相等的两个三角形相似;
(3)如图,连接 BD,作 CE⊥BD 于点 D.∵四边形 ABCD 是圆内接四边

中考数学第一轮复习资料(超全)

中考数学第一轮复习资料(超全)

中考一轮复习第一部分数与代数第一章数与式第1讲实数第2讲代数式第3讲整式与分式第1课时整式第2课时因式分解第3课时分式第4讲二次根式第二章方程与不等式第1讲方程与方程组第1课时一元一次方程与二元一次方程组第2课时分式方程第3课时一元二次方程第2讲不等式与不等式组第三章函数第1讲函数与平面直角坐标系第2讲一次函数第3讲反比例函数第4讲二次函数第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线第2讲三角形第1课时三角形第2课时等腰三角形与直角三角形第3讲四边形与多边形第1课时多边形与平行四边形第2课时特殊的平行四边形第3课时梯形第五章圆第1讲圆的基本性质第2讲与圆有关的位置关系第3讲与圆有关的计算第六章图形与变换第1讲图形的轴对称、平移与旋转第2讲视图与投影第3讲 尺规作图 第4讲 图形的相似 第5讲 解直角三角形第三部分 统计与概率第七章 统计与概率 第1讲 统计 第2讲 概率第一部分 数与代数第一章 数与式 第1讲 实数考点一、实数的概念及分类 (3分) 1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分) 1、相反数实数与它的相反数时一对数(零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= -b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

备考2022年中考数学一轮复习-图形的性质_圆_圆内接四边形的性质

备考2022年中考数学一轮复习-图形的性质_圆_圆内接四边形的性质

备考2022年中考数学一轮复习-图形的性质_圆_圆内接四边形的性质圆内接四边形的性质专训单选题:1、(2017济宁.中考模拟) 如图,四边形ABCD为⊙O的内接四边形,E是BC延长线上的一点,已知∠BOD=100°,则∠DCE的度数为()A . 40°B . 60°C . 50°D . 80°2、(2017吉林.中考模拟) 如图,四边形ABCD内接于⊙O,AB=AD,连接BD,若∠C=120°,AB=2,则△ABD的周长是()A . 3B . 4C . 6D . 83、(2019宁波.中考模拟) 如图,点B、C、D在⊙O上,若∠BCD=140°,则∠BOD 的度数是()A . 40°B . 50°C . 80°D . 90°4、(2018金华.中考模拟) 四边形ABCD的两条对角线相交于点O,若∠BAD=∠BCD=90°,BD=8,则AC的长可能是()A . 11B . 9C . 7D . 105、(2019宁津.中考模拟) 如图,四边形ABCD内接于⊙O,AB经过圆心,∠B=3∠BAC,则∠ADC等于()A . 100°B . 112.5°C . 120°D . 135°6、(2017黄岛.中考模拟) 如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠AOC的度数为()A . 45°B . 90°C . 100°D . 135°7、(2018烟台.中考真卷) 如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A . 56°B . 62°C . 68°D . 78°8、(2017潍坊.中考真卷) 如图,四边形ABCD为⊙O的内接四边形.延长AB与DC 相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A . 50°B . 60°C . 80°D . 90°9、(2017老河口.中考模拟) 如图,四边形ABCD内接于⊙O,△ACD是等边三角形,AB∥OC,则∠ACB的度数是()A . 45°B . 50°C . 20°D . 30°10、(2020蠡.中考模拟) 如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A . 88°B . 92°C . 106°D . 136°填空题:11、(2015宿迁.中考真卷) 如图,四边形ABCD是⊙O的内接四边形,若∠C=130°,则∠BOD=________12、(2018泰州.中考模拟) 如图,在⊙O上依次取点A、B、C、D、E,测得∠A+∠C=220°,F为⊙O上异于E、D的一动点,则∠EFD=________.13、(2019台州.中考真卷) 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上连接AE.若∠ABC=64°,则∠BAE的度数为________.14、(2017槐荫.中考模拟) 如图,圆内接四边形ABDC,延长BA和DC相交于圆外一点P,∠P=30°,∠D=70°,则∠ACP=________.15、(2018曲靖.中考真卷) 如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=________°.16、(2020晋中.中考模拟) 如图,四边形为的内接四边形,若四边形为平行四边形,则________.17、(2020哈尔滨.中考模拟) 在⊙O中,若一条弦AB的长等于这个圆的半径,则这条弦AB所对的圆周角是________(注意:有两种情况,可不要少填哟!)18、(2021越城.中考模拟) 如图,是的弦,O是圆心,把的劣弧沿着对折,A是对折后劣弧上的一点,若,那么.解答题:19、(2018无锡.中考真卷) 如图,四边形ABCD内接于⊙O,AB=17,CD=10,∠A=90°,cosB= ,求AD的长.20、(2019秀洲.中考模拟) 已知在△ABC 中,AB=AC,以 AB 为直径的⊙O 分别交 AC 于 D,BC 于E,连接ED.(1)求证:ED=EC;(2)若 CD=3,EC=2 ,求 AB的长.21、(2017福建.中考真卷) 如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P 在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若= ,AD=AP,求证:PD是⊙O的切线.22、(2019陕西.中考模拟) 如图,AB为⊙O的直径,CD切⊙O于点D,AC⊥CD于点C,交⊙O于点E,连接AD、BD、ED.(1)求证:BD=ED;(2)若CE=3,CD=4,求AB的长.23、(2019云霄.中考模拟) 如图,已知△ABC内接于⊙O,AD为直径,点C在劣弧AB上(不与点A,B重合),设∠DAB=α,∠ACB=β,小明同学通过画图和测量得到以下近似数据:α30°35°40°50°60°80°β120°125°130°140°150°170°猜想:α关于β的函数表达式,并给出证明.24、(2018深圳.中考模拟) 已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O 分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD 于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.25、(2020扬州.中考模拟) 如图1,点是的内部一点,连接、和,如果、和中有两个角相等,则称是的“等心”.特别地,若这三个角都相等,则称是的“恒等心”.(1)在等边中,点是恒等心,,则点到的距离是________;(2)如图2,在中,,点是的外接圆外一点,连接,交于点,试判断是不是的“等心”,并说明理由;(3)如图3,分别以锐角的边、为边向外做等边和等边,和相交于点,求证:点是的“恒等心”.圆内接四边形的性质答案1.答案:C2.答案:C3.答案:C4.答案:C5.答案:B6.答案:B7.答案:C8.答案:C9.答案:D10.答案:D11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:21.答案:22.答案:23.答案:24.答案:25.答案:。

备考2022年中考数学一轮复习-图形的性质_四边形_正方形的性质-综合题专训及答案

备考2022年中考数学一轮复习-图形的性质_四边形_正方形的性质-综合题专训及答案

备考2022年中考数学一轮复习-图形的性质_四边形_正方形的性质-综合题专训及答案正方形的性质综合题专训1、(2018哈尔滨.中考真卷) 已知:⊙O是正方形ABCD的外接圆,点E在弧AB上,连接BE、DE,点F在弧AD上,连接BF,DF,BF与DE、DA分别交于点G、点H,且DA 平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE 于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙0于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.2、(2016常州.中考真卷)(1)阅读材料:教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为,故沿虚线AB 剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.(2)类比解决:如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE剪开,使剪成的若干块能够拼成一个新的正三角形.拼成的正三角形边长为;(3)在图2中用虚线画出一种剪拼示意图.(4)灵活运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)3、(2019吴兴.中考模拟) 定义:长宽比为:为正整数的矩形称为矩形下面,我们通过折叠的方式折出一个矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.操作2:过点G作CD∥AB,使点D、点C分别落在边AF,BE上.则四边形ABCD 为矩形.(1)证明:四边形ABCD为矩形;(2)点M是边AB上一动点.如图b,O是对角线AC的中点,若点N在边BC上,,连接求的值;连结AC,CM,当△AMC为等腰三角形时,将△CBM沿着CM翻折,点B的对称点为B’,连结AB’求的值.4、(2011金华.中考真卷) 在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C.(1)当n=1时,如果a=﹣1,试求b的值;(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF 在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;②直接写出a关于n的关系式.5、(2017谷城.中考模拟) 如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.①求证:BD⊥CF;②当AB=2,AD=3 时,求线段DH的长.6、(2017武汉.中考模拟) 四边形ABCD为矩形,G是BC上的任意一点,DE⊥AG于点E.(1)如图1,若AB=BC,BF∥DE,且交AG于点F,求证:AF﹣BF=EF;(2)如图2,在(1)条件下,AG= BG,求;(3)如图3,连EC,若CG=CD,DE=2,GE=1,则CE=(直接写出结果)7、(2019永州.中考真卷) 如图(1)如图1,在平行四边形ABCD中,∠A=30°,AB=6,AD=8,将平行四边形ABCD分割成两部分,然后拼成一个矩形,请画出拼成的矩形,并说明矩形的长和宽.(保留分割线的痕迹)(2)若将一边长为1的正方形按如图2﹣1所示剪开,恰好能拼成如图2﹣2所示的矩形,则m的值是多少?(3)四边形ABCD是一个长为7,宽为5的矩形(面积为35),若把它按如图3﹣1所示的方式剪开,分成四部分,重新拼成如图3﹣2所示的图形,得到一个长为9,宽为4的矩形(面积为36).问:重新拼成的图形的面积为什么会增加?请说明理由.8、(2019封开.中考模拟) 已知,如图,在正方形ABCD中,P是BC上的点,且BP =3PC,Q是CD的中点,求证:(1)AQ⊥QP;(2)△ADQ∽△AQP.9、(2017上思.中考模拟) 如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E在线段BC上滑动(不与点B,C重合).①AE=EF是否总成立?请给出证明;②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.10、(2017河池.中考真卷) 解答题(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.11、(2013崇左.中考真卷) 如图所示,正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF.(1)求证:△ADE≌△ABF;(2)问:将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么?12、(2018沙湾.中考模拟) 如图,在正方形中,、分别是、边上的点,且.(1)求证: ;(2)若,,求的长.13、(2017兰州.中考模拟) 如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC,PD.求证:(1)△APB≌△DPC;(2)∠BAP=2∠PAC.14、(2018陇南.中考真卷) 已知矩形ABCD中,E是AD边上的一个动点,点F,G,H 分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.15、(2019吉林.中考模拟) 若四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫做这个四边形的“巧分线”,这个四边形叫“巧妙四边形”,若一个四边形有两条巧分线,则称为“绝妙四边形.(1)下列四边形一定是巧妙四边形的是.(填序号)①平行四边形;②矩形;③菱形;④正方形.(初步应用)(2)如图,在绝妙四边形ABCD中,AC=AD,且AC垂直平分BD,若∠BAD=80°,求∠BCD的度数.(3)在巧妙四边形ABCD中,AB=AD=CD,∠A=90°,AC是四边形ABCD的巧分线,请直接写出∠BCD的度数.正方形的性质综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

河北省2020届中考数学一轮复习讲义1.第一节 多边形

河北省2020届中考数学一轮复习讲义1.第一节  多边形

第五章四边形第一节多边形基础过关1.(2019河北省二模)下列图形中,内角和与外角和相等的多边形是()2.(2019甘肃省卷)如图,足球图片正中的黑色正五边形的内角和是()A. 180°B. 360°C. 540°D. 720°第2题图3.(2019福建)已知正多边形的一个外角等于36°,则该正多边形的边数为()A. 12B. 10C. 8D. 64.(2019河池)如图,在正六边形ABCDEF中,AC=23,则它的边长是()A. 1B. 2C. 3D. 2第4题图5.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC,∠BCD,则∠P的度数是()A. 60°B. 65°C. 55°D. 50°第5题图6.(2019石家庄新华区质量检测)如图,将正五边形ABCDE沿逆时针方向绕其顶点A旋转,若使点B 落在AE边所在的直线上,则旋转的角度可以是()A. 72°B. 54°C. 45°D. 36°第6题图7.(2019保定高阳县演练)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB=()A. 36°B. 72°C. 108°D. 144°第7题图8. 正方形ABCD与正五边形EFGHM的边长相等,初始位置如图所示.将正方形绕点F顺时针旋转使得BC与FG重合,再将正方形绕点G顺时针旋转使得CD与GH重合,…,按这样的方式将正方形依次绕点H,M,E旋转后,正方形中与EF重合的边是()A. ABB. BCC. CDD. DA第8题图9.(2019廊坊安次区二模)把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A. 141°B. 144°C. 147°D. 150°第9题图10.(2018廊坊三中一模)一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是()A. 17B. 16C. 15D. 15或16或1711. 如图,线段AB是正八边形的一边,在正八边形的外部以AB为边作正六边形,点C、D分别为正八边形与正六边形的中心,则∠CAD的度数为()A. 120°B. 125°C. 127.5°D. 130°第11题图12.(2019河北中考说明)在地面上,某一点周围有a个正三角形、b个正十二边形(a,b均不为0)恰能铺满地面,则a+b=______.13.(2019宜宾)如图,六边形ABCDEF的内角都相等,AD∠BC,则∠DAB=________°.第13题图14.(2019株洲)如图所示,过正五边形ABCDE的顶点B作一条射线与其内角∠EAB的角平分线相交于点P,且∠ABP=60°,则∠APB=______度.第14题图15.(2019石家庄十八县联考二)如图,含30°角的直角三角板的直角边AC,BC分别经过正八边形的两个顶点,则图中∠1+∠2=________.第15题图16.(人教九上P108习题24.3T5改编)如图,要拧开一个边长a=12 mm的六角形螺帽,扳手张开的开口b至少为________ mm.第16题图17.(2019徐州)如图,A、B、C、D为一个外角为40°的正多边形的顶点,若O为正多边形的中心,则∠OAD=________°.第17题图18. 如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°≤α≤90°),若DE∠B′C′,则α=________°.第18题图能力提升1.(2019邢台二模)如图,点P、M、N分别是边长为2的正六边形中不相邻三条边的中点,则∠PMN 的周长为()A. 6B. 6 2C. 6 3D. 9第1题图2. 如图,正六边形ABCDEF的边长为3,点P是边BC上任意一点,过点P作PM∠AB交AF于点M,作PN∠CD交DE于点N,则PM+PN=()A. 6B. 9C. 12D. 无法确定第2题图满分冲关1.(2019河北中考说明)如图,点M,N分别是正八边形相邻的边AB,BC上的点,且AM=BN,点O 是正八边形的中心,则∠MON=________°.第1题图2.(2019石家庄长安区质量检测)如图,将边长为2的正五边形ABCDE沿对角线BE折叠,使点A落在正五边形内部的点A′处,则B,A′和D三点______同一条直线上(填“在”或者“不在”);点A′和D之间的距离是________.第2题图3.(2019河北省二模)已知正多边形每个内角比相邻外角大60°.(1)求这个正多边形的边数;(2)求这个正多边形的内切圆与外接圆的半径之比;(3)将这个正多边形对折,并完全重合,求所得图形的内角和(按一层计算).参考答案第一节 多边形基础过关1. B 【解析】设多边形的边数是n ,则(n -2)·180°=360°,解得n =4,故选B .2. C 【解析】根据多边形的内角和公式,正五边形的内角和为180°×(5-2)=540°,故选C .3. B 【解析】n =360°36°=10,故选B .4. D 【解析】如解图,过点B 作BH ⊥AC ,交AC 于点H ,∵多边形ABCDEF 为正六边形,∴AB =BC ,∠ABC =120°,∴∠ABH =60°,AH =CH =12AC = 3.在Rt △ABH 中,AB =AH sin60°=332=2.第4题解图5. A 【解析】由多边形内角和公式(n -2)×180°可得五边形的内角和为(5-2)×180°=540°,∵∠A +∠B +∠E =300°, ∴∠EDC +∠BCD =240°,∵DP 、CP 分别平分∠EDC 、∠BCD ,∴∠PDC +∠PCD =12(∠EDC +∠BCD )=120°,∴∠P =60°.6. A 【解析】如解图所示,易得正五边形的内角和为540°.在正五边形ABCDE 中,∠BAE =540°5=108°,∴∠BAF =180°-108°=72°,即若使点B 落在AE 边所在的直线上,则旋转的角度可以是72°.第6题解图7. C 【解析】如解图,∵正五边形的每个外角是360°÷5=72°,∴∠OCD =∠ODC =72°,∴∠COD =36°,又∵正五边形每个内角是108°,∴∠AOB =360°-108°-108°-36°=108°.第7题解图8. B 【解析】∵正方形ABCD 与正五边形EFGHM 的边长相等,∴从BC 与FG 重合开始,正方形ABCD 的各边依次与正五边形EFGHM 的各边重合,而与EF 重合是正方形的边与正五边形的边第五次重合,∴正方形中与EF 重合的边是BC .9. B 【解析】如解图,过点G 作直线MN ⊥CD 于点N ,由正多边形的轴对称性可知∠LGN =12∠HGL=108°÷2=54°,∴∠PGM =∠NGL =54°,∵由正六边形的性质知AF ∥CD ,MN ⊥CD ,∴MN ⊥AF ,即∠PMG =90°,∴∠APG =90°+54°=144°.第9题解图10. D 【解析】多边形的内角和可以表示成(n -2)·180°(n ≥3且n 是整数),一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据(n -2)·180°=2520°,解得n =16,则原多边形的边数是15或16或17.11. C 【解析】∵∠CAB =12×(8-2)×180°8=67.5°,∠DAB =12×(6-2)×180°6=60°,∴∠CAD =∠CAB +∠DAB =67.5°+60°=127.5°. 12. 313. 60 【解析】六边形的内角和为180°×(6-2)=720°,∴∠B =720°6=120°.∵AD ∥BC ,∴∠DAB=180°-∠B =180°-120°=60°.14. 66 【解析】∵五边形ABCDE 是正五边形,∴∠EAB =(5-2)×180°÷5=108°.∵AP 是∠EAB 的平分线,∴∠P AB =12∠EAB =54°.∵∠ABP =60°,∴∠APB =180°-∠P AB -∠ABP=66°.15. 180° 【解析】∵正八边形的每个内角为(8-2)×180°8=135°,三角形为直角三角形,∴∠1+∠2=2×135°-90°=180°.16. 123 【解析】如解图,设正六边形的中心是O ,其一边是AB ,∴∠AOB =∠BOC =60°,∴OA =OB =AB =OC =BC ,∴四边形ABCO 是菱形,∵AB =12 mm ,∠AOB =60°,且cos ∠BAC =AMAB ,∴AM=12×32=63mm ,∵OA =OC ,且∠AOB =∠BOC ,∴AM =MC =12AC ,∴AC =2AM =12 3 mm.第16题解图17. 30 【解析】如解图,连接OB ,OC ,∵在正多边形中,中心角与多边形的外角相等,∴∠AOB =∠BOC =∠COD =40°.∴∠AOD =120°.又∵OA =OD ,∴在△AOD 中,∠OAD =∠ODA =(180°-120°)÷2=30°.第17题解图18. 54 【解析】如解图,设DE 与B ′C ′相交于O 点,∵五边形ABCDE 为正五边形,∴∠B =∠BAE =∠E =(5-2)×180°5=108°,∵正五边形ABCDE 绕点A 顺时针旋转后得到正五边形AB ′C ′D ′E ′,旋转角为α(0°≤α≤90°),∴∠BAB ′=α,∠B ′=∠B =108°,∵DE ⊥B ′C ′,∴∠B ′OE =90°,∴∠B ′AE =360°-∠B ′-∠E -∠B ′OE =360°-108°-108°-90°=54°,∴∠BAB ′=∠BAE -∠B ′AE =108°-54°=54°,∴α=54°.第18题解图能力提升1. D 【解析】如解图所示,延长F A 、CB 交于点K .在正六边形ABCDEF 中,∠F AB =∠CBA =120°.∴∠KAB =∠KBA =60°.∴△KAB 是等边三角形.∴∠K =60°.∵M 、N 分别为F A 、BC 的中点,∴AM =BN =1.又∵AK =BK ,∴MK =NK .又∵∠K =60°,∴△KM N 是等边三角形,∴∠AMN =60°.过点A 作AG ⊥MN ,过点B 作BH ⊥MN ,垂足分别为G 、H .∴∠MAG =30°.∴MG =12AM =12.同理得HN =12.∵∠MAB=120°,∠MAG =30°,∴∠GAB =∠AGH =∠BHG =90°.∴四边形ABHG 是矩形.∴GH =AB =2.∴MN =MG +GH +HN =12+2+12=3.∴△PMN 的周长为3MN =9.第1题解图2.B 【解析】如解图,连接AD 交PM 于点G ,交PN 于点H ,∵六边形ABCDEF 是正六边形,∴∠F AB =∠ABP =∠BCD =∠CDE =120°,AB =BC =CD .∴∠BAD =∠F AD =∠CDA =∠EDA =60°.∴∠BAD +∠ABC =180°.∴AD ∥BC .∵PM ∥AB ,∴四边形ABPG 是平行四边形.∴AG =BP ,PG =AB ,∠MGA =∠GPB =∠BAG =60°.∴△MAG 是等边三角形,∴MG =AG .同理得四边形PCDH 是平行四边形,PH =CD ,PC =HD ,△HND 是等边三角形,NH =HD .∴MG +HN =BP +PC =BC =AB ,∴PM +PN =PG +PH +MG +HN =3AB =9.第2题解图满分冲关1. 45 【解析】如解图,连接OA 、OB 、OC ,∵正八边形是中心对称图形,∴中心角为360°÷8=45°.∴∠OAM =∠OBN =180°-45°2=67.5°.在△OAM 和△OBN 中,⎩⎪⎨⎪⎧OA =OB ,∠OAM =∠OBN ,AM =BN ,∴△OAM ≌△OBN (SAS).∴∠AOM =∠BON .∴∠MOB =∠NOC .∵∠AOC =∠AOM +∠MOB +∠BON +∠NOC =90°,∴∠MON =∠MOB +∠NOB =12(∠AOM +∠MOB +∠NOB +∠NOC )=12∠AOC =45°.第1题解图2. 在;5-1 【解析】∵在△AEB 中,AE =AB ,∠EAB =(5-2)×180°5=108°,∴∠AEB =∠ABE=36°.由折叠的性质可知∠BEA ′=∠EBA ′=36°.∴∠DEA ′=108°-∠AEB -∠A ′EB =36°.∵∠EA ′B =∠A =108°,AE =A ′E =DE ,∴∠EA ′D =180°-36°2=72°,∵∠EA ′D +∠EA ′B =72°+108°=180°,∴B 、A ′、D 三点共线.设A ′D =x ,∵∠EDA ′=∠BDE ,∠DEA ′=∠DBE =36°,∴△DEA ′∽△DBE .∴DE DB =DA ′DE .即22+x =x2,解得x =5-1(负值舍去).∴点A ′和D 之间的距离是5-1.3. 解:(1)设这个正多边形的每个外角的度数为x ,则每个内角为x +60°, ∴x +x +60°=180°. ∴x =60°.∴这个正多边形的边数=360°÷60°=6. 故这个正多边形的边数是6;(2)如解图①,r 为内切圆半径,正多边形的边长为a ,∴外接圆的半径为a . ∴r =a 2-(a 2)2=3a 2.∴r a =32. ∴这个正多边形的内切圆和外接圆的半径之比为 3 ∶2;第3题解图①(3)如解图②,当沿过两个端点的对称轴所在的直线折叠时,得到的图形是四边形,内角和是(4-2)×180°=360°;如解图③,当沿对边中点所在的直线折叠时,得到的图形是五边形,内角和是(5-2)×180°=540°.第3题解图。

最新中考数学-一轮复习:与圆有关的位置关系

最新中考数学-一轮复习:与圆有关的位置关系

与圆有关的位置关系基础知识知识点一、点与圆的位置关系1. 点和直线有三种位置关系:①点在圆外,即这个点到圆心的距离大于半径;②点在圆上,即这个点到圆心的距离等于半径;③点在圆内,即这个点到圆心的距离小于半径.2. 用数量关系表示位置关系:⊙O的半径为r,点P到圆心的距离OP=d,则有①点P在⊙O外d>r;②点P在⊙O上d=r;③点P在⊙O内d<r.知识点二、直线和圆的位置关系1.直线和圆的三种位置关系:(1)相离:直线和圆没有公共点,这时我们说这条直线和圆相离.(2)相切:直线和圆只有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点.(3)相交:直线和圆有两个公共点,这时我们说这条直线和圆相交.2、直线和圆的位置关系的性质与判断:设圆的半径为r,圆心到直线的距离为d,则:①直线和圆相离 d < r②直线和圆相切 d = r③直线和圆相交 d > r.知识点三、切线的判定定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.在应用定理时,必须先弄清两个条件:一是经过半径的外端;二是垂直于这条半径,两者缺一不可.2. 切线的判定方法有以下几种:①可以直接应用定义:直线与圆有一个公共点时,直线是圆的切线.②圆心到直线的距离等于半径的直线是圆的切线.③切线的判定定理.当已知条件中没有指出圆与直线的公共点时,常运用方法②进行判定;当已知条件中明确指出圆与直线有公共点时,常运用判定定理进行判定.证题方法“有点连半径,无点作垂线”.知识点四、切线的性质定理与切线长定理1. 切线的性质定理:圆的切线垂直于过切点的半径.当已知圆的切线时,常常连接过切点的半径,得两线垂直关系. 2.切线长定理(1)切线长的定义:过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. (2)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等. 知识点五、三角形的外接圆与外心1. 三角形的外接圆:经过三角形的三个顶点的圆叫做三角形的外接圆.2. 三角形的外心:三角形外接圆的圆心,是三角形三条边垂直平分线的交点.这个点叫做三角形的外心.3. 三角形外心的性质:①三角形的外心是外接圆的圆心,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的;但一个圆的内接三角形却有无数个,这些三角形的外心重合.知识点六、三角形的内切圆与内心1.三角形的内切圆是指与三角形各边都相切的圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.任意一个三角形都有且只有一个内切圆.但一个圆的外切三角形有无数个.2. 三角形的内心:三角形内切圆的圆心,是三角形三条角平分线的交点,到三角形三边的距离相等. 常见结论:(1)Rt △ABC 的三条边分别为:a 、b 、c (c 为斜边),则它的内切圆的半径2ab cr ; (2)△ABC 的周长为l ,面积为S ,其内切圆的半径为r ,则12S lr . 知识点七、正多边形与圆的关系1. 正多边形的概念:各边相等,各角也相等的多边形叫做正多边形.2. 正多边形与圆的关系可以这样表述:把圆分成n (n≥3)等份,依次连接各分点所得的多边形就是这个圆的内接正n 边形.利用这一关系可以判定一个多边形是否是正多边形或作出一个正多边形.这个圆是这个正多边形的外接圆.正多边形的外接圆的圆心叫做这个正多边形的中心.外接圆的半径叫做这个正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角.3. 对称性:①正多边形的轴对称性:正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心.②正多边形的中心对称性:边数为偶数的正多边形是中心对称图形,它的中心是对称中心. ③正多边形的旋转对称性:正多边形都是旋转对称图形,最小的旋转角等于中心角. 典型例题解析例1. 已知点P到⊙O上的点的最短距离为3cm,最长距离为5cm,则⊙O的半径为cm.例2. 已知⊙O的半径长为2cm,如果直线l上有一点P满足PO=2cm,那么直线l与⊙O的位置关系是()A.相切B.相交C.相离或相切D.相切或相交例3. Rt△ABC中,∠C=90°,AC=5,BC=12,如果以点C为圆心,r为半径,且⊙C与斜边AB仅有一个公共点,那么半径r的取值范围是.例4. (朝阳)如图,△MBC中,∠B=90°,∠C=60°,MB=23,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A.2B.3C.2 D.3例5. (葫芦岛)如图,边长为a的正六边形内有一边长为a的正三角形,则SS阴影空白()A.3 B.4 C.5 D.6例6. 如图:⊙I是Rt△ABC的内切圆,∠C=90°,AC=6,BC=8,则⊙I的半径是.例7. (锦州)已知,⊙O为∆ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE 的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.(2)过点O作OH⊥AB,垂足为H,例8. (来宾)如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O 于点E,且∠BAF=2∠CBF,CG⊥BF于点G.连接AE.(1) 直接写出AE与BC的位置关系;(2) 求证:△BCG∽△ACE ;(3) 若∠F=60°,GF=1,求⊙O得半径.巩固训练1. (青岛)直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是()A.r<6 B.r=6 C.r>6 D.r≥62. 在⊙O中,圆心O在坐标原点上,半径为210,点P的坐标为(4,5),那么点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.不能确定3. 已知正三角形外接圆半径为3,这个正三角形的边长是()A.2 B.3 C.4 D.54. (天津)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°△放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面5. 如下图,将ABC△,能够完全覆盖这个三角形的最小圆面的半径是________.去覆盖ABC6. (曲靖)如图,正六边形ABCDEF的边长为2,则对角线AE的长是.7. (莱芜)如图,正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是()A. △CDF的周长等于AD+CDB. FC平分∠BFDC. AC2+BF2=4CD2D. DE2=EF·CE8. (广安)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6,若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次9. (日照)如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数kyx(k≠0)的图象经过圆心P,则k= .10. (德州)如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC,AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.11. (河南)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线P A、PB,切点分别为点A、B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP= cm时,四边形AOBD是菱形;②当DP=cm时,四边形AOBP是正方形.12. (抚州)如图,在平面直角坐标系中,⊙P经过x轴上一点C,与y轴分别相交于A,B两点,连接AP 并延长分别交⊙P、x轴于点D、点E,连接DC并延长交y轴于点F,若点F的坐标为(0,1),点D的坐标为(6,-1).(1)求证:DC=FC.(2)判断⊙P与x轴的位置关系,并说明理由.(3)求直线AD的解析式.中考预测1. 在直角坐标平面内,点A的坐标为(1,0),点B的坐标为(a,0),圆A的半径为2.下列说法中不正确的是()A.当a=-1时,点B在圆A上B.当a<1时,点B在圆A内C.当a<-1时,点B在圆A外D.当-1<a<3时,点B在圆A内2. 如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A =30°,则∠C的大小是( )A.30°B.45°C.60°D.40°3. 如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3, 0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1 B.1或5 C.3 D.54. 如图,P为⊙O的直径BA延长线上一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连接PD. 已知PC=PD=BC. 下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°. 其中正确的个数为()A. 4个B. 3个C. 2个D. 1个5. ⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2-4x+m=0的两根,当直线l与⊙O相切时,m的值为.6. 直角三角形的两边长分别为16和12,则此三角形的外接圆半径是.7. 已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC只有一个公共点,那么x的取值范围是.8. 如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是__________.(结果保留π)9. 如图,正方形ABCD的边长为2,⊙O的直径为AD,将正方形沿EC折叠,点B落在圆上的F点,则BE的长为.10. 如图,Rt△ABC中,∠ABC=90°.以AB的中点O为圆心、OA长为半径作半圆,交AC于点D.点E为BC的中点,连接DE.(1)求证:DE是该半圆的切线;(2)若∠BAC=30°,DE=2,求AD的长.11.如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.12. 如图,AB 是⊙O 的直径,点C 在⊙O 上,与⊙O 相切, BD ∥AC . (1)图中∠OCD =_______°,理由是_____________________; (2)⊙O 的半径为3,AC =4,求OD 的长.13. 阅读材料:已知,如图(1),在面积为S 的△ABC 中, BC =a ,AC =b , AB =c ,内切圆O 的半径为r.连接OA 、OB 、OC ,△ABC 被划分为三个小三角形. ∵r c b a r AB r AC r BC S S S S OAB OAC OBC )(21212121++=⋅+⋅+⋅=++=△△△.. ∴cb a Sr ++=2.(1)类比推理:若面积为S 的四边形ABCD 存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB =a ,BC =b ,CD =c ,AD =d ,求四边形的内切圆半径r ;(2)理解应用:如图(3),在等腰梯形ABCD 中,AB ∥DC ,AB =21,CD =11,AD =13,⊙O 1与⊙O 2分别为△ABD 与△BCD 的内切圆,设它们的半径分别为r 1和r 2,求21r r 的值.参考答案:巩固训练∵∠ODE=∠DEA=90°,∴OD∥AC,∴11313222 OCES CE DE∆=⨯⨯=⨯=.13. 【解析】 (1)连接OA 、OB 、OC 、OD. ∵AOD COD BOC AOB S S S S S △△△△+++=dr cr br ar 21212121+++=r d c b a )(21+++=。

备考2022年中考数学一轮复习-图形的性质_圆_圆内接四边形的性质-填空题专训及答案

备考2022年中考数学一轮复习-图形的性质_圆_圆内接四边形的性质-填空题专训及答案

备考2022年中考数学一轮复习-图形的性质_圆_圆内接四边形的性质-填空题专训及答案圆内接四边形的性质填空题专训1、(2018扬州.中考真卷) 如图,已知的半径为2,内接于,,则________.2、(2015泰州.中考真卷) 如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD 等于________3、(2019长春.中考模拟) 如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC 的大小为________度.4、(2018射阳.中考模拟) 如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.5、(2018阜宁.中考模拟) 如图,⊙O内接四边形ABCD中,点E在BC延长线上,∠BOD =160°则∠DCE=________.6、(2018盐城.中考模拟) 如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C的另一点,则∠ADC的度数是________.7、(2017滨海.中考模拟) 如图,四边形ABCD是⊙O的内接四边形,点E在AB的延长线上,BF是∠CBE的平分线,∠ADC=100°,则∠FBE=________°.8、(2017濉溪.中考模拟) 如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长________.9、(2017庆云.中考模拟) 如图,在菱形ABCD中,tanA= ,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG 与BD相交于点H,给出如下几个结论:(1)△AED≌△DFB;(2)CG与BD一定= CG2;其中正确结论的序不垂直;(3)∠BGE的大小为定值;(4)S四边形BCDG号为________.10、(2019荆州.中考模拟) 已知点A、B、C、D均在圆上,AD∥BC,AC 平分∠BCD,∠ADC=120°,四边形的周长为10cm.,则∠ABC的度数为________.11、(2017隆回.中考模拟) 在圆的内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:3:4,则∠D的度数是________°.12、(2018广西壮族自治区.中考模拟) 如图,在⊙O中,圆周角∠ACB=150°,弦AB=4,则扇形OAB的面积是________.13、(2019铜仁.中考真卷) 如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为________;14、(2019顺城.中考模拟) 如图,四边形ABCD是的内接四边形,点是的中点,点是上的一点,若,则________.15、(2019平顶山.中考模拟) 如图所示,四边形ABCD内接于⊙O,AB=AD,∠BCE=50°,连接BD,则∠ABD=________度.16、(2019长春.中考模拟) 如图,是的直径,点、在上,若,则________.17、(2020南通.中考模拟) 如图,A,B,C三个点都在⊙O上,∠AOC=130°,则∠ABC 的度数是________.18、(2020宜昌.中考模拟) 如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD=________.19、(2020南宁.中考模拟) 已知:矩形的边,,点E从点A 出发沿线段向点B匀速运动,点F同时从点C出发沿线段向点B匀速运动,速度均为,当一个点到达终点时另一个点也停止运动.连接,以为对角线作正方形,连接,则的长度为________.20、(2020泰兴.中考模拟) P是△ABC的内心,BC=4,∠BAC=90°,则△PBC的外接圆半径为________.圆内接四边形的性质填空题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:。

备考2023年中考数学一轮复习-图形的性质_圆_圆内接四边形的性质-单选题专训及答案

备考2023年中考数学一轮复习-图形的性质_圆_圆内接四边形的性质-单选题专训及答案

备考2023年中考数学一轮复习-图形的性质_圆_圆内接四边形的性质-单选题专训及答案圆内接四边形的性质单选题专训1、(2019定兴.中考模拟) 已知等边三角形的内切圆半径,外接圆半径和高的比是()A . 1:2:B . 2:3:4C . 1::2D . 1:2:32、(2018河北.中考模拟) 如图,已知点A,B,C,D在⊙O上,圆心O在∠D内部,四边形ABCO为平行四边形,则∠DAO与∠DCO的度数和是()A . 60°B . 45°C . 35°D . 30°3、(2017渭滨.中考模拟) 如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A . 45°B . 50°C . 60°D . 75°4、(2020滨海新.中考模拟) 如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于()A . 69°B . 42°C . 48°D . 38°5、(2019台州.中考模拟) 给出下列4个命题:①对顶角相等;②同位角相等;③在同一个圆中,同一条弦所对的圆周角都相等;④圆的内接四边形对角互补.其中,真命题为()A . ①②④B . ①③④C . ①④D . ①②③④6、(2018金华.中考模拟) 四边形ABCD的两条对角线相交于点O,若∠BAD=∠BCD=90°,BD=8,则AC的长可能是()A . 11B . 9C . 7D . 107、(2018金华.中考模拟) 如图,四边形ABCD内接于,若四边形ABCO是平行四边形,则的大小为()A .B .C .D .8、(2017北仑.中考模拟) 如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD 对折,A是对折后劣弧上的一点,∠CAD=110°,则∠B的度数是()A . 110°B . 70°C . 60°D . 55°9、(2015义乌.中考真卷) 如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A . 2πB . πC .D .10、(2017宜春.中考模拟) 如图,四边形ABCD内接于⊙O,F是上一点,且= ,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=30°,则∠E的度数为()A . 45°B . 50°C . 55°D . 60°11、(2019宁津.中考模拟) 如图,四边形ABCD内接于⊙O,AB经过圆心,∠B=3∠BAC,则∠ADC等于()A . 100°B . 112.5°C . 120°D . 135°12、(2018济宁.中考真卷) 如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BO D 的度数是()A . 50°B . 60°C . 80°D . 100°13、(2016聊城.中考真卷) 如图,四边形ABCD内接于⊙O,F是上一点,且= ,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A . 45°B . 50°C . 55°D . 60°14、(2017唐河.中考模拟) 如图,四边形ABCD内接于⊙O,F是上一点,且= ,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为()A . 45°B . 50°C . 55°D . 60°15、(2017重庆.中考模拟) (2017·巫溪模拟) 如图,扇形AOB的圆心角为124°,C 是上一点,则∠ACB=()A . 114°B . 116°C . 118°D . 120°16、(2019宝鸡.中考模拟) 如图,AB是⊙O的直径,△ACD内接于⊙O,延长AB,CD 相交于点E,若∠CAD=35°,∠CDA=40°,则∠E的度数是()A . 20°B . 25°C . 30°D . 35°17、(2020封开.中考模拟) 如图,四边形ABCD内接于⊙O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A . 45°B . 50°C . 55°D . 60°18、(2019新乡.中考模拟) 如图,四边形ABCD内接于⊙O,E是BC延长线上一点,下列等式中不一定成立的是()A . ∠1=∠2B . ∠3=∠5C . ∠BAD=∠DCED . ∠4=∠619、(2020南山.中考模拟) 如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A . 48°B . 96°C . 114°D . 132°20、(2019定远.中考模拟) 如图:AD是⊙O的直径,AD=12,点BC在⊙O上,AB、DC的延长线交于点E,且CB=CE,∠BCE=70°,则以下判断中错误的是()A . ∠ADE=∠EB . 劣弧AB的长为πC . 点C为弧BD的中点D . BD平分∠ADE21、(2020宜昌.中考模拟) 已知直线l及直线l外一点P.如图,(1)在直线l上取一点O,以点O为圆心,OP长为半径画半圆,交直线l于A,B两点;(2)连接PA,以点B为圆心,AP长为半径画弧,交半圆于点Q;(3)作直线PQ,连接BP.根据以上作图过程及所作图形,下列结论中错误的是()22、(2020泰安.中考模拟) 如图,在⊙O中,四边形ABCD测得∠ABC=150°,连接AC,若⊙O的半径为4,则AC的长为()。

中考数学解答题压轴题突破 重难点突破四 圆中的证明与计算

中考数学解答题压轴题突破 重难点突破四 圆中的证明与计算

(1)求证:EF 是⊙O 的切线; 证明:连接 OE,∵AB 是⊙O 的直径,∴∠AEB=90°, 即∠AEO+∠OEB=90°, ∵AE 平分∠CAB,∴∠CAE=∠BAE, ∵∠BEF=∠CAE,∴∠BEF=∠BAE, ∵OA=OE,∴∠BAE=∠AEO, ∴∠BEF=∠AEO,∴∠BEF+∠OEB=90°, ∴∠OEF=90°,∴OE⊥EF, ∵OE 是⊙O 的半径,∴EF 是⊙O 的切线.
解:∵BD 为⊙O 的直径, ∴∠BCD=∠DCE=90°, ∵AC 平分∠BAD, ∴∠BAC=∠DAC, BC=DC=2 2, ∴BD=2 2× 2=4.
(2)若 BE=5 2,计算图中阴影部分的面积. 【分层分析】 ∵BC=DC,∴阴影的面积等于三角形 CDE 的面积. 解:∵BE=5 2,∴CE=3 2 ∵BC=DC,
2.(2022·宁波)如图①,⊙O 为锐角三角形 ABC 的外接圆,点 D 在B︵C上, AD 交 BC 于点 E,点 F 在 AE 上,满足∠AFB-∠BFD=∠ACB,FG∥AC 交 BC 于点 G,BE=FG,连接 BD,DG.设∠ACB=α.
(1)用含α的代数式表示∠BFD. 解:∵∠AFB-∠BFD=∠ACB=α,① 又∵∠AFB+∠BFD=180°,② ②-①,得 2∠BFD=180°-α,
1
1
∴S△ABC=2BC·AC=2×2×2 3=2 3,
∴阴影部分的面积是12π×A2B2-2 3=2π-2 3.
3.(2022·黔西南州第 23 题 14 分)如图,在△ABC 中,AB=AC,以 AB 为 直径作⊙O,分别交 BC 于点 D,交 AC 于点 E,DH⊥AC,垂足为 H,连接 DE 并延长交 BA 的延长线于点 F.
α ∴∠BFD=90°- 2 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学一轮总复习讲解第五章四边形与圆第20讲多边形与平行四边形第21讲矩形、菱形与正方形第22讲圆的基本性质第23讲直线与圆的位置关系第24讲圆的有关计算第20讲多边形与平行四边形1.多边形2.平行四边形的性质、判定方法1.(2016·舟山)已知一个正多边形的内角是140°,则这个正多边形的边数是() A.6 B.7 C.8 D.92.(2016·绍兴)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是() A.①,②B.①,④C.③,④D.②,③3.(2016·衢州)如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD 的度数是()A.45°B.55°C.65°D.75°4.(2016·丽水)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A.13 B.17 C.20 D.265.(2015·衢州)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm【问题】(1)如图,你能从多边形中得到哪些信息?(2)如图,四边形ABCD是平行四边形,你能从这个图形中获取哪些信息?(3)如图是一张平行四边形ABCD的纸片沿对角线撕下的一部分,请你用不同方法复原平行四边形ABCD.类型一多边形的性质例1(1)(2016·乌鲁木齐)一个多边形的内角和是外角和的2倍,则这个多边形的边数为________.(2)(2016·河北)已知n边形的内角和θ=(n-2)×180°.①甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;②若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.1.(1)(2015·丽水)一个多边形的每个内角均为120°,则这个多边形是() A.四边形B.五边形C.六边形D.七边形(2)一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5B.5或6C.5或7D.5或6或7类型二平行四边形的判定例2(1)(2017·荆门模拟)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法是__________(填序号);(2)(2016·衢州)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=________.2.(1)(2017·嘉兴模拟)如图,已知△ABC,分别以A,C为圆心,BC,AB长为半径画弧,两弧在直线BC上方交于点D,连结AD,CD,则有()A.∠ADC与∠BAD相等B.∠ADC与∠BAD互补C.∠ADC与∠ABC互补D.∠ADC与∠ABC互余(2)(2016·吉林)图1,图2都是8×8的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点.①请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等);②图1中所画的平行四边形的面积为.3.(2015·遂宁)如图,▱ABCD中,点E,F在对角线BD上,且BE=DF,求证:(1)AE=CF;(2)四边形AECF是平行四边形.类型三平行四边形的性质例3如图,在▱ABCD中,(1)若∠A∶∠B∶∠C=2∶3∶2,则∠D=________;(2)若∠A+∠C=240°,则∠B=________;(3)若对角线AC,BD交于点O,AC=4,BD=5,BC=3,则△BOC的周长是=________;(4)若∠A的平分线交边BC于点E.若AB=10cm,AD=14cm,则BE=________cm,EC=________cm;(5)若∠BAD与∠ADC的角平分线分别交边BC于点E,F,且AB=2EF=2,则BC=________.4.(1)(2017·泸州模拟)平行四边形的两条对角线分别为6和10,则其中一条边x的取值范围为()A.4<x<6 B.2<x<8 C.0<x<10 D.0<x<6(2)(2017·丽水)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC 的长是()A. 2 B.2 C.2 2 D.4(3)(2015·河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10(4)(2017·黄岗模拟)在▱ABCD中,BC边上的高为4,AB=5,AC=25,则▱ABCD的周长等于____________________.类型四平行四边形的应用例4如图1是某公共汽车前挡风玻璃的雨刮器,其工作原理如图2,雨刷EF丄AD,垂足为A,AB=CD,且AD=BC.这样能使雨刷EF在运动时.始终垂直于玻璃窗下沿BC.请证明这一结论.5.(2017·嘉兴模拟)将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为度.类型五平行四边形的综合运用例5(2017·舟山模拟)如图,在平行四边形ABCD中,∠C=60°,M,N分别是AD,BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=3MN.6.(1)(2016·东营)如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是 .(2)(2017·温州模拟)如图,将▱ABCD 的AD 边延长至点E ,使DE =12AD ,连结CE ,F是BC 边的中点,连结FD.①求证:四边形CEDF 是平行四边形;②若AB =3,AD =4,∠A =60°,求CE 的长.【作图探究题】如图,甲、乙两人想在正五边形ABCDE 内部找一点P ,使得四边形ABPE 为平行四边形,其作法如下:(甲)连结BD 、CE ,两线段相交于P 点,则P 即为所求.(乙)先取CD 的中点M ,再以A 为圆心,AB 长为半径画弧,交AM 于P 点,则P 即为所求.对于甲、乙两人的作法,下列判断何者正确( )A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误,乙正确【各种判定方法易混淆不清】已知四边形ABCD ,有以下四个条件:①AB ∥CD ;②AB =CD ;③BC ∥AD ;④BC =AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有() A.6种B.5种C.4种D.3种第21讲矩形、菱形与正方形1.矩形2.菱形3.正方形4.平行四边形、矩形、菱形、正方形的关系1.(2016·杭州)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为____________________.2.(2016·衢州)如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.【问题】矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形.正方形不仅是特殊的平行四边形,而且是邻边相等的特殊矩形,也是有一个角是直角的特殊菱形.因此,我们可以利用矩形、菱形的性质来研究正方形的有关问题,回答下列问题:(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系图中:(2)要证明一个四边形是正方形,可以先证明四边形是矩形,再证明这个矩形的________相等;或者先证明四边形是菱形,再证明这个菱形有一角是________.(3)如图菱形ABCD ,某同学根据菱形面积计算公式推导出对角线长为a 的正方形面积是S =12a 2,对此结论,你认为是否正确?若正确,请给予证明;若不正确,举出一个反例来说明.【归纳】通过开放式问题,归纳、疏理平行四边形、矩形、菱形、正方形的关系,以及性质与判定.类型一矩形的性质与判定例1(1)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AC=BD C.AB=BC D.AC⊥BD(2)如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形;⑥AC所在直线为对称轴;⑦矩形ABCD的周长是28,点E是CD的中点,AC=10时,△DOE的周长是12.则正确结论的序号是________.1.(1)(2015·南昌)如图,小贤为了检验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A.四边形ABCD由矩形变为平行四边形B.BD的长度增大C.四边形ABCD的面积不变D.四边形ABCD的周长不变(2)(2015·临沂)如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连结EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90°D.CE⊥DE2.(2017·南京模拟)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD 的中点,P是AD上的点,且∠PNB=3∠CBN.(1)求证:∠PNM=2∠CBN;(2)求线段AP的长.类型二菱形的性质与判定例2(1)如图,菱形ABCD中,对角线AC、BD相交于点O,E是AD的中点,连结OE,①若菱形的边长是10,一条对角线长是12,则此菱形的另一条对角线长是______.②若OE=3,则菱形的周长是________.③若∠ABC=60°,周长是16,则菱形的面积是________.(2)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选一个作为补充条件后,使得四边形ABCD是菱形,现有下列四种选法,其中都正确的是()A.①或②B.②或③C.③或④D.①或④3.(1)(2015·黔东南州)如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH =( )A .245B .125 C .12 D .24 (2)如图,在△ABC 中,点D 是BC 的中点,点E ,F 分别在线段AD 及其延长线上,且DE =DF.给出下列条件:①BE ⊥EC ;②BF ∥CE ;③AB =AC ;从中选择一个条件使四边形BECF 是菱形,你认为这个条件是____________________(只填写序号).(3) (2016·梅州)如图,在平行四边形ABCD 中,以点A 为圆心,AB 长为半径画弧交AD 于点F ,再分别以点B 、F 为圆心,大于12BF 长为半径画弧,两弧交于一点P ,连结AP并延长交BC 于点E ,连结EF.①四边形ABEF 是____________________;(选“矩形”、“菱形”、“正方形”或“无法确定”)(直接填写结果)②AE ,BF 相交于点O ,若四边形ABEF 的周长为40,BF =10,则AE 的长为____________________,∠ABC =____________________°.(直接填写结果)4.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连结CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.类型三正方形的性质与判定例3如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC 上,且DE=CF,连结DF、AE,AE的延长线交DF于点M.求证:AM⊥DF.5.(1)(2015·日照)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④(2)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()A.2 B.3 C.2 2 D.2 3(3)(2015·黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于____________________度.6.(2017·绍兴模拟)如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD 上,连结BF、DF.(1)求证:BF=DF;(2)连结CF,请直接写出BE∶CF的值(不必写出计算过程).类型四特殊平行四边形的综合运用例4(2016·临沂)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连结DE,过点E作EG⊥DE,使EG=DE,连结FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断.7.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连结EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE =∠BAP;⑤PD=2EC.其中正确结论的序号是____________________.8.(2016·荆州)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连结EF,当四边形EDD′F为菱形时,试探究△A′DE 的形状,并判断△A′DE与△EFC′是否全等?请说明理由.【课本改变题】教材母题--浙教版八下第147页,作业题第5题(1)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF;(2)如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.求GH的长;(3)已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.直接写出下列两题的答案:①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).【由于思维定势,对问题考虑不全】若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为________.第22讲圆的基本性质1.圆的有关概念2.圆的对称性3.圆周角4.点与圆的位置关系辅助线:有关直径的问题,如图,常作直径所对的圆周角.1.(2016·绍兴)如图,BD 是⊙O 的直径,点A 、C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠BDC 的度数是( )A .60°B .45°C .35°D .30° 2.(2015·宁波)如图,⊙O 为△ABC 的外接圆,∠A =72°,则∠BCO 的度数为( )A .15°B .18°C .20°D .28° 3.(2017·绍兴)如图,一块含45°角的直角三角板,它的一个锐角顶点A 在⊙O 上,边AB ,AC 分别与⊙O 交于点D ,E ,则∠DOE 的度数为____________________.第3题图 第4题图4.(2017·湖州)如图,已知在△ABC 中,AB =AC.以AB 为直径作半圆O ,交BC 于点D.若∠BAC =40°,则AD ︵的度数是____________________度.【问题】如图,四边形ABCD 内接于⊙O ,CE 是直径.(1)观察图形,你能得到哪些信息?(2)若∠ADC =130°,则∠B =______,∠AOC =______,AE ︵的度数为____; (3) 若AC =6,AO =5,则AE =________.类型一 圆的有关概念例1 下列语句中,正确的是__________________.①半圆是弧;②长度相等的弧是等弧;③相等的圆心角所对的弧相等;④圆是轴对称图形,任何一条直径所在直线都是对称轴;⑤经过圆内一定点可以作无数条直径;⑥三个点确定一个圆;⑦直径是圆中最长的弦;⑧一个点到圆的最小距离为6cm ,最大距离为9cm ,则该圆的半径是1.5cm 或7.5cm ;⑨⊙A 的半径为6,圆心A(3,5),则坐标原点O 在⊙A 内.1.(1)A、B是半径为5cm的⊙O上两个不同的点,则弦AB的取值范围是() A.AB>0 B.0<AB<5 C.0<AB<10 D.0<AB≤10(2)下列说法中,正确的是()A.同一条弦所对的两条弧一定是等弧B.相等圆周角所对弧相等C.正多边形一定是轴对称图形D.三角形的外心到三角形各边的距离相等(3)(2017·河北模拟)如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是____________________.类型二圆的内接多边形例2(2017·陕西模拟)如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.(1)若∠E=∠F时,求证:∠ADC=∠ABC;(2)若∠E=∠F=42°时,求∠A的度数;(3)若∠E=α,∠F=β,且α≠β.请你用含有α、β的代数式表示∠A的大小.2.(1)(2015·杭州)圆内接四边形ABCD中,已知∠A=70°,则∠C=()A.20°B.30°C.70°D.110°(2)如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°(3)(2015·南京)如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=____________________.类型三圆心角与圆周角的关系例3(1)如图,AB为⊙O的直径,诸角p,q,r,s之间的关系①p=2q;②q=r;③p +s=180°中,正确的是()A.只有①和②B.只有①和③C.只有②和③D.①,②和③(2)(2015·台州)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.①若∠CBD=39°,求∠BAD的度数;②求证:∠1=∠2.3.(1)(2017·衢州模拟)如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于____________________.(2)(2017·巴中模拟)如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE 上,连结AE,∠E=36°,则∠ADC的度数是____________________.(3)(2017·潍坊模拟)如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于____________________.类型四圆的综合运用例4(2017·台州)如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C 重合),PE是△ABP的外接圆⊙O的直径.(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求PC2+PB2的值.4.(2017·丽水)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.【探索研究题】(2017·杭州)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=α,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:猜想:β关于α的函数表达式,γ关于α的函数表达式,并给出证明;(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.【忽视圆周角顶点可能在优弧上,也可能在劣弧上】一条弦的长度等于它所在的圆的半径,那么这条弦所对的圆周角的度数是________.第23讲直线与圆的位置关系1.直线和圆的位置关系:2.圆的切线3.三角形与圆1.(2016·衢州)如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点E ,若∠A =30°,则sin ∠E 的值为( )A .12B .22C .32D .332.(2015·湖州)如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD =2,tan ∠OAB =12,则AB 的长是( )A .4B .2 3C .8D .4 3 3.(2015·嘉兴)如图,△ABC 中,AB =5,BC =3,AC =4,以点C 为圆心的圆与AB 相切,则⊙C 的半径为( )A .2.3B .2.4C .2.5D .2.64.(2017·杭州)如图,AT 切⊙O 于点A ,AB 是⊙O 的直径.若∠ABT =40°,则∠ATB =____________________.【问题】(1)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为________.(2)通过(1)的解答,你能联想直线与圆相切的哪些知识.类型一直线与圆位置关系的判断例1(2017·无锡模拟)如图,平面直角坐标系中,已知P(6,8),M为OP中点,以P为圆心,6为半径作⊙P,则下列判断正确的有________.①点O在⊙P外;②点M在⊙P上;③x轴与⊙P相离;④y轴与⊙P相切.1.(1)(2015·张家界)如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是()A.相离B.相交C.相切D.以上三种情况均有可能(2)(2017·镇江模拟)已知⊙O的半径r=3,设圆心O到一条直线的距离为d,圆上到这条直线的距离为2的点的个数为m,给出下列命题:①若d>5,则m=0;②若d=5,则m=1;③若1<d<5,则m=3;④若d=1,则m =2;⑤若d<1,则m=4.其中正确命题的个数是( )A.1 B.2 C.3 D.5类型二圆的切线性质的运用例2(2015·铜仁)如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE⊥AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.2.(1)(2015·泸州)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P 的度数为()A.65°B.130°C.50°D.100°(2)(2016·随州)如图1,PT与⊙O1相切于点T,PAB与⊙O1相交于A、B两点,可证明△PTA∽△PBT,从而有PT2=PA·PB.请应用以上结论解决下列问题:如图2,PAB、PCD 分别与⊙O2相交于A、B、C、D四点,已知PA=2,PB=7,PC=3,则CD=.类型三 圆的切线判定的运用例3 (1)(2017·沈阳模拟)如图,AB 是⊙O 的直径,BC 交⊙O 于点D ,DE ⊥AC 于点E ,要使DE 是⊙O 的切线,需添加的条件是________________.(不添加其他字母和线条)(2) (2017·杭州市西湖区模拟)如图,△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 于E ,交BC 于D ,DF ⊥AC 于F.给出以下五个结论:①BD =DC ;②CF =EF ;③AE ︵=DE ︵;④∠A =2∠FDC ;⑤DF 是⊙O 的切线.其中正确结论的序号是________.3.(2017·黄石模拟)已知:如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE ⊥AC 于点E.(1)请说明DE 是⊙O 的切线;(2)若∠B =30°,AB =8,求DE 的长.类型四三角形的内切圆问题例4(1)如图,圆D是△ABC的内切圆,∠A=40°,则∠BDC的度数是________.(2)在△ABC中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是________.4.(1)如图,在Rt△ABC中,∠C=90°,∠B=60°,内切圆O与边AB、BC、CA 分别相切于点D、E、F,则∠DEF为()A.55°B.60°C.75°D.80°(2)(2015·滨州)若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A. 2 B.22-2 C.2- 2 D.2-2(3)(2015·遵义)将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1,B1C1交CD于点E,AB=3,则四边形AB1ED的内切圆半径为()A.3+12B.3-32C.3+13D.3-33类型五 圆的综合性问题例5 如图,已知AB 是⊙O 的直径,BC ⊥AB ,连结OC ,弦AD ∥OC ,直线CD 交BA 的延长线于点E.(1)求证:直线CD 是⊙O 的切线; (2)若DE =2BC ,求AD ∶OC 的值.5.(1)(2017·永新模拟)如图,以点P(2,0)为圆心,3为半径作圆,点M(a ,b)是⊙P 上的一点,则ba的最大值是____________________.(2) (2017·衢州)如图,在直角坐标系中,⊙A 的圆心A 的坐标为(-1,0),半径为1,点P 为直线y =-34x +3上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是____________________.【探索研究题】(2015·河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+43与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l 相切,当P在线段OA上运动时,使得⊙P成为整圆的点P的个数是()A.6 B.8 C.10 D.12【方法与对策】通过问题中信息,理解整圆的概念,构建半径与点P横坐标之间的关系,建模为二元一次方程整数解的问题.这类定义型阅读理解题是中考热点题型.【直线与圆的位置关系的陷阱】已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是() A.相切B.相离C.相离或相切D.相切或相交第24讲 圆的有关计算圆的弧长及扇形面积公式1.(2017·衢州)运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD 、EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB =10,CD =6,EF =8.则图中阴影部分的面积是( )A .252π B .10π C .24+4π D .24+5π 2.(2017·温州)已知扇形的面积为3π,圆心角为120°,则它的半径为____________________.3.(2017·台州)如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为120°,AB 长为30cm ,则弧BC 的长为____________________cm .(结果保留π)【问题】(1)如图,将长为8cm 的铁丝首尾相接围成半径为2cm 的扇形.则S 扇形=________cm 2.(2) 通过(1)解答,你能联想扇形等相关的哪些知识.类型一 弧长的计算例1 (2016·湖州)如图,已知四边形ABCD 内接于圆O ,连结BD ,∠BAD =105°,∠DBC =75°.(1)求证:BD =CD ;(2)若圆O 的半径为3,求BC ︵的长.1.(1)(2015·绍兴)如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B =135°,则AC ︵的长( )A .2πB .πC .π2D .π3(2) 如图,某厂生产横截面直径为7cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为( )A .π4cmB .7π4cmC .7π2cm D .7πcm 2.如图,△ABC 是正三角形,曲线CDEF …叫做“正三角形的渐开线”,其中CD ︵,DE ︵,EF ︵,…的圆心按点A ,B ,C 循环.如果AB =1,那么曲线CDEF 的长是 (结果保留π).类型二扇形面积的计算例2(2016·黄石)如图所示,正方形ABCD对角线AC所在直线上有一点O,OA=AC =2,将正方形绕O点顺时针旋转60°,在旋转过程中,正方形扫过的面积是.3.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连结CE,则阴影部分的面积是____________________(结果保留π).4.(2017·丽水模拟)如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连结BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.(1)求证:AC是⊙O的切线;(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)类型三圆与正多边形的计算例3如图,正六边形ABCDEF中,AB=2,点P是ED的中点,连结AP,则AP的长为()A.23B.4 C.13D.115.(2015·金华)如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则EFGH的值是()A.62B. 2 C. 3 D.26.(1)如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)(2)(2015·深圳模拟)如图一组有规律的正多边形,各正多边形中的阴影部分面积均为a,按此规律;则第n个正多边形的面积为____________________.类型四平面图形的运动问题例4如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为________.7.如图,BD是汽车挡风玻璃前的刮雨刷.如果BO=65 cm,DO=15 cm,当BD绕点O旋转90°时,求刮雨刷BD扫过的面积.【探索研究题】如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A.3 B.4- 3 C.4 D.6-2 3【忽视关键位置的运动路径】如图,将半径为2cm的圆形纸板沿着长和宽分别为16cm和12cm的矩形的外侧滚动一周并回到开始的位置,圆心所经过的路线长是________cm.。

相关文档
最新文档