2019年最新初中中考数学模拟试卷及答案3315795

合集下载

2019年中考数学模拟试卷(有答案)

2019年中考数学模拟试卷(有答案)

2019年中考数学模拟试卷一.选择题(共6小题,满分18分,每小题3分) 1.﹣3的倒数是( )A .3B .C .﹣D .﹣32.下列计算中,正确的是( ) A .(2a )3=2a 3B .a 3+a 2=a 5C .a 8÷a 4=a 2D .(a 2)3=a 63.如图所示的几何体的主视图是( )A .B .C .D .4.下列各题估算正确的是( )A .B .C .D .5.如图,OA ,OB 是⊙O 的两条半径,且OA ⊥OB ,点C 在⊙O 上,则∠ACB 等于( )A .20°B .25°C .35°D .45°6.如图,等边△ABC 内有一点O ,OA =3,OB =4,OC =5,将BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,下列结论:①点O 与O ′的距离为4;②∠AOB =150°;③S 四边形AOBO ′=6+4;④S△AOC+S △AOB =6+.其中正确的结论有( )个.A .1B .2C .3D .4二.填空题(共10小题,满分30分,每小题3分)7.二次根式中,x的取值范围是.8.58万千米用科学记数法表示为:千米.9.用半径为30的一个扇形纸片围成一个底面半径为10的圆锥的侧面,则这个圆锥的侧面积为.10.下表记录了某种幼树在一定条件下移植成活情况由此估计这种幼树在此条件下移植成活的概率约是(精确到11.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.12.已知关于x的方程x2+3x﹣m=0有两个相等的实数根,则m的值为.13.当﹣1<a<0时,则=.14.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.15.观察下列运算并填空:1×2×3×4+1=25=52;2×3×4×5+1=121=112:3×4×5×6+1=361=192;…根据以上结果,猜想并研究:(n+1)(n+2)(n+3)(n+4)+1=.16.如图,在△ABC中,∠C=90°,BC=6,AC=9,将△ABC平移使其顶点C位于△ABC的重心G处,则平移后所得三角形与原△ABC的重叠部分面积是.三.解答题(共11小题,满分102分)17.计算:(﹣2)﹣2+cos60°﹣(﹣2)0;18.先化简,再求值:,其中x=﹣319.解不等式组:并把它的解集在所给数轴上表示出来.20.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数(3)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?21.有两把不同的锁和三把不同的钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?22.如图,一次函数y1=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数y2=图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)当y2>y1时,求x的取值范围;(3)求点B到直线OM的距离.23.如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA =30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)24.(1)如图1,已知正方形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,求证:EF=GH;(2)如图2,若将“正方形ABCD”改为“菱形ABCD”,其他条件不变,探索线段EF与线段GH的关系并加以证明;(3)如图3,若将“正方形ABCD”改为“矩形ABCD”,且AD=mAB,其他条件不变,探索线段EF 与线段GH的关系并加以证明;附加题:根据前面的探究,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题,画出图形,并证明,若不能,说明理由.25.如图,△ABC中,⊙O经过A、B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.26.如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;(2)点M,N分别在直线AD,AC上,且∠BMN=90°.①如图2,当点M在AD的延长线上时,求证:AB+AN=AM;②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.27.如图,抛物线y1=x2﹣1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.(1)请直接写出抛物线y2的解析式;(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.2019年中考数学一模试卷参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.【分析】利用倒数的定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【分析】根据积的乘方、合并同类项、同底数幂的除法以及幂的乘方进行计算即可.【解答】解:A、(2a)3=8a3,故本选项错误;B、a3+a2不能合并,故本选项错误;C、a8÷a4=a4,故本选项错误;D、(a2)3=a6,故本选项正确;故选:D.【点评】本题考查了积的乘方、合并同类项、同底数幂的除法以及幂的乘方,掌握运算法则是解题的关键.3.【分析】找到从几何体的正面看所得到的视图即可.【解答】解:几何体的主视图是,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是掌握所看的方向和位置.4.【分析】A、被开方数0.35接近于0.36,所以算术平方根接近于0.6,由此即可判定;B、2.6的立方为17.576,大于被开方数10很多,由此即可判定;C、35.1的平方约为1232.01,接近于被开方数,由此即可判定;D、26900接近于27000,立方根应接近于30,由此即可判定.【解答】解:A、∵0.35接近0.36,∴应接近0.6,故选项错误;B、∵2.53=>10,∴ 2.5,故选项错误;C、∵35.1的平方约为1232.01,接近于被开方数,故选项正确;D、∵26900<27000,∴<30,故选项错误;故选:C.【点评】此题主要考查了无理数的估算能力,应先算出算术平方根的平方立方根的立方,与所给的被开方数进行比较,得到相应的答案.注意区分开平方还是开立方. 5.【分析】根据圆周角定理解答. 【解答】解:∵OA ⊥OB , ∴∠AOB =90°,由圆周角定理得,∠ACB =∠AOB =45°, 故选:D .【点评】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.【分析】根据旋转的性质即可得到△OBO '为正三角形,进而得出OO '=OB =4;根据O 'A =OC =5,OA =3,OO '=4,可得O 'A 2=OA 2+O 'O 2,进而得到∠AOO '=90°,根据∠AOB =∠AOO '+∠O 'OB 进行计算可得结果;根据S 四边形AOBO ′=S △AOO '+S △BOO ',进行计算即可得到结果;将△AOB 绕A 点逆时针旋转60°至△AO “C ,可得△AOO “是边长为3的等边三角形,△COO “是边长为3,4,5的直角三角形,再根据S △AOC +S △AOB =S 四边形AOCO “=S △COO “+S △AOO “进行计算即可. 【解答】解:如图,连接OO ', ∵△BOC 旋转60°至△BO 'A , ∴△BOC ≌△BO 'A , ∴BO =BO ',∠OBO '=60°, ∴△OBO '为正三角形, ∴OO '=OB =4, 故①正确;∵O 'A =OC =5,OA =3,OO '=4, ∴O 'A 2=OA 2+O 'O 2, ∴∠AOO '=90°,∴∠AOB =∠AOO '+∠O 'OB =150°, 故②正确;S 四边形AOBO ′=S △AOO '+S △BOO ',=×3×4+×42,=6+4,故③正确;如图,将△AOB 绕A 点逆时针旋转60°至△AO “C ,连接OO “,同理可得,△AOO “是边长为3的等边三角形, △COO “是边长为3,4,5的直角三角形, ∴S △AOC +S △AOB =S 四边形AOCO “ =S △COO “+S △AOO “=×3×4+×32=6+.故④正确; 故选:D .【点评】本题主要考查了旋转的性质,等边三角形的性质以及勾股定理的逆定理的运用,解决问题的关键是利用旋转变换构造等边三角形以及直角三角形;解题时注意:旋转前、后的图形全等;如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形. 二.填空题(共10小题,满分30分,每小题3分) 7.【分析】根据二次根式有意义的条件即可求出答案. 【解答】解:由题意可知:x +1≥0, 解得x ≥﹣1, 故答案为x ≥﹣1.【点评】本题考查二次根式有意义的条件,解题的关键是掌握二次根式中的被开方数必须是非负数,本题属于基础题型.8.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:根据58万=580000,用科学记数法表示为:5.8×105. 故答案为:5.8×105.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长解答即可.=•2πr•l=πrl=π×10×30=300π,【解答】解:这个圆锥的侧面积为S侧故答案为:300π.=•2πr•l=πrl解答.【点评】此题考查圆锥的计算,关键是根据圆锥的侧面积为S侧10.【分析】概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.【解答】解:概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.9.故答案为:0.9.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.11.【分析】由AE∥BD,可求得∠CBD的度数,又由∠CBD=∠2(对顶角相等),求得∠CDB的度数,再利用三角形的内角和等于180°,即可求得答案.【解答】解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案为:22°【点评】此题考查了平行线的性质,对顶角相等以及三角形内角和定理.解题的关键是注意数形结合思想的应用.12.【分析】根据方程有两个相等的实数根得出△=0,求出m的值即可.【解答】解:∵关于x的方程x2+3x﹣m=0有两个相等的实数根,∴△=32﹣4×1×(﹣m)=0,解得:m=﹣,故答案为:﹣.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac的关系是解答此题的关键.13.【分析】根据题意得到a+<0,a﹣>0,根据完全平方公式把被开方数变形,根据二次根式的性质计算即可.【解答】解:∵﹣1<a<0,∴a+<0,a﹣>0,原式=﹣=a﹣+a+=2a,故答案为:2a.【点评】本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.14.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.15.【分析】先根据题中的一系列等式,把5的平方,11的平方以及19的平方变形后,归纳猜想得到所求式子的化简结果,然后进行证明,方法是利用多项式的乘法法则把等式的左边化简,合并后,把平方项的系数拆为10+25,然后利用完全平方公式化简后,即可得到与等式的右边相等.【解答】解:由1×2×3×4+1=25=52=(02+5×0+5)2;2×3×4×5+1=121=112=(12+5×1+5)2;3×4×5×6+1=361=192=(22+5×2+5)2,…观察发现:(n+1)(n+2)(n+3)(n+4)+1=(n2+5n+5)2.证明:等式左边=(n+1)(n+2)(n+3)(n+4)+1=(n2+3n+2)(n2+7n+12)+1=n4+7n3+12n2+3n3+21n2+36n+2n2+14n+25=n4+10n3+35n2+50n+25=n4+2n2(5n+5)+(5n+5)2=(n2+5n+5)2=等式右边.故答案为:(n2+5n+5)2【点评】此题考查学生根据已有的等式归纳总结,得出一般性规律的能力,是一道中档题.16.【分析】设平移后直角边交斜边AB于M、N,延长CG交AB于H.利用平行线的性质求出GN、GM 即可解决问题;【解答】解:设平移后直角边交斜边AB于M、N,延长CG交AB于H.∵G是重心,∴HG:HC=1:3,∵GN∥AC,AC=9,∴GN:AC=HG:HC,∴GN=3,同法可得MG=2,=×2×3=3.∴S△MGN故答案为3;【点评】本题考查三角形的重心、三角形的面积、平移变换等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.三.解答题(共11小题,满分102分)17.【分析】直接利用零指数幂的性质以及负指数幂的性质、特殊角的三角函数值分别代入得出答案.【解答】解:原式=+×﹣1=﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】原式括号中通分并利用同分母分式的加减法则计算,再把除法转化为乘法,约分得到最简结果,然后把x的值代入计算即可求出值.【解答】解:===,当x=﹣3时,原式===.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:解不等式①,得:x≥1,解不等式②,得:x<4,所以不等式组的解集为1≤x<4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.20.【分析】(1)由体育社团的人数除以占的百分比,确定出共调查的人数即可;(2)由文学社团的人数除以总人数,再乘以360°即可得到结果;(3)由体育社团的百分比乘以1500即可得到结果.【解答】解:(1)根据题意得:80÷40%=200(人),则此次共调查了200人;(2)根据题意得:60×200×360°=108°,则文学社团在扇形统计图中所占的圆心角度数为108°;(3)根据题意得:1500×40%=600(人),则喜欢体育类社团的学生约有600人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.21.【分析】根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率.【解答】解:列表得:2种,则P(一次打开锁)==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)先把M(﹣2,m)代入y=﹣x﹣1求出m得到M(﹣2,1),然后把M点坐标代入y=中可求出k的值,从而得到反比例函数解析式;(2)通过解方程组得反比例函数与一次函数的另一个交点坐标为(1,﹣2),然后写出反比例函数图象在一次函数图象上方所对应的自变量的范围即可;(3)设点B到直线OM的距离为h,然后利用面积法得到••h=1,于是解方程即可,【解答】解:(1)把M(﹣2,m)代入y=﹣x﹣1得m=2﹣1=1,则M(﹣2,1),把M(﹣2,1)代入y=得k=﹣2×1=﹣2,所以反比例函数解析式为y=﹣;(2)解方程组得或,则反比例函数与一次函数的另一个交点坐标为(1,﹣2),当﹣2<x<0或x>1时,y2>y1;(3)OM==,S=×1×2=1,△OMB设点B到直线OM的距离为h,••h=1,解得h=,即点B到直线OM的距离为.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.23.【分析】过点D作DH⊥BC于点H,则四边形DHCE是矩形,DH=EC,DE=HC,设建筑物BC的高度为xm,则BH=(x﹣5)m,由三角函数得出DH=(x﹣5),AC=EC﹣EA=(x﹣5)﹣30,得出x=tan60°•[(x﹣5)﹣10],解方程即可.【解答】解:过点D作DH⊥BC于点H,如图所示:则四边形DHCE是矩形,DH=EC,DE=HC=5,设建筑物BC的高度为xm,则BH=(x﹣5)m,在Rt△DHB中,∠BDH=30°,∴DH=(x﹣5),AC=EC﹣EA=(x﹣5)﹣30,在Rt△ACB中,∠BAC=50°,tan∠BAC=,∴=解得:x=,答:建筑物BC的高为m.【点评】本题考查了仰角、坡角的定义,解直角三角形的应用,能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形是解题的关键.24.【分析】(1)可通过构建全等三角形来求解.分别过G、F作GN∥AD,FM∥CD,那么FM=GN,∠EMF=∠GNH=90°,而∠OGN和∠OFM都是等角的余角,因此三角形EFM和HGN全等,那么可通过全等三角形EFM和HGN来得出GH=EF.(2)(3)(4)方法同(1)都是分别过G、F作AD、CD的垂线,根据∠GOF=∠A,来得出三角形HGN和EFM中的∠HGN和∠EFM相等,然后再得出全等或相似.【解答】证明:(1)如图1,过点F作FM⊥AD于M,过点G作GN⊥CD于N,则FM=GN=AD=BC,且GN⊥FM,设它们的垂足为Q,设EF、GN交于R∵∠GOF=∠A=90°,∴∠OGR=90°﹣∠GRO=90°﹣∠QRF=∠OFM.∵∠GNH=∠FME=90°,FM=GN,∴△GNH≌△FME.∴EF=GH.(2)如图2,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF交于Q,在四边形MQND中,∠QMD=∠QND=90°∴∠ADC+∠MQN=180°.∴∠MQN=∠A=∠GOF.∵∠ORG=∠QRF,∴∠HGN=∠EFM.∵∠A=∠C,AB=BC,∴FM=AB•sin A=BC•sin C=GN.∵∠FEM=∠GNH=90°,∴△GNH≌△FME.∴EF=GH.(3)如图3,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF交于Q,∵∠GOF=∠A=90°,∴∠OGR=90°﹣∠GRO=90°﹣∠QRF=∠OFM.∵∠GNH=∠FME=90°,∴△GNH∽△FME.∴.附加题:已知平行四边形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,AD=mAB,则GH=mEF.证明:如图,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF交于Q,在四边形MQND中,∠QMD=∠QND=90°,∴∠MDN+∠MQN=180°.∴∠MQN=∠A=∠GOF.∵∠ORG=∠QRF,∴∠HGN=∠EFM.∵∠FME=∠GNH=90°,∴△GNH∽△FME.∴.即GH=mEF.【点评】本题主要考查了全等三角形和相似三角形的判定,构建出相关的三角形是解题的关键.25.【分析】(1)连接BO并延长交⊙O于点E,连接DE.由圆周角定理得出∠BDE=90°,再求出∠EBD+∠DBC=90°,根据切线的判定定理即可得出BC是⊙O的切线;(2)分别求出等边三角形DOB的面积和扇形DOB的面积,即可求出答案.【解答】证明:(1)连接BO并延长交⊙O于点E,连接DE.∵BE是⊙O的直径,∴∠BDE=90°,∴∠EBD+∠E=90°,∵∠DBC=∠DAB,∠DAB=∠E,∴∠EBD+∠DBC=90°,即OB ⊥BC ,又∵点B 在⊙O 上,∴BC 是⊙O 的切线;(2)连接OD ,∵∠BOD =2∠A =60°,OB =OD ,∴△BOD 是边长为6的等边三角形,∴S △BOD =×62=9,∵S 扇形DOB ==6π,∴S 阴影=S 扇形DOB ﹣S △BOD =6π﹣9.【点评】本题考查了切线的判定,圆周角定理,扇形面积,等边三角形的性质和判定的应用,关键是求出∠EBD +∠DBC =90°和分别求出扇形DOB 和三角形DOB 的面积.26.【分析】(1)先判断出∠BAD =∠CAD =45°,进而得出∠CAD =∠B ,再判断出∠BDE =∠ADF ,进而判断出△BDE ≌△ADF ,即可得出结论;(2)①先判断出AM =PM ,进而判断出∠BMP =∠AMN ,判断出△AMN ≌△PMB ,即可判断出AP =AB +AN ,再判断出AP =AM ,即可得出结论;②先求出BD ,再求出∠BMD =60°,最后用三角函数求出DM ,即可得出结论.【解答】解:(1)∵∠BAC =90°,AB =AC ,∴∠B =∠C =45°,∵AD ⊥BC ,∴BD =CD ,∠BAD =∠CAD =45°,∴∠CAD =∠B ,AD =BD ,∵∠EDF =∠ADC =90°,∴∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA ),∴BE =AF ;(2)①如图1,过点M作MP⊥AM,交AB的延长线于点P,∴∠AMP=90°,∵∠PAM=45°,∴∠P=∠PAM=45°,∴AM=PM,∵∠BMN=∠AMP=90°,∴∠BMP=∠AMN,∵∠DAC=∠P=45°,∴△AMN≌△PMB(ASA),∴AN=PB,∴AP=AB+BP=AB+AN,在Rt△AMP中,∠AMP=90°,AM=MP,∴AP=AM,∴AB+AN=AM;②在Rt△ABD中,AD=BD=AB=,∵∠BMN=90°,∠AMN=30°,∴∠BMD=90°﹣30°=60°,在Rt△BDM中,DM==,∴AM=AD﹣DM=﹣.【点评】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,锐角三角函数,判断出△BDE≌△ADF是解(1)的关键,构造出全等三角形是解(2)的关键.27.【分析】(1)写出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可;(2)根据抛物线解析式求出点A、B的坐标,然后求出∠OBA=45°,再联立两抛物线解析式求出交点C的坐标,再根据∠CPA=∠OBA分点P在点A的左边和右边两种情况求解;(3)先求出直线OC的解析式为y=x,设与OC平行的直线y=x+b,与抛物线y2联立消掉y得到关于x的一元二次方程,再根据与OC的距离最大时方程有且只有一个根,然后利用根的判别式△=0列式求出b的值,从而得到直线的解析式,再求出与x轴的交点E的坐标,得到OE的长度,再过点C作CD⊥x轴于D,然后根据∠COD的正弦值求解即可得到h的值.【解答】解:(1)抛物线y1=x2﹣1向右平移4个单位的顶点坐标为(4,﹣1),所以,抛物线y2的解析式为y2=(x﹣4)2﹣1;(2)x=0时,y=﹣1,y=0时,x2﹣1=0,解得x1=1,x2=﹣1,所以,点A(1,0),B(0,﹣1),∴∠OBA=45°,联立,解得,∴点C的坐标为(2,3),∵∠CPA=∠OBA,∴点P在点A的左边时,坐标为(﹣1,0),在点A的右边时,坐标为(5,0),所以,点P的坐标为(﹣1,0)或(5,0);(3)存在.∵点C(2,3),∴直线OC的解析式为y=x,设与OC平行的直线y=x+b,联立,消掉y得,2x2﹣19x+30﹣2b=0,当△=0,方程有两个相等的实数根时,△QOC中OC边上的高h有最大值,此时x1=x2=×(﹣)=,此时y=(﹣4)2﹣1=﹣,∴存在第四象限的点Q(,﹣),使得△QOC中OC边上的高h有最大值,此时△=192﹣4×2×(30﹣2b)=0,解得b=﹣,∴过点Q与OC平行的直线解析式为y=x﹣,令y=0,则x﹣=0,解得x=,设直线与x轴的交点为E,则E(,0),过点C作CD⊥x轴于D,根据勾股定理,OC==,则sin∠COD==,=×=.解得h最大【点评】本题是二次函数综合题型,主要考查了利用平移变换确定二次函数解析式,联立两函数解析式求交点坐标,等腰三角形的判定与性质,(3)判断出与OC平行的直线与抛物线只有一个交点时OC边上的高h最大是解题的关键,也是本题的难点.。

最新2019年中考数学模拟试题含答案

最新2019年中考数学模拟试题含答案

2019年中考模拟试卷数学卷一、仔细选一选(本题有10个小题,每小题3分,共30分)1、在百度网页中搜索“霍金”,一共显示有19500000个搜索结果,用科学记数法表示19500000个,正确的是( ▲ ) A .61.9510⨯ B .71.9510⨯ C . 719.510⨯ D .80.19510⨯2、一列四个水平放置的几何体中,三视图如图所示的是( ▲ )3、下列计算正确的是( ▲ )4、在平面直角坐标系中,半径为1的圆的圆心P (a ,0)沿x 轴移动.已知⊙P 与y 轴相离,则a 的取值范围是( ▲ )A .a >1B .-1<a <1C .a >1或a <-1D .a <-15、(网络)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,且AEAB =AD AC =12,则S △ADE ∶S 四边形BCED 的值为( ▲ ) A .1∶3 B .1∶2 C . 1∶ 3 D .1∶46、已知关于x 的方程2x +4=-m -x 的解为负数,则m 的取值范围是( ▲ )A .m <43 B .m >43C .m <-4D .m >-47、如图,正六边形ABCDEF 中,AB =5,点P 在ED 上,EP :PD =2:3连结AP ,则AP 的长为( ▲ )A .BC . 8 D8、关于分式232x x x a--+,有下列说法,错误的有( ▲ )个:(1)当x 取2时,这个分式有意义,则a ≠1;(2)当x=3时,分式的值一定为零;(3)若这个分式的值为零,则a ≠-3;(4)当x 取任何值时,这个分式一定有意义,则二次函数y=x 2+x+a 与x 轴没有交点。

A. 0 B. 1 C. 2 D. 39、抛物线y =ax 2+bx+c 图像如图所示,则一次函数y =-bx -4ac +b 2与反比例函数a b cy x ++=在同一坐标系内的图像大致为( ▲ )10、关于二次函数233y x kx k =-+-,以下结论:① 抛物线交x 轴有两个不同的交点;②不论k 取何值,抛物线总是经过一个定点;③设抛物线交x 轴于A 、B 两点,若AB=1,则k=9;;④ 抛物线的顶点在2y 3(1)x =--图像上.其中正确的序号是( ▲ ) A .①②③④ B .②④ C .②③ D .①②④二、耐心填一填(本题有6个小题,每小题4分,共24分)11、在实数范围内分解因式:4a 2﹣8=__▲__ .12、一个不透明的袋中装有除颜色外均相同的9个白球、5个红球和若干个黄球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到黄球的频率稳定于0.3,由此可估计袋中约有黄球__▲__个.13、把一个半径为8cm 的圆形硬纸片等分成4个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则这个圆锥的侧面积为__▲___;圆锥的高为__▲__.14、对于实数b a 、定义一种新运算“⊗”为:2aa b a b ⊗=-,这里等式右边是实数运算.例如:81311312-=-=⊗.则方程142)2(--=-⊗x x 的解是 ▲ .15、如图,已知△ABC ,AB =AC =4,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则BD 的长是 ▲ ,△BDA 的面积与△BDC 的面积比是 ▲ .(结果保留根号)16、如图,在边长为3正方形ABCD 中,动点E 、F 分别以相同的速度从D 、C 两点同时出发,向C 和B 运动(任何一个点到达即停止),在运动过程中,则线段CP 的最小值为 ▲ .三、认真答一答:(本题7个小题,共66分)17、(本小题满分6分)计算:第16题01( 3.14)(sin 30)4cos 45π︒-︒-++-18、(本题满分8分)如图,已知弧AB .求作:(1)确定弧AB 所在圆的圆心O ;(2)过点A 且与⊙O 相切的直线.(要求用直尺和圆规作图,保留作图痕迹,不要求写作法)19、(本小题满分8分)如图,四边形ABCD 中,AD ∥BC ,AD =3,BC =7,∠B =∠C =60°,P 为BC 边上一点(不与B ,C 重合),过点P 作∠APE =∠B ,PE 交CD 于E .(1)求证:△APB ∽△PEC ; (2)若CE =3,求BP 的长.20、(本小题满分10分)我校对全部1200名学生就交通安全知识的了解程度,采用随机抽样调查的方式进行调查,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有___ 人,条形统计图中“了解”部分所对应的人数是 人; (2) 扇形统计图中“基本了解”部分所对应扇形的圆心角为_______°;(3)若没有达到“了解”或“基本了解”的同学必须重新接受安全教育。

2019中考模拟卷数学(含答案)

2019中考模拟卷数学(含答案)

2019年中考模拟试题一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数是正数的是()A.0B.5C.﹣D.﹣2.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.(3分)下列计算正确的是()A.x7÷x=x7B.(﹣3x2)2=﹣9x4C.x3•x3=2x6D.(x3)2=x64.(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)5.(3分)2019年6月8日,全国铁路发送旅客约9560000次,将数据9560000科学记数法表示为()A.9.56×106B.95.6×105C.0.956×107D.956×1046.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.菱形D.平行四边形7.(3分)如图所示,该几何体的左视图是()A.B.C.D.8.(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A.B.C.D.9.(3分)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.=B.=C.+=140D.﹣140=10.(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为.A、5B、2C、D、二、填空题(本题共6小题,每小題3分,共18分)11.(3分)若在实数范围内有意义,则x的取值范围为.12.(3分)某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是.13.(3分)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相们比为,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为.14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.15.(3分)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为.16.(3分)如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥1,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n 的横坐标为(结果用含正整数n的代数式表示)三、解答题(第17题6分,第18、19题各5分,第20、21题各6分,第22、23题各10分,第24、25题各12分,共,72分)17.计算:(1)(﹣2)2++6(2)÷+18.某中学为了提高学生的综合素质,成立了以下社团:A.机器人,B.围棋,C.羽毛球,D.电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团;(4)在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.19.某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?20.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.21.如图,▱ABCD中,顶点A的坐标是(0,2),AD∥x轴,BC交y轴于点E,顶点C的纵坐标是﹣4,▱ABCD的面积是24.反比例函数y=的图象经过点B和D,求:(1)反比例函数的表达式;(2)AB所在直线的函数表达式.22.如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.23.某工厂生产一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.(1)直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?24.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.24.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).25.抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.2019年中考模拟试题参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:0既不是正数,也不是负数;5是正数;和都是负数.故选:B.2.【解答】解:左视图有3列,每列小正方形数目分别为2,1,1.故选:B.3.【解答】解:A、x7÷x=x6,故此选项错误;B、(﹣3x2)2=9x4,故此选项错误;C、x3•x3=x6,故此选项错误;D、(x3)2=x6,故此选项正确;故选:D.4.【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A.5.【解答】解:将数据9560000科学记数法表示为9.56×106.故选:A.6.【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选:C.7.【解答】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.8.【解答】解:两次摸球的所有的可能性树状图如下:∴P两次都是红球=.故选:D.9.【解答】解:设甲型机器人每台x万元,根据题意,可得:,故选:A.10.【解答】解:当y=0时,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴点A的坐标为(﹣2,0);当x=0时,y=﹣x2+x+2=2,∴点C的坐标为(0,2);当y=2时,﹣x2+x+2=2,解得:x1=0,x2=2,∴点D的坐标为(2,2).设直线AD的解析式为y=kx+b(k≠0),将A(﹣2,0),D(2,2)代入y=kx+b,得:,解得:,∴直线AD的解析式为y=x+1.当x=0时,y=x+1=1,∴点E的坐标为(0,1).当y=1时,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1),∴PQ=1+﹣(1﹣)=2.故答案为:2.11.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.12.【解答】解:观察条形统计图知:为25岁的最多,有8人,故众数为25岁,故答案为:25.13.【解答】解:以点O为位似中心,相们比为,把△ABO缩小,点A的坐标是A (4,2),则点A的对应点A1的坐标为(4×,2×)或(﹣4×,﹣2×),即(2,1)或(﹣2,﹣1),故答案为:(2,1)或(﹣2,﹣1).14.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意得:,故答案为.15.【解答】解:结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.16.【解答】解:过点B1、C1、C2、C3、C4分别作B1D⊥x轴,C1D1⊥x轴,C2D2⊥x 轴,C3D3⊥x轴,C4D4⊥x轴,……垂足分别为D、D1、D2、D3、D4……∵点B1在直线l:y=x上,点B1的横坐标为2,∴点B1的纵坐标为1,即:OD=2,B1D=1,图中所有的直角三角形都相似,两条直角边的比都是1:2,∴点C1的横坐标为:2++()0,点C2的横坐标为:2++()0+()0×+()1=+()0×+()1点C3的横坐标为:2++()0+()0×+()1+()1×+()2=+()0×+()1×++()2点C4的横坐标为:=+()0×+()1×+()2×+()3……点∁n的横坐标为:=+()0×+()1×+()2×+()3×+()4×……+()n﹣1=+[()0+()1×+()2+()3+()4……]+()n﹣1=故答案为:17.【解答】(1)解:原式=3+4﹣4+2+6×=3+4﹣4+2+2=7.(2)解:原式=×﹣=﹣=.18.【解答】解:(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷=200(人);故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)1000×=300(人)答:这1000名学生中有300人参加了羽毛球社团;(4)画树状图得:∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==.19.【解答】解:(1)设2016年到2018年该村人均收入的年平均增长率为x,根据题意得:20000(1+x)2=24200,解得:x1=0.1=10%,x2=1.1(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%.(2)24200×(1+10%)=26620(元).答:预测2019年村该村的人均收入是26620元.20.【解答】证明:(1)∵AB∥CD,∠B=45°∴∠C+∠B=180°∴∠C=135°∵DE=DA,AD⊥CD∴∠E=45°∵∠E+∠C=180°∴AE∥BC,且AB∥CD∴四边形ABCE是平行四边形∴AE=BC(2)∵四边形ABCE是平行四边形∴AB=CE=3∴AD=DE=AB﹣CD=2∴四边形ABCE的面积=3×2=621、【解答】解:(1)∵顶点A的坐标是(0,2),顶点C的纵坐标是﹣4,∴AE=6,又▱ABCD的面积是24,∴AD=BC=4,则D(4,2)∴k=4×2=8,∴反比例函数解析式为y=;(2)由题意知B的纵坐标为﹣4,∴其横坐标为﹣2,则B(﹣2,﹣4),设AB所在直线解析式为y=kx+b,将A(0,2)、B(﹣2,﹣4)代入,得:,解得:,所以AB所在直线解析式为y=3x+2.22.【解答】(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠PAC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF经过点O,∵OD=OC,∴∠ODC=∠OCD,∵∠BDC=2∠ODC,∴∠BAC=∠BDC=2∠ODC=2∠OCD;(2)解:∵DF经过点O,DF⊥BC,∴FC=BC=3,在△DEC和△CFD中,,∴△DEC≌△CFD(AAS)∴DE=FC=3,∵∠ADC=90°,DE⊥AC,∴DE2=AE•EC,则EC==,∴AC=2+=,∴⊙O的半径为.23.【解答】解:(1)当0<x≤20且x为整数时,y=40;当20<x≤60且x为整数时,y=﹣x+50;当x>60且x为整数时,y=20;(2)设所获利润w(元),当0<x≤20且x为整数时,y=40,∴w=(40﹣16)×20=480元,当0<x≤20且x为整数时,y=40,∴当20<x≤60且x为整数时,y=﹣x+50,∴w=(y﹣16)x=(﹣x+50﹣16)x,∴w=﹣x2+34x,∴w=﹣(x﹣34)2+578,∵﹣<0,∴当x=34时,w最大,最大值为578元.答:一次批发34件时所获利润最大,最大利润是578元.24.【解答】证明:(1)∵AB=AD∴∠ABD=∠ADB∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE∴∠BAE=∠DAC(2)设∠DAC=α=∠BAE,∠C=β∴∠ABC=∠ADB=α+β∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC ∴∠EAC=2β∵AF平分∠EAC∴∠FAC=∠EAF=β∴∠FAC=∠C,∠ABE=∠BAF=α+β∴AF=FC,AF=BF∴AF=BC=BF∵∠ABE=∠BAF,∠BGA=∠BAC=90°∴△ABG∽△BCA∴∵∠ABE=∠BAF,∠ABE=∠AFB∴△ABF∽△BAD∴,且AB=kBD,AF=BC=BF ∴k=,即∴(3)∵∠ABE=∠BAF,∠BAC=∠AGB=90°∴∠ABH=∠C,且∠BAC=∠BAC∴△ABH∽△ACB∴∴AB2=AC×AH设BD=m,AB=km,∵∴BC=2k2m∴AC==km∴AB2=AC×AH(km)2=km×AH∴AH=∴HC=AC﹣AH=km﹣=∴25.【解答】解:(1)函数的表达式为:y=(x+1)(x﹣5)=﹣x2+x+;(2)抛物线的对称轴为x=1,则点C(2,2),设点P(2,m),将点P、B的坐标代入一次函数表达式:y=sx+t并解得:函数PB的表达式为:y=﹣mx+…①,∵CE⊥PE,故直线CE表达式中的k值为,将点C的坐标代入一次函数表达式,同理可得直线CE的表达式为:y=…②,联立①②并解得:x=2﹣,故点F(2﹣,0),S△PCF=×PC×DF=(2﹣m)(2﹣﹣2)=5,解得:m=5或﹣3(舍去5),故点P(2,﹣3);(3)由(2)确定的点F的坐标得:CP2=(2﹣m)2,CF2=()2+4,PF2=()2+m2,①当CP=CF时,即:(2﹣m)=()2+4,解得:m=0或(均舍去),②当CP=PF时,(2﹣m)2=()2+m2,解得:m=或3(舍去3),③当CF=PF时,同理可得:m=±2(舍去2),故点P(2,)或(2,﹣2).。

2019年中考第一次模拟考试数学试卷(附参考答案)

2019年中考第一次模拟考试数学试卷(附参考答案)

2019年中考第一次模拟考试数学试卷注意事项:1. 本试卷分试题卷和答题卡两部分。

试题卷共4页,三个大题,满分120分,考试时间100分钟.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。

)1、21-的相反数是……………………( )(A ) 21+ (A ))12(+- (C )12- (D )211-2、有一种病毒粒子的直径为0.000 000 018米,用科学记数法表示,0.000 000 018等于……………………………………………………( )(A )91018-⨯ (B )71018.0-⨯ (C )8108.1-⨯ (D )7108.1-⨯3、已知关于x 的一元二次方程0142=+-x ax 有两个不相等的实数根,则a 的取值范围是……………………………………( )(A )a >4 (B )a <4 (C )4≤a (D) a <4,且0≠a4、如图,已知直线m //n ,AD 平分CAB ∠,044=∠ACD ,则CAD ∠等于…………( )(A )068 (B )0136 (C )092 (D )0225众数为800元;③该公司月工资的平均数是1240元;④用众数、中位数、平均数这三个统计量中的任意一个反映该公司工作人员的工资水平都比较合适。

其中正确的个数是…………………………( )(A )4个 (B )3个 (C )2个 (D )1个)则组成这个几何体的小正方体共有 ( ) (A )5个(B )6个 (C )7个 (D )8个8、如图,AB 是⊙O 的直径,点P 是直径AB 延长线上的一点,过点P 作射线交⊙O 于点C 、D ,若OD//BC ,)(A )∠PBC=∠PDA ;(B )PBC ∆∽POD ∆(C )AD=DC ; (D )OAD ∆是等边三角形.二、填空题(每小题3分,共21分)9、计算:=-+-20)41(2015=________10、当x >0时,反比例函数xmy -=1随着x 的增大而增大,则m 的取值范围是_________.11、正三角形的边心距与边长之比等于________.12、在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同,充分搅匀后,先摸出1个球,放回并充分搅匀后,再摸出1个球,那么2个球都是黑球的概率是_______.13、如图,AB 是DAC ∠的平分线,090=∠D ,5=AB ,4=AD .按下列步骤操作:(1)以点B 为圆心,以适当的长为半径作圆弧与直线AC 相交于点E 、F ;(2)分别以E 、F 为圆心,以大于EF 21的长为半径作圆弧相交于点G ;(3)作直线BG 交AC 于点P .则PB=________.14、如图,在Rt △ABC 中,∠B=900,AC=BC=1.将Rt △ABC 绕顶点A 顺时针旋转060,点B 、C 分别落到B '、C '的位置,则图中阴影部分的面积为_____.15、如图,OABC 是矩形,点B 坐标是(3,3),点D 坐标是(0,1),点P 是矩形对角线OB PD PA +的最小值等于____________.三、解答题(8个题,共计75分)16、(8分)先化简,再求值:23)12(x xx x x x -÷--,其中x =12-. 17、(9分)如图,AD 、CB 分别是⊙O 的直径,点E 在AB 的延长线上,DE AD =。

2019年中考模拟测试卷数学试题卷及答案

2019年中考模拟测试卷数学试题卷及答案

2019年初中学业考试模拟测试卷数学试题卷一.选择题:(本题有10小题,每小题3分,共30分) 1.16的算术平方根是(▲). A . 4B .4± C .2D .2±2.下列计算正确的是(▲).A .1243a a a =∙ B .a a a =-34C .()1243a a = D .428a a a =÷3.如图,直线a//b ,直线c 与直线a ,b 分别交于A,B 两点,射线AC ⊥直线c ,则图中与∠1互余的角有(▲). A .4个B . 3个C . 2个D .1个4.使代数式42-+x x 有意义的x 的取值范围是(▲).A .x >-2B .x ≥-2C .x ≥4D .x ≥-2且x ≠45.下列图形中,既是轴对称图形又是中心对称图形的是(▲).6.从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程kx 2-x +1=0 的k 值,则所得的方程中有两个不相等的实数根的概率是(▲). A .51 B .52 C . 53 D . 547.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为(4,0),∠AOC =60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形OABC 的两边分别交于点M ,N (点M 在点N 的上方),若△OMN 的面积为S ,直线l 的运动时间为t 秒(0≤t ≤4),则能大致反映S 与t 的函数关系的图象是(▲).8.请运用所学知识判断sin 44.9°与cos 44.9°的大小(▲).A . sin 44.9°> cos 44.9°B .sin 44.9°< cos 44.9°C .sin 44.9°= cos 44.9°D .无法判断 9.如图,△ABC 和△CDE 均为等腰直角三角形,点B 、C 、D 在一条直线上,点M是AE 的中点,下列结论:①tan ∠AEC =BCCD;②S △ABC +S △CDE ≥S △ACE ;③BM ⊥DM ;④BM =DM .正确结论的个(▲).A . 1个B . 2个C . 3个D . 4个10.如图,P 为正方形ABCD 对角线BD 上一动点,若AB=2,则AP+BP+CP 的最小值为(▲).A .26+B . 23C . 2210+D .无法确定二、填空题:(本题有6小题,每小题4分,共24分)11.分解因式:2am 2﹣8a = ▲ .12.如图,在△ABC 中,∠CAB =65°.在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′= ▲ .13.若一组数据 2、2、3、3、4、4、x 的平均数是3,则这组数据的众数是 ▲ . 14.对于实数a ,b 定义一种新运算“@”为a @b=ba -21,这里等式右边是实数运算。

2019年中考数学模拟试卷含答案解析

2019年中考数学模拟试卷含答案解析

故选答案 D.
10. 连 AC、DC、 OD,过 C作 CE⊥ AB于 E,过 O作 OF⊥ CE于 F,∵ ?BC 沿 BC折叠,∴∠ CDB=
∠H,∵∠ H+∠A=180°,∴∠ CDA+∠ CDB=180°,∴∠ A=∠ CDA,∴CA=CD,∵ CE⊥ AD,∴ AE=ED=1,
∵ OA 5 ,AD=2,∴ OD=1,∵ OD⊥ AB,∴ OFED为正方形,∴ OF=1, OC 5 ,∴ CF=2,
2019 年初中毕业生数学考试模拟试卷及答案解析
一、选择题(共 10 小题,每小题 3 分,共 30 分)
1.温度由- 4℃上升 7℃是(

A. 3℃
B.- 3℃
2.若分式 1 在实数范围内有意义,则实数 x2
A. x>- 2
B. x<- 2
2
2
3.计算 3x -x 的结果是(

A. 2
B. 2x2
第 16 题 延长 BC 至点 F,使 CF=AC,∵ DE 平分△ ABC的周长, AD=BC,∴ AC+CE=B,E ∴
BE=CF+CE=E,F ∴ DE∥ AF,DE=1 AF,又∵∠ ACF=120°, AC=CF,∴ AF 2
3AC
3 ,∴
3
DE
.
2
F
C E
C E F
G
A
D
B
A
D
B
第 16 题法一答图
8 上且 m<0,过点 A 作 x 轴的垂线,垂足
x
为B
(1) 如图 1,当 a=- 2 时, P(t ,0) 是 x 轴上的动点,将点 B 绕点 P 顺时针旋转 90°至点 C

2019年中考数学模拟试卷(附答案)

2019年中考数学模拟试卷(附答案)

2019年中考数学模拟试卷(附答案)一、选择题(本大题10题,每小题3分,共30分).在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 四个数0,3-,2,32中,无理数的是( ) A .0 B .3- C .2 D .32 2. 2019年濠江区保障性住房建设预计资金投入约5300000元,将5300000用科学记数法表示为( )A .51053⨯B .5103.5⨯C .71053.0⨯D .6103.5⨯ 3. 如图是由3个大小相同的小正方体组成的几何体,它的左视图是( )A .B .C .D .4. 数据3,4,6,7,3的众数和中位数分别是( )A .3 ,4B .3 ,7C .4 ,3D .4 ,6 5. 下列计算正确的是( )A .326x x x =÷B .2)1(1+-=--x xC .222)(b a b a -=-D .226)3(x x = 6.使1+x 有意义的x 的取值范围是( )A .1->xB .x ≥1-C .1-<xD .x ≤1- 7. 如图,已知∠AOB =70°,OC 平分∠AOB ,DC ∥OB ,则∠C 为( )A.20°B.35°C.45°D.70°8. 将2x y =向上平移2个单位后所得的抛物线的解析式为( )A .22+=x yB .22-=x yC .2)2(+=x yD .2)2(-=x y 9. 如图,边长相等的正方形和正六边形的一边重合,则∠1的度数是( )A .10°B .20°C .30°D .40°10.如图①,点P 从等边△ABC 的顶点A 出发,沿A →B →C 以1cm/s 的速度匀速运动到点C ,图②是点P 运动时,△PAC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .3B .1C .23D .32 二、填空题(本大题6题,每小题4分,共24分).请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:222-a = .12.不等式组⎪⎩⎪⎨⎧+>--<-2115304x x x 的解集为 .13.已知关于x 的方程02=-+n x x 有两个相等的实数根,那么n 的值为 . 14.如图,在△ABC 中,DE ∥BC ,AE :EC=2:3,则ABC ADE S S ∆∆:的值为 . 15.如图,在边长为1的正方形网格中,AB 是半圆的直径,则阴影部分的面积为 (结果保留π)16.规定12-=i ,且i 满足运算律.如:i i i i i 2)1(21121)1(222=-++=+⨯⨯+=+,那么8)1(i -的值为三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:10220199|2|-+-+-18.先化简,再求值:21)231(2+-÷+-a a a ,其中13-=a19.如图,在△ABC中,∠A=30°,∠B=50°.(1)作∠ACB的平分线交AB边于点D,(要求:尺规作图,保留作图痕迹,不写作法);(2)求证:DC=DB.四、解答题(二)(本大题3小题,每小题7分,共21分)20.某校为奖励在学校活动中表现优秀的同学,计划购买甲、乙两种奖品.已知购买甲种奖品30件和乙种奖品25件需花费1950元,购买甲种奖品15件和乙种奖品35件需花费1650元.(1)求甲、乙两种奖品的单价.(2)若学校计划花费1000元购买甲、乙两种奖品,且要求甲、乙两种奖品的数量比为2:3,问最多可以购买多少件甲种奖品?21.如图,矩形EFGH的四个顶点分别在平行四边形ABCD的各条边上,AB=EF.(1)求证:△AFE≌△CHG;(2)若点H为DC的中点,∠A=90°,试判断AF和BF的数量关系,并说明理由.22.某中学为关注儿童成长的健康,实施“关注留守儿童计划”,对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图: (1)全校班级个数 个,并将该条形统计图补充完整;(2)在扇形统计图中,表示“3名”的扇形圆心角为 度;(3)为了了解留守儿童的饮食情况,某校决定从只有2名留守儿童的这些班级中,任选两名进行调查,请用列表法或画树形图的方法,求出所选两名留守儿童来自同一个班级的概率.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,在矩形OABC 中,OC=2,OA=3,以OA 所在的直线为x 轴,以OC 所在的直线为y 轴建立平面直角坐标系.反比例函数xmy 的图象与CB 交于点D (2,2),与BA 交于点E ,连接AC ,DE ,OE.(1)求反比例函数的解析式; (2)求 sin ∠EOA 的值; (3)求证:DE ∥CA .24.如图,在正方形ABCD中,AD=4,E是AB上一点,AC与DE相交于点F.以DE为直径的⊙O与AC相交于点G,连接EG,DC与BG的延长线相交于点H.(1)求证:∠AEG=∠AFD;(2)若∠EGB=∠BAC,判断BH与⊙O的位置关系,并说明理由;(3)在(2)的条件下,求AE的长.25.如图1,已知Rt△ABC,∠AB C=90°,AB=3,BC=6,将Rt△ABC绕点B顺时针旋转90°,连接CD,与AE的延长线交于点F,连接BF,与ED相交于点G.(1)填空:∠BCD= °;(2)求BG的长度;(3)如图2,点M从点E出发,沿EA方向以每秒2个单位长度的速度向终点A运动,点N 从点E出发,沿ED方向以每秒5个单位长度的速度向终点D运动,M,N两点同时出发,当点M停止时,点N也随之停止.设运动时间为x秒,问:是否存在x的值,使得△BMN 为等腰三角形?若存在,请直接写出x的值;若不存在,请说明理由.数学参考答案与评分标准一、选择题二、填空题11.)1)(1(2-+a a ;12.7-<x ;13. ;14. ;15. ;16.16三、解答题(一)17.解:原式= ………………4分 = ………………6分18.解:原式11)1)(1(2212)1)(1(2322+=-++⋅+-=+-+÷⎪⎭⎫ ⎝⎛+-++=a a a a a a a a a a a a ……………………3分 ………………4分当13-=a 时,原式331131=+-=………………6分 19.解:(1)如图所示,CD 即为所求。

河南省2019年中考数学模拟试题(含解析)

河南省2019年中考数学模拟试题(含解析)

2019年河南省中考数学模试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1. - 3的绝对值是()A.— 3B. 3C. . —D.—3 32. 中国的陆地面积和领水面积共约9970000km2, 9970000这个数用科学记数法可表示为()A. 9.97 X 105B. 99.7 X 105C. 9.97 X 106D. 0.997 X 1074. 一次函数y= - 3x+b和y=kx+1的图象如图所示,其交点为P (3, 4),则不等式kx+1 >-3x+b的解集在数轴上表示正确的是()A. *B. * C ' D5. 某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.甲乙丙平均数7.97.98.03. 如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为1的正方体的个数是A. 9B.左视图C. 7D. 6主视图根据以上图表信息,参赛选手应选()血成绩环* X10 ---------9 —…“…”8 ”4“ ■-7 --------A.甲B.乙C.丙D. 丁A. 1 : 3B. 1: 5C. 1: 6D. 1: 119.如图,在平面直角坐标系中,抛物线y=. x2经过平移得到抛物线y=ax2+bx,其对称轴与6.如图,四边形ABCD内接于O 0,F是二上一点,且~7=-,连接CF并延长交AD的延长线于点E,连接AC,若/ ABC=105 ,/ BAC=25,则/ E的度数为(7.如图,菱形0ABC的一边0A在x轴上,将菱形0ABC绕原点0顺时针旋转75°至0A B'DC于点F,60°连接AE并延长交C'的位置,若0B=「,/ C=120°,则点B'的坐标为(则S A DEF:S A AOB的值为(两段抛物线所围成的阴影部分的面积为;,则a 、b 的值分别为(C 2、巳、E 4、G 3…在x轴上,已知正方形 A i B i C i D二、填空题(本小题共 5小题,每小题3分,共15分)11. ________________________________________ 计算:一二 + ( n - 2) 0+ (- 1) 2017= . 12.已知关于x 的一元二次方程 ax 2-( a+2) x+2=0有两个不相等的正整数根时,整数 a 的值是 _______ .10.在平面直角坐标系中,正方形A BCD 、 Di E 1E 2B 2、AB 2C 2D 、DBE4B …按如图所示的方式放置,其中点 B 在y 轴上,点G 、E 、E 、的边长是(13. 如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=14. ____________________________________________ 如图,扇形OAB中,/ AOB=60,扇形半径为4,点C在-爲上,CD! OA垂足为点D, 当厶OCD的面积最大时,图中阴影部分的面积为 .O D .415. 如图,在矩形ABCD中, AB=5 BC=3点E为射线BC上一动点,将△ ABE沿AE折叠,得到△ AB' E.若B'恰好落在射线CD上,贝U BE的长为__________ .三、解答题(本题共8小题,共75分.)::一1 r, 216. 先化简,再求值:十一=,其中m是方程x+2x- 3=0的根.3 ID1 2 3-6m rn-2 717. 在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分.某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图.已知A, B两组户数频数直方图的高度比为 1 : 5.月信息消费额分组统计表1这次接受调查的有 _________ 户;2在扇形统计图中,“ E”所对应的圆心角的度数是 ________(3 )请你补全频数直方图;(4)若该社区有2000户住户,请估计月信息消费额不少于 200元的户数是多少?(户数)18. 如图,AB 是半圆O 的直径,点P 是半圆上不与点 A B 重合的一个动点,延长BP 到点C, 使PC=PB D 是AC 的中点,连接 PD PO (1) 求证:△ CDP^A POB (2) 填空:① 若AB=4,则四边形AOPD 勺最大面积为 _________ ;② 连接OD 当/ PBA 的度数为 ______ 时,四边形BPDC 是菱形.C19. 如图,在大楼 AB 的正前方有一斜坡 CD CD=4米,坡角/ DCE=30,小红在斜坡下的点 C 处测得楼顶B 的仰角为60°,在斜坡上的点D 处测得楼顶B 的仰角为45°,其中点A C E 在同一直线上.(1) 求斜坡CD 的高度DE(2) 求大楼AB 的高度(结果保留根号)20.同庆中学为丰富学生的校园生活, 准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同, 每个篮球的价格相同),若购买3个足球和2个篮球共需310元, 购买2个月信JS 湾奏颤分组頻数直方图各粗户数扇球统计圈2015 105・・・10足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?21. 根据下列要求,解答相关问题:(1 )请补全以下求不等式- 2x2- 4x > 0的解集的过程①构造函数,画出图象:根据不等式特征构造二次函数y=-2x2- 4x;抛物线的对称轴x=- 1 ,开口向下,顶点(-1, 2)与x轴的交点是(0, 0), (- 2, 0),用三点法画出二次函数y= - 2x2- 4x的图象如图1 所示;②数形结合,求得界点:当y=0时,求得方程-2x2- 4x=0的解为___________ ;③借助图象,写出解集:由图象可得不等式-2x2- 4x > 0的解集为_________ .(2)利用(1)中求不等式解集的方法步骤,求不等式x2- 2x+1v 4的解集.①构造函数,画出图象;②数形结合,求得界点;③借助图象,写出解集.(3)参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于x 的不等式ax2+bx+c > 0 (a > 0)的解集.22. (1)问题发现:(1)如图1,在正方形ABCD中,点E、F分别是边BG AB上的点,且CE=BF连接DE过点E 作EG! DE 使EG=DE 连接FG FC,请判断:FG 与CE 的数量关系是 ,位置关玄阜 系是 (2)拓展探究:请出判断判断予以证明; (3) 类比延伸:如图3,若点E 、F 分别是BC AB 延长线上的点,23. 如图,二次函数 y=ax 2+bx+c 的图象与x 轴的交点为 A D (A 在D 的右侧),与y 轴的交 点为C,且A (4, 0), C ( 0,- 3),对称轴是直线x=1 . (1 )求二次函数的解析式;(2)若M 是第四象限抛物线上一动点,且横坐标为 m 设四边形 OCMA 勺面积为s .请写出 s 与m 之间的函数关系式,并求出当 m 为何值时,四边形 OCMA 勺面积最大;(3) 设点B 是x 轴上的点,P 是抛物线上的点,是否存在点 P,使得以A , B 、C, P 四点为如图2,若点E 、F 分别是CB BA 延长线上的点,其它条件不变, (1)中结论是否仍然成立?GBB(1)中结论是否仍然成立?其它条件不变, 请直接写出你的判断.顶点的四边形为平行四边形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.参考答案与试题解析 一、选择题(本大题共 13的绝对值是( )A.— 3B. 3C. . —D.—3 3【考点】15:绝对值.【分析】计算绝对值要根据绝对值的定义求解. 第一步列出绝对值的表达式; 第二步根据绝对值定义去掉这个绝对值的符号. 【解答】解:| - 3|=3 . 故-3的绝对值是3. 故选:B. 2.中国的陆地面积和领水面积共约 9970000km 2, 9970000这个数用科学记数法可表示为 ( )55 —67A. 9.97 X 10 B . 99.7 X 10 C. 9.97 X 10 D. 0.997 X 10 【考点】科学计数法.【分析】 科学记数法的表示形式为 a x 10n 的形式,其中1W |a| v 10, n 为整数.确定 n 的 值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当 原数绝对值〉1时,n 是正数;当原数的绝对值v 1时,n 是负数. 【解答】 解:9970000=9.97 X 106, 故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a X 10n 的形式,其中1w |a| v 10, n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为10小题,每小题3分,共30 分) 主视图A. 9B. 8*左视图C. 7D. 61的正方体的个数是【考点】U3:由三视图判断几何体.【分析】易得这个几何体共有 2层,由俯视图可得第一层正方体的个数, 由主视图和左视图可得第二层正方体的个数,相加即可.【解答】解:由俯视图易得最底层有 6个正方体,第二层有 2个正方体,那么共有 6+2=8 个正方体组成, 故选B.4. 一次函数y= — 3x+b 和y=kx+1的图象如图所示,其交点为 P (3, 4),则不等式kx+1 > —• ••当 x 》3 时,kx+1》—3x+b , •不等式kx+1 >— 3x+b 的解集为x > 3,在数轴上表示为: *故选B.5.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示, 丁的成绩如图所示.甲乙 丙 平均数 7.9 7.9 8.0 方差3.290.491.8元一次不等式;C4:在数轴上表示不等式的解集.【分析】 观察图象,直线 y=kx+1落在直线 y= - 3x+b 上方的部分对应的 x 的取值范围即为所 求.【解答】 解:•一次函数 y= - 3x+b 和y=kx+1的图象交点为 P (3, 4),3x+b 的解集在数轴上表示正确的是(FD 一次函数与 【考C .根据以上图表信息,参赛选手应选( )【考点】W7方差;W1:算术平均数.【分析】根据方差的计算公式求出丁的成绩的方差,根据方差的性质解答即可. 【解答】解:由图可知丁射击 10次的成绩为:8、8、9、7、8、8、9、7、8、8,则丁的成绩的平均数为: —X( 8+8+9+7+8+8+9+7+8+8) =8, 丁的成绩的方差为: 了一X [ (8 - 8)+ ( 8 - 8)2+ (8 - 9) 2+ ( 8 - 7) 2+ (8 -8)+ (8 - 8)2 2 2 2 2+ (8 - 9) + (8 - 7) + (8 - 8) + (8 - 8) ]=0.4 , •••丁的成绩的方差最小, •••丁的成绩最稳定, •••参赛选手应选丁, 故选:D.F 是•上一点,且| ; =「,连接CF 并延长交AD 的延长根据三角形外角的性质即可得出结论.【解答】 解:••四边形 ABCD 内接于O 0,Z ABC=105,6.如图,四边形 ABCD 内接于O 0,线于点E ,连接AC,若/ ABC=105,/ BAC=25,则/ E 的度数为(M6圆内接四边形的性质;M4: 圆心角、弧、弦的关系.【分析】 先根据圆内接四边形的性质求出/ ADC 的度数,再由圆周角定理得出/ DCE 的度数,【考60°•••/ ADC=180 -Z ABC=180 - 105 ° =75 °.•••衣=| ,/ BAC=25 , • Z DCEZ BAC=25 ,• Z E=Z ADC-Z DCE=75 - 25° =50 °. 故选B.7.如图,菱形OABC 的一边OA 在 x 轴上,将菱形OABC 绕原点0顺时针旋转75°至OA B ' C'的位置,若 OB= _,Z C=120°,则点B'的坐标为( )/A ”oX1%帕\L J A r7 R fA.( 3,二)B .( 3,一) C.(「,「)D.(「,7)【考点】R7:坐标与图形变化-旋转; L8:菱形的性质.【分析】 首先根据菱形的性质,即可求得Z AOB 的度数,又由将菱形 OABC 绕原点O 顺时针 旋转75°至OA B ' C'的位置,可求得Z B' OA 的度数,然后在 Rt △ B' OF 中,利用三角 函数即可求得 OF 与B ' F 的长,则可得点 B '的坐标.【解答】 解:过点B 作BE X OA 于E ,过点B'作B' F 丄OA 于 F , • Z BE0=Z B ' FO=9C ° , •••四边形OABC 是菱形, • OA// BC, Z AOB= Z AOC • Z AOC-Z C=180°,•••Z C=120° ,• Z AOC=60 , • Z AOB=30 ,• •菱形OABC 绕原点O 顺时针旋转75°至OA B' C'的位置, • Z BOB =75°, OB =OB=2 :, • Z B' OF=45 ,在Rt△ B' OF中,•••点B'的坐标为:(唧匚,-i :).&如图,在?ABCD 中, AC 与BD 相交于点 O, E 为OD 的中点,连接 AE 并延长交 DC 于点F , 则 S A DEF : S A AOB 的值为()A. 1 : 3 B . 1: 5 C . 1: 6 D . 1: 11 【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】根据平行四边形的性质可知 BO=DO 又因为E 为OD 的中点,所以DE BE=1: 3,根S A iQR 9 据相似三角形的性质可求出 S A DE :S A BAE .然后根据=p ,即可得到结论.仏 ABE 3【解答】解:I O 为平行四边形ABCD 对角线的交点, • DO=BO又••• E 为OD 的中点, • DE= DB4• DE: EB=1: 3, 又••• AB// DC• △ DFE^A BAEOF=OB? cos45 •-B ' F= 7,=2 r =",故选D.・'二=(1)2=1'△BAE 39• I S A DE = S A BAE ,■..S AADB = 2 S A ABE 3,确定出抛物线y=ax 2+bx 的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点可得解.• °. S A AO =S :△ BAE,V S ^EAE…S A DEF : S A AO ==1 : 6,y S ABAE9.如图,在平面直角坐标系中,抛物线 两段抛物线所围成的阴影部分的面积为y= . x 2经过平移得到抛物线 y=ax 2+bx ,其对称轴与 [,则a 、b 的值分别为(H6:二次函数图象与几何变换.【分析】 坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即故选C.【考c •一,3 3 2 4•••平移后抛物线的顶点坐标为(- 爭,-电右),对称轴为直线x=-爭, 当x=-丄一时,y=2 4•平移后阴影部分的面积等于如图三角形的面积,'x( ■)X(-)=2 4 4234解得b= - -y故选:C.ABCD、D1E1E2B、A2B2 C2D、D>E3E4B B…按如图所示的方的边长为I,/ B i C i O=60°, BQ// B2C2// B3C3…,则正方形A2017R0仃C2o仃D2o仃的边长是()【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长, 可得出答案.【解答】解:•••正方形A i B i CD的边长为1,/ B i CO=60°, BC // B2C2 / RC3,• D E1=B2E2, D>E3=B S E4, / DCE1=/ GB2E2=/仑£3巳=30°,式放置,其中点B在y轴上,点C、E、E>、C2、巳、巳、C3…在x轴上,已知正方形A i B i G D 10.在平面直角坐标系中,正方形El E: Q Ej E4 G x进而得出变化规律即31【考点】D2:规律型:点的坐标.则 B 2C>== = () 1cos30fl 33 同理可得:RG==(—二)2,33故正方形 ABGD 的边长是:()「13则正方形A 2017B 2017C 2017 D 2017的边长为: 故选:C.二、填空题(本小题共 5小题,每小题3分,共15分) 11. 计算:-二 +( n - 2) 0+ (- 1) 2017= - 2 . 【考点】2C:实数的运算;6E :零指数幕.【分析】直接利用零指数幕的性质以及立方根的定义分别化简进而求出答案. 【解答】 原式=-2+1 - 1 =-2. 故答案为:-2.12.已知关于x 的一元二次方程 ax 2-( a+2) x+2=0有两个不相等的正整数根时,整数 a 的值是 a=1.【考点】AA 根的判别式.【分析】由一元二次方程的定义可得出 a z 0,再利用根的判别式△ =b 2- 4ac ,套入数据即可 得出△ = (a - 2) 2> 0,可得出a z 2且a z 0,设方程的两个根分别为刘、X 2,利用根与系数9的关系可得出X 1?X 2=,再根据X 1、X 2均为正整数,a 为整数,即可得出结论.a【解答】 解:•••方程ax 2-( a+2) X +2=0是关于X 的一元二次方程, a z 0.•/△ = (a+2) 2- 4a X 2= (a - 2) 2> 0,•••当a=2时,方程有两个相等的实数根, 当a z 2且a z 0时,方程有两个不相等的实数根. •• •方程有两个不相等的正整数根, 设方程的两个根分别为 X I 、X 2,--DE i =CDsin30一, 20169/. X1?X2=,a•/X I、X2均为正整数,•••「为正整数,a■/ a为整数,a^ 2且a^ 0,a=1,故答案为:a=1.13. 如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=【考点】G6:反比例函数图象上点的坐标特征.【分析】作AC± X轴于点C,作BD丄X轴于点D,易证△ OB/A AOC则面积的比等于相似比的平方,即tanA的平方,然后根据反比例函数中比例系数k的几何意义即可求解.【解答】解:作ACLX轴于点C,作BD丄X轴于点D.则/ BD02 ACO=90 ,则/ BOD丄OBD=90 ,•/ OA! OB•••/ BOD丄AOC=90 ,•••/ B0D2 AOC•••△ OBD^A AOC二口工 2 /»八2一•••..,.= —) =( tanA )=,又••• S A AO(=_77 X 2=1 ,• S _1・・S A OB=,■-9故答案为:-•・k=-二14. 如图,扇形OAB中,/ AOB=60,扇形半径为4,点C在富上,CtU OA垂足为点D, 当厶OCD勺面积最大时,图中阴影部分的面积为2 n —4 .BO D A【考点】MO扇形面积的计算;H7:二次函数的最值;KQ勾股定理.【分析】由OC=4点C在亦上,CDL OA求得DC彳0严4)!)鼻&&~0卫,运用& OC誌OD ? !..厂,求得OD=2 —时厶OCD的面积最大,运用阴影部分的面积=扇形AOC的面积-△ OCD的面积求解.【解答】解:••• OC=4点C在「上,CDL OA•DC“「」「=厂厂•S A OC=;O D? i / .■ pr'Q 1 1 1•••,「= ’O D?( 16—O D)=——O D+4OD=—’(O D- 8) 2+16•••当O D=8,艮卩OD=2】时厶OCD的面积最大,•- DC=foF_)2= =2 _,•••/ COA=45 ,2•••阴影部分的面积 = 扇形AOC 勺面积-△ OCD 的面积=!打八"- X 2 7X 2 7=2 n - 4, 360 2 % % 故答案为:2 n - 4.【分析】如图1,根据折叠的性质得到 AB' =AB=5, B' E=BE 根据勾股定理得到 B E= ( 3 -BE 2+12,于是得到吨,如图2,根据折叠的性质得到AB =沖求得AB =BF =5根据勾股定理得 到CF=4根据相似三角形的性质列方程得到CE=12即可得到结论.【解答】 解:如图1,v 将厶ABE 沿 AE 折叠,得到△ AB' E ,• AB' =AB=5 B' E=BE •- CE=3- BE,: AD=3 •- DB' =4,二 B ' C=1,v B ' h=cE+B' C 2,• BE "= ( 3 - BE 2+12, • BE =,如图2,:将厶ABE 沿 AE 折叠,得到△ AB' E , • AB' =AB=5 :CD// AB,:丄仁/ 3,:/ 仁/2,• / 2=7 3,:AE 垂直平分 BB', • AB=BF=5 • CF=4, :CF // AB,• △ CEF^A ABE15.如图,在矩形 ABCD 中, AB=5 BC=3 点E 为射线BC 上一动点,将△ ABE 沿AE 折叠, 得到△ AB' E .若B'恰好落在射线CD 上,则BE 的长为—或15 .【考点】PB:翻折变换(折叠问题) ;LB: 矩形的性质.即 d =:,5 CE+3.CE=12,. BE=15,综上所述:BE 的长为:一或15, 故答案为:一或15 .38小题,共75分.)* J .I . 一 ,其中m 是方程X 2+2X -3=0的根. 3 m -6m叶<【考点】6D:分式的化简求值;A8:解一元二次方程-因式分解法.m —35【分析】首先根据运算顺序和分式的化简方法, 化简十-,然后应用因3 in" -6n前一2数分解法解一元二次方程, 求出m 的值是多少;最后把求出的m 的值代入化简后的算式,求叶3/5、出算式 -* :,的值是多少即可.3 m -6m叶2m-3E【解答】解: _* ■ I :.-3 m -on.(TD +3) (E -3)(X +3) (X - 1) =0, 解得 X i =- 3, X 2=1,■/m 是方程X 2+2X - 3=0的根,••• m= - 3, m=l ,三、解答题(本题共 16•先化简,再求值:=IP -3________________ 3m(n5—2) m -2= 12•/x +2x - 3=0,•/ m+趺0,•• m^- 3,• m=1,所以原式=「一厂=3X1 X (1+3)=11217•在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分•某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图•已知A, B两组户数频数直方图的高度比为 1 : 5. 月信息消费额分组统计表请结合图表中相关数据解答下列问题:(1) 这次接受调查的有50户;(2) 在扇形统计图中,“E”所对应的圆心角的度数是28.8 °;(3 )请你补全频数直方图;(4)若该社区有2000户住户,请估计月信息消费额不少于200元的户数是多少?【考点】VB 扇形统计图;V5:用样本估计总体; V7:频数(率)分布表;V8:频数(率)分布直方图.【分析】(1)根据A B 两组户数直方图的高度比为 1 : 5,即两组的频数的比是 1 : 5,据此 即可求得A 组的频数;利用 A 和B 两组的频数的和除以两组所占的百分比即可求得总数; (2)用“ E ”组百分比乘以360°可得;(3 )禾9用总数乘以百分比即可求得 C 组的频数,从而补全统计图; (4) 利用总数2000乘以C 、D E 的百分比即可. 【解答】 解:(1) A 组的频数是:10=2;5•••这次接受调查的有(2+10)十(1 - 8%- 28%- 40%) =50 (户), 故答案为:50 ;故答案为:28.8(3) C 组的频数是:50X 40%=2Q 如图,(4) 2000X( 28%+8%+40%=1520 (户),月信星涔妻頼分组頻數曹左圉各組户数屈形统计图201010 --■ ■ ■ ■■ ■广 ■ ■ ■ ■ ■ ■ ■ ■¥ >9 ■ ■(2) “E ”所对应的圆心角的度数是360°X 8%=28.8°,月信星涔妻頼分组頻數曹左圉各組户数福形统计图5E18. 如图,AB是半圆O的直径,点P是半圆上不与点A B重合的一个动点,延长BP到点C, 使PC=PB D是AC的中点,连接PD PO(1)求证:△ CDP^A POB(2)填空:①若AB=4,则四边形AOPD勺最大面积为 4;②连接OD当/ PBA的度数为60°时,四边形BPDC是菱形.C【考点】L9:菱形的判定;KD全等三角形的判定与性质.【分析】(1)根据中位线的性质得到DP// AB, DP=AB由SAS可证厶CDP^A POB(2)①当四边形AOPD勺A0边上的高等于半径时有最大面积,依此即可求解;②根据有一组对应边平行且相等的四边形是平行四边形,可得四边形BPDO是平行四边形, 再根据邻边相等的平行四边形是菱形,以及等边三角形的判定和性质即可求解.【解答】(1)证明:T PC=PB D是AC的中点,••• DP/ AB,••• DP=.AB,Z CPD2 PBOLa•/ BO=_AB,• DP=BO在厶CDP-与^ POB中,r DP=B0ZCPD^ZPBOPC=PB•••△CDP^A POB( SAS ;(2)解:①当四边形AOPD的AO边上的高等于半径时有最大面积,=2X 2 =4;②如图:•••DP// AB, DP=BO•••四边形BPDO是平行四边形,••四边形BPDO是菱形,•PB=BQ•/ PQ=BQ•PB=BQ=PQ•△ PBQ是等边三角形,•/ PBA的度数为60°.故答案为:4; 60°.C19. 如图,在大楼AB的正前方有一斜坡CD CD=4米,坡角/ DCE=30,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A C E在同一直线上.(1)求斜坡CD的高度DE(2)求大楼AB的高度(结果保留根号)【考点】TA:解直角三角形的应用-仰角俯角问题;T9:解直角三角形的应用-坡度坡角问题.【分析】(1)在直角三角形 DCE 中,禾U 用锐角三角函数定义求出 DE 的长即可;(2)过D 作DF 垂直于AB,交AB 于点F,可得出三角形 BDF 为等腰直角三角形, 设BF=DF=x 表示出BC, BD, DC 由题意得到三角形 BCD 为直角三角形,禾U 用勾股定理列出关于 x 的方 程,求出方程的解得到 x 的值,即可确定出 AB 的长.【解答】 解:(1)在 Rt △ DCE 中, DC=4米,/ DCE=30,/ DEC=90 , ••• DE= DC=2 米;2(2)过D 作DF 丄AB 交AB 于点F , •••/ BFD=90,/ BDF=45 ,•••/ BFD=45,即△ BFD 为等腰直角三角形, 设 BF=DF=x 米,•••四边形DEAF 为矩形, • AF=DE=2米,即卩 AB=(x+2)米, 在 Rt △ ABC 中,/ ABC=30 ,BD= =BF=「X 米, DC=4米, •••/ DCE=30,/ ACB=60 , •••/ DCB=90 ,在Rt △ BCD 中,根据勾股定理得: 2x 2=」T +16, 解得:x=4+4 .:, 则 AB= ( 6+4 .=)米.球(每个足球的价格相同, 每个篮球的价格相同),若购买3个足球和2个篮球共需310元,…B C =;os30' =詈=二=「;「、米,20.同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮购买2个足球和5个篮球共需500元. (1) 购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共 96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?【考点】C9: 一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)根据费用可得等量关系为: 购买3个足球和2个篮球共需310元;购买2个足 球和5个篮球共需500元,把相关数值代入可得一个足球、一个篮球的单价; (2)不等关系为:购买足球和篮球的总费用不超过 5720元,列式求得解集后得到相应整数解,从而求解.•••购买一个足球需要 50元,购买一个篮球需要80元.(2 )方法一:解:设购买a 个篮球,则购买(96 - a )个足球. 80a+50 (96- a )< 5720, 亦30.•/ a 为正整数,• a 最多可以购买30个篮球.•••这所学校最多可以购买 30个篮球. 方法二:解:设购买n 个足球,则购买(96 - n )个篮球. 50n+80 (96- n )< 5720, n 》65厶 •/ n 为整数,•- n 最少是66 96 - 66=30 个.【解答】(1)解:设购买一个足球需要 ■・」根据题意得- 解得沪50y=80,x 元,购买一个篮球需要y 元,•••这所学校最多可以购买30个篮球.21 •根据下列要求,解答相关问题:(1 )请补全以下求不等式- 2x2- 4x > 0的解集的过程①构造函数,画出图象:根据不等式特征构造二次函数y=-2x2- 4x;抛物线的对称轴x=- 1,开口向下,顶点(-1, 2)与x轴的交点是(0, 0), (- 2, 0),用三点法画出二次函数y= - 2x2- 4x的图象如图1所示;②数形结合,求得界点:当y=0时,求得方程-2x2- 4x=0的解为 _ 1=0, x2=- 2③借助图象,写出解集:由图象可得不等式-2x2- 4x > 0的解集为 -2 < x w 0 .(2)利用(1)中求不等式解集的方法步骤,求不等式x2- 2x+1v 4的解集①构造函数,画出图象;②数形结合,求得界点;③借助图象,写出解集.(3) 参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于的不等式ax2+bx+c > 0 (a > 0)的解集寸■・■ ■皆■ ■管5 ■■ 込一卜冷f I 4 ■§V 1 li 1:厶二為…;・・;L h I I II【分析】(1)直接解方程进而利用函数图象得出不等式- 2x2-4x>0的解集;(2)首先画出y=x2-2x+1的函数图象,再利用当y=4时,方程x2- 2x+仁4的解,得出不等式x2- 2x+1 V 4的解集;(3)利用ax +bx+c=0的解集,利用函数图象分析得出答案.【解答】解:(1)②方程-2x2- 4x=0的解为:x i=0, X2=- 2; ③不等式-2x2- 4x > 0的解集为:-2<§■耳■4)«h tl fl丿* • J te- n J ■ w "¥f【考点】HC二次函数与不等式(组) ;H2:二次函数的图象;H3:二次函数的性质.x w 0;(2)①构造函数,画出图象,如图2,:构造函数y=x2- 2x+1,抛物线的对称轴x=1, 且开口向上,顶点坐标(1, 0),关于对称轴x=1对称的一对点(0, 1), (2, 1), 用三点法画出图象如图2所示:②数形结合,求得界点:2当y=4 时,方程x - 2x+1=4 的解为:x i=- 1, X2=3;③借助图象,写出解集:由图2知,不等式x2- 2x+1 V 4的解集是:-1 v x v 3;(3)解:①当b2- 4ac> 0时,关于x的不等式ax2+bx+c > 0 (a> 0)的解集是x> 或x V =22a 2a当b2- 4ac=0时,关于x的不等式ax2+bx+c> 0 (a> 0)的解集是:X M-当b2- 4ac v 0时,关于x的不等式ax2+bx+c> 0 (a> 0)的解集是全体实数.22. (1)问题发现:(1)如图1,在正方形ABCD中,点E、F分别是边BG AB上的点,且CE=BF连接DE过点E 作EG! DE 使EG=DE 连接FG FC,请判断:FG 与CE 的数量关系是 FG=CE,位置关系是 FG// CE . (2) 拓展探究:如图2,若点E 、F 分别是CB BA 延长线上的点,其它条件不变, 请出判断判断予以证明; (3)类比延伸:如图3,若点E 、F 分别是BC AB 延长线上的点,其它条件不变,【考点】LO 四边形综合题.利用等量代换即可求出 FG=CE FG// CE(2) 构造辅助线后证明△ HGE^A CED 利用对应边相等求证四边形 GHBF 是矩形后,利用等 量代换即可求出 FG=CE FG// CE(3) 证明△ CBF ^A DCE 即可证明四边形 CEGF 是平行四边形,即可得出结论. 【解答】 解:(1) FG=CE FG// CE;理由如下: 过点G 作GHLCB 的延长线于点 H,如图1所示: 则 GH// BF,Z GHE=90 , •/ EG 丄 DE•••/ GEH 丄 DEC=90 , •••/ GEH 丄 HGE=90 , •••/ DEC=z HGE^ZGHE=ZDCE在^ HGE" CED 中, ZHGE^ZDEC EG 二 DE :• △ HGE^A CED( AAS ,••• GH=CE HE=CD(1)中结论是否仍然成立?(1)中结论是否仍然成立?【分析】(1)构造辅助线后证明△ HGE^A CED 利用对应边相等求证四边形GHBF 是矩形后,请直接写出你的判断.医1•/ CE=BF•GH=BF•/ GH// BF,•四边形GHBF是矩形,•GF=BH FG// CH•FG// CE•••四边形ABCD是正方形,•CD=BC•HE=BC•HE+EB=BC+EB•BH=EC•FG=EC故答案为:FG=CE FG// CE;(2) FG=CE FG// CE仍然成立;理由如下:过点G作GHLCB的延长线于点H ,如图2所示:•/ EG丄DE•/ GEH丄DEC=90 ,•••/ GEH丄HGE=90 ,•/ DEC=z HGE'ZGHE=ZDCE 在厶日6£与4 CED中,ZHGE=ZDEC ,EG-DE•△HGE^A CED( AAS ,•GH=CE HE=CD•/ CE=BF • GH=BF•/ GH// BF,•四边形GHBF是矩形,•GF=BH FG// CH• FG// CE•••四边形ABCD是正方形,••• CD=BC••• HE=BC•HE+EB=BC+EB•BH=EC•FG=EC(3) FG=CE FG// CE仍然成立.理由如下: •••四边形ABCD是正方形,•BC=CD / FBC=/ ECD=90 ,在厶CBF与厶DCE中,1 ZFBC-ZECDBC=DC•△CBF^A DCE( SAS ,•/ BCF=/ CDE CF=DE•/ EG=DE • CF=EG•••DE 丄EG•/ DEC/ CEG=90•/ CDE/ DEC=90•/ CDE/ CEG•/ BCF=/ CEG•CF/ EQ•四边形CEGF平行四边形,_ 223. 如图,二次函数y=ax+bx+c的图象与x轴的交点为A D (A在D的右侧),与y轴的交点为C,且A (4, 0), C ( 0,- 3),对称轴是直线x=1 .(1 )求二次函数的解析式;(2)若M是第四象限抛物线上一动点,且横坐标为m设四边形OCMA勺面积为s.请写出s与m之间的函数关系式,并求出当m为何值时,四边形OCMA勺面积最大;(3)设点B是x轴上的点,P是抛物线上的点,是否存在点P,使得以A, B、C, P四点为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.【分析】(1 )利用抛物线的对称性可得到点D的总表,然后将A、C D的坐标代入抛物线的解析式可求得a、b、c的值,从而可得到二次函数的解析式;(2 )设M( m, —x 2 x —3), |y M= 卅+― m+3 由S=S^ACM+S A OA M可得到S 与m 的函数关8 4 8 4系式,然后利用配方法可求得S的最大值;(3)当AB为平行四边形的边时,则AB// PC则点P的纵坐标为-3,将y=—3代入抛物线的解析式可求得点P的横坐标;当AB为对角线时,AB与CP互相平分,则点P的纵坐标为3, 把y=3代入抛物线的解析式可求得点P的横坐标.【解答】解:(1)v A (4, 0),对称轴是直线x=l ,二 D (—2, 0).又••• C (0,—3)1二-3 二“ 16a+4b+c-04a-2b+c~0解得., b=——,c= - 3,8 4•••二次函数解析式为:丫= X- — x - 3.8 4••• s 冷 x OC X 吨 X OA X |yM =* X 3 x 吨 x 4X (-討计+3 =-討伽+6=一 弓2+9,当m=2时,s 最大是9.(3)当AB 为平行四边形的边时,则 AB// PC,• PC// x 轴.•••点P 的纵坐标为-3.3 2 3将y= - 3代入得:-匚x - ,x - 3= - 3,解得:x=0或x=2 . ••点 P 的坐标为(2,- 3). 当AB 为对角线时. ••• ABCP 为平行四边形, • AB 与CP 互相平分, •••点P 的纵坐标为3.把 y=3 代入得:一 x 2-—x - 3=3,整理得:x 2- 2x - 16=0,解得:x=1+屯厂.j 或 x=1 o 4综上所述,存在点 P (2,- 3)或P (1+ —, 3)或P (1 - —3)使得以A , B C, P四点为顶点|y M=-易 m 4m+3(m — 2)-S=S\ ACI\+S\的四边形为平行四边形.。

2019九年级中考数学模拟试卷含参考答案(12)

2019九年级中考数学模拟试卷含参考答案(12)

2019九年级中考数学模拟试卷含参考答案(12)一.选择题(共12小题,满分36分,每小题3分)1.﹣3的倒数是()A.3 B.C.﹣D.﹣32.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.3.下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2?a3=2a54.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10106.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°7.如图,钟面上的时间是8:30,再经过t分钟,时针、分针第一次重合,则t为()A.B.C.D.8.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80 人数 2 3 2 3 4 1 则这些运动员成绩的中位数、众数分别是()A.4.65、4.70 B.4.65、4.75 C.4.70、4.75 D.4.70、4.709.二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是()A.a>0 B.b>0 C.c<0 D.abc>010.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,11.如图,在?ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB =5,则AE的长为()A.4 B.6 C.8 D.1012.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4等于()A.4 B.5 C.6 D.14二.填空题(共4小题,满分12分,每小题3分)13.因式分解:a3﹣ab2=.14.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现2个男婴、1个女婴的概率是.15.用棋子按下列方式摆图形,依照此规律,第n个图形有枚棋子.16.如图,已知点O是△ABC的内切圆的圆心,若∠BOC=124°,则∠A=.三.解答题(共7小题,满分52分)17.(6分)计算:﹣24﹣+|1﹣4sin60°|+(2015π)0.18.(6分)解不等式组:,并写出该不等式组的整数解.19.(7分)佳佳调査了七年级400名学生到校的方式,根据调查结果绘制出统计图的一部分如图:(1)补全条形统计图;(2)求扇形统计图中表示“步行”的扇形圆心角的度数;(3)估计在3000名学生中乘公交的学生人数.20.(8分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=100千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地要走多少千米?(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)21.(8分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.22.(8分)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),BC=6,求∠ABN的度数;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.23.(9分)如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点.(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;(2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.参考答案一.选择题(共12小题,满分36分,每小题3分)1.【分析】利用倒数的定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【分析】根据合并同类项法则、积的乘方、完全平方公式、单项式乘单项式判断即可.【解答】解:A、2a3与a2不是同类项不能合并,故A选项错误;B、(3a)2=9a2,故B选项错误;C、(a+b)2=a2+2ab+b2,故C选项错误;D、2a2?a3=2a5,故D选项正确,故选:D.【点评】本题考查了合并同类项法则、积的乘方、完全平方公式、单项式乘单项式,熟练掌握法则是解题的关键.4.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n 为整数,据此判断即可.【解答】解:44亿=4.4×109.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.6.【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【解答】解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.7.【分析】解决这个问题就要弄清楚时针与分针转动速度的关系:每一小时,分针转动360°,而时针转动30°,即分针每分钟转动6°,时针每分钟转动0.5°.【解答】解:设从8:30点开始,经过x分钟,时针和分针第一次重合,由题意得:6x﹣0.5x=755.5x=75x=,答:至少再经过分钟时针和分针第一次重合.故选:B.【点评】此题考查一元一次方程的应用,钟表上的分钟与时针的转动问题本质上与行程问题中的两人追及问题非常相似,行程问题中的距离相当于这里的角度,行程问题中的速度相当于这里时(分)针的转动速度.8.【分析】根据中位数、众数的定义即可解决问题.【解答】解:这些运动员成绩的中位数、众数分别是 4.70,4.75.故选:C.【点评】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.9.【分析】由抛物线的开口方向向上可以得到a>0,由与y轴的交点为在y轴的负半轴上可以推出c<0,而对称轴为x=>0可以推出b<0,由此可以确定abc的符号.【解答】解:∵抛物线的开口方向向上,∴a>0,∵与y轴的交点为在y轴的负半轴上,∵对称轴为x=>0,∴a、b异号,即b<0,∴abc>0.故选:B.【点评】考查二次函数y=ax2+bx+c系数符号的确定.10.【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.【解答】解:连接OB,∵OB=4,∴BM=2,∴OM=2,==π,故选:D.【点评】本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.11.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选:C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.12.【分析】如图,易证△CDE≌△ABC,得AB2+DE2=DE2+CD2=CE2,同理FG2+LK2=HL2,S1+S2+S3+S4=1+3=4.【解答】解:∵在△CDE和△ABC中,,∴△CDE≌△ABC(AAS),∴AB=CD,BC=DE,∴AB2+DE2=DE2+CD2=CE2=3,同理可证FG2+LK2=HL2=1,∴S1+S2+S3+S4=CE2+HL2=1+3=4.故选:A.【点评】本题考查了全等三角形的证明,考查了勾股定理的灵活运用,本题中证明AB2+DE2=DE2+CD2=CE2是解题的关键.二.填空题(共4小题,满分12分,每小题3分)13.【分析】观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).【点评】本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式.本题考点:因式分解(提取公因式法、应用公式法).14.【分析】列举出所有情况,看出现2个男婴、1个女婴的情况数占总情况数的多少即可.【解答】解:可能出现的情况如下表婴儿1 婴儿2 婴儿3男男男男男女男女男男女女女男男女男女女女男女女女一共有8种情况,出现2个男婴、1个女婴的情况有3种,故答案为.【点评】用到的知识点为:概率=所求情况数与总情况数之比.15.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:设第n个图形的棋子数为Sn.第1个图形,S1=1;第2个图形,S2=1+4;第3个图形,S3=1+4+7;…第n个图形,S n=1+4+7+…+(3n﹣2)=.故答案为:;【点评】主要考查了图形的变化类问题,同时还考查了学生通过特例分析从而归纳总结出一般结论的能力.16.【分析】根据三角形内角和定理求出∠OBC+∠OCB,根据内心的性质得到∠ABC=2∠OBC,∠ACB=2∠OCB,根据三角形内角和定理计算即可.【解答】解:∵∠BOC=124°,∴∠OBC+∠OCB=180°﹣124°=56°,∵点O是△ABC的内切圆的圆心,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=112°,∴∠A=180°﹣112°=68°,故答案为:68°.【点评】本题考查的是三角形的内切圆与内心,三角形内角和定理,掌握角形的内心是三角形三个内角角平分线的交点是解题的关键.三.解答题(共7小题,满分52分)17.【分析】根据实数的运算法则以及特殊角的锐角三角函数值即可求出答案.【解答】解:原式=﹣16﹣2+|1﹣2|+1=﹣16﹣2+2﹣1+1=﹣16.【点评】本题考查实数的运算,解题的关键是熟练运用实数的运算法则,本题属于基础题型.18.【分析】首先解每个不等式,然后确定两个不等式的解集的公共部分即可得到不等式组的解集及整数解.【解答】解:,解①得:5x+6>2x﹣6,5x﹣2x>﹣6﹣6,3x>﹣12,x>﹣4,解②得:3(1﹣5x)≥2(3x+1)﹣6,3﹣15x≥6x+2﹣6,﹣15x﹣6x≥2﹣6﹣3,﹣21x≥﹣7,x≤,∴不等式组的解集为:﹣4<x≤,∴该不等式组的整数解为﹣3,﹣2,﹣1,0.【点评】此题考查了一元一次不等式组的解法和确定其整数解,属常规题,其步骤一般为:去分母,去括号,移项合并同类项,将x的系数化为1.19.【分析】(1)乘公交的学生数=400﹣步行人数﹣骑自行车人数﹣乘私车人数;(2)先计算步行所占调查人数的比,再计算步行扇形圆心角的度数;(3)先计算乘公交的学生占调查学生的百分比,再估计3000人中乘公交的人数.【解答】解:(1)乘公交的人数为:400﹣80﹣20﹣60=240(人)补全的条形图如右图所示(2)“步行”的扇形圆心角的度数为:360°×=72°(3)因为调查的七年级400名学生中,乘公交的学生有240人,所以乘公交的学生占调查学生的百分比为:×100%=60%.所以3000名学生中乘公交的约为:3000×60%=1800(人)答:3000名学生中乘公交的学生有1800人.【点评】本题考查了条形图和扇形图及用样本估计总体.题目难度不大,看懂条形图和扇形图是解决本题的关键.20.【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出答案.【解答】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=100千米,∴CD=BC?sin30°=100×=50(千米),AC==50(千米),AC+BC=(100+50)千米,答:开通隧道前,汽车从A地到B地要走(100+50)千米;(2)∵cos30°=,BC=100(千米),∴BD=BC?cos30°=100×=50(千米),CD=BC=50(千米),∵tan45°=,∴AD==50(千米),∴AB=AD+BD=(50+50)千米,答:开通隧道后,汽车从A地到B地可以少走(50+50)千米.【点评】本题考查了解直角三角形的应用,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.21.【分析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【解答】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点评】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.22.【分析】(1)得出AN、AB,利用直角三角形的性质解答即可;(2)连接MC,NC.只要证明∠MCD=90°即可;【解答】解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∴AM=MC=2,∵AN是⊙M的直径,∴∠ACN=∠BCN=90°,∴△ACN∽△BNC,∵BC=6,∴AC=2,∴AB=2AN=8,∴∠ABN=30°,(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.【点评】本题考查圆的切线的判定、直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【分析】(1)根据待定系数法得出a,k,b的值,进而得出不等式的解集即可;(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C,连接PC.根据三角形的面积公式解答即可;(3)根据平行四边形的性质和坐标特点解答即可.【解答】解:(1)把A(﹣1,﹣1),代入y=ax2中,可得:a=﹣1,把A(﹣1,﹣1),B(2,﹣4)代入y=kx+b中,可得:,解得:,所以a=﹣1,k=﹣1,b=﹣2,关于x的不等式ax2<kx﹣2的解集是x<﹣1或x>2,(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C.∵A(﹣1,﹣1),B(2,﹣4),∴C(﹣1,﹣4),AC=BC=3,设点P的横坐标为m,则点P的纵坐标为﹣m2.过点P作PD⊥AC于D,作PE⊥BC于E.则D(﹣1,﹣m2),E(m,﹣4),∴PD=m+1,PE=﹣m2+4.∴S△APB=S△APC+S△BPC﹣S△ABC===.∵<0,,﹣1<m<2,∴当时,S△APB的值最大.∴当时,,S△APB=,即△PAB面积的最大值为,此时点P的坐标为(,)(3)存在三组符合条件的点,当以P,Q,A,B为顶点的四边形是平行四边形时,∵AP=BQ,AQ=BP,A(﹣1,﹣1),B(2,﹣4),可得坐标如下:①P′的横坐标为﹣3,代入二次函数表达式,解得:P'(﹣3,﹣9),Q'(0,﹣12);②P″的横坐标为3,代入二次函数表达式,解得:P″(3,﹣9),Q″(0,﹣6);③P的横坐标为1,代入二次函数表达式,解得:P(1,﹣1),Q(0,﹣4).故:P的坐标为(﹣3,﹣9)或(3,﹣9)或(1,﹣1),Q的坐标为:Q(0,﹣12)或(0,﹣6)或(0,﹣4).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

中招考试数学试卷模拟及答案

中招考试数学试卷模拟及答案

2019-2019年中招考试数学试卷模拟及答案(新人教版)(总分120分 考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来、每小题选对得3分,选错、不选或选出的答案超过一个均记零分、 1、的相反数是 ( )A。

ﻩﻩﻩB、 — C 、 3ﻩﻩD 、 —32。

下列运算正确的是( )A、ﻩﻩﻩ B 。

C 、ﻩ D。

3、 下列图形中,是中心对称图形的是 ( )A。

B 、 C 、 D 、 4、下图能说明∠1>∠2的是( )5、依照下图所示程序计算函数值A、 ﻩﻩ B 、 C 、 ﻩﻩ ﻩ D 、6、将点A (2,1)向左.. A 。

(2,3) ﻩﻩ C 。

(4,1) ﻩﻩ7、 c m,A、 4cm B 、 6cmC 、 8cmD 。

2cm8、若,,则的值为( ) A 。

ﻩ ﻩB 、 C 、 D 、9、 方程有两个实数根,则k的取值范围是( )、A、 k ≥1 ﻩﻩ ﻩ B 、 k ≤1 C 、 k 〉1 ﻩﻩﻩ D 。

k 〈110、 小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)、记甲立方体朝上一面上的数字为、乙立方体朝上一面朝上的数字为,如此就确定点P 的一个坐标(),那么点P 落在双曲线上的概率为( )OB A(第7题图) 5cm 12 ) A.A 、 ﻩﻩﻩ ﻩB 、C 、 ﻩ ﻩﻩﻩﻩD 、 11、 如图,在直角坐标系中,矩形OABC 的顶点O在坐标原点,边OA 在x 轴上,OC 在y 轴上,假如矩形OA ′B′C ′与矩形OA BC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的,那么点B′的坐标是( ) A、(—2,3) ﻩ ﻩﻩ B 、(2,—3) C 、(3,-2)或(-2,3) ﻩ D 、(-2,3)或(2,-3)12、 如图,一次函数的图象与轴,轴交于A ,B 两点,,分别过C,D 两点作轴,轴的垂线,垂足为E,F ,连接CF ,DE。

最新2019年福州市中考数学模拟试题与答案

最新2019年福州市中考数学模拟试题与答案

2019年福州市中考数学模拟试题与答案(试卷满分150分,考试用时120分钟)第一部分 选择题(共40分)一、选择题(本大题10小题,每小题4分,共40分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-12的倒数等于A .-2 B.12 C .-12D .22. 某桑蚕丝的直径约为0.000016米,将0.000016用科学计数法表示是A .41.610-⨯B .51.610-⨯C .71.610-⨯D .41610-⨯3.二次函数7)2(2+-=x y 的顶点坐标是A .(﹣2,7)B .(2,7)C .(﹣2,﹣7)D .(2,﹣7)4.已知一组数据:3,4,6,7,8,8,下列说法正确的是 A .众数是2 B .众数是8C .中位数是6D .中位数是75. 关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0, 则a 的值为 A .1 B .-1 C .1或-1 D .126.在方程组中,若未知数x ,y 满足x+y >0,则m 的取值范围在数轴上的表示应是如图所示的 A .B .C .D .7.已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是 A .平均数 B .方差 C .中位数 D .众数 8. 如图,是反比例函数y=和y=(k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A ,B 两点,若S △AOB =2,则 k 2-k 1的值是A. 1B. 2C. 4D. 89. 下面的统计图反映了我市2011-2016年气温变化情况,下列说法不合理的是A .2011-2014年最高温度呈上升趋势;B .2014年出现了这6年的最高温度;C .2011-2015年的温差成下降趋势;D .2016年的温差最大.10. 下列关于函数2610y x x =-+的四个命题: ①当0x =时,y 有最小值10;②n 为任意实数,3x n =+时的函数值大于3x n =-时的函数值; ③若3n >,且n 是整数,当1n x n ≤≤+时,y 的整数值有(24)n -个; ④若函数图象过点0(,)a y 和0(,1)b y +,其中0a >,0b >,则a b <. 其中真命题的序号是 A .①B .②C .③D .④第二部分(非选择题 共110分)二、填空题(本大题6小题,每小4分,共24分) 11.因式分解:2x 2-18=______.12. 正n 边形的一个外角为45°,则n = .13.为迎接五月份中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天训练时的个数,如下表:年份温度/℃5040302010-20-10o201620152014201320122011-15.2-9.2-11.2-14.1-13.7-11.637.838.941.138.23835.9北京市2011-2016年气温变化情况最高气温最低气温其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是________.14.观察如图给出的四个点阵,请按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数为个.15.在同一时刻物体的高度与它的影长成比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为 3米,某一高楼的影长为20米,那么高楼的实际高度是米.16.如图,在ABC△中,DE AB∥,DE分别与AC,BC交于D,E两点.若49DECABCSS=△△,3AC=,则DC=__________.EDCBA三、解答题(本大题共8个小题,满分86分)17.(本小题满分9分)计算: +(﹣)-1﹣2sin60°﹣(π﹣2018)0+|1﹣|.18.(本小题满分9分)先化简,再求值:1112122-÷-++-xxxxx,其中5=x.19.(本小题满分10分)如图,△ABC是等腰三角形,AB=BC,点D为BC的中点.(1)用圆规和没有刻度的直尺作图,并保留作图痕迹:①过点B作AC的平行线BP;②过点D作BP的垂线,分别交AC,BP,BQ于点E,F,G;(2)在(1)所作的图中,连结BE,CF.求证:四边形BFCE是平行四边形.20. (本小题满分10分)已知关于x 的方程(k +1)x 2-2(k -1)x +k =0有两个实数根x 1,x 2. (1)求k 的取值范围; (2)若12122x x x x +=+,求k 的值.21.(本小题满分10分)如图,在ABC △中,8cm AB =,点D 是AC 边的中点,点P 是边AB 上的一个动点,过点P 作射线BC 的垂线,垂足为点E ,连接DE .设cm PA x =,cm ED y =.EDC小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:/cm x 0 1 2 3 4 5 6 7 8 /cm y3.02.41.91.82.13.44.25.0(说明:补全表格时相关数据保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:点E 是BC 边的中点时,PA 的长度约为 cm .22.(本小题满分10分)停车难已成为合肥城市病之一,主要表现在居住停车位不足,停车资源结构性失衡,中心城区供需差距大等等.如图是张老师的车与墙平行停放的平面示意图,汽车靠墙一侧OB 与墙MN 平行且距离为0.8米,已知小汽车车门宽AO 为 1.2 米,当车门打开角度∠AOB 为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)23.(本小题满分14分)如图,已知正方形ABCD 的边长为4,点P 是AB 边上的一个动点,连接CP ,过点P 作PC 的垂线交AD 于点E ,以PE 为边作正方形PEFG ,顶点G 在线段PC 上. 对角线EG 、FP 相交于点O . (1)若AP =3,求AE 的长;(2)连接AC ,判断点O 是否在AC 上,并说明理由;(3)在点P 从点A 到点B 的运动过程中,正方形PEFG 也随之运动,求DE 的最小值.24.(本小题满分14分)如图,直线3y x =-+与x 轴、y 轴分别交于点B 、C ,抛物线2(1)y a x k =-+经过点B 、C ,并与x 轴交于另一点A .(1)求此抛物线及直线AC 的函数表达式;(2)垂直于y 轴的直线l 与抛物线交于点P (1x ,1y ),Q (2x ,2y ),与直线BC 交于点N (3x ,3y ),若3x <1x <2x ,结合函数的图象,求123x x x ++的取值范围;(3)经过点D (0,1)的直线m 与射线AC 、射线OB 分别交于点M 、N .当直线m 绕点D 旋转时,102AN+ 是否为定值,若是,求出这个值,若不是,说明理由.第24题图备用图参考答案第一部分 选择题(共30分)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.A2.B3.B4.B5.B6.A7.B8.C9.C 10.C第二部分(非选择题 共120分)二、填空题(本大题6小题,每小题3分,共18分)11. 2(x+3)(x-3) 12. 8 13. 78 14.(4n ﹣3) 15. 12 16. 2三、解答题(本大题 共9个小题,满分102分) 17.解:原式=2﹣2﹣2×﹣1+﹣1…………6分=﹣2.…………9分18.解:原式xx x x x 1)1)(1()1(12-⋅-++-=---------------------------------------3分xx 11+-=---------------------------------------------------5分 x1-=,----------------------------------------------------6分当5=x 时,原式55511-=-=-=x .--------------------------9分 19.(1)如图1:图1 图2(2)证明:如图2:∵BP∥AC,∴∠ACB =∠PBC,在△ECD 和△FBD 中,⎩⎪⎨⎪⎧∠ACB =∠PBC,CD =BD ,∠CDE =∠BDF,∴△ECD ≌△FBD , ∴CE =BF ,∴四边形ECFB 是平行四边形.20.解:(1)∵(k +1)x 2-2(k -1)x +k =0有两个实数根∴Δ≥0且k +1≠0 ………………………………1分 即[-2(k -1)]2-4k (k +1)≥0 k ≤31………………………………2分 又k +1≠0,∴k ≠-1 …………………………3分 ∴k ≤31且k ≠-1…………………………………4分 (2)x 1+x 2=1)1(2+-k k ,x 1·x 2=1+k k……………………6分 ∵x 1+x 2=x 1·x 2+2 即1)1(2+-k k =1+k k +2 解得,k =-4 ………………………………8分 21.解:(1)2.7 ………………………… 4分(2)……………………… 8分(3)6.8 ……………………… 12分22. 过点A 作OB 的垂线AE ,垂足是 E ,Rt △AEO ,AO =1.2,∠AOE =40° ∵sin40°=OAAE, ∴AE = OA sin40°≈0.64×1.2=0.768<0.8 (8分) ∵汽车靠墙一侧OB 与墙MN 平行且距离为0.8米,∴车门不会碰到墙. (10分)23.(14分)(1)∵四边形ABCD 、四边形PEFG 是正方形,∴∠A=∠B=∠EPG=90°,PF ⊥EG ,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠BPC ,∴△APE ∽△BCP(3分),∴,即,解得:AE=;(3分)(2)点O 在AC 上(1分).理由:过点O 分别作AD 、AB 的垂线,垂足分别为M 、N,证得OM=ON ,(1分),证得点O 在∠BAD 的平分线上(1分),证得AC 是∠BAD 的平分线,所以,点O 在AC 上。

2019年中考数学模拟试卷含答案和解析

2019年中考数学模拟试卷含答案和解析

2019年中考数学模拟试卷(五)一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.﹣2的倒数是()A.﹣B.C.2 D.﹣2[答案]A[解析]∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.2.下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a6[答案]C[解析]A.a2+a2=2a2,故选项A不合题意;B.(a+b)2=a2+2ab+b2,故选项B不合题意;C.(a3)3=a9,故选项C符合题意;D.a3•a2=a5,故选项D不合题意.故选:C.3.下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10[答案]D[解析]∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.4.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.1200[答案]C[解析]抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为1000次,故选:C.5.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,38[答案]B[解析]将数据重新排列为37,37,38,39,40,40,40,所以这组数据的众数为40,中位数为39,故选:B.6.下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.[答案]D[解析]不是轴对称图形,故选:D.7.若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y2[答案]A[解析]∵函数y=,∴该函数图象在第一、三象限、在每个象限内y随x的增大而减小,∵A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,∴y1<y2,故选:A.8.如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108[答案]D[解析]2.5×106=0.25×107,(10×107)÷(0.25×107)=40,从数轴看比较接近;故选:D.二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.8的立方根是2.[解析]8的立方根为2,故答案为:2.10.使有意义的x的取值范围是x≥﹣1.[解析]∵有意义,∴x+1≥0,∴x的取值范围是:x≥﹣1.故答案为:x≥﹣1.11.方程x2﹣4=0的解是±2.[解析]x2﹣4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.12.若a=b+2,则代数式a2﹣2ab+b2的值为4.[解析]∵a=b+2,∴a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=22=4.故答案为:413.如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为16.[解析]∵M、N分别为BC、OC的中点,∴BO=2MN=8.∵四边形ABCD是矩形,∴AC=BD=2BO=16.故答案为16.14.如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=140°.[解析]多边形的每个外角相等,且其和为360°,据此可得多边形的边数为:,∴∠OAD=.故答案为:140°15.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为6cm.[解析]圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.16.如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为262m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)[解析]作AE⊥BC于E,则四边形ADCE为矩形,∴EC=AD=62,在Rt△AEC中,tan∠EAC=,则AE=≈=200,在Rt△AEB中,∠BAE=45°,∴BE=AE=200,∴BC=200+62=262(m),则该建筑的高度BC为262m,故答案为:262.17.已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为y=(x﹣4)2.[解析]设原来的抛物线解析式为:y=ax2(a≠0).把P(2,2)代入,得2=4a,解得a=.故原来的抛物线解析式是:y=x2.设平移后的抛物线解析式为:y=(x﹣b)2.把P(2,2)代入,得2=(2﹣b)2.解得b=0(舍去)或b=4.所以平移后抛物线的解析式是:y=(x﹣4)2.故答案是:y=(x﹣4)2.18.函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC为等腰三角形,则满足条件的点C共有3个.[解析]以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为3;三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.解:(1)原式=1﹣3+9﹣5=2;(2)原式=÷=(x﹣4)•=2x.20.(10分)(1)解方程:+1=(2)解不等式组:解:(1)+1=,两边同时乘以x﹣3,得x﹣2+x﹣3=﹣2,∴x=;经检验x=是原方程的根;(2)由可得,∴不等式的解为﹣2<x≤2;21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:乙1 2 3 4积甲1 123 42 2 4 6 83 3 6 9 12(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.解:(1)补全表格如下:1 2 3 41 123 42 2 4 6 83 3 6 9 12 (2)由表知,共有12种等可能结果,其中积为9的有1种,积为偶数的有8种结果,所以积为9的概率为;积为偶数的概率为=,故答案为:,.(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的有5和7这2种,∴此事件的概率为=,故答案为:.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.解:(1)全年的总电费为:240÷10%=2400元9﹣10月份所占比:280÷2400=,∴扇形统计图中“9﹣10月”对应扇形的圆心角度数为:360°×=42°答:扇形统计图中“9﹣10月”对应扇形的圆心角度数是42°(2)7﹣8月份的电费为:2400﹣300﹣240﹣350﹣280﹣330=900元,补全的统计图如图:23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD﹣∠ECF=∠ECG﹣∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≌△FGC(ASA).24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC 的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.(1)证明:连接OC,∵D为的中点,∴=,∴∠BCD=BOC,∵∠BAC=BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?解:设剪去正方形的边长为x cm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为x cm,依题意,得:2×[(30﹣2x)+(20﹣2x)]x=200,整理,得:2x2﹣25x+50=0,解得:x1=,x2=10.当x=10时,20﹣2x=0,不合题意,舍去.答:当剪去正方形的边长为cm时,所得长方体盒子的侧面积为200cm2.26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.图案的长度10cm 20cm 30cm 40cm 50cm 60cm 所有不同图案的个数 1 2 3 4 5 6 解:如图:根据作图可知40cm时,所有图案个数4个;50cm时,所有图案个数5个;60cm时,所有图案个数6个;故答案为4,5,6;27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发x min时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?解:(1)设甲、乙两人的速度分别为a m/min,b m/min,则:y1=y2=bx由图②知:x=3.75或7.5时,y1=y2,∴,解得:答:甲的速度为240m/min,乙的速度为80m/min.(2)设甲、乙之间距离为d,则d2=(1200﹣240x)2+(80x)2=64000(x﹣)2+144000,∴当x=时,d2的最小值为144000,即d的最小值为120;答:当x=时,甲、乙两人之间的距离最短.28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.P A的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.解:(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠P AM=∠P AH,P A=P A,∴△P AM≌△P AH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN≌△BPH,∴PH=PN,∠BPN=∠BPH,∴PM=PN,∵∠PMO=∠MON=∠PNO=90°,∴四边形PMON是矩形,∴∠MPN=90°,∴∠APB=∠APH+∠BPH=(∠MPH+∠NPH)=45°,∵PM=PN,∴可以假设P(m,m),∵P(m,m)在y=上,∴m2=9,∵m>0,∴m=3,∴P(3,3).(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∵AB2=OA2+OB2,∴a2+b2=(6﹣a﹣b)2,可得ab=18﹣6a﹣6b,∴9﹣3a﹣3b=ab,∵PM∥OC,∴=,∴=,∴OC=,同法可得OD=,∴S△COD=•OC•DO====6.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∴OA+OB+AB=6,∴a+b+=6,∴2+≤6,∴(2+)≤6,∴≤3(2﹣),∴ab≤54﹣36,∴S△AOB=ab≤27﹣18,∴△AOB的面积的最大值为27﹣18.。

2019中学数学模拟试卷(附答案)

2019中学数学模拟试卷(附答案)

2019年中学数学模拟考试题目(全卷共4页,考试用时100 分钟.满分为 120 分)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.计算3)1(⨯-的结果是( ) A.3 B.2-C. 3-D.13-2.据中国电子商务研究中心监测数据显示,2015年第一季度中国轻纺城市场群的商品成交额达27 800 000 000元,将27 800 000 000用科学计数法表示为( )A. 2.78×1010B. 2.78×1011C. 27.8×1010D. 0.278×10113.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )4. 下列计算正确的是( )A.632a a a =∙ B.2224)2(b a ab =- C.532)(a a = D.ab b a b a 332223=÷5. 如图,AB∥CD,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50° 6. 下列命题中的真命题是( )A .两边和一角分别相等的两个三角形全等B .相似三角形的面积比等于相似比C .有一个角是直角的四边形是矩形D .圆内接四边形的对角互补 7. 下列各统计量中,表示一组数据波动程度的量是( )A .平均数B .众数C .方差D .频率8.化简xx x -+-1112的结果是( ) A. 1+x B.11+x C. 1-x D. 1-x x 9. 如图,点A 、B 、C 均在⊙O 是上,若∠BOC=100°,则∠A 的度数为( ).A 、200°B 、50°C 、100°D 、30°10. 如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,当蚂蚁运动的时间为t 时,蚂蚁与O 点的距离为s ,则s 关于t 的函数图象大致是( )stOOts s tOOtsA B C D二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.D11. 因式分解:282x -= . 12. 方程组3126x y x y -=⎧⎨+=⎩的解是_____________.13.112(1)4sin 60()2π--+--︒+=_____________.14. 如图,点D 、E 、F 分别是△ABC 各边的中点,连接DE 、EF 、DF ,若△ABC 的周长为10,则△DEF 的周长为 .15. 如图,分别以Rt △ABC 的直角边AC 及斜边AB 为边向外作等边△ACD 、等边△ABE ,EF⊥AB ,垂足为F ,连接DF ,当ACAB=___________时,四边形ADFE 是平行四边形.第14题 第15题 16. 如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE⊥OA 交AB 于点E ,以点O为圆心,OC 的长为半径作CD 交OB 于点D ,若OA=2,则阴影部分的面积为 . 三、解答题(一)(本大题3小题,每小题6分,共18分)17.求不等式组32122x x x x ì+ïïíï-<-ïî≤,的整数解18. 解方程:31112=-+-xx x .19.如图,在正方形ABCD 中,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA=PE ,PE 交CD 于F ,求证:PC=PE .20. 九一班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有15人,请解答下列问题:(1)该班的学生共有 名;(2)若该班参加“吉他社”与“街舞社”的人数相同,请你计算,“吉他社”对应扇形的圆心角的度数;(3)九一班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率.21. 小强从自己家的阳台上,看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42m ,这栋楼有多高?22. 如图,在△ABC 中,A B ??.(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若∠B=50°,求∠AEC 的度数.C(第21题图) 第22题图BCA 23. 某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A 型服装计酬16元,加工1件B 型服装计酬12元.在工作中发现一名熟练工加工1件A 型服装和2件B 型服装需4小时,加工3件A 型服装和1件B 型服装需7小时.(工人月工资=底薪+计件工资) (1)一名熟练工加工1件A 型服装和1件B 型服装各需要多少小时? (2)一段时间后,公司规定:“每名工人每月必须加工A ,B 两种型号的服装,且加工A 型服装数量不少于B 型服装的一半”.设一名熟练工人每月加工A 型服装a 件,工资总额为W 元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?24. 如图,点O 为Rt△ABC 斜边AB 上的一点,∠C = 90°,∠BAC = 60°,以OA 为半径的⊙O 与BC 切于点D ,与AC 交于点E ,连接AD.(1)求证:AD 平分∠BAC;(2)求证:△ABC ∽ △DAC(3)若,OA = 2,求阴影部分的面积(结果保留π).25.如图,已知二次函数 的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .(1)求二次函数的表达式; (2)判断△ABC 的形状,并说明理由;(3)若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.c x ax y ++=232c x ax y ++=2322019年中学数学模拟考试答题卡二、填空题(本题有6小题,每小题4分,共24分) 三、解答题一(本题3小题,每小题6分,共18分.) 17、解:18、 解:19、解:2019年中学数学模拟考试参考答案一、(本大题10小题,每小题3分,共30分)二、填空题(本大题6小题,每小题4分,共24分) 11.2(2)(2)x x +- 12.⎩⎨⎧==14y x 13.1 14.5 15 16.2312+π 三.解答题(一)(本大题3小题,每小题6分,共18分)17.解:32122x x x x ì+ïïíï-<-ïî≤,②①解①式得:1x ≥- ……………………(2分) 解②式得:1x < ……………………(4分)∴不等式组的解集为11x -≤< ……………………(5分)∴不等式组的整数解为:1-和0 ……………………(6分)18.解:去分母得:213(1)x x -=- …………………………(2分) 2x -=- …………………………………………………(3分) 2=x ……………………………………………………(4分)经检验2=x 是原方程的根,………(5分) ∴2=x 是原分式方程的解 ………(6分)19.证明:∵四边形ABCD 是在正方形∴AB=BC ,∠ABP=∠CBP=45° ……………………(2分) 在△ABP 和△CBP 中∴△ABP ≌△CBP (SAS ) ……………………(4分) ∴PA=PC ……………………(5分) ∵PA=PE∴PC=PE ……………………(6分)四.解答题(二)(本大题3小题,每小题7分,共21分) 20.解:(1)∵参加“读书社”的学生有15人,且在扇形统计图中,所占比例为:25%,∴该班的学生共有:15÷25%=60(人); 故答案为:60;……………………(2分)(2)参加“吉他社”的学生在全班学生中所占比例为:=10%,所以,“吉他社”对应扇形的圆心角的度数为:360°×10%=36°;………(4分) (3)画树状图如下:,……………………(6分)由树状图可知,总共有6种结果,每种结果出现的可能性相同, 其中恰好选中甲和乙的情况有2种,故P (选中甲和乙)==.……………………(7分)21.解:如图,α = 30°,β = 60°,AD = 42. ……………(1分)∵tan BD AD α=,tan CDADβ=, ∴BD = AD ·tan α = 42×tan30°= 42……………(3分)CD =AD tan β=42×tan60°=……………………(5分) ∴BC =BD +CD =(6答:这栋楼高为……………(7分) 22. (1) 如图 ,…………………(3分)(2) 解:如图 ,…………………(4分)是的垂直平分线,,…………………(5分),…………………(6分)是 的外角,.…………………(7分)C11五.解答题(三)(本大题3小题,每小题9分,共27分)23.解:(1)设熟练工加工1件A 型服装需要x 小时,加工1件B 型服装需要y 小时,由题意得:⎩⎨⎧=+=+7342y x y x………………(2分)解得:⎩⎨⎧==12y x………………(3分)答:熟练工加工1件A 型服装需要2小时,加工1件B 型服装需要1小时.…(4分) (2)当一名熟练工一个月加工A 型服装a 件时,则还可以加工B 型服装)2825(a -⨯件.800)2825(1216+-⨯+=∴a a W32008+-=∴a W………………(6分) 又∵a ≥)2200(21a -,解得:a ≥50………………(7分)08<- ,W ∴随着a 的增大则减小 ∴当50=a 时,W 有最大值2800. ………………(8分)30002800<∴该服装公司执行规定后违背了广告承诺. ………………(9分)24.(1)证明:连接OD.∵BC 是⊙O 的切线,D 为切点,∴OD⊥BC. 又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD. 又∵OD=OA, ∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD 平分∠BA C. ………………(3分) (2)证明:∵在Rt△ABC 中:∠C = 90°,∠BAC = 60°∴∠B = 30° ∵AD 平分∠BA C∴∠CAD =1122BAC ∠=⨯60°=30°∴∠B=∠CAD∵∠C=∠C ∴△ABC ∽ △DAC ………………(6分) (3)解:方法一:连接OE ,OD,ED.∵∠BAC=60°,OE=OA ,∴△OAE 为等边三角形,∴∠AOE=60°, ∴∠ADE=30°.BCABC A12又∵1302OAD BAC ∠=∠=,∴∠ADE=∠OAD , ∴ED∥AO, ∴S △AED =S △OED ,∴阴影部分的面积 = S 扇形ODE = 60423603ππ⨯⨯=.………………(9分)方法二:同方法一,得ED∥AO,∴四边形AODE 为平行四边形,∴1S S 22AED OAD ==⨯V V又S 扇形ODE -S △OED=60423603ππ⨯⨯-∴阴影部分的面积 = (S 扇形ODE -S △OED ) + S △AED=2233ππ=.…(9分)25.解:(1)已知二次函数232y ax x c =++的图象经过点A (0,4)与点C (8,0),∴把点A (0,4)与点C (8,0)分别代入二次函数232y ax x c =++得:406412ca c =⎧⎨=++⎩ 解得:414c a =⎧⎪⎨=-⎪⎩抛物线表达式为:423412++-=x x y ……………………(3分)(2)△ABC 是直角三角形,理由:令y=0,则0423412=++-x x 解得,x 1=8,x 2= -2∴点B 的坐标为(-2,0) 由题意可得:在Rt △ABO 中:AB 2=BO 2+AO 2=22+42=20 在Rt △AOC 中:AC 2=AO 2+CO 2=42+82=80 又∵BC=OB+OC=2+8=10∴在△ABC 中AB 2+ AC 2=20+80=102=BC 2∴△ABC 是直角三角形 ……………………(6分) (3)设点N 的坐标为(n ,0),则BN=n+2,过M 点作MD ⊥x 轴于点D ,∴MN ∥AC ∴△BMN ∽△BAC ∴ ∵OA=4,BC=10,BN =n+2BCBNOAMD =()252+n13∴MD =∵S △AMN = S △ABN - S △BMN= =∴当△AMN 面积最大时,N 点坐标为(3,0) ……………………(9分)(其它解法参考此标准赋分)()()()22522142212121+⨯+⨯-⨯+⨯=⋅-⋅⋅n n n MD BN OA BN ()53512+--n。

2019年九年级数学中考模拟试卷(人教版含答案)

2019年九年级数学中考模拟试卷(人教版含答案)

2019年初三中考水平测试数学模拟试题说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答案必须写在答题卡各题目指定区域内相应位置上,不按以上要求作答的答案无效.3.考试结束时,将答题卡上交, 试卷自己妥善保管,以便老师讲评. 一、单项选择题(每小题3分) 1.–3-是( ) A.3-B.3C.13D.13-2.下列运算正确的是( )A .x ·x 2 = x 2 B. (xy )2 = xy 2 C. (x 2)3 = x 6 D.x 2 +x 2 = x 4 3.下列左图是由5个相同大小的正方体搭成的几何体,则它的俯视图是( )4.在下列图形中,既是轴对称图形,又是中心对称图形的是( )5.若代数式21x -有意义,则x 的取值范围是( )A .12x ≠B .x ≥12C .x ≤12D .x ≠-126.在Rt △ABC 中,90C=∠,3AC=,4BC=,则sin A 的值为 ( )A .45B .43C .34D .357. . 如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =25°,则∠CAD 的度数是( ) A .25° B .60° C .65° D .75°8.不等式组⎩⎨⎧≥->+125523x x 的解在数轴上表示为( )第3题图A .B .C .D .ADBOA .B .C .D .CBAA BCD E9.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表: 尺码(厘米) 25 25.5 26 26.5 27 购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为( ) A.25.5厘米,26厘米 B.26厘米,25.5厘米 C.25.5厘米,25.5厘米 D.26厘米,26厘米10.如图,DE 与ABC △的边AB AC ,分别相交于D E ,两点,且DE BC ∥.若A D :BD=3:1, DE=6,则BC 等于( ). A. 8 B.92C. 35D. 2二、填空题(每小题4分,满分20分)11.小明在“百度”搜索引擎中输入“钓鱼岛最新消息”,能搜索到与之相关的结果个数约为5640000,这个数用科学记数法表示为 . 12.已知反比例函数5m y x-=的图象在第二、四象限,则m 取值范围是__________ 13.若方程2210x x --=的两个实数根为1x ,2x ,则=+2221x x .14.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm ,母线长为30cm 的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为________cm 2 .(结果保留π)15.如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,已知小聪和树都与地面垂直,且相距33米,小聪身高AB 为1.7米,则这棵树的高度= 米 16.如果函数1()2f x x =+,那么(5)f = 三、解答题(共3个小题,每小题5分,满分15分)17.()10112 3.14tan 603π-⎛⎫---︒ ⎪⎝⎭.18.先化简211()1122x x x x -÷-+-2,1,-1中选取一个你认为合适..的数作为x 的值代入求值.A B CD E19.如图,在ABCD 中,E 为BC 边上一点,且AB AE =. (1)求证:ABC EAD △≌△. (2)若AE 平分DAB ∠,25EAC =∠,求AED ∠的度数.四、解答题(共3个小题,每小题8分,满分24分)20. 已知关于x 的一元二次方程 (m -2)x 2 + 2mx + m +3 = 0 有两个不相等的实数根. (1)求m 的取值范围; (2)当m 取满足条件的最大整数时,求方程的根.21. 如图,在边长均为1的小正方形网格纸中,△OAB 的顶点O 、A 、B 均在格点上,且O 是直角坐标系的原点,点A 在x 轴上.(1)以O 为位似中心,将△OAB 放大,使得放大后的△11B OA 与△OAB 对应线段的比为2∶1,画出△11B OA .(所画△11B OA 与△OAB 在原点两侧).(2)求出线段11B A 所在直线的函数关系式.22.“校园手机”现象越来越受到社会的关注,小记者刘凯随机调查了某校若干学生和家长对中学生带手机现象的看法,制作了如下的统计图:(1)求这次调查的总人数,并补全图13-1;(2)求图13-2中表示家长“赞成”的圆心角的度数;ABC(3)针对随机调查的情况,刘凯决定从初三一班表示赞成的3位家长中随机选择2位进行深入调查,其中包含小亮和小丁的家长,请你利用树状图或列表的方法,求出小亮和小丁的家长被同时选中的概率.五、解答题(共3个小题,每小题9分,满分27分)23.中山市某施工队负责修建1800米的绿道.为了尽量减少施工对周边环境的影响,该队提高了施工效率,实际工作效率比原计划每天提高了20%,结果提前两天完成.求实际平均每天修绿道的长度?24. 如图,D 为O ⊙上一点,点C 在直径BA 的延长线上,CDA CBD ∠=∠. (1)求证:CD 是O ⊙的切线; (2)过点B 作O ⊙的切线交CD 的延长线于点E ,若BC=4,ta n ∠ABD=12求BE 的长.25.如图,抛物线)0(322≠-+=m m mx mx y 的顶点为H ,与x 轴交于A 、B 两点(B 点在A 点右侧),点H 、B 关于直线l :333+=x y 对称,过点B 作直线BK ∥AH 交直线l 于K 点.(1)求A 、B 两点坐标,并证明点A 在直线l 上; (2)求此抛物线的解析式;(3)将此抛物线向上平移,当抛物线经过K 点时,设顶点为N ,求出NK 的长.ABCDEO学生及家长对中学生带手机的态度统计图家长学生无所谓反对赞成30803040140类别人数28021014070家长对中学生带手机的态度统计图20%反对无所谓赞成图22-1图22-2初三中考水平测试数学模拟试题参考答案一、选择题(每小题3分,共15分)1.A 2. C 3.C 4.C 5. B 6.A 7. C 8. C 9. D 10. A 二、填空题(每小题4分,共20分)11.65.6410⨯ 12. m >5 13. 6 14.270π 15. 4.716. 三、解答题(每小题5分,共15分)17. 解:解: 原式……………………… 4分……………………… 5分 18.解: 原式=22(x 1)(x 1)(x 1)(x 1)x+-⨯+- ……………… 3分=2x……………………… 4分 当时,上式= …………………… 5分19.证明:∵四边形ABCD 为平行四边形,∴AD BC AD BC =∥,. ∴DAE AEB =∠∠.………1分 又∵AB AE =∴AEB B =∠∠ ∴B DAE =∠∠.………2分∴ABC EAD △≌△. ………3分 (2)∵AE 平分DAB ∠∴DAE BAE DAE AEB ==∠∠,∠∠, ∴BAE AEB B ==∠∠∠.∴ABE △为等边三角形. ………4分 ∴60BAE =∠.∵25EAC =∠∴85BAC =∠ ∵ABC EAD △≌△∴85AED BAC ==∠∠. ………5分四、解答题(每小题8分,共24分) 20.解:(1)∵方程有两个不相等的实数2m 根.∴=b 2-4ac=(2m)2-4 (m -2)( m +3)>0 ………2分∴m <6且m ≠2 ………4分 (2)∵m 取满足条件的最大整数∴m=5 ………5分把m=5代入原方程得:3x 2 + 10x + 8= 0 ………6分解得:124,23x x =-=- ………8分21. (1)画图略 …………………………………… 4分 (2) 设y=kx+b (k ≠0) ……… 5分把A 1(4,0)、B 1(2,-4)分别代入得: (6)0442k bk b =+⎧⎨-=+⎩……… 7 解得:k=2, b=-8∴直线A 1 B 1的解析式为y=2x-8 (8)22.解:解:(1)学生人数是200人,家长人数是80÷20%=400人,……………1分所以调查的总人数是600人; …………………2分 补全的统计图如图3所示: …………………3分(2)表示家长“赞成”的圆心角的度数为40040×360=36° . ……………4分 (3)设小亮、小丁的家长分别用A 、B 表示,另外一个家长用C 表示,列树状图如下:第一次选择第二次选择……………7分 图3ABCB C DA C D AB D∴P (小亮和小丁家长同时被选中)=29. …………………8分 五、解答题(每小题9分,共27分)23.解:解:设原计划平均每天修绿道的长度为x 米,则………1分180018002(1.20%)x x-=+ ………4分 解得150=x ………6分经检验:150=x 是原方程的解,且符合实际 ……… 7分150×1.2=180 ………8分答:实际平均每天修绿道的长度为180米. ……… 9分 24、1)证明:如图(13),连结OD ………1分∵OB OD =,∴OBD BDO ∠=∠. ………2分 ∵CDA CBD ∠=∠, ∴CDA ODB ∠=∠. 又AB 是O ⊙的直径,∴90ADO ODB ∠+∠=︒, ………3分 ∴9090ADO CDA CDO ∠+∠=︒∠=︒即 ∴CD 是O ⊙的切线. ………4分(2).(2)解:∵CDA ABD ∠=∠ ∴1tan tan 2CDA ABD ∠=∠= ∴12AD BD = ………5分 ∵C C CDA CBD ∠=∠∠=∠, CAD CDB ∴△∽△ ………6分 12CD AD BC BD ∴==, ∵4BC =,∴2CD =. ………7分 ∵CE BE 、是O ⊙的切线, BE DE BE BC ∴=⊥,, 222BE BC EC ∴+=∴()22224BE BE +=+, ………8分解得3BE =. ………9分B25. 解:1)依题意,得)0(0322≠=-+m m mx mx , ………1分 解得31-=x ,12=x ∵B 点在A 点右侧,∴A 点坐标为(﹣3,0),B 点坐标为(1,0).………2分 证明:∵直线l :333+=x y 当3-=x 时,03)3(33=+-⨯=y ∴点A 在直线l 上. ………3分 (2)解:∵点H 、B 关于过A 点的直线l :333+=x y 对称, ∴ 4==AB AH ………4分过顶点H 作HC ⊥AB 交AB 于C 点, 则221==AB AC ,322422=-=HC ∴顶点)32,1(-H ………5分代入抛物线解析式,得m m m 3)1(2)1(322--⨯+-⨯=解得23-=m ∴抛物线解析式为2333232+--=x x y ………6分 (3)连结HK ,可证得四边形HABK 是平行四边形 ∴HK ∥AB,HK=AB可求得K(3,23), ………7分 设向上平移K 个单位,抛物线经过点K ∴2333232+--=x x y +K 把K(3,23)代入得:K=83 ………8分 在Rt △NHK 中,∵NK=83,HK=4 由勾股定理得4………9分NK的长是13。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年最新初中中考数学模拟试卷及答案
学校:__________ 考号:__________
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
一、选择题
1.m 克白糖溶于n 千克水中,所得糖水的含糖量可以表示为( ) A .
m n
B .m
m n
+ C .100n
m
D .
1000m
m n
+
2.我市某一周的最高气温统计如下表:
则这组数据的中位数与众数分别是( ) A .27℃,28℃
B .27.5℃,28℃
C .28℃,27℃
D .26.5℃,27℃
3.如图,将两根钢条AA ′、BB ′的中点O 连在一起,使AA ′、BB ′可以绕着点O 自由转动,就做成了一个测量工件,则A ′B ′的长等于内槽宽AB ,那么判定△OAB ≌△OA ′B ′的理由是( ) A .边角边
B .角边角
C .边边边
D .角角边
4.如图,在5×5方格中将(1)中的图形(阴影部分)平移后的位置如图(2)所示,•那么正确的平移方法是( ) A .先向下移动1格,再向左移动1格 B .先向下移动1格,再向左移动2格 C .先向下移动2格,再向左移动2格 D .先向下移动2格,再向左移动1格
5.下列说法正确的是( )
A .足球在草地上滚动,可看作足球在作平移变换
B .我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿着铁轨方向作平移变换”
C .小明第一次乘观光电梯,随着电梯的上升,他高兴地对同伴说:太棒了,•我现在比大楼还高呢,我长高了
D .在图形平移变换过程中,图形上可能会有不动点 6.若))(3(152
n x x mx x ++=-+,则m 的值为 ( )
A .5-
B .5
C .2-
D .2
7.下面计算中,能用平方差公式的是( ) A .(1)(1)a a +--
B .()()b c b c ---+
C .11()()22
x y +-
D .(2)(2)m n m n -+
8.暗箱中有大小质量都相同的红色、黑色小球若干个,随机摸出一个球是红球的概率是 0.6,已知黑色小球有12个,则红球的数量为( ) A .30
B .20
C .18
D .10
9. 在一个不透明的口袋中,装有除颜色外其余都相同的球 15个,从中摸出红球的概率为3
1
,则袋中红球的个数为( ) A .15个 B .10个 C .5个
D .3个
10.足球场平面示意图如图所示,它是轴对称图形,其对称轴条数为( ) A .1条
B .2条
C .3条
D .4条
11.从图形的几何性质考虑,下列图形中,有一个与其他三个不同,它是( )
A .
B .
C .
D .
12.下面三种说法:①两个能够重合的三角形是全等三角形;②全等三角形的形状和大小相同;③全等三角形的面积相等.其中正确的个数有 ( ) A .3个
B .2个
C .1个
D .0个
13.231
()2a b -的结果正确的是( )
A .421
4
a b
B .631
8a b
C .631
8a b -
D .531
8
a b -
14.如图两个图形可以分别通过旋转( )度与自身重合? A .120°,45°
B .60°,45°
C .30°,60°
D .45°,30°
15.如图,∠BAC= 50°,AE ∥BC ,且∠B= 60°,则∠CAE=( ) A .40°
B .50°
C .60°
D .70.。

相关文档
最新文档