第3章 离散时间傅里叶变换

合集下载

离散时间傅里叶变换.

离散时间傅里叶变换.

第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。

与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。

本章将介绍离散时间系统的频域分析方法。

3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。

若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。

[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X 解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:图3-1离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。

即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。

第三章离散傅里叶变换及其快速计算方法(DFT、FFT)

第三章离散傅里叶变换及其快速计算方法(DFT、FFT)

X (e jw )
(2)Z 变换 -- 提供任意序列的 z 域表示。
n

x( n)e jnw
X (z)
n


x ( n) z n
这两种变换有两个共同特征:
(1)变换适合于无限长序列 (2)它们是连续变量 ω 或 z 的函数
华北电力大学自动化系
3
3.1 问题的提出:可计算性
X (z)
而对于
n


x ( n) z n
n


x ( n) z n
找不到衰减因子使它绝对可和(收敛)。为此,定义新函 数,其 Z 变换:
华北电力大学自动化系
15
DFS 定义:正变换
X ( z)
n
x ( n) z n ~ ( n ) z n x
华北电力大学自动化系
6
3.1 问题的提出:傅里叶变换的四种形式 (3)
2. 周期连续时间信号:傅里叶级数 FS
~ (t ) x X (n 0 )
t T

时域周期频域离散
0
2 T
x(t)
~
n -
X(n 0 )e jn0t

时域连续函数造成频域是非周期的谱。 频域的离散对应时域是周期函数。
X (e jT )



T T
X (e jT )e jnT d
取样定理
n

x(nT )e jnT
1 X ( 0 ) T n
时域的离散化造成频域的周期延拓 时域的非周期对应于频域的连续
华北电力大学自动化系
8

第3章离散时间傅里叶变换

第3章离散时间傅里叶变换

第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。

与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。

本章将介绍离散时间系统的频域分析方法。

3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。

若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。

[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。

即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。

第3章离散傅里叶变换(DFT)09-10-1

第3章离散傅里叶变换(DFT)09-10-1
序列的DFS级数系数的主值序列!
§3.2 离散傅里叶变换的基本性质
一. 线性性质
x1(n)和x2(n)是两个有限长序列,长度分别为N1和N2
y(n)=ax1(n)+bx2(n)
式中a、 b为常数, 即N≥max[N1, N2], 则y(n)的N
点DFT为:
(补零问题!)
Y(k)=DFT[y(n)]=aX1(k)+bX2(k), 0≤k≤N-1
➢再 反 转 形 成 x2((-m))N , 取 主 值 序 列 则 得 到 x2((m))NRN(m),通常称之为x2(m)的圆周反转; ➢对x2(m)的圆周反转序列圆周右移n,形成
x2((n-m))NRN(m); ➢当n=0,1,2,…,N-1时,分别将x1(m)与x2((n-m))NRN(m)相 乘,并在m=0到N-1区间内求和,便得到其循环卷积y(n)。
y(n) x((n m))N RN (n)
则循环移位后的DFT为
Y (k) DFT [ y(n)] DFT [x((n m))N RN (n)] WNmk X (k)
证:利用周期序列的移位性质加以证明
DFS [x((n m)) N ] DFS [~x (n m)] WNmk X~(k)
x1(n)
0
N-1
~x2 (n)
0
N-1
n n
~x2 (m)
x2 0 mN RN (m)
0
m
x2 1 mN RN (m)
0
x2
2
mN
RN
(m)
m
0
m
x2 3 mN RN (m)
0
m
y(n) x1(n) N x2 (n) ➢两个长度

第3章--离散傅里叶变换(DFT)

第3章--离散傅里叶变换(DFT)

设x(n)是一种长度为M旳有限长序列, 则定义x(n)旳N点
离散傅里叶正变换为
N 1
j 2 nk
X (k ) DFT[x(n)] x(n)e N
N 1
x(n)WNnk
n0
n0
离散傅里叶逆变换为
离散傅里叶变换对
x(n)
IDFT[ X (k )]
1 N
N 1
j 2 nk
X (k )e N
3.2 离散傅里叶变换旳基本性质
1 线性性质 假如x1(n)和x2(n)是两个有限长序列,长度分别为N1和N2。 y(n)=ax1(n)+bx2(n) 式中a、 b为常数, 即N=max[N1, N2],
则y(n)旳N点DFT为 Y(k)=DFT[y(n)]=aX1(k)+bX2[k], 0≤k≤N-1(3.2.1) 其中X1(k)和X2(k)分别为x1(n)和x2(n)旳N点DFT。 若N1<N2,则N=N2,那么需将x1(n)补上N2-N1个零值点后变
k 2 k f f s k
N
N
以上所讨论旳三种频率变量之间旳关系,在对模 拟信号进行数字处理以及利用模拟滤波器设计数 字滤波器乃至整个数字信号处理中十分主要,望 同学们高度注重。
第三章 离散傅里叶变换DFT
3.1.2 DFT旳隐含周期性------ DFT与 DFS旳关系
DFT变换对中,x(n)与X(k)均为有限长序列,但因为WknN旳周
第三章 离散傅里叶变换DFT
例2 : x(n) R8 (n),分别计算x(n)旳8点、16点DFT。
解: x(n)旳8点DFT为
X (k)
7 n0
R8 (n)W8k n
7 j2k n

第三章离散时间信号的傅里叶变换

第三章离散时间信号的傅里叶变换

第三章离散时间信号的傅里叶变换课程:数字信号处理目录第三章离散时间信号的傅里叶变换 (3)教学目标 (3)3.1引言 (3)3.2傅里叶级数CFS (4)3.2.1傅里叶级数CFS定义 (4)3.2.2傅里叶级数CFS性质 (6)3.3傅里叶变换CFT (7)3.3.1傅里叶变换CFT定义 (7)3.3.2傅里叶变换CFT的性质 (8)3.4离散时间信号傅里叶变换DTFT (9)3.4.1离散时间信号傅里叶变换DTFT定义 (9)3.4.2离散时间信号傅里叶变换的性质 (10)3.5周期序列的离散傅里叶级数(DFS) (14)3.5.1周期序列的离散傅里叶级数的定义 (14)3.5.2周期序列的离散傅里叶级数的性质 (18)3.6离散傅里叶变换(DFT) (20)3.6.1离散傅里叶变换(DFT) (20)3.6.2离散傅里叶变换的性质 (23)3.7CFS、CFT、DTFT、DFS和DFT的区别与联系 (25)3.8用DFT计算模拟信号的傅里叶分析 (28)3.9实验 (30)本章小结 (32)习题 (33)参考文献: (36)第三章离散时间信号的傅里叶变换教学目标本章讲解由时域到频域的傅里叶变换,频域观察信号有助于进一步揭示系统的本质,对于某些系统可以极大的简化其设计和分析过程。

通过本章的学习,要理解连续时间信号的傅里叶级数和傅里叶变换的和离散时间信号基本概念、性质和应用;了解一些典型信号的傅里叶变换;理解连续时间信号的傅里叶级数(CFS)、连续时间信号的傅里叶变换(CFT)、离散时间傅里叶变换(DTFT)、离散时间傅里叶级数(DTFS)和离散傅里叶变换(DFT)它们相互间的区别与联系;掌握傅里叶变换的参数选择,以及这些参数对傅里叶变换性能的影响;了解信号处理中其它算法(卷积、相关等)可以通过离散傅里叶变换(DFT)来实现。

3.1引言一束白光透过三棱镜,可以分解为不同颜色的光,这些光再通过三棱镜,就会得到白光。

第三章.离散时间信号的傅里叶变换

第三章.离散时间信号的傅里叶变换

4、时域卷积定理

) = x ( 0 ) + 2∑ x ( n ) cos (ω n )
n =1
y (n) = x ( n) * h ( n)
Y ( e jω ) = X ( e jω ) H ( e jω )
X I ( e jω ) = 0 x ( n) =
π∫
1
π
0
X R ( e jω ) cos (ω n ) d ω
jω jω 2 2 ⎤ X ( e jω ) = ⎡ ⎣ X R ( e ) + X I ( e )⎦
12
如果 x ( n ) 是实信号,根据DTFT的正、反变换的定义,有 如下性质: ① X ( e jω ) 的实部 X R ( e jω ) 是 ω 的偶函数,即 ② X (e

= X ( e − jω )
x (t ) =
k =−∞
X ( k Ω0 ) =
1 T /2 x ( t ) e − jk Ω0t dt T ∫−T / 2
X ( k Ω 0 )代表了x ( t ) 中第k次谐波的幅度,并且它是离散的。
∑ X ( kΩ ) e
0

jk Ω0 t
并非所有周期信号都可展开成傅里叶级数。一个周期信号 能展开成傅里叶级数,除满足前面指出的平方可积条件 外,还需要满足如下的Dirichlet条件: ① 在任一周期内若存在间断点,则间断点的数目应是有限 的。 ② 在任一周期内的极大值和极小值的数目应是有限的。 ③ 在一个周期内应是绝对可积的,即
第三章
离散时间信号的傅里叶变换
第三章 离散时间信号的 傅里叶变换
内容概要
1、连续时间信号的傅氏变换 2、离散时间信号的傅氏变换(DTFT) 3、连续时间信号的抽样 4、离散时间周期信号的傅氏级数 5、离散傅氏变换(DFT) 6、利用DFT计算线性卷积 7、希尔伯特变换

(整理)离散傅里叶变换

(整理)离散傅里叶变换

第三章离散傅立叶变换(DFT)3.1 引言有限长序列在数字信号处理是很重要的一种序列,当然可以用Z变换和傅里叶变换来研究它,但是,可以导出反映它的"有限长"特点的一种有用工具是离散傅里叶变换(DFT)。

离散傅里叶变换除了作为有限长序列的一种傅里叶表示法在理论上相当重要之外,而且由于存在着计算离散傅里叶变换的有效快速算法,因而离散傅里叶变换在各种数字信号处理的算法中起着核心的作用。

有限长序列的离散傅里叶变换(DFT)和周期序列的离散傅里叶级数(DFS)本质上是一样的。

为了更好地理解DFT,需要先讨论周期序列的离散傅里叶级数DFS。

而为了讨论离散傅里叶级数及离散傅里叶变换,我们首先来回顾并讨论傅里叶变换的几种可能形式。

(连续时间信号:如果在讨论的时间间隔内,除若干不连续点之外,对于任意时间值都可给出确定的函数值,此信号就称为连续时间信号。

)一、连续时间、连续频率——连续傅立叶变换(FT)设x(t)为连续时间非周期信号,傅里叶变换关系如下图所示:可以看出时域连续函数造成频域是非周期的谱,而时域的非周期造成频域是连续的谱。

二、连续时间,离散频率------傅 里 叶 级 数设f(t)代表一个周期为T 1的周期性连续时间函数,f(t)可展成傅里叶级数,其傅里叶级数的系数为n F ,f(t)和n F 组成变换对,表示为:tjn n n e F t f 1)(Ω∞-∞=∑=(112Ω=πT )dte tf T F TT t jn n ⎰-Ω-=221111)(1注意符号:如果是周期性的采样脉冲信号p(t),周期用T 表示(采样间隔)。

采样脉冲信号的频率为Ts π2=Ω可以看出时域连续函数造成频域是非周期的谱,而时域的周期造成频域是离散的谱三、离散时间,连续频率------序列的傅里叶变换正变换:DTFT[x(n)]=()()j nj n X e x n eωω∞-=-∞=∑反变换:DTFT-11[()]()()2j n j j X e x n X e e d πωωωπωπ-==⎰)(ωj e X 级数收敛条件为|()j nn x n eω∞-=-∞∑|=∞<∑∞-∞=n n x )(可以看出时域离散函数造成频域是周期的谱,而时域的非周期造成频域是连续的谱四、离散时间,离散频率------离散傅里叶变换上面讨论的三种傅里叶变换对,都不适用在计算机上运算,因为至少在一个域(时域或频域)中,函数是连续的。

第三章 离散傅里叶变换(DFT)

第三章  离散傅里叶变换(DFT)
N 1
~ X ( k ) N k ( r pn)
k 0
N 1
~ NX ( r pN ) ~ NX ( r )
j 2 nr N
1 ~ 因此, X (r ) N
~ ( n )e x
n 0
N 1
将r换成k则有 1 ~ X (k ) N

n 0
则有
~ ~ ~ (n) b~ (n) aX (k ) bX (k ) DFSax1 x2 1 2
其中,a,b为任意常数。
二.序列的移位
~ ~(n) X (k ) 如果 DFSx
则有:
~ ~(n m) W mk X (k ) DFSx N e
2 j mk N
即:
N 1 n 0 j 2 kn N
~ ~( n )e X (k ) x ~( n ) 1 x N
N 1 k 0
~ X ( k )e
2 j kn N
~ X (k ) 的周期性 2 N 1 j ( k mN ) n ~ 周期性: ( k m N) ~( n )e N X x
) X (k )
0
0 20
N 0 N

k
四.离散时间、离散频率的傅氏变换--DFT
x(nT)=x(n)
1 2 T0 F0 0
T0 NT
0
x (e
j k 0T
T 2T
1 2
( N 1) ( N 1)
NT N
0
)
2 T s 1 T 2
x(k )
n 0 N 1 j 2 nk N
~ ( n )W nk x N
N 1 n 0

第三章离散傅里叶变换

第三章离散傅里叶变换

不变,F减小N增加,又因增加 因此,和N可按下面两式选择 例1 有一频谱分析用FFT处理器,抽样点数为2的幂,假定没有采用 任何 特殊的数据处理,已给条件为 ①频率分辨率 ②信号的最高频率 求:①最小记录长度 ②抽样点的最大间隔T ③在一个记录中最小点数N 解: ① ② ③ 取 (2)频域泄露(截短产生误差)
●任何有限长序列都可以表示成共轭对称分量和共轭反对称分量 之和,即 ………… ……….(3-2) 对(3-2)式n换成N-n,并取复共轭得 (3-3) 联立(3-2),(3-3)可得:
●任何序列也可以表示实部和虚部 (3-4) 其中 (3-5) (3-6) (3)DFT的共轭对称性 ●对(3-4)进行DFT得: (3-7) ① 对(3-5)进行DFT得: .(3-8) ② 对(3-6)进行DFT得 (3-9) 结论:由(3-7),(3-8),(3-9)可得 其中 ● 任何序列可以表示为共轭对称和共轭反对称分量: (3-10) (3-11) (3-12) ① 对(3-10)进行DFT得 ② 对(3-11)进行DFT得 ③ 对(3-12)进行DFT得 结论: 其中 ●是长度为N的实序列,且,则 ① 共轭对称,即
2 (a) n,m 3 1 0
(b) 1 2 3 n,m
-2 6 5
2 1 -3 N=4 (c) m
m 3 2 n=0 (d)
ቤተ መጻሕፍቲ ባይዱ
m 3 0 n=1 (e)
m 1 0 n=2 (f)
2 m 1 n=3 (g)
2 3 2 m 1 (h) 1
图4
4、复共轭序列的DFT
设是的复共轭序列,长度为N,则 (3-1) 且。 证明:根据DFT的唯一性,只要证明(3-1)式右边等于左边即可。 又由的隐含周期性有 。 同理可证 。

离散傅里叶变换(DFT)

离散傅里叶变换(DFT)

k=floor((-Nw/2+0.5):(Nw/2+0.5)); %建立关于纵轴对称的频率相量
for r=0:3;
K=3*r+1;
% 1,4,7,10
nx=0:(K*Nx-1); x=xn(mod(nx,Nx)+1);
%周期延拓后的时间向量 %周期延拓后的时间信号x
Xk=x*(exp(-j*dw*nx'*k))/K; %DFS
0
DFT的提出:
离散傅里叶变换不仅具有明确的物理意义,相对于DTFT, 它更便于用计算机处理。但是,直至上个世纪六十年代,由 于数字计算机的处理速度较低以及离散傅里叶变换的计算量 较大,离散傅里叶变换长期得不到真正的应用,快速离散傅 里叶变换算法的提出,才得以显现出离散傅里叶变换的强大 功能,并被广泛地应用于各种数字信号处理系统中。近年来, 计算机的处理速率有了惊人的发展,同时在数字信号处理领 域出现了许多新的方法,但在许多应用中始终无法替代离散 傅里叶变换及其快速算法。
X (e j ) x(n)e jn n
x(n) 1 X (e j )e jnd
2
其中ω为数字角频率,单位为弧度。 注意:非周期序列,包含了各种频率的信号。
局限性:离散时间傅里叶变换(DTFT)是特殊的Z变换,在数学和信号分 析中具有重要的理论意义。但在用计算机实现运算方面比较困难。这是因为, 在DTFT的变换对中,离散时间序列在时间n上是离散的,但其频谱在数字角
§1、傅里叶级数
周期为N的序列 ~x(n) ~x(n rN), (r为整数)
j( 2 )n
基频序列为 e1(n) e N
k次谐波序列为
ek (n)
j( 2 )nk
e N

第3章 离散傅里叶变换(DFT)

第3章 离散傅里叶变换(DFT)

时域循环移位定理表明:有限长序列的循环移位,在离散 频域中相当于引入一个和频率成正比的线性相移WN-mk 频域循环移位定理表明:时域序列的调制(相移)等效于频域 的循环移位
(3.1.7)
注:若x(n)实际长度为M,延拓周期为N,则当N<M时,(3.1.5) 式仍表示以N为周期的周期序列,但(3.1.6)和 (3.1.7)式仅对 N≥M时成立。
第3章 离散傅里叶变换(DFT)
图3.1.2(a)中x(n)实际长度M=6,
x (n) 如图 当延拓周期N=8时,~
3.1.2(b)所示。

DTFT:X(e )= x( n)e
M 1 n0
N (n) RN (n) xN ( n) x
(k ) x N (n)WNkn DFS : X
DFT与ZT关系:
k
z e
j k N
X (k ) X ( z )
k ,, ,..., N k ,, ,..., N
第3章 离散傅里叶变换(DFT)
(2)时/频域循)] X (k )
k 0,1,..., N 1


mk DFT [ x(( n m)) N RN (n)] WN X (k )
nl IDFT [ X (( k l )) N RN (k )] WN x ( n)
n 0 N 1
WN e
j
2 N
k 0,1,..., N 1 n 0,1,..., N 1
1 N 1 IDFT [ X (k )] x(n) X (k )WN kn N k 0
1 IDFT[ X (k )]N N
N 1
mk kn [ x ( m ) W ] W N N k 0 m 0 k ( mn ) W N k 0 N 1

数字信号处理第三章离散傅里叶变换(DFT)及其快速算法(FFT)

数字信号处理第三章离散傅里叶变换(DFT)及其快速算法(FFT)

周期
2
s、fs N
分辨率
2
N
fs N
返回
回到本节
DFT和DFS之间的关系:
周期延拓
取主值
有限长序列
周期序列
主值区序列
有限长序列 x(n) n 0,1, 2, M 1

周期序列 xN (n) x(n mN ) x((n))N m 0 n0 N 1 n mN n0 ((n))N n0
四种傅立叶变换
离散傅立叶变换(DFT)实现了信号首次在频域 表示的离散化,使得频域也能够用计算机进行处理。 并且这种DFT变换可以有多种实用的快速算法。使信 号处理在时、频域的处理和转换均可离散化和快速 化。因而具有重要的理论意义和应用价值,是本课程 学习的一大重点。
本节主要介绍
3.1.1 DFT定义 3.1.2 DFT与ZT、FT、DFS的关系 3.1.3 DFT的矩阵表示
• X(k)为x(n)的傅立叶变换 X (e j ) 在区间 [0, 2 ]上的N
点等间隔采样。这就是DFT的物理意义。
j ImZ
2பைடு நூலகம்3
4
5 6
1 2
N
k=0 ReZ
7 (N-1)
DFT与z变换
X(ejω)
X(k)
0
o

2
0
N 1 k
DFT与DTFT变换
回到本节
变量

、f k
之间的某种变换关系.
• 所以“时间”或“频率”取连续还是离 散值,就形成各种不同形式的傅里叶变换 对。
3.1 离散傅里叶变换的定义及物理意义
时间域
t:连续
模拟域

第3章离散傅里叶变换

第3章离散傅里叶变换

第3章 离散傅里叶变换
二.序列的圆周移位 1.定义 一个有限长序列 x( n )的圆周移位定义为
xm (n) xn mN RN n
这里包括三层意思: ~ 先将 x( n )进行周期延拓 x (n) xn N 再进行移位 ~ x (n m) x n m N 最后取主值序列:
第3章 离散傅里叶变换
3.共轭对称特性之一
如果X ( k ) DFT [ x( n )],则 DFT [ x* ( n )] X * (( k ))N RN ( k )
证明:
X * (( N k ))N RN ( k )
nk DFT [ x ( n )] x* ( n )WN RN ( k ) * n 0 nk * nk * [ x( n )WN ] RN ( k ) [ x( n )WNNnWN ] RN ( k ) n 0 n 0 ( N k )n * [ x( n )WN ] RN ( k ) X * (( N k ))N RN ( k ) n 0 N 1 N 1 N 1 N 1
*复数序列实部的DFT 该序列DFT的圆周共轭对称分量。
5.共轭对称 特性之三
第3章 离散傅里叶变换
6.共轭对称 如果 X ( k ) DFT [ x( n )],则 DFT{ j Im [x( n )]} 特性之四 1 [ X (( k ))N X * (( N k ))N ] RN ( k ) X op ( k ) 2 1 * j Im [ x ( n )] [ x ( n ) x ( n )] 证明: 2 1 DFT{ j Im [x( n )]} { DFT [ x( n )] DFT [ x* ( n )]} 2 1 [ X ( k ) X * (( N k ))N RN ( k )] 2 1 [ X (( k ))N X * (( N k ))N ] RN ( k ) X op ( k ) 2

第3章 3.1-3.2离散傅里叶变换(DFT)

第3章  3.1-3.2离散傅里叶变换(DFT)

n0
WNkm X (k)
第3章 离散傅立叶变换(DFT)
对比记忆:
循环时移:
x((n
m))
N
RN
(n)
W mkm N
X(k
)
线性时移:
x(n n0 ) e jn0 X(e j )
29
时域移位,频域相移
2020/4/5
第3章 离散傅立叶变换(DFT)
3. 频域循环移位定理 如果: X (k) DFT[x(n)], 0 k N 1 则 : Y (k) X ((k l))N RN (k)
e8
n0
n0
j 3k
e8
sin(
2
sin(
k) k)
,k
0,1,, 7
8
17 2020/4/5
第3章 离散傅立叶变换(DFT)
提高谱密度
18
图3.1.1 R4(n)的FT和DFT的幅度特性关系
2020/4/5
第3章 离散傅立叶变换(DFT)
3.3.2 DFT和DTFT、ZT的关系
设序列x(n)的长度为N, 其ZT、DTFT和
对任意整数m, 总有:
WNk WN(kmN) , k, m, N均为整数
所以(3.3.6)式中, X(k)满足:
N 1
X (k mN ) x(n)WN(kmN )n
n0
N 1
x(n)WNkn X (k)
n0
同理可证明(3.3.7)式中:
14 2020/4/5
x(n mN) x(n)
1.
设序列h(n)和x(n)的长度分别为N和M。h(n)与x(n)的
L点循环卷积定义为:L1
kn
e4
n0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。

与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。

本章将介绍离散时间系统的频域分析方法。

3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。

若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。

[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X 解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:图3-1离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。

即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。

3.1.2 非周期序列傅里叶变换的性质从序列傅里叶变换定义式(3-1-1)可知,非周期序列的傅里叶变换就是序列的z 变换在单位圆上的取值(当序列的z 变换在单位圆上收敛时),即:∑∞-∞=ω-=ω==ωn nj e z j e n x z X e X j )()()(⎰=-π=1||1)(21)(z n dz z z X jn x ⎰ππ-ωωωπ=d e e X n j j )(21因此,非周期序列傅里叶变换的一切特性,皆可由z 变换得到。

正因如此,下面所述的性质,读者可仿z 变换性质的证明方法进行证明,在这里就不一一证明了。

1. 线性设)()]([11ω=j e X n x DTFT ,)()]([22ω=j e X n x DTFT ,则:)()()]()([2121ωω+=+j j e bX e aX n bx n ax DTFT (3-1-4)2.移位设)()]([ω=j e X n x DTFT ,则:)()]([00ωω-=-j n j e X e n n x DTFT (3-1-5)证明:00()[()]()j j nn X e DTFT x n n x n n eωω∞-=-∞=-=-∑00()()()j nn j n j n n j n j x n n en n n x n e e e X e ωωωωω∞-=-∞∞'--=-∞-'=-=-'==∑∑3.频移性设)()]([ω=j e X n x DTFT ,则:)()]([)(00ω-ωω=j n j e X n x e DTFT (3-1-6)4.对称性为了较方便地讨论非周期序列傅里叶变换的对称性,首先我们引入一些有关序列的基本概念—共轭对称序列与共轭反对称序列。

若序列)(n x e 满足下式:)()(n x n x e e -=*(3-1-7)则称序列)(n x e 为共轭对称序列。

对实序列而言,有)()(n x n x e e -=,即序列)(n x e 为偶对称序列。

若序列)(n x o 满足下式:)()(n x n x o o --=* (3-1-8)则称序列)(n x o 为共轭反对称序列。

对实序列而言,有)()(n x n x o o --=,即序列)(n x o 为奇对称序列。

因此,根据共轭对称序列与共轭反对称序列的定义,共轭对称序列)(n x e 和共轭反对称序列)(n x o 可由任意一个序列)(n x 按下构成)]()([21)(n x n x n x e -+=* (3-1-9) )]()([21)(n x n x n x o --=* (3-1-10)也就是说,对任意一个序列)(n x 都可以用共轭对称序列)(n x e 和共轭反对称序列)(n x o 之和来表示,即:)()()(n x n x n x o e += (3-1-11)同类可定义傅里叶变换)(ωj e X 的共轭对称分量和共轭反对称分量:)()()(ωωω+=j o j e j e X e X e X (3-1-12))]()([21)(ω-*ωω+=j j j e e X e X e X (3-1-13) )]()([21)(ω-*ωω-=j j j o e X e X e X (3-1-14)其中)(ωj e e X 称为傅里叶变换)(ωj e X 的共轭对称分量,满足)()(ω-*ω=j e j e e X e X ;)(ωj o e X 称为共轭反对称分量,满足)()(ω-*ω-=j oj o e X e X 。

式(3-1-12)表示序列)(n x 的傅里叶变换)(ωj e X 也可以分解为共轭对称分量和共轭反对称分量之和。

与序列的情况相同,若)(ωj e X 为实函数,且满足共轭对称,即)()(ω-ω=j j e X e X ,则称为频率的偶函数。

若)(ωj e X 为实函数,且满足共轭反对称,即)()(ω-ω-=j j e X e X ,则称为频率的奇函数。

若对式(3-1-9)、式(3-1-10)和式(3-1-11)两边进行序列傅里叶变换,可得序列)(n x 有如下性质: (1) 序列)(n x 的实部的傅里叶变换等于序列傅里叶变换的共轭对称分量,即)()]}({Re[ω=j e e X n x DTFT (3-1-15)(2) 序列)(n x 的虚部乘j 后的傅里叶变换等于序列傅里叶变换的共轭反对称分量,即)()]}(Im[{ω=j o e X n x j DTFT (3-1-16)(3) 序列)(n x 的共轭对称分量)(n x e 和共轭反对称分量)(n x o 的傅里叶变换分别等于序列的傅里叶变换的实部和j 乘以虚部,即)]([)]([ω=j e e e X R n x DTFT (3-1-17) )]([)]([ω=j m o e X jI n x DTFT (3-1-18)(4) 若)(n x 是实序列,则其傅里叶变换)(ωj e X 满足共轭对称性,即)()(ω-*ω=j j e X e X (3-1-19)也就是说:)]([)]([ω-ω=j e j e e X R e X R (3-1-20))](Im[)](Im[ω-ω-=j j e X e X (3-1-21)由此可以看出,实序列的傅里叶变换的实部是ω的偶函数,而虚部是ω的奇函数。

(5) 序列)(n x 的傅里叶变换)(ωj e X 的极坐标表示形式为:)](arg[)()(ωωω=j eX j j j e e X e X (3-1-22)对实序列)(n x ,有:)()(ω-ω=j j e X e X (3-1-23))](arg[)](arg[ω-ω-=j j e X e X (3-1-24)也就是说,实序列的傅里叶变换的幅度是ω的偶函数,而相角是ω的奇函数。

5.时域卷积定理若)()()(n h n x n y *=,则有:)()()(jw jw jw e H e X e Y = (3-1-25)证明:由卷积和定义有∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(,等式两边作傅里叶变换得:∑∑∞-∞=ω-∞∞-ω⎥⎥⎦⎤⎢⎢⎣⎡-=n nj m j em n h m x e Y )()()( 令m n k -=,则上式可改写为:∑∑∞-∞=∞-∞=ω-ω-ω=k m mj k j j e em x k h e Y )()()()()()()(ωω∞-∞=ω-∞-∞=ω-==∑∑j j m mj k kj e H e X em x e k h6.频域卷积定理 若)()()(n h n x n y ⋅=,则)()(21)(ωωω*π=j j j e H e X e Y ⎰ππ-θ-ωθθπ=d e H e X j j )()(21)( (3-1-26)7.帕塞瓦尔(Parseval )定理ωπ=⎰∑ππ-ω∞-∞=d e X n x j n 22)(21)( (3-1-27)表3-1 综合了DTFT 的性质,这些性质在以后的分析问题和实际应用中是非常重要的。

表3-1给出了常用序列的傅里叶变换,这在以后的实际应用中很重要。

表3-1序列的傅里叶变换的性质[例3-2] 若)(n x 的傅里叶变换为)(ωj e X ,求下面序列的傅里叶变换:(1))(n kx (k 为常数) (2))4(-n x (3))(n x *(4)⎪⎩⎪⎨⎧=为奇数为偶数n n n x n g 0)2()(解:根据序列傅里叶变换的定义及性质有:(1) )()(ω−→←j Fe kX n kx(2) )()4(4jw j F e X e n x ω-−→←- (3) )()()()(ω-**∞-∞=ω∞-∞=ω-**=⎥⎥⎦⎤⎢⎢⎣⎡=−→←∑∑j n jn n jn Fe X e n x en x n x (4) )()()2()(22''2''ω∞-∞=ω-=∞ω-ω===∑∑j n n j n n n jn j e X e n x e nx e G 令为偶数 表3-2 常用序列傅里叶变换[例3-3] 若序列)(n h 是实因果序列,其傅里叶变换的实部为ω+=ωcos 1)(j R e H 。

求序列)(n h 及其傅里叶变换)(ωj e H 。

解:利用三角函数关系得:ω-ωω++=ω+=j j j R e e e H 21211cos 1)( 由序列傅里变换的定义有:∑∞-∞=ω-ω==n nj ee j R en h n h DTFT e H )()]([)(。

比较两式可得:2/1)1(=-e h ,1)0(=e h ,2/1)1(=e h由于)(n h 是实因果序列,因此,)()(*n h n h =,当0<n ,0)(=n h 。

相关文档
最新文档