数值分析第四章数值积分
数值分析-第4章 数值积分和数值微分
A0+A1=2 A0x0+A1x1=0 A0x02+A1x12=2/3 A0x03+A1x13=0
A0 A1 1 解得: 1 x 0 x1 3
求积公式为
1 1 1 f ( x)dx f ( ) f ( ) 3 3
x f(x)
数值分析
1 4
2 4.5
3 6
4 8
5 8.5
1
一、数值积分的基本概念 求积节点 数值积分定义如下:是离散点上的函数值的线性组合
I [ f ] f ( x)dx I n [ f ] Ai f ( xi )
b a i 0 n
称为数值积分公式
称为求积系数,与f (x)无关,与积分区间和求积节点有关
b a
Rn ( x) dx
定理:形如 Ak f ( xk ) 的求积公式至少有 n 次代数精度
A 该公式为插值型(即: k a l k ( x)dx )
数值分析
b
5
例1 试确定参数A0,A1,A2,使求积公式
1 f ( x)dx A0 f (1) A1 f (0) A2 f (1)
证明 因为Simpson公式对不高于三次的多项式精确成立。即
b
a
p 2 ( x)dx
ba ab [ p 2 (a) 4 p 2 ( ) p 2 (b)] 6 2
构造三次多项式H3(x),使满足 H3(a)=(a) ,H3(b)=(b),
H 3 (( a b) / 2) f (( a b) / 2), H 3 (( a b) / 2) f (( a b) / 2), 这时插值误差为
1
数值分析课后习题与解答
课后习题解答第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。
线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。
数值分析Cht4数值积分和数值微分
x
j
)dx.
(1.7)
定理1
求积公式
ab f
( x)dx
n
wk
fk至少具有n次代数精度
k 0
它是插值型求积公式.
四、求积公式的余项
若求积公式
b
f (x)dx
a
n
wk fk的代数精度为m, 则其余项
k 0
R[ f ]
b
f (x)dx
a
n
wk fk Kf (m1) (),
k 0
a,b.
定义2 在求积公式(1.3)中, 若
lim
n
n
wk
k 0
f
( xk
)
ab
f
(x)dx,
h0
其中h max(xi xi1),则称求积公式(1.3)是收敛的.
1in
设f (xk )有误差k , 即f (xk ) ~fk k (k 0,1,, n), 则有
| In ( f ) In ( ~f ) |
12
(a,b).
2. 中矩形公式的余项
b f (x)dx f (a b)(b a), 代数精度为1.
a
2
K
1 2
1
3
(b3
a3)
(b
a)
a
2
b
2
(b
a)3 24
中矩形公式的余项 : R[ f ] (b a)3 f ''(),
24
(a,b).
五、求积公式的收敛性和稳定性
wk fk
k 0
1 1 (m 1)! m
2
(bm2
am2 )
n k 0
wk
数值分析课件第4章数值积分与数值微分
森(simpson)公式(又称为抛物形求积公式),即
S b a [ f (a) 4 f (a b) f (b)].
6
2
上页 下页
n = 4 时的牛顿-柯特斯公式就特别称为柯特斯公 式. 其形式是
上页 下页
4.1.1 数值求积的基本思想
由积分中值定理, 对连续函数f(x), 在区间[a, b]
内至少存在一点,使
I
b
a
f
(x)d
x
(b
a)
f
(
)
只要对平均高度 f() 提供一种近似算法, 便可相应
地获得一种数值求积方法. 即所谓矩形公式.
几何图形见书p119.
上页 下页
例如, 用区间[a, b]两端点的函数值 f(a)与f(b)的
nn
(t j)dt
0 jk
(k=0,1,,n)
则 Ak (b a)Ck(n) , 于是得求积公式
n
In (b a) Ck(n) f ( xk )
k0
称为n 阶牛顿-柯特斯 (Newton-Cotes)公式, Ck(n) 称 为柯特斯系数。
显然, 柯特斯系数与被积函数 f (x) 和积分区间
如为了构造出上面的求积公式,原则上是一个 确定参数xk和Ak的代数问题.
上页 下页
4.1.3 插值型求积公式
设给定一组节点 a x0 x1 xn1 xn b
且已知f(x)在这些节点上的函数值 f(xk), 则可求得f(x)
的拉格朗日插值多项式(因为Ln(x)的原函数易求)
n
Ln ( x) f ( xk )lk ( x) 则 f (x)Ln(x)
k0
如果对任I给n( 小f )正 I数n(ε~f>)0, 只n 要Ak误[ f差( x|δkk)|充 ~f分k ]小就 ,有
数值分析知识点总结
数值分析知识点总结数值分析知识点总结:本文提供了数值分析中的一些重要知识点和例题,但更多的例题可以参考老师布置的作业题和课件相关例题。
第1章数值分析与科学计算引论:绝对误差和相对误差是衡量近似值精度的指标,有效数字则是描述近似值精度的一种方式。
其中,相对误差限是绝对误差的上界。
有效数字的计算方法为:如果近似值x的误差限是某一位的半个单位,该位到x的第一位非零数字共有n位,就说x*共有n位有效数字。
一个比较好用的公式是f(x)的误差限:f(x)f'(x)(x)。
第2章插值法:插值多项式的余项表达式可以用来估计截断误差。
三次样条插值与三次分段埃尔米特插值有所不同,但哪一个更优越需要根据实际情况而定。
确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?三弯矩法可以用来求解三次样条表达式。
第3章函数逼近与快速傅里叶变换:带权(x)的正交多项式是在特定区间上满足一定条件的多项式,其中[-1,1]上的勒让德多项式具有重要性质。
切比雪夫多项式也有其独特的性质。
用切比雪夫多项式零点做插值点得到的插值多项式与拉格朗日插值有所不同。
最小二乘拟合的法方程可以用来拟合曲线,但当次数n较大时,不直接求解法方程。
第4章数值积分与数值微分:XXX让德求积公式和XXX-XXX求积公式是数值积分中的两种方法,其中高斯求积公式可以用来计算定积分。
勒让德多项式的零点就是高斯点,这种形式的高斯公式被称为XXX让德求积公式。
中点方法是一种数值积分方法,其公式如下:插值型的求导公式有两点公式和三点公式。
第5章介绍了解线性方程组的直接方法,其中包括LU矩阵的推导过程。
相关例题可以在教材第4章作业题和课件中找到。
第6章介绍了解线性方程组的迭代法,判断迭代法是否收敛的条件如下:第7章介绍了非线性方程与方程组的数值解法,其中牛顿法是一种常见的方法。
对于单根且光滑的f(x)=0,牛顿法是局部二阶收敛的。
简化牛顿法和牛顿下山法都是非线性方程组的求解方法。
1_数值分析4-数值积分与微分
回忆定积分的定义
b
I f (x)dx lim In,
a
n
n
In
f
(k
)
b
n
a
k 1
n充分大时In就是I的数值积分
各种数值积分方法研究的是
k 如何取值,区间 (a,b)如何划分, 使得既能保证一定精度,计算量又小。
(计算功效:算得准,算得快)
5
数值积分
y
1.梯形公式
h
Tn
h
k 1
fk
2 ( f0
fn )
b
f (x)dx
a
b
R( f ,Tn ) I Tn f (x)dx Tn
a
梯形公式在每小段上是用线性插值函数T(x)代替 f(x)
f (x) T(x)
f
(k
2
)
(
x
xk
)(x
xk
1
),
k (xk , xk1)
(
f0
fn)
(3)
k 1
非等距分割梯形公式
Tn
n1 k 0
fk
fk 1 2
(xk 1
xk
)
(4)
8
数值积分 2.辛普森(Simpson)公式
(抛物线公式)
梯形公式相当于用分段线性插值函数代替 f (x)
提高精度
分段二次插值函数
抛物线 公式
y
y=f(x)
每段要用相邻两小区间
数值积分
数值 积分
为什么要作数值积分
• 积分是重要的数学工具,是微分方程、概率 论等的基础;在实际问题中有直接应用。
数值分析课程第五版课后习题答案(李庆扬等)
数值分析课程第五版课后习题答案(李庆扬等)数值分析课程第五版课后习题答案(李庆扬等)第一章:数值分析导论1. 解答:数值分析是一门研究如何使用计算机来解决数学问题的学科。
它包括了从数学理论到计算实现的一系列技术。
数值分析的目标是通过近似的方式求解数学问题,其结果可能不是完全精确的,但是能够满足工程或科学应用的要求。
2. 解答:数值分析在实际应用中起着重要的作用。
它可以用于求解复杂的数学方程、计算机模拟及建模、数据的统计分析等等。
数值分析是科学计算和工程计算的基础,对许多领域都有着广泛的应用,如物理学、经济学、生物学等。
3. 解答:数值方法指的是使用数值计算的方式来求解数学问题。
与解析方法相比,数值方法一般更加灵活和高效,可以处理一些复杂的数学问题。
数值方法主要包括了数值逼近、插值、数值积分、数值微分、线性方程组的求解、非线性方程的求根等。
4. 解答:计算误差是指数值计算结果与精确解之间的差异。
在数值计算中,由于计算机的有限精度以及数值计算方法本身的近似性等因素,都会导致计算误差的产生。
计算误差可以分为截断误差和舍入误差两种。
第二章:数值误差分析1. 解答:绝对误差是指实际值与精确值之间的差异。
例如,对于一个计算出的数值近似解x和精确解x_0,其绝对误差为| x - x_0 |。
绝对误差可以衡量数值近似解的精确程度,通常被用作评估数值计算方法的好坏。
2. 解答:相对误差是指绝对误差与精确解之间的比值。
对于一个计算出的数值近似解x和精确解x_0,其相对误差为| (x - x_0) / x_0 |。
相对误差可以衡量数值近似解相对于精确解的精确度,常用于评估数值计算方法的收敛速度。
3. 解答:舍入误差是由于计算机的有限精度而引起的误差。
计算机中使用的浮点数系统只能表示有限的小数位数,因此在进行数值计算过程中,舍入误差不可避免地会产生。
舍入误差会导致计算结果与精确结果之间存在差异。
4. 解答:误差限度是指对于给定的数值计算问题,所能容忍的误差范围。
数值分析(清华大学第五版) 第四章数值积分和微分
b
a
l j ( x)dx ( x x j -1 )( x x j 1 ) ( x x j 1 )( x x j 1 ) ( x xn ) ( x j xn )
dx
作变量代换, x a th ,则
n t (t 1) h (t j 1)(t j 1) (t n) 上式 dt b a 0 j ( j 1) 1(1) ( j n) 1 n t (t 1) (t j 1)(t j 1) (t n) dt n 0 j ( j 1) 1 (1) ( j n)
该积分仅与 n 有关,与 a, b, f ( x) 无关.
③ 设 n 1 个线性无关的次数 n 的多项式为 e0 ( x), 等距结点 x0 ,
过同样 , en ( x) ,
, xn , 对每一个 ei ( x) 利用 Newton Cotes 公式求积,且积分
余项均为零.即有
n b 1 b a a e0 ( x) dx c j e0 ( x j ) j 0 n 1 b e1 ( x)dx c j e( x j ) a (1) b a j 0 n b 1 b a a en ( x)dx c j en ( x j ) j 0
, n) ,
又设过该结点的次数 n 的 Lagrange插值多项式
P( x) f ( x j )l j ( x) ,
j 0
n
余项
f ( ) R( x) ( x) . (n 1)!
( n 1)
代数精确度
b n
定义 设求积公式 f ( x)dx A j f ( x j ) R(a, b, f ) .
数值分析知识点总结
数值分析知识点总结说明:本文只提供部分较好的例题,更多例题参考老师布置的作业题和课件相关例题。
一、第1章 数值分析与科学计算引论1. 什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系?相对误差限:**r re ε=的一个上界。
有效数字:如果近似值*x 的误差限是某一位的半个单位,该位到*x 的第一位非零数字共有n 位,就说x *共有n 位有效数字。
即x *=±10m ×(a 1+a 2×10-1+…+a n ×10-(n-1)),其中a 1≠0,并且*11102m n x x -+-≤⨯。
其中m 位该数字在科学计数法时的次方数。
例如9.80的m 值为0,n 值为3,绝对误差限*211102ε-=⨯。
2. 一个比较好用的公式:f(x)的误差限:()***()'()()f x f x x εε≈ 例题:二、第2章插值法例题:5. 给出插值多项式的余项表达式,如何用其估计截断误差?6. 三次样条插值与三次分段埃尔米特插值有何区别?哪一个更优越?7. 确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?8. 三弯矩法:为了得到三次样条表达式,我们需要求一些参数:对于第一种边界条件,可导出两个方程:,那么写成矩阵形式:公式 1对于第二种边界条件,直接得端点方程:,则在这个条件下也可以写成如上公式1的形式。
对于第三种边界条件,可得:也可以写成如下矩阵形式:公式 2求解以上的矩阵可以使用追赶法求解。
(追赶法详见第五章)例题:数值分析第5版清华大学出版社第44页例7三、第3章函数逼近与快速傅里叶变换的正交多项式?什么是[-1,1]上的勒让德多项式?它有3.什么是[a,b]上带权()x什么重要性质?4.什么是切比雪夫多项式?它有什么重要性质?5.用切比雪夫多项式零点做插值点得到的插值多项式与拉格朗日插值有何不同?6.什么是最小二乘拟合的法方程?用多项式做拟合曲线时,当次数n较大时,为什么不直接求解法方程?例题请参考第3章书上的作业题和课件上的例题。
数值分析-数值积分详解
xk
和 Ak 的代数问题.
b
a
f ( x)dx
A
k 0
n
k
f ( xk ),
11
例 求a,b,c的值使下列求积公式的代数精度 达到最高。
1 1
f ( x)dx a f (1) bf (0) cf (1)
12
3.
插值型的求积公式
设给定一组节点
a x0 x1 x2 xn b,
b
a
f ( x)dx (b a) f ( ),
3
就是说,底为 b a 而高为 f ( ) 的矩形面积恰等于所求 曲边梯形的面积 I (图4-1).
图4-1
4
问题在于点ξ的具体位置一般是不知道的,因而难以
准确算出 f ( ) 的值.
将 f ( ) 称为区间 [a, b]上的平均高度.
k 0
n
16
4 .
定义2
求积公式的收敛性与稳定性
在求积公式中,若
lim
n h 0 k 0
Ak f ( xk )
n
b
a
f ( x)dx,
( xi xi 1 ), 则称求积公式(1.3)是收敛的. 其中 h max 1i n
在求积公式中,由于计算 f ( xk )可能产生误差 k ,
ab 的“高度” f (c ) 2
近似地取代平均
高度 f ( ),则又可导出所谓中矩形公式(简称矩形公式)
R (b a ) f ( ab ). 2
6
一般地,可以在区间 [a, b] 上适当选取某些节点 xk , 然后用 f ( xk ) 加权平均得到平均高度 f ( )的近似值,这样 构造出的求积公式具有下列形式:
《数值分析-李庆杨》第4章 数值积分与数值微分-文档资料
(a
b).得到的求积公式就是中矩形公式。再令
数
f (x) x2, 代入(1.4)式的第三式有
值
分 析 》
A0 x02
(b
a)( a
b)2 2
b
a 4
(a2
b2)
b x2dx 1 (b3 a3 ),
a
3
说明中矩形公式对f (x) x2不精确成立,故它的代数精确度为1.
当f(x)=x2时(1.4)式的第三个式子不成立,因为
b a (a2 b2 ) b x2dx 1 (b3 a3).
2
a
3
故梯形公式(1.1)的代数精确度为1.
第4章 数值积分与数值微分
在方程组(1.4)中如果节点xi及系数Ai都不确定,那么方 程组(1.4)是关于xi及Ai(i=0,1,…,n)的2n+2个参数的非线性方 程组。此方程组当n>1时求解是很困难的,但当n=0及n=1的 情形还可通过求解方程组(1.4)得到相应的求积公式。
练习 设有求积公式
1
1 f (x)dx A0 f (1) A1 f (0) A2 f (1)
试确定系数A0, A1, A2, 使上述求积公式的代数精度尽量高.
三、插值型求积公式
第4章 数值积分与数值微分
在n 1个互异节点a x0 x1 xn b上已知函数值f0,
A1
1(b a).于是得 2
数 值
I ( f ) b f ( x)dx b a [ f (a) f (b)]
a
2
分
析 这就是梯形公式(1.1),它表明利用线性方程组(1.4)推出的求积公式,
数值分析第五版全答案chap4
第四章 数值积分与数值微分1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 1012101211212(1)()()(0)();(2)()()(0)();(3)()[(1)2()3()]/3;(4)()[(0)()]/2[(0)()];h h h h hf x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-⎰⎰⎰⎰解:求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。
(1)若101(1)()()(0)()h hf x dx A f h A f A f h --≈-++⎰令()1f x =,则1012h A A A -=++令()f x x =,则110A h A h -=-+令2()f x x =,则3221123h h A h A -=+从而解得 011431313A h A h A h -⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩令3()f x x =,则3()0h h hhf x dx x dx --==⎰⎰101()(0)()0A f h A f A f h --++=故101()()(0)()h hf x dx A f h A f A f h --=-++⎰成立。
令4()f x x =,则4551012()52()(0)()3h h hhf x dx x dx hA f h A f A f h h---==-++=⎰⎰故此时,101()()(0)()h hf x dx A f h A f A f h --≠-++⎰故101()()(0)()h hf x dx A f h A f A f h --≈-++⎰具有3次代数精度。
数值分析
数值分析第一章 绪论 ................................................................................................................................... 1 第二章 函数插值 ............................................................................................................................. 2 第三章 函数逼近 ............................................................................................................................. 5 第四章 数值积分与数值微分 ....................................................................................................... 11 第五章 解线性方程组的直接解法 ............................................................................................... 13 第六章 解线性方程组的迭代解法 ............................................................................................... 17 第七章 非线性方程求根 ............................................................................................................... 20 第九章 常微分方程初值问题的数值解法 .. (22)第一章 绪论1.1的相对误差不超过0.1%,应取几位有效数字?解:14a =。
数值分析第四章数值积分
/* Numerical Integration and differentiation*/
§1 引言
近似计算 I
b
f ( x)dx
a
对f()采用不同的近似计算方法,从而得到各
种不同的求积公式。
以上三种方法都是用被积函数值的线性组合来表示积
分值。推广,一般地有
度
Cotes公式是 用不同节点
的函数值 (高度)的 加权平均来 近似区间的
平均高度
对称节点的系数相同
注:当n8时,Cotes系数有负,造成公式不稳定,因此常用
低阶Cotes公式。
Th2. n为偶数时, N-C公式至少具有n+1阶代数精度。
证明:只需证明n为偶数时, N-C公式对f(x)=xn+1的余项 R(f)=0即可。
R[ f h6
]
f
(5) (b)
f
(5) (a)
6阶收敛
例1:计算
1
dx 4
0 1 x2
解: T8
1 16
f
(0)
7
2
k 1
b a
f (x)dx b a
n
C(n) k
f
( x0
kh)
k 0
Newton—Cotes formula
n = 1:
C (1) 0
1 2
,
C (1) 1
1 2
§1 Newton-Cotes Formulae
Trapezoidal Rule
b f ( x)dx b a[ f (a) f (b)]
第四章-4-Gauss公式
f (x ) n1
i 0 i
n
R[ f ]
( 2 n 2) 2 f ( ) 2 n 2 2 (2n 2)!
(-1, 1)
简单 G-C 公式
n=0
1
1
(1 x 2 )1/ 2 f ( x ) dx f (0)
n=1
n=2
1
2 1/ 2 f 2 2 f (1 x ) f ( x ) d x 1 2 1
关键点!
与 1, x, x2, ..., xn 带权正交
设 p0(x), p1(x), , pn(x) , 是 [a, b] 上带权 (x) 正交 的多项式族,则 Gauss 点即为 pn+1(x) 的零点 Gauss 系数的计算
将 f (x) = 1, x, x2, …, xn 代入,解线性方程组 或利用 Lagrange 基函数
G-L 公式
一般区间上的 G-L 求积公式
I [ f ] f ( x)dx
a b
ab ba t 令 x 2 2 ab ba t) 则 g (t ) f ( 2 2 从而 b ba 1 ba n I [ f ] f ( x)dx g (t )dt Ai g (ti ) a 2 1 2 i 0 在标准区间上采用G-L求积公式!
I [ f ] f ( x)dx
b a i 0
m 1
xi1
xi
f ( x)dx
xi xi 1 hi t , hi xi 1 xi 在每个区间上令 x 2 2 m 1 hi 1 hi I [ f ] f ( xi 1/ 2 t )dt 1 2 i 0 2
数值分析4 - 数值积分
从 而该公式对次数 n的代数多项式精确成立 。 故有m n。
(充 分 性 ) “”
若m n,由lk ( x)的次数为 n, 对f ( x) lk ( x) (lk ( x)为n次Lagrange插值
有 ( x ) f ( x )dx ( x )l k ( x )dx , 基函数 ), a a
说明:不研究一般的求积公式。 ( n1) 推论2:若 f C [a, b] ,(3)式是插值型求积公式,则有余项公式
R[ f ]
b a
f ( n1) ( ( x )) ( x) n1 ( x )dx, ( n 1)!
(4)
其中 n1 ( x) ( x x0 )( x x1 )( x xn )。
1 f ( x )dx [ f ( 1) 4 f (0) f (1)]的代数精度. 3
分析:由等价定义, 求代数精度,只对最简单的函数xm来验证。
k为 奇 数 0, k 1 1 ( 1 ) k 2 解: I k 1x dx k 1 , k为 偶 数 k 1 1 1 当f ( x ) 1时(k 0), f ( 1) 4 f (0) f (1) (1 4 1 1) 2 I 0 ; 3 3 1 1 当f ( x) x时(k 1), f ( 1) 4 f (0) f (1) ( 1 4 0 1) 0 I1; 3 3
1
1 1 2 当f ( x ) x 时( k 2), f ( 1) 4 f (0) f (1) (1 0 1) I 2 ; 3 3 3 1 1 当f ( x ) x 3 时( k 3), f ( 1) 4 f (0) f (1) ( 1 0 1) 0 I 3 ; 3 3 1 1 2 2 4 当f ( x ) x 时( k 4), f ( 1) 4 f (0) f (1) (1 0 1) I 4。 3 3 3 5
数值分析第五版答案
数值分析第五版答案 第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x xe x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求nx 的相对误差。
解:设()nf x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x .其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x xεεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈6.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =,27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。
数值分析讲义第四章数值积分
方法的选取
不同的数值积分方法具有不同 的收敛性和稳定性,应根据具 体问题选择合适的方法。
初值和边界条件
初值和边界条件对数值积分的 收敛性和稳定性也有影响,不 合理的初值和边界条件可能导 致数值积分发散或误差增大。
05
数值积分的应用实例
在物理模拟中的应用
01
流体动力学模拟
数值积分被广泛应用于流体动力 学模拟中,如计算流体速度、压 力、温度等的分布。
02
数值积分方法
矩形法
总结词:简单直观
详细描述:矩形法是一种基本的数值积分方法,它将积分区间划分为若干个小的矩形,然后求和近似计算积分值。由于计算 简单直观,适用于初学者理解数值积分的基本思想。
梯形法
总结词:易于理解
详细描述:梯形法是另一种数值积分方法,它将积分区间划分为若干个小的梯形,然后求和近似计算 积分值。与矩形法相比,梯形法更接近于真实曲线下面积的形状,因此误差相对较小。
衍生品定价
通过数值积分方法,可以 对复杂的衍生品进行定价, 如期权、期货等。
蒙特卡洛模拟
蒙特卡洛模拟是一种基于 随机抽样的数值积分方法, 常用于估计预期收益和风 险。
在图像处理中的应用
图像滤波
通过数值积分方法,可以 对图像进行滤波处理,如 平滑、锐化等。
图像重建
在图像重建中,数值积分 常用于从部分图像数据中 恢复完整的图像。
辛普森法
总结词:精度较高
详细描述:辛普森法是数值积分的一种改进方法,它利用了被积 函数在积分区间的端点和中心点的函数值进行近似计算,因此精 度相对较高。辛普森法是数值积分中常用的方法之一。
高斯法
总结词:高精度
VS
详细描述:高斯法是一种基于高斯积 分的数值积分方法,它利用了被积函 数在积分区间内的高斯点的函数值进 行近似计算,具有很高的精度。高斯 法适用于需要高精度计算的情况,但 计算过程相对复杂。
数值分析-李庆杨-第4章 数值积分与数值微分
即得求积公式
b
n
f(x)dx
a
A kfk,
其A k中 a blk(x)dx.
k0
称为插值型求积公式.
(1.
第4章 数值积分与数值微分
它的余项为
b
R[f] a
f(x)Ln(x)dxa bf((n n 1)1 ())!j n0(xxj)dx.
(1.7
《
数
定理求 1 积公 bf(x式 )dxn a
为了构造出形如(1.3)式的求积公式,原则上是一个 确定参数xk和Ak的代数问题。
例如n=1时,取x0=a,x1=b,求积公式为
b
I(f) af(x )d x A 0 f(a ) A 1 f(b ).
第4章 数值积分与数值微分
在线性方程组(1.4)中令m 1,则得
A0 A1 b a,
A 0a
n
n
记 In(f)= A kf(xk),In(f% )= A kf% k
k0
k0
n
则 有 |In(f)In(f% )| A k[f(xk)f% k]. k0
第4章 数值积分与数值微分
定 义 若 30,0只 , 要 f(xk)~ fk (k0,,n),就有
|In(f)In(~ f)| n Ak[f(xk)~ f(xk)], k0
第4章 数值积分与数值微分
第4章 数值积分和数值微分
§4.1 引 言
在一元函数的积分学中,我们已经熟知,若函数f(x)
《
数 在区间[a, b] 上连续且其原函数为F(x) ,则可用牛顿
值 分
―莱布尼兹公式
析
》
b
a f(x)dxF(b)F(a)
第4章 数值积分与数值微分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代入 P0 = 1:ab1/*dtxra梯pbe形zoa公id=a式lbr2ual[e1*/ 1] f(a)
f(b)
代入
P1
=
x
:
b
xdx
a
b2a2 2
=
b2a[ab]
a
b
代入
P2
=
x2
:b a
x2dx
b3a3 3
b2a[a2 b2]
代数精度 = 1
§1 Newton-Cotes Formulae
第四章 数值积分与数值微分
/* Numerical Integration and differentiation*/
§1 引言
近似计算 I
b
f (x)dx
a
对f( )采用不同的近似计算方法,从而得到各
种不同的求积公式。
以上三种方法都是用被积函数值的线性组合来表示积
分值。推广,一般地有 b
n
求积系数,与被 积函数无关
f (x)dx
a
Ak f(xk)
k0
求积节 点
像这样,将积分用若干节点上被积函数值的线性组合来表示
的数值积分公式称为机械求积公式。
求积误差
b
n
R[f] f(x)dx a
Akf(xk)
k0
机械型求积公式的构造归结为,确定求积节点xk和求积系
数Ak,使在某种意义下精确度较高。总之,要解决三个问 题:
误差 R[ f ]
b
Ak a
k0
b
n
jk
(xxj ) (xkxj )
d
x由与节f (点x)
决定, 无关。
f ( x )dx
a
Ak f ( xk )
k0
b
b
[
a
f
(x)
Ln ( x )]dx
a Rn ( x )dx
b a
f ( n1) ( x (n 1)!
)
n k0
(x
xk
) dx
令 xath
n
(tj)h h d t(b a ) (1 )n i n
(tj)dt
0i j(ij)h
n i!(n i)!0i j
注:Cotes 系数仅取决于 n 和 i, 可查表得到。与 f (x) 及区 间[a, b]均无关。
Cotes系数
C
(n) i
a bf(x)dxbanC k (n)f(x0kh) k0
代数精度与误差的关系:代数精度越高,求积误差越小。
结论:
问题2
要使求积公式具有m阶代数精度,则它对1,x,…,xm均准确成立,
即
n
Ak b a
k0
m+1个方程, 2n+2个未知数
n
k0
Ak xk
1 2
b2 a2
M
n k0
Ak
x
m k
1 m 1
b m 1 a m 1
由上面代数精度条件确定求积公式可分两种情形:
插值型积分公式
/*interpolatory quadrature*/
思 路
利用插值多项式
Pn(x)f(x)则积分易算。
在[a, b]上取 a x0 < x1 <…< xn b,做 f 的 n 次插值多
n
项式 Ln(x) f(xk)lk(x,)即得到 k0
b
n
b
f(x)dx
a
f(xk)alk(x)dxAk
偶数阶N-C公式具 有n+1阶代数精度
Cotes公式是 用不同节点 的函数值 (高度)的 加权平均来 近似区间的 平均高度
对称节点的系数相同
注:当n 8时,Cotes系数有负,造成公式不稳定,因此常 用低阶Cotes公式。
Th2. n为偶数时, N-C公式至少具有n+1阶代数精度。
证明:只需证明n为偶数时, N-C公式对f(x)=xn+1的余项 R(f)=0即可。
90
2
n = 3: Simpson’s 3/8-Rule, 代数精度 = 3,
R[f]3h5f(5)()
80
n = 4: Cotes Rule, 代数精度 = 5,
R[f] 8 h7f(6)()
945
a b f( x ) d x b 9 0 a [ 7 f( x 0 ) 3 2 f( x 1 ) 1 2 f( x 2 ) 3 2 f( x 3 ) 7 f( x 4 ) ]
n
Th1.形如 Ak f (xk ) 的求积公式至少有 n 次代数精度 该 k0 公式为插值型(即:Ak ablk(x)dx)
§2 Newton--Cotes 公式
❖
当节点等距分布时:
b a x iaih ,hn,
i0 ,1 ,..,n .
Ai
xn x0 ji
(xxj
) d
x
(xi xj)
1. 精确度的度量标准;
2. 如何构造具体的求积公式;
3. 具体求积公式构造出来后,误差如何估计?
问题1
定义:代数精度
若某个求积公式对次数 m 阶的多项式准确成立,而对 m+1 阶 的 多 项 式 不 一 定 准 确 成 立 。 即 对 应 的 误 差 满 足 : R[ Pk ]=0 对任意 k m 阶的多项式成立,且 R[ Pm+1 ] 0 对某 个 m+1 阶多项式成立,则称此求积公式的代数精度为 m 。
Newton—Cotes formula
n = 1:
C0(1) 1 2,
C1(1)
1 2
§1 Newton-Cotes Formulae
Trapezoidal Rule
bf(x)d xba[f(a)f(b)]
a
2
代数精度 = 1
R [f]abf2 (!x)(xa)x (b)dx/值* 定令理x =*/a+th, h = ba, 用中
1h 3f(), [a ,b ],h b a
12
1
n = 2: C 0 (2)1 6, C 1 (2)3 2, C 2 (2)1 6
Simpson’s Rule
a bf(x )d x b 6 a [f(a ) 4f(a 2 b)f(b )]代数精度 = 3
R [f] 1 h 5 f(4 )(), ( a ,b ),h b a
§1 Newton-Cotes Formulae
例:对于[a, b]上1次插值,有 L 1 (x ) a x b bf(a ) b x a af(b )
b
A 1 A 2 b 2 a af(x )d x b 2 a[f(a ) f(b )]
考察其代数精度。
f(x)
解:逐次检查公式是否精确成立
1. 若事先给定求积节点xk(k=0,…,n),例如被积函数以表的形式 给出时xk确定,可令m=n,由上式确定n+1个系数Ak即令m=2n +1,确定xk和法Ak ---Gauss法
Case 1---方法1
Case 1---方法2 §1 插值型求积 公式