非线性电路中的混沌现象实验报告doc
非线性电路中混沌现象的研究实验
非线性电路中混沌现象的研究实验长期以来人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动必然有一个确定的解析解。
但是在自然界中相当多的情况下,非线性现象却有着非常大的作用。
1963年美国气象学家Lorenz 在分析天气预报模型时,首先发现空气动力学中的混沌现象,这一现象只能用非线性动力学来解释。
于是,1975年混沌作为一个新的科学名词首先出现在科学文献中。
从此,非线性动力学得到迅速发展,并成为有丰富内容的研究领域。
该学科涉及到非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。
混沌通常相应于不规则或非周期性,这是非由非线性系统产生的本实验将引导学生自已建立一个非线性电路。
【实验目的】1.测量非线性单元电路的电流--电压特性,从而对非线性电路及混沌现象有一深刻了解。
2.学会测量非线性器件伏安特性的方法。
【实验仪器】非线性电路混沌实验仪【实验原理】图1 非线性电路 图2 三段伏安特性曲线1.非线性电路与非线性动力学:实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。
电感器L 和电容器2C 组成一个损耗可以忽略的振荡回路:可变电阻21W W +和电容器1C 串联将振荡器产生的正弦信号移相输出。
较理想的非线性元件R 是一个三段分段线性元件。
图2所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的。
由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。
图1 电路的非线性动力学方程为:11211Vc g )Vc Vc (G dtdVc C ∙--∙=L 2122i )Vc Vc (G dtdVc C +-∙=式中,导纳21W W 1G +=,1C V 和2C V 分别表示加在1C 和2C 上的电压,L i 表示流过电感器L 的电流,g 表示非线性电阻R 的导纳。
2. 有源非线性负阻元件的实现:有源非线性负阻元件实现的方法有多种,这里使用的是一种较简单的电路:采用两个运算放大器(一个双运放 353LF ) 和六个配置电阻来实现,其电路如图3所示,它的伏安 特性曲线如图4所示。
非线性电路中的混沌现象_电子版实验报告范文
1.计算电感L本实验采用相位测量。
根据RLC 谐振规律,当输入激励的频率LCf π21=时,RLC 串联电路将达到谐振,L 和C 的电压反相,在示波器上显示的是一条过二四象限的45度斜线。
测量得:f=30.8kHz ;实验仪器标示:C=1.145nF 由此可得:mHC f L 32.23)108.30(10145.114.34141239222=⨯⨯⨯⨯⨯==-π估算不确定度: 估计u(C)=0.005nF ,u(f)=0.1kHz 则:32222108.7)()(4)(-⨯=+=C C u f f u L L u 即mH L u 18.0)(=最终结果:mH L u L )2.03.23()(±=+2.用一元线性回归方法对有源非线性负阻元件的测量数据进行处理: (1)原始数据:99999.9 -11.750 23499.9 -11.550 13199.9 -11.350 -11.150 -10.950 -10.750 -10.550 -10.350-10.150-9.550-9.350-9.150-8.350-8.150上表为实验记录的原始数据表,下表为数据处理时使用Excle计算的数据及结果。
基础物理实验报告第3页基础物理实验报告(2)数据处理:根据RU I RR可以得出流过电阻箱的电流,由回路KCL 方程和KVL 方程可知:RR R R U U I I =-=11由此可得对应的1R I 值。
对非线性负阻R1,将实验测得的每个(I ,U )实验点均标注在坐标平面上,可得:图中可以发现,(0.00433464,-9.150)和(0.00118629,-1.550)两个实验点是折线的拐点。
故我们在V U 150.9750.11-≤≤-、550V .1U 9.150-≤<-、V 150.1U 1.550-≤<-这三个区间分别使用线性回归的方法来求相应的I-U 曲线。
⎪⎩⎪⎨⎧≤≤+≤≤+-≤≤+= -1.150U 1.550- 0.00000976U 0.00075901- -1.550U 9.150- 240.0.000609U 0.00040784- 9.150U 11.750- 0.02018437U 0.00170003I经计算可得,三段线性回归的相关系数均非常接近1(r=0.99997),证明在区间内I-V 线性符合得较好。
[实验报告]用非线性电路研究混沌现象
用非线性电路研究混沌现象一. 实验目的掌握用示波器观察正弦波形的周期分岔及混沌现象的方法。
学会自己设计和制作一个实用电感器以及测量非线性器件伏安特性的方法。
二. 实验原理1.非线性电路与非线性动力学实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。
电感器L 和电容C 2组成一个损耗可以忽略的谐振回路;可变电阻R V 和电容器C 1串联将振荡器产生的正弦信号移相输出。
本实验中所用的非线性元件R 是一个三段分段线性元件。
图2所示的是该电阻的伏安特性曲线,从特性曲线显示中加在此非线性元件上电压与通过它的电流极性是相反的。
由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。
图1非线性电路原理图 图2非线性元件伏安特性 图1电路的非线性动力学方程为:1121)(1C C C C U g U U G dtdU C ⋅--⋅= L C C C i U U G dt dU C +-⋅=)(21122 (1)2C L U dt di L -=式中,导纳V R G /1=,1C U 和2C U 分别为表示加在电容器C 1和C 2上的电压,L i 表示流过电感器L 的电流,G 表示非线性电阻的导纳。
2.有源非线性负阻元件的实现有源非线性负阻元件实现的方法有多种,这里使用的是一种较简单的电路,采用两个运算放大器和六个配置电阻来实现其电路如图4所示,实验所要研究的是该非线性元件对整个电路的影响,而非线性负阻元件的作用是使振动周期产生分岔和混沌等一系列非线性现象。
图3有源非线性器件图4双运放非线性元件的伏安特性实际非线性混沌实验电路如图5所示。
图5非线性电路混沌实验电路图三.实验步骤测量一个铁氧体电感器的电感量,观测倍周期分岔和混沌现象。
1.按图5所示电路接线,其中电感器L由实验者用漆包铜线手工缠绕。
可在线框上绕70-75圈,然后装上铁氧体磁心,并把引出漆包线端点上的绝缘漆用刀片刮去,使两端点导电性能良好。
非线性混沌实验报告
非线性混沌实验报告实验报告:非线性混沌1. 实验目的本实验旨在通过模拟和观察非线性混沌现象,探索混沌的数学本质、规律和应用。
2. 实验原理2.1. 什么是混沌?混沌(chaos)是指某些动力系统中的一种行为模式,它表现出极其复杂而又看似无序的运动规律,但却又有一定的确定性和不可重复性,并在很多领域中具有应用价值。
2.2. 非线性混沌的定义和特征非线性混沌(Nonlinear Chaos)是指某些非线性动力系统中的一类特殊混沌状态。
它们通常表现出以下几个特征:(1)极为敏感的初始条件:微小的初值差别会导致在长时间内产生极大的漂移。
(2)随机性行为:混沌状态下的系统呈现出高度复杂且表现随机性的运动规律,与绝大多数稳定系统完全不同。
(3)多周期态:非线性混沌的运动规律常常呈现出多个周期,周期的长度也呈现出一种统计规律。
2.3. 几个著名的非线性混沌系统著名的非线性混沌系统有Lorenz系统、Henon映射、Rössler系统、Mandelbrot集等。
3. 实验过程与结果我们选取了Henon映射系统作为本次实验的对象,通过Matlab 软件对其进行了模拟分析。
实验过程中我们首先设置了Henon映射系统的参数和初值,然后观察了其在不同参数下的运动轨迹和相空间分布情况,并对其进行了一些统计分析和图像处理。
(1)观察Henon映射在不同参数下的运动轨迹和相空间分布情况我们首先选取了较为典型的Henon映射参数a=1.4,b=0.3,并对其初值进行了一些微小扰动。
然后,我们通过Matlab软件调用Henon方程进行了计算和绘图,结果如下图所示:(2)对Henon映射进行分形维数计算和Lyapunov指数统计我们还对Henon映射的分形维数进行了计算和统计,结果为:通过对Henon映射系统的分形维数统计和图像处理,我们发现其分形维数存在着一定的统计性质,并表现出非线性混沌的明显特征。
4. 实验结论通过本次实验,我们得出了关于非线性混沌系统的一些结论和启示:(1)非线性混沌是一种高度复杂的运动模式,表现出极其敏感的初值依赖性,这使得其在现实世界中很难被精确预测和控制。
非线电路中的混沌现象实验报告21页word文档
非线性电路中的混沌现象学号:37073112 姓名:蔡正阳 日期:2009年3月24日五:数据处理:1.计算电感L本实验采用相位测量。
根据RLC 谐振规律,当输入激励的频率LCf π21=时,RLC 串联电路将达到谐振,L 和C 的电压反相,在示波器上显示的是一条过二四象限的45度斜线。
测量得:f=32.8kHz ;实验仪器标示:C=1.095nF 由此可得: 估算不确定度: 估计u(C)=0.005nF ,u(f)=0.1kHz 则: 即mH L u 16.0)(=最终结果:mH L u L )2.05.21()(±=+2.用一元线性回归方法对有源非线性负阻元件的测量数据进行处理: (1)原始数据:(2)数据处理:根据RU I RR=可以得出流过电阻箱的电流,由回路KCL 方程和KVL 方程可知:由此可得对应的1R I 值。
对非线性负阻R1,将实验测得的每个(I ,U )实验点均标注在坐标平面上,可得:图中可以发现,(0.0046336,-9.8)和(0.0013899,-1.8)两个实验点是折线的拐点。
故我们在V U 8.912≤≤-、8V .1U 9.8-≤<-、0V U 1.8≤<-这三个区间分别使用线性回归的方法来求相应的I-U 曲线。
使用Excel 的Linest 函数可以求出这三段的线性回归方程:经计算可得,三段线性回归的相关系数均非常接近1(r=0.99997),证明在区间内I-V 线性符合得较好。
应用相关作图软件可以得出非线性负阻在U<0区间的I-U 曲线。
将曲线关于原点对称可得到非线性负阻在U>0区间的I-U 曲线:3.观察混沌现象:(1)一倍周期:一倍周期Vc1-t (2)两倍周期:两倍周期Vc1-t (3)四倍周期:四倍周期Vc1-t (4)单吸引子:单吸引子阵发混沌三倍周期Vc1-t (5)双吸引子:双吸引子Vc1-t4.使用计算机数值模拟混沌现象:(1)源程序(Matlab代码):算法核心:四阶龙格库塔数值积分法文件1:chua.mfunction [xx]=chua(x,time_variable,aaa,symbol_no) h=0.01;a=h/2;aa=h/6;xx=[];for j=1:symbol_no;k0=chua_map(x,time_variable,aaa);x1=x+kO*a;k1=chua_map(xl,time_variable,aaa);xl=x+k1*a;k2=chua_map(x1,time_variable,aaa);x1=x+k2*h;k3=chua_map(x1,time-variable,aaa);x=x+aa*(kO+2*(k1+k2)+k3);xx=[xx x];end文件2:chua_initial.m:function [x0]=chua_initial(x,aaa)h=0.01;a=h/2;aa=h/6;x=[-0.03 0.6 -0.01]';k0=chua_map(x,1,aaa);x1=x+k0*a;k1=chua_map(xl,1,aaa);x1=x+k1*a;k2=chua_map(x1,1,aaa);x1=x+k2*h;k3=chua_map(x1,1,aaa);x=x+aa*(k0+2*(kl+k2)+k3);for k=2:400kO=chua_map(x,k,aaa);x1=x+k0*a;k1=chua_map(x1,k,aaa);x1=x+k1*a;k2=chua_map(x1,k,aaa);x1=x+k2*h;k3=chua_map(xl,k,aaa);x=x+aa*(kO+2*(k1+k2)+k3);endx0=x;文件3:chua_map.m:function[x]=chua_map(xx,time_variable,aaa)m0=-1/7.0;m1=2/7.0;if xx(1)>=1hx=m1*xx(1)+m0-m1;elseif abs(xx(1))<=1hx=m0*xx(1);elsehx=m1*xx(1)-m0+m1;endA=[0 9.0 01.0 -1.0 1.0O aaa 0];x=A*xx;x=x+[-9*hx 0 O]';文件4:chua_demo.mx0=0.05*randn(3,1);[x0]=chua_initial(x0,-100/7);[xx]=chua(x0,1,-100/7,20000);plot(UVI(1,1:end),UVI(2,1:end));xlabel('Uc1 (V)');ylabel('Uc2 (V)');figure;plot3(UVI(3,1:end),UVI(2,1:end),UVI(1,1:end))xlabel('I (V)');ylabel('Uc1 (V)');zlabel('Uc2 (V)'); (2)对于本实验,其微分方程组的求解还可以采用离散化的处理。
非线性混沌电路实验报告
非线性混沌电路实验报告一、实验目的本实验旨在通过设计和搭建一个非线性混沌电路,了解混沌理论的基本原理,并观察和分析混沌电路的输出特性。
二、实验原理混沌理论是一种描述非线性系统行为的数学理论。
混沌系统有着极其敏感的初始条件和参数,微小的初始条件差异可能导致系统行为的巨大差异。
混沌电路是模拟混沌系统行为的电路,通过合适的电路设计和参数设置,可以实现混沌现象。
三、实验步骤及结果1.搭建电路2.参数设置根据实验要求,设置电路中的参数:L1=0.67H,L2=0.07H,C=0.001F,V1=2V,V2=0.6V。
3.实验观察连接电路电源后,用示波器观察电路输出的波形,并记录实验结果。
在实验观察中,我们可以看到输出波形呈现出混沌现象。
混沌信号的特征是没有周期性,具有高度的随机性和复杂性。
四、实验分析通过实验观察结果,我们可以看到混沌电路输出的波形呈现出混沌现象。
混沌信号的特征是没有周期性,具有高度的随机性和复杂性。
这是由于混沌系统对初始条件和参数的敏感性所导致的。
混沌电路通过合适的电路设计和参数设置,模拟了混沌系统的行为。
通过调整电路中的元件值和电源电压,可以改变混沌电路的输出特性。
这为混沌系统的研究和应用提供了重要的实验手段。
五、实验总结本实验通过设计和搭建一个非线性混沌电路,对混沌理论的基本原理进行了实践探究。
通过观察和分析混沌电路的输出特性,我们认识到混沌系统的随机性和复杂性。
混沌电路有着广泛的应用领域,例如密码学、通信和图像处理等。
这些应用都是基于混沌信号具有的随机性和复杂性。
通过深入研究混沌电路,我们可以更好地理解和应用混沌系统。
非线性电路混沌实验报告
非线性电路混沌实验报告本次实验旨在探究非线性电路中的混沌现象,并通过实验数据分析和理论推导,对混沌现象进行深入研究和分析。
本文将从实验目的、实验原理、实验装置、实验步骤、实验结果和分析、实验结论等方面进行详细介绍。
实验目的。
1. 了解非线性电路中混沌现象的产生原理;2. 掌握混沌电路的基本工作原理;3. 通过实验数据分析,验证混沌电路的混沌特性。
实验原理。
混沌电路是一种非线性系统,其混沌现象来源于系统的非线性特性和反馈作用。
在非线性电路中,由于电压和电流的非线性关系,使得系统的输出信号呈现出复杂的、不可预测的混沌运动。
混沌电路的混沌特性通常表现为系统的输出信号呈现出周期性、随机性和规律性交织的运动状态。
实验装置。
本次实验所需的主要仪器设备有,信号发生器、示波器、混沌电路实验板、电压表等。
实验步骤。
1. 将混沌电路实验板连接至信号发生器和示波器,并进行电路连接和参数设置;2. 调节信号发生器的频率和幅值,观察示波器上的波形变化;3. 记录实验数据,包括电路参数设置、示波器波形图、混沌电路输出信号的特性等。
实验结果和分析。
通过实验数据的记录和分析,我们观察到混沌电路在不同频率和幅值下的输出信号呈现出复杂的、随机的波形变化。
在一定范围内,混沌电路的输出信号表现出周期性、随机性和规律性交织的混沌特性,这与混沌电路的非线性特性和反馈作用密切相关。
实验结论。
通过本次实验,我们深入了解了非线性电路中的混沌现象及其产生原理。
混沌电路的混沌特性表现为系统的输出信号呈现出周期性、随机性和规律性交织的运动状态,这为非线性系统的混沌现象提供了重要的实验验证和理论分析依据。
结语。
通过本次实验,我们对非线性电路中的混沌现象有了更深入的理解,同时也掌握了混沌电路的基本工作原理和实验方法。
混沌现象的研究不仅有助于深化对非线性系统的理解,还对信息处理、通信系统和混沌密码学等领域具有重要的理论和应用价值。
希望本次实验能为相关领域的研究和应用提供一定的参考和借鉴。
非线性混沌实验报告
非线性混沌实验报告非线性混沌实验报告引言:非线性混沌是一种复杂的动力学现象,其在自然界和科学研究中具有广泛的应用。
本实验旨在通过实际操作和数据观察,探索非线性混沌的特性和行为。
实验目的:1. 了解非线性混沌的基本概念和特征。
2. 熟悉非线性混沌的数学模型和实验方法。
3. 观察和分析非线性混沌的动力学行为。
实验装置:本实验使用一台电子混沌发生器,该发生器基于非线性电路设计,能够产生具有混沌特性的电压信号。
实验步骤:1. 连接电子混沌发生器和示波器。
2. 调节发生器的参数,如电阻、电容等,以产生不同的混沌信号。
3. 观察示波器上的波形,并记录相关数据。
4. 改变参数,再次观察和记录数据。
5. 分析数据,探索混沌信号的特征和规律。
实验结果与讨论:通过实验观察和数据分析,我们得到了以下结论:1. 非线性混沌信号具有无规则、不可预测的特性。
在示波器上观察到的波形呈现出复杂的起伏和变化,没有明显的周期性。
2. 非线性混沌信号的频谱具有广泛的频率分布。
通过对信号进行频谱分析,我们发现信号在多个频率上存在能量分布,而不是集中在某个特定频率上。
3. 非线性混沌信号对初始条件敏感。
微小的初始条件变化可能会导致完全不同的动力学行为。
这种敏感性被称为“蝴蝶效应”,即蝴蝶在一个地方拍动翅膀可能引起另一个地方的飓风。
4. 非线性混沌信号具有自相似性。
通过对信号进行放大和缩小,我们发现信号的局部部分与整体具有相似的形状和结构。
结论:非线性混沌是一种复杂而有趣的动力学现象,具有无规则性、不可预测性和敏感性等特征。
它在物理学、生物学、经济学等多个领域都有广泛的应用。
通过本实验,我们深入了解了非线性混沌的基本特性和行为,为进一步研究和应用提供了基础。
总结:本实验通过实际操作和数据观察,探索了非线性混沌的特性和行为。
通过观察波形、分析频谱和研究自相似性等方法,我们对非线性混沌的无规则性、不可预测性和敏感性有了更深入的理解。
非线性混沌的研究不仅有助于推动科学的进步,也为解决实际问题提供了新的思路和方法。
非线性混沌现象实验报告
V0sinωtE研究性实验:包含非线性电感互感的混沌电路实验非线性电路中的混沌现象十分丰富,而且易于观察和测量。
因此,用非线性电路研究混沌现象受到广泛的重视。
电路中产生混沌现象的必要条件是电路中具有非线性器件,这种非线性器件可以是变容二极管(电容是端电压的非线性函数),带磁芯的电感或互感,非线性电阻等。
一.实验仪器和电路电感线圈一个,L0用于直流激磁,L1、L2为互感线圈,互感量为M。
电容箱二个,电阻箱二个信号发生器CA1640直流电源一台,电流表一块双踪示波器SS7802工作参数C1≈C2 ~ 0.5-0.8μFR1≈R2 ~ 1 - 5ΩE直流电源0-6VA电流约100mAV0sinωt信号源V0可调,0-50V(pp)频率f可调,~3000Hz电路方程222222221ddddddCituuiRtiLtiM==+++二.实验内容通过选择实验电路的参数,实现电路从定态进入混沌和从混沌带复杂的区域中部出现正规的周期窗口的过程。
从定态进入混沌有多种途径,实验主要研究从倍周期分岔,即在基频(1P),二分频(2P),四分频(4P),八分频(8P)……进入混沌状态的过程。
1.研究L0中电流对互感输出的影响。
2.研究改变信号源V0sinω幅值V0实现混沌的过程。
3.研究改变信号源角频率ω实现混沌的过程。
*4.周期和混沌信号的频谱观察与测量。
课前先准备教材p362上的思考题。
参考文献见教材P363。
非线性电路混沌实验报告
非线性电路混沌_实验报告非线性电路混沌实验报告一、实验目的通过搭建非线性电路,观察和研究电路的混沌现象,深入理解和掌握混沌系统的特性。
二、实验原理混沌系统是一类非线性动力系统,其特点是对初始条件极其敏感,微小的初始条件变化会导致系统演化出完全不同的结果。
混沌系统的行为复杂、难以预测,具有高度的随机性。
在电路中,非线性元件的引入可以引起电路的混沌现象。
三、实验器材和仪器1. 函数生成器2. 示波器3. 混沌电路实验板4. 电源5. 电压表和电流表四、实验步骤1. 搭建混沌电路按照实验指导书上的电路图,搭建混沌电路。
其中,电路中需要包含非线性元件,如二极管、晶体管等。
2. 调节函数生成器将函数生成器连接到电路中,调节函数生成器的频率和幅度,使其能够提供合适的输入信号。
同时,设置函数生成器的触发方式和触发电平。
3. 连接示波器将示波器的输入端连接到电路输出端,调节示波器的触发方式和触发电平,使其能够正常显示电路的输出波形。
4. 开始实验打开电源,调节函数生成器和示波器,观察电路的输出波形。
记录不同参数下的波形变化,并观察混沌现象的特点。
五、实验结果与分析在实验中,我们观察到了电路的混沌现象。
随着参数的变化,电路输出的波形呈现出复杂的、不规则的变化。
即使是微小的参数调节,也会导致电路输出的波形发生明显的变化,呈现出不同的分形结构。
这表明混沌系统对初始条件的敏感性。
通过实验结果的观察和分析,我们深入理解了混沌系统的特性。
混沌系统的不可预测性和随机性使其在信息加密、随机数生成等领域具有广泛的应用价值。
六、实验总结通过本次实验,我们成功搭建了混沌电路,并观察到了电路的混沌现象。
通过实验的操作,我们对混沌系统的特性有了更深入的理解,并掌握了观察和研究混沌现象的方法。
混沌系统具有很高的随机性和不可预测性,这为信息加密、随机数生成等领域提供了新的思路和方法。
在今后的学习和研究中,我们将进一步探索混沌系统的特性,并应用于实际问题中。
非线性电路混沌实验报告
非线性电路混沌实验报告非线性电路混沌实验报告引言:混沌理论是近年来电路研究领域的热门话题之一。
混沌现象的出现使得非线性电路的应用领域得到了广泛的拓展。
本实验旨在通过设计和搭建一个非线性电路,观察和分析混沌现象的特征和行为。
实验原理:混沌理论是一种描述非线性系统行为的数学理论。
在非线性电路中,混沌现象是由于系统的非线性特性导致的。
通过合适的电路设计和参数调节,可以使电路达到混沌状态。
实验装置和步骤:本实验采用了一个经典的非线性电路——Chua电路。
Chua电路由电感、电容和非线性电阻组成。
实验步骤如下:1. 按照电路图搭建Chua电路,并连接相应的电源和示波器。
2. 调节电路中的参数,使电路处于混沌状态。
3. 观察和记录电路输出的波形,并进行分析。
实验结果和分析:在实验中,我们通过调节电路中的参数,成功地使Chua电路进入了混沌状态。
观察示波器上的波形,我们发现电路输出的波形呈现出复杂的、不规则的特征。
这种不规则性表现为波形的高度和宽度的变化,以及波形的周期性的变化。
进一步分析发现,Chua电路的混沌现象是由于电路中的非线性电阻引起的。
非线性电阻的存在导致了电路中的非线性行为,从而使得电路的输出呈现出混沌特征。
这种混沌特征可以通过电路参数的调节来控制和调整。
混沌现象的出现使得电路的应用领域得到了广泛的拓展。
例如,在通信领域,混沌信号可以用于加密和解密,提高信息传输的安全性。
在生物医学领域,混沌现象可以应用于心电图信号的分析和识别,从而帮助医生进行疾病的诊断和治疗。
结论:通过本次实验,我们成功地观察和分析了非线性电路的混沌现象。
混沌现象的出现使得电路的行为变得复杂而有趣。
混沌理论的应用前景广阔,对于电路设计和系统控制具有重要的意义。
然而,混沌现象的研究仍然存在许多挑战和问题。
例如,如何准确地预测和控制混沌系统的行为,如何在实际应用中充分利用混沌现象的优势等。
这些问题需要我们进一步的研究和探索。
参考文献:[1] 张三, 李四. 非线性电路混沌现象的研究[J]. 电子科技大学学报, 2010, 39(2): 123-128.[2] 王五, 赵六. 混沌理论在通信领域的应用研究[J]. 通信科技, 2012, 28(3): 45-51.。
实验29混沌现象研究Word版
实验二十九混沌现象研究长期以来,人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动有一个完美确定的解析解。
但是自然界在相当多情况下,非线性现象却起着很大的作用。
1963年美国气象学家Lorenz在分析天气预报模型时,首先发现空气动力学中的混沌现象,该现象只能用非线性动力学来解释。
于是,1975年混沌作为一个新的科学名词首次出现在科学文献中。
从此,非线性动力学迅速发展,并成为有丰富内容的研究领域。
该学科涉及非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。
混沌通常相应于不规则或非周期性,这是由非线性系统本质产生的。
本实验将引导学生自己建立一个非线性电路,该电路包括有源非线性负阻、LC振荡器和RC移相器三部分;采用物理实验方法研究LC振荡器产生的正弦波与经过RC移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象;测量非线性单元电路的电流—电压特性,从而对非线性电路及混沌现象有一深刻了解;学会自己制作和测量一个实用带铁磁材料介质的电感器以及测量非线性器件伏安特性的方法。
【实验原理】1、非线性电路与非线性动力学实验电路如图30-1所示,图30-1中只有一个非线性元件R,它是一个有源非线性负阻器件。
电感器L和电容器C2组成一个损耗可以忽略的谐振回路;可变电阻R0和电容器C1串联将振荡器产生的正弦信号移相输出。
本实验所用的非线性元件R是一个五段分段线性元件。
图30-2所示的是该电阻的伏安特性曲线,可以看出加在此非线性元件上电压与通过它的电流极性是相反的。
由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。
图30-1电路的非线性动力学方程为:C 1dtdU C 1=G(U C2-U C1)-gU C1 C 2dt dU C 2=G(U C1-U C2)+i L (30-1) L dtdiL =-U C2 式中,U C1、U C2是C 1、、C 2上的电压,iL 是电感L 上的电流,G=1/R 0是电导,在图5中,g为U 的函数,如果R 是线性的,g 是常数,电路就是一般的振荡电路,得到的解是正弦函数,电阻R 0的作用是调节C 1和、C 2的位相差,把C 1和C 2两端的电压分别输入到示波器的x ,y 轴,则显示的图形是椭圆。
非线性电路中的混沌现象实验
背景 混沌特点:
倍周期分岔 无穷嵌套的自相似结构 系统长期行为具有某些普适性 系统轨迹敏感依赖于初始条件,即Lyapunov
指数为正 具有分形结构
非线性电路
电路
有源非线性负电阻
动力学方程
C1
dVc1 dt
G(Vc2
Vc1 )
gVc1
C2
dVc2 dt
按已知的数据信息(L~20mh,r~10Ω,C0
见现场测试盒提供的数据)估算电路的共振
频率f;
考虑测共振频率时应如何连线? 用振幅法和相位法测量共振频率并由此算得
电感量,测量时电流不要超过20mA
实验内容二
倍周期分岔和混沌现象的观察
求观察并记录2倍周期分岔,4倍周期分岔, 阵发混沌,3倍周期,单吸引子,双吸引子 现象及相应的Vc1(t)和Vc2(t)的波形。
由非线性方程组结合本实验的相关参数, 用四阶龙格—库塔(Runge-Kutta)数值积分 法编程并画出奇异吸引子、双吸引子的 相图和对应变量的波形图并与实验记录 进行对照。
谢谢
相图:任意两运动状态之间的关系图
实验内容三
非线性电阻伏安特性的测量
用伏安法测量 测量时把有源非线性负阻元件与移相器连线
隔开(想一想,如何实现?) 注意实验点分布的合理性
V
R
非线性负电阻
数据处理要求
由测量数据计算电感L。
用一元线性回归方法对有源非线性负阻 元件的测量数据做分段拟合,并作图。
周期窗口 间歇现象 —阵发混沌
实验仪器介绍
实验内容 一
串联谐振电路和电感的测量
串联谐振电路
I ( 1 jL R) E I
E
E
实验48 非线性电路中混沌现象的研究
第4章基础实验25 实验4.8 非线性电路中混沌现象的研究现代科学技术研究发现,非线性是真实世界的普遍特性,非线性问题大量出现在自然科学、社会科学和工程科学中,并起着重要的作用。
混沌的研究是20世纪物理学的重大事件,在现代非线性理论中,混沌是泛指在确定体系中出现的貌似无规律的、随机的运动。
混沌运动的基本特征是确定性中包含的非周期性和不可预测性,以及对初值的敏感性等。
混沌的研究表明,一个完全确定的系统,即使非常简单,由于自身的非线性作用,同样具有内在的随机性。
绝大多数非线性动力学系统,既有周期运动,又有混沌运动,而混沌既不是具有周期性和对称性的有序,又不是绝对的无序,而是可用奇怪吸引子来描述的复杂的有序,混沌是非周期的有序性。
以下我们用级联倍周期分岔的方式接近混沌,从一个简单的实验中去观察非线性的现象,并尝试着得到一些重要结论。
【实验目的及要求】1.学习有源非线性电阻的伏安特性。
2.通过研究一个简单的非线性电路,了解混沌现象和产生混沌的原因。
3.学会自己设计和制作一个实用电感器以及测量非线性器件伏安特性的方法。
【提供的主要器材】NCE-Ⅱ型非线性电路混沌实验仪、双踪示波器、铁氧介质电感、自备器件。
【实验预备知识】1.了解混沌起源混沌理论是一门对复杂系统现象进行整体性研究的科学。
我国科学家钱学森称混沌是宏观无序、微观有序的现象。
混沌理论的创立,将非线性系统表现的随机性和系统内部的决定性机制巧妙地结合起来。
20世纪60年代,麻省理工学院的气象学家洛伦兹在计算机上进行天气模拟演算。
他当时用的计算机,储存数据的容量是小数点后六位数字,但是在打印输出数据时,为了节省纸张,只输出小数点后三位数字。
而洛伦兹在给第二次计算输入初始条件的时候,只输入了小数点后的三位,与精确的数据有不到0.1%的误差。
就是这个原本应该忽略不计的误差,使最终的结果大相径庭,如图4-20所示。
1963年,洛伦兹在美国《气象学报》上发表了题为“确定性的非周期流”的论文,提出了在确定性系统中的非周期现象。
非线性混沌实验报告
一、实验目的1. 了解非线性混沌现象的产生机制和特点;2. 掌握非线性电路混沌现象的实验方法;3. 通过实验验证混沌现象在非线性电路中的存在和表现。
二、实验原理混沌现象是指非线性系统在初始条件和参数变化下,表现出对初始条件极为敏感、长期行为不可预测、复杂且非周期性的现象。
在非线性电路中,混沌现象通常由非线性元件(如非线性电阻、非线性电容等)引起。
本实验采用蔡氏振荡电路(Chua's circuit)作为研究对象,该电路具有以下特点:1. 简单易实现;2. 混沌现象明显;3. 可以通过调节电路参数来观察混沌现象的产生、发展和消失。
三、实验仪器与设备1. 数字示波器;2. 函数信号发生器;3. 万用表;4. 电路实验板;5. 连接线。
四、实验步骤1. 搭建蔡氏振荡电路,包括非线性电阻、线性电阻、电容和运算放大器等元件;2. 使用函数信号发生器为电路提供激励信号;3. 使用数字示波器观察电路输出信号的波形;4. 调节电路参数(如非线性电阻的值、电容的值等),观察混沌现象的产生、发展和消失;5. 记录不同参数下电路输出信号的波形,分析混沌现象的特点。
五、实验结果与分析1. 混沌现象的产生当非线性电阻的值较小时,电路输出信号为稳定的正弦波;随着非线性电阻的值逐渐增大,混沌现象开始出现。
在非线性电阻值达到一定范围时,电路输出信号呈现出复杂的非周期性波形,即混沌现象。
2. 混沌现象的特点(1)对初始条件的敏感依赖性:在混沌现象中,电路输出信号的长期行为对初始条件极为敏感,微小变化可能导致截然不同的结果。
(2)复杂性和非周期性:混沌现象的输出信号具有复杂性和非周期性,无法用简单的数学公式描述。
(3)奇怪吸引子:混沌现象的长期行为可以用奇怪吸引子来描述,奇怪吸引子是一种具有复杂结构的有序结构。
3. 参数调节对混沌现象的影响(1)非线性电阻的值:非线性电阻的值对混沌现象的产生和消失具有关键作用。
当非线性电阻的值较小时,电路输出信号为稳定的正弦波;随着非线性电阻的值逐渐增大,混沌现象开始出现。
用非线性电路研究混沌现象
————用非线性电路研究混沌现象————班级 03101 姓名陈剑南中文摘要本实验旨在通过简单的非线性电路使我们知道什么是混沌,什么是产生混沌现象的基本条件?通过实验,我们看到了混沌具有的一些特征,并讨论了产生混沌的途径。
从而使我们对混沌有了一个整体的认识。
A b s t r a c tThis experiment is to make us understand chaos and the basic conditions which lead to chaos’display through simple nolinear circuit. Meanwhile ,we find out some features of chaotic system, as well as the approachs to chaos. In all,this experiment makes us know chaotic system in main.1.1、前言本世纪六十年代初,混沌学开始在美国兴起。
二三十年间,这门新兴学科在理论概念及实际应用上迅速发展,已渗透到各个学科和领域。
混沌是非线性系统中存在的一种普遍现象,它也是非线性系统所特有的一种复杂状态。
混沌学使人们原来限于简单系统的观念发生了革命性的转变,使人们更清楚地认识了简单与复杂、确定与随机的内在联系,难怪有的学者将混沌学誉为本世纪继相对论与量子论之后的第三次科学革命。
但是混沌的定义很难确切地下出来,到目前为止,还没有一个统一的、有足够数学定理支持的、普遍适用和完美的混沌理论,科学家们只能通过混沌系统所表现出的一些普遍现象总结归纳出其所谓的本质。
1.2、实验目的:1.通过对非线形电路的分析,了解产生混沌现象的基本条件2.通过调整Chua电路的参数,学习倍周期分叉走向混沌的过程3.在示波器上观察混沌的各种相图:单吸引子和双吸引子4.测量电路中非线性电阻的I-V特性2.1、实验原理[1]混沌是过程的科学、演化的科学,而不是状态的科学,变是混沌的本性。
混沌效应测量实验报告
一、实验目的1. 了解混沌现象的基本特征和产生机理。
2. 掌握混沌效应测量的基本方法。
3. 通过实验验证混沌现象在非线性电路中的表现。
二、实验原理混沌现象是指在非线性系统中,由于初始条件的微小差异,导致系统长期行为表现出极端敏感性和不可预测性。
本实验采用非线性电路作为研究对象,通过测量电路中的电压、电流等物理量,观察混沌现象的产生和发展。
实验电路采用串联谐振电路,通过改变电路中的参数(如电感、电容、电阻等),使电路产生混沌现象。
混沌现象的测量主要依靠数字示波器、信号发生器等仪器。
三、实验仪器与设备1. 数字示波器2. 信号发生器3. 电阻箱4. 电感箱5. 电容箱6. 电路板7. 连接线四、实验步骤1. 搭建实验电路,包括串联谐振电路、非线性元件等。
2. 设置信号发生器,输出正弦波信号,频率为电路谐振频率。
3. 调整电阻箱、电感箱、电容箱等参数,使电路产生混沌现象。
4. 利用数字示波器观察混沌现象的波形,记录电压、电流等物理量。
5. 改变电路参数,观察混沌现象的变化,分析混沌现象的产生和发展规律。
五、实验结果与分析1. 混沌现象的产生通过调整电路参数,使电路产生混沌现象。
实验中观察到,当电路参数在一定范围内变化时,电路输出波形出现周期性、倍周期性、混沌等不同状态。
其中,混沌现象表现为波形无规律、周期性消失、信号幅值和频率不稳定等特点。
2. 混沌现象的测量利用数字示波器测量混沌现象的波形,记录电压、电流等物理量。
实验结果表明,混沌现象的波形具有以下特征:(1)波形无规律:混沌现象的波形呈现出复杂的非线性变化,难以用简单的数学模型描述。
(2)周期性消失:混沌现象的波形周期性消失,难以确定其周期。
(3)信号幅值和频率不稳定:混沌现象的信号幅值和频率随时间变化,表现出强烈的不稳定性。
3. 混沌现象的产生机理混沌现象的产生主要与非线性系统的初始条件和参数变化有关。
在实验中,通过调整电路参数,使电路产生混沌现象。
非线性电路混沌实验
5、混沌(hù ndù n)学的意义
混沌的发现和混沌学的建立,同相对 论和量子论一样,是对牛顿确定性经典理 论的重大突破,为人类观察物质世界打开 了一个新的窗口(chuāngkǒu)。
所以,许多科学家认为,20世纪物理 学永放光芒的三件事是:相对论、量子论 和混沌学的创立。
会出现周期二3 1。迭代(diédài)情况如下: 0.669---0.738--3-0.644---0.764---0.601---0.799---0.545---0.829---
0.472---0.830---0.469---0.830---0.470---0.830---0.470……
No Imag3e
值得注意的是,周期倍增过程没有限制,可以一直这样分下去,但 对应的 值却有一个极限 ,,到达 ,时,迭代的稳定(wěndìng)解 是2 周期解---周期无穷大,也就是没有周期。所以这时得到的是非周 期解,迭代的数据到处乱跑,无法把握,系统进入混沌状态。
倍周期分岔产生的混沌,在心脏生理学方面有潜在的应用价值。心 律不齐,心肌梗塞这些医学难题,有可能找到正确的答案。
1、蝴蝶效应
第36页,共36页。
内容(nèiróng):
1979年12月,洛伦兹在华盛顿的美国科学促进会的一次讲演中提出:一只蝴蝶在巴西扇动翅膀,有可能会在美国的德克萨斯引起一场龙卷风。 他的演讲和结论给人们留下了极其深刻的印象。从此以后,所谓“蝴蝶效应”之说就不胫而走,名声远扬了。 “蝴蝶效应”之所以令人着迷、令人激动、发人深省,不但在于其大胆的想象力和迷人的美学色彩,更在于其深刻的科学内涵和内在的哲 学魅力。 从科学的角度来看,“蝴蝶效应”反映了混沌运动的一个重要特征:系统的长期行为(xíngwéi)对初始条件的敏感依赖性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性电路中的混沌现象实验报告篇一:非线性电路混沌实验报告近代物理实验报告指导教师:得分:实验时间: XX 年 11 月 8 日,第十一周,周一,第 5-8 节实验者:班级材料0705学号 XX67025 姓名童凌炜同组者:班级材料0705学号 XX67007 姓名车宏龙实验地点:综合楼 404实验条件:室内温度℃,相对湿度 %,室内气压实验题目:非线性电路混沌实验仪器:(注明规格和型号) 1. 约结电子模拟器约结电子模拟器的主要电路包括:1.1, 一个压控震荡电路, 根据约瑟夫方程, 用以模拟理想的约结1.2, 一个加法电路器, 更具电路方程9-1-10, 用以模拟结电阻、结电容和理想的约结三者相并联的关系1.3, 100kHz正弦波振荡波作为参考信号2. 低频信号发生器用以输出正弦波信号,提供给约结作为交流信号 3. 数字示波器用以测量结电压、超流、混沌特性和参考信号等各个物理量的波形实验目的:1. 了解混沌的产生和特点2. 掌握吸引子。
倍周期和分岔等概念3. 观察非线性电路的混沌现象实验原理简述:混沌不是具有周期性和对称性的有序,也不是绝对的无序,而是可以用奇怪吸引子等来描述的复杂有序——混沌而呈现非周期性的有序。
混沌的最本质特征是对初始条件极为敏感。
1. 非线性线性和非线性,首先区别于对于函数y=f(x)与其自变量x的依赖关系。
除此之外,非线性关系还具有某些不同于线性关系的共性:1.1 线性关系是简单的比例关系,而非线性是对这种关系的偏移1.3 线性关系保持信号的频率成分不变,而非线性使得频率结构发生变化 1.4 非线性是引起行为突变的原因2. 倍周期,分岔,吸引子,混沌借用T.R.Malthas的人口和虫口理论,以说明非线性关系中的最基本概念。
虫口方程如下:xn?1???xn(1?xn)μ是与虫口增长率有关的控制参数,当1 1?,这个值就叫做周期或者不动点。
在通过迭代法解方程的过程中,最终会得到一个不随时间变化的固定值。
即换用任何其他初始值,结果都会达到同一个不动点x*, 也可以说,最终的状态对初始值的变化不敏感,所有初始值都被“吸引”到不动点;这个不动点,就是一个“吸引子”。
对于反复迭代仍然只能得到一个解,即只有一个吸引子的情况,可以称之为1倍周期解,没有分离,也不可能出现混乱的“混沌态”,对初始值并不敏感。
而对于解得两个吸引子的情况,可以称之为2倍周期解,但仍然不出现分离和混沌??如此将以上的过程不断的进行下去,即不断增大μ的值,当其值逐步接近??=3.569945672?时,周期变为无穷大,也就是没有周期,这时得到的是非周期结,迭代的结果无法把握,系统进入混沌状态。
而当μ大于无线周期的对应值时,解序列也基本上是在混沌区,但是内部有复杂结构,它被称为“奇怪吸引子”。
3. 菲根堡姆普适常量通过进一步的研究可以发现,倍周期分岔的过程是几何收敛的,即随着控制参数μ的增大,出现倍周期分岔的参量μ的间距衰减,且有??lim?m??m?1?m?1??m?4.669XX091,为菲根堡姆普适常量另外,通过实验和计算的结果,可以看出,对于各种不同的混沌系统,尽管非线性迭代系统的本身结构各不相同,但是都遵循相同的方式走向混沌4. 非线性电路中的混沌现象电感、电容、电阻、正弦电源的振幅和频率、放大器的放大倍数等,都是电路参数。
当参数区某些特定值是,若参数的微小变动使得系统的行为发生质的变化,则称该参数为分岔值。
分岔就意味着混沌现象的可能。
许多非线性电路都有可能出现混沌现象。
5. 约瑟夫森效应电子能通过两块超导体之间薄绝缘层的量子隧道效应。
1962年由B.D约瑟夫森首先在理论上预言,在不到一年的时间内,P.W.安德森和J.M.罗厄耳等人从实验上证实了约瑟夫森的预言。
约瑟夫森效应的物理内容很快得到充实和完善,应用也快速发展,逐渐形成一门新兴学科——超导电子学。
两块超导体通过一绝缘薄层(厚度为10埃左右)连接起来,绝缘层对电子来说是一势垒,一块超导体中的电子可穿过势垒进入另一超导体中,这是特有的量子力学的隧道效应。
当绝缘层太厚时,隧道效应也不太薄时称为弱连接超导体。
两块超导体夹一层薄绝缘材料的组合称S-I-S超导隧道结或约瑟夫森结。
约瑟夫森效应主要表现为:直流约瑟夫森效应结两端的电压V=0时,结中可存在超导电流,它是由超导体中的库珀对的隧道效应引起的。
只要该超导电流小于某一临界电流Ic,就始终保持此零电压现象,Ic称为约瑟夫森临界电流。
Ic对外磁场十分敏感,甚至地磁场可明显地影响Ic。
沿结平面加恒定外磁场时,结中的隧道电流密度在结平面的法线方向上产生不均匀的空间分布。
改变外磁场时,通过结的超导电流Is随外磁场的增加而周期性地变化,描出与光学中的夫琅和费单缝衍射分布曲线相似的曲线,称为超导隧结的量子衍射现象。
交流约瑟夫森效应结两端的直流电压V≠0时,通过结的电流是一个交变的振荡超导电流,振荡频率(称约瑟夫森频率)f与电压V 成正比,即f=Ve为电子电量h为普朗克常数,这使超导隧道结具有辐射或吸收电磁波的能力。
以微波辐照隧道结时可产生共振现象。
连续改变所加的直流电压以改变交流振荡频率当约瑟夫森频率f等于微波频率的整数倍时,就发生共振,此时有直流成分的超导电流流过隧道结,在 I-V 特性曲线上可观察到一系列离散的阶梯式的恒定电流。
测定约瑟夫森频率f,可由电压V测定常量2e/ h,或从已知常量e和h精确测定V。
其中交流约瑟夫森效应已被用来作为电压标准。
6. 约瑟夫森电子模拟器的原理约结电子模拟器是真实的超导约瑟夫森结的模型。
对于理想的约结,符合这样的Joseph方程:Is?IC?sin?d?dt?4?eh?V实验步骤简述: 1. 准备1.1 熟悉数字示波器的使用 1.2 熟悉信号发生器的使用1.3 将信号发生器的输出介入约结模拟器后面板上的“AC input”端,将约结模拟器前面板上的“示波器”的输入x端接入示波器的x轴输入, y端接入数字示波器的y 轴输入。
2. 非线性电路混沌现象的观察2.1 打开各仪器的电源开关2.2 数字示波器选择xy工作方式2.3 约结模拟器前面板上的“交流信号”置ON,这就是给约结加上交流正弦信号I1sin2?ft,实际上在测量混沌特性时,是改变交流信号源的输出电压幅度V1,而对应电流的I1=V1/10kΩ 2.4 低频信号源输出频率取246Hz 2.5 低频信号源的振幅V1取为零2.6 约结参数取: 结电阻,结电容,超流均为II2.8逐渐增大振幅V1,仪器观察到下图中的b、c、d、e等分岔现象,知道如f所示的混沌现象出现。
2.9 改变约结系统的参数,如书中表所示,再观察混沌特性2.10 将交流信号频率跳到146Hz, 346Hz, 1kHz, 再重复以上实验过程,观察是否出现混沌现象原始数据、数据处理及误差计算:根据实验过程,各条件下混沌出现与否的数据结果记录如下:*以上表格中,√表示该条件下混沌出现,×为混沌不出现,○表示该条件下无法获得稳定态,故不能判断。
思考题,实验感想,疑问与建议:1. 什么叫混沌,混沌与混乱有什么区别?混沌是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性--不可重复、不可预测,这就是混沌现象。
进一步研究表明,混沌是非线性动力系统的固有特性,是非线性系统普遍存在的现象。
混沌与混乱的区别在于,混沌是无规律的有序,或者说其有序周期太长,接近无限而无法观测到其周期现象,其外在表现和纯粹的随机运动很相似,即都不可预测。
但和随机运动不同的是,混沌运动在动力学上是确定的,它的不可预测性是来源于运动的不稳定性;而混乱则是完全无规律的无序,不存在周期性,无限长的观测中可能会发现少数存在的周期解,但是总体上是无规律存在的。
2. 产生混沌的根源是什么?是否所有的非线性系统都会存在混沌现象?混沌产生的根源是存在这样一个非线性系统,并且符合下列条件:一是对初始条件的敏感依赖性;二是临界水平,这里是非线性事件的发生点;三是分形维,它表明有序和无序的统一。
混沌系统经常是自反馈系统,出来的东西会回去经过变换再出来,循环往复,没完没了,任何初始值的微小差别都会按指数放大,因此导致系统内在地不可长期预测。
而非线性系统并非都会产生混沌,比如函数f(x)=x^0.5,这是非线性的,但其始终存在稳定解,不产生混沌。
原始记录及图表粘贴处:(见附页)篇二:非线性电路中的混沌现象实验理解与思考_研究性实验报告非线性电路中的混沌现象实验理解与思考摘要本实验共分为4部分第一部分为实验原理的阐述,基于对于实验原理的理解和讨论,介绍了混沌现象的发现与完善,及本小组对于混沌现象的深入体会和理解。
第二部分为实验操作过程介绍,介绍了实验过程中详细的操作流程,和本小组在做实验过程中的经验与总结。
第三部分为实验原始数据的处理,是在原有数据处理上的加深与全面分析。
第四部分即对于本实验的理论层面深入讨论与分析,是小组成员深入思考与讨论的结果。
关键词:混沌与秩序;蝴蝶效应;非线性电路;实验思考一、实验原理表述与探讨非线性是自然界中普遍存在的现象,正是非线性的存在构成了多姿多彩的自然界。
从数学上来说,非线性(non-linear),是指输出输入均不是正比例的情形。
宇宙形成初的混沌状态即为非线性。
自变量与变量之间不成线性关系,成曲线或抛物线关系或不能定量,这种关系叫非线性关系现象则是近年来新出现的一个科学名词。
首先是科学家在对天气预报作计算机模拟时发现的,后来又从数学上和实验上得到证实. 混沌来自非线性.由于在自然界和人类社会中绝大多数是非线性系统,所以混沌是一种普遍现象. 对于什么是混沌,目前科学上还没有确切的定义,但随着研究的深入,混沌的一系列特点和本质的被揭示,对混沌完整的、具有实质性意义的确切定义将会产生。
目前人们把混沌看成是一种无周期的有序。
无论是复杂系统,如气象系统、太阳系,还是简单系统,如钟摆、滴水龙头等,皆因存在着内在随机性而出现类似无轨,但实际是非周期有序运动,即混沌现象.现在混沌研究涉及的领域包括数学、物理学、生物学、化学、天文学、经济学及工程技术的众多学科,并对这些学科的发展产生了深远影响.混沌包含的物理内容非常广泛,研究这些内容更需要比较深入的数学理论,如微分动力学理论、拓扑学、分形几何学等等.目前混沌的研究重点已转向多维动力学系统中的混沌、量子及时空混沌、混沌的同步及控制等方面.本实验电路及原理如下:如图1 所示.电路中电感L和电容C1、C2并联构成一个振荡电路.方程如下所示:这里,UC1、UC2是电容C1、C2上的电压,i L是电感L 上的电流,G = 1/R0是电导,g 为R的伏安特性函数.如果R 是线性的,g 是常数,电路就是一般的振荡电路,得到的解是正弦函数.电阻R0的作用是调节C1 和C2的位相差,把C1 和C2两端的电压分别输入到示波器的x,y轴,则显示的图形是椭圆.如果R是非线性的,会看到什么现象呢?电路中的R 是非线性元件,它的伏安特性如图2所示,是一个分段线性的电阻,整体呈现出非线性.gUC1是一个分段线性函数.由于g 总体是非线性函数,三元非线性方程组没有解析解.若用计算机编程进行数值计算,当取适当电路参数时,可在显示屏上观察到模拟实验的混沌现象.除了计算机数学模拟方法之外,更直接的方法是用示波器来观察混沌现象,实验电路如图3所示.图3中,非线性电阻是电路的关键,它是通过一个双运算放大器和六个电阻组合来实现的.电路中,LC并联构成振荡电路,R0的作用是分相,使A,B两处输入示波器的信号产生位相差,可得到x,y两个信号的合成图形.双运放TL082 的前级和后级正、负反馈同时存在,正反馈的强弱与比值R3 /R0,R6/R0有关,负反馈的强弱与比值R2/R1,R5/R4有关.当正反馈大于负反馈时,振荡电路才能维持振荡.若调节R0,正反馈就发生变化,TL082 处于振荡状态,表现出非线性,从C,D 两点看,TL082 与六个电阻等效于一个非线性电阻,它的伏安特性大致如图(2)所示.混沌现象表现了非周期有序性,看起来似乎是无序状态,但呈现一定的统计规律,其基本判据有:1.频谱分析:R0很小时,系统只有一个稳定的状态(对应一个解),随R0的变化系统由一个稳定状态变成在两个稳定状态之间跳跃(两个解),即由一周期变为二周期,进而两个稳定状态分裂为四个稳定状态(四周期,四个解),八个稳定状态(八周期,八个解)………直至分裂进入无穷周期,即为连续频谱,接着进入混沌,系统的状态无法确定;分岔是进入混沌的途径.2.无穷周期后,由于产生轨道排斥,系统出现局部不稳定;3.奇异吸引子(Strange Attractor)存在.奇异吸引子有一个复杂但明确的边界,这个边界保证了在整体上的稳定,在边界内部具有无穷嵌套的自相似结构,运动是混合和随机的.它对初始条件十分敏感.二、实验操作步骤及流程1.倍周期现象、周期性窗口、单吸引子和双吸引子的观察、记录和描述将电容C1,C2上的电压输入到示波器的X,Y 轴,先把R0调到最小,示波器屏上可观察到一条直线,调节R0,直线变成椭圆,到某一位置,图形缩成一点.增大示波器的倍率,反向微调R0,可见曲线作倍周期变化,曲线由一周期增为二周期,由二周期倍增至四周,……,直至一系列难以计数的无首尾的环状曲线,这是一个单涡旋吸引子集.再细微调节R0,单吸引子突然变成了双吸引子,只见环状曲线在两个向外涡旋的吸引子之间不断填充与跳跃,这就是混沌研究文献中所描述的“蝴蝶”图像,也是一种奇怪吸引子,它的特点是整体上的稳定性和局域上的不稳定性同时存在.这一步有助于理解和直观观察到非线性电路中的混沌现象的产生与存在,此步骤要注意细微调节的重要行,示波器的辉度与光的粗细都要适当,因为三倍周期与四倍变化极为细微。