等差数列习题课(教师版)
高中数学:人教A版 2.3.2 等差数列(习题课)学案
2.3.3 等差数列(习题课)-----学案 一、学习目标 1.掌握a n 与S n 的关系并会应用.(难点)2.掌握等差数列前n 项和的性质及应用.(重点)3.会求等差数列前n 项和的最值.(重点、易错点)二、自主学习教材整理 等差数列前n 项和的性质阅读教材P 44例3~P 45,完成下列问题.1.S n 与a n 的关系a n =⎩⎪⎨⎪⎧S 1,n =1S n -S n -1.n ≥2 2.等差数列前n 项和的性质(1)等差数列{a n }中,其前n 项和为S n ,则{a n }中连续的n 项和构成的数列S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…构成等差数列.(2)数列{a n }是等差数列⇔S n =an 2+bn (a ,b 为常数).3.等差数列前n 项和S n 的最值(1)若a 1<0,d >0,则数列的前面若干项为负数项(或0),所以将这些项相加即得{S n }的最小值.(2)若a 1>0,d <0,则数列的前面若干项为正数项(或0),所以将这些项相加即得{S n }的最大值.特别地,若a 1>0,d >0,则S 1是{S n }的最小值;若a 1<0,d <0,则S 1是{S n }的最大值. 做一做:1.下列说法中正确的有________(填序号).(1)若S n 为等差数列{a n } 的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列. (2)在等差数列{a n }中,当项数m 为偶数2n 时,则S 偶-S 奇=a n +1.(3)若a 1>0,d <0,则等差数列中所有正项之和最大.(4)在等差数列中,S n 是其前n 项和,则有S 2n -1=(2n -1)a n .【解析】 (1)正确.因为由等差数列前n 项和公式知S n n =d 2n +a 1-12d ,所以数列S n n为等差数列.(2)错误.当项数m 为偶数2n 时,则S 偶-S 奇=nd .(3)正确.由实数的运算可知该说法正确.(4)正确.因为S 2n -1=a 1+a 2n -12n -12=2n -12[a n +(1-n )d +a n +(n -1)d ]=(2n -1)a n .【★答案★】 (1)(3)(4)三、合作探究探究1:由数列的前n 项和S n 求a n例1. 已知数列{a n }的前n 项和为S n =n 2+12n ,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?【精彩点拨】【自主解答】 根据S n =a 1+a 2+…+a n -1+a n 与S n -1=a 1+a 2+…+a n -1(n >1),可知,当n >1时,a n =S n -S n -1=n 2+12n -(n -1)2+12(n -1)=2n -12,① 当n =1时,a 1=S 1=12+12×1=32,也满足①式. ∴数列{a n }的通项公式为a n =2n -12. 由此可知:数列{a n }是以32为首项,以2为公差的等差数列. 归纳总结1.已知前n 项和S n 求通项a n ,先由n =1时,a 1=S 1求得a 1,再由n ≥2时,a n =S n -S n -1求a n ,最后验证a 1是否符合a n ,若符合则统一用一个解析式表示.2.由数列的前n 项和S n 求a n 的方法,不仅适用于等差数列,它也适用于其他数列.探究2:等差数列前n 项和的性质应用例2. (1)在等差数列{a n }中,若S 4=1,S 8=4,则a 17+a 18+a 19+a 20的值为( )A .9B .12C .16D .17(2)等差数列{a n }共有2n +1项,所有的奇数项之和为132,所有的偶数项之和为120,则n 等于________.(3)已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n =2n +2n +3,则a 5b 5=________. 【精彩点拨】 (1)解决本题关键是能发现S 4,S 8-S 4,S 12-S 8,S 16-S 12,a 17+a 18+a 19+a 20能构成等差数列.(2)利用等差数列奇偶项和的性质求解,或利用“基本量法”求解.(3)解决本题关键是如何将a n 转化为用等差数列的前(2n -1)项的和表示.【自主解答】 (1)由题意知:S 4=1,S 8-S 4=3,而S 4,S 8-S 4,S 12-S 8,S 16-S 12,S 20-S 16成等差数列.即1,3,5,7,9,a 17+a 18+a 19+a 20=S 20-S 16=9.(2)法一:(巧用性质)因为等差数列共有2n +1项,所以S 奇-S 偶=a n +1=S 2n +12n +1即132-120=132+1202n +1,解得n =10. 法二:(基本量思想)可设等差数列的首项为a 1,公差为d .依题意可列方程组⎩⎨⎧ n +1a 1+n n+12×2d =132,na 2+n -1n 2×2d =120,即⎩⎪⎨⎪⎧n +1a 1+nd =132,n a 1+nd =120,所以n +1n =132120,即n =10. (3)由等差数列的性质,知a 5b 5=a 1+a 92b 1+b 92=a 1+a 92×9b 1+b 92×9=S 9T 9=2×9+29+3=53. 【★答案★】 (1)A (2)10 (3)53探究3:等差数列前n 项和S n 的函数特征探究1 将首项为a 1=2,公差d =3的等差数列的前n 项和看作关于n 的函数,那么这个函数有什么结构特征?如果一个数列的前n 项和为S n =3n 2+n ,那么这个数列是等差数列吗?上述结论推广到一般情况成立吗?【提示】 首项为2,公差为3的等差数列的前n 项和为S n =2n +n n -1×32=32n 2+12n , 显然S n 是关于n 的二次型函数. 且常数项为0,二次项系数为d 2,一次项系数为a 1-d 2;如果一个数列的前n 项和为S n =3n 2+n ,那么当n =1时,S 1=a 1=4.当n ≥2时,a n =S n -S n -1=6n -2,则该数列的通项公式为a n =6n -2,所以该数列为等差数列,事实上对于任何一个等差数列的前n 项和都是关于n 的二次型函数,且常数项为0,反之,一个数列的前n 项和具备上述特征,该数列一定是等差数列.探究2 已知一个数列{a n }的前n 项和为S n =n 2-5n ,试画出S n 关于n 的函数图象.你能说明数列{a n }的单调性吗?该数列前n 项和有最值吗?【提示】 S n =n 2-5n =⎝⎛⎭⎫n -522-254,它的图象是分布在函数y =x 2-5x 的图象上的离散的点,由图象的开口方向可知该数列是递增数列,图象开始下降说明了{a n }前n 项为负数.由S n 的图象可知,S n 有最小值且当n =2或3时,S n 最小,最小值为-6,即数列{a n }前2项或前3项和最小.例3. 数列{a n }的前n 项和S n =33n -n 2,(1)求{a n }的通项公式;(2)问{a n }的前多少项和最大;(3)设b n =|a n |,求数列{b n }的前n 项和S ′n .【精彩点拨】 (1)利用S n 与a n 的关系求通项,也可由S n 的结构特征求a 1,d ,从而求出通项.(2)利用S n 的函数特征求最值,也可以用通项公式找到通项的变号点求解.(3)利用a n 判断哪些项是正数,哪些项是负数,再求解,也可以利用S n 的函数特征判断项的正负求解.【自主解答】 (1)法一:当n ≥2时,a n =S n -S n -1=34-2n ,又当n =1时,a 1=S 1=32=34-2×1满足a n =34-2n .故{a n }的通项公式为a n =34-2n .法二:由S n =-n 2+33n 知S n 是关于n 的缺常数项的二次型函数,所以{a n }是等差数列,由S n 的结构特征知⎩⎨⎧ d 2=-1,a 1-d 2=33,解得a 1=32,d =-2,所以a n =34-2n .(2)法一:令a n ≥0,得34-2n ≥0,所以n ≤17,故数列{a n }的前17项大于或等于零.又a 17=0,故数列{a n }的前16项或前17项的和最大.法二:由y =-x 2+33x 的对称轴为x =332. 距离332最近的整数为16,17.由S n =-n 2+33n 的 图象可知:当n ≤17时,a n ≥0,当n ≥18时,a n <0,故数列{a n }的前16项或前17项的和最大.(3)由(2)知,当n ≤17时,a n ≥0;当n ≥18时,a n <0.所以当n ≤17时,S n ′=b 1+b 2+…+b n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =33n -n 2.当n ≥18时,S n ′=|a 1|+|a 2|+…+|a 17|+|a 18|+…+|a n |=a 1+a 2+…+a 17-(a 18+a 19+…+a n )=S 17-(S n -S 17)=2S 17-S n =n 2-33n +544.故S n ′=⎩⎪⎨⎪⎧ 33n -n 2n ≤17,n 2-33n +544n ≥18. 归纳总结1.在等差数列中,求S n 的最小(大)值的方法:(1)利用通项公式寻求正、负项的分界点,则从第一项起到分界点该项的各项和为最大(小).(2)借助二次函数的图象及性质求最值.2.寻求正、负项分界点的方法:(1)寻找正、负项的分界点,可利用等差数列性质或利用⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0或⎩⎪⎨⎪⎧a n ≤0,a n +1≥0来寻找. (2)利用到y =ax 2+bx (a ≠0)的对称轴距离最近的左侧的一个正数或离对称轴最近且关于对称轴对称的两个整数对应项即为正、负项的分界点.3.求解数列{|a n |}的前n 项和,应先判断{a n }的各项的正负,然后去掉绝对值号,转化为等差数列的求和问题. 四、学以致用1.已知下面各数列{a n }的前n 项和S n 的公式,求{a n }的通项公式.(1)S n =2n 2-3n ;(2)S n =3n -2.【解】 (1)当n =1时,a 1=S 1=2×12-3×1=-1;当n ≥2时,S n -1=2(n -1)2-3(n -1)=2n 2-7n +5,则a n =S n -S n -1=(2n 2-3n )-(2n 2-7n +5)=2n 2-3n -2n 2+7n -5=4n -5.此时若n =1,a n =4n -5=4×1-5=-1=a 1,故a n =4n -5.(2)当n =1时,a 1=S 1=31-2=1;当n ≥2时,S n -1=3n -1-2,则a n =S n -S n -1=(3n -2)-(3n -1-2)=3n -3n -1=3·3n -1-3n -1=2·3n -1.此时若n =1,a n =2·3n -1=2·31-1=2≠a 1,故a n =⎩⎪⎨⎪⎧1,n =1,2·3n -1,n ≥2. 2.(1)等差数列{a n }中,a 2+a 7+a 12=24,则S 13=________.(2)等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________. 【解析】 (1)由a 2+a 7+a 12=24,得a 7=8,所以S 13=a 1+a 132×13=a 7·13=104. (2)因为a n =2n +1,所以a 1=3.所以S n =n 3+2n +12=n 2+2n ,所以S n n=n +2, 所以⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列,所以前10项和为3×10+10×92×1=75. 【★答案★】 (1)104 (2)753.在等差数列中,a 10=23,a 25=-22.(1)该数列第几项开始为负;(2)求数列{|a n |}的前n 项和.【解】 设等差数列{a n }中,公差为d ,由题意得⎩⎪⎨⎪⎧ a 25-a 10=15d =-45,23=a 1+10-1×d ,∴⎩⎪⎨⎪⎧ a 1=50,d =-3. (1)设第n 项开始为负,a n =50-3(n -1)=53-3n <0,∴n >533,∴从第18项开始为负. (2)|a n |=|53-3n |=⎩⎪⎨⎪⎧ 53-3n 1<n ≤17,3n -53n >17.当n ≤17时,S n ′=-32n 2+1032n ;当n >17时, S n ′=|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+…+a 17-(a 18+a 19+…+a n ),S n ′=-⎝⎛⎭⎫-32n 2+1032n +2S 17=32n 2-1032n +884,∴S n ′=⎩⎨⎧ -32n 2+1032n n ≤17,32n 2-1032n +884n >17.五、自主小测1.设{a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )A .18B .20C .22D .242.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A .5B .4C .3D .23.已知数列{a n }的前n 项和S n =n 2,则a n =________.4.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值为________.5.已知数列{a n }的前n 项和公式为S n =2n 2-30n .(1)求数列 {a n }的通项a n ;(2)求S n 的最小值及对应的n 值.参考★答案★1.【解析】 由S 10=S 11,得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20.【★答案★】 B2.【解析】 由题意得S 偶-S 奇=5d =15,∴d =3.或由解方程组⎩⎪⎨⎪⎧5a 1+20d =15,5a 1+25d =30,求得d =3,故选C. 【★答案★】 C3.【解析】 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,又因为a 1=1适合a n =2n -1.所以a n =2n -1.【★答案★】 2n -14.【解析】 等差数列前n 项和S n 的形式为S n =an 2+bn ,∴λ=-1.【★答案★】 -15.【解】 (1)∵S n =2n 2-30n ,∴当n =1时,a 1=S 1=-28. 当n ≥2时,a n =S n -S n -1=(2n 2-30n )-[2(n -1)2-30(n -1)]=4n -32. ∵n =1也适合,∴a n =4n -32,n ∈N *.(2)法一:S n =2n 2-30n =2⎝⎛⎭⎫n -1522-2252∴当n =7或8时,S n 最小,且最小值为S 7=S 8=-112. 法二:∵a n =4n -32,∴a 1<a 2<…<a 7<0,a 8=0,当n ≥9时,a n >0. ∴当n =7或8时,S n 最小,且最小值为S 7=S 8=-112.。
高中数学 第二章 数列 2.2 习题课——等差数列习题课练习(含解析)新人教B版必修5-新人教B版高
习题课——等差数列习题课课时过关·能力提升1在等差数列{a n }中,已知a 1=13,a 1+a 6=4,a n =37,则n 等于() A.50B.49C.56D.51d ,因为a 1+a 6=2a 1+5d=4,a 1=13,所以d=23,所以a n =13+(n-1)×23=37,所以n=56.2在数列{a n }中,已知a 1=15,3a n+1=3a n -2,则该数列中相邻两项的乘积为负值的项是() A.a 21和a 22 B.a 22和a 23 C.a 23和a 24D.a 24和a 25a n+1=a n -23,所以数列{a n }是公差为-23的等差数列.所以a n =15+(n-1)×(-23).因为a 23=13,a 24=-13,所以a 23a 24<0.3已知在等差数列{a n }中,|a 3|=|a 9|,公差d<0,则使数列{a n }的前n 项和S n 取得最大值的自然数n 是()A .4或5B .5或6C .6或7D .不存在d<0,∴a 9<a 3,∵|a 3|=|a 9|,∴a 3=-a 9,∴a 3+a 9=0. 又a 3+a 9=2a 6=0,∴a 5>0.即前5项或前6项的和最大.4若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大正整数n 是() A.4 005B.4 006C.4 007D.4 008a 1>0,a 2003+a 2004>0,a 2003·a 2004<0,且数列{a n }为等差数列,所以数列{a n }是首项为正数,公差为负数的递减的等差数列,且a 2003是绝对值最小的正数,a 2004是绝对值最小的负数(第一个负数),且|a 2003|>|a 2004|.因为在等差数列{a n }中,a 2003+a 2004=a 1+a 4006>0,所以S 4006=4006(a 1+a 4006)2>0.所以使S n >0成立的最大正整数n 是4006.5已知数列{a n }的通项a n =11-2n ,则|a 1|+|a 2|+|a 3|+…+|a 10|=() A.25 B.50 C.52 D.1006已知f (n+1)=f (n )-14(n ∈N +),且f (2)=2,则f (101)=.a n =f (n ),则a n+1-a n =-14,∴数列{a n }为等差数列,且a 2=2.∴a n =a 2-14(n-2)=10-a 4.∴f (101)=a 101=-914. -9147设f (x )+f (1-x )=6,则f (-5)+f (-4)+…+f (0)+f (1)+…+f (6)=.S=f (-5)+f (-4)+…+f (0)+f (1)+…+f (6),①即S=f (6)+f (5)+…+f (1)+f (0)+…+f (-5).②则①+②得2S=[f (-5)+f (6)]+[f (-4)+f (5)]+…+[f (0)+f (1)]+[f (1)+f (0)]+…+[f (6)+f (-5)]=12×6=72.故S=36.8“等和数列”的定义:在一个数列中,如果每一项与它的后一项的和都等于同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5,那么a 18的值为.,可得a n +a n+1=5,所以a n+1+a n+2=5.所以a n+2-a n =0.因为a 1=2,所以a 2=5-a 1=3.所以当n 为偶数时,a n =3;当n 为奇数时,a n =2.所以a 18=3.9在等差数列{a n }中,其前n 项和为100,其后的2n 项和为500,则紧随其后的3n 项和为.,知S n =100,S 3n -S n =500,又S n ,S 2n -S n ,S 3n -S 2n ,…成等差数列,且公差为100.故S 6n -S 3n =(S 6n -S 5n )+(S 5n -S 4n )+(S 4n -S 3n )=600+500+400=1500.10在等差数列{a n }中,a 16+a 17+a 18=a 9=-18,其前n 项和为S n , (1)求S n 的最小值,并求出S n 取最小值时n 的值; (2)求T n =|a 1|+|a 2|+…+|a n |.因为a 16+a 17+a 18=a 9=-18,所以a 17=-6.又a 9=-18, 所以d=a 17-a 917-9=32.首项a 1=a 9-8d=-30.所以a n =32n-632. 若前n 项和S n 最小,则{a a ≤0,a a +1≥0,即{3a2-632≤0,32(a +1)-632≥0,所以n=20或n=21.故当n=20或n=21时,S n 取最小值. 最小值为S 20=S 21=-315. (2)由a n =32n-632≤0,得n ≤21.所以当n ≤21时,T n =-S n =34(41n-n 2), 当n>21时,T n =-a 1-a 2-…-a 21+a 22+…+a n=S n -2S 21=34(n 2-41n )+630.★11设数列{a n}的前n项和为S n,a1=1,a n=a aa+2(n-1)(n∈N+).(1)求数列{a n}的通项公式a n;(2)是否存在正整数n,使得a11+a22+…+a aa-(n-1)2=2 015?若存在,求出n的值;若不存在,说明理由.S n=na n-2(n-1)n.n≥2时,a n=S n-S n-1=na n-2(n-1)n-(n-1)·a n-1+2(n-2)(n-1).∴a n-a n-1=4.∴数列{a n}为a1=1,d=4的等差数列.∴a n=1+(n-1)4=4n-3.(2)由(1),得S n=n(4n-3)-2(n-1)n=(2n-1)n.∴a aa=2n-1.故a11+a22+…+a aa=n2,∴n2-(n-1)2=2015,解得n=1008.故存在n=1008满足题意.★12设数列{a n}的前n项和为S n,点(a,a aa)(n∈N+)均在函数y=3x-2的图象上, (1)求证:数列{a n}为等差数列;(2)T n是数列{3a a a a+1}的前n项和,求证:37≤T n<12.由题意得,a aa=3n-2,即S n=3n2-2n,当n≥2时,a n=S n-S n-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5;当n=1时,a1=S1=1.所以a n=6n-5(n∈N+).又a n-a n-1=6n-5-[6(n-1)-5]=6,故{a n}是等差数列.(2)由(1)知,设b n=3a a a a+1,则b n=3a a a a+1=3(6a-5)[6(a+1)-5]=1 2(16a-5-16a+1),故T n =12[(1-17)+(17-113)+…+(16a -5-16a +1)]=12(1-16a +1),又n ∈N +,所以0<16a +1≤17,故37≤T n <12.。
等差数列习题课
等差数列习题课一、选择题(每小题5分,共30分,多选题全部选对得5分,选对但不全的得2分,有选错的得0分)1.等差数列{}a n 中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 6的值为( ) A .10 B .9 C .8 D .7【解析】选B.因为等差数列{}a n 中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,所以2(a 2+a 5+a 8)=(a 1+a 4+a 7)+(a 3+a 6+a 9),所以a 3+a 6+a 9=27,所以3a 6=27,所以a 6=9.2.已知等差数列{a n }的公差d≠0,S n 是其前n 项和,若a 1+a 3+a 5=-15,a 2+a 4+a 6=-21,则18 S 3的值是( )A .-5B .-58C .-98D .-18【解析】选C.由等差数列性质知3a 3=-15,3a 4=-21, 故a 3=-5,a 4=-7,则a 2=-3. 则18 S 3=18 ×3(a 1+a 3)2 =3a 28 =-98 .3.在数列{}a n 中,a 1=3,且对任意大于1的正整数n ,点(a n ,a n -1 )在直线x -y - 3 =0上,则( ) A .a n =3nB .a n =3nC .a n =n - 3D .a n =3n 2【解析】选D.因为点(a n ,a n -1 )在直线x -y - 3 =0上,所以a n -a n -1= 3 ,所以数列{}a n 是首项为 3 ,公差为 3 的等差数列.所以数列{}a n 的通项公式为 a n = 3 +(n -1)·3 = 3 n. 所以a n =3n 2.4.若数列{a n }的通项a n =2n -6,设b n =|a n |,则数列{b n }的前7项和为( ) A .14 B .24 C .26 D .28【解析】选C.当n≤3时,a n ≤0,b n =|a n |=-a n =6-2n ,即b 1=4,b 2=2,b 3=0.当n>3时,a n >0,b n =|a n |=a n =2n -6, 即b 4=2,b 5=4,b 6=6,b 7=8.所以数列{b n }的前7项和为4+2+0+2+4+6+8=26.5.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1 的前100项和为( )A .100101B .99101C .99100D .101100【解析】选A.因为a 5=5,S 5=15,所以5(a 1+5)2 =15,所以a 1=1.所以d =a 5-a 15-1=1,所以a n =n.所以1a n a n +1 =1n (n +1) =1n -1n +1.则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1 的前100项的和为:T 100=⎝ ⎛⎭⎪⎫1-12 +⎝ ⎛⎭⎪⎫12-13 +…+⎝ ⎛⎭⎪⎫1100-1101 =1-1101 =100101 .6.(多选题)等差数列{a n }中,a na 2n是一个与n 无关的常数,则该常数的可能值为( )A .1B .12 C .2 D .3【解析】选AB.本题考查等差数列.设等差数列{a n }的公差为d ,则a na 2n=a 1-d +dna 1-d +2dn为常数,则a 1=d 或d =0,a n a 2n =12 或1.二、填空题(每小题5分,共10分)7.在等差数列{a n }中,a 2=3,a 3+a 4=9,则a 1a 6=______.【解析】因为a 2=3,a 3+a 4=9,所以a 2+a 3+a 4=12,即3a 3=12,故a 3=4,a 4=5,所以a n =n +1,所以a 1a 6=2×7=14. 答案:148.已知数列{a n }满足a n =11-2n ,则|a 1|+|a 2|+|a 3|+…+|a 8|=________. 【解析】原式=(a 1+a 2+a 3+a 4+a 5)-(a 6+a 7+a 8) =(9+7+5+3+1)-(-1-3-5)=34. 答案:34三、解答题(每小题10分,共20分)9.已知数列{a n }中,a 7=6,a 10=-3,S n 为等差数列{a n }的前n 项和. (1)求数列{a n }的通项公式及S n 的最大值; (2)求|a 1|+|a 2|+|a 3|+…+|a 19|+|a 20|的值. 【解析】(1)因为a 7=6,a 10=-3,故⎩⎨⎧a 1+6d =6a 1+9d =-3,解得a 1=24,d =-3,则a n =-3n +27, 数列的前n 项和公式为:S n =n×24+n (n -1)2 ×(-3)=-32 n 2+512 n , 注意到数列{a n }单调递减,且a 8>0,a 9=0, 所以S n 的最大值=S 8=S 9=108.(2)因为|a 1|+|a 2|+|a 3|+…+|a 19|+|a 20|=a 1+a 2+a 3+…+a 9-(a 10+a 11+…+a 20), 所以a 1+a 2+a 3+…+a 9-(a 10+a 11+…+a 20)=2S 9-S 20,由于S 9=108,S 20=-90,即|a 1|+|a 2|+|a 3|+…+|a 19|+|a 20|=306.10.已知S n 为各项均为正数的数列{a n }的前n 项和,a 1∈(0,2),a 2n +3a n +2=6S n .(1)求{a n }的通项公式;(2)设b n =1a n a n +1 ,数列{b n }的前n 项和为T n ,若对任意n ∈N *,t≤4T n 恒成立,求实数t 的最大值.【解析】(1)①当n =1时,a 21 +3a 1+2=6S 1=6a 1, 即a 21 -3a 1+2=0,又因为a 1∈(0,2),解得a 1=1. ②对任意n ∈N *,由a 2n +3a n +2=6S n 知 a 2n +1 +3a n +1+2=6S n +1,两式相减,得a 2n +1 -a 2n +3(a n +1-a n )=6a n +1,即(a n +1+a n )(a n +1-a n -3)=0,由a n >0得a n +1-a n -3=0,即a n +1-a n =3, 所以{a n }是首项为1,公差为3的等差数列,所以a n =1+3(n -1)=3n -2. (2)由a n =3n -2得b n =1a n a n +1 =1(3n -2)(3n +1)=13 ⎝ ⎛⎭⎪⎪⎫13n -2-13n +1 , 所以T n =b 1+b 2+…+b n =13 ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎪⎫13n -2-13n +1 =13 ⎝ ⎛⎭⎪⎪⎫1-13n +1 =n 3n +1 . 因为T n +1-T n =n +13(n +1)+1 -n 3n +1=1(3n +1)(3n +4)>0,所以T n +1>T n ,即数列{T n }是递增数列, 所以t≤4T n ,t 4 ≤T n ,t 4 ≤T 1=14 ,t≤1, 所以实数t 的最大值是1.(35分钟 70分)一、选择题(每小题5分,共20分,多选题全部选对得5分,选对但不全的得2分,有选错的得0分)1.已知数列{}a n 的前n 项和为S n ,若a n =1n +n +1,S n =10,则n =( ) A .90 B .119 C .120 D .121【解析】选C.因为a n =1n +n +1=n +1 -n ,所以S n =⎝⎛⎭⎫2-1 +⎝⎛⎭⎫3-2 +…+(n +1 -n )=n +1 -1=10,故n +1=121 ,故n =120.2.已知数列{a n }是等差数列,a 1<0,a 8+a 9>0,a 8·a 9<0.则使S n >0的n 的最小值为( )A .8B .9C .15D .16【解析】选D.因为等差数列{a n },首项a 1<0,a 8+a 9>0,a 8·a 9<0,所以a 8<0,a 9>0, 由S n =12 n(a 1+a n ),可得S 15=15a 8<0,S 16=16(a 1+a 16)2 =8(a 8+a 9)>0,所以使前n 项和S n >0成立的最小自然数n 的值为16.3.已知函数f(x)是(-1,+∞)上的单调函数,且函数y =f(x -2)的图象关于直线x =1对称,若数列{a n }是公差不为0的等差数列,且f(a 50)=f(a 51),则数列{a n }的前100项的和为( )A .-200B .-100C .0D .-50【解析】选B.因为函数y =f(x -2)的图象关于直线x =1对称,则函数f(x)的图象关于直线x =-1对称,又因为函数f(x)是(-1,+∞)上的单调函数,{a n }是公差不为0的等差数列,f(a 50)=f(a 51),所以a 50+a 51=-2,S 100=100(a 1+a 100)2=50(a 50+a 51)=-100. 4.(多选题)设{a n }(n ∈N *)是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论正确的是( ) A .d <0 B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值【解析】选ABD.由S 5<S 6得a 1+a 2+…+a 5<a 1+a 2+…+a 5+a 6,即a 6>0,又因为S 6=S 7,所以a 1+a 2+…+a 6=a 1+a 2+…+a 6+a 7, 所以a 7=0,故B 正确;同理由S 7>S 8,得a 8<0,因为d =a 7-a 6<0,故A 正确;而C 选项S 9>S 5,即a 6+a 7+a 8+a 9>0,可得2(a 7+a 8)>0,由结论a 7=0,a 8<0,显然C 选项是错误的.因为S 5<S 6,S 6=S 7>S 8,所以S 6与S 7均为S n 的最大值,故D 正确. 二、填空题(每小题5分,共20分)5.在等差数列{}a n 中,S n 为其前n 项的和,若S 4=12,S 8=40,则S 16=________. 【解析】设等差数列的公差为d , 则⎩⎪⎨⎪⎧S 4=4a 1+4×32d =12S 8=8a 1+8×72d =40,解得a 1=32 ,d =1,所以S 16=16×32 +16×152 ×1=144. 答案:1446.已知S n 为等差数列{a n }的前n 项和,满足a 2+a 8=6,S 5=-5,则a 6=________,S n 的最小值为________.【解析】依题意得:⎩⎨⎧2a 1+8d =6,5a 1+10d =-5,解得⎩⎨⎧a 1=-5,d =2,所以a 6=-5+10=5,S n =-5n +n (n -1)2 ×2=n 2-6n , 当n =3时,S n 的最小值为-9. 答案:5 -97.已知数列{a n }中a 1=1,a 2=2,当整数n>1时,S n +1+S n -1=2(S n +S 1)都成立,则S 15=________.【解析】因为数列{a n }中,当整数n>1时, S n +1+S n -1=2(S n +S 1)都成立⇔S n +1-S n =S n -S n -1+2⇔a n +1-a n =2(n>1).所以当n≥2时,{a n }是以2为首项,2为公差的等差数列. 所以S 15=14a 2+14×132 ×2+a 1=14×2+14×132 ×2+1=211. 答案:2118.已知等差数列{a n }的前n 项和为S n ,若1≤a 1≤3,3≤a 1+S 3≤6,则a 2a 1的取值范围是________.【解析】在等差数列{a n }中,a 1+a 3=2a 2, 所以S 3=a 1+a 2+a 3=3a 2, 又3≤a 1+S 3≤6,所以3≤a 1+3a 2≤6. 由1≤a 1≤3得13 ≤1a 1≤1.所以1≤a 1+3a 2a 1≤6,即1≤1+3a 2a 1≤6,所以0≤a 2a 1 ≤53 .即a 2a 1的取值范围是⎣⎢⎡⎦⎥⎤0,53 .答案:⎣⎢⎡⎦⎥⎤0,53三、解答题(每小题10分,共30分)9.已知数列{a n },a n ∈N *,S n 是其前n 项和,S n =18 (a n +2)2. (1)求证:{a n }是等差数列;(2)设b n =12 a n -30,求数列{b n }的前n 项和的最小值. 【解析】(1)当n =1时,a 1=S 1=18 (a 1+2)2, 解得a 1=2.当n≥2时,a n =S n -S n -1=18 (a n +2)2-18 (a n -1+2)2,即8a n =(a n +2)2-(a n -1+2)2, 整理得(a n -2)2-(a n -1+2)2=0, 即(a n +a n -1)(a n -a n -1-4)=0. 因为a n ∈N *,所以a n +a n -1>0,所以a n -a n -1-4=0,即a n -a n -1=4(n≥2). 故数列{a n }是以2为首项,4为公差的等差数列. (2)设数列{b n }的前n 项和为T n ,因为b n =12 a n -30,且由(1)知,a n =2+(n -1)×4=4n -2(n ∈N *), 所以b n =12 (4n -2)-30=2n -31.故数列{b n }是单调递增的等差数列. 令2n -31=0,得n =1512 .因为n ∈N *,所以当n≤15时,b n <0;当n≥16时,b n >0,即b 1<b 2<…<b 15<0<b 16<b 17<….故当n =15时,T n 取得最小值,最小值为T 15=-29-12 ×15=-225. 10.已知等差数列{a n }(n ∈N *)满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ;(2)令b n =1a 2n -1 ,求数列{b n }的前n 项和T n .【解析】(1)设等差数列{a n }的首项为a 1,公差为d , 由于a 3=7,a 5+a 7=26,所以a 1+2d =7,2a 1+10d =26,解得a 1=3,d =2. 所以a n =2n +1,S n =n(n +2)(n ∈N *).(2)因为a n =2n +1,所以a 2n -1=4n(n +1),所以b n =14n (n +1) =14 ⎝ ⎛⎭⎪⎪⎫1n -1n +1 . 故T n =b 1+b 2+…+b n=14 ⎝ ⎛⎭⎪⎪⎫1-12+12-13+…+1n -1n +1=14 ⎝ ⎛⎭⎪⎪⎫1-1n +1 =n 4(n +1) ,所以数列{b n }的前n 项和T n =n 4n +1 (n ∈N *). 【补偿训练】数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0(n ∈N *). (1)求数列{a n }的通项公式; (2)设H n =|a 1|+|a 2|+…+|a n |,求H n . 【解析】(1)因为a n +2-2a n +1+a n =0. 所以a n +2-a n +1=a n +1-a n =…=a 2-a 1.所以{a n }是等差数列且a 1=8,a 4=2,所以d =-2,a n =a 1+(n -1)d =10-2n.故a n =10-2n(n ∈N *).(2)因为a n =10-2n ,令a n =0,得n =5.当n>5时,a n <0;当n =5时,a n =0;当n<5时,a n >0.设S n =a 1+a 2+…+a n .所以当n>5时,H n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n )=S 5-(S n -S 5)=2S 5-S n =n 2-9n +40,当n≤5时,H n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =9n -n 2.所以H n =⎩⎨⎧9n -n 2,n≤5,n 2-9n +40,n>5 (n ∈N *).11.数列{a n }满足a 1=12 ,a n +1=12-a n(n ∈N *). (1)求证:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -1 为等差数列,并求出{a n }的通项公式. (2)设b n =1a n-1,数列{b n }的前n 项和为B n ,对任意n≥2都有B 3n -B n >m 20 成立,求正整数m 的最大值.【解析】(1)因为a n +1=12-a n, 所以1a n +1-1 =112-a n-1 =2-a n a n -1=-1+1a n -1 , 即1a n +1-1 -1a n -1=-1, 所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -1 是首项为-2,公差为-1的等差数列,1a n -1=-2+(n -1)×(-1)=-(n +1),所以a n =nn +1 .(2)b n =n +1n -1=1n ,令C n =B 3n -B n =1n +1 +1n +2 +…+13n ,所以C n +1-C n =1n +2 +1n +3 +…+13(n +1) - 1n +1 -…-13n =-1n +1 +13n +2 +13n +3 +13n +1=13n +2 -23n +3 +13n +1 >23n +3 -23n +3 =0,所以C n +1-C n >0,{C n }为单调递增数列,又因为n≥2,所以(B 3n -B n )min =B 6-B 2=13 +14 +15 +16 =1920 ,m 20 <1920 ,m<19. 又因为m ∈N *,所以m 的最大值为18.。
第二周等差数列课后习题
课后习题:
1、超市工作人员在商品上依次编号,分别为4,8,12,16,...请问第34个商品上标注的是什么数字?第58个呢?
2、商店中推行打包促销活动,每6个商品为一包。
第一包中每个商品的编号依次是3,6,9,12,15,18;第二包中编号为21,24,27,30,33,36。
依次类推,请问第20包的第三个商品编号为多少?
3、幼儿园给小朋友们发玩具,共32个小朋友,每人一个,每个玩具上都有编号,已知最后一个小朋友玩具上的编号是98,前一个玩具的编号比后一个玩具的编号总少3,问第一个小朋友手上的玩具是多少号?
4、学校举办运动会,共54个人参加,每人都有参赛号码,已知前一个人的号码比后一个人的号码总是少4,最后一个人的号码是215,第一个人的号码是多少?
5、糖果生产商为机器编号,依次为7,13,19,25,...,问编号为433的机器是第几个?
6、医院为病床编号,依次为8,14,20,26,...,问编号为284的病床是第几张?
7、有一排用等差数列编码的彩色小旗,第1面小旗上的号码为3.7,第8面小旗上的号码为38.7,你知道第7面小旗上的编码吗?
8、一个等差数列的第1项1.2,第8项是9.6,求它的第10项。
9、一个等差数列的第一项是4.1,公差是3.1,另外一项是32,求项数。
10、妈妈的消费卡上积了35次分,最低一次积41分,最高一次积了179分,中间还有33次,且这些积分成等差数列,你知道最中间一次积分是多少吗?。
等差数列习题课教案
等差数列习题课教案第一章:等差数列的概念与性质1.1 等差数列的定义引导学生复习数列的概念,引入等差数列的定义。
通过示例,让学生理解等差数列的特点,即相邻两项的差是常数。
1.2 等差数列的性质引导学生探究等差数列的性质,如相邻两项的差是常数,第n项的公式等。
通过练习题,让学生掌握等差数列的性质,并能够运用性质解决问题。
第二章:等差数列的通项公式2.1 等差数列的通项公式推导引导学生复习数列的通项公式,引入等差数列的通项公式推导过程。
通过示例,让学生理解等差数列通项公式的推导过程,并能运用通项公式求解等差数列的第n项。
2.2 等差数列的通项公式应用引导学生运用等差数列的通项公式解决实际问题,如求等差数列的前n项和、某项的值等。
通过练习题,让学生熟练掌握等差数列的通项公式,并能够灵活运用。
第三章:等差数列的前n项和3.1 等差数列前n项和的公式引导学生复习数列的前n项和的概念,引入等差数列前n项和的公式。
通过示例,让学生理解等差数列前n项和的公式,并能运用公式计算等差数列的前n项和。
引导学生探究等差数列前n项和的性质,如前n项和的公式中的参数关系等。
通过练习题,让学生掌握等差数列前n项和的性质,并能够运用性质解决问题。
第四章:等差数列的求和公式4.1 等差数列求和公式的推导引导学生复习数列的求和公式,引入等差数列求和公式的推导过程。
通过示例,让学生理解等差数列求和公式的推导过程,并能运用求和公式计算等差数列的和。
4.2 等差数列求和公式的应用引导学生运用等差数列求和公式解决实际问题,如求等差数列的和、某项的值等。
通过练习题,让学生熟练掌握等差数列求和公式,并能够灵活运用。
第五章:等差数列的综合应用5.1 等差数列在实际问题中的应用引导学生运用等差数列的知识解决实际问题,如人口增长模型、物体运动等。
通过示例,让学生理解等差数列在实际问题中的应用,并能够解决实际问题。
5.2 等差数列的综合练习提供一些综合性的练习题,让学生综合运用等差数列的知识解决问题。
等差数列的性质习题课
a sn1 sn 1 1 n = 1 ∴ = = sn sn1 sn sn1 2a 2 n 1 1 1 ∴ = sn sn1 2 1 ∴数 { }是 差 列 列 等 数 sn
1 1 1 () 2Q = sn sn1 2 1 1 1 1 5 ∴ = + (n 1)×( ) = n + 2 2 6 sn s1
作业: 作业:等差数列测试卷B
m+n=p+q
am+an=ap+aq
注意: 不一定成立的 注意:①上面的命题的逆命题 是不一定成立的; 上面的命题中的等式两边有相同数目的项 相同数目的项, ②上面的命题中的等式两边有相同数目的项, 成立吗? 如a1+a2=a3 成立吗?
4数 {a }的 项 s 列 前 和 n n 2 + bn a 成 差 列 s = an 等 数 n n a 且 差 = 2a, 1 = s1 . 公 d
1 (x < 2) 6 已 例 : 知f (x) = 2 x 2 1 (1)求 (x) f 1 1 2 若 = f (an )求 n a () a1 =1, an+1 1 (x < 2) 解 Qy = : 2 2 x
1 1 ∴x 2 = 2 ∴x = +2 2 y y
2
1 ∴f ( ) = x + 2( x > 0) 2 x
6 6 ∴an = sn sn1 = 5 3n 5 3(n 1)
18 ∴a = n (3n 5)(3n 8)
6 ∴s = n 5 3n
练习: { 练习:已知数列 an }满足an + 3sn sn1 = 0(n ≥ 2) 1 1 a1 = .(1)求证 }成等差数列 { 3 sn ()求 an }表达式. 2 {
《等差数列习题课》课件
欢迎参加《等差数列习题课》PPT课件。我们将介绍什么是等差数列,以及如 何判断等差数列,以及在现实生活中等差数列的应用。
什么是等差数列
定义
等差数列是指一个数列中每一项与它的前一项之差 相等的数列。
通项公式
对于等差数列an,其通项公式为an = a1 + (n -1) * d, 其中a1为首项,d为公差,n为数列中第n项。
Hale Waihona Puke 1公差数列中相邻两项之差。
2
首项和末项
数列中第一项和最后一项。
3
特殊性质
例如等差中值定理、等差分解式等,都是基于等差数列的特殊性质而发展的。
等差数列的应用
在数学中的应用
在代数和数学分析中,等差数列是许多数学概念和 公式的基础。
在现实生活中的应用
负债的抵消,抵押贷款还款计划和PMT等金融应用 都与等差数列相关。
前n项和公式
对于等差数列an,其前n项和公式为Sn = n/2 * (a1 + an),其中a1为首项,an为数列中第n项。
如何判断一个数列是否为等差数列
判断方法
判断数列中相邻两项之差是否相等。
给出前几项,判断方法
计算数列中相邻两项之差,看是否相等。
注意点
当数列中的公差为0时,该数列为等差数列。
等差数列的性质
常见问题及解答
1 常见的等差数列问题
2 如何解答等差数列问题
如何求等差数列的第n项、前n项的和等。
将已知的数据代入数列的公式求解。
3 实例演练及解答
通过实例演练,帮助学生更好地理解等差数列的应用。
结束语
总结内容
等差数列的定义、通项公式和前n项和公式。 判断等差数列的方法及注意点。 等差数列的性质和应用。 常见问题和解答。
等差数列的前n项和公式习题课
第4课时【教学题目】§6.2.3等差数列的前n 项和公式习题课【教学目标】1.掌握等差数列的前n 项和公式;2.会应用等差数列的前n 项和公式解答相关问题.【教学内容】1.等差数列的前n 项和公式;2.应用等差数列的前n 项和公式解答相关问题.【教学重点】等差数列的前n 项和公式.【教学难点】应用等差数列的前n 项和公式解答相关问题.【教学过程】一、知识点梳理(一)等差数列的定义1n n a a d +-=;(二)等差数列的递推公式1n n a a d +=+;(三)等差数列的通项公式()11n a a n d =+-;(四)等差数列的前n 项和公式()()11122n n n a a n n S na d +-==+. 二、例题讲解 例1、一个等差数列共有20项,各项之和为1050,首项是5,求数列的公差与第20项. 解:因为20n =,201050S =,15a =所以()202020510502a S ⨯+==,解得20100a =, 又因为()201201519100a a d d =+-=+=,所以5d =.故20100a =,5d =.例2、在等差数列{}n a 中, 315a =99a =-求30S .解:因为所以1a =23,4d =-. 故()()30303013023410502S ⨯-=⨯+⨯-=-. 例3、等差数列3,1,5,-的前几项和是150?解:因为13a =-,()21134d a a =-=--=,所以()1341502n n n S n -=-+⋅=, 解得110n =,2152n N *=-∉(舍去) 所以等差数列3,1,5,-的前10项和是150. 三、学生练习(一)在等差数列{}n a 中,已知12a =,720a =,求15S .分析:通过12a =,720a =,利用等差数列的通项公式()11n a a n d =+-,求出公差d ,再将1a 、d 、n 代入等差数列的前n 项和公式()112n n n S na d -=+,从而得到15S . (二)在等差数列{}n a 中,已知1526a =,15180S =,求1a 和d .分析:已知1526a =,15n =,15180S =,根据等差数列的前n 项和公式()12n n n a a S +=,从而解得1a ,再根据等差数列的通项公式()11n a a n d =+-,求出公差d ,或者根据等差数列的前n 项和公式()112n n n S na d -=+,也可以求出公差d . 四、课堂小结(一)等差数列的前n 项和公式;(二)应用等差数列的前n 项和公式解答相关问题.五、作业布置 ()31131215a a d a d =+-=+=()9119189a a d a d =+-=+=-课本P11练习6.2A组第5题、第6题、第7题,第8题.六、教学反思本节课的重点在于使学生掌握等差数列的前n项和公式并学会应用等差数列的前n项和公式解答相关问题.特别要使学生明白知道了等差数列{}n a中的1a、n和n a,利用公式S;知道了等差数列{}n a中的1a、n和d,利用公式(6.4)可以直(6.3)可以直接计算nS.应使学生明白:(1)应用时,如何对公式(6.3)和公式(6.4)进行选择?(2)接计算n已知等差数列{}n a中的n S、1a、n、n a四个量中的三个量,就可以利用公式(6.3)求另外一个量.(3)已知等差数列{}n a中n S、1a、n、d四个量中的三个量,就可以利用公式(6.4)求另外一个量.通过课堂练习和作业反映的情况来看,学生基本掌握了等差数列的前n项和公式、等差数列的通项公式,但对于二者的结合应用还不熟练,另外有些学生的数学基本功较差,应引起重视.。
等差数列习题课
2.已知等差数列{an}的前 n 项和为 Sn,若 a1·a2=2,S5=15,则 a4=( )
A.3
B.4 或 13
C.4 或123
D.3 或123
a1·a2=2
a1(a1+d)=2
【解析】选 C.因为等差数列{an}的前 n 项和为 Sn, S5=15
,即5(a1+ 2 a5)=15 ,
解得 a1=1 或 a1=-4,当 a1=1 时,d=1,解得 a4=4;当 a1=-4 时,d=72 ,此时
6.记 Sn 为等差数列{an} 的前 n 项和.已知 S4=0,a5=5,则 an=______;Sn=______. 【解析】设等差数列{an} 的公差为 d,
因为 S4=0,a5=5,
a1+4d=5, 所以根据等差数列前 n 项和公式和通项公式得:
4a1+6d=0,
解方程组得:a1=-3,d=2, 所以 an=-3+n-1 ×2=2n-5,Sn=n2-4n. 答案:2n-5 n2-4n
【解析】由题意知,良马每日行的距离成等差数列,
记为{an} ,其中 a1=193,d=13,an=193+13(n-1)=13n+180,
驽马每日行的距离成等差数列,
记为{bn} ,其中 b1=97,d=-0.5,bn=97-0.5(n-1)=97.5-0.5n, 则数列{an} 与数列{bn} 的前 n 项和为 3 000×2=6 000. 又因为数列{an} 的前 n 项和为12 n×(193+13n+180)=12 n×(373+13n), 数列{bn} 的前 n 项和为12 n×(97+97.5-0.5n)=12 n×(194.5-12 n),
.
当 n=19 时,S19=190.
当 n=20 时,S20=210>200.
第2课时等差数列习题课
n(n+1)
(2)由(1)知an=n,Sn= 2
,
所以bn=21Sn
=1 n(n+1)
=1n
-1 n+1
,
所以Tn=b1+b2+b3+…+bn
=(1-12
)+(12
-13
)+…+(n1
-1 n+1
)
=1-n+1 1
=n n+1
.
【类题通法】裂项相消法求和
当数列的通项是分式形式,分母是两个式子的乘积,且两个式子的差为常数时,
-2n2+40n
可得Tn=
2
=-n2+20n=-(n-10)2+100,
所以当n=10时,Tn取得最大值,且T10=100.
(3)令cn=na+2n2 ,Sn为cn的前n项和,
由(1)知,cn=n(n1+2) =12 1n-n+1 2 ,
所以Sn=21
11-13
+12
12-14
+12
13-15
+…+12
(2)当n≤7时, Tn=-(a1+a2+a3+…+an)=-Sn=13n-n2, 当n≥8时,an>0,Tn=-(a1+a2+a3+a4+a5+a6+a7)+(a8+…+an)=Sn-2S7=n2 -13n+84.
13n-n2,n≤7, 综上,Tn=n2-13n+84,n≥8.
探究点三 等差数列
an+1=-2(n+1)+27≤0, n≤1312, 得n≥1212,
又因为n∈N*,所以当n=13时,Sn有最大值169.
方法三:因为S9=S17,所以a10+a11+…+a17=0. 由等差数列的性质得a13+a14=0. 因为a1>0,所以d<0.所以a13>0,a14<0. 所以当n=13时,Sn有最大值169. 方法四:设Sn=An2+Bn. 因为S9=S17,
2022秋新教材高中数学习题课一等差数列等比数列的综合新人教A版选择性必修第二册
习题课(一) 等差数列、等比数列的综合一、选择题1.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=( )A.2n-1B.n-1C.n-1D.解析:选B 因为a n+1=S n+1-S n,所以由S n=2a n+1,得S n=2(S n+1-S n),整理得3S n=2S n+1,所以=,所以数列{S n}是以S1=a1=1为首项,为公比的等比数列,故S n =n-1.2.已知数列{a n},a1=2,a n+1-2a n=0,b n=log2a n,则数列{b n}的前10项和等于( )A.130 B.120 C.55 D.50解析:选C 在数列{a n}中,a1=2,a n+1-2a n=0,即=2,所以数列{a n}是以2为首项,2为公比的等比数列.所以a n=2×2n-1=2n.所以b n=log22n=n.则数列{b n}的前10项和为1+2+…+10=55.故选C.3.[多选]已知数列{a n}的前n项和S n=n2-9n,第k项满足5<a k<9,则k可以是( )A.9 B.8 C.7 D.6解析:选AB ∵S n=n2-9n,∴当n≥2时,a n=S n-S n-1=2n-10.又a1=S1=-8,符合上式.∴a n=2n-10(n∈N*),∴5<2k-10<9,解得7.5<k<9.5,∴k=8或9.故选A、B.4.在数列{a n}中,已知S n=1-5+9-13+17-21+…+(-1)n-1(4n-3),则S15+S22-S31的值为( )A.13 B.-76 C.46 D.76解析:选B ∵S15=(-4)×7+(-1)14(4×15-3)=29,S22=(-4)×11=-44,S31=(-4)×15+(-1)30(4×31-3)=61,∴S15+S22-S31=29-44-61=-76.5.已知数列{a n}是递增的等比数列,且a4a6-2a+a2a4=144,则a5-a3=( ) A.6 B.8 C.10 D.12解析:选D ∵{a n}是递增的等比数列,∴由a4a6-2a+a2a4=144,a5-a3>0可得a-2a3a5+a=144,(a5-a3)2=144,∴a5-a3=12,故选D.6.已知各项均不为0的等差数列{a n}满足a3-2a+3a7=0,数列{b n}是等比数列,且b6=a6,则b1b7b10等于( )A.1 B.2 C.4 D.8解析:选D 根据等差数列的性质,得a3+a7=2a5,a5+a7=2a6.又a3-2a+3a7=0,所以2a5+2a7-2a=0,即2a6=a,解得a6=2或a6=0(舍去),所以b6=a6=2,则b1b7b10=b2b6b10=b=8.二、填空题7.对于项数为m(m≥3)的有穷数列{a n},若存在项数为m+1的等比数列{b n},使得b k<a k<b k+1,其中k=1,2,…,m,则称数列{b n}为{a n}的“等比分割数列”.已知数列7,14,38,60,则该数列的一个“等比分割数列”可以是______.(写出满足条件的一个各项为整数的数列即可)解析:取一个首项为6,公比为2的数列即满足b k<a k<b k+1,其中k=1,2,…,m.答案:6,12,24,48,968.已知首项都是1的两个数列{a n},{b n}(b n≠0,n∈N*)满足a n b n+1-a n+1b n+2b n+1·b n=0.若b n=3n-1,则数列{a n}的前n项和S n=________.解析:因为a n b n+1-a n+1b n+2b n+1b n=0,b n≠0,所以-=2,所以数列是以=1为首项,2为公差的等差数列,故=2n-1.由b n=3n-1,得a n=(2n-1)3n-1,于是数列{a n}的前n项和S n=1×30+3×31+5×32+…+(2n-1)×3n-1,3S n=1×31+3×32+…+(2n-3)×3n-1+(2n-1)×3n,两式相减得-2S n=1+2×(31+32+…+3n-1)-(2n-1)×3n=-2-(2n-2)3n,所以S n=(n-1)3n+1.答案:(n-1)3n+1三、解答题9.已知数列{a n}的前n项和为S n,a n=3S n+1(n∈N*).(1)求a1,a2;(2)求数列{a n}的通项公式.解:(1)由a n=3S n+1,得a n+1=3S n+1+1,两式相减,得a n+1-a n=3(S n+1-S n)=3a n+1,即=-.又a1=3S1+1=3a1+1,得a1=-,所以a2=-×=.(2)由(1)知,数列{a n}是首项为-,公比为-的等比数列,所以a n=×n-1=n.10.已知公差不为0的等差数列{a n}的首项a1=a,a≠0,前n项和为S n,且,,成等比数列.(1)求数列{a n}的通项公式;(2)设数列的前n项和为A n,若A2 021=,求实数a的值.解:(1)设等差数列{a n}的公差为d,由2=·,即a=a1·a4,得(a1+d)2=a1(a1+3d).因为d≠0,所以d=a1=a,所以a n=a+(n-1)a=na.(2)因为S n==,所以=,所以A n=+++…+=+++…+=.又A2 019==,所以a=2.11.(2021·全国乙卷)设{a n}是首项为1的等比数列,数列{b n}满足b n=.已知a1,3a2,9a3成等差数列.(1)求{a n}和{b n}的通项公式.(2)记S n和T n分别为{a n}和{b n}的前n项和.证明:T n<.解:(1)设等比数列{a n}的公比为q.∵a1,3a2,9a3成等差数列,∴6a2=a1+9a3,即6q=1+9q2,解得q=.∴a n=n-1,∴b n==n n.(2)证明:由(1)得,S n====-×n-1.T n=1×1+2×2+3×3+…+n n, ①则T n=1×2+2×3+3×4+…+n n+1. ②①-②,得T n=1+2+3+…+n-n n+1=-n n+1=-×n,∴T n=-×n.∵=-×n-1=-×n,且3+2n>3,∴当n为正整数时,T n<.。
等差数列习题课教案
一、教学目标1. 使学生理解等差数列的定义及其性质。
2. 培养学生运用等差数列的知识解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力。
二、教学内容1. 等差数列的定义:等差数列是一个数列,从第二项起,每一项与它前一项的差都是一个常数,这个常数叫做等差数列的公差。
2. 等差数列的性质:(1)等差数列的通项公式:an = a1 + (n-1)d(2)等差数列的前n项和公式:Sn = n/2 (a1 + an) = n/2 (a1 + a1 + (n-1)d) = n/2 (2a1 + (n-1)d)(3)等差数列的求和公式:Tn = n/2 (b1 + bn)3. 等差数列的应用:解决实际问题,如计算工资、利息等。
三、教学重点与难点1. 重点:等差数列的定义、性质及应用。
2. 难点:等差数列的通项公式、前n项和公式的理解和运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究等差数列的定义、性质和应用。
2. 通过实例分析,让学生掌握等差数列的实际应用。
3. 利用多媒体课件,辅助讲解等差数列的相关概念和公式。
五、教学过程1. 导入:回顾数列的概念,引导学生思考数列的规律。
2. 讲解等差数列的定义,通过示例让学生理解等差数列的特点。
3. 推导等差数列的通项公式,并解释其意义。
4. 讲解等差数列的前n项和公式,并通过实例演示其应用。
5. 介绍等差数列在实际问题中的应用,如计算工资、利息等。
6. 课堂练习:布置一些有关等差数列的习题,让学生独立完成。
7. 总结:回顾本节课所学内容,强调等差数列的定义、性质和应用。
8. 作业布置:布置一些有关等差数列的综合练习题,巩固所学知识。
六、教学评估1. 课堂练习:通过课堂练习,观察学生对等差数列定义、性质和公式的掌握情况。
2. 作业批改:对学生的作业进行批改,了解学生对课堂所学知识的巩固程度。
3. 学生反馈:收集学生对课堂教学的反馈意见,了解教学方法的适用性。
等差数列习题课
等差数列习题课一、学习目标:1、进一步了解等差数列的定义,通项公式以及前n 项和公式;2、理解等差数列的性质,等差数列前n 项和公式的性质应用;3、等差数列通项公式、前n 项和公式的应用。
二、重难点:对等差数列通项公式、前n 项和公式的考查是本课时的重点和难点。
三、课内探究:1、已知S n ,求a n 类型。
例1、已知数列{n a }的前n 项和为2320522n S n n =-+,求数列{n a }的通项公式a n .变式训练:已知数列{n a }的前n 项和为S n ,当n N +时,满足S n =-3n 2+6n, 求数列{n a }的通项公式a n .2、求数列{|a n |}的前n 项和问题。
例2、在等差数列{n a }中,a 1=-60,a 17=-12, 求数列{|a n |}的前n 项和.变式训练:在等差数列{n a }中,S 2=16,S 4=24,求数列{|a n |}的前n 项和A n .3、两个等差数列前n 项和之比问题。
例3、有两个等差数列{a n }、{b n },其前n 项和分别为S n , T n ,若n n S T =723n n ++,求55a b 。
4、等差数列的应用。
例4、从4月1日开始,有一新款服装投入某商场销售。
4月一日该款服装售出10件,第二天售出25件,第三天售出40件,以后每天售出的件数分别递增15件,直到4月12号销售量达到最大,然后,每天售出的件数分别递减10件,(1)记从4月1日起该款服装日销售量为a n ,销售天数为n(1≤n ≤30),求a n 与n 的关系;(2)求4月份该款服装的总销售量;(3)按规律,当该商场销售此服装超过1200件时,社会上就开始流行,当此服装的销售量连续下降,且日销售量低于100件时,则此服装在社会上不再流行,试问,该款服装在社会上流行是否会超过10天?说明理由。
变式训练:甲乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m,以后每分钟比前1分钟多走1m ,乙每分钟走5m,(1) 甲乙开始运动后几分钟第一次相遇?(2) 如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m,那么开始运动后几分钟第二次相遇?。
2.3 等差数列的前n项和的性质(习题课)
工具
1.进一步了解等差数列的定义,通项公式以及前n项和公 式. 2.理解等差数列的性质,等差数列前n项和公式的性质应
用.
3.掌握等差数列前n项和之比问题,以及实际应用.
工具
1.对等差数列的通项公式、前n项和公式的考查是本课时的
热点. 2.常与函数、不等式结合命题. 3.多以选择题和解答题的形式考查.
解析: (1)当 n≥2 时, an=Sn-Sn-1=n2-3n+1-[(n-1)2-3(n-1)+1] =2n-4, 当 n=1 时,a1=S1=-1 不适合上式,
-1 ∴an= 2n-4
n=1, n≥2.
工具
(2)当 n=1 时,a1=S1=1; 当 n≥2 时,an=Sn-Sn-1=(-1)n 1n-(-1)n(n-1)
工具
[题后感悟] 已知数列{an}的前 n 项和 Sn 或 Sn 与 an 的关 系式, 求通项 an 有如下关系
S1 an= Sn-Sn-1
n=1 .特别当 n≥2
n≥2 时,若求出 an 也符合 n=1,可直接写成 an=Sn-Sn-1, 否则分段表示. ,
工具
1.(1) 已知数列 {an} 的前n项和Sn = n2 - 3n+ 1,求通项公式 an ; (2)已知数列{an}的前n项和Sn=(-1)n+1·n,求通项公式an.
解析: (1)∵a2+a12=a1+a13=2a7, 又 a2+a7+a12=24,∴a7=8. 13a1+a13 ∴S13= =13×8=104. 2
(2)∵S100=(a1+a3+…+a99)+(a2+a4+…+a100) =2(a1+a3+…+a99)+50d=145, 1 又 d=2,∴a1+a3+…+a99=60.
等差数列习题课教案
等差数列习题课教案第一章:等差数列的概念与性质1.1 等差数列的定义引导学生回顾数列的概念,引出等差数列的定义。
通过示例,让学生理解等差数列的特点,即相邻两项的差是常数。
1.2 等差数列的性质探讨等差数列的通项公式,引导学生通过观察、归纳得出公式。
引导学生理解等差数列的性质,如公差、首项、末项等,并学会运用性质解决问题。
第二章:等差数列的求和2.1 等差数列的前n项和公式引导学生通过观察、归纳等差数列的前n项和公式。
通过例题,让学生学会运用前n项和公式计算等差数列的和。
2.2 等差数列的求和性质引导学生探讨等差数列的求和性质,如分组求和、错位相减等。
通过例题,让学生学会运用求和性质简化计算过程。
第三章:等差数列的通项公式3.1 等差数列的通项公式推导引导学生回顾等差数列的性质,引导学生通过观察、归纳等差数列的通项公式。
通过示例,让学生理解通项公式的含义,并学会运用通项公式解决问题。
3.2 等差数列的通项公式的应用引导学生学会运用通项公式求等差数列的第n项、首项、末项等。
通过例题,让学生学会运用通项公式解决实际问题。
第四章:等差数列的综合应用4.1 等差数列与函数的关系引导学生理解等差数列与一次函数、二次函数等函数的关系。
通过例题,让学生学会运用函数的知识解决等差数列问题。
4.2 等差数列在实际问题中的应用引导学生学会将等差数列的知识应用到实际问题中,如人口增长、物体运动等。
通过例题,让学生学会运用等差数列解决实际问题。
第五章:等差数列的练习题讲解5.1 选择题练习给出选择题,让学生独立完成,并通过讲解答案,帮助学生巩固等差数列的知识。
5.2 填空题练习给出填空题,让学生独立完成,并通过讲解答案,帮助学生巩固等差数列的知识。
5.3 解答题练习给出解答题,让学生独立完成,并通过讲解答案,帮助学生巩固等差数列的知识。
第六章:等差数列的图像与性质6.1 等差数列的图像引导学生回顾数列图像的概念,引出等差数列的图像。
高中数学新人教B版必修5课件:第二章数列2.2习题课——等差数列习题课
得 Sn-Sn-1+2SnSn-1=0.即
1
1
1
-1
−
1
+2=0,
∴ − =2.
∴数列
-1
1
是公差为 2 的等差数列.
1
1
2
1
又 S1=a1= ,∴ =2.
1
1
∴ =2+(n-1)×2=2n,Sn=2 ,
1
1
-1
∴当 n≥2 时,an=Sn-Sn-1=2 − 2(-1) = 2(-1).
+
当 p+q 为偶数时,n=
,Sn 最大;
2
+-1
++1
2
2
当 p+q 为奇数时,n=
或 n=
,Sn 最大.
②若a1<0,且Sp=Sq(p≠q),则
+
当 p+q 为偶数时,n=
,Sn 最小;
当 p+q 为奇数时,n=
或 n=
2
+-1
++1
2
2
,Sn 最小.
目标导航
题型一
4
(+2)
1
2
1
d=3n+
2
1
(-1)
1
1 1
2
1 1
-
2 4
1
1
-
4(+1)(+2)
.
+2
2
,
+…+
2 +1 +2
2+3
2(+1)(+2)
六年级奥数等差数列的认识与公式运用教师版
一、引言等差数列是数学中重要的概念之一,在六年级的奥数竞赛中,也是常出现的题型。
掌握等差数列的基本概念以及相应的公式运用,对学生的数学思维能力和解题技巧的培养具有重要意义。
本教案主要介绍六年级奥数等差数列的认识与公式运用,旨在帮助教师全面了解这一知识点的教学内容和方法。
二、概念解释等差数列是指数列中相邻两项之间的差值相等。
设数列为:a1, a2, a3, ..., an,如果满足ai+1 - ai = d(d为常数),则称这个数列为等差数列。
其中,d称为公差。
三、教学内容与方法1.等差数列的基本性质1.1首项和公差首项(a1)是等差数列中首次出现的数字,公差(d)是等差数列中相邻两项之间的差值。
1.2公式运用等差数列的第n项(an)的公式:an = a1 + (n - 1)d等差数列前n项和(Sn)的公式:Sn = (a1 + an) * n / 22.教学方法2.1观察法通过观察数列中的数字,发现其中的规律,并根据规律推导出公式。
2.2计算法通过计算数列中的数字的差值,找出公差,并依据公差推导出公式。
2.3实例演练法通过一些具体的例题,让学生进行反复的练习和推理,掌握等差数列的相关知识和运用。
四、教学步骤1.激发兴趣(引入)通过介绍等差数列在生活中的应用场景或有趣的问题,来激发学生对等差数列的兴趣。
2.知识传授2.1讲解等差数列的基本概念和性质。
2.2讲解等差数列的公式运用,包括第n项公式和前n项和公式。
3.实例演练通过一些具体的例题,让学生进行实际操作,并辅导他们使用等差数列的公式解题。
4.锻炼和巩固布置适当的练习题,让学生进行练习和巩固,加深对等差数列的理解和运用。
五、教学要点1.理解等差数列的基本概念和性质。
2.掌握等差数列的第n项公式和前n项和公式的运用方法。
3.培养学生的观察力和推理能力,加强对等差数列的认识和运用。
六、教学扩展与延伸1.引入等差数列的概念和公式运用的同时,可以引入等比数列的概念和公式运用,让学生对比两者之间的异同,加深对数列的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列习题课1. 进一步了解等差数列的定义,通项公式及前n 项和公式;2. 理解等差数列的性质,等差数列前n 项和公式的性质应用; 项和之比问题,以及实际应用。
一、知识回顾1.等差数列的定义用递推公式表示为:)(1++∈=-N n d a a n n 或),2(1+-∈≥=-N n n d a a n n ,其中d 为常数,叫这个数列的公差。
2.等差数列的通项公式:d n a a n )1(1-+=, 3.等差数列的分类:当0>d 时,}{n a 是递增数列;当0<d 时,}{n a 是递减数列;当0=d 时,}{n a 是常数列。
4.等差中项:如果在b a ,中间插入一个数A ,使b A a ,,成等差数列,那么A 叫做a 与b 的等差中项,且2ba A += 5.等差数列的前n 项和公式:2)(1n n a a n S +=,或d n n na S n 2)1(1-+=,此式还可变形为n da n d S n )2(212-+= 6.等差数列的主要性质: (1)d m n a a m n )(-+=(2)若q p n m +=+,则q p n m a a a a +=+(反之也成立)(其中+∈N q p n m ,,,);特别的,若pn m 2=+(,,m n p N +∈),则p n m a a a 2=+(3) ,,,2m n m n n a a a ++组成公差为md 的等差数列. (4) ,,,232n n n n n S S S S S --组成公差为d n 2的等差数列. 7.等差数列的判定方法:(1)定义法:1n n a a d +-=(d 为常数)(n ∈N*){}n a ⇔是等差数列; (2)中项法:122n n n a a a ++=+(n ∈N*){}n a ⇔是等差数列;(3)通项公式法:n a kn b =+(k ,b 是常数)(n ∈N*){}n a ⇔是等差数列; (4)前n 项和公式法:2n S An Bn =+(A 、B 是常数)(n ∈N*){}n a ⇔等差数列.二、典例分析 ※等差数列的判定 例1:※等差数列性质的应用例2:※已知前n 项和求通项公式例3.已知数列{}n a 的前n 项之和为① n n S n -=22 ② 12++=n n S n求数列{}n a 的通项公式。
正解: ①当1=n 时,111==S a 当2≥n 时,34)1()1(2222-=-+---=n n n n n a n 经检验 1=n 时 11=a 也适合,∴34-=n a n ②当1=n 时,311==S a 当2≥n 时,nn n n n a n 21)1()1(122=-----++= ∴ ⎩⎨⎧=n a n 23)2()1(≥=n n ※等差数列前n 项和的最值问题例4.数列{}n a 是首项为23,公差为整数的等差数列,且第6项为正,第7项为负。
(1)求数列公差;(2)求前n 项和n s 的最大值;(3)当0>n s 时,求n 的最大值。
解: (1)231=a, 06>a ,07<a ,∴ 115060a d a d +>⎧⎨+<⎩ ⇒623523-<<-d d 为整数, ∴4d =-.(2))4(2)1(23-⨯-+=n n n s n =23)1(2--n n n=-2n n252+ =-2625)425(22+-n∴当6=n时n s 最大=78(3)02522>+-=n n s n时,0225<<n ,故n 最大值为12.※两个等差数列前n 项和之比例5.等差数列{}n a 、{}n b 的前n 项和为S n 、T n .若),(27417+∈++=N n n n T S n n 求77b a ;正解:79922713411371313777777=+⨯+⨯==++=∴T S b b a a b a※求数列{|a n |}的前n 项和例6.已知一个等差数列{}n a 的通项公式a n =25-5n ,求数列{}||n a 的前n 项和;正解: ⎪⎪⎩⎪⎪⎨⎧≥+--≤-6,502)5)(520(5,2)545(n n n n n n※当堂检测:3.已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为( )A .11B .19C .20D .21 解析:∵a 11a 10<-1,且S n 有最大值,∴a 10>0,a 11<0,且a 10+a 11<0, ∴S 19=19(a 1+a 19)2=19·a 10>0,S 20=20(a 1+a 20)2=10(a 10+a 11)<0. 所以使得S n >0的n 的最大值为19,故选B. 答案:B7、一、选择题1、等差数列{}n a 中,10120S =,那么110a a +=( )A. 12B. 24C. 36D. 482、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( ) A.有最小值且是整数 B. 有最小值且是分数 C. 有最大值且是整数 D. 有最大值且是分数3、已知等差数列{}n a 的公差12d =,8010042=+++a a a ,那么=100S A .80 B .120C .135D .160.4、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13S A .390 B .195 C .180 D .1205、从前180个正偶数的和中减去前180个正奇数的和,其差为( )A. 0B. 90C. 180D. 3606、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )A. 130B. 170C. 210D. 2607、在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( ) A.54S S < B.54S S = C. 56S S < D. 56S S =8、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( ) A. 13 B. 12 C. 11 D. 10 9、已知某数列前n 项之和3n 为,且前n 个偶数项的和为)34(2+n n ,则前n 个奇数项的和为( ) A .)1(32+-n nB .)34(2-n nC .23n - D .321n 10若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为( )A .6B .8C .10D .12 二.填空题1、等差数列{}n a 中,若638a a a =+,则9s = .2、等差数列{}n a 中,若232n S n n =+,则公差d = .3、在小于100的正整数中,被3除余2的数的和是4、已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=⋅a a a ,则前10项的和S 10=5、一个等差数列共有10项,其中奇数项的和为252,偶数项的和为15,则这个数列的第6项是 *6、两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,若337++=n n T S n n ,则88ab = . 三.解答题1、 在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++ .2、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0, ①求公差d 的取值范围;②1212,,,S S S 中哪一个值最大?并说明理由.3、己知}{n a 为等差数列,122,3a a ==,若在每相邻两项之间插入三个数,使它和原数列的数构成一个新的等差数列,求:(1)原数列的第12项是新数列的第几项?(2)新数列的第29项是原数列的第几项?4、设等差数列}{n a 的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:(1)}{n a 的通项公式a n 及前n项的和S n ; (2)|a 1 |+|a 2 |+|a 3 |+……+|a 14 |.课后作业参考答案一、选择题1-5 B A C B C 6-10 C B A B A 二、填空题1、02、63、16504、-105、36、6 三.解答题1、n a n 2.0=,393805251=+++a a a .2、①∵121126767713113712()6()002130()1302S a a a a a a a S a a a ⎧=+=+>⎪+>⎧⎪⇔⎨⎨<⎩⎪=+=<⎪⎩ ,∴111211060212a d a d a d +>⎧⎪+<⎨⎪+=⎩ 解得,2437d -<<-,②由67700a a a +>⎧⎨<⎩6700a a >⎧⇒⎨<⎩,又∵2437d -<<-∴{}n a 是递减数列, ∴1212,,,S S S 中6S 最大.3、解:设新数列为{},4,)1(,3,2,1512511d b b d n b b a b a b b n n +=-+=====有根据则即3=2+4d ,∴14d =,∴172(1)44n n b n +=+-⨯= 1(43)7(1)114n n a a n n -+=+-⨯=+= 又,∴43n n a b -=即原数列的第n 项为新数列的第4n -3项.(1)当n=12时,4n -3=4×12-3=45,故原数列的第12项为新数列的第45项;(2)由4n -3=29,得n=8,故新数列的第29项是原数列的第8项。
4、解:设等差数列首项为a 1,公差为d ,依题意得⎩⎨⎧-=+-=+75156626411d a d a 解得:a 1=-20,d=3。
⑴2)23320(2)(,233)1(11-+-=+=-=-+=n n n a a S n d n a a n n n 234322n n =-;⑵{}120,3,n a d a n =-=∴ 的项随着的增大而增大1202300,3230,3(1)230,(),7,733k k a a k k k k Z k +≤≥-≤+-≥∴≤≤∈=设且得且即第项之前均为负数 ∴123141278914||||||||()()a a a a a a a a a a ++++=-+++++++1472147S S =-=.。