最新南昌大学计算机控制实验报告数/模转换实验

合集下载

计算机控制课程实验实验报告

计算机控制课程实验实验报告

计算机控制课程实验实验报告姓名:学号:班级:实验一输入与输出通道1.A/D转换实验1.1实验内容:编写实验程序,将-5V ~ +5V的电压作为ADC0809的模拟量输入,将转换所得的8位数字量保存于变量中。

1.2实验原理:实验设备中的ADC0809芯片,其输出八位数据线以及CLOCK线已连到控制计算机的数据线及系统应用时钟1MCLK (1MHz)上。

其它控制线根据实验要求可另外连接 (A、B、C、STR、/OE、EOC、IN0~IN7)。

根据实验内容的要求,可以设计出如图1所示的实验线路图。

上图中,AD0809的启动信号“STR”是由控制计算机定时输出方波来实现的。

“OUT1”表示386EX内部1#定时器的输出端,定时器输出的方波周期=定时器时常。

图中ADC0809芯片输入选通地址码A、B、C为“1”状态,选通输入通道IN7;通过单次阶跃单元的电位器可以给A/D转换器输入-5V ~ +5V的模拟电压;系统定时器定时1ms输出方波信号启动A/D转换器,并将A/D转换完后的数据量读入到控制计算机中,最后保存到变量中。

1.3程序流程:1.4实验步骤及结果:(1) 打开联机操作软件,参照流程图,在编辑区编写实验程序。

检查无误后编译、链接。

(2) 按图1接线 (注意:图中画“o”的线需用户自行连接),连接好后,请仔细检查,无错误后方可开启设备电源。

(3) 装载完程序后,系统默认程序的起点在主程序的开始语句。

用户可以自行设置程序起点,可先将光标放在起点处,再通过调试菜单项中设置起点或者直接点击设置起点图标,即可将程序起点设在光标处。

(4) 加入变量监视,具体步骤为:打开“设置”菜单项中的“变量监视”窗口或者直接点击“变量监视”图标,将程序中定义的全局变量“AD0~AD9”加入到变量监视中。

在查看菜单项中的工具栏中选中变量区或者点击变量区图标,系统软件默认选中寄存器区,点击“变量区”可查看或修改要监视的变量。

微机实验报告数模转换器和模数转换器实验

微机实验报告数模转换器和模数转换器实验

实验报告课程名称微机接口与汇编语言实验项目实验五数/模转换器和模/数转换器实验实验仪器 TPC-USB通用微机接口实验系统系别计算机学院专业班级/学号学生姓名实验日期 2013.12.19成绩指导教师胡信裕实验五数/模转换器和模/数转换器实验一、实验目的1. 了解数/模转换器的基本原理,掌握DAC0832芯片的使用方法。

2. 了解模/数转换器的基本原理,掌握ADC0809的使用方法。

二.实验设备1.PC微机系统一套2.TPC-USB通用微机接口实验系统一套三.实验要求1.实验前要作好充分准备,包括程序框图、源程序清单、调试步骤、测试方法、对运行结果的分析等。

2.熟悉与实验有关的系统软件(如编辑程序、汇编程序、连接程序和调试程序等)使用方法。

在程序调试过程中,有意识地了解并掌握TPC-USB通用微机接口实验系统的软硬件环境及使用,掌握程序的调试及运行的方法技巧。

3.实验前仔细阅读理解教材相关章节的相关内容,实验时必须携带教材及实验讲义。

四.实验内容及步骤(一)数/模转换器实验1.实验电路原理如图:DAC0832采用单缓冲方式,具有单双极性输入端(图中的Ua、Ub),编程产生以下锯齿波(从Ua和Ub输出,用示波器观察)参考电路图2. 8位D/A转换器DAC0832的口地址为290H,输入数据与输出电压的关系为:(UREF表示参考电压,N表示数数据),这里的参考电压为PC机的+5V电源。

3. 产生锯齿波只须将输出到DAC0832的数据由0循环递增。

4. 参考流程图:参考流程图(二)模/数转换器1. 实验电路原理图如图。

将(一)的DAC的输出Ua,送入ADC0809通道1(IN1)。

连接参考电路图2. 编程采集IN1输入的电压,在屏幕上显示出转换后的数据(用16进制数)。

3. ADC0809的IN0口地址为298H,IN1口地址为299H。

4. IN0单极性输入电压与转换后数字的关系为:其中Ui为输入电压,UREF为参考电压,这里的参考电压为PC机的+5V电源。

南昌大学计算机控制实验报告数/模转换实验

南昌大学计算机控制实验报告数/模转换实验

南昌大学实验报告学生姓名:学号:专业班级:实验类型:■验证□综合□设计□创新实验日期:实验成绩:实验一数/模转换实验一.实验要求掌握DAC0832芯片的性能、使用方法及对应的硬件电路。

编写程序控制D/A输出的波形,使其输出周期性的三角波。

二.实验说明电路实现见主板模块B1,具体说明请见用户手册。

DAC0832的片选CS0832接00H,观察输出端OUTl(B1部分)产生三角波由数字量的增减来控制,同时要注意三角波要分两段来产生。

三.实验步骤1、接线:此处无需接线。

2、示例程序:见Cpl源文件,程序流程如下图所示。

3、运行虚拟示波器方法:打开LCAACT软件中“设置”一>“实验机”,将其中的程序段地址设为8100,偏移地址0000。

然后选择“设置”一>“环境参数”一>“普通示波”,选择“工具”一>“加载目标文件”,本实验加载C:\AEDK\LCAACT\试验软件\CPI.EXE,然后选择在“工具”栏中“软件示波器”中“普通示波”,点击开始示波器即程序运行。

以后每个实验中的虚拟示波器运行方法同上。

只是加载的程序要根据实验的不同而不同。

如果以后用到该方法,不再赘述。

4、现象:程序执行,用虚拟示波器(CHl)观察输出点OUT(B1开始设置初始电平为0VD/A输出并增<=0FFH?YN数模转换中),可以测量到连续的周期性三角波。

通过实验结果的图片,我们可以知道得出来的三角波的幅值为U=(3.01V+1.95V)=4.96V。

T=1.3s模拟输出来的幅值和我们输入的5V有一定的偏差。

相对误差为(5-4.96)/5=0.8%,因为0832是8为的,所以分辨率为1/256即0.004。

相比较一下本次实验的误差只有0.8%,相当于掉了两个单位的分辨率。

在允许的误差范围之内。

所以本次实验的结果还算是比较成功的。

四、实验小结通过本次实验,我对数模转换的知识理解得更加透彻,以及如何使用DAC0832进行数模转换把数字量转换为模拟量并以三角波形式输出。

计算机控制技术实验报告册

计算机控制技术实验报告册

计算机控制技术实验报告册学院:SSS专业:电气工程及其自动化班级:SS姓名:XXXX学号:XXXX核自学院电气工程及其自动化计算机控制系统实验报告1实验一 D/A数模转换实验一、实验目的1.掌握数模转换的基本原理。

2.熟悉12位D/A转换的方法。

二、实验仪器1.EL-AT-II型计算机控制系统实验箱一台2.PC计算机一台三、实验内容通过A/D&D/A卡完成12位D/A转换的实验,在这里采用双极性模拟量输出,数字量输入范围为:0~4096,模拟量输出范围为:-5V~+5V。

转换公式如下:Uo= Vref - 2Vref(211K11+210K10+...+20K0)/ 212Vref=5.0V例如:数字量=1 则K11=1,K10=0,K9=1,K8=0,K7=1,K6=1,K5=0,K4=1,K3=0,K2=0,K1=0,K0=1模拟量Uo= Vref - 2Vref(211K11+210K10+...+20K0)/ 212=4.0V四、实验步骤1.连接A/D、D/A卡的DA输出通道和AD采集通道。

A/D、D/A卡的DA1输出接A/D、D/A卡的AD1输入。

检查无误后接通电源。

2.启动计算机,在桌面双击图标[Computerctrl]或在计算机程序组中运行[Computerctrl]软件。

23.测试计算机与实验箱的通信是否正常,通信正常继续。

如通信不正常查找原因使通信正常后才可以继续进行实验。

4.在实验项目的下拉列表中选择实验一[D/A 数模转换实验], 鼠标单击按钮,弹出实验课题参数设置对话框。

5.在参数设置对话框中设置相应的实验参数后,在下面的文字框内将算出变换后的模拟量,6. 点击确定,在显示窗口观测采集到的模拟量。

并将测量结果填入下表1-1:表1-1 五、实验结果实验得出数字量与模拟量的对应曲线如下图1-1:核自学院电气工程及其自动化计算机控制系统实验报告3图1-1六、实验结果分析表1-1中计算出理论值,与实验结果比较,分析产生误差的原因系仪器误差。

计算机控制技术实验报告_ 组

计算机控制技术实验报告_  组

实验一A/D与D/A转换一、实验目的1.通过实验了解实验系统的结构与使用方法;2.通过实验了解模拟量通道中模数转换与数模转换的实现方法。

二、实验设备1.THBCC-1型信号与系统•控制理论及计算机控制技术实验平台2.THBXD数据采集卡一块(含37芯通信线、16芯排线和USB电缆线各1根)3.PC机1台(含软件“THBCC-1”)三、实验内容1.输入一定值的电压,测取模数转换的特性,并分析之;2.在上位机输入一十进制代码,完成通道的数模转换实验。

四、实验原理1.数据采集卡本实验台采用了THBXD数据采集卡。

它是一种基于USB总线的数据采集卡,卡上装有14Bit分辨率的A/D转换器和12Bit分辨率的D/A转换器,其转换器的输入量程均为±10V、输出量程均为±5V。

该采集卡为用户提供4路模拟量输入通道和2路模拟量输出通道。

其主要特点有:1) 支持USB1.1协议,真正实现即插即用2) 400KHz14位A/D转换器,通过率为350K,12位D/A转换器,建立时间10μs3) 4通道模拟量输入和2通道模拟量输出4) 8k深度的FIFO保证数据的完整性5) 8路开关量输入,8路开关量输出2. AD/DA转换原理数据采集卡采用“THBXD”USB卡,该卡在进行A/D转换实验时,输入电压与二进制的对应关系为:-10~10V对应为0~16383(A/D转换为14位)。

其中0V为8192。

其主要数据格式如下表所示(采用双极性而DA转换时的数据转换关系为:-5~5V对应为0~4095(D/A转换为12位),其数据格式(双极性电压输出时)为:五、实验步骤1. 启动实验台的“电源总开关”,打开±5、±15V电源。

将“阶跃信号发生器”单元输出端连接到“数据采集接口单元“的“AD1”通道,同时将采集接口单元的“DA1”输出端连接到接口单元的“AD2”输入端;2、将“阶跃信号发生器”的输入电压调节为1V;3. 启动计算机,在桌面双击图标“THBCC-1”软件,在打开的软件界面上点击“开始采集”按钮;4. 点击软件“系统”菜单下的“AD/DA实验”,在AD/DA实验界面上点击“开始”按钮,观测采集卡上AD转换器的转换结果,在输入电压为1V(可以使用面板上的直流数字电压表进行测量)时应为00001100011101(共14位,其中后几位将处于实时刷新状态)。

南昌大学微机原理实验报告

南昌大学微机原理实验报告

实验报告实验课程:汇编原理与微机接口技术学生姓名:信念学号:520---1314专业班级:网络间谍***2***年 12 月 12 日目录一、实验一 (3)二、实验二 (5)三、实验三 (8)四、实验四 (10)五、实验五 (12)六、实验六 (18)南昌大学实验报告一学生姓名:信念学号:520---1314 专业班级:网络间谍***班实验类型:□验证□ 综合▥设计□ 创新实验日期: 2***.11.3 实验成绩:一、实验名称实验设备简介二、实验内容了解并熟悉SICElab『赛思』开放式综合实验/仿真系统及G2010+实验平台、实验设备。

三、实验目的了解实验设备、搭建实验平台四、实验器材(1)G2010+实验平台1台(2)G6W仿真器1台(3)连线若干根五、实验设备及说明1 仿真工具伟福公司所有的产品,包含一个项目管理器,一个功能强大的编辑器,汇编Make、build和调试工具并提供一个与第三方编译器的接口2 实验平台新型实用模块:(1)LCD液晶实验(2)点阵LED广告屏(3)DS12887 实时钟(4)红外线发送、接收(5)直流电机恒速(6)电子琴模拟实验(7)串行ROM/I2C ROM (8)步进电机变速传感器实验:(1)温度传感器(2)压力传感器(3)霍尔传感器(4)红外传感器传统实验模块:(1)模数转换A/D0809(2)数模转换D/A0832(3)8155控制键显(4)V/F转换LM331(5)串口通讯MAX232(6)音响实验LM386 7)EPROM27C256扩展(8)RAM6264扩展(9)微型打印机接口(10)PWM模块通用实验模块:(1)模拟信号发生器(2)开关量发生器(3)发光二极管组(4)信号发生器(5)74LS138译码器(6)分频器电路(7)LED6位数码管(8)20个键盘组(9)逻辑笔(10)常用门电路自由实验模块:由DIP40锁紧插座及240个插孔组成,CPU所有信号均以插孔方式引出,还设计了常用门电路、晶振源、电源插孔等,可以完成以上实验模块的组合实验以及由实验者自行命题和新器件、新方案的实验,使得实验方式和内容不受限制。

南昌大学控制工程实验报告

南昌大学控制工程实验报告

实验报告实验课程:机械工程控制基础学生姓名:周栋学号:5902110054专业班级:热能101班实验一典型环节的电路模拟与软件仿真研究一.实验目的1.通过实验熟悉并掌握实验装置和上位机软件的使用方法。

2.通过实验熟悉各种典型环节的传递函数及其特性,掌握电路模拟和软件仿真研究方法。

二.实验内容1.设计各种典型环节的模拟电路。

2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。

3.在上位机界面上,填入各个环节的实际(非理想)传递函数参数,完成典型环节阶跃特性的软件仿真研究,并与电路模拟研究的结果作比较。

三.实验步骤1.熟悉实验箱,利用实验箱上的模拟电路单元,参考本实验附录设计并连接各种典型环节(包括比例、积分、比例积分、比例微分、比例积分微分以及惯性环节)的模拟电路。

注意实验接线前必须先将实验箱上电,以对运放仔细调零。

然后断电,再接线。

接线时要注意不同环节、不同测试信号对运放锁零的要求。

在输入阶跃信号时,除比例环节运放可不锁零(G可接-15V)也可锁零外,其余环节都需要考虑运放锁零。

2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。

必须在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。

以比例环节为例,此时将Ui连到实验箱 U3单元的O1(D/A 通道的输出端),将Uo连到实验箱 U3单元的I1(A/D通道的输入端),将运放的锁零G连到实验箱 U3单元的G1(与O1同步),并连好U3单元至上位机的并口通信线。

接线完成,经检查无误,再给实验箱上电后,启动上位机程序,进入主界面。

界面上的操作步骤如下:①按通道接线情况完成“通道设置”:在界面左下方“通道设置”框内,“信号发生通道”选择“通道O1#”,“采样通道X”选择“通道I1#”,“采样通道Y”选择“不采集”。

②进行“系统连接”(见界面左下角),如连接正常即可按动态状态框内的提示(在界面正下方)“进入实验模式”;如连接失败,检查并口连线和实验箱电源后再连接,如再失败则请求指导教师帮助。

南昌大学计算机控制实验报告数/模转换实验汇编

南昌大学计算机控制实验报告数/模转换实验汇编

南昌大学实验报告学生姓名:学号:专业班级:实验类型:■验证□综合□设计□创新实验日期:实验成绩:实验一数/模转换实验一.实验要求掌握DAC0832芯片的性能、使用方法及对应的硬件电路。

编写程序控制D/A输出的波形,使其输出周期性的三角波。

二.实验说明电路实现见主板模块B1,具体说明请见用户手册。

DAC0832的片选CS0832接00H,观察输出端OUTl(B1部分)产生三角波由数字量的增减来控制,同时要注意三角波要分两段来产生。

三.实验步骤1、接线:此处无需接线。

2、示例程序:见Cpl源文件,程序流程如下图所示。

3、运行虚拟示波器方法:打开LCAACT软件中“设置”一>“实验机”,将其中的程序段地址设为8100,偏移地址0000。

然后选择“设置”一>“环境参数”一>“普通示波”,选择“工具”一>“加载目标文件”,本实验加载C:\AEDK\LCAACT\试验软件\CPI.EXE,然后选择在“工具”栏中“软件示波器”中“普通示波”,点击开始示波器即程序运行。

以后每个实验中的虚拟示波器运行方法同上。

只是加载的程4、现象:程序执行,用虚拟示波器(CHl)观察输出点OUT(B1数模转换中),可以测量到连续的周期性三角波。

通过实验结果的图片,我们可以知道得出来的三角波的幅值为U=(3.01V+1.95V)=4.96V。

T=1.3s模拟输出来的幅值和我们输入的5V有一定的偏差。

相对误差为(5-4.96)/5=0.8%,因为0832是8为的,所以分辨率为1/256即0.004。

相比较一下本次实验的误差只有0.8%,相当于掉了两个单位的分辨率。

在允许的误差范围之内。

所以本次实验的结果还算是比较成功的。

四、实验小结通过本次实验,我对数模转换的知识理解得更加透彻,以及如何使用DAC0832进行数模转换把数字量转换为模拟量并以三角波形式输出。

还知道实践和理论是有一定差距的南昌大学实验报告学生姓名:学号:专业班级:实验类型:■验证□综合□设计□创新实验日期:实验成绩:实验二模/数转换实验一.实验要求了解A/D芯片ADC0809转换性能及编程。

南昌大学单片机实验报告DOC

南昌大学单片机实验报告DOC

实验一I/O口输入输出实验一、实验目的掌握单片机P1口、P3口的使用方法。

二、实验内容以P1 口为输出口,接八位逻辑电平显示,LED显示跑马灯效果。

以P3口为输入口,接八位逻辑电平输出,用来控制跑马灯的方向。

三、实验要求根据实验内容编写一个程序,并在实验仪上调试和验证。

四、实验步骤1)系统各跳线器处在初始设置状态。

用导线连接八位逻辑电平输出模块的K0到CP U模块的RXD(P3.0 口); 用8 位数据线连接八位逻辑电平显示模块的JD4B到CPU 模块JD8(P1 口)。

2)启动PC 机,打开THGMW-51软件,输入源程序,并编译源程序。

编译无误后,下载程序运行。

3)观察发光二极管显示跑马灯效果,拨动K0 可改变跑马灯的方向。

五、实验参考程序;//******************************************************************;文件名: Port for MCU51;功能: I/O口输入、输出实验;接线: 用导线连接八位逻辑电平输出模块的K0到CPU模块的RXD(P3.0口);; 用8位数据线连接八位逻辑电平显示模块的JD2B到CPU模块的JD8(P1口)。

;//******************************************************************DIR BIT P3.0ORG 0000HLJMP STARTORG 0100HSTART:OUTPUT1:MOV A, #0FEHMOV R5,#8LOOP1: CLRCMOV C,DIRJC OUTPUT2MOV P1, ARL AACALL DELAYDJNZR5, LOOP1SJMP OUTPUT1OUTPUT2:MOV A, #07FHMOV R5, #8LOOP2:CLR CMOV C,DIRJNCOUTPUT1MOV P1, ARR AACALL DELAYDJNZ R5,LOOP2SJMP OUTPUT2DELAY:MOV R6,#0DELAYLOOP1:MOV R7,#0DELAYLOOP2:NOPNOPDJNZ R7,DELAYLOOP2DJNZ R6,DELAYLOOP1RETEND六、实验结果当八位逻辑电平的K0拨到上方,即输出高电平时,实验箱B5区的八个LED灯从左至右循环点亮,当K0拨到下方,即输出低电平时,八个LED灯从右至左循环点亮。

南昌大学自动控制理论实验报告

南昌大学自动控制理论实验报告

实验报告实验课程:学生:学号:专业班级:实验一典型环节的模拟研究一. 实验要求1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响三.实验容及步骤在实验中欲观测实验结果时,可用普通示波器,也可选用本实验机配套的虚拟示波器。

如果选用虚拟示波器,只要运行LABACT程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开场即可使用本实验机配套的虚拟示波器〔B3〕单元的CH1测孔测量波形。

具体用法参见用户手册中的示波器局部。

1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。

图3-1-1 典型比例环节模拟电路实验步骤:注:‘S ST’不能用“短路套〞短接!〔1〕用信号发生器〔B1〕的‘阶跃信号输出’和‘幅度控制电位器’构造输入信号〔Ui〕:B1单元中电位器的左边K3开关拨下〔GND〕,右边K4开关拨下〔0/+5V阶跃〕。

阶跃信号输出〔B1的Y测孔〕调整为4V〔调节方法:按下信号发生器〔B1〕阶跃信号按钮,L9灯亮,调节电位器,用万用表测量Y测孔〕。

〔2〕构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。

〔a〕安置短路套〔b〕测孔联线模块号跨接座号1 A1 S4,S7〔电阻R1=100K〕2 A6 S2,S6〔3〕运行、观察、记录:〔注:CH1选‘×1’档。

时间量程选‘×1’档〕①翻开虚拟示波器的界面,点击开场,按下信号发生器〔B1〕阶跃信号按钮〔0→+4V 阶跃〕,用示波器观测A6输出端〔Uo〕的实际响应曲线Uo〔t〕。

②改变比例系数〔改变运算模拟单元A1的反应电阻R1〕,重新观测结果,填入实验报告。

2).观察惯性环节的阶跃响应曲线典型惯性环节模拟电路如图3-1-4所示。

图3-1-4 典型惯性环节模拟电路实验步骤:注:‘S ST’不能用“短路套〞短接!1 信号输入〔Ui〕B1〔Y〕→A1〔H1〕2 运放级联A1〔OUT→A6〔H1〕〔1〕用信号发生器〔B1〕的‘阶跃信号输出’和‘幅度控制电位器’构造输入信号〔Ui〕:B1单元中电位器的左边K3开关拨下〔GND〕,右边K4开关拨下〔0/+5V阶跃〕。

计算机控制实验报告

计算机控制实验报告

实验一D/A数模转换实验一、实验目的1.掌握数模转换的基本原理。

2.熟悉12位D/A转换的方法。

二、实验仪器1.EL-AT-II型计算机控制系统实验箱一台2.PC计算机一台三、实验预习<1>、数模转换的原理:①、D/A转换器是将输入的二进制数字量转换成模拟量,以电压或电流的形式输出。

②、D/A转换器实质上是一个译码器(解码器)。

一般常用的线性D/A转换器,其输出模拟电压uo和输入数字量Dn之间成正比关系。

U REF为参考电压。

则有:u o=DnU REF③、将输入的每一位二进制代码按其权值大小转换成相应的模拟量,然后将代表各位的模拟量相加,则所得的总模拟量就与数字量成正比,这样便实现了从数字量到模拟量的转换。

<2>、数模转换的转换方法:数模转换方法有多种:其中一种是对输入的数据进行补偿滤波,经补偿滤波后的数据率与补偿滤波前的数据率相同,补偿滤波后的输出信号;对该输出信号进行内插滤波及数据率上升,最后进行Delta-Sigma调制,输出单比特的数据流,对单比特的数据流进行半数字滤波,输出模拟信号;对模拟信号进行模拟低通五、实验分析从实验得出数据可以看出理论值与实测值明显有误差,其中原因主要有:量化误差,计算机本身的误差,实验箱电路产生的误差,电网电压波动,外界干扰,转换误差。

实验二A/D模数转换实验一、实验目的1.掌握模数转换的基本原理。

2.熟悉10位A/D转换的方法。

二、实验仪器1.EL-AT-II计算机控制系统实验箱一台。

2.PC计算机一台。

三、实验预习<1>、数模转换的原理:①、A/D转换是将模拟信号转换为数字信号,转换过程通过取样、保持、量化和编码四个步骤完成。

②、模数转换(ADC)亦称模拟一数字转换,与数/模(D/A)转换相反,是将连续的模拟量(如象元的灰阶、电压、电流等)通过取样转换成离散的数字量。

<2>、模数转换方法:A/D转换器有直接转换法和间接转换法两大类。

计算机控制原理实验报告

计算机控制原理实验报告

计算机控制原理实验报告一、实验目的本实验旨在通过计算机控制系统的模拟,深入理解计算机控制原理,掌握计算机控制系统的基本组成、工作原理及实现方法。

通过实验,培养我们的动手能力、分析问题和解决问题的能力,为后续学习和工作打下坚实的基础。

二、实验原理计算机控制系统是一种利用计算机实现自动控制的系统,它由计算机、输入输出设备、传感器和执行器等组成。

计算机通过接收来自传感器的输入信号,根据预设的控制算法进行计算,输出控制信号到执行器,从而实现对被控对象的控制。

三、实验步骤1. 准备实验设备:计算机、传感器、执行器、被控对象等。

2. 连接实验设备:将传感器、执行器与计算机连接,并将传感器和执行器与被控对象进行连接。

3. 编写控制程序:根据实验要求,编写控制程序,实现计算机对被控对象的控制。

4. 运行实验:启动计算机,运行控制程序,观察被控对象的响应。

5. 数据记录与分析:记录实验数据,分析实验结果,评估控制性能。

四、实验结果与分析1. 数据记录:在实验过程中,记录了不同输入信号下被控对象的输出响应,以及计算机输出的控制信号。

2. 数据分析:根据记录的数据,分析被控对象的行为特性,以及控制信号对被控对象的影响。

3. 结果展示:通过图表等形式展示实验结果,对比理论分析与实践结果的一致性。

五、结论总结通过本次实验,我们深入了解了计算机控制系统的组成与工作原理,掌握了计算机控制系统的实现方法。

实验过程中,我们不仅锻炼了动手能力,还培养了分析问题和解决问题的能力。

通过数据记录与分析,我们进一步认识到了计算机控制在工业生产和生活中的应用价值。

在未来的学习和工作中,我们将继续深入研究计算机控制原理及其应用领域的相关知识,为推动科技进步和社会发展做出更大的贡献。

同时,我们也应该意识到计算机控制技术的快速发展和应用范围的广泛性,需要不断学习和掌握新技术、新方法,以适应时代的发展和社会的需求。

此外,我们也可以从实验过程中发现一些潜在的问题和挑战。

计算机测控技术实验报告

计算机测控技术实验报告

实验报告课程名称计算机测控技术实验名称 V/F转换及数字频率输入通道实验器材万用表、稳压源、实验箱、计算机学院仪器科学与光电工程系别测控技术与仪器班级/学号测控1102 /2011010654 姓名李波指导老师赵双琦实验日期实验成绩实验一V/F转换及数字频率输入通道一、实验题目及内容以LM331为主设计V/F转换器并设计其与计算机间的接口电路,编写程序计算V/F 转换器的输出频率。

二、实验目的1、通过实验了解典型V/F转换电路的实现及调试方法。

2、了解微机频率输入通道的软、硬件设计及调试方法。

三、实验内容及要求1、设计以LM331芯片为主的V/F转换电路,要求有定标调整环节(参见图1)。

画出原理图及接线图,给出外围元件参数。

图1 LM331的典型用法示意图管脚说明:7引脚为模拟电压输入端,Ri、Ci决定单脉冲定时器的基准定时时间,Cin输入电压的低通滤波器,为调整失调电压,Rs为电阻控制基准电流的大小,电位计用于微调基准电流,以便于核准频率,用于调整脉冲占空比,为集电极开路上拉电阻。

2、按接线图在面板上搭接V/F转换电路,用示波器观测输出波形,并考察定标调整环节的作用。

分析外围电路参数对输入(V)与输出(F)关系的影响。

3、设计V/F转换器与计算机间的接口电路及软件,测频方法自选。

画出程序框图,并给出程序清单。

4、通过实验考察V/F转换器的线性。

至少纪录10对数据。

四、测频方法示例1、将LM331的输出与8031的T1端相连,即作为T1的计数脉冲。

启动T1后延时100ms再让T1停止计数,此时T1中的计数值乘以10即为所测频率。

程序框图如图2所示。

2、如图3所示,以T0作为定时器,T1作为计数器,在T0的中断服务程序中停止T1计数,之后根据此时T1中的计数值和T0的预置值计算出所测频率。

主程序和T0中断服务程序的框图分别如图4和图5所示。

图2 软件延时计算所测频率的框图五、实验结果:图4 中断法计算所测频率的主程序框图 图5 T0的中断服务程序框图实验结论:F0与u基本呈线性关系六、实验程序及注释#include<reg51.h>#include<intrins.h> %头文件int f,f0; %定义变量void main() %开始{TMOD=0X51; %T1为计数器,C0为定时器。

数模转换实验报告

数模转换实验报告

数模转换实验报告
《数模转换实验报告》
在现代科技发展的背景下,数模转换技术在各个领域都有着广泛的应用。

数模
转换实验是电子信息类专业学生必修的实验课程之一,通过这门实验课程的学习,学生们可以深入了解数模转换的原理、方法和应用,从而为将来的工程实
践打下坚实的基础。

在本次数模转换实验中,我们首先学习了数模转换的基本原理和分类,包括脉
冲编码调制(PCM)、脉冲宽度调制(PWM)、脉冲位置调制(PPM)等。

接着,我们进行了模拟信号到数字信号的转换实验,通过示波器和模拟信号发生器的
配合,我们成功地将模拟信号转换为数字信号,并通过示波器观察到了转换后
的波形图。

这一实验使我们对数模转换的过程有了更直观的了解。

接下来,我们进行了数字信号到模拟信号的转换实验。

通过数字信号发生器和
示波器的配合,我们成功地将数字信号转换为模拟信号,并观察到了转换后的
波形图。

这一实验使我们对数字信号到模拟信号的转换过程有了更深入的认识。

通过本次数模转换实验,我们不仅深入了解了数模转换的原理和方法,还掌握
了相关实验技能。

这对我们将来的工程实践具有重要的指导意义,也为我们的
专业学习打下了坚实的基础。

总的来说,数模转换实验是一门非常重要的实验课程,通过这门实验课程的学习,我们不仅增加了对数模转换技术的理解,还提高了实验操作的能力和实际
应用的能力。

希望我们能够在将来的工程实践中充分运用所学知识,为科技发
展做出更大的贡献。

最新南昌大学现代控制理论实验报告

最新南昌大学现代控制理论实验报告

实验报告实验课程:现代控制理论姓名:学号:专业班级:2016年6月实验一系统的能控性与能观性分析一、实验设备PC计算机,MATLAB软件。

二、实验目的①学习系统状态能控性、能观测性的定义及判别方法;②通过用MATLAB编程、上机调试,掌握系统能控性、能观测性的判别方法,掌握将一般形式的状态空间描述变换成能控标准形、能观标准形。

三、实验原理说明参考教材利用MATLAB判定系统能控性”利用MATLAB判定系统能观测性”四、实验步骤①根据系统的系数阵A和输入阵B,依据能控性判别式,对所给系统采用MATLA B编程;在MATLA B界面下调试程序,并检查是否运行正确。

②根据系统的系数阵A和输出阵C,依据能观性判别式,对所给系统采用MATLA B编程;在MATLA B界面下调试程序,并检查是否运行正确。

③构造变换阵,将一般形式的状态空间描述变换成能控标准形、能观标准形。

五.实验例题验证1、已知系数阵A和输入阵B分别如下,判断系统的状态能控性与能观性,,2. 已知系统状态空间描述如下(1)判断系统的状态能控性;(2)判断系统的状态能观测性;(3)构造变换阵,将其变换成能控标准形;(4)构造变换阵,将其变换成能观测标准形;六、实验心得本实验运用MATLAB进行系统能控性与能观性分析,很直观的看到了结果,加深了自己对能控能观的理解,实验过程很顺利,第一个实验还是比较简单的。

实验二 典型非线性环节一.实验要求1. 了解和掌握典型非线性环节的原理。

2. 用相平面法观察和分析典型非线性环节的输出特性。

二.实验原理及说明实验以运算放大器为基本元件,在输入端和反馈网络中设置相应元件(稳压管、二极管、电阻和电容)组成各种典型非线性的模拟电路,模拟电路见图3-4-5 ~ 图3-4-8所示。

1.继电特性理想继电特性的特点是:当输入信号大于0时,输出U 0=+M ,输入信号小于0,输出U 0=-M 。

理想继电特性如图3-4-1所示,模拟电路见图3-4-5,图3-4-1中M 值等于双向稳压管的稳压值。

数模模数转换实验报告

数模模数转换实验报告

数模模数转换实验报告
模数转换是计算机系统中重要的一部分。

它是在数据的传输、存储和处理过程中,将数据从一种进制(即一种表示数据的方式)转换成另一种进制的过程。

本文记录了对模数转换实验的执行过程及结果。

实验中,我们使用Python模拟了十六进制到十进制,八进制到十进制,十进制到十六进制,十进制到八进制,十六进制到八进制,八进制到十六进制的模数转换过程。

这种模数转换操作说明为:首先,选择要进行转换的数据和转换的格式;其次,编写代码实现转换;最后,将Java和Python的转换结果进行比较。

我们使用十六进制、八进制和十进制的特定数据进行了模数转换的测试,具体过程如下:将十六进制数据0xAFFD ,八进制数据07057 ,十进制数据45603 分别进行模数转换,结果如下:从十六进制0xAFFD 到十进制45603;从八进制07057 到十进制45603;从十进制45603 到十六进制0xAFFD;从十进制45603 到八进制07057;从十六进制
0xAFFD 到八进制07057;从八进制07057 到十六进制0xAFFD。

南昌大学PLC实验报告

南昌大学PLC实验报告

本科生实验报告课程名称:电器控制与PLC控制技术实验专业班级:电气工程及其自动化145班姓名:王玮琛学号: 6101114144所在学期: 2016-2017-22017年 5 月 30 日实验一 PLC基本指令编程练习(一)与或非功能的实验在基本指令的编程练习单元完成本实验。

一、实验目的1、熟悉PLC实验装置,S7-200系列编程控制器的外部接线方法2、了解编程软件STEP7的编程环境,软件的使用方法。

3、掌握与、或、非逻辑功能的编程方法。

二、实验说明首先应根据参考程序,判断Q0.0、Q0.1、Q0.2的输出状态,在拨动输入开关I0.1、I0.2、I0.3,观察输出指示灯Q0.1、Q0.2、Q0.3是否符合与、或、非逻辑的正确结果。

四、梯形图参考程序(二)定时器/计数器功能实验一、实验目的掌握定时器、计数器的正确编程方法,并学会定时器和计数器扩展方法,用编程软件对可编程控制器的运行进行监控。

二、实验说明SIMATIC定时器可分为接通延时定时器(TON),有记忆的接通延时定时器(TONR)和断开延时定时器(TOF)。

SIMATIC计数器可分为递增计数器(CTU),递减计数器(CTD)和递增/递减计数器(CTUD)。

在运行程序之前,首先应该根据梯形图分析各个定时器、计数器的动作状态。

三、梯形图参考程序1)定时器参考程序2)计数器参考程序2.定时器扩展实验由于PLC的定时器和计数器都有一定的定时范围和计数范围。

如果需要的设定值超过机器范围,我们可以通过几个定时器和计数器的串联组合来扩充设定值的范围。

(2)计数器扩展实验略实验二 喷泉的模拟控制一、实验目的用PLC 构成喷泉控制系统二、实验内容1.控制要求隔灯闪烁:L1亮0.5秒后灭,接着L2亮0.5秒后灭, 接着L3亮0.5秒后灭,接着L4亮0.5秒后灭,接着L5、L9亮0.5秒 后灭,接着L6、L10亮0.5秒后灭,接着L7、L11亮0.5秒后灭,接着L8、L12亮0.5秒后灭,L1亮0.5秒后灭,如此循环下去。

数字模拟转换器实训报告

数字模拟转换器实训报告

一、实训背景随着科技的不断发展,电子技术在各个领域中的应用日益广泛。

数字模拟转换器(DAC)作为电子系统中一个重要的组成部分,能够将数字信号转换为模拟信号,广泛应用于音频、视频、通信等领域。

为了更好地理解数字模拟转换器的工作原理和应用,我们进行了为期两周的数字模拟转换器实训。

二、实训目的1. 理解数字模拟转换器的基本工作原理。

2. 掌握数字模拟转换器的类型及其特点。

3. 学会使用数字模拟转换器进行信号转换。

4. 提高动手能力和实际操作技能。

三、实训内容本次实训主要包括以下内容:1. 数字模拟转换器的基本原理2. 常见数字模拟转换器类型及其特点3. 数字模拟转换器的应用4. 实验操作与结果分析四、实训过程(一)数字模拟转换器的基本原理1. 数字信号与模拟信号:数字信号是离散的、有限的,而模拟信号是连续的、无限的。

数字模拟转换器的作用就是将数字信号转换为模拟信号,以满足各种应用需求。

2. 转换原理:数字模拟转换器主要分为两类:并行转换器和串行转换器。

并行转换器采用并行方式将数字信号转换为模拟信号,转换速度快;串行转换器采用串行方式转换,转换速度较慢。

(二)常见数字模拟转换器类型及其特点1. 并行转换器:并行转换器包括并行二进制转换器和并行梯形转换器。

并行二进制转换器转换速度快,但电路复杂;并行梯形转换器电路简单,但转换速度较慢。

2. 串行转换器:串行转换器包括串行二进制转换器和串行梯形转换器。

串行二进制转换器转换速度快,但电路复杂;串行梯形转换器电路简单,但转换速度较慢。

(三)数字模拟转换器的应用1. 音频信号处理:数字模拟转换器可以将数字音频信号转换为模拟音频信号,广泛应用于音频播放器、收音机等设备。

2. 视频信号处理:数字模拟转换器可以将数字视频信号转换为模拟视频信号,广泛应用于电视、显示器等设备。

3. 通信领域:数字模拟转换器可以将数字信号转换为模拟信号,以满足通信设备的需求。

(四)实验操作与结果分析1. 实验目的:通过实验,验证数字模拟转换器的工作原理,并掌握其实际应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南昌大学实验报告
学生姓名:学号:专业班级:
实验类型:■验证□综合□设计□创新实验日期:实验成绩:
实验一数/模转换实验
一.实验要求
掌握DAC0832芯片的性能、使用方法及对应的硬件电路。

编写程序控制D/A输出的波形,使其输出周期性的三角波。

二.实验说明
电路实现见主板模块B1,具体说明请见用户手册。

DAC0832的片选CS0832接00H,观察输出端OUTl(B1部分)产生三角波由数字量的增减来控制,同时要注意三角波要分两段来产生。

三.实验步骤
1、接线:此处无需接线。

2、示例程序:见Cpl源文件,程序流程如下图所示。

3、运行虚拟示波器方法:打开LCAACT软件中“设置”一>“实验机”,将其中的程序段地址设为8100,偏移地址0000。

然后选择“设置”一>“环境参数”一>“普通示波”,选择“工具”一>“加载目标文件”,本实验加载C:\AEDK\LCAACT\试验软件\CPI.EXE,然后选择在“工具”栏中“软件示波器”中“普通示波”,点击开始示波器即程序运行。

以后每个实验中的虚拟示波器运行方法同上。

只是加载的程
4、现象:程序执行,
用虚拟示波器
(CHl)观察输
出点OUT(B1
数模转换中),可
以测量到连续的
周期性三角波。

通过实验结果的图片,我们可以知道得出来的三角波的幅值为U=(3.01V+1.95V)=4.96V。

T=1.3s模拟输出来的幅值和我们输入的5V有一定的偏差。

相对误差为(5-4.96)/5=0.8%,
因为0832是8为的,所以分辨率为1/256即0.004。

相比较一下本次实验的误差只有0.8%,相当于掉了两个单位的分辨率。

在允许的误差范围之内。

所以本次实验的结果还算是比较成功的。

四、实验小结
通过本次实验,我对数模转换的知识理解得更加透彻,以及如何使用DAC0832进行数模转换把数字量转换为模拟量并以三角波形式输出。

还知道实践和理论是有一定差距的
南昌大学实验报告
学生姓名:学号:专业班级:
实验类型:■验证□综合□设计□创新实验日期:实验成绩:
实验二模/数转换实验
一.实验要求
了解A/D芯片ADC0809转换性能及编程。

编制程序通过0809采样输入电压并转换成数字量值。

二.实验说明
电路实现见主板模块B5,具体说明请见用户手册。

ADC0809的片选CS0809接0A0H。

由于0809的A、B、C三脚依次接至A0、A1、A2,所以模拟输入通道IN0~IN7的端口地址为0A0~0A7。

其中IN0与模拟地之间预先接一个500欧电阻,并提供接线端子,供外接电烤箱使用。

IN0~IN5标准接法,有效输入电平为0V~一5V。

IN6、IN7为双极性输入接法,有效输入电平为0V~一5V。

模数转换结束信号EOC引出至EOC插孔,并经反相后引出至EOC/孔。

A/D转换船大致有三类:一是双积分A/D转换器,优点是精度高。

抗干扰性好,价格便宜。

但速度慢;二是逐次逼近法A/D转换器,精度,速度,价格适中,三是并行A/D转换器,速度快,价格也昂贵。

实验用的ADC0809属第二类,是八位A/D转换器。

典型采样时间需100us,编程中应该保证A/D 转换的完成,这可以在程序中插入适当延时代码或监视EOC信号的电平来实现。

后—种方式尤其适合采样中断处理。

三.实验步骤
1.接线:模块B5的IN0接电位器模块C4的中心抽头,C4的一端与+5V短接,另一端与GND短
接。

2.示例程序:见Cp2源文什。

程序流程如下图所示。

3.现象:由电位器模块C4提供0V~+5V可调的电平值;经模块B5中0809的通道0采样;采样
值送到从8600开始的扩展存贮器单元贮存。

程序执行方法:打开LCAACT软件中“设置”一>
“实验机”,将其中的程序段地址设为8100,偏移地址0000。

然后选择“工具”一>“加载目标文件”,本实验加载C:\AEDK\LCAACT\试验软件\CP2.EXE,然后在对话窗口中输入G8100:0000 回车,等待几秒钟后按实验机的复位键,此时程序运行结束,再输入D8600:0000用户可以察看该段存贮器内容来观察实际采样转换的结果。

而我们这次实验的最大误差是
5V-4.98V=0.02V。

0.02V很接近0.0195V。

由于一些硬件上本身就有可能有一些误差所以这次实验也算是比较精准的。

四、实验小结
本次实验我们主要是学习把模拟量转换为数字量显示,并观察其转换范围及其分辨率,让我们对模数转换的原理及实现方法更加熟练。

在实验中总有那么一些意外发生,这些意外
足以导致实验数据的偏差。

相关文档
最新文档