浙江省富阳市第二中学高中数学 2.3.2平面与平面垂直的判定练习题
高中数学 2.3.2平面与平面垂直的判定练习 新人教A版必修2
2.3.2 平面与平面垂直的判定基础梳理1.二面角.(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;这条直线叫做二面角的棱.这两个半平面叫做二面角的面.如图,记作:二面角αlβ或PABQ或PlQ.(2)二面角的平面角.如图,二面角αlβ,若有:①O∈l;②OA⊂α,OB⊂β;③OA⊥l,OB⊥l.则∠AOB就叫做二面角αlβ的平面角.练习1:若α⊥β,a⊂α,则a⊥β,对吗?答案:错练习2:若α⊥β,a⊂α,b⊂β,a⊥b,则a⊥β,对吗?答案:错练习3:若a∥b,a⊥α,则b⊥α,对吗?答案:对2.面面垂直.(1)定义:如果两个平面相交,且它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)画法:记作:α⊥β.(3)面面垂直的判定定理.文字语言:一个平面过另一个平面的一条垂线,则这两个平面垂直. 符号表示:⎭⎪⎬⎪⎫a⊥βa ⊂α⇒α⊥β►思考应用1.二面角的平面角的大小,是否与角的顶点在棱上的位置有关?解析:如图,在二面角αl β的棱上任取点O ,以O 为垂足,在半平面α和β内分别作垂直于棱的射线OA 和OB ,则射线OA 和OB 组成∠AOB.再取棱上另一点O′,在α和β内分别作l 的垂线O ′A ′和O′B′,则它们组成∠A′O′B′.因为OA∥O′A′,OB ∥O ′B ′,所以∠AOB 与∠A′O′B′的两边分别平行且方向相同,即∠AOB=A′O′B′.上述结论说明了按照上述方法作出的角的大小,与角的顶点在棱上的位置无关. 2.应用面面垂直的判定定理的关键是什么?解析:应用此定理的关键在于,在其中一个平面内找到或作出另一个平面的垂线,即实现面面垂直向线面垂直的转化.自测自评1.经过平面α外一点和平面α内一点与平面α垂直的平面有(D )A .0个B .1个C .无数个D .1个或无数个解析:当两点连线与平面α垂直时,可作无数个垂面,否则,只有1个. 2.下列说法:①二面角的大小是用平面角来度量的;②二面角的平面角的大小是由二面角的两个面的位置唯一确定的; ③二面角的大小由其平面角的顶点在棱上的位置确定.其中正确说法的个数是(C)A.0 B.1 C.2 D.3解析:由二面角的定义可知,①②正确;③不正确.3.已知a⊂α,b⊂β,c⊂β,a⊥b,a⊥c,则(D)A.α⊥βB.α与β相交C.α∥βD.以上都有可能4.若平面α与平面β不垂直,那么α内能与β垂直的直线(A)A.有0条B.有一条C.有2条D.有无数条5.若α∥β,a⊥α,则a与β的位置关系是垂直.题型一利用二面角解决相关问题题型二平面与平面垂直的判定及综合应用基础达标1.自二面角内任意一点分别向两个面引垂线,则两垂线所成的角与二面角的平面角的关系是(B)A.相等B.互补C.互余D.无法确定解析:如图,BD,CD为AB,AC所在平面与α,β的交线,则∠BDC为二面角αlβ的平面角.且∠ABD=∠ACD=90°,∴∠A+∠BDC=180°.2.已知直线l⊥平面α,则经过l且和α垂直的平面(C)A.有一个B.有两个C.有无数个D.不存在解析:经过l的任一平面都和α垂直.3.PD垂直于正方形ABCD所在的平面,连接PB,PC,PA,AC,BD,则一定互相垂直的平面有(B)A.8对B.7对C.6对D.5对解析:如图,平面PAD,平面PBD,平面PCD都垂直于平面ABCD,平面PAD⊥平面PCD,平面PAD⊥平面PAB,平面PCD⊥平面PBC,平面PAC⊥平面PBD.4.若平面α⊥平面β,平面β⊥平面γ,则(D)A.α∥γB.α⊥γC.α与γ相交,但不垂直D.以上都有可能5.设m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题正确的是(D) A.若m∥n,m∥α,则n∥αB.若α⊥γ,β⊥γ,则α∥βC.若m∥α,n∥α,则m∥nD.若m⊥α,n∥α,则m⊥n6.将锐角A为60°,边长为a的菱形ABCD沿BD折成60°的二面角,则A与C之间的距离为________.解析:设折叠后点A到A1的位置,取BD的中点E,连接A1E、CE.∴BD⊥CE,BD⊥A1E.∴∠A1EC为二面角A1BDC的平面角.∴∠A1EC=60°.又A1E=CE,∴△A1EC是等边三角形.∴A1E=CE=A1C=32a.即折叠后点A到C之间的距离为32a.巩固提升7.在正方体ABCDA1B1C1D1中,截面A1BD与底面ABCD所成二面角A1BDA的正切值为(C)A.32B.22C. 2D. 3解析:如图所示连接AC交BD于点O,连接A1O,O为BD中点,∵A1D=A1B,∴在△A1BD中,A1O⊥BD.又∵在正方形ABCD中,AC⊥BD.∴∠A1OA为二面角A1BDA的平面角.设AA1=1,则AO=22.∴tan∠A1OA=122= 2.8.如图,已知正方体ABCDA1B1C1D1,过BD1的平面分别交棱AA1和CC1于E,F两点.(1)求证:A1E=CF;(2)若E,F分别是棱AA1和棱CC1的中点,求证:平面EBFD1⊥平面BB1D1.证明:(1)由题知,平面EBFD1与平面BCC1B1交于BF,与平面ADD1A1交于ED1,又平面BCC1B1∥平面ADD1A1,∴D1E∥BF,同理BE∥D1F,∴四边形EBFD1为平行四边形,∴D1E=BF,∵A1D1=CB,D1E=BF,∠D1A1E=∠BCF=90°,∴Rt△A1D1E≌Rt△CBF,∴A1E=CF.(2)∵四边形EBFD1是平行四边形.AE=A1E,FC=FC1,∴Rt△EAB≌Rt△FCB,∴BE=BF,故四边形EBFD1为菱形.连接EF,BD1,A1C1∵四边形EBFD1为菱形,∴EF⊥BD1,在正方体ABCDA1B1C1D1中,有B1D1⊥A1C1,B1D1⊥A1A,∴B1D1⊥平面A1ACC1,又EF⊂平面A1ACC1,∴EF⊥B1D1,又B1D1∩BD1=D1,∴EF⊥平面BB1D1,又EF⊂平面EBFD1,故平面EBFD1⊥平面BB1D1.9.如图甲,矩形ABCD中,AB=2AD=2a,E为DC的中点,现将△ADE沿AE折起,使平面ADE⊥平面ABCE,如图乙.(1)求二面角ABCD的正切值;(2)求证:AD⊥平面BDE.(1)解析:取AE中点O,BC中点F,连接DO,OF,DF(如图).由题知:AB=2AD,DE=EC,∴AD=DE,∴DO⊥AE,又∵平面ADE⊥平面ABCE,∴DO⊥平面ABCE,又∵AB⊥BC,OF∥AB,∴OF⊥BC,由三垂线定理得DF⊥B C,∴∠DFO为二面角ABCD的平面角.在Rt△DOF中,DO=22a,OF=a+2a2=32a,∴tan∠DFO=22a32a=23.即二面角ABCD的正切值是23.(2)证明:连接BE,则BE=a2+a2=2a,又AE=2a,AB=2a,∴AB2=AE2+EB2,∴AE⊥EB.由(1)知DO⊥平面ABCE,∴DO⊥BE,又∵DO∩AE=O,∴BE⊥平面ADE,∴BE⊥AD,又∵AD⊥DE,BE∩DE=E,∴AD⊥平面BDE.1.二面角是从一条直线出发的两个半平面组成的图形.其大小是用二面角的平面角来度量的.二面角的平面角必须具备三个条件:①角的顶点在二面角的棱上;②角的两边分别在二面角的两个半平面内;③角的两边分别与二面角的棱垂直.求二面角的平面角的难点和关键在于正确地作出二面角的平面角,其过程是“一作、二证、三计算”.2.面面垂直的判定有两个方法,其一是根据定义,其二是根据判定定理.根据定义,判定实质上转化成了求二面角的平面角;根据判定定理判定面面垂直,难点和关键是在其中一个平面内找到另一个平面的垂线.。
人教A版高中数学必修二 2-3-2 平面与平面垂直的判定 检测 含答案 精品
必修二第二章 2.3.2 平面与平面垂直的判定时间:30分钟,总分:70分班级:姓名:一、选择题(共6小题,每题5分,共30分)1. 设直线m与平面α相交但不垂直,则下列说法中,正确的是( )A.在平面α内有且只有一条直线与直线m垂直 B.过直线m有且只有一个平面与平面α垂直C.与直线m垂直的直线不可能与平面α平行 D.与直线m平行的平面不可能与平面α垂直【答案】B【解析】由题意,m与α斜交,令其在α内的射影为m′,则在α内可作无数条与m′垂直的直线,它们都与m垂直,A错;如图示(1),在α外,可作与α内直线l平行的直线,C错;如图(2),m⊂β,α⊥β.可作β的平行平面γ,则m∥γ且γ⊥α,D错..2.自二面角内任意一点分别向两个面引垂线,则两垂线的夹角与二面角的平面角的关系是( )A.相等 B.互补 C.互余 D.无法确定【答案】B【解析】如图,BD、CD为AB、AC所在平面与α、β的交线,则∠BDC为二面角α-l-β的平面角.且∠ABD=∠ACD=90°,∴∠A+∠BDC=180°..3.如图,PA垂直于矩形ABCD所在的平面,则图中互相垂直的平面有( )A.2对B.3对C.4对D.5对【答案】D【解析】观察图形,根据空间垂直关系的判定方法,可以得出下面几组互相垂直的平面:平面PAD⊥平面ABCD,平面PAB⊥平面ABCD,平面PCD⊥平面PAD,平面PBC⊥平面PAB,平面PAD⊥平面PAB,一共5对.故选D.4.设m,n是两条不同的直线,α,β是两个不同的平面,下列说法中正确的是( )A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β【答案】D【解析】对于选项A,分别在两个垂直平面内的两条直线平行、相交、异面都可能,但未必垂直;对于选项B,分别在两个平行平面内的两条直线平行、异面都可能;对于选项C,两个平面分别经过两垂直直线中的一条,不能保证两个平面垂直;对于选项D,m⊥α,m∥n,则n ⊥α;又因为n∥β,则β内存在与n平行的直线l,因为n⊥α,则l⊥α,由于l⊥α,l⊂β,所以α⊥β.故选D.5、在四棱锥P—ABCD中,已知PA⊥底面ABCD,且底面ABCD为矩形,则下列结论中错误的是( )A.平面PAB⊥平面PAD B.平面PAB⊥平面PBCC.平面PBC⊥平面PCD D.平面PCD⊥平面PAD【答案】C【解析】:由面面垂直的判定定理知:平面PAB⊥平面PAD,平面PAB⊥平面PBC,平面PCD ⊥平面PAD,A、B、D正确.故选C。
平面与平面垂直的判定基础练习题含答案解析
2.3.2 平面与平面垂直的判定基础练习题(含答案解析)1.如果一个二面角的两个半平面分别平行于另一个二面角的两个半平面,则这两个二面角的关系是()A.相等B.互补C.相等或互补D.不能确定解析:选C.当这两个二面角的两个面均同向或均异向时,它们相等;当这两个二面角的两个面中,一组同向,另一组异向时,它们互补.2.在四棱锥P-ABCD中,已知P A⊥底面ABCD,且底面ABCD为矩形,则下列结论中错误的是()A.平面P AB⊥平面P ADB.平面P AB⊥平面PBCC.平面PBC⊥平面PCDD.平面PCD⊥平面P AD解析:选C.由面面垂直的判定定理知:平面P AB⊥平面P AD,平面P AB⊥平面PBC,平面PCD⊥平面P AD,A、B、D正确.3.如果直线l、m与平面α、β、γ之间满足:l=β∩γ,l∥α,m⊂α和m⊥γ,那么() A.α⊥γ且l⊥m B.α⊥γ且m∥βC.m∥β且l⊥m D.α∥β且α⊥γ解析:选A.如图,平面α为平面AD1,平面β为平面BC1,平面γ为平面AC,∵m⊂α,m⊥γ,由面面垂直的判定定理得α⊥γ,又m⊥γ,l⊂γ,由线面垂直的性质得m⊥l.4.在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,则下面四个结论中不成立的是()A.BC∥平面P DFB.DF⊥平面P AEC.平面PDF⊥平面ABCD.平面P AE⊥平面ABC解析:选C.可画出对应图形(图略),则BC∥DF,又DF⊂平面PDF,BC⊄平面PDF,∴BC∥平面PDF,故A成立;由AE⊥BC,BC∥DF,知DF⊥AE,DF⊥PE,∴DF⊥平面P AE,故B成立;又DF⊂平面ABC,∴平面ABC⊥平面P AE,故D成立.5.(2013·德州高一检测)已知P A⊥矩形ABCD所在的平面,如图所示,图中互相垂直的平面有()A.1对B.2对C.3对D.5对解析:选D.∵DA⊥AB,DA⊥P A,AB∩P A=A,∴DA⊥平面P AB,同理BC⊥平面P AB,AB⊥平面P AD,DC⊥平面P AD,∴平面AC⊥平面P AD,平面AC⊥平面P AB,平面PBC⊥平面P AB,平面PDC⊥平面P AD,平面P AB⊥平面P AD.6.若P是△ABC所在平面外一点,而△PBC和△ABC都是边长为2的正三角形,P A =6,那么二面角P-BC-A的大小为________.解析:取BC的中点O,连接OA,OP,则∠POA为二面角P-BC-A的平面角,OP =OA=3,P A=6,所以△POA为直角三角形,∠POA=90°.答案:90°7.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)解析:连接AC,则AC⊥BD.∵P A⊥底面ABCD,BD⊂面ABCD,∴P A⊥BD.∵P A∩AC=A,∴BD⊥面P AC,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.答案:DM⊥PC(或BM⊥PC等)8.经过平面α外一点和平面α内一点与平面α垂直的平面有________个.解析:设面外的点为A,面内的点为B,过点A作面α的垂线l,若点B恰为垂足,则所有过AB的平面均与α垂直,此时有无数个平面与α垂直;若点B不是垂足,则l与点B 确定唯一平面β满足α⊥β.答案:1或无数9.点P是菱形ABCD所在平面外一点,且P A=PC,求证:平面P AC⊥平面PBD.证明:如图所示,连接AC,BD交于点O,连接PO,∵四边形ABCD是菱形,∴BD⊥AC,又∵AO=OC,P A=PC,∴PO⊥AC.∵BD∩PO=O,∴AC⊥平面PBD.又AC⊂平面P AC,∴平面P AC⊥平面PBD.10.如图所示,四边形ABCD是平行四边形,直线SC⊥平面ABCD,E是SA的中点,求证:平面EDB⊥平面ABCD.证明:连接AC,交BD于点F,连接EF,∴EF是△SAC的中位线,∴EF∥SC.∵SC⊥平面ABCD,∴EF⊥平面ABCD.∵EF⊂平面EDB,∴平面EDB⊥平面ABCD.。
高中数学2.3.2平面与平面垂直的判定习题新人教A版必修2
2.3.2平面与平面垂直的判定一、选择题1.下列命题中:①两个相交平面组成的图形叫做二面角;②异面直线a,b别离和一个二面角的两个面垂直,则a,b所成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点动身,别离在两个面内作射线所成的角的最小角;④二面角的大小与其平面角的极点在棱上的位置没有关系.其中正确的是( )A.①③B.②④C.③④D.①②解析:选B 由二面角的概念:从一条直线动身的两个半平面所组成的图形叫做二面角,所以①不对,实质上它共有四个二面角;由a,b别离垂直于两个面,则a,b都垂直于二面角的棱,故②正确;③中所作的射线不必然垂直于二面角的棱,故③不对;由概念知④正确.故选B.2.一个二面角的两个半平面别离垂直于另一个二面角的两个半平面,则这两个二面角( )A.相等B.互补C.不肯定D.相等或互补答案:C3.在四棱锥P—ABCD中,已知PA⊥底面ABCD,且底面ABCD为矩形,则下列结论中错误的是( )A.平面PAB⊥平面PADB.平面PAB⊥平面PBCC.平面PBC⊥平面PCDD.平面PCD⊥平面PAD解析:选C 由面面垂直的判定定理知:平面PAB⊥平面PAD,平面PAB⊥平面PBC,平面PCD⊥平面PAD,A、B、D正确.4.如图所示,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,则二面角B-PA-C的大小为( )A.90°B.60°C.45°D.30°解析:选A ∵PA⊥平面ABC,BA,CA⊂平面ABC,∴BA⊥PA,CA⊥PA,因此,∠BAC即为二面角B-PA-C的平面角.又∠BAC=90°,故选A.5.在正方体ABCD -A 1B 1C 1D 1中,截面A 1BD 与底面ABCD 所成二面角A 1-BD -A 的正切值为( )解析:选C 如右图所示,连接AC 交BD 于点O ,连接A 1O ,O 为BD 中点,∵A 1D =A 1B ,∴在△A 1BD 中,A 1O ⊥BD . 又∵在正方形ABCD 中,AC ⊥BD , ∴∠A 1OA 为二面角A 1-BD -A 的平面角. 设AA 1=1,则AO =22. ∴tan ∠A 1OA =122= 2.二、填空题6.通过平面α外一点和平面α内一点与平面α垂直的平面有________个. 解析:设面外的点为A ,面内的点为B ,过点A 作面α的垂线l ,若点B 恰为垂足,则所有过AB 的平面均与α垂直,此时有无数个平面与α垂直;若点B 不是垂足,则l 与点B 肯定唯一平面β知足α⊥β.答案:1个或无数个7.正四面体的侧面与底面所成的二面角的余弦值是________. 解析:如图所示,设正四面体ABCD 的棱长为1,极点A 在底面BCD 上的射影为O ,连接DO 并延长交BC 于点E ,连接AE ,则E 为BC 的中点,故AE ⊥BC ,DE ⊥BC ,∴∠AEO 为侧面ABC 与底面BCD 所成二面角的平面角. 在Rt △AEO 中,AE =32,EO =13ED =13·32=36, ∴cos ∠AEO =EO AE =13.答案:138.在一个倾斜角为60°的斜坡上,沿着与坡脚面的水平线成30°角的道路上坡,行走100 m ,实际升高了________ m.解析:如右图,构造二面角α-AB -β,在直道CD 上取一点E ,过点E 作EG ⊥平面β于G ,过G 作GF ⊥AB 于F ,连接EF ,则EF ⊥AB .∴∠EFG 为二面角α-AB -β的平面角, 即∠EFG =60°.∴EG =EF ·sin 60°=CE ·sin 30°·sin 60° =100×12×32=253(m).答案:25 3 三、解答题9.如图所示,四边形ABCD 是平行四边形,直线SC ⊥平面ABCD ,E 是SA 的中点,求证:平面EDB ⊥平面ABCD .证明:连接AC ,交BD 于点F ,连接EF , ∴EF 是△SAC 的中位线, ∴EF ∥SC . ∵SC ⊥平面ABCD , ∴EF ⊥平面ABCD . 又EF ⊂平面EDB . ∴平面EDB ⊥平面ABCD .10.如图所示,在矩形ABCD 中,已知AB =12AD ,E 是AD 的中点,沿BE 将△ABE 折起至△A ′BE 的位置,使A ′C =A ′D ,求证:平面A ′BE ⊥平面BCDE .证明:如图所示,取CD 的中点M ,BE 的中点N ,连接A ′M ,A ′N ,MN ,则MN ∥BC .∵AB =12AD ,E 是AD 的中点,∴AB =AE ,即A ′B =A ′E . ∴A ′N ⊥BE .∵A ′C =A ′D , ∴A ′M ⊥CD .在四边形BCDE 中,CD ⊥MN , 又MN ∩A ′M =M ,∴CD ⊥平面A ′MN .∴CD ⊥A ′N .∵DE ∥BC 且DE =12BC ,∴BE 必与CD 相交.又A ′N ⊥BE ,A ′N ⊥CD ,∴A ′N ⊥平面BCDE . 又A ′N ⊂平面A ′BE , ∴平面A ′BE ⊥平面BCDE .。
高中数学人教新课标A版必修2第二章2.3.2平面与平面垂直的判定同步练习(II)卷
高中数学人教新课标A版必修2第二章2.3.2平面与平面垂直的判定同步练习(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共5题;共10分)1. (2分) (2017高一下·双鸭山期末) 如下图是一个正方体的平面展开图,在这个正方体中① ② 与成角③ 与为异面直线④以上四个命题中,正确的序号是()A . ①②③B . ②④C . ③④D . ②③④2. (2分)如图,正方体AC1的棱长为1,连结AC1 ,交平面A1BD于H,则以下命题中,错误的命题是A . 平面A1BDB . H是的垂心C .D . 直线AH和BB1所成角为45°3. (2分)在长方体ABCD﹣A1B1C1D1中,AB=AD=2, CC1=,则二面角C1﹣BD﹣C的大小为()A . 30°B . 45°C . 60°D . 90°4. (2分)在棱长为a的正方体ABCD-A1B1C1D1中,M是AB的中点,则点C到平面A1DM的距离为()A .B .C .D .5. (2分)椭圆的长轴为,短轴为,将椭圆沿y轴折成一个二面角,使得点在平面上的射影恰好为椭圆的右焦点,则该二面角的大小为().A . 75°B . 60°C . 45°D . 30°二、单选题 (共2题;共4分)6. (2分) (2018高二上·嘉兴期末) 已知直角,,,,分别是的中点,将沿着直线翻折至,形成四棱锥,则在翻折过程中,① ;② ;③ ;④平面平面,不可能成立的结论是()A . ①②③B . ①②C . ③④D . ①②④7. (2分)如图,在斜三棱柱中,∠BAC=90°,BC1⊥AC,则点C1在平面ABC上的射影H必在()A . 直线AB上B . 直线BC上C . 直线AC上D . △ABC的内部三、填空题 (共3题;共3分)8. (1分)如图所示,在四棱锥P﹣ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,请你补充一个条件________,使平面MBD⊥平面PCD.①DM⊥PC ②DM⊥BM③BM⊥PC ④PM=MC(填写你认为是正确的条件对应的序号).9. (1分)如图,已知PA⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.10. (1分)将边长为2的正△ABC沿BC边上的高AD折成直二面角B﹣AD﹣C,则三棱锥B﹣ACD的外接球的表面积为________四、解答题 (共3题;共40分)11. (10分)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,AB⊥AC,且AB=1,BC=2,PA⊥底面ABCD,PA= ,又E为边BC上异于B,C的点,且PE⊥ED.(1)求证:平面PAE⊥平面PDE;(2)求点A到平面PDE的距离.12. (15分) (2015高二上·大方期末) 如图,四棱锥S﹣ABCD的底面是正方形,SA⊥底面ABCD,E是SC上一点.(1)求证:平面EBD⊥平面SAC;(2)设SA=4,AB=2,求点A到平面SBD的距离;(3)设SA=4,AB=2,当OE丄SC时,求二面角E﹣BD﹣C余弦值.13. (15分)如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体?(不用说明理由)(2)请在正视图的正右边画出其侧视图,并求该平面图形的面积;(3)求出该几何体的体积与表面积.参考答案一、选择题 (共5题;共10分)1-1、2-1、3-1、4-1、5-1、二、单选题 (共2题;共4分)6-1、7-1、三、填空题 (共3题;共3分)8-1、9-1、10-1、四、解答题 (共3题;共40分)11-1、11-2、12-1、12-2、12-3、13-1、13-2、13-3、。
高中数学必修二《2.3直线、平面垂直的判定及其性质》测试卷及答案解析
2019-2020学年高中数学必修二《2.3直线、平面垂直的判定及其性质》测试卷参考答案与试题解析一.填空题(共23小题)1.已知直线l⊥平面α,垂足为O,三角形ABC的三边分别为BC=1,AC=2,AB=.若A∈l,C∈α,则BO的最大值为1+.【分析】先将原问题转化为平面内的最大距离问题解决,以O为原点,OA为y轴,OC 为x轴建立直角坐标系,B、O两点间的距离表示处理,结合三角函数的性质求出其最大值即可.【解答】解:将原问题转化为平面内的最大距离问题解决,以O为原点,OA为y轴,OC为x轴建立直角坐标系,如图.设∠ACO=θ,B(x,y),则有:x=AC cosθ+BC sinθ=2cosθ+sinθ,y=BC cosθ=cosθ.∴x2+y2=4cos2θ+4sinθcosθ+1=2cos2θ+2sin2θ+3=2sin(2θ+)+3,当sin(2θ+)=1时,x2+y2最大,为2+3,则B、O两点间的最大距离为1+.故答案为1+.【点评】本题考查了点、线、面间的距离计算,解答关键是将空间几何问题转化为平面几何问题解决,利用三角函数的知识求最大值.2.如图,矩形ABCD的边AB=4,AD=2,P A⊥平面ABCD,P A=3,点E在CD上,若PE⊥BE,则PE=.【分析】先求出DE,可得AE,即可求出PE.【解答】解:∵P A⊥平面ABCD,PE⊥BE,∴AE⊥BE,∵AB=4,AD=2,∴4=DE(4﹣DE),∴DE=2,∴AE=2,∵P A=3,∴PE==,故答案为.【点评】本题考查空间距离的计算,考查线面垂直的性质,属于中档题.3.在正方体ABCD﹣A1B1C1D1各条棱所在的直线中,与直线AA1垂直的条数共有8条.【分析】利用正方体的结构特征求解.【解答】解:在正方体ABCD﹣A1B1C1D1中,与棱AA1垂直的棱有:A1D1,AD,B1C1,BC,A1B1,AB,C1D1,CD.故答案为:8.。
2020高中数学必修2同步练习:2.3.2 平面与平面垂直的判定含解析
2.3.2平面与平面垂直的判定课时过关·能力提升一、基础巩固1.下列说法:①两个相交平面所组成的图形叫做二面角;②二面角的平面角是从棱上一点出发,分别在两个面内作射线所成的角;③二面角的大小与其平面角的顶点在棱上的位置有关系.其中说法正确的个数是()A.0B.1C.2D.32.如图,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=60°,则二面角B-PA-C的大小等于()A.90°B.60°C.45°D.30°PA⊥平面ABC,所以PA⊥AB,PA⊥AC.所以∠BAC是二面角B-PA-C的平面角.又∠BAC=60°,则二面角B-PA-C的平面角是60°3.对于直线m,n和平面α,β,能得出α⊥β的一个条件是 ()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥βm∥n,n⊥β,∴m⊥β.又m⊂α,∴α⊥β.4.如图,AB是圆的直径,PA⊥AC,PA⊥BC,C是圆上一点(不同于A,B),且PA=AC,则二面角P-BC-A的平面角为()A.∠PACB.∠CPAC.∠PCAD.∠CABAB为圆的直径,所以AC⊥BC.因为PA⊥BC,AC∩PA=A,所以BC⊥平面PAC.所以BC⊥PC.所以∠PCA为二面角P-BC-A的平面角.5.如图,在四棱锥S-ABCD中,底面ABCD为正方形,SA⊥平面ABCD,AC与BD相交于点O,点P是侧棱SC上一动点,则一定与平面PBD垂直的平面是()A.平面SABB.平面SACC.平面SCDD.平面ABCD在四棱锥S-ABCD中,底面ABCD为正方形,∴BD⊥AC.∵SA⊥平面ABCD,∴SA⊥BD.∵SA∩AC=A,∴BD⊥平面SAC.∵BD⊂平面PBD,∴平面PBD⊥平面SAC.故选B.6. 如图,在正方体ABCD-A1B1C1D1中,截面C1D1AB与底面ABCD所成的二面角C1-AB-C的大小为.AB⊥BC,AB⊥BC1,∴∠C1BC为二面角C1-AB-C的平面角,其大小为45°.°7.经过平面α外一点和平面α内一点与平面α垂直的平面有个.α外的一点为A,平面α内的一点为B,当直线AB垂直于平面α时,经过直线AB的任意一个平面均垂直于平面α,即此时有无数个;当直线AB与平面α相交但不垂直时,过点A作直线AC垂直于平面α,则直线AC仅有一条,由于直线AC和AB是两条相交直线,则AB和AC确定一个平面且该平面垂直于平面α,此时仅有一个与平面α垂直的平面.个或无数8.如图,在三棱锥P-ABC中,已知PA⊥PB,PB⊥PC,PC⊥PA,则在三棱锥P-ABC的四个面中,互相垂直的面有对.PA⊥PB,PA⊥PC,PB∩PC=P,所以PA⊥平面PBC.因为PA⊂平面PAB,PA⊂平面PAC,所以平面PAB⊥平面PBC,平面PAC⊥平面PBC.同理可证平面PAB⊥平面PAC.9.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,AB⊥AD,CD⊥AD.求证:平面PDC⊥平面PAD.PA⊥平面AC,CD⊂平面AC,所以PA⊥CD.因为CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.因为CD⊂平面PDC,所以平面PDC⊥平面PAD.二、能力提升1.如果直线l,m与平面α,β,γ满足:l=β∩γ,l∥α,m⊂α和m⊥γ,那么必有()A.α⊥γ,且l⊥mB.α⊥γ,且m∥βC.m∥β,且l⊥mD.α∥β,且α⊥γm⊂α,m⊥γ,∴α⊥γ.∵l=β∩γ,∴l⊂γ,∴m⊥l.2.在四棱锥P-ABCD中,已知PA⊥底面ABCD,且底面ABCD为矩形,则下列结论中错误的是()A.平面PAB⊥平面PADB.平面PAB⊥平面PBCC.平面PBC⊥平面PCDD.平面PCD⊥平面PADABCD是矩形,所以AB⊥AD.因为PA⊥平面AC,AB⊂平面AC,所以AB⊥PA.而AD∩PA=A,所以AB⊥平面PAD.因为AB⊂平面PAB,所以平面PAB⊥平面PAD.同理可证,平面PAB⊥平面PBC,平面PCD⊥平面PAD.★3.如果一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,那么这两个二面角()A.相等B.互补C.相等或互补D.大小关系无法确定,平面EFDG⊥平面ABC,当平面HDG绕DG转动时,平面HDG始终与平面BCD垂直,因为二面角H-DG-F的大小不确定,所以两个二面角的大小关系不确定.答案:D4.如图,在长方体ABCD-A1B1C1D1中,BC=2,AA1=1,E,F分别在AD和BC上,且EF ∥AB.若二面角C1-EF-C等于45°,则BF=.AB⊥平面BC1,C1F⊂平面BC1,CF⊂平面BC1,所以AB⊥C1F,AB⊥CF.又EF∥AB,所以C1F⊥EF,CF⊥EF,所以∠C1FC是二面角C1-EF-C的平面角,即∠C1FC=45°.所以△FCC1是等腰直角三角形,所以CF=CC1=AA1=1.又BC=2,所以BF=BC-CF=2-1=1.5.如图,△ABC是等腰直角三角形,∠BAC=90°,AB=AC=1,将△ABC沿斜线BC上的高AD折叠,使平面ABD⊥平面ACD,则BC=.解析:因为AD⊥BC,所以AD⊥BD,AD⊥CD,所以∠BDC是二面角B-AD-C的平面角.因为平面ABD⊥平面ACD,所以∠BDC=90°.连接BC,在△BCD中,∠BDC=90°,BD=CD=√22,所以BC=√(√22)2+(√22)2=1.6.如图,已知在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点,PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.因为D,E分别为棱PC,AC的中点,所以DE∥PA.又因为PA⊄平面DEF,DE⊂平面DEF,所以直线PA∥平面DEF.(2)因为D,E,F分别为棱PC,AC,AB的中点,PA=6,BC=8,所以DE∥PA,DE=12P A=3,E P=12BC=4.又因为DF=5,故DF2=DE2+EF2,所以∠DEF=90°,即DE⊥EF.又PA⊥AC,DE∥PA,所以DE⊥AC.因为AC∩EF=E,AC⊂平面ABC,EF⊂平面ABC, 所以DE⊥平面ABC.又DE⊂平面BDE,所以平面BDE⊥平面ABC★7.如图,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD 的中点,PA⊥底面ABCD,PA=√3.(1)求证:平面PBE⊥平面PAB;(2)求二面角A-BE-P的大小.,连接BD,由ABCD是菱形,且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为PA⊥平面ABCD,BE⊂平面ABCD,所以PA⊥BE.而PA∩AB=A,因此BE⊥平面PAB.又BE⊂平面PBE,所以平面PBE⊥平面PAB.(1)知BE⊥平面PAB,PB⊂平面PAB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A-BE-P的平面角.=√3,∠PBA=60°,在Rt△PAB中,tan∠PBA=PAAB故二面角A-BE-P的大小是60°。
高中数学必修二2.3.2平面与平面垂直的判定课时作业
三、解答题 10.如图所示,在空间四边形 角线 AC的中点. 求证:平面 BEF⊥平面 BGD.
ABCD中, AB= BC,CD= DA, E、F、G分别为 CD、 DA和对
选 B. ]
2. C
3. B [ ②错,当两平面不垂直时,在一个平面内可以找到无数条直线与两个平面的交
线垂直. ]
4. C [ 当两点连线与平面垂直时,有无数个平面与已知平面垂直,当两点连线与平面
不垂直时,有且只有一个平面与Fra bibliotek知平面垂直.]
5. B [
如图所示,由二面角的定义知∠ BOD 即为二面角的平面角. 3
3
= 2 ,则二面角 B- AC- D的余弦值为 (
)
1
1
22
3
A. 3 B . 2
C
.3
D .2
6.在正四面体 P- ABC中, D、 E、F 分别是 AB、 BC、 CA的中点,下面四个结论中不成 立的是 ( )
A. BC∥面 PDF
B
. DF⊥面 PAE
C.面 PDF⊥面 ABC D .面 PAE⊥面 ABC
1.证明两个平面垂直的主要途径
(1) 利用面面垂直的定义,即如果两个相交平面的交线与第三个平面垂直,又这两个平
面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.
(2) 面面垂直的判定定理,即如果一个平面经过另一个平面的一条垂线,那么这两个平
面互相垂直.
2.利用面面垂直的判定定理证明面面垂直时的一般方法:先从现有的直线中寻找平面
高中数学必修二(人教A版)练习2.3.2 平面与平面垂直的判定 Word版含答案
平面与平面垂直的判定一、选择题(本大题共小题,每小题分,共分).下面不能确定两个平面垂直的是( ).两个平面相交,所成二面角是直二面角.一个平面垂直于另一个平面内的一条直线.一个平面经过另一个平面的一条垂线.平面α内的直线与平面β内的直线是垂直的.已知直线,与平面α,β,给出下列三个结论:①若∥α,∥α,则∥;②若∥α,⊥α,则⊥;③若⊥α,∥β,则α⊥β.其中正确结论的个数是( ).....设,是两条不同的直线,α,β是两个不同的平面,则下列说法中正确的是( ).若∥α,⊥β,⊥,则α⊥β.若∥α,⊥β,⊥,则α∥β.若∥α,⊥β,∥,则α⊥β.若∥α,⊥β,∥,则α∥β图--.如图--所示,在立体图形-中,若=,=,是的中点,则下列结论中正确的是( ) .平面⊥平面.平面⊥平面.平面⊥平面,平面⊥平面.平面⊥平面,平面⊥平面.如图--所示,在△中,⊥,△的面积是△的面积的倍.沿将△翻折,使翻折后⊥平面,此时二面角--的大小为( )图--.°.°.°.°.若一条线段的两个端点分别在一个直二面角的两个面内(都不在棱上),则这条线段所在的直线与这两个平面所成的角的和( ).等于°.大于°.不大于°.不小于°图--.如图--所示,在三棱锥-中,⊥平面,∠=°,则图中互相垂直的平面共有( ).对.对.对.对二、填空题(本大题共小题,每小题分,共分).已知正四棱锥的体积为,底面对角线的长为,则侧面与底面所成的二面角等于..下列结论中,所有正确结论的序号是.①两个相交平面形成的图形叫作二面角;②异面直线,分别和一个二面角的两个面垂直,则,组成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成角的最小角;④二面角的大小与其平面角的顶点在棱上的位置没有关系..已知两条不同的直线,,两个不同的平面α,β,给出下列命题:①若垂直于α内的两条相交直线,则⊥α;②若∥α,则平行于α内的所有直线;③若⊂α,⊂β且α∥β,则∥;④若⊂β,⊥α,则α⊥β.其中真命题的序号是.(把你认为是真命题的序号都填上)图--.如图--,⊥⊙所在的平面,是⊙的直径,是⊙上一点,⊥于,⊥于,给出下列结论:①⊥;②⊥;③⊥;④平面⊥平面;⑤△是直角三角形.其中所有正确的命题的序号是.三、解答题(本大题共小题,共分).(分)如图--所示,在正三棱柱-中,为的中点,求证:截面⊥侧面.。
浙江省富阳市第二中学高中数学 2.3.2平面与平面垂直的判定练习题(无答案)新人教A版必修2
浙江省富阳市第二中学高中数学 2.3.2平面与平面垂直的判定练习题(无答案)新人教A 版必修21.对于直线m 、n 和平面α、β,αβ⊥的一个条件是( ).A .m n ⊥,//m α,//n β B. ,,m n m n αβα⊥=⊥IC .//,,//m n n m αβ⊥ D. //m n , m α⊥, n β⊥2.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的关系是 ( )A.相等B.互补C.相等或互补 D .不能确定3、在四棱锥P -ABCD 中,底面ABCD 是矩形,若PA ⊥平面ABCD ,则在此四棱锥的五个面中互相垂直的平面共有( )A 3对B 4对C 5对D 6对4.在三棱锥A —BCD 中,如果AD ⊥BC ,BD ⊥AD ,△BCD 是锐角三角形,那么( ).A. 平面ABD ⊥平面ADCB. 平面ABD ⊥平面ABCC. 平面BCD ⊥平面ADCD. 平面ABC ⊥平面BCD5.在直二面角AB αβ--棱AB 上取一点P ,过P 分别在,αβ平面内作与棱成45°角的斜线PC 、PD ,则∠CPD 的大小是( ).A .45°B .60°C .120°D .60°或120°6、在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立的是( )A. BC//面PDFB. DF ⊥面PAEC. 面PDF ⊥面ABCD. 面PAE ⊥面ABC7.下面四个说法:① 如果一条直线垂直于一个平面内的无数条直线,那么这条直线和这个平面垂直; ②过空间一定点有且只有一条直线和已知平面垂直;③垂直同一平面的两条直线互相平行;④经过一个平面的垂线的平面与这个平面垂直.其中正确的说法个数是( ).A.1B. 2C. 3D. 48.E 是正方形ABCD 的AB 边中点,将△ADE 与△BCE 沿DE 、CE 向上折起,使得A 、B 重合为点P ,那么二面角D —PE —C 的大小为 .9.空间四边形AB CD 中,AB=BC ,CD=DA ,E 是AC 的中点,则平面BDE 与平面ABC 的位置关系是10、直角三角形ABC 的斜边在平面α内,两条直角边分别与平面α成30°和45°,则这个直角三角形所在的平面与平面α所成二面角为 。
【人教A版】高中数学必修2教学同步讲练第二章《平面与平面垂直的判定》练习题(含答案)
第二章点、直线、平面之间的位置关系2.3 直线、平面垂直的判定及其性质2.3.2 平面与平面垂直的判定A级基础巩固一、选择题1.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角()A.相等B.互补C.不确定D.相等或互补2.对于直线m,n和平面α,β,能得出α⊥β的一个条件是() A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β3.如图所示,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,则二面角B-PA-C的大小为()A.90°B.60°C.45°D.30°4.如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD =45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成几何体A-BCD,则在几何体A-BCD中,下列结论正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC5.已知m,n为不重合的直线,α,β,γ为不重合的平面,则下列命题中正确的是()A.m⊥α,n⊂β,m⊥n⇒α⊥βB.α⊥γ,β⊥γ⇒α∥βC.α∥β,m⊥α,n∥β⇒m⊥nD.α⊥β,α∩β=m,n⊥m⇒n⊥β二、填空题6.如图所示,检查工作的相邻两个面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动,观察尺边是否和这个面密合就可以了,其原理是________.7.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP =AB,则平面ABP与平面CDP所成的二面角的度数是________.8.如图所示,在三棱锥S-ABC中,△SBC,△ABC都是等边三角形,且BC=1,SA=32,则二面角S-BC-A的大小为________.三、解答题9.在正方体ABCD-A1B1C1D1中,求证:面A1CD1⊥面C1BD.10.如图所示,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC的中点.(1)证明SO⊥平面ABC;(2)求二面角A-SC-B的余弦值.B级能力提升1.在空间四边形ABCD中,若AD⊥BC,AD⊥BD,那么有() A.平面ABC⊥平面ADCB.平面ABC⊥平面ADBC.平面ABC⊥平面DBCD.平面ADC⊥平面DBC2.矩形ABCD的两边AB=3,AD=4,PA⊥平面ABCD,且PA=435,则二面角A-BD-P的度数为________.3.(2015·课标全国Ⅰ卷节选)如图所示,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.证明:平面AEC⊥平面AFC.参考答案第二章点、直线、平面之间的位置关系2.3 直线、平面垂直的判定及其性质2.3.2 平面与平面垂直的判定A级基础巩固一、选择题1.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角()A.相等B.互补C.不确定D.相等或互补答案:C2.对于直线m,n和平面α,β,能得出α⊥β的一个条件是() A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β解析:因为m∥n,n⊥β,所以m⊥β.又m⊂α,所以α⊥β.答案:C3.如图所示,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,则二面角B-PA-C的大小为()A.90°B.60°C.45°D.30°解析:因为PA⊥平面ABC,BA⊂平面ABC,CA⊂平面ABC,所以BA⊥PA,CA⊥PA,因此,∠BAC为二面角BPAC的平面角,又∠BAC=90°.答案:A4.如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD =45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成几何体A-BCD,则在几何体A-BCD中,下列结论正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC解析:由已知得BA⊥AD,CD⊥BD,又平面ABD⊥平面BCD,所以CD⊥平面ABD,从而CD⊥AB,故AB⊥平面ADC.又AB⊂平面ABC,所以平面ABC⊥平面ADC.答案:D5.已知m,n为不重合的直线,α,β,γ为不重合的平面,则下列命题中正确的是()A.m⊥α,n⊂β,m⊥n⇒α⊥βB.α⊥γ,β⊥γ⇒α∥βC.α∥β,m⊥α,n∥β⇒m⊥nD.α⊥β,α∩β=m,n⊥m⇒n⊥β解析:α∥β,m⊥α⇒m⊥β,n∥β⇒m⊥n.答案:C二、填空题6.如图所示,检查工作的相邻两个面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动,观察尺边是否和这个面密合就可以了,其原理是________.解析:如图,因为OA⊥OB,OA⊥OC,OB⊂β,OC⊂β且OB∩OC =O,根据线面垂直的判定定理,可得OA⊥β.又OA⊂α,根据面面垂直的判定定理,可得α⊥β.答案:面面垂直的判定定理7.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP =AB,则平面ABP与平面CDP所成的二面角的度数是________.解析:可将图形补成以AB、AP为棱的正方体,不难求出二面角的大小为45°.答案:45°8.如图所示,在三棱锥S-ABC中,△SBC,△ABC都是等边三角形,且BC=1,SA=32,则二面角S-BC-A的大小为________.解析:如图所示,取BC的中点O,连接SO,AO.因为AB=AC,O是BC的中点,所以AO⊥BC,同理可证SO⊥BC,所以∠SOA是二面角S-BC-A的平面角.在△AOB中,∠AOB=90°,∠ABO=60°,AB=1,所以AO=1·sin 60°=32.同理可求SO=3 2.又SA=32,所以△SOA是等边三角形,所以∠SOA=60°,所以二面角S-BC-A的大小为60°.答案:60°三、解答题9.在正方体ABCD-A1B1C1D1中,求证:面A1CD1⊥面C1BD.证明:因为ABCD-A1B1C1D1为正方体,所以AC⊥BD,因为AA1⊥平面ABCD,所以AA1⊥BD.又因为AA1∩AC=A,所以BD⊥平面ACA1,又因为A1C⊂平面ACA1,所以BD⊥A1C,同理BC1⊥A1C,因为BD∩BC1=B,所以A1C⊥平面C1BD,因为A1C⊂平面A1CD1,所以面A1CD1⊥面C1BD.10.如图所示,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC的中点.(1)证明SO⊥平面ABC;(2)求二面角A-SC-B的余弦值.(1)证明:如图所示,由题设AB=AC=SB=SC=SA.连接OA,△ABC为等腰直角三角形,所以OA=OB=OC=22SA,且AO⊥BC.又△SBC为等腰三角形,故SO⊥BC,且SO=22SA.从而OA 2+SO 2=SA 2,所以△SOA 为直角三边形,SO ⊥AO .又AO ∩BC =O ,所以SO ⊥平面ABC .(2)解:取SC 的中点M ,连接AM ,OM .由(1)知SO =OC ,SA =AC ,得OM ⊥SC ,AM ⊥SC . 所以∠OMA 为二面角A -SC -B 的平面角.由AO ⊥BC ,AO ⊥SO ,SO ∩BC =O ,得AO ⊥平面SBC .所以AO ⊥OM .又AM =32SA ,AO =22SA ,故sin ∠AMO =AO AM =23=63.所以二面角A -SC -B 的余弦值为33.B 级 能力提升1.在空间四边形ABCD 中,若AD ⊥BC ,AD ⊥BD ,那么有()A .平面ABC ⊥平面ADCB .平面ABC ⊥平面ADBC .平面ABC ⊥平面DBCD .平面ADC ⊥平面DBC解析:因为AD ⊥BC ,AD ⊥BD ,BC ∩BD =B ,所以AD ⊥平面DBC .又因为AD ⊂平面ADC ,所以平面ADC ⊥平面DBC .答案:D2.矩形ABCD 的两边AB =3,AD =4,PA ⊥平面ABCD ,且PA =435,则二面角A -BD -P 的度数为________. 解析:过点A 作AE ⊥BD ,连接PE ,则∠AEP 为所求角.因为由AB =3,AD =4知BD =5,又AB ·AD =BD ·AE ,所以AE =125.所以tan ∠AEP =435125=33.所以∠AEP =30°. 答案:30°3.(2015·课标全国Ⅰ卷节选)如图所示,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .证明:平面AEC ⊥平面AFC .证明:连接BD,设BD∩AC=G,连接EG,FG,EF.在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC= 3.由BE⊥平面ABCD,AB=BC,可知AE=EC.又AE⊥EC,所以EG=3,且EG⊥AC.在Rt△EBG中,可得BE=2,故DF=22.在Rt△FDG中,可得FG=62.,可得EF 在直角梯形BDFE中,由BD=2,BE=2,DF=22=322.从而EG2+FG2=EF2,所以EG⊥FG.又AC∩FG=G,可得EG⊥平面AFC.因为EG⊂平面AEC,所以平面AEC⊥平面AFC.。
高中数学人教新课标A版必修2第二章2.3.2平面与平面垂直的判定同步练习(I)卷
高中数学人教新课标A版必修2第二章2.3.2平面与平面垂直的判定同步练习(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共5题;共10分)1. (2分)如图,长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,E,F,G 分别是DD1 , AB,CC1的中点,则异面直线A1E与GF所成角为()A .B .C .D .2. (2分)已知两个平面垂直,下列命题中:(1)一个平面内已知直线必垂直于另一个平面内的任意一条直线;(2)一个平面内已知直线必垂直于另一个平面内的无数条直线;(3)一个平面内的任意一条直线必垂直于另一个平面;(4)过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.其中正确命题的个数有()A . 1B . 2C . 3D . 43. (2分) (2015高二下·定兴期中) 已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为()A . 45°B . 135°C . 45°或135°D . 90°4. (2分) (2017高二上·黑龙江月考) 如图,在矩形中,四边形为边长为的正方形,现将矩形沿过点的动直线翻折,使翻折后的点在平面上的射影落在直线上,若点在折痕上射影为,则的最小值为()A .B .C .D .5. (2分) (2017高二下·新余期末) 如图,四棱锥P﹣ABCD中,底面ABCD是矩形,PD⊥平面ABCD,且PD=AD=1,AB=2,点E是AB上一点,当二面角P﹣EC﹣D的平面角为时,AE=()A . 1B .C . 2﹣D . 2﹣二、单选题 (共1题;共2分)6. (2分) (2015高一下·衡水开学考) 垂直于同一平面的两条直线一定()A . 平行B . 相交C . 异面D . 以上都有可能三、填空题 (共3题;共3分)7. (1分) (2016高二上·临川期中) 如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDD′B′;②当且仅当x= 时,四边形MENF的面积最小;③四边形MENF周长l=f(x),x∈0,1]是单调函数;④四棱锥C′﹣MENF的体积v=h(x)为常函数;以上命题中真命题的序号为________.8. (1分) (2017高三上·嘉兴期中) 如图,已知AB为圆O的直径,C为圆上一动点,圆O所在平面,且PA=AB=2,过点A作平面,交PB,PC分别于E,F,当三棱锥P-AEF体积最大时, =________.9. (1分) (2019高一上·延边月考) 在正方体中,二面角的大小为________.四、解答题 (共3题;共20分)10. (10分) (2018高三上·赣州期中) 如图,已知多面体中,为菱形,,平面,,, .(1)求证:平面平面;(2)求二面角的余弦值.11. (5分)如图,在四棱锥A﹣BECD中,已知底面BECD是平行四边形,且CA=CB=CD=BD=2,AB=AD= .(Ⅰ)求证:平面ABD⊥平面BECD;(Ⅱ)求点E到平面ACD的距离.12. (5分)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且,AB=1,M是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求三棱锥B﹣AMC的体积.参考答案一、选择题 (共5题;共10分)1-1、2-1、3-1、4-1、5-1、二、单选题 (共1题;共2分)6-1、三、填空题 (共3题;共3分)7-1、8-1、9-1、四、解答题 (共3题;共20分)10-1、答案:略10-2、答案:略11-1、12-1、。
数学必修2——2.3.2《平面与平面垂直的判定》导学导练
高中数学必修21高中数学必修二2.3.2《平面与平面垂直的判定》导学导练给出下列命题:①a ∥考点二.两平面垂直的证明例2:如图,AB 是⊙O 的直径,PA 垂直⊙O 所在的平面,C 是圆周上不同于A ,B 的任意一点,求证:平面PAC ⊥平面PBC 。
【针对练习】1、如图,在三棱锥P-ABC 中,已知PA ⊥PB ,PB ⊥PC ,PC ⊥PA ,求证:平面PAB ⊥平面PBC ,平面PBC ⊥平面PCA ,平面PCA ⊥平面PAB 。
2、如图,在三棱锥P-ABC 中,已知PA ⊥平面ABC ,AB ⊥BC ,D 、E分别是点A 在PB ,PC 上的射影,求证: (1)平面PBC ⊥平面PAB 。
(2)AD ⊥平面PBC 。
(3)平面ADE ⊥平面PAC 。
3、S 是△ABC 所在平面外一点,SA=SB=SC ,∠ASC=90︒,∠ASB=∠BSC=60︒, 求证:平面ASC ⊥平面ABC.个人原创,版权所有,翻印必究,如需借用,QQ 索取密码 第2页 解密佛山吉红勇老师扣扣:一0七669八114.已知:如图,在△ABC 中,AB=AC ,AD⊥平面ABC ,EC⊥平面ABC ,且CE=2AD.求证:平面BDE⊥平面BCE.考点三.二面角大小的求法例3:如图四面体ABCD 的棱BD 长为2,其余各棱长均为2,求二面角A-BD-C 的大小。
【针对练习】1、如图三棱锥 P-ABC 中,PC ⊥平面ABC ,PC =32 ,D 是 BC 的中点,且△ADC是边长为 2的正三角形,则二面角 P-AB -C 的大小为考点四.综合考查线线、线面、面面垂直和平行例4:已知直四棱柱1111ABCD A BC D -的底面是菱形,且160AA AD ,DAB =︒=∠,F 为棱1BB 的中点,M 为线段1AC 的中点. (1)求证:直线MF//平面ABCD ; (2)求证:平面1AFC ⊥平面11ACC A ;(3)求平面1AFC 与平面ABCD 所成二面角的大小.【针对练习】 2、直线a⊥平面α,α//b ,则a 与b 的关系为( )A.b a ⊥,且a 与b 相交B.b a ⊥,且a 与b 不相交C. b a ⊥D.a 与b 不一定垂直3、若三条直线OC ,OB ,OA 两两垂直,则直线OA 垂直于( ) A.平面OAB B.平面OAC C.平面OBC D.平面ABC4、给出下列四个命题:①.若一条直线垂直于平面内的任意一条直线,则这条直线垂直于这个平面②.若一条直线垂直于平面内的两条直线,则这条直线垂直于这个平面③.若两条平行线中的一条垂直于一个平面,则另一条直线也垂直于这个平面④.若两条直线垂直于同一个平面,则这两条直线互相平行 其中正确的命题的个数是( )A.1个B.2个C.3个D.4个5、下列命题正确的是( )A.平行于同一个平面的两条直线必定平行B.垂直于同一条直线的两个平面必定平行C.过一点有且只有一条直线与已知直线垂直D.与两条异面直线都相交的两条直线是异面直线 6、已知四棱锥P-ABCD 的底面为直角梯形,AB∥DC,⊥=∠PA DAB ,90 底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点.(1)证明:平面PAD⊥平面PCD ; (2)求AC 与PB 所成的角的余弦值;(3)求平面AMC 与平面BMC 所成二面角的余弦值.高中数学必修23【课后练习】1.已知PD⊥矩形ABCD 所在的平面,图中相互垂直的平面有( ) A.1对 B.2对 C.3对 D.5对2.下列命题中错误的是( )A.若//,,m n n m βα⊥⊂,则αβ⊥B.若αβ⊥,a⊂α,则αβ⊥C.若γα⊥,γβ⊥,l αβ=,则γ⊥D.若αβ⊥,βα⋂=AB ,a //α,a ⊥AB ,则β⊥a3.如图,已知矩形ABCD 中,AB =1,BC =a ,PA ⊥平面ABCD ,若在BC 上只有一点Q 满足PQ ⊥DQ ,则a 的值等于4.对四面体ABCD ,给出下列四个命题:①若AB=AC ,BD=CD ,则BC⊥AD ②若AB=CD ,AC=BD ,则BC⊥AD ③若AB⊥AC,BD⊥CD,则BC⊥AD④若AB⊥CD,BD⊥AC,则BC⊥AD 其中真命题的序号是________(写出所有真命题的序号) 5、如图,三棱锥ABC P -中,⊥PB 底面ABC ,︒=∠90BCA ,CA BC PB ==,E 为PC 的中点,指出图中有哪四对互相垂直的平面.5、如图,在三棱锥V ABC -中,VA=VC ,AB=BC ,求证:VB ⊥AC.6、如图,已知PA O ⊥e 所在的平面,AB 是O e 的直径,C 是O e 上异于点A ,B 的任意一点,过点A 作AE PC ⊥于点E ,求证:AE ⊥平面PBC .7.如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E是PC 的中点。
浙江省富阳市第二中学高中数学 2.3.1直线与平面垂直的判定练习题(无答案)新人教A版必修2
浙江省富阳市第二中学高中数学 2.3.1直线与平面垂直的判定练习题(无答案)新人教A 版必修21. 如果一条直线l 与平面α的一条垂线垂直,那么直线l 与平面α的位置关系是( )(A )l ⊂α (B )l ⊥α (C )l ∥α (D )l ⊂α或l ∥α2. 直线l 与平面α内的两条直线都垂直,则直线l 与平面α的位置关系是 ( )(A )平行 (B )垂直 (C )在平面α内 (D )无法确定3.下面各命题中正确的是 ( )(A )直线a ,b 异面,a ⊂α,b ⊂β,则α∥β;(B )直线a ∥b ,a ⊂α,b ⊂β,则α∥β;(C )直线a ⊥b ,a ⊥α,b ⊥β,则α⊥β;(D )直线a ⊂α,b ⊂β,α∥β,则a ,b 异面.4.已知两条直线,m n ,两个平面,αβ,给出下面四个命题:①//,m n m n αα⊥⇒⊥ ②//,,//m n m n αβαβ⊂⊂⇒③//,////m n m n αα⇒ ④//,//,m n m n αβαβ⊥⇒⊥其中正确命题的序号是( )A .①③B .②④C .①④D .②③5.若三条直线OA ,OB ,OC 两两垂直,则直线OA 垂直于( ).A .平面OAB B .平面OAC C .平面OBCD .平面ABC6.在正方形S G 1G 2G 3中,E 、F 分别是G 1G 2、G 2G 3的中点,现沿S E 、S F 、EF 把这个正方形折成一个四面体,使G 1、G 2、G 3重合为点G ,则有( ).A. SG ⊥面EFGB. EG ⊥面SEFC. GF ⊥面SEFD. SG ⊥面SEF7.直线a ⊥直线b ,b ⊥平面β,则a 与β的关系是( ). A .a ⊥β B. a ∥β. C .a β⊂ D .a β⊂或a ∥β8.把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( ).A. 90°B. 60°C. 45°D. 30°9.设三棱锥P ABC -的顶点P 在平面ABC 上的射影是H ,给出以下说法:①若PA BC ⊥,PB AC ⊥,则H 是ABC ∆垂心; ②若,,PA PB PC 两两互相垂直,则H 是ABC ∆垂心;③若90ABC ∠=o ,H 是AC 的中点,则PA PB PC ==; ④若PA PB PC ==,则H 是ABC ∆的外心.其中正确说法的序号依次是 . 10.(1)过直线外一点作直线的垂线有 条;垂面有 个;平行线有条;平行平面有 个.(2)过平面外一点作该平面的垂线有 条;垂面有 个;平行线有 条;平行平面有 个.11、如图,四边形ABCD 是菱形,且PA ⊥平面ABCD,Q 为PA 的中点,求证:(1)PC//面QBD 、(2)BD ⊥平面PAC12. 已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线AE 与平面ABC 1D 1所成的角的正弦值.13、在正方体1111ABCD A B C D -中,E 是1CC 的中点,F 是AC ,BD 的交点,求证:1A F BED ⊥平面.14.如图,ABCD 是矩形,PA ⊥平面ABCD ,,PA AD a ==2AB a =,E 是线段PD 上的点,F 是线段AB 上的点,且12PE BF ED FA ==.求直线EF 与平面ABCD 所成角的正弦值.Q。
高中数学 第二章 2.3.2 平面与平面垂直的判定练习 新人教A版必修2
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学习资料专题2.3.2 平面与平面垂直的判定【选题明细表】1.下列说法中,正确的是( B )(A)垂直于同一直线的两条直线互相平行(B)平行于同一平面的两个平面平行(C)垂直于同一平面的两个平面互相平行(D)平行于同一平面的两条直线互相平行解析:A.垂直于同一直线的两条直线可能平行、相交或异面.B.正确.C.垂直于同一平面的两个平面可能相交、也可能平行.D.平行于同一平面的两条直线可能相交、平行或异面.只有B正确.2.(2018·江西三市联考)设a,b是两条不同的直线,α,β是两个不同的平面,则( C )(A)若a∥α,b∥α,则a∥b (B)若a∥α,a∥β,则α∥β(C)若a∥b,a⊥α,则b⊥α(D)若a∥α,α⊥β,则a⊥β解析:选项A.若a∥α,b∥α,则a∥b,或a,b异面或a,b相交,A错;选项B.若a∥α,a∥β,则α∥β,或α∩β=b,B错;选项C.若a∥b,a⊥α,则b⊥α,C正确;选项D.若a∥α,α⊥β,则a⊂β或a∥β或a⊥β,D错.故选C.3.如图,AB是圆的直径,PA垂直于圆所在的平面,C是圆上一点(不同于A,B)且PA=AC,则二面角P BC A的大小为( C )(A)60° (B)30°(C)45° (D)15°解析:易得BC⊥平面PAC,所以∠PCA是二面角P BC A的平面角,在Rt△PAC中,PA=AC,所以∠PCA=45°.故选C.4.如图所示,已知PA⊥矩形ABCD所在的平面,则图中互相垂直的平面有( D )(A)2对(B)3对(C)4对(D)5对解析:由PA⊥矩形ABCD知,平面PAD⊥平面ABCD,平面PAB⊥平面ABCD;由AB⊥平面PAD知,平面PAB⊥平面PAD;由BC⊥平面PAB知,平面PBC⊥平面PAB;由DC⊥平面PAD知,平面PDC ⊥平面PAD.故题图中互相垂直的平面有5对.选D.5.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成几何体A BCD,则在几何体A BCD中,下列结论正确的是( D )(A)平面ABD⊥平面ABC(B)平面ADC⊥平面BDC(C)平面ABC⊥平面BDC(D)平面ADC⊥平面ABC解析:由已知得BA⊥AD,CD⊥BD,又平面ABD⊥平面BCD,所以CD⊥平面ABD,从而CD⊥AB,故AB⊥平面ADC.又AB⊂平面ABC,所以平面ABC⊥平面ADC.选D.6.如图所示,在△ABC中,AD⊥BC,△ABD的面积是△ACD的面积的2倍.沿AD将△ABC翻折,使翻折后BC⊥平面ACD,此时二面角B AD C的大小为( C )(A)30° (B)45° (C)60° (D)90°解析:由已知得,BD=2CD.翻折后,在Rt△BCD中,∠BDC=60°,而AD⊥BD,CD⊥AD,故∠BDC是二面角B AD C的平面角,其大小为60°.故选C.7.如图,△ABC是等腰直角三角形,∠BAC=90°,AB=AC=1,将△ABC沿斜边BC上的高AD折叠,使平面ABD⊥平面ACD,则折叠后BC= .解析:因为在原△ABC中,AD⊥BC,所以折叠后有AD⊥BD,AD⊥CD,所以∠BDC是二面角B AD C的平面角.因为平面ABD⊥平面ACD,所以∠BDC=90°.在Rt△BCD中,∠BDC=90°,BD=CD=,所以BC==1.答案:18.如图,三棱柱ABC A 1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(1)证明:平面BDC1⊥平面BDC;(2)平面BDC1分此棱柱为两部分,求这两部分体积的比.(1)证明:由题设知BC⊥CC1,BC⊥AC,CC1∩AC=C,所以BC⊥平面ACC1A1.又DC1⊂平面ACC1A1,所以DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,所以∠CDC1=90°,即DC1⊥DC.又DC∩BC=C,所以DC1⊥平面BDC.又DC1⊂平面BDC1,故平面BDC1⊥平面BDC.(2)解:设棱锥B DACC 1的体积为V1,AC=1,由题意得V1=××1×1=.又三棱柱ABC A 1B1C1的体积V=1,所以(V-V1)∶V1=1∶1.故平面BDC1分此棱柱所得两部分体积的比为1∶1.9.(2018·兰州诊断)在直三棱柱ABC A 1B1C1中,AB=AC=BC=2,AA1=1,则点A到平面A1BC的距离为( B )(A)(B)(C)(D)解析:如图,设D为BC的中点,连接AD,A1D,A1C,A1B,过A作A1D的垂线,垂足为E,则BC⊥A1D,BC ⊥AD,所以BC⊥平面A1AD,则BC⊥AE.又AE⊥A1D,所以AE⊥平面A1BC,由条件可得AD=AB=,A1D==2,由面积相等得AE·A1D=AA1·AD,即AE==,故选B.10.正方体ABCD A1B1C1D1中,截面A1BD与底面ABCD所成二面角A1BD A的正切值等于.解析:设AC与BD相交于O点,因为ABCD A 1B1C1D1为正方体,所以AO⊥BD,又AA1⊥平面ABCD,所以AA1⊥BD,又AO∩AA1=A,所以BD⊥平面A1AO,所以BD⊥A1O,所以∠A1OA为二面角A1BD A的平面角,设正方体的棱长为a,在直角△A1AO 中,AA1=a,AO=a,所以tan∠A1OA==.答案:11.四棱锥P ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=.(1)证明:平面PBE⊥平面PAB;(2)求二面角A BE P的大小.(1)证明:如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为PA⊥平面ABCD,BE⊂平面ABCD,所以PA⊥BE.而PA∩AB=A,因此BE⊥平面PAB.又BE⊂平面PBE,所以平面PBE⊥平面PAB.(2)解:由(1)知,BE⊥平面PAB,PB⊂平面PAB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A BE P的平面角.在Rt△PAB中,tan∠PBA==,∠PBA=60°,故二面角A BE P的大小是60°.12.如图所示,在侧棱垂直于底面的三棱柱ABC A 1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点.(1)求证:B1C∥平面A1BD;(2)求证:B1C1⊥平面ABB1A1;(3)设E是CC1上一点,试确定E的位置使平面A1BD⊥平面BDE,并说明理由.(1)证明:连接AB1,与A1B相交于M,则M为A1B的中点,连接MD.又D为AC的中点,所以B1C∥MD.又B1C⊄平面A1BD,MD⊂平面A1BD,所以B1C∥平面A1BD.(2)证明:因为AB=B1B,所以四边形ABB1A1为正方形.所以A1B⊥AB1.又因为AC1⊥平面A1BD,所以AC1⊥A1B.所以A1B⊥平面AB1C1,所以A1B⊥B1C1.又在棱柱ABC A 1B1C1中BB1⊥B1C1,所以B1C1⊥平面ABB1A.(3)解:当点E为C1C的中点时,平面A1BD⊥平面BDE, 因为D,E分别为AC,C1C的中点,所以DE∥AC1.因为AC1⊥平面A1BD,所以DE⊥平面A1BD.又DE⊂平面BDE,所以平面A1BD⊥平面BDE.。
高中数学 2.3.2 平面与平面垂直的判定试题2 新人教A版必修2-新人教A版高中必修2数学试题
平面与平面垂直的判定一、选择题1.下列命题:①两个相交平面组成的图形叫做二面角;②异面直线a、b分别和一个二面角的两个面垂直,则a、b组成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成角的最小角;④二面角的大小与其平面角的顶点在棱上的位置没有关系.其中正确的是( )A.①③B.②④C.③④D.①②2.下列命题中正确的是( )A.平面α和β分别过两条互相垂直的直线,则α⊥βB.若平面α内的一条直线垂直于平面β内两条平行线,则α⊥βC.若平面α内的一条直线垂直于平面β内两条相交直线,则α⊥βD.若平面α内的一条直线垂直于平面β内无数条直线,则α⊥β3.设有直线M、n和平面α、β,则下列结论中正确的是( )①若M∥n,n⊥β,M⊂α,则α⊥β;②若M⊥n,α∩β=M,n⊂α,则α⊥β;③若M⊥α,n⊥β,M⊥n,则α⊥β.A.①②B.①③C.②③D.①②③4.过两点与一个已知平面垂直的平面( )A.有且只有一个 B.有无数个C.有且只有一个或无数个 D.可能不存在5.在边长为1的菱形ABCD中,∠ABC=60°,把菱形沿对角线AC折起,使折起后BD=32,则二面角B-AC-D的余弦值为( )A.13B.12C.223D.326.在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论中不成立的是( )A.BC∥面PDF B.DF⊥面PAEC.面PDF⊥面ABC D.面PAE⊥面ABC二、填空题7.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP 所成的二面角的度数是________.8.如图所示,已知PA⊥矩形ABCD所在的平面,图中互相垂直的平面有________对.9.已知α、β是两个不同的平面,M、n是平面α及β之外的两条不同直线,给出四个论断:①M⊥n;②α⊥β;③n⊥β;④M⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________________.三、解答题10.如图所示,在空间四边形ABCD中,AB=BC,CD=DA,E、F、G分别为CD、DA和对角线AC的中点.求证:平面BEF⊥平面BGD.11.如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD 的中点,PA⊥底面ABCD,PA=3.(1)证明:平面PBE⊥平面PAB;(2)求二面角A—BE—P的大小.能力提升12.如图,在直三棱柱ABC—A1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C.求证:(1)EF∥平面ABC;(2)平面A1FD⊥平面BB1C1C.13.如图,在三棱锥P—ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC.(2)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.1.证明两个平面垂直的主要途径(1)利用面面垂直的定义,即如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.(2)面面垂直的判定定理,即如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.2.利用面面垂直的判定定理证明面面垂直时的一般方法:先从现有的直线中寻找平面的垂线,若图中存在这样的直线,则可通过线面垂直来证明面面垂直;若图中不存在这样的直线,则可通过作辅助线来解决,而作辅助线则应有理论依据并有利于证明,不能随意添加.3.证明两个平面垂直,通常是通过证明线线垂直→线面垂直→面面垂直来实现的,因此,在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化.每一垂直的判定都是从某一垂直开始转向另一垂直,最终达到目的的.2.3.2 平面与平面垂直的判定答案知识梳理1.两个半平面这条直线这两个半平面2.垂足∠AOB3.(1)直二面角(2)垂线a⊂α作业设计1.B [①不符合二面角定义,③从运动的角度演示可知,二面角的平面角不是最小角.故选B.]2.C3.B [②错,当两平面不垂直时,在一个平面内可以找到无数条直线与两个平面的交线垂直.]4.C [当两点连线与平面垂直时,有无数个平面与已知平面垂直,当两点连线与平面不垂直时,有且只有一个平面与已知平面垂直.]5.B [如图所示,由二面角的定义知∠BOD即为二面角的平面角.∵DO=OB=BD=3 2,∴∠BOD=60°.]6.C [如图所示,∵BC∥DF,∴BC∥平面PDF.∴A正确.由BC⊥PE,BC⊥AE,∴BC⊥平面PAE.∴DF⊥平面PAE.∴B正确.∴平面ABC⊥平面PAE(BC⊥平面PAE).∴D正确.]7.45°解析可将图形补成以AB、AP为棱的正方体,不难求出二面角的大小为45°.8.5解析由PA⊥面ABCD知面PAD⊥面ABCD,面PAB⊥面ABCD,又PA⊥AD,PA⊥AB且AD⊥AB,∴∠DAB为二面角D—PA—B的平面角,∴面DPA⊥面PAB.又BC⊥面PAB,∴面PBC⊥面PAB,同理DC⊥面PDA,∴面PDC⊥面PDA.9.①③④⇒②(或②③④⇒①)10.证明∵AB=BC,CD=AD,G是AC的中点,∴BG⊥AC,DG⊥AC,∴AC⊥平面BGD.又EF∥AC,∴EF⊥平面BGD.∵EF⊂平面BEF,∴平面BEF⊥平面BGD.11.(1)证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为PA⊥平面ABCD,BE⊂平面ABCD,所以PA⊥BE.而PA∩AB=A,因此BE⊥平面PAB.又BE⊂平面PBE,所以平面PBE⊥平面PAB.(2)解由(1)知,BE⊥平面PAB,PB⊂平面PAB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.在Rt△PAB中,tan∠PBA=PAAB=3,则∠PBA=60°.故二面角A—BE—P的大小是60°.12.证明(1)由E、F分别是A1B、A1C的中点知EF∥BC.因为EF⊄平面ABC.BC⊂平面ABC.所以EF∥平面ABC.(2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1.又A1D⊂平面A1B1C1,故CC1⊥A1D.又因为A1D⊥B1C,CC1∩B1C=C,故A1D⊥平面BB1C1C,又A1D⊂平面A1FD,所以平面A1FD⊥平面BB1C1C.13.(1)证明∵PA⊥底面ABC,∴PA⊥BC.又∠BCA=90°,∴AC⊥BC.又∵AC∩PA=A,∴BC⊥平面PAC.(2)解∵DE∥BC,又由(1)知,BC⊥平面PAC,∴DE⊥平面PAC.又∵AE⊂平面PAC,PE⊂平面PAC,∴DE⊥AE,DE⊥PE.∴∠AEP为二面角A—DE—P的平面角.∵PA⊥底面ABC,∴PA⊥AC,∴∠PAC=90°.∴在棱PC上存在一点E,使得AE⊥PC.这时∠AEP=90°,故存在点E,使得二面角A—DE—P为直二面角.。
人教A版高中数学必修二2.3.2平面与平面垂直的判定同步练习D卷
人教A版高中数学必修二 2.3.2平面与平面垂直的判定同步练习D卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2018高二上·杭州期中) 如图,长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成角的余弦值是()A .B .C .D .2. (2分)如图,在四形边ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使CD⊥平面ABD,构成三棱锥A﹣BCD.则在三棱锥A﹣BCD中,下列结论正确的是()A . AD⊥平面BCDB . AB⊥平面BCDC . 平面BCD⊥平面ABCD . 平面ADC⊥平面ABC3. (2分) (2018高二上·遂宁期末) 已知直线m,l,平面,且,给出下列命题:①若,则;②若,则;③若,则;④若,则 .其中正确的命题是()A . ①④B . ③④C . ①②D . ②③4. (2分) (2015高一上·福建期末) 已知α,β是平面,m,n是直线.下列命题中不正确的是()A . 若m∥n,m⊥α,则n⊥αB . 若m∥α,α∩β=n,则m∥nC . 若m⊥α,m⊥β,则α∥βD . 若m⊥α,m∩β,则α⊥β5. (2分) (2020高二上·黄陵期末) 已知正四棱柱中,,则CD与平面所成角的正弦值等于()A .B .C .D .6. (2分)在直角坐标系中,A(-2,3),B(3,-2)沿X轴把直角坐标系折成的二面角,则此时线段AB的长度为()A .B .C .D .7. (2分)在正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且平面D1AE,则A1F与平面BCC1B1所成角的正切值构成的集合是()A .B .C .D .8. (2分)将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD所成的角为60°;④AB与CD所成的角为60°.其中错误的结论是()A . ①B . ②C . ③D . ④二、填空题 (共3题;共3分)9. (1分)如果空间中的三个平面两两相交,则下列判断正确的是________(填序号).①不可能只有两条交线;②必相交于一点;③必相交于一条直线;④必相交于三条平行线.10. (1分)已知PA⊥正方形ABCD所在的平面,垂足为A,连接PB,PC,PD,则平面PAB,平面PAD,平面PCD,平面PBC,平面ABCD中,互相垂直的平面有________对.11. (1分)如图所示:在直三棱柱ABC﹣A1B1C1中,AB⊥BC,AB=BC=BB1 ,则平面A1B1C与平面ABC所成的二面角的大小为________三、解答题 (共3题;共25分)12. (5分) (2018高三上·丰台期末) 在四棱锥中,底面是矩形,侧棱底面,分别是的中点, .(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)若,,求三棱锥的体积..13. (10分) (2019高三上·双鸭山月考) 如图,在四棱柱中,侧棱底面,,,,,且点和分别为和的中点.(1)求证:平面;(2)求二面角的正弦值.14. (10分)(2012·四川理) 如图,在三棱锥P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC.(1)求直线PC与平面ABC所成角的大小;(2)求二面角B﹣AP﹣C的大小.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共3题;共3分)9-1、10-1、11-1、三、解答题 (共3题;共25分)12-1、13-1、13-2、14-1、14-2、第11 页共11 页。
人教A版高中数学必修二2.3.2平面与平面垂直的判定同步练习A卷
人教A版高中数学必修二 2.3.2平面与平面垂直的判定同步练习A卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)如图,在正方体A1B1C1D1ABCD中,E是C1D1的中点,则异面直线DE与AC夹角的余弦值为()A .B .C .D .2. (2分) (2017高二上·乐山期末) 如图所示,在斜三棱柱ABC﹣A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在面ABC上的射影H必在()A . 直线AB上B . 直线BC上C . 直线CA上D . △ABC内部3. (2分)如图所示,在斜三棱柱ABC-A1B1C1的底面△ABC中,∠A=90°,且BC1⊥AC,过C1作C1H⊥底面ABC,垂足为H,则点H在()A . 直线AC上B . 直线AB上C . 直线BC上D . △ABC内部4. (2分)下列命题中,m、n表示两条不同的直线,α、β、γ表示三个不同的平面.①若m⊥α ,n∥α ,则m⊥n;②若α⊥γ ,β⊥γ ,则α∥β;③若m∥α ,n∥α ,则m∥n;④若α∥β ,β∥γ ,m⊥α ,则m⊥γ.则正确的命题是()A . ①③B . ②③C . ①④D . ②④5. (2分)(2017·绍兴模拟) 如图,在正方体ABCD﹣A1B1C1D1中,棱AB的中点为P,若光线从点P出发,依次经三个侧面BCC1B1 , DCC1D1 , ADD1A1反射后,落到侧面ABB1A1(不包括边界),则入射光线PQ与侧面BCC1B1所成角的正切值的范围是()A . (,)B . (,4)C . (,)D . (,)6. (2分) (2018高一下·虎林期末) 在四面体ABCD中,已知棱AC的长为,其余各棱长都为1,则二面角A-CD-B的余弦值为()A .B .C .D .7. (2分) (2018高一上·武威期末) 在三棱柱ABC-A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是().A . 30°B . 45°C . 60°D . 90°8. (2分)(2020·湖南模拟) 在棱长为1的正方体中,分别为,的中点,过点、、、的截面与平面的交线为,则异面直线、所成角的正切值为()A .B .C .D .二、填空题 (共3题;共3分)9. (1分) (2017高二上·苏州月考) 如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线________上.10. (1分) (2019高三上·郑州期中) 已知四棱锥的底面是边长为的正方形,其外接球的表面积为,是等边三角形,平面平面,则 ________ .11. (1分) (2016高一上·广东期末) 如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2,则二面角A﹣PB﹣C的正切值为________.三、解答题 (共3题;共30分)12. (5分)已知一个直角三角形的两条直角边长分别是2 ,;以这个直角三角形的斜边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体,求这个旋转体的表面积和体积.13. (10分)如图,在四棱锥P-ABCD中,PC⊥底面ABCD ,底面ABCD是直角梯形,AB⊥AD ,AB∥CD ,AB=2AD=2CD=2,E是PB的中点.(1)求证:平面EAC⊥平面PBC;(2)若二面角P-AC-E的余弦值为,求直线PA与平面EAC所成角的正弦值.14. (15分) (2016高二上·南城期中) 如图,三棱锥P﹣ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E为PC的中点,M为AB的中点,点F在PA上,且2PF=FA.(1)求证:BE⊥平面PAC;(2)求证:CM∥平面BEF;(3)求平面ABC与平面BEF所成的二面角的平面角(锐角)的余弦值.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共3题;共3分)9-1、10-1、11-1、三、解答题 (共3题;共30分)12-1、13-1、13-2、14-1、14-2、14-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省富阳市第二中学高中数学 2.3.2平面与平面垂直的判定练习题(无答案)新
人教A 版必修2
1.对于直线m 、n 和平面α、β,αβ⊥的一个条件是( ).
A .m n ⊥,//m α,//n β B. ,,m n m n α
βα⊥=⊥ C .//,,//m n n m αβ⊥ D. //m n , m α⊥, n β⊥
2.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的关系是 ( )
A.相等
B.互补
C.相等或互补 D .不能确定
3、在四棱锥P -ABCD 中,底面ABCD 是矩形,若PA ⊥平面ABCD ,则在此四棱锥的五个面中互相垂直的平面共有( )
A 3对
B 4对
C 5对
D 6对
4.在三棱锥A —BCD 中,如果AD ⊥BC ,BD ⊥AD ,△BCD 是锐角三角形,那么( ).
A. 平面ABD ⊥平面ADC
B. 平面ABD ⊥平面ABC
C. 平面BCD ⊥平面ADC
D. 平面ABC ⊥平面BCD
5.在直二面角AB αβ--棱AB 上取一点P ,过P 分别在,αβ平面内作与棱成45°角的斜线PC 、PD ,则∠CPD 的大小是( ).
A .45°
B .60°
C .120°
D .60°或120°
6、在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立的是( )
A. BC//面PDF
B. DF ⊥面PAE
C. 面PDF ⊥面ABC
D. 面PAE ⊥面ABC
7.下面四个说法:① 如果一条直线垂直于一个平面内的无数条直线,那么这条直线和这个平面垂直; ②过空间一定点有且只有一条直线和已知平面垂直;③垂直同一平面的两条直线互相平行;④经过一个平面的垂线的平面与这个平面垂直.
其中正确的说法个数是( ).
A.1
B. 2
C. 3
D. 4
8.E 是正方形ABCD 的AB 边中点,将△ADE 与△BCE 沿DE 、CE 向上折起,使得A 、B 重合为点P ,那么二面角D —PE —C 的大小为 .
9.空间四边形AB CD 中,AB=BC ,CD=DA ,E 是AC 的中点,则平面BDE 与平面ABC 的位置关系是
10、直角三角形ABC 的斜边在平面α内,两条直角边分别与平面α成30°和45°,则这个直角三角形所在的平面与平面α所成二面角为 。
11.如图正方体
1111ABCD A B C D -中,E 、F 为AB 、AD 的中点, (1)
11A C 与1B C 所成角大小____ _; (2)1AD 与EF 所成角大小______; (3)
1A C 与1AD 所成角大小是____; (4)1BD 与平面1!DCC D 所成角的大小是______(5)二面角
1A BC D --的大小是____; (6)二面角111B AC B --的大小是_______;(7)二面角1C EF C --的大小是_____;
12 如图,空间四边形ABCD ,及两条对角线AC 、BD ,AB=AC=AD=a ,BD=DC=CB=b ,AH ⊥面BCD ,垂足为H ,(1)求证:面ABH ⊥面ACD (2)求平面ABD 与平面BCD 所成角的大小.
.
13.如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,侧棱PA 垂直于底面,E 、F 分别是AB 、PC 的中点.
(1)求证:CD ⊥PD ; (2)求证:EF ∥平面PAD ;(3)当平面PCD 与平面ABCD 成多大角时,直线EF ⊥平面PCD ?
14. 如图,边长为a 的正三角形ABC ,PA ⊥平面ABC ,PA=a ,QC ⊥平面ABC ,QC=2a
,求平面PQB 与平面ABC 所成的角.。