华东师范大学出版社七年级(下册)数学知识点总结
华东师范大学出版社七年级下册数学知识点总结
七年级数学下期期末复习提纲第六章 一元一次方程一、基本概念(一)方程的变形法则法则1:方程两边都 或 同一个数或同一个 ,方程的解不变。
例如:在方程7-3x=4左右两边都减去7,得到新方程:-3x+3=4-7。
在方程6x=-2x-6左右两边都加上4x ,得到新方程:8x=-6。
移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号。
例如:(1)将方程x -5=7移项得:x =7+5 即 x =12(2)将方程4x =3x -4移项得:4x -3x =-4即 x =-4法则2:方程两边都除以或 同一个 的数,方程的解不变。
例如: (1)将方程-5x =2两边都除以-5得:x=-52 (2)将方程32 x =13 两边都乘以32得:x=92 这里的变形通常称为“将未知数的系数化为1”。
注意:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。
(2)不论上一乘以或除以数时,都要注意结果的符号。
方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。
求不方程的解的过程,叫做解方程。
(二)一元一次方程的概念及其解法1.定义:只含有一个未知数,并且含有未知数的式子都是 ,未知数的次数是,这样的方程叫做一元一次方程。
例如:方程7-3x=4、6x=-2x-6都是一元一次方程。
而这些方程5x2-3x+1=0、2x+y=l-3y、1x-1=5就不是一元一次方程。
2.一元一次方程的一般式为:ax+b=0(其中a、b为常数,且a≠0)一元一次方程的一般式为:ax=b(其中a、b为常数,且a≠0)3.解一元一次方程的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。
注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
华师大版七年级下册数学知识点总结
七年级数学下期期末复习提纲第六章 一元一次方程一、基本概念(一)方程的变形法则法则1:方程两边都或同一个数或同一个,方程的解不变。
例如:在方程7-3x=4左右两边都减去7,得到新方程:-3x+3=4-7。
在方程6x=-2x-6左右两边都加上4x ,得到新方程:8x=-6。
移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号。
例如:(1)将方程x -5=7移项得:x =7+5即 x =12(2)将方程4x =3x -4移项得:4x -3x =-4即 x =-4法则2:方程两边都除以或同一个的数,方程的解不变。
例如: (1)将方程-5x =2两边都除以-5得:x=-52 (2)将方程32 x =13 两边都乘以32得:x=92 这里的变形通常称为“将未知数的系数化为1”。
注意:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。
(2)不论上一乘以或除以数时,都要注意结果的符号。
方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。
求不方程的解的过程,叫做解方程。
(二)一元一次方程的概念及其解法1.定义:只含有一个未知数,并且含有未知数的式子都是,未知数的次数是,这样的方程叫做一元一次方程。
例如:方程7-3x=4、6x=-2x-6都是一元一次方程。
而这些方程5x 2-3x+1=0、2x+y =l -3y 、1x-1=5就不是一元一次方程。
2.一元一次方程的一般式为:ax+b=0(其中a 、b 为常数,且a ≠0)一元一次方程的一般式为:ax=b (其中a 、b 为常数,且a ≠0)3.解一元一次方程的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。
注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
华师大版七年级数学下册知识点
第六章一元一次方程1.会对方程进行适当的变形解一元一次方程:解方程的基本思想就是转化,即对方程进行变形,变形时要注意两点,一时方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程的解可能不同;二是去分母时,不要漏乘没有分母的项,一元一次方程是学习二元一次方程组、一元二次方程、一元一次不等式及函数问题的基本内容。
2.正确理解方程解的定义,并能应用等式性质巧解考题:方程的解应理解为,把它代入原方程是适合的,其方法就是把方程的解代入原方程,使问题得到了转化。
3.理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:(1)a≠0时,方程有唯一解x= ;(2)a=0,b=0时,方程有无数个解;(3)a=0,b≠0时,方程无解。
4.正确列一元一次方程解应用题:列方程解应用题,关键是寻找题中的等量关系,可采用图示、列表等方法,根据近几年的考试题目分析,要多关注社会热点,密切联系实际,多收集和处理信息,解应用题时还要注意检查结果是否符合实际意义。
5.几种常见的问题:和差倍分问题、等机变形问题、劳力调配问题、比例分配问题、数字问题、工程问题。
第七章二元一次方程组1.二元一次方程(组)及解的应用:注意:方程(组)的解适合于方程,任何一个二元一次方程都有无数个解,有时考查其整数解的情况,还经常应用方程组的概念巧求代数式的值。
2.解二元一次方程组:解方程组的基本思想是消元,常用方法是代入消元和加减消元,转化思想和整体思想也是本章考查重点。
会用代入消元法解含有未知数系数为1的二元一次方程组。
会运用代入法解未知数系数都不是1的二元一次方程组。
会用加减法求未知数系数相等或互为相反数的二元一次方程组的解。
学会使用方程变形,再用加减消元法解二元一次方程组。
灵活运用代入消元法、加减消元法解题。
3.二元一次方程组的应用:列二元一次方程组的关键是能正确分析出题目中的等量关系,题目内容往往与生活实际相贴近,与社会关系的热点问题相联系,请平时注意搜集、观察与分析。
华师大版七年级数学下册知识点整理
华师大版七年级数学下册知识点整理第六章 一元一次方程一、基本概念(一)方程的变形法则法则1:方程两边都 或 同一个数或同一个 ,方程的解不变。
例如:在方程7-3x=4左右两边都减去7,得到新方程:-3x+3=4-7。
在方程6x=-2x-6左右两边都加上4x ,得到新方程:8x=-6。
移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号。
例如:(1)将方程x -5=7移项得:x =7+5 即 x =12(2)将方程4x =3x -4移项得:4x -3x =-4即 x =-4法则2:方程两边都除以或 同一个 的数,方程的解不变。
例如: (1)将方程-5x =2两边都除以-5得:x=-52(2)将方程32 x =13 两边都乘以32得:x=92 这里的变形通常称为“将未知数的系数化为1”。
注意:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。
(2)不论上一乘以或除以数时,都要注意结果的符号。
方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。
求不方程的解的过程,叫做解方程。
(二)一元一次方程的概念及其解法1.定义:只含有一个未知数,并且含有未知数的式子都是 ,未知数的次数是,这样的方程叫做一元一次方程。
例如:方程7-3x=4、6x=-2x-6都是一元一次方程。
而这些方程5x2-3x+1=0、2x+y=l-3y、1x-1=5就不是一元一次方程。
2.一元一次方程的一般式为:ax+b=0(其中a、b为常数,且a≠0)一元一次方程的一般式为:ax=b(其中a、b为常数,且a≠0)3.解一元一次方程的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。
注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
华东师范大学出版社七年级下册数学知识点总结
华东师范大学出版社七年级下册数学知识点总结七年级数学下期期末复习提纲第六章一元一次方程一、基本概念(一)方程的变形法则法则1:方程两边都或同一个数或同一个,方程的解不变。
例如:在方程7-3x=4左右两边都减去7,得到新方程:-3x+3=4-7。
在方程6x=-2x-6左右两边都加上4x,得到新方程:8x=-6。
移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号。
例如:(1)将方程x-5=7移项得:x=7+5 即 x=12(2)将方程4x=3x-4移项得:4x-3x=-4即 x=-4法则2:方程两边都除以或同一个的数,方程的解不变。
例如: (1)将方程-5x=2两边都除以-5得:x=-52(2)将方程32x=13两边都乘以32得:x=92这里的变形通常称为“将未知数的系数化为1”。
注意:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。
(2)不论上一乘以或除以数时,都要注意结果的符号。
方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。
求不方程的解的过程,叫做解方程。
(二)一元一次方程的概念及其解法1.定义:只含有一个未知数,并且含有未知数的式子都是,未知数的次1.二元一次方程的定义:都含有 个未知数,并且 的次数都是1,像这样的整式方程,叫做二元一次方程。
一般形式为:ax+by=c (a 、b 、c 为常数,且a 、b 均不为0)结合一元一次方程,二元一次方程对“元”和“次”作进一步的理解;“元”与“未知数”相通,几个元是指几个未知数,“次”指未知数的最高次数。
例如:方程7y-3x=4、-3a+3=4-7b 、2m+3n=0、1-s+t=2s 等都是二元一次方程。
而6x 2=-2y-6、4x+8y=-6z 、m 2=n 等都不是二元一次方程。
2.二元一次方程组的定义:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
华东师范大学出版社七年级下册数学知识点总结归纳
精心整理七年级数学下期期末复习提纲第六章一元一次方程一、基本概念(一)方程的变形法则遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。
(2)不论上一乘以或除以数时,都要注意结果的符号。
方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。
求不方程的解的过程,叫做解方程。
(二)一元一次方程的概念及其解法1.定义:只含有一个未知数,并且含有未知数的式子都是,未知数的次数是,这样的方程叫做一元一次方程。
例如:方程7-3x=4、6x=-2x-6都是一元一次方程。
而这些方程5x2-3x+1=0、2x+y=l-3y、=5就不是一元一次方程。
2.一元一次方程的一般式为:ax+b=0(其中a、b为常数,且a≠0)一元一次方程的一般式为:ax=b(其中a、b为常数,且a≠0)3(212(4)3.没有结论的问题,需要你给出结论并解答。
第七章二元一次方程组一、基本概念(一)二元一次方程组的有关概念1.二元一次方程的定义:都含有个未知数,并且的次数都是1,像这样的整式方程,叫做二元一次方程。
一般形式为:ax+by=c (a 、b 、c 为常数,且a 、b 均不为0)结合一元一次方程,二元一次方程对“元”和“次”作进一步的理解;“元”与“未知数”相通,几个元是指几个未知数,“次”指未知数的最高次数。
例如:方程7y-3x=4、-3a+3=4-7b 、2m+3n=0、1-s+t=2s 等都是二元一次方程。
2. -==852y x 、⎩⎨⎧-==t s 3(1(2)二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
(即是两个方程的公共解) 注意:写二元一次方程或二元一次方程组的解时要用“联立”符号“⎩⎨⎧”把方程中两个未知数的值连接起来写。
二元方程解的写法的标准形式是:⎩⎨⎧==b y a x ,(其中a 、b 为常数)(二)二元一次方程组的解法 1.解二元一次方程组的基本思想:“消元”,化二元一次方程组为一元一次方程来解。
华东师范大学出版社七年级(下册)数学知识点总结
华东师范大学出版社七年级(下册)数学知识点总结华东师范大学出版社七年级(下册)数学知识点总结数学是一门重要的学科,对于学生的综合素质培养具有重要意义。
下面是华东师范大学出版社七年级(下册)数学课程的知识点总结,帮助学生巩固所学的数学知识。
一、有理数与整数运算1. 有理数的概念2. 整数的运算法则:加法、减法、乘法、除法3. 数轴的运用4. 分数的乘法与除法二、代数式与代数方程1. 代数式的概念2. 代数式的运算法则:合并同类项、展开3. 代数方程的概念4. 代数方程的解法三、比例与比例运算1. 比例的概念2. 比例的性质与判断方法3. 比例的运算法则:比例的四则运算4. 比例与实际问题的应用四、图形的认识和性质1. 点、线、面的概念2. 角的概念与分类3. 直线、线段和射线的性质4. 多边形的性质与分类五、平面图形的运动1. 平移、旋转和翻转的概念2. 平移、旋转和翻转的规律与性质3. 图形的对称性与判断方法4. 平移、旋转和翻转的应用六、面积与体积1. 长方形、正方形和三角形的面积计算2. 圆的面积计算3. 立体图形的表面积和体积计算4. 面积和体积在实际问题中的应用七、统计与概率1. 数据的收集和整理2. 数据的图表表示:条形图、折线图、饼图3. 数据的分析与解读4. 概率的概念与计算八、简便计算方法1. 乘法的简便计算方法2. 除法的简便计算方法3. 小数的简便计算方法4. 分数的简便计算方法以上是华东师范大学出版社七年级(下册)数学课程的知识点总结。
通过对这些知识点的掌握和理解,学生可以提高数学水平,为更高层次的学习打下坚实的基础。
希望同学们能够认真学习并灵活运用这些数学知识,取得更好的成绩。
华师版七年级下册数学知识点总结
七年级数学下期期末复习提纲第六章 一元一次方程一、基本概念(一)方程de 变形法则法则1:方程两边都 或 同一个数或同一个 ,方程de 解不变。
例如:在方程7-3x=4左右两边都减去7,得到新方程:-3x+3=4-7。
在方程6x=-2x-6左右两边都加上4x ,得到新方程:8x=-6。
移项:将方程中de 某些项改变符号后,从方程de 一边移动到另一边,这样de 变形叫做移项,注意移项要变号。
例如:(1)将方程x -5=7移项得:x =7+5 即 x =12(2)将方程4x =3x -4移项得:4x -3x =-4即 x =-4法则2:方程两边都除以或 同一个 de 数,方程de 解不变。
例如: (1)将方程-5x =2两边都除以-5得:x=-52 (2)将方程32 x =13 两边都乘以32得:x=92 这里de 变形通常称为“将未知数de 系数化为1”。
注意:(1)如遇未知数de 系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数de 系数为分数,“系数化为1”时,就要乘以这个分数de 倒数。
(2)不论上一乘以或除以数时,都要注意结果de 符号。
方程de 解de 概念:能够使方程左右两边都相等de 未知数de 值,叫做方程de 解。
求不方程de 解de 过程,叫做解方程。
(二)一元一次方程de 概念及其解法1.定义:只含有一个未知数,并且含有未知数de 式子都是 ,未知数de 次数是 ,这样de 方程叫做一元一次方程。
例如:方程7-3x=4、6x=-2x-6都是一元一次方程。
而这些方程5x 2-3x+1=0、2x+y =l -3y 、1x-1=5就不是一元一次方程。
2.一元一次方程de 一般式为:ax+b=0(其中a 、b 为常数,且a ≠0)一元一次方程de 一般式为:ax=b (其中a 、b 为常数,且a ≠0)3.解一元一次方程de 一般步骤步骤:去分母,去括号,移项,合并同类项,未知数de 系数化为1。
七年级下数学知识点华师大
七年级下数学知识点华师大七年级下学期数学课程是初中数学的重要组成部分,主要涵盖了数学的基本概念、初步代数、初步几何等知识点。
本文将从华师大教材出发,整理七年级下数学的重要知识点,并进行深入讲解。
希望能对广大学生有所帮助。
1. 有理数有理数是数学的基础概念之一。
有理数包括整数和分数两部分。
整数可以表示为......(此处省略部分文字)。
分数的定义是......(此处省略部分文字)。
2. 整数四则运算整数四则运算是初中数学中不可或缺的内容之一。
整数四则运算包括加法、减法、乘法、除法四种运算。
其中加法和减法的运算法则一致,即同号相加取绝对值再乘上符号,异号相加则取绝对值再减去符号;乘法则按照常规计算,除法可以转化为乘法,即......(此处省略部分文字)。
3. 分数的化简和比大小分数的化简是指将分子和分母同时除以它们的最大公约数,使分数变为最简形式。
比大小需要将分数化为同分母再比较分子大小。
如果分数相等,则可以将分数的分子进行比较。
4. 初步代数初步代数包括代数式、方程、不等式三种知识点。
代数式是由数字和字母组成的式子,例如......(此处省略部分文字);方程是由等号相连的代数式,例如......(此处省略部分文字);不等式是由不等号相连的代数式,例如......(此处省略部分文字)。
5. 基本的几何知识基本的几何知识包括平面图形的分类和性质,线段、角度等概念的认识。
平面图形的分类包括三角形、四边形、多边形等;线段的长度可以通过数学方法进行计算;角度可以通过......(此处省略部分文字)。
6. 平面图形的量度平面图形的量度包括周长和面积两个概念。
周长指的是图形的边界线长度之和;面积指的是图形所占据的平面内的空间大小。
计算周长和面积需要掌握相关的公式和方法。
七年级下数学知识点涉及的内容非常广泛,本文只是对其中部分知识点进行了归纳和介绍。
希望读者能够把握好这些基本知识点,并在实际学习中加以应用和掌握。
最新华东七年级下册数学知识点总结
最新华东七年级下册数学知识点总结一、基本概念(一)方程的变形法则法则1:方程两边都或同一个数或同一个 ,方程的解不变.例如:在方程7-3x=4左右两边都减去7,得到新方程:-3x+3=4-7.在方程6x=-2x-6左右两边都加上4x,得到新方程:8x=-6.移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号.例如:(1)将方程x-5=7移项得:x=7+5 即 x=12(2)将方程4x=3x-4移项得:4x-3x=-4即 x=-4法则2:方程两边都除以或同一个的数,方程的解不变.例如: (1)将方程-5x=2两边都除以-5得:x=-52(2)将方程32x=13两边都乘以32得:x=92这里的变形通常称为“将未知数的系数化为1”.注意:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数.(2)不论上一乘以或除以数时,都要注意结果的符号.方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解.求不方程的解的过程,叫做解方程.(二)一元一次方程的概念及其解法1.定义:只含有一个未知数,并且含有未知数的式子都是 ,未知数的次数是,这样的方程叫做一元一次方程.例如:方程7-3x=4、6x=-2x-6都是一元一次方程.而这些方程5x2-3x+1=0、2x+y=l-3y、1x-1=5就不是一元一次方程.2.一元一次方程的一般式为:ax+b=0(其中a、b为常数,且a≠0)一元一次方程的一般式为:ax=b(其中a、b为常数,且a≠0)3.解一元一次方程的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1.注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算.(2)“去分母”指去掉方程两边各项系数的分母;去分母时,要求各分母的最小公倍数,去掉分母后,注意添括号.去分母时,不要忘记不等式两边的每一项都乘以最小公倍数(即公分母)(三)一元一次方程的应用1.纯数学上的应用:(1)一元一次方程定义的应用;(2)方程解的概念的应用;(3)代数中的应用;(4)公式变形等.2.实际生活上的应用:(1)调配问题;(2)行程问题;(3)工程问题;(4)利息问题;(5)面积问题等.3.探索性应用:这类问题与上面的几类问题有联系,但也有区别,有时是一种没有结论的问题,需要你给出结论并解答.第七章 二元一次方程组一、基本概念(一)二元一次方程组的有关概念1.二元一次方程的定义:都含有 个未知数,并且 的次数都是1,像这样的整式方程,叫做二元一次方程.一般形式为:ax+by=c (a 、b 、c 为常数,且a 、b 均不为0)结合一元一次方程,二元一次方程对“元”和“次”作进一步的理解;“元”与“未知数”相通,几个元是指几个未知数,“次”指未知数的最高次数.例如:方程7y-3x=4、-3a+3=4-7b 、2m+3n=0、1-s+t=2s 等都是二元一次方程.而6x 2=-2y-6、4x+8y=-6z 、m2=n 等都不是二元一次方程. 2.二元一次方程组的定义:把两个二元一次方程合在一起,就组成了一个二元一次方程组.例如:⎩⎨⎧-=+=-8532y x y x 、⎩⎨⎧=--=+12337b a b a 、⎩⎨⎧=-=+12n m n m 、⎩⎨⎧-=+=-1132t s t s 等都是二元一次方程组. 而⎩⎨⎧-=+=-8532z x y x 、⎩⎨⎧=--=+12337a a a a 、⎪⎩⎪⎨⎧=-=+121n m n m 等都不是二元一次方程组.注意:(1)只要两个方程一共含有两个未知数,也是二元一次方程组.如:⎩⎨⎧-==852y x 、⎩⎨⎧-==112t s 也是二元一次方程组.3.二元一次方程和二元一次方程组的解(1)二元一次方程的解:能够使二元一次方程的左右两边都相等的两个未知数的值,叫做二元一次方程的解.(2)二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.(即是两个方程的公共解)注意:写二元一次方程或二元一次方程组的解时要用“联立”符号“⎩⎨⎧”把方程中两个未知数的值连接起来写.二元方程解的写法的标准形式是:⎩⎨⎧==by a x ,(其中a 、b 为常数)(二)二元一次方程组的解法1.解二元一次方程组的基本思想:“消元”,化二元一次方程组为一元一次方程来解.2.二元一次方程组的基本解法(1)代入消元法(代入法)定义:通过“代人”消去一个未知数,将方程组转化为一元一次方程来解的这种解法叫做代人消元法,简称代入法.步骤:①选取一个方程,将它写成用一个未知数表示另一个未知数,记作方程③.②把③代人另一个方程,得一元一次方程.③解这个一元一次方程,得一个未知数的值.④把这个未知数的值代人③,求出另一个未知数值,从而得到方程组的解.(2)加减消元法(加减法)定义:通过将两个方程相加(或相减),消去一个未知数,将方程组转化为一元一次方程来解,这种解法叫加减消元法,简称加减法.步骤:①把两个方程同一个未知数的系数乘以适当的倍数,使得这两个未知数的绝对值相同.②把未知数的绝对值相同的两个方程相加或相减,得一元一次方程.③解这个一元一次方程,得一个未知数的值.④把这个未知数的值代人原方程组中系数叫简单的一个方程,求出另一个未知数值,从而得到方程组的解.注意:正确选用两种基本解二元一次方程组(1)若二元一次方程组中有一个未知数系数的绝对值为1,适宜用“代入法”.(2)用加减法解二元一次方程组,两方程中若有一个未知数系数的绝对值相等,可直接加减消元;若同一未知数的系数绝对值不等,则应选一个或两个方程变形,使一个未知数的系数的绝对值相等,然后再直接用加减法求解;若方程组比较复杂,应先化简整理.第8章一元一次不等式一、基本概念(一)不等式的有关概念和性质1.不等式的定义:用表示不等关系的式子叫做不等式.常见不等号:>、<、≥、≤、≠.注:“>”、“<”不仅表示左右两边不等关系,还明确表示左右两边的大小;“≤”、“≥”也表示不等,前者表示“不大于”(小于或等于),后者表示“不小于”(大于或等于), “≠”表示左右两边不相等例如:方程7y-3x>4、-3a+3≤4-7a、2m+3n≠0等都是不等式.而-2y-6、4x+8y=-6z等都不是不等式.2.不等式解的定义:能使不等式成立的未知数的值,叫做不等式的解.例如:不等式120<5x中x=25,26,27,…等都是120<5x的解,而x=24,23,22,21则都不是不等式的解.3.不等式的解集(1)定义:一个不等式的所有解,组成这个不等式解的集合,简称为这个不等式的解集.(2)求不等式的解集的过程,叫做解不等式.(3)在数轴上表示不等式的解集:没有等号画空心圆圈,有等号画实心圆点.“大于”向右画,“小于”向左画.4.不等式的基本性质不等式的基本性1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向 .即:如果a>b,那么a+c>b+c,a-c>b-c;如果a<b,那么a+c<b+c,a-c<b-c.不等式的基本性2:不等式的两边都乘以(或除以)同一个 ,不等号的方向不变.即:如果a<b,c>0,那么ac<bc,a/c<b/c不等式的基本性3:不等式的两边都乘以(或除以)同一个负数,不等号的 .即:如果a>b,c<0,那么ac<bc,a/c<b/c(二)解一元一次不等式1.一元一次不等式的定义:只含有一个未知数,且含未知数的式子是整式,未知数的次数是1,像这样的不等式叫做一元一次不等式.例如:方程7-3x>4、6x≤-2x-6、3x≠-2x+150都是一元一次不等式.而这些方程5x2-3x+1≥0、2x+y<l-3y、1x-1≠5就不是一元一次不等式.2.一元一次不等式的解法解一元一次不等式的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1.注意:(1)不等式中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算.(2)“去分母”指去掉不等式两边各项系数的分母;去分母时,要求各分母的最小公倍数,去掉分母后,注意添括号.去分母时,不要忘记不等式两边的每一项都乘以最小公倍数(即公分母).不等式的解法与解一元一次方程类似,完全可以把解一元一次方程的思想照搬过来.(三)一元一次不等式组1.一元一次不等式组的定义:几个一元一次不等式合起来就组成一元一次不等式组与二元一次方程组不同的是,这里的“几个”可以两个,也可以三个,或更多个.2.一元一次不等式组的解集:不等式组中几个不等式的解集的公共部分,叫做这个不等式组的解集. 3.一元一次不等式组的解集的确定规律同“大”取大,同“小”取小,“大”小“小”大中间找,“大”大“小”小无解了4.一元一次不等式组的解法求不等式组的解集的过程,叫做解不等式组.一般步骤:(1)分别解不等式组中的每个不等式;(2)把每个不等式组的解集在数轴上表示出来;(3)找出各个不等式解集的公共部分;(4)再结合不等式组解集的确定规律,写出不等式组的解集.第九章 多边形一、基本概念(一)三角形有关概念1.三角形定义:三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形,这三条线段就是三角形的边.三角形专用符号:“△” A (顶点)2.三角形的顶点、边B C 组成三角形的线段如图中的AB 、BC 、AC 是这个三角形的三边,两边的公共点叫三角形的顶点.(如点A 等)三角形顶点只能用大写字母表示,整个三角形表示为△ABC.3.三角形的内角,外角的概念:(1)内角:每两条边所组成的角叫做三角形的内角,如∠BAC 等.每个三角形有三个内角,(2)外角:三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角,如下图中∠ACD 是∠ABC 的一个外角, A它与内角∠ACB 相邻. 外角例如右图中∠ACD 是∠ABC 的一个外角,它与内角∠ACB 相邻. B 与△ABC 的内角∠ACB 相邻的外角有几个?它们之间有什么关系?一个三角形共有几个外角?4.三角形的分类(1)三角形按角分类可分为:⎪⎩⎪⎨⎧是钝角)钝角三角形(有一个角是直角)直角三角形(有一个角是锐角)锐角三角形(三个角都(2)三角形按边分类可分为:⎪⎩⎪⎨⎧⎩⎨⎧形(等边三角形)腰和底相等的等腰三角角形(只两边等)腰和底不相等的等腰三等腰三角形角形)都不相等)(又称斜三不等边三角形(三条边 5.三角形的中线、角平分线、高(记住这重要的三线)三角形的中线:三角形的一个顶点与它的对边中点的连线叫三角形的中线.三角形的角平分线:三角形内角的平分线与对边的交点和这个内角顶点之间的线段叫三角形的角平分线.三角形的高:过三角形顶点作对边的垂线,垂足与顶点间的线段叫三角形的高.注意:(1)一个三角形中三条中线(高、角平分线)之间的位置关系怎样?[三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点](2)一个三角形的三条中线(角平分线)的交点与三角形有怎样的位置关系?[三条中线(角平分线)相交于一点,这一点在三角形内部](3)直角三角形的三条高,它们有怎样的位置关系?钝角三角形呢?[直角三角形有一条高在三角形内部,另外两条就是直角三角形的两条直角边,三条高的交点就是直角三角形的直角顶点,钝角三角形有一条高在形内,两条高在形外,三条高所在的直线的交点在形外.](4)以上三线都是线段.(二)三角形外角的性质以及其外角的和1.三角形外角的性质:(1)三角形的一个外角等于和它不相邻的两个内角的和;(2)三角形的一个外角大于任何一个和它不相邻的内角. A如图: D是△ABC边BC上一点,则有∠ADC=∠DAB+∠ABD;∠ADC>∠DAB,∠ADC>∠ABD B D C 问:∠ADB=∠( )+∠( )2.三角形外角的和.三角形的外角与和它相邻内角有什么关系?(互补)(1)三角形外角和的定义:与三角形的每个内角相邻的外角分别有两个,这两个外角是对顶角,从与每个内角相等的两个外角中分别取一个相加,得到的和称为三角形的外角和.(2)三角形外角和定理:三角形的外角和是360°(三)三角形的三边关系1.三角形三边不等关系定理:三角形的任何两边的和大于第三边.三角形的任何两边的差小于第三边.即三角形第三边的取值范围是:|任何两边的差|<第三边<任何两边的和以上定理主要用语判断给出一定长度的线段能否构成三角形和求第三边的取值范围.2.三角形具有稳定性这就是说三角形的三条边固定,那么三角形的形状和大小就完全确定了.三角形的这个性质叫做三角形的稳定性.四边形就不具有这个性质.(四)多边形的内角和与外角和1.多边形及其相关概念定义:由n条不在同一直线上的线段首尾顺次连结组成的平面图形,记为n边形,又称多边形.一个n边形有n个内角,有2n个外角.如果多边形的各边都相等,各内角也都相等,则称为正多边形,如正三角形、正四边形(正方形)、正五边形等等.对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线.从n边形的一个顶点引对角线,可以引(n-3)条,这(n-3)条对角线把n边形分成(n-2)个三角形.从n边形的所有顶点引对角线的总条数为:2)3(nn条.2.多边形的内角和公式n边形的内角和=(n-2)·180°3.多边形的外角和.(1)多边形的外角和定义:从与每个内角相邻的两个外角中分别取一个相加,得到的和称为多边形的外角和.(2)多边形的外角和定理:多边形的外角和等于360°.多边形的外角和与多边形的边数无关.(五)用正多边形拼地板1.用相同的正多边形拼地板:能拼成既不留空隙,又不重叠的平面图形的关键是围绕一点拼在一起的几个多边形的内角相加恰好等于360°.在正三角形、正方形、正五边形、正六边形、正八边形中能够拼出完整地面是这就是说,当(360°÷(n-2)·180°n)为正整数时即2nn-2为正整数时,用这样的正n边形就可以铺满地面.设正多边形的个数为n,每个内角为α,则要铺满地面,它们满足下列关系:αn=360°2.用多种正多边形拼地板铺垫满地面的标志:满足围绕一点的这几个正多边形的一个内角的和等于360°设正多边形甲的个数为n,每个内角为α,正多边形乙的个数为m,每个内角为β,则它们满足下列关系:αn+βm=360°第十章轴对称、平移与旋转一、轴对称:1.轴对称图形:如果一个图形沿一条直线对折,对折后的两部分能 ,那么这个图形就是 ,这条直线就是它的 .2.两个图形成轴对称:如果一个图形沿一条直线折叠后,它能与另一个图形那么这两个图形成 ,这条直线就是它们的 ,折叠时重合的对应点就是3.轴对称的性质:轴对称(成轴对称的两个)图形的对应线段 ,对应角4.垂直平分线的定义:5.对称轴的画法:先连结一对点,再作所连线段的6.对称点的画法:过已知点作对称轴的并二、平移图形的平移:一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为 ,它是由移动的和所决定.平移的特征:经过平移后的图形与原图形对应线段 (或在同一直线上)且 , 对应角 ,图形的与都没有发生变化,即平移前后的两个图形连结每对对应点所得的线段 (或在同一直线上)且 .三、旋转图形的旋转:把一个图形绕一个沿某个旋转一定的变换, 叫做 ,这个定点叫做 .图形的旋转由、和所决定.注意:①旋转在旋转过程中保持不动.②旋转分为时针和时针. ③旋转一般小于360°.旋转的特征:图形中每一点都绕着旋转了的角度,对应点到旋转中心的相等,对应线段 ,对应角 ,图形的和都没有发生变化,也就是旋转前后的两个图形 .旋转对称图形:若一个图形绕一定点旋转一定角度(不超过180°)后,能与重合,这种图形就叫 .四、中心对称中心对称图形:把一个图形绕着某一个点旋转°后,如果能够与重合, 那么这个图形叫做图形,这个点就是它的 .成中心对称:把一个图形绕着某一个点旋转°后,如果它能够与重合那么就说这两个图形关于这个点成 ,这个点叫做 .这两个图形中的对应点叫做关于中心的 .中心对称的性质:关于中心对称的图形,对应点所连线段都经过 , 而且被对称中心 .(中心对称是旋转对称的特殊情况).中心对称点的作法——连结和 ,并延长一倍.对称中心的求法——方法①:连结一对对应点,再求其;方法②:连结两对对应点,找他们的 .五、图形的全等1.全等图形定义:能够完全的两个图形叫做全等图形.2.图形变换与全等:一个图形经翻折、平移、旋转变换所得到的新图形与全等;全等的两个图形经过上述变换后一定能够 .3.全等多边形:⑴有关概念:对应顶点、对应边、对应角等.⑵性质:全等多边形的、相等;⑶判定:、分别对应相等的两个多边形全等.4.全等三角形:⑴性质:全等三角形的、相等;⑵判定:、分别对应相等的两个三角形全等.。
华师版七年级下册数学知识点归纳
华师版七年级下册数学知识点归纳一、代数与函数1.代数式与方程式:了解代数式的含义和基本性质,能够根据实际问题列出代数方程。
2.解一元一次方程:掌握解一元一次方程的方法,包括等式两边加减同一个数、乘除同一个非零数等。
3.图像与函数:理解函数的概念,能够通过给定函数表达式绘制函数图像。
二、平面图形的认识与应用1.平面图形的分类与性质:认识各种平面图形,如三角形、四边形、圆等,并了解它们的性质和特点。
2.相似图形:理解相似图形的概念,掌握相似比的计算方法,能够判断两个图形是否相似。
3.平面图形的周长与面积:计算各种平面图形的周长和面积,包括矩形、正方形、三角形等。
三、数据的收集、整理与描述1.数据的收集:了解数据的来源和获取方式,能够进行简单的调查和统计。
2.数据的整理与描述:学习对数据进行整理和分类,并通过统计图表等形式描述数据的特征和规律。
四、立体几何与三视图1.空间几何体的认识:认识各种常见的空间几何体,如长方体、正方体、圆柱体等。
2.立体几何体的表面积与体积:计算各种立体几何体的表面积和体积,掌握相应的计算公式。
3.三视图的绘制:学习根据给定的立体几何体绘制其正视图、侧视图和俯视图。
五、统计与概率1.统计图表的分析与应用:通过直方图、折线图、饼图等统计图表对数据进行分析和比较。
2.概率的认识与计算:了解概率的概念,能够计算简单事件的概率,并进行概率问题的推理和解决。
六、数与式1.分数与整数:理解分数的概念和运算规则,能够进行分数的加减乘除运算。
2.百分数与比例:学习百分数和比例的概念和表示方法,能够进行百分数和比例的计算和应用。
七、函数与方程1.函数关系与函数图像:理解函数的定义和基本性质,能够根据函数关系绘制函数图像。
2.解一元一次方程组:掌握解一元一次方程组的方法,包括代入法、消元法等。
以上是华师版七年级下册数学的主要知识点归纳,通过对这些知识点的学习,学生可以逐步建立起数学思维和解决问题的能力。
华师版七年级下册数学知识点归纳
华师版七年级下册数学知识点归纳摘要:一、前言二、数轴1.数轴的定义2.数轴上的点与实数的关系3.数轴的性质三、有理数1.有理数的定义2.有理数的分类3.有理数的运算四、整数和分数1.整数的定义2.分数的定义3.整数和分数的关系五、实数1.实数的定义2.实数的分类3.实数的运算六、数的大小比较1.数轴上的大小比较2.实数的大小比较方法七、数学符号1.加号、减号、乘号、除号2.分数线、比号3.大于号、小于号、等于号八、例题解析九、结论正文:一、前言华师版七年级下册数学教材涵盖了丰富的数学知识点,为了帮助大家更好地学习和掌握这些知识,本文将对这些知识点进行归纳总结。
二、数轴1.数轴的定义:数轴是一个直线,规定了原点、正方向和单位长度,从原点出发朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)上的点对应负数,原点对应零。
2.数轴上的点与实数的关系:数轴上的每一个点都对应一个实数,反之,每一个实数也对应数轴上的一个点。
3.数轴的性质:数轴是具有唯一性、连续性和可数性的。
三、有理数1.有理数的定义:可以表示为两个整数之比的数称为有理数,包括整数、分数以及它们的相反数。
2.有理数的分类:有理数分为整数和分数两大类。
3.有理数的运算:有理数之间的加法、减法、乘法和除法运算。
四、整数和分数1.整数的定义:整数是不带小数部分的数,包括正整数、负整数和零。
2.分数的定义:分数是一个整数除以另一个非零整数所得到的数,表示为分子与分母的比值。
3.整数和分数的关系:整数可以看作是分母为1的分数,分数可以化为整数和分数的形式。
五、实数1.实数的定义:实数包括有理数和无理数,是可以表示为数轴上的点的数。
2.实数的分类:实数分为有理数和无理数两大类。
3.实数的运算:实数之间的加法、减法、乘法和除法运算。
六、数的大小比较1.数轴上的大小比较:数轴上的点表示的数,右边的总比左边的大。
2.实数的大小比较方法:根据数轴上的位置,或者利用实数的大小比较法则进行比较。
七年级下数学华师大知识点
七年级下数学华师大知识点华师大数学知识点,旨在能让学生们在数学这一门学科上更好的立足。
其中七年级下数学华师大知识点尤为重要,本文将为大家详细介绍。
一、图形的认识1.点,线,面的基本概念点是没有大小和形状的,常表示为大写字母,如A、B。
线是由无数个点连成的,通常用小写字母表示,如a,b。
面是由无数个直线闭合而成的,通常用大写字母表示,如P、Q。
2.图形基本元素直线:有无数个点、无厚度,方向可延伸无限远。
射线:有一个端点,一个方向,无限远延伸。
线段:有两个端点,长度有限,包括两个端点。
角度:两个射线在它们的端点上相交所围成的图形。
三角形:由三条线段和三个角围成的图形。
四边形:由四条线段和四个角围成的图形。
圆形:由一条封闭曲线组成的图形,其中任意两点到圆心的距离相等。
二、分式在学习华师大七年级下数学的过程中,分式是非常重要的一部分。
分式含义:分数的形式,如$\frac{1}{2}$,含义为一份分成了两份。
其中分子表示被分成的部分,分母表示整体中分成的份数。
分式的基本运算:乘法运算:$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b\times d}$除法运算:$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times\frac{d}{c}$加法运算:$\frac{a}{b}+ \frac{c}{d} = \frac{a \times d + b \times c}{b \times d}$减法运算:$\frac{a}{b} - \frac{c}{d} = \frac{a \times d - b \times c}{b \times d}$三、代数式和方程式1.代数式的基本性质代数式可以进行加、减、乘、除四则运算。
代数式的合并同类项,主要是把一些代数式中相同的项合并起来,比如:$2a+3a=5a$。
2.方程式的基本性质方程式是含有未知数的等式,其中的未知量也就是等式中的代数式,常用字母表示。
七年级下数学知识点华师版
七年级下数学知识点华师版数学是一门需要理解和掌握的科学,作为中学生数学学科的基础,七年级下的数学知识点是非常重要的。
本文将从华师版数学教材出发,讲述七年级下数学知识点,帮助各位同学更好地掌握数学知识。
一、有理数有理数是数集Q里的数,它包括整数、分数和小数。
在初中数学中,有理数是一个重要的概念。
首先介绍有理数的加减乘除法则,然后学习有理数的绝对值和相反数的概念,并能根据有理数的大小关系进行比较。
了解分数运算的基本原理,在运算中涉及到分数的约分、通分以及分数化简等。
最后掌握小数的概念,并能够将小数转化为分数。
二、代数式和代数方程代数式是由数字、字母和运算符号组成的式子,代数方程则是含有未知数的方程式。
在初中数学中,学习代数式的展开和因式分解的方法,并进行一元一次方程的解法。
代数方程是研究未知数与已知数之间的关系,理解方程式的意义和二元一次方程的概念,并能解决相关问题。
三、平面图形平面图形是指所有的图形都在同一平面内。
在初中数学中,平面图形是学习的重点之一。
首先介绍平面图形的基本概念,如点、线、面、角及相应的度量单位,然后学习常见的平面图形的性质,如长方形、正方形、菱形、梯形、等腰三角形和直角三角形等的性质,最后掌握平移、旋转和对称的概念。
四、立体图形立体图形是指由平面图形组成的立体物体。
在初中数学中,学习了解常见的立体图形,如长方体、正方体、圆柱体、圆锥体和球体等的性质。
并能够将这些立体图形应用于实际生活领域中,如计算某些物体的容积等。
五、数据统计数据统计是指对一组数据进行搜集、整理、分析并得出结论的过程。
在初中数学中,学习运用统计学知识统计数据。
首先介绍如何描述和整理数据,如频数、频率、中位数、平均数等概念,并学习如何制作和解读各种统计图表,如折线图、柱状图、饼图等。
本文所述的七年级下数学知识点是华师版数学教材中的重点内容。
通过对这些知识点的学习,同学们将能够掌握数学基础知识和方法,为未来的数学学习打下坚实的基础。
华东师范大学出版社七年级(下册)数学知识点总结
七年级数学下期期末复习提纲第六章 一元一次方程一、基本概念(一)方程的变形法则法则1:方程两边都 或 同一个数或同一个 ,方程的解不变。
例如:在方程7-3x=4左右两边都减去7,得到新方程:-3x+3=4-7。
在方程6x=-2x-6左右两边都加上4x ,得到新方程:8x=-6。
移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号。
例如:(1)将方程x -5=7移项得:x =7+5 即 x =12(2)将方程4x =3x -4移项得:4x -3x =-4即 x =-4法则2:方程两边都除以或 同一个 的数,方程的解不变。
例如: (1)将方程-5x =2两边都除以-5得:x=-52(2)将方程32 x =13 两边都乘以32得:x=92 这里的变形通常称为“将未知数的系数化为1”。
注意:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。
(2)不论上一乘以或除以数时,都要注意结果的符号。
方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。
求不方程的解的过程,叫做解方程。
(二)一元一次方程的概念及其解法1.定义:只含有一个未知数,并且含有未知数的式子都是 ,未知数的次数是,这样的方程叫做一元一次方程。
例如:方程7-3x=4、6x=-2x-6都是一元一次方程。
而这些方程5x2-3x+1=0、2x+y=l-3y、1x-1=5就不是一元一次方程。
2.一元一次方程的一般式为:ax+b=0(其中a、b为常数,且a≠0)一元一次方程的一般式为:ax=b(其中a、b为常数,且a≠0)3.解一元一次方程的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。
注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
七年级数学下华师版知识点
七年级数学下华师版知识点第一章:初识代数代数是数学的一个重要分支,它用符号和字母代替实际数字或量,使得问题更加简洁明了。
初学代数需要掌握下列知识点:1.1 代数式代数式是由数、未知数和运算符组成的式子。
其中未知数可以表示为字母或者符号$x$,$y$,$z$等。
1.2 同类项同类项是指有相同的未知数和相同次数的代数式。
如$3x+5x$,这两个项就是同类项,合并后可以得到$8x$。
1.3 合并同类项将多个同类项合并成一个新的代数式,首先要将有相同的未知数和次数的项进行合并。
如$3x+5x$可以被合并为$8x$。
1.4 四则运算代数式的四则运算与常规的数学四则运算一样,分别是加减乘除。
要注意将同类项合并再进行运算。
第二章:一次方程一次方程也称为一元一次方程,表示成以下形式:$ax+b=cx+d$。
初学一次方程需掌握以下知识点:2.1 解方程解方程的基本思想是使得方程两边的未知数系数变成1,然后求出未知数的值。
解方程需要注意运用加减消元和等式移项等方法。
2.2 解方程组方程组是由多个方程组成的集合,求解方程组就是找到一个解满足所有的方程同时成立。
第三章:平面几何初步几何是研究在平面或空间中点、线、面、体的位置、分布和相互关系的数学分支。
初学平面几何需掌握以下知识点:3.1 直线直线是空间中长度为无限大的一条连续的、无限延伸的点集合。
直线的特征是两点可以确定一条直线,两条平行线永不相交。
3.2 角角是由两条射线以一个公共点为顶点所夹成的图形。
角的度数可以用度或弧度来表示。
3.3 三角形三角形是三条直线段组成的图形,其中三条直线段相互连接,端点不在一条直线上。
三角形的性质包括内角和为180度,直角三角形的两条直角边的平方和等于斜边的平方等。
第四章:函数初步函数是代表两个数集之间的映射关系,其中一个数集是函数的定义域,第二个数集是函数的值域。
初学函数需掌握以下知识点:4.1 函数的定义函数是指在一个数集内,每一个独立变量都能够被唯一的确定一个函数值。
七年级下册数学知识点华东版
七年级下册数学知识点华东版七年级下册数学知识点华东版第一章:有理数有理数是整数和分数的统称,包括正整数、负整数、零、正分数和负分数。
有理数间可以进行加、减、乘、除等运算。
在计算过程中,要注意加减法的整数运算原则,乘除法的规则等。
第二章:平面图形的认识与操作平面图形是二维图形,包括三角形、四边形、五边形、六边形、圆等。
认识平面图形的属性,掌握图形的边、角、面积计算方法,能够进行图形的放大、缩小、旋转、翻折等操作。
第三章:因式分解与分式运算因式分解是将一个数写成几个因数的乘积,能够应用因式分解进行简化计算。
分式是一个数与一个非零数的比,懂得分式的概念和性质,在运算中能够进行约分、通分、加减乘除等操作。
第四章:线性方程与一元一次方程式线性方程是未知数含有一次幂的方程,通过解线性方程,能够求出未知数的值。
一元一次方程式是线性方程的一种特殊形式,可以通过变形、等式的性质等方法解出未知数的值。
第五章:顶点的移动和图形的平移图形的平移是指在平面上保持图形大小和形状不变的情况下,将图形沿着指定方向移动的操作。
能够应用平移的方法,掌握平移的性质和基本规律,实现对图形的移动。
第六章:函数函数是一种特殊的关系,将一个数值域的元素(自变量)与另一个数值域的元素(因变量)相联系。
理解函数的定义、特性和表示形式,能够利用函数进行问题的解决与分析。
第七章:面积与体积面积是二维图形所占的空间大小,体积是三维图形所占的空间大小。
了解面积和体积的计算公式,掌握计算方法,能够进行面积和体积的相关问题求解。
第八章:统计与概率统计是对大量数据进行收集、整理、分析和解释的过程,概率是发生某一事件的可能性。
掌握统计图表的制作和解读方法,了解概率的概念和计算方法,能够应用统计和概率进行数据分析。
以上是华东版七年级下册的数学知识点概述。
通过学习这些知识点,同学们将能够掌握数学基本概念,并且能够运用这些知识解决实际问题。
希望大家能够在学习中积极思考、多加练习,提高数学素养,为今后的学业打下坚实基础!。
华师版七年级下册数学知识点总结
华师版七年级下册数学知识点总结七年级数学下期期末复习提纲第六章一元一次方程一、基本概念(一)方程的变形规律法则1:方程两边都或同一个数或同一个,方程的解不变。
例如,从等式7-3x=4的左右两侧减去7,得到一个新的等式:-3x+3=4-7。
在方程6x=-2x-6左右两边都加上4x,得到新方程:8x=-6。
术语移位:在改变方程中某些术语的符号后,从方程的一侧移动到另一侧。
这种变形称为术语移位。
笔记移项要变号。
例如:(1)将方程X-5=7的项移到X=7+5,即X=12(2)将方程4x=3x-4移项得:4x-3x=-4即x=-4规则2:如果方程的两边都除以一个或相同的数字,则方程的解保持不变。
例如:(1)将方程-5x=2两边都除以-5得:x=-二十五万二千二百三十一(2)将方程x=两边都乘以得:x=2339此处的变形通常被称为“将未知系数改为1”。
小心:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。
(2)不论上一乘以或除以数时,都要注意结果的符号。
方程解的概念:使方程左右两边相等的未知数的值称为方程解。
求方程解的过程叫做解方程。
(2)一元方程的概念及其解1.定义:只含有一个未知数,并且含有未知数的式子都是,未知数的次数是,这样的方程叫做一元一次方程。
例如,方程7-3x=4和6x=-2x-6是一元线性方程。
12Y=3x,Y=3x+2x,而不是3x-5。
x-1一2.一元一次方程的一般式为:ax+b=0(其中a、b为常数,且a≠0)一元方程的一般公式是:ax=B(其中a和B是常数,a≠ 0). 3.求解一元方程的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。
注:(1)当等式中有多个括号时,应先删除括号,然后删除括号,最后删除大括号。
应移除每层括号,并将类似术语组合一次,以便于操作。
(2)“去分母”指去掉方程两边各项系数的分母;去分母时,要求各分母的最小公倍数,去掉分母后,注意添括号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下期期末复习提纲
第六章一元一次方程
一、基本概念
(一)方程的变形法则
法则1:方程两边都或同一个数或同一个,方程的解不变。
例如:在方程7-3x=4左右两边都减去7,得到新方程:-3x+3=4-7。
在方程6x=-2x-6左右两边都加上4x,得到新方程:8x=-6。
移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号。
例如:(1)将方程x-5=7移项得:x=7+5 即x=12
(2)将方程4x=3x-4移项得:4x-3x=-4即x=-4
法则2:方程两边都除以或同一个的数,方程的解不变。
例如:(1)将方程-5x=2两边都除以-5得:x=-
5
2
(2)将方程3
2
x=
1
3
两边都乘以
3
2得:x=
9
2
这里的变形通常称为“将未知数的系数化为1”。
注意:
(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。
(2)不论上一乘以或除以数时,都要注意结果的符号。
方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程
的解。
求不方程的解的过程,叫做解方程。
(二)一元一次方程的概念及其解法
1.定义:只含有一个未知数,并且含有未知数的式子都是,未知数的。