数学理卷·2018届河南省洛阳市高三上学期尖子生第一次联考(2017.09)
河南省洛阳市2017-2018学年高考数学一模试卷(理科) Word版含解析
河南省洛阳市2017-2018学年高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},则集合C中的元素个数为( )A.3 B.11 C.8 D.122.已知i为虚数单位,复数z1=3﹣ai,z2=1+2i,若复平面内对应的点在第四象限,则实数a的取值范围为( )A.{a|a<﹣6} B.{a|﹣6<a<} C.{a|a<} D.{a|a<﹣6或a>}3.已知θ为第二象限角,sinθ,cosθ是关于x的方程2x2+(x+m=0(m∈R)的两根,则sinθ﹣cosθ的等于( )A.B.C.D.﹣4.下面四个推导过程符合演绎推理三段论形式且推理正确的是( )A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数5.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的体积为( )A.B.8﹣2πC.πD.8﹣π6.已知f(x)是定义域在R上的偶函数,且f(x)在(﹣∞,0]上单调递增,设a=f(sinπ),b=f(cosπ),c=f(tanπ),则a,b,c的大小关系是,( )A.a<b<c B.b<a<c C.c<a<b D.a<c<b7.执行如图的程序,则输出的结果等于( )A.B.C.D.8.在△ABC中,D为AC的中点,=3,BD与AE交于点F,若=,则实数λ的值为( )A.B.C.D.9.设F1F2分别为双曲线x2﹣y2=1的左,右焦点,P是双曲线上在x轴上方的点,∠F1PF2为直角,则sin∠PF1F2的所有可能取值之和为( )A.B.2 C.D.10.曲线y=(x>0)在点P(x0,y0)处的切线为l.若直线l与x,y轴的交点分别为A,B,则△OAB的周长的最小值为( )A.4+2B.2C.2 D.5+211.若直线(3λ+1)x+(1﹣λ)y+6﹣6λ=0与不等式组表示的平面区域有公共点,则实数λ的取值范围是( )A.(﹣∞,﹣)∪(9,+∞)B.,(﹣,1)∪(9,+∞)C.(1,9)D.(﹣∞,﹣)12.在平面直角坐标系中,点P是直线l:x=﹣上一动点,点F(,0),点Q为PF的中点,点M满足MQ⊥PF,且=λ(λ∈R).过点M作圆(x﹣3)2+y2=2的切线,切点分别为S,T,则|ST|的最小值为( )A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.设随机变量ξ~N(μ,σ2),且P(ξ<﹣1)=P(ξ>1),P(ξ>2)=0.3,则P(﹣2<ξ<0)=__________.14.若正四梭锥P﹣ABCD的底面边长及高均为2,刚此四棱锥内切球的表面积为__________.15.将函数y=sin(x)sin(X+)的图象向右平移个单位,所得图象关于y轴对称,则正数ω的最小值为__________.16.在△ABC中,角A,B,C的对边分别是a,b,c,若b=1,a=2c,则当C取最大值时,△ABC的面积为__________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知{a n},{b n} 均为等差数列,前n项和分别为S n,T n.(1)若平面内三个不共线向量,,满足=a3+a15,且A,B,C三点共线.是否存在正整数n,使S n为定值?若存在,请求出此定值;若不存在,请说明理由;(2)若对n∈N+,有=,求使为整数的正整数n的集合.18.如图,△ABC中,∠ABC=90°,点D在BC边上,点E在AD上.(l)若点D是CB的中点,∠CED=30°,DE=1,CE=求△ACE的面积;(2)若AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值.19.已知圆S经过点A(7,8)和点B(8,7),圆心S在直线2x﹣y﹣4=0上.(1)求圆S的方程(2)若直线x+y﹣m=0与圆S相交于C,D两点,若∠COD为钝角(O为坐标原点),求实数m的取值范围.20.如图,直四棱柱ABCD﹣A1B1C1D1,底面ABCD为梯形AB∥CD,ABC=90°,BC=CD=2AB=2.(1)若CC1=2,E为CD1的中点,在侧面ABB1A1内是否存在点F,使EF⊥平面ACD1,若存在,请确定点F的位置;若不存在,请说明理由;(2)令点K为BB1的中点,平面D1AC与平面ACK所成锐二面角为60°,求DD1的长.21.已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)当|AM|+4|BM|最小时,求直线l的方程.22.已知函数f(x)=ln(1+x)m﹣x(1)若函数f(x)为(0,+∞)上的单调函数,求实数m的取值范围;(2)求证:(1+sin1)(1+sin)(1+sin)…(1+sin)<e2.河南省洛阳市2015届高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},则集合C中的元素个数为( )A.3 B.11 C.8 D.12考点:集合的表示法.专题:集合.分析:根据题意和z=xy,x∈A且y∈B,利用列举法求出集合C,再求出集合C中的元素个数.解答:解:由题意得,A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},当x=1时,z=1或2或3;当x=2时,z=2或4或6;当x=3时,z=3或6或9;当x=4时,z=4或8或12;当x=5时,z=5或10或15;所以C={1,2,3,4,6,8,9,12,5,10,15}中的元素个数为11,故选:B.点评:本题考查集合元素的三要素中的互异性,注意集合中元素的性质,属于基础题.2.已知i为虚数单位,复数z1=3﹣ai,z2=1+2i,若复平面内对应的点在第四象限,则实数a的取值范围为( )A.{a|a<﹣6} B.{a|﹣6<a<} C.{a|a<} D.{a|a<﹣6或a>}考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:求出复数的表达式,根据题意列出不等式组,求出a的取值范围.解答:解:∵复数z1=3﹣ai,z2=1+2i,∴===﹣i;∴,解得﹣6<a<,∴实数a的取值范围{a|﹣6<a<}.故选:B.点评:本题考查了复数的代数运算问题,解题时应注意虚数单位i2=﹣1,是基础题.3.已知θ为第二象限角,sinθ,cosθ是关于x的方程2x2+(x+m=0(m∈R)的两根,则sinθ﹣cosθ的等于( )A.B.C.D.﹣考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:利用根与系数的关系表示出sinθ+cosθ=,sinθcosθ=,利用完全平方公式及同角三角函数间基本关系整理求出m的值,再利用完全平方公式求出sinθ﹣cosθ的值即可.解答:解:∵sinθ,cosθ是关于x的方程2x2+(x+m=0(m∈R)的两根,∴sinθ+cosθ=,sinθcosθ=,可得(sinθ+cosθ)2=1+2sinθcosθ,即=1+m,即m=﹣,∵θ为第二象限角,∴sinθ>0,cosθ<0,即sinθ﹣cosθ>0,∵(sinθ﹣cosθ)2=(sinθ+cosθ)2﹣4sinθcosθ=﹣2m=1﹣+=,∴sinθ﹣cosθ==.故选:A.点评:此题考查了同角三角函数间基本关系的运用,熟练掌握基本关系是解本题的关键.4.下面四个推导过程符合演绎推理三段论形式且推理正确的是( )A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数考点:演绎推理的意义.专题:推理和证明.分析:根据三段论推理的标准形式,逐一分析四个答案中的推导过程,可得出结论.解答:解:对于A,小前提与大前提间逻辑错误,不符合演绎推理三段论形式;对于B,符合演绎推理三段论形式且推理正确;对于C,大小前提颠倒,不符合演绎推理三段论形式;对于D,大小前提及结论颠倒,不符合演绎推理三段论形式;故选:B点评:本题主要考查推理和证明,三段论推理的标准形式,属于基础题.5.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的体积为( )A.B.8﹣2πC.πD.8﹣π考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据三视图可判断正方体的内部挖空了一个圆锥,该几何体的体积为23﹣×π×12×2运用体积计算即可.解答:解:∵几何体的三视图可得出:三个正方形的边长均为2,∴正方体的内部挖空了一个圆锥,∴该几何体的体积为23﹣×π×12×2=8,故选:D点评:本题考查了空间几何体的三视图,运用求解几何体的体积问题,关键是求解几何体的有关的线段长度.6.已知f(x)是定义域在R上的偶函数,且f(x)在(﹣∞,0]上单调递增,设a=f(sinπ),b=f(cosπ),c=f(tanπ),则a,b,c的大小关系是,( )A.a<b<c B.b<a<c C.c<a<b D.a<c<b考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:根据函数奇偶性和单调性之间的关系,即可得到结论.解答:解:∵f(x)是定义域在R上的偶函数,且f(x)在(﹣∞,0]上单调递增,∴f(x)在[0,+∞)上单调递减,则tanπ<﹣1,<sinπ,<cosπ<0,则tanπ<﹣sinπ<cosπ,则f(tanπ)<f(﹣sinπ)<f(cosπ),即f(tanπ)<f(sinπ)<f(cosπ),故c<a<b,故选:C点评:本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键.7.执行如图的程序,则输出的结果等于( )A.B.C.D.考点:程序框图.专题:计算题;点列、递归数列与数学归纳法;算法和程序框图.分析:执行程序框图,依次写出每次循环得到的S,T的值,当i=100,退出循环,输出T 的值.解答:解:执行程序框图,有i=1,s=0,t=0第1次执行循环,有s=1,T=1第2次执行循环,有i=2,s=1+2=3,T=1+第3次执行循环,有i=3,s=1+2+3=6,T=1++第4次执行循环,有i=4,s=1+2+3+4=10,T=1++…第99次执行循环,有i=99,s=1+2+3+..+99,T=1+++…+此时有i=100,退出循环,输出T的值.∵T=1+++…+,则通项a n===,∴T=1+(1﹣)+(﹣)+()+()+…+()=2=.∴输出的结果等于.故选:A.点评:本题主要考察了程序框图和算法,考察了数列的求和,属于基本知识的考查.8.在△ABC中,D为AC的中点,=3,BD与AE交于点F,若=,则实数λ的值为( )A.B.C.D.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:根据已知条件,,能够分别用表示为:,k∈R,,所以带入便可得到,=,所以根据平面向量基本定理即可得到,解不等式组即得λ的值.解答:解:如图,B,F,D三点共线,∴存在实数k使,;∴==;=;∵;∴;∴,解得.故选C.点评:考查向量加法运算及向量加法的平行四边形法则,共面向量基本定理,以及平面向量基本定理.9.设F1F2分别为双曲线x2﹣y2=1的左,右焦点,P是双曲线上在x轴上方的点,∠F1PF2为直角,则sin∠PF1F2的所有可能取值之和为( )A.B.2 C.D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意,不妨设|F1P|>|F2P|,a=b=1,c=;|F1P|﹣|F2P|=2,|F1P|2+|F2P|2=8;从而求出|F1P|=+1,|F2P|=﹣1;再出和即可.解答:解:由题意,不妨设|F1P|>|F2P|,a=b=1,c=;|F1P|﹣|F2P|=2,|F1P|2+|F2P|2=8;故(|F1P|+|F2P|)2=2(|F1P|2+|F2P|2)﹣(|F1P|﹣|F2P|)2=2×8﹣4=12;故|F1P|+|F2P|=2;则|F1P|=+1,|F2P|=﹣1;故则sin∠PF1F2的所有可能取值之和为+==;故选D.点评:本题考查了圆锥曲线的应用,考查了圆锥曲线的定义,属于基础题.10.曲线y=(x>0)在点P(x0,y0)处的切线为l.若直线l与x,y轴的交点分别为A,B,则△OAB的周长的最小值为( )A.4+2B.2C.2 D.5+2考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:利用导数求出函数y=(x>0)在点P(x0,y0)处的切线方程,得到直线在两坐标轴上的截距,由勾股定理求得第三边,作和后利用基本不等式求最值.解答:解:由y=,得,则,∴曲线y=(x>0)在点P(x0,y0)处的切线方程为:y﹣=﹣(x﹣x0).整理得:.取y=0,得:x=2x0,取x=0,得.∴|AB|==2.∴△OAB的周长为=(x0>0).当且仅当x0=1时上式等号成立.故选:A.点评:本题考查了利用导数研究过曲线上某点的切线方程,考查了利用基本不等式求最值,是中档题.11.若直线(3λ+1)x+(1﹣λ)y+6﹣6λ=0与不等式组表示的平面区域有公共点,则实数λ的取值范围是( )A.(﹣∞,﹣)∪(9,+∞)B.,(﹣,1)∪(9,+∞)C.(1,9)D.(﹣∞,﹣)考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用线性规划的知识即可得到结论.解答:解:(3λ+1)x+(1﹣λ)y+6﹣6λ=0等价为λ(3x﹣y﹣6)+(x+y+6)=0,则,解得,即直线过定点D(0,﹣6)作出不等式组对应的平面区域如图:其中A(2,1),B(5,2),此时AD的斜率k==,BD的斜率k==,当直线过A时,λ=9,当直线过B时,λ=﹣,则若直线(3λ+1)x+(1﹣λ)y+6﹣6λ=0与不等式组表示的平面区域有公共点,则满足直线的斜率≤≤,解得λ∈(﹣∞,﹣)∪(9,+∞),故选:A点评:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,运算量较大.12.在平面直角坐标系中,点P是直线l:x=﹣上一动点,点F(,0),点Q为PF的中点,点M满足MQ⊥PF,且=λ(λ∈R).过点M作圆(x﹣3)2+y2=2的切线,切点分别为S,T,则|ST|的最小值为( )A.B.C.D.考点:圆的切线方程.专题:直线与圆.分析:由题意首先求出M的轨迹方程,然后在M满足的曲线上设点,只要求曲线上到圆心的距离的最小值,即可得到|ST|的最小值.解答:解:设M坐标为M(x,y),由MP⊥l知P(﹣,y);由“点Q为PF的中点”知Q(0,);又因为QM⊥PF,QM、PF斜率乘积为﹣1,即,解得:y2=2x,所以M的轨迹是抛物线,设M(y2,y),到圆心(3,0)的距离为d,d2=(y2﹣3)2+2y2=y4﹣4y2+9=(y2﹣2)2+5,∴y2=2时,d mln=,此时的切线长为,所以切点距离为2=;∴|ST|的最小值为;故选A.点评:本题考查了抛物线轨迹方程的求法以及与圆相关的距离的最小值求法,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.设随机变量ξ~N(μ,σ2),且P(ξ<﹣1)=P(ξ>1),P(ξ>2)=0.3,则P(﹣2<ξ<0)=0.2.考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:根据正态分布的性质求解.解答:解:因为P(ξ<﹣1)=P(ξ>1),所以正态分布曲线关于y轴对称,又因为P(ξ>2)=0.3,所以P(﹣2<ξ<0)=故答案为:0.2.点评:一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.14.若正四梭锥P﹣ABCD的底面边长及高均为2,刚此四棱锥内切球的表面积为(6﹣2)π.考点:球内接多面体.专题:计算题;空间位置关系与距离.分析:运用分割思想,连接OP,OA,OB,OC,OD,得到四个三棱锥和一个四棱锥,由大的四棱锥的体积等于四个三棱锥的体积和一个小的四棱锥的体积之和,根据正四棱锥的性质,求出斜高,即可求出球的半径r,从而得到球的表面积.解答:解:设球的半径为r,连接OP,OA,OB,OC,OD,得到四个三棱锥和一个四棱锥它们的高均为r,则V P﹣ABCD=V O﹣PAB+V O﹣PAD+V O﹣PBC+V O﹣PCD+V O﹣ABCD即×2×22=r(4×S△PBC+4),由四棱锥的高和斜高,及斜高在底面的射影构成的直角三角形得到,斜高为,∴S△PBC=×2×=,∴r=,则球的表面积为4π×()2=(6﹣2)π.故答案为:(6﹣2)π.点评:本题主要考查球与正四棱锥的关系,通过分割,运用体积转换的思想,是解决本题的关键.15.将函数y=sin(x)sin(X+)的图象向右平移个单位,所得图象关于y轴对称,则正数ω的最小值为2.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的求值;三角函数的图像与性质.分析:化简可得y=sin(ωx﹣)+将函数的图象向右平移个单位,所得解析式为:y=sin(ωx﹣ω﹣)+,所得图象关于y轴对称,可得﹣ω﹣=k,k∈Z,从而可解得正数ω的最小值.解答:解:∵y=sin(x)sin(X+)=sin2+sinωx==sin(ωx﹣)+,∴将函数的图象向右平移个单位,所得解析式为:y=sin[ω(x﹣)﹣]+=sin(ωx ﹣ω﹣)+,∵所得图象关于y轴对称,∴﹣ω﹣=k,k∈Z,∴可解得:ω=﹣6k﹣4,k∈Z,∴k=﹣1时,正数ω的最小值为2,故答案为:2.点评:本题主要考查了函数y=Asin(ωx+φ)的图象变换,三角函数的图象与性质,属于基本知识的考查.16.在△ABC中,角A,B,C的对边分别是a,b,c,若b=1,a=2c,则当C取最大值时,△ABC的面积为.考点:余弦定理;正弦定理.专题:计算题;解三角形;不等式的解法及应用.分析:运用余弦定理和基本不等式,求出最小值,注意等号成立的条件,再由面积公式,即可得到.解答:解:由于b=1,a=2c,由余弦定理,可得,cosC====(3c+)≥=,当且仅当c=,cosC取得最小值,即有C取最大值,此时a=,则面积为absinC==.故答案为:.点评:本题考查余弦定理和三角形面积公式的运用,考查基本不等式的运用:求最值,考查运算能力,属于中档题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知{a n},{b n} 均为等差数列,前n项和分别为S n,T n.(1)若平面内三个不共线向量,,满足=a3+a15,且A,B,C三点共线.是否存在正整数n,使S n为定值?若存在,请求出此定值;若不存在,请说明理由;(2)若对n∈N+,有=,求使为整数的正整数n的集合.考点:数列与向量的综合;数列的求和.专题:等差数列与等比数列;平面向量及应用.分析:(1)根据平面向量的基本定理和A,B,C三点共线,以及等差数列的性质和求和公式,即可求出定值;(2)根据等差数列的求和公式得到====31+,继而求出正整数n的集合.解答:解:(1)∵A,B,C三点共线.∴∃λ∈R,使=λ,=λ(),即=(1﹣λ)+λ,又平面向量的基本定理得,,消去λ得到a3+a15=1,∵a3+a15=a1+a17=1,∴S17=×17×(a1+a17)=即存在n=17时,S17为定值.(2)由于====31+根据题意n+1的可能取值为2,4,所以n的取值为1或3,即使为整数的正整数n的集合为{1,3}点评:本题主要考查了向量以及等差数列的通项公式和求和公式的应用.考查了学生创造性解决问题的能力,属于中档题18.如图,△ABC中,∠ABC=90°,点D在BC边上,点E在AD上.(l)若点D是CB的中点,∠CED=30°,DE=1,CE=求△ACE的面积;(2)若AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值.考点:三角形中的几何计算.专题:计算题;解三角形.分析:(1)运用余弦定理,解出CD=1,再解直角三角形ADB,得到AE=1,再由面积公式,即可得到△ACE的面积;(2)在△ACE和△CDE中,分别运用正弦定理,求出CE,及sin∠CDE,再由诱导公式,即可得到∠DAB的余弦值.解答:解:(1)在△CDE中,CD==,解得CD=1,在直角三角形ABD中,∠ADB=60°,AD=2,AE=1,S△ACE===;(2)设CD=a,在△ACE中,=,CE==()a,在△CED中,=,sin∠CDE===﹣1,则cos∠DAB=cos(∠CDE﹣90°)=sin∠CDE=﹣1.点评:本题考查解三角形的运用,考查正弦定理和余弦定理,及面积公式的运用,考查运算能力,属于基础题.19.已知圆S经过点A(7,8)和点B(8,7),圆心S在直线2x﹣y﹣4=0上.(1)求圆S的方程(2)若直线x+y﹣m=0与圆S相交于C,D两点,若∠COD为钝角(O为坐标原点),求实数m的取值范围.考点:直线与圆的位置关系;圆的标准方程.专题:直线与圆.分析:(1)线段AB的中垂线方程:y=x,联立,得S(4,4),由此能求出圆S的半径|SA|.(2)由x+y﹣m=0,变形得y=﹣x+m,代入圆S的方程,得2x2﹣2mx+m2﹣8m+7=0,由此利用根的判别式和韦达定理结合已知条件能求出实数m的取值范围.解答:解:(1)线段AB的中垂线方程:y=x,联立,得S(4,4),∵A(7,8),∴圆S的半径|SA|==5.∴圆S的方程为(x﹣4)2+(y﹣4)2=25.(2)由x+y﹣m=0,变形得y=﹣x+m,代入圆S的方程,得2x2﹣2mx+m2﹣8m+7=0,令△=(2m)2﹣8(m2﹣8m+7)>0,得,设点C,D上的横坐标分别为x1,x2,则x1+x2=m,,依题意,得<0,∴x1x2+(﹣x1+m)(﹣x2+m)<0,m2﹣8m+7<0,解得1<m<7.∴实数m的取值范围是(1,7).点评:本题考查圆的半径的求法,考查实数的取值范围的求法,解题时要注意根的判别式和韦达定理的合理运用.20.如图,直四棱柱ABCD﹣A1B1C1D1,底面ABCD为梯形AB∥CD,ABC=90°,BC=CD=2AB=2.(1)若CC1=2,E为CD1的中点,在侧面ABB1A1内是否存在点F,使EF⊥平面ACD1,若存在,请确定点F的位置;若不存在,请说明理由;(2)令点K为BB1的中点,平面D1AC与平面ACK所成锐二面角为60°,求DD1的长.考点:点、线、面间的距离计算;直线与平面垂直的判定.专题:综合题;空间位置关系与距离;空间角.分析:(1)以B为原点,BC,BA,BB1分别为x,y,z轴,建立坐标系,若存在这样的点F,则可设F(0,y,z),其中0≤y≤1,0≤z≤2,利用EF⊥平面ACD1,求出y=﹣3,z=5,与0≤y≤1,0≤z≤2矛盾,即可得出结论;(2)设|DD1|=2k(k>0),求出平面ACK的法向量、平面ACD1的法向量,利用向量的夹角公式,结合平面D1AC与平面ACK所成锐二面角为60°,求出k,即可求DD1的长.解答:解:(1)以B为原点,BC,BA,BB1分别为x,y,z轴,建立坐标系,则A(0,1,0),B(0,0,0),C(2,0,0),D1(2,2,2),若存在这样的点F,则可设F(0,y,z),其中0≤y≤1,0≤z≤2,=(﹣2,y﹣1,z﹣1),=(2,﹣1,0),=(0,2,2),∵EF⊥平面ACD1,∴,∴y=﹣3,z=5,与0≤y≤1,0≤z≤2矛盾,∴不存在满足条件的点F;(2)设|DD1|=2k(k>0),则K(0,0,k),D1(2,2,2k),=(0,﹣1,k),=(2,1,2k),设平面ACK的法向量为=(x,y,z),则,取=(k,2k,2),同理平面ACD1的法向量为=(﹣k,﹣2k,2),则=∴k=±或(负值舍去),∴DD1的长为或.点评:本题考查直线与平面垂直的判定,考查向量知识的运用,正确求出平面的法向量是关键.21.已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)当|AM|+4|BM|最小时,求直线l的方程.考点:直线与圆锥曲线的关系.专题:计算题;平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,运用韦达定理,及平面向量的数量积的坐标表示,即可得到p=2;(2)运用抛物线的定义,及均值不等式,即可得到最小值9,注意等号成立的条件,求得B 的坐标,代入直线方程,求得m,即可得到直线l的方程.解答:解:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,消去x,得,y2﹣2pmy﹣p2=0,y1+y2=2pm,y1y2=﹣p2,由于•=﹣3,即x1x2+y1y2=﹣3,x1x2==,即有﹣p2=﹣3,解得,p=2;(2)由抛物线的定义,可得,|AM|=x1+1,|BM|=x2+1,则|AM|+4|BM|=x 1+4x2+5+5=9,当且仅当x1=4x2时取得最小值9.由于x1x2=1,则解得,x2=(负的舍去),代入抛物线方程y2=4x,解得,y2=,即有B(),将B的坐标代入直线x=my+1,得m=.则直线l:x=y+1,即有4x+y﹣4=0或4x﹣y﹣4=0.点评:本题考查抛物线的定义、方程和性质,考查直线方程和抛物线方程联立,消去未知数,运用韦达定理,考查基本不等式的运用:求最值,考查运算能力,属于中档题.22.已知函数f(x)=ln(1+x)m﹣x(1)若函数f(x)为(0,+∞)上的单调函数,求实数m的取值范围;(2)求证:(1+sin1)(1+sin)(1+sin)…(1+sin)<e2.考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)先求出函数的导数,通过f′(x)≥0恒成立,或f′(x)≤0恒成立,得到m的范围;(2)由题意得:ln(x+1)<x,令g(x)=sinx﹣x,通过函数的单调性得sin1<1,sin<,…,sin<,从而ln[(1+sin1)(1+sin)…(1+sin)]<2,进而证出结论.解答:解:(1)∵f(x)=mln(1+x)﹣x,∴f′(x)=﹣1,∵函数f(x)为(0,+∞)上的单调函数,∴f′(x)≥0恒成立,或f′(x)≤0恒成立,∵x∈(0,+∞),∴m≥1+x不能恒成立,而1+x>1,∴m≤1时,f(x)为单调递减函数,综上:m≤1;(2)由(1)得m=1时,f(x)在(0,+∞)上是减函数,∴f(x)<f(0),即ln(x+1)<x,x∈(0,+∞),∵sin1•sin…sin>0,∴ln(1+sin1)<sin1,…,ln(1+sin)<sin,令g(x)=sinx﹣x,x∈(0,),则g′(x)=cosx﹣1<0,∴g(x)在(0,)上是减函数,∴g(x)<g(0),即sinx<x,x∈(0,),∴sin1<1,sin<,…,sin<,∴ln(1+sin1)+ln(1+sin)+…+ln(1+sin)<sin1+sin+…+sin<1++…+<1+++…+=1+(1﹣)+(﹣)+…+(﹣)=2﹣<2,即ln[(1+sin1)(1+sin)…(1+sin)]<2,∴(1+sin1)(1+sin)(1+sin)…(1+sin)<e2.点评:本题考查了函数的单调性问题,导数的应用,考查了不等式的证明问题,考查转化思想,有一定的难度.。
河南省洛阳市2017-2018学年高三期中考试理数试题Word版含答案
洛阳市2017-2018学年高中三年级期中考试数学试卷(理) 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2|9,|2x A y y x B y y ==-==,则A B =I ( ) A .()3,3- B .[]3,3- C .(]0,3 D .[)0,32. 设复数z 满足()14z i i -=(i 是虚数单位),则z 的共轭复数z =( ) A . 22i -- B .22i -+ C .22i + D .22i -3.下列说法中正确的个数是( )①“p q ∧为真命题”是“p q ∨为真命题”的必要不充分条件; ②命题“,cos 1x R x ∀∈≤”的否定是“00,cos 1x R x ∃∈≥”; ③若一个命题的逆命题为真,则它的否命题一定为真. A . 0 B . 1 C . 2 D . 3 4. 函数()()lg 1f x x =-的大致图象是( )A .B .C. D .5. 某几何体的三视图如图所示,则该几何体的表面积为( ) A .83 B .43C. 482+.842+ 6. 等比数列{}n a 中,1102,4a a ==,函数()()()()1210f x x x a x a x a =---L ,则()0f '=( )A .62B .92 C. 122 D .152 7. 将函数sin cos 22y x x ϕϕ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的取值不可能是( )A . 34π-B .4π- C. 4πD .54π 8. 向量,a b r r 均为非零向量,()()2,2a b a b a b -⊥-⊥r r r r r r ,则,a b r r的夹角为( )A .3π B . 2πC. 23π D .56π9. 已知数列{}n a的首项11=0,1n n a a a +=+,则20a =( ) A .99 B .101 C. 399 D .40110.在三棱锥S ABC -中,底面ABC ∆是直角三角形,其斜边4,AB SC =⊥平面ABC ,且3SC =,则此三棱锥的外接球的表面积为( ) A .25π B .20π C. 16π D .13π11.已知函数()124,041,0x x f x x x x -⎧>⎪=⎨--+≤⎪⎩,若关于x 的方程()()2220f x af x a -++=有8个不等的实数根,则实数a 的取值范围是 ( ) A .181,7⎛⎫ ⎪⎝⎭ B .91,4⎛⎫ ⎪⎝⎭C. 182,7⎛⎫ ⎪⎝⎭ D .92,4⎛⎫⎪⎝⎭ 12. 用[]x 表示不超过x 的最大整数(如[][]2,12,3,54=-=-).数列{}n a 满足()()*114,113n n n a a a a n N +=-=-∈,若12111n n S a a a =+++L ,则[]n S 的所有可能值的个数为( )A . 4B . 3 C. 2 D .1第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.设变量x y 、满足约束条件:222y xx y x ≥⎧⎪+≤⎨⎪≥-⎩,则22z x y =+的最大值是 .14.若定义在[)1,-+∞上的函数()21143,1x f x x x x -≤≤=-+>⎪⎩,则()31f x dx -=⎰ .15.设x y 、均为正数,且1111212x y +=++,则xy 的最小值为 . 16.已知函数()f x 是定义在R 上的偶函数,其导函数为()f x ',且当0x <时,()()20f x xf x '+<,则不等式()()()22017201710x f x f ----<的解集为 .三、解答题 :本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知向量(()sin ,,1,cos a x b x ==r r.(1)若a b ⊥r r,求tan 2x 的值;(2)令()f x a b =r rg ,把函数()f x 的图象上每一点的横坐标都缩小为原来的一半(纵坐标不变),再把所有图象沿x 轴向左平移3π个单位,得到函数()y g x =的图象,求函数()y g x =的单调增区间及图象的对称中心.18.已知数列{}n a 满足()1112,21n n n n a a a na n a ++=+=+,设n nn b a =. (1)求证:数列{}1n b -为等比数列,并求{}n a 的通项公式; (2)设1n nc b =,数列{}n c 的前n 项和为n S ,求证:2n S n <+. 19.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,且()2cos cos tan tan 11A C A C -=. (1)求B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC ∆面积的最大值.20. 已知函数()()2x f x x mx n e =++,其导函数()y f x '=的两个零点为-3和0. (1)求曲线()y f x =在点()()1,1f 处的切线方程; (2)求函数()f x 的单调区间;(3)求函数()f x 在区间[]2,2-上的最值.21. 如图,四棱锥P ABCD -中,底面ABCD 为梯形,PD ⊥底面ABCD ,//,,1,AB CD AD CD AD AB BC ⊥===(1)求证:平面PBD ⊥平面PBC ;(2)设H 为CD 上一点,满足23CH HD =u u u r u u u r,若直线PC 与平面PBD 所成的角的正切值为H PB C --的余弦值. 22. 已知函数()()22ln f x x x mx m R =+-∈.(1)若()f x 在其定义域内单调递增,求实数m 的取值范围; (2)若1752m <<,且()f x 有两个极值点()1212,x x x x <,求()()12f x f x -取值范围. 试卷答案一、选择题1-5:CABBD 6-10: DBACA 11、12:CB 二、填空题 13. 8 14. 423π-15. 9216. {}|20162018x x x <>或 三、解答题17.(1)∵(()sin ,1,cos 0a b x x ==r rg g ,即sin 0x x =,∴tan x =∴22tan tan 21tan xx x==-. (2)由(1)得()2sin 3f x x π⎛⎫=- ⎪⎝⎭,从而()2sin 23g x x π⎛⎫=+⎪⎝⎭. 解222232k x k πππππ-≤+≤+得()51212k x k k Z ππππ-≤≤+∈, ∴()g x 的单调增区间是()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦, 由23x k ππ+=得()126x k k Z ππ=-∈,即函数()y g x =图象的对称中心为()1,026k k Z ππ⎛⎫-∈⎪⎝⎭.18.(1)由已知易得0n a ≠,由()1121n n n n a a na n a +++=+, 得()1211n n n n a a +++=,即121n n b b +=+; ∴()11112n n b b +-=-, 又111112n b a -=-=-, ∴{}1n b -是以12-为首项,以12为公比的等比数列. 从而11111222n nn b -⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭g ,即112nn n a ⎛⎫=- ⎪⎝⎭,整理得221n n n n a =-g ,即数列{}n a 的通项公式为221nn n n a =-g .(2)∵112nn b ⎛⎫=- ⎪⎝⎭,∴12112121112n n n n n c ===+--⎛⎫- ⎪⎝⎭, ∴23012111111111212121212222n n n S n n -=+++++≤+++++----L L , 11222n n n -=+-<+.19.(1)由()2cos cos tan tan 11A C A C -=,得sin sin 2cos cos 11cos cos A C A C A C ⎛⎫-= ⎪⎝⎭,∴()2sin sin cos cos 1A C A C -=,∴()1cos 2A C +=-, ∴1cos 2B =, 又0B π<<,∴3B π=.(2)在ABD ∆中由余弦定理得22121cos 22b b c ADB ⎛⎫=+-∠ ⎪⎝⎭g g ,在CBD ∆中由余弦定理得22121cos 22b b a CDB ⎛⎫=+-∠ ⎪⎝⎭g g ,二式相加得222222cos 2222b ac ac Ba c +-+=+=+, 整理得224a c ac +=-, ∵222a c ac +≥,∴43ac ≤,所以ABC ∆的面积114sin 223S ac B =≤=g .当且仅当3a c ==时“=”成立,∴ABC ∆面积的最大值为3. 20.(1)∵()()2x f x x mx n e =++,∴()()()()()2222x x xf x x m e x mx n e x m x m n e '⎡⎤=++++=++++⎣⎦,由()()3000f f '-=⎧⎪⎨'=⎪⎩知()()93200m m n m n ⎧-+++=⎨+=⎩,解得11m n =⎧⎨=-⎩,从而()()21x f x x x e =+-,∴()()23x f x x x e '=+, 所以()1f e =,∴()14f e '=,曲线()y f x =在点()()1,1f 处的切线方程为()41y e e x -=-, 即43y ex e =-.(2)由于0x e >,当x 变化时,()(),f x f x '的变化情况如下表:故()f x 的单调增区间是(),3-∞-,()0,+∞,单调减区间是()3,0-, (3)由于()225f e =,()()201,2f f e -=--=,所以函数()f x 在区间[]2,2-上的最大值为25e ,最小值为-1. 21.(1)由,//,1AD CD AB CD AD AB ⊥==,可得BD =又4BC BDC π=∠=,∴BC BD ⊥,从而2CD =,∵PD ⊥底面ABCD ,∴BC PD ⊥.∵PD BD D =I ,∴BC ⊥平面PBD ,所以平面PBD ⊥平面PBC . (2)由(1)可知BPC ∠为PC 与底面PBD 所成的角.所以tan BPC ∠=,所以1PB PD ==, 又23CH HD =uuu r uuu r ,及2CD =,可得64,55CH DH ==,以D 点为坐标原点,,,DA DC DP 分别,,x y z 轴建立空间直角坐标系, 则()()()41,1,0,0,0,1,0,2,0,0,,05B PC H ⎛⎫ ⎪⎝⎭.设平面HPB 的法向量为(),,n x y z =r,则由00n HP n PB ⎧=⎪⎨=⎪⎩r uu u r g r uu r g 得4050y z x y z ⎧-+=⎪⎨⎪+-=⎩,取()1,5,4n =--r ,同理平面PBC 的法向量为()1,1,2m =u r.所以cos ,m n m n m n==u r ru r r g u r r又二面角H PB C --为锐角, 所以二面角H PB C --余弦值为7. 22.(1)()f x 的定义域为()0+∞,,()f x 在定义域内单调递增,()220f x x m x '=+-≥,即22m x x≤+在()0+∞,上恒成立, 由于224x x+≥,所以4m ≤,实数m 的取值范围是(],4-∞. (2)由(1)知()22222x mx f x x m x x -+'=+-=,当1752m <<时()f x 有两个极值点,此时1202mx x +=>,121x x =, ∴1201x x <<<, 因为1111725,2m x x ⎛⎫⎛⎫=+∈⎪ ⎪⎝⎭⎝⎭,解得11142x <<,由于211x x =,于是()()()()22121112222ln 2ln f x f x x mx x x mx x -=-+--+ ()()()222121212112112ln ln 4ln x x m x x x x x x x =---+-=-+, 令()2214ln h x x x x =-+,则()()223210x h x x --'=<, ∴()h x 在1142⎛⎫⎪⎝⎭,上单调递减,()1124h h x h ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭, 即()()()()121141ln 2161ln 2416f x f x --<-<--, 故()()12f x f x -的取值范围为15255ln 216ln 2416⎛⎫-⎪⎝⎭-4,.。
2017-2018届河南省洛阳市高三上学期期末考试理科数学(A卷)试题及答案
河南省洛阳市2017-2018届高三上学期期末考试数学理(A 卷)试题一、选择题:本题共12个小题,每小题5分.共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z =2+i 2i -1(i 为虚数单位)的共轭复数是A . -iB . iC .53iD .-53i2.函数()f x =的定义域是A . (-3,0)B . (-3,0 ]C .(-∞,-3)∪(0,+∞)D .(-∞,-3)∪(-3,0)3.执行右图所示的程序框图,输出S 的值为 A .34 B .45C .114D . 1454.利用计算机产生0~1之间的均匀随机数a ,则事件“320181x dx >⎰”发生的概率为A .89B .19C .23D .135.已知数列{}n a 是等差数列,且365a a +=,数列{}n b 是等比数列,且5b =,则28b b ⋅=A .1B .5C .10D .156最大长度是A .4 2B .27C .2 6D .2 57.已知双曲线22221(0,0)x y a b a b-=>>的右焦点F (c, 0)直线x c + yb=1与圆222x y a +=相切,则双曲线的离心率为A .3+C .12+ D .18.设n 为正整数,2(n x展开式中存在常数项,则n 的一个可能取值为A .16B .10C .4D .29.已知函数()f x 满足()()f x f x π=-,且当(,)22x ππ∈-时,()e sin x f x x =+,则A .(1)(2)(3)f f f <<B .(2)(3)(1)f f f <<C .(3)(2)(1)f f f <<D .(3)(1)(2)f f f << 10.已知向量→a ,→b ,→c 满足|→a |=|→b |= 3 , →a ·→b =32 ,|→c -→a -→b |=1, 则|→c |的最大值为A .4B .1+ 3C .3+ 3D .211.若正数,,x y z 满足2243x y z xy +=+ ,则当xy z 取最大值时,1112x y z+-的最大值为A .2B .32 C .1D .1212.已知函数2()43f x x x m =--+恰有学科网两个不同的零点,则实数m 的取值范围是A .(-6,6)∪(254,+∞)B .(254,+∞)C .(-∞,-254)∪(-6,6) D .(-254,+∞) 二、填空题:本题共4个小题, 每小题5分, 共20分. 13.函数()sin sin(60)f x x x =++ 的最大值为_____________.14.已知a >0, ,x y 满足约束条件⎩⎨⎧y ≤2x +y ≥1x -ay ≤1, 若3z x y =+ 的最大值为11,则实数a 的值___________.15.椭圆22143x y += 的上,下顶点分别为A 1,A 2 ,左顶点为B 1 ,左焦点为F 1,若直线A 1F 1交直线A 2B 2于点D , 则cos ∠B 1DF 1=____________.16.已知三棱锥D-ABC 中,AB=BC=1,AD=2,BD= 5 ,AC= 2 ,BC ⊥AD, 则三棱锥的外接球的体积为 =_____________.三、解答题:本大题共6个小题,共70分,解答题应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在∆ABC 中,角A 、B 、C 所对的边分别为,,a b c ,cos2C+22cosC+2=0.(Ⅰ)求角C 的大小;(Ⅱ)若b=2a ,∆ABC 的面积为22sinAsinB, 求sinA 及c的值.18.(本小题满分12分)在某中学举办的校园文化周活动中,从周一到周五的五天中,每天安排一项内容不同的活动供学生选择参加,要求每位学生必须参加三项活动. 其中甲同学必须参加周一的活动,不参加周五的活动,其余的三天的活动随机选择两项参加. 乙同学和丙同学可以在周一到周五中随机选择三项参加.(1)求甲同学选周三的活动且乙同学未选周三的活动的概率;(2)设X表示甲,乙,丙三名同学选择周三的活动的人数之和,求X的分布列和数学期望.19.(本小题满分12分)在长方体ABCD-A1B1C1D1中,AB= 3 ,AD=1,M是线段AD的中点.(1)试过M点作出与平面A1B1CD平行的直线l,说明理由,并证明:l⊥平面AA1D1D;(2)若(1)中的直线l交直线AC于点N,且二面角A-A1N-M的余弦值为155,求AA1的长.20.(本小题满分12分)已知椭圆C:22221(0)x y a b a b+=>>的右焦点F ( 3 ,0),且椭圆C经过点P ( 3 ,12 ).(1)求椭圆C 的方程;(2)设过点F 的直线l 交椭圆C 于A ,B 两点,交直线x =m(m>a )于M 点,若,,PA PM PB k k k 成等差数列,求实数m 的值.21.(本小题满分12分) 已知函数22()e x f x ax e x =+- .(1)若曲线在点(2,(2))f 处的切线平行于x 轴,求函数()f x 的单调区间;(2)若(0,1)x ∈ 时,总有2(1)x xe e x f x -+>, 求实数a 的取值范围.请考生在第22、23、24题中任选一题做答. 如果多做,则按所做的第一题记分.做答时, 用2B 铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)选修4—1:几何证明选讲.在圆内接四边形ABCD 中,AC 与BD 交于点E , 过点A 作圆的切线交CB 的延长线于点F .若AB=AD,AF=18, BC=15,求AE 的长.23.(本小题满分10分)选修4—4:坐标系与参数方程.以平面直角坐标系的原点为极点,以x 轴的正半轴为极轴建立极坐标系. 设曲线C 的参数方程为⎩⎨⎧x=2cos αy=3sin α (α是参数),直线l 的极坐标方程为cos()6πρθ+= (1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设点P为曲线C上任意一点,求点P到直线l的距离的最大值.24.(本小题满分10分)选修4—5:不等式选讲.已知函数()21=+-.f x x x(1)求不等式()0f x>的解集;(2)若存在x∈R,使得()f x≤m成立,求实数m的取值范围.。
【市级联考】河南省洛阳市2018-2019学年第一学期高三第一次统一考试理科数学试题-
……外…………○…………装…学校:___________姓名:……内…………○…………装…绝密★启用前 【市级联考】河南省洛阳市2018-2019学年第一学期高三第一次统一考试理科数学试题 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.设集合 , ,则 ( ) A . B . C . D . 2.若复数 为纯虚数,且 (其中 ),则 ( )A .B .C .2D . 3.函数 的图像大致为( ) A . B .…○…………装…………○……○…………线…………○……※※请※※不※※要※※在※※装※※订※※ …○…………装…………○……○…………线…………○……C . D .4.在区间 内随机取两个实数 ,则满足 的概率是( )A .B .C .D .5.4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有( )A .24种B .36种C .48种D .60种6.某几何体的三视图如图所示,该几何体的体积为( )A .B .C .D .7.已知双曲线 :( , ),过左焦点 的直线切圆 于点 ,交双曲线 右支于点 ,若 ,则双曲线 的渐近线方程为( )A .B .C .D .8.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积 ,求其直径的一个近似公式,人们还用过一些类似的近似公式,根据,判断下列近似公式中最精确的一个是()A.B.C.D.9.已知实数满足约束条件,则的取值范围为()A.B.C.D.10.设是半径为2的圆上的两个动点,点为中点,则的取值范围是()A.B.C.D.11.已知函数对任意的满足(其中是函数的导函数),则下列不等式成立的是()A.B.C.D.12.已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,,点在线段上,且,过点作球的截面,则所得截面圆面积的取值范围是()A.B.C.D.……外…………○………装…………○…※※不※※要※※在※※装※※订……内…………○………装…………○…第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题 13.已知 ,则 __________. 14.数列 首项 ,且 ,令 ,则 的前2019项的和 __________. 15. 的展开式中含有 的项的系数为__________.16.若函数在 上仅有一个零点,则 __________.三、解答题17.如图, 是直角 斜边 上一点, .(1)若 ,求角 的大小;(2)若 ,且 ,求 的长.18.如图,已知多面体 的底面 是边长为2的菱形, 底面 , ,且 .(1)证明:平面 平面 ;(2)若直线 与平面 所成的角为 ,求二面角 的余弦值.19.已知椭圆 中心在原点,焦点在坐标轴上,直线与椭圆 在第一象限内的交…………………考号:_________…………………点是 ,点 在 轴上的射影恰好是椭圆 的右焦点 ,椭圆 另一个焦点是 ,且 . (1)求椭圆 的方程; (2)直线 过点 ,且与椭圆 交于 两点,求 的内切圆面积的最大值. 20.为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).某市随机抽取10户同一个月的用电情况,得到统计表如下:(1)若规定第一阶梯电价每度0.5元,第二阶梯超出第一阶梯的部分每度0.6元,第三阶梯超出第二阶梯每度0.8元,试计算 居民用电户用电410度时应交电费多少元? (2)现要在这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望; (3)以表中抽到的10户作为样本估计全市居民用电,现从全市中依次抽取10户,若抽到 户用电量为第一阶梯的可能性最大,求 的值. 21.已知函数 . (1)若 时, 恒成立,求实数 的取值范围; (2)求证: . 22.在平面直角坐标系 中,曲线 的参数方程为 为参数),以原点 为极点,以 轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 ,曲线 , 的公共点为 . (1)求直线 的斜率; (2)若点 分别为曲线 , 上的动点,当 取最大值时,求四边形 的面积. 23.已知函数 . (1)当 时,解不等式 ; (2)若关于 的不等式 的解集包含 ,求 的取值范围.参考答案1.B【解析】【分析】计算得到集合的元素,根据集合并集的概念得到结果.【详解】集合,,则,故答案为:B.【点睛】这个题目考查了集合的并集的概念以及运算,题目很基础.2.A【解析】【分析】根据复数的除法运算得到z,由纯虚数的概念得到参数值,进而球的模长.【详解】复数为纯虚数,,--,根据题干得到.=故答案为:A.【点睛】这个题目考查了复数的除法运算,以及复数的模的计算,也考查了复数的基本概念;如果复数a+bi(a,b是实数)是纯虚数,那么a=0并且b≠0.3.B【解析】【分析】首先判断函数的奇偶性,判处其中两个选项,然后利用函数的特殊点得出正确选项.【详解】由于,所以函数为奇函数,图像关于原点对称,排除C,D 选项.由于,故排除A选项.故选B.【点睛】本小题主要考查已知具体函数的解析式,判断函数的图像,属于基础题.这类型的题目的主要方法是:首先判断函数的奇偶性,奇函数的图像关于原点对称,偶函数的图像关于轴对称,由此排除部分选项.其次利用函数上的特殊点来判断,可以用函数定义域上的特殊点、函数值等于零的点、与坐标轴的交点等等来判断.第三是求导,利用导数研究函数的单调性,来判断函数的图像.4.D【解析】由题意可得,的区域为边长为2的正方形,面积为4,满足的区域为图中阴影部分,面积为∴满足的概率是,故选D.点睛:本题主要考查了与面积有关的几何概率的求解,解题的关键是准确求出区域的面积,属于中档题;该题涉及两个变量,故是与面积有关的几何概型,分别表示出满足条件的面积和整个区域的面积,最后利用概率公式解之即可.5.D【解析】试题分析:每家企业至少录用一名大学生的情况有两种:一种是一家企业录用一名,33 4324C A=种;一种是其中有一家企业录用两名大学生,234336C A=种,∴一共有3323 434360C A C A+=种,故选D考点:排列组合问题.6.A【解析】由题可知:该几何体为个圆柱和半个圆锥组成,所以该组合体体积为:7.C【解析】分析:根据题意,求得,所以,且,再在直角中,利用勾股定理,得,即,又由,求得,即可得到双曲线的渐近线的方程.详解:如图所示,由,可得为的中点,又因为为的中点,所以,且,又由,所以,且,又由双曲线的定义可知,所以,在直角中,,即,所以,且,所以,解得,所以双曲线的渐近线方程为,故选C.点睛:本题考查了双曲线的几何性质——渐近线方程的求解,其中根据图象和双曲线的定义,利用直角三角形的勾股定理,得到关系式是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.8.D【解析】根据球的体积公式,所以,代入,设选项口的常数为,则,选项A代入得。
2018届高三上学期期末联考数学(理)试题有答案-精品
2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。
河南省洛阳市2018届高三上学期尖子生第一次联考数学(理)试题(解析版)
洛阳市2017—2018学年上学期尖子生第一次联考高三试题数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则等于()A. B. C. D.【答案】C【解析】【详解】由,得,即;由,得:,即∴,∴故选:C2.已知复数满足(为虚数单位),则为()A. B. C. D.【答案】B【解析】由,得:,∴故选:B点睛:复数代数形式运算问题的常见类型及解题策略:(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位的看作一类同类项,不含的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把的幂写成最简形式.(3)利用复数相等求参数..3.如图,圆:内的正弦曲线与轴围成的区域记为(图中阴影部分),随机往圆内投一个点,则点落在区域内的概率是()A. B. C. D.【答案】B【解析】略4. 一个几何体的三视图如图所示,则该几何体的体积为()A. 2B. 1C.D.【答案】C【解析】试题分析:由已知中的三视图,我们可以判断出该几何体的几何特征,该几何体是一个四棱锥其底面是一个对角线为2的正方形,面积S=,高为1,则体积V=,故选C.考点:本题考查的知识点是由三视图求体积.点评:根据已知中的三视图判断该物体是一个底面为对角为2的正方形,高为1的四棱锥是解答本题的关键.5.设a=log36,b=log510,c=log714,则().A. c>b>aB. b>c>aC. a>c>bD. a>b>c【答案】D【解析】试题分析:,,;且;.考点:对数函数的单调性.6.如图的程序框图所描述的算法称为欧几里得辗转相除法.若输入, , 则输出的的值为( )A. 0B. 11C. 22D. 88【答案】B【解析】试题分析:第一次循环:;第二次循环:;第三次循环:;第四次循环:;第五次循环:;结束循环,输出,故选B.考点:循环结构流程图.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序.7.在等比数列中,,是方程的根,则的值为()A. B. C. D. 或【答案】B【解析】由,是方程的根,可得:,显然两根同为负值,可知各项均为负值;.故选:B8.已知点是锐角三角形的外心,若(,),则()A. B. C. D.【答案】C【解析】∵O是锐角△ABC的外心,∴O在三角形内部,不妨设锐角△ABC的外接圆的半径为1,又,∴||=||,可得=++2mn⋅,而⋅=||⋅||cos∠A0B<||⋅||=1.∴1=++2mn⋅<+2mn,∴<−1或>1,如果>1则O在三角形外部,三角形不是锐角三角形,∴<−1,故选:C.9.设双曲线:的右焦点为,过作渐近线的垂线,垂足分别为,,若是双曲线上任一点到直线的距离,则的值为()A. B. C. D. 无法确定【答案】B【解析】由题意,易得,直线的方程为:,设P,则=∴故选:B10.已知球与棱长为4的正四面体的各棱相切,则球的体积为()A. B. C. D.【答案】A【解析】将正四面体ABCD,补成正方体,则正四面体ABCD的棱为正方体的面上对角线∵正四面体ABCD的棱长为4∴正方体的棱长为∵球O与正四面体的各棱都相切,且球心在正四面体的内部,∴球O是正方体的内切球,其直径为∴球O的体积为故选:A点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.11.已知函数,,则下列说法正确的是()A. 函数是周期函数且最小正周期为B. 函数是奇函数C. 函数在区间上的值域为D. 函数在是增函数【答案】C【解析】对于A,,命题错误;对于B,,命题错误;对于C,令,命题正确;对于D,,令在上单调递增,,但外层函数在上并不具有单调性,故命题错误.故选:C12.已知函数有三个不同的零点,,(其中),则的值为()A. B. C. D.【答案】D【解析】令f(x)=0,分离变量可得a=,令g(x)=,由g′(x)==0,得x=1或x=e.当x∈(0,1)时,g′(x)<0;当x∈(1,e)时,g′(x)>0;当x∈(e,+∞)时,g′(x)<0.即g(x)在(0,1),(e,+∞)上为减函数,在(1,e)上为增函数.∴0<x1<1<x2<e<x3,a==,令μ=,则a=﹣μ,即μ2+(a﹣1)μ+1﹣a=0,μ1+μ2=1﹣a<0,μ1μ2=1﹣a<0,对于μ=,μ′=则当0<x<e时,μ′>0;当x>e时,μ′<0.而当x>e时,μ恒大于0.画其简图,不妨设μ1<μ2,则μ1=,μ2===μ3,∴(1﹣)2(1﹣)(1﹣)=(1﹣μ1)2(1﹣μ2)(1﹣μ3)=[(1﹣μ1)(1﹣μ2)]2=[1﹣(1﹣a)+(1﹣a)]2=1.故选:D.点睛:先分离变量得到a=,令g(x)=.求导后得其极值点,求得函数极值,则使g(x)恰有三个零点的实数a的取值范围由g(x)==,再令μ=,转化为关于μ的方程后由根与系数关系得到μ1+μ2=1﹣a<0,μ1μ2=1﹣a<0,再结合着μ=的图象可得到(1﹣)2(1﹣)(1﹣)=1.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知,满足条件则的取值范围是__________.【答案】【解析】作出可行域:∵设z==1+,令s=S 表示动点与定点连线的斜率当点在B时,s最小,即z的最小值为;当点在A时,s最大,即z的最大值为.故答案为:[3,9].点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.14.已知随机变量,,若,,则__________.【答案】【解析】∵随机变量服从,∴,解得:.又,∴故答案为:0.115.已知(,为常数,)的展开式中不含字母的项的系数和为243,则函数,的最小值为__________.【答案】2【解析】由题意结合二项式定理知(1+b)n=243又b∈N*,探究知,仅有当b=2时,35=243,由此得n=5.,令,则,即,显然其在上单调递增,∴最小值为2.故答案为:216.已知数列满足,其中,若对恒成立,则实数的取值范围为__________.【答案】【解析】由得:,令,则的奇数项和偶数项分别成首项为,且公差为的等差数列,所以,,,故,,,因为对恒成立,所以恒成立,同时恒成立,即恒成立,当时,,而时,所以即可,当时,恒成立,综上,故填.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图, 在△中, 点在边上, .(Ⅰ)求;(Ⅱ)若△的面积是, 求.【答案】(I);(II).【解析】试题分析:(I)根据余弦定理,求得,则△是等边三角形.,故(II)由题意可得,又由,可得以,再结合余弦定理可得,最后由正弦定理可得,即可得到的值试题解析:(Ⅰ)在△中, 因为,由余弦定理得,所以,整理得,解得.所以.所以△是等边三角形.所以(Ⅱ) 法1: 由于是△的外角, 所以.因为△的面积是, 所以.所以.在△中,,所以.在△中, 由正弦定理得,所以.法2: 作, 垂足为,因为△是边长为的等边三角形,所以.因为△的面积是, 所以.所以.所以.在Rt△中, ,所以, .所以.18.如图,在直角梯形中,点是边的中点,将沿折起,使平面平面,连接得到如图所示的几何体.(1)求证;平面;(2)若二面角的平面角的正切值为求二面角的余弦值.【答案】(I)详见解析;(II).【解析】试题分析:(I)由平面与名垂直的性质定理可得⊥平面.由折叠前后均有⊥,∩,可得⊥平面;(Ⅱ) 由(Ⅰ)可得二面角的平面角为∠,又依题意,可得,依次求得.,以下由两种解法:1.建立空间直角坐标系,求得相应点的坐标,求得平面的法向量和平面的法向量,则问题可求:2.利用相关的立体几何知识,证明二面角的平面角为,然后利用面几何知识求得二面角的余弦值为.试题解析:(Ⅰ) 因为平面⊥平面,平面平面,又⊥,所以⊥平面.因为平面,所以⊥.又因为折叠前后均有⊥,∩,所以⊥平面.(Ⅱ)由(Ⅰ)知⊥平面,所以二面角的平面角为∠.又⊥平面,平面,所以⊥.依题意.因为,所以.设,则.依题意△~△,所以,即.解得,故.法1:如图所示,建立空间直角坐标系,则,,,,,所以,.由(Ⅰ)知平面的法向量.设平面的法向量由得令,得,所以.所以.由图可知二面角的平面角为锐角,所以二面角的余弦值为.法2:因为⊥平面,过点作//交于,则⊥平面.因为平面,所以⊥.过点作⊥于,连接,所以⊥平面,因此⊥.所以二面角的平面角为.由平面几何知识求得,,所以.所以cos∠=.所以二面角的余弦值为.19.随着互联网的快速发展,基于互联网的共享单车应运而生,某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月的市场占有率进行了统计,并绘制了相应的折线图:(1)由折线图可以看出,可用线性回归模型拟合月度市场占有率与月份代码之间的关系,求关于的线性回归方程,并预测公司2017年4月的市场占有率;(2)为进一步扩大市场,公司拟再采购一批单车,现有采购成本分别为元/辆和1200元/辆的、两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致单车使用寿命各不相同,考虑到公司运营的经济效益,该公司决定先对这两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命的频数表如下:经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率,如果你是公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?参考公式:回归直线方程为,其中,.【答案】(1) 2017年4月份(即时)的市场占有率为.(2)A【解析】【试题分析】(1)依据题设条件运用回归方程恒过定点的事实进行求解;(2)依据题设条件借助数学期望的计算公式进行分析求解:(1)由折线图中所给的数据计算可得,∴.∴.∴月度市场占有率与月份序号之间的线性回归方程为.当时,.故公司2017年4月份的市场占有率预计为23%.(2)由频率估计概率,每辆款车可使用1年、2年、3年和4年的概率分别为0.2、0.35、0.35和0.1,∴每辆款车可产生的利润期望值为(元).由频率估计概率,每辆款车可使用1年、2年、3年和4年的概率分别为0.1、0.3、0.4和0.2,∴每辆款车可产生的利润期望值为:(元),∵,∴应该采购款单车.20.如图,点是抛物线:的焦点,点是抛物线上的定点,且,点,是抛物线上的动点,直线,的斜率分别为,.(1)求抛物线的方程;(2)若,点是,处切线的交点,记的面积为,证明是定值.【答案】(1) (2)32.【解析】试题分析:(1)设,由得带入抛物线方程,解得p值;(2)设,,利用,又,得到,然后求出,,而,带入易得为定值32.试题解析:(1)设,由题知,所以,所以代入()中得,即,所以抛物线的方程是.(2)过作轴平行线交于点,并设,,由(1)知,所以,又,所以,直线:,直线:,解得因直线方程为,将代入得,所以.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.21.已知函数,.(1)若函数有三个不同的极值点,求的值;(2)若存在实数,使对任意的,不等式恒成立,求正整数的最大值.【答案】(Ⅰ)的取值范围是;(Ⅱ)正整数的最大值为5.【解析】试题分析:(Ⅰ)求出的导函数,有3个极值点等价于方程有3个根;令,根据的单调性可知有3个零点,则,解出的取值范围即可;(Ⅱ)不等式,即,分离参数得.转化为存在实数,使对任意的,不等式恒成立;构造新函数,确定单调性,计算相应函数值的正负,即可求正整数的最大值.试题解析:(Ⅰ)∵有3个极值点,∴有3个根令在上递增,上递减.∴有3个零点,∴,∴(Ⅱ)不等式,即,即.转化为存在实数,使对任意的,不等式恒成立.即不等式在上恒成立.即不等式在上恒成立设,则.设,则,因为,有.故在区间上是减函数;又故存在,使得.当时,有,当时,有.从而在区间上递增,在区间上递减又,.所以当时,恒有;当时,恒有;故使命题成立的正整数的最大值为5.考点:1、导数的运算;2、利用导数研究闭区间上函数的极值和最值.【思路点晴】本题主要考查的是零点问题、实数的取值范围的求法、转化化归、函数与方程的数学思想方法,属于难题;利用导数知识把零点及实数的取值范围问题转化为闭区间上函数的极值和最值问题,此类问题的难点在于构造新函数,利用导数研究新函数的单调性,得出极值与最值,从而达到解决问题的目的.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且直线经过曲线的左焦点.(1)求直线的普通方程;(2)设曲线的内接矩形的周长为,求的最大值.【答案】(1)(2)椭圆的内接矩形的周长取得最大值.【解析】试题分析:(1)由直线的参数方程为(为参数)消去参数t,得到直线的普通方程;(2)设椭圆的内接矩形在第一象限的顶点为(),则周长为,利用辅助角公式“化一”求最值即可.试题解析:(1)因为曲线的极坐标方程为,即,将,代入上式并化简得,所以曲线的直角坐标方程为,于是,,直线的普通方程为,将代入直线方程得,所以直线的普通方程为.(2)设椭圆的内接矩形在第一象限的顶点为(),所以椭圆的内接矩形的周长为(其中),此时椭圆的内接矩形的周长取得最大值.23.选修4-5:不等式选讲已知函数,,.(1)若,求实数的取值范围;(2)若存在实数,,使,求实数的取值范围.【答案】(1)(2)【解析】试题分析:(1)由,得,即且,分类讨论去掉绝对值符号,求得实数的取值范围;(2)由于,所以存在实数,,使,即,结合绝对值三角不等式易得,即,易得所求结果.试题解析:(1)∵,∴,∴,∴且.①若,则,∴;②若,则,∴,此时无解;③若且,则,∴,综上所述,的取值范围为或,即.(2)∵,显然可取等号,∴,于是,若存在实数,,使,只需,又,∴,∴,∴,即.。
2017-2018学年河南省洛阳市尖子生高三(上)第一次联考数学试卷(理科)
2017-2018学年河南省洛阳市尖子生高三(上)第一次联考数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合,B={x|lnx<0},则∁R(A∩B)等于()A.{x|x≥0}B.{x|x≥1}C.R D.{0,1}2.(5分)已知复数z满足z(1﹣i)2=1+i (i为虚数单位),则|z|为()A.B.C.D.13.(5分)如图,圆O:x2+y2=π2内的正弦曲线y=sinx与x轴围成的区域记为M (图中阴影部分),随机往圆O内投一个点A,则点A落在区域M内的概率是()A.B.C.D.4.(5分)一个几何体的三视图如图所示,则该几何体的体积为()A.2 B.1 C.D.5.(5分)设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c6.(5分)如图的程序框图所描述的算法,若输入m=209,n=121,则输出的m 的值为()A.0 B.11 C.22 D.887.(5分)在等比数列{a n}中,a2,a16是方程x2+6x+2=0的根,则的值为()A.B.C.D.或8.(5分)已知点O是锐角三角形ABC的外心,若(m,n∈R),则()A.m+n≤﹣2 B.﹣2≤m+n<﹣1 C.m+n<﹣1 D.﹣1<m+n<09.(5分)设双曲线C:的右焦点为F,过F作渐近线的垂线,垂足分别为M,N,若d是双曲线上任一点P到直线MN的距离,则的值为()A.B.C.D.无法确定10.(5分)已知球O与棱长为4的正四面体的各棱相切,则球O的体积为()A.B.C.D.11.(5分)已知函数f(x)=sin(sinx)+cos(sinx),x∈R,则下列说法正确的是()A.函数f(x)是周期函数且最小正周期为πB.函数f(x)是奇函数C.函数f(x)在区间上的值域为D.函数f(x)在是增函数12.(5分)已知函数f(x)=(ax+lnx)(x﹣lnx)﹣x2有三个不同的零点x1,x2,x3(其中x1<x2<x3),则的值为()A.1﹣a B.a﹣1 C.﹣1 D.1二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知x,y满足条,则z=的取值范围是.14.(5分)已知随机变量X~B(2,p),Y~N(2,σ2),若P(X≥1)=0.64,P (0<Y<2)=p,则P(Y>4)=.15.(5分)已知(1+ax+by)5(a,b为常数a∈N*,b∈N*)的展开式中不含字母x的项的系数和为243,则函数,的最小值为.16.(5分)已知数列{a n}满足na n+2﹣(n+2)a n=λ(n2+2n),其中a1=1,a2=2,若a n<a n对∀n∈N*恒成立,则实数λ的取值范围是.+1三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)如图,在△ABC中,点P在BC边上,∠PAC=60°,PC=2,AP+AC=4.(Ⅰ)求∠ACP;(Ⅱ)若△APB的面积是,求sin∠BAP.18.(12分)如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E 是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(Ⅰ)求证:AB⊥平面ADC;(Ⅱ)若AD=1,二面角C﹣AB﹣D的平面角的正切值为,求二面角B﹣AD ﹣E的余弦值.19.(12分)随着移动互联网的快速发展,基于互联网的共享单车应用而生,某市场研究人员为了了解共享单车运营公司M的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图.(Ⅰ)由折线图可以看出,可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系,求y关于x的线性回归方程,并预测M公司2017年4月份(即x=7时)的市场占有率;(Ⅱ)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的A、B两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率.如果你是M 公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?(参考公式:回归直线方程=x +,其中=,=﹣)20.(12分)如图,点F 是抛物线τ:x 2=2py (p >0)的焦点,点A 是抛物线上的定点,且=(2,0),点B ,C 是抛物线上的动点,直线AB ,AC 斜率分别为k 1,k 2.( I )求抛物线τ的方程;(Ⅱ)若k 2﹣k 1=2,点D 是点B ,C 处切线的交点,记△BCD 的面积为S ,证明S 为定值.21.(12分)已知函数f (x )=(x 3﹣6x 2+3x +t )e x ,t ∈R . (1)若函数y=f (x )有三个不同的极值点,求t 的值;(2)若存在实数t ∈[0,2],使对任意的x ∈[1,m ],不等式f (x )≤x 恒成立,求正整数m 的最大值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2=,且直线l经过曲线C的左焦点F.(I )求直线l的普通方程;(Ⅱ)设曲线C的内接矩形的周长为L,求L的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1﹣2a|+|x﹣a2|,g(x)=x2﹣2x﹣4+(Ⅰ)若f(2a2﹣1)>4|a﹣1|,求实数a的取值范围;(Ⅱ)若存在实数x,y,使f(x)+g(y)≤0,求实数a的取值范围.2017-2018学年河南省洛阳市尖子生高三(上)第一次联考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合,B={x|lnx<0},则∁R(A∩B)等于()A.{x|x≥0}B.{x|x≥1}C.R D.{0,1}【解答】解:由A中的不等式解得:x>1或x<0,即A={x|x>1或x<0},由B中的不等式解得:0<x<1,即B={x|0<x<1},则A∩B=∅则∁R(A∩B)=R故选:C.2.(5分)已知复数z满足z(1﹣i)2=1+i (i为虚数单位),则|z|为()A.B.C.D.1【解答】解:由z(1﹣i)2=1+i,得,∴|z|=.故选:B.3.(5分)如图,圆O:x2+y2=π2内的正弦曲线y=sinx与x轴围成的区域记为M (图中阴影部分),随机往圆O内投一个点A,则点A落在区域M内的概率是()A.B.C.D.【解答】解:构成试验的全部区域为圆内的区域,面积为π3正弦曲线y=sinx与x轴围成的区域记为M,根据图形的对称性得:面积为S=2∫0πsinxdx=﹣2cosx|0π=4,由几何概率的计算公式可得,随机往圆O内投一个点A,则点A落在区域M内的概率P=故选B.4.(5分)一个几何体的三视图如图所示,则该几何体的体积为()A.2 B.1 C.D.【解答】解:由图可知该几何体是一个四棱锥其底面是一个对角线为2的正方形,面积S=×2×2=2高为1则V==故选C5.(5分)设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c【解答】解:因为a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,因为y=log2x是增函数,所以log27>log25>log23,∵,,所以log32>log52>log72,所以a>b>c,故选D.6.(5分)如图的程序框图所描述的算法,若输入m=209,n=121,则输出的m 的值为()A.0 B.11 C.22 D.88【解答】解:当m=209,n=121,m除以n的余数是88此时m=121,n=88,m除以n的余数是33此时m=88,n=33,m除以n的余数是22此时m=33,n=22,m除以n的余数是11,此时m=22,n=11,m除以n的余数是0,此时m=11,n=0,退出程序,输出结果为11,故选:B.7.(5分)在等比数列{a n}中,a2,a16是方程x2+6x+2=0的根,则的值为()A.B.C.D.或【解答】解:等比数列{a n}的公比设为q,a2,a16是方程x2+6x+2=0的根,可得a2a16=2,即有a12q16=2,即有a92=2,则的值为a9=±.故选:D.8.(5分)已知点O是锐角三角形ABC的外心,若(m,n∈R),则()A.m+n≤﹣2 B.﹣2≤m+n<﹣1 C.m+n<﹣1 D.﹣1<m+n<0【解答】解:∵O是锐角△ABC的外心;∴O在三角形内部,不妨设锐角△ABC的外接圆的半径为1,则m<0,n<0;∵(m,n∈R),∴=m2+n2+2mn•,设向量夹角为θ,则:1=m2+n2+2mncosθ<m2+n2+2mn=(m+n)2;∴m+n<﹣1,或m+n>1(舍去);∴m+n<﹣1.故选:C9.(5分)设双曲线C:的右焦点为F,过F作渐近线的垂线,垂足分别为M,N,若d是双曲线上任一点P到直线MN的距离,则的值为()A.B.C.D.无法确定【解答】解:双曲线C的方程:中a=4,b=3,c==5,右焦点为F(5,0),相应的渐近线:y=±x,M在直线y=x上,N在直线y=﹣x上,设直线MF的斜率为﹣,其方程为:y=﹣(x﹣5),设M(t,t),代入直线MF的方程,得:t=﹣(t﹣5),解得:t=,即M(,),由对称性可得N(,﹣),直线MN方程为x=,设P(m,n),可得﹣=1,即为n2=(m2﹣16),则|PF|===|5m﹣16|,则==.故选:B.10.(5分)已知球O与棱长为4的正四面体的各棱相切,则球O的体积为()A.B.C.D.【解答】解:将正四面体ABCD,补成正方体,则正四面体ABCD的棱为正方体的面上对角线.∵正四面体ABCD的棱长为4∴正方体的棱长为2∵球O与正四面体的各棱都相切,∴球O的直径为正方体的棱长2,则球O的体积V==.故选:A.11.(5分)已知函数f(x)=sin(sinx)+cos(sinx),x∈R,则下列说法正确的是()A.函数f(x)是周期函数且最小正周期为πB.函数f(x)是奇函数C.函数f(x)在区间上的值域为D.函数f(x)在是增函数【解答】解:f(x)=sin(sinx)+cos(sinx)=sin(sinx+),∵f(π+x)==,不满足对任意实数x 恒有=,故A错误;∵f(﹣x)=,不满足对任意实数x恒有=﹣,故B错误;当x∈时,sinx∈[0,1],sinx+∈[,],∴sin(sinx+)∈[],则sin(sinx+)∈[1,],故C正确;当x∈时,sinx∈[,1],sinx+∈[,],而∈[,],则函数f(x)在上不是单调函数,故D错误.故选;C.12.(5分)已知函数f(x)=(ax+lnx)(x﹣lnx)﹣x2有三个不同的零点x1,x2,x3(其中x1<x2<x3),则的值为()A.1﹣a B.a﹣1 C.﹣1 D.1【解答】解:令f(x)=0,分离参数得a=,令h(x)=,由h′(x)==0,得x=1或x=e.当x∈(0,1)时,h′(x)<0;当x∈(1,e)时,h′(x)>0;当x∈(e,+∞)时,h′(x)<0.即h(x)在(0,1),(e,+∞)上为减函数,在(1,e)上为增函数.∴0<x1<1<x2<e<x3,a==,令μ=,则a=﹣μ,即μ2+(a﹣1)μ+1﹣a=0,μ1+μ2=1﹣a<0,μ1μ2=1﹣a<0,对于μ=,μ′=则当0<x<e时,μ′>0;当x>e时,μ′<0.而当x>e时,μ恒大于0.画其简图,不妨设μ1<μ2,则μ1=,μ2==μ3=,=(1﹣μ1)2(1﹣μ2)(1﹣μ3)=[(1﹣μ1)(1﹣μ2)]2=[1﹣(1﹣a)+(1﹣a)]2=1.故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知x,y满足条,则z=的取值范围是[3,9] .【解答】解:根据约束条件画出可行域,∵设k==1+,整理得(k﹣1)x﹣2y+k﹣3=0,由图得,k>1.设直线l0=(k﹣1)x﹣2y+k﹣3,当直线l0过A(0,3)时l0最大,k也最大为9,当直线l0过B(0,0))时l0最小,k也最小为3.故答案为:[3,9].14.(5分)已知随机变量X~B(2,p),Y~N(2,σ2),若P(X≥1)=0.64,P (0<Y<2)=p,则P(Y>4)=0.1.【解答】解:∵随机变量X~B(2,p),Y~N(2,σ2),P(X≥1)=0.64,∴P(X≥1)=P(X=1)+P(X=2)==0.64,解得p=0.4,或p=1.6(舍),∴P(0<Y<2)=p=0.4,∴P(Y>4)=(1﹣0.4×2)=0.1.故答案为:0.1.15.(5分)已知(1+ax+by)5(a,b为常数a∈N*,b∈N*)的展开式中不含字母x的项的系数和为243,则函数,的最小值为2.【解答】解:(1+ax+by)5(a,b为常数a∈N*,b∈N*)的展开式中不含字母x 的项的系数和为243,∴(1+b)5=243,解得b=2;时,∴x+∈[,],∴sinx+cosx=sin(x+)∈[1,];∴函数===(sinx+cosx)+≥2=2,当且仅当sinx+cosx=1时取“=”;∴f(x)的最小值为2.故答案为:2.16.(5分)已知数列{a n}满足na n+2﹣(n+2)a n=λ(n2+2n),其中a1=1,a2=2,若a n<a n对∀n∈N*恒成立,则实数λ的取值范围是[0,+∞).+1﹣(n+2)a n=λ(n2+2n)=λn(n+2),【解答】解:由na n+2得,∴数列{}的奇数项与偶数项均是以λ为公差的等差数列,∵a1=1,a2=2,∴当n为奇数时,,∴;当n为偶数时,,∴.,得<,当n为奇数时,由a n<a n+1即λ(n﹣1)>﹣2.若n=1,λ∈R,若n>1则λ>,∴λ≥0;当n为偶数时,由a n<a n,得<,+1即3nλ>﹣2,∴λ>,即λ≥0.综上,λ的取值范围为[0,+∞).故答案为:[0,+∞).三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)如图,在△ABC中,点P在BC边上,∠PAC=60°,PC=2,AP+AC=4.(Ⅰ)求∠ACP;(Ⅱ)若△APB的面积是,求sin∠BAP.【解答】(本题满分为12分)解:(Ⅰ)在△APC中,因为∠PAC=60°,PC=2,AP+AC=4,由余弦定理得PC2=AP2+AC2﹣2•AP•AC•cos∠PAC,…(1分)所以22=AP2+(4﹣AP)2﹣2•AP•(4﹣AP)•cos60°,整理得AP2﹣4AP+4=0,…(2分)解得AP=2.…(3分)所以AC=2.…(4分)所以△APC是等边三角形.…(5分)所以∠ACP=60°.…(6分)(Ⅱ)法1:由于∠APB是△APC的外角,所以∠APB=120°.…(7分)因为△APB的面积是,所以.…(8分)所以PB=3.…(9分)在△APB中,AB2=AP2+PB2﹣2•AP•PB•cos∠APB=22+32﹣2×2×3×cos120°=19,所以.…(10分)在△APB中,由正弦定理得,…(11分)所以sin∠BAP==.…(12分)法2:作AD⊥BC,垂足为D,因为△APC是边长为2的等边三角形,所以.…(7分)因为△APB的面积是,所以.…(8分)所以PB=3.…(9分)所以BD=4.在Rt△ADB中,,…(10分)所以,.所以sin∠BAP=sin(∠BAD﹣30°)=sin∠BADcos30°﹣cos∠BADsin30°…(11分)==.…(12分)18.(12分)如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E 是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(Ⅰ)求证:AB⊥平面ADC;(Ⅱ)若AD=1,二面角C﹣AB﹣D的平面角的正切值为,求二面角B﹣AD ﹣E的余弦值.【解答】解:(Ⅰ)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,又BD⊥DC,所以DC⊥平面ABD.…(1分)因为AB⊂平面ABD,所以DC⊥AB.…(2分)又因为折叠前后均有AD⊥AB,DC∩AD=D,…(3分)所以AB⊥平面ADC.…(4分)(Ⅱ)由(Ⅰ)知AB⊥平面ADC,所以二面角C﹣AB﹣D的平面角为∠CAD.…(5分)又DC⊥平面ABD,AD⊂平面ABD,所以DC⊥AD.依题意.…(6分)因为AD=1,所以.设AB=x(x>0),则.依题意△ABD~△BDC,所以,即.…(7分)解得,故.…(8分)如图所示,建立空间直角坐标系D﹣xyz,则D(0,0,0),,,,,所以,.由(Ⅰ)知平面BAD的法向量.…(9分)设平面ADE的法向量由得令,得,所以.…(10分)所以.…(11分)由图可知二面角B﹣AD﹣E的平面角为锐角,所以二面角B﹣AD﹣E的余弦值为.…(12分)19.(12分)随着移动互联网的快速发展,基于互联网的共享单车应用而生,某市场研究人员为了了解共享单车运营公司M的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图.(Ⅰ)由折线图可以看出,可用线性回归模型拟合月度市场占有率y 与月份代码x 之间的关系,求y 关于x 的线性回归方程,并预测M 公司2017年4月份(即x=7时)的市场占有率;(Ⅱ)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的A 、B 两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率.如果你是M 公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?(参考公式:回归直线方程=x +,其中=,=﹣)【解答】解:(Ⅰ)由题意,=3.5,=16,===2,=﹣=16﹣2×3.5=9,∴=2x +9,x=7时,=2×7+9=23,即预测M 公司2017年4月份(即x=7时)的市场占有率为23%;(Ⅱ)由频率估计概率,每辆A 款车可使用1年,2年,3年、4年的概率分别为0.2,0.35,0.35,0.1,∴每辆A款车的利润数学期望为(500﹣1000)×0.2+(1000﹣1000)×0.35+(1500﹣1000)×0.35+(2000﹣1000)×0.1=175元;每辆B款车可使用1年,2年,3年、4年的概率分别为0.1,0.3,0.4,0.2,∴每辆B款车的利润数学期望为(500﹣1200)×0.1+(1000﹣1200)×0.3+(1500﹣1200)×0.4+(2000﹣1200)×0.2=150元;∵175>150,∴应该采购A款车.20.(12分)如图,点F是抛物线τ:x2=2py (p>0)的焦点,点A是抛物线上的定点,且=(2,0),点B,C是抛物线上的动点,直线AB,AC斜率分别为k1,k2.(I)求抛物线τ的方程;(Ⅱ)若k2﹣k1=2,点D是点B,C处切线的交点,记△BCD的面积为S,证明S 为定值.【解答】解:(Ⅰ)设A(x0,y0),可知F(0,),故.∴,代入x2=2py,得p=2.∴抛物线τ的方程为x2=4y.(Ⅱ)过D作y轴的平行线交BC于点E,并设B(),C(),由(Ⅰ)得A(﹣2,1).=2,∴x2﹣x1=8.直线DBy=,直线CDy=,解得.∴直线BC的方程为y﹣=,将x D代入得.∴△BCD的面积为S=×ED×(x2﹣x1)==(定值)21.(12分)已知函数f(x)=(x3﹣6x2+3x+t)e x,t∈R.(1)若函数y=f(x)有三个不同的极值点,求t的值;(2)若存在实数t∈[0,2],使对任意的x∈[1,m],不等式f(x)≤x恒成立,求正整数m的最大值.【解答】解:(1)f'(x)=(x3﹣3x2﹣9x+3+t)e x,令g(x)=x3﹣3x2﹣9x+3+t,则方程g(x)=0有三个不同的根,又g'(x)=3x2﹣6x﹣9=3(x2﹣2x﹣3)=3(x+1)(x﹣3),令g'(x)=0,得x=﹣1或3,且g(x)在区间(﹣∞,﹣1),(3,+∞)递增,在区间(﹣1,3)递减,故问题等价于即有解得﹣8<t<24.(2)不等式f(x)≤x,即(x3﹣6x2+3x+t)e x≤x,即t≤xe﹣x﹣x3+6x2﹣3x,转化为存在实数t∈[0,2],使对任意的x∈[1,m],不等式t≤xe﹣x﹣x3+6x2﹣3x恒成立,即不等式0≤xe﹣x﹣x3+6x2﹣3x在x∈[1,m]上恒成立,即不等式0≤e﹣x﹣x2+6x﹣3在x∈[1,m]上恒成立.设φ(x)=e﹣x﹣x2+6x﹣3,则φ'(x)=﹣e﹣x﹣2x+6,设r(x)=φ'(x)=﹣e﹣x﹣2x+6,则r'(x)=e﹣x﹣2,因为1≤r≤m,有r'(x)<0,故r(x)在区间[1,m]上是减函数,又r(1)=4﹣e﹣1>0,r(2)=2﹣e﹣2>0,r(3)=﹣e﹣3<0,故存在x0∈(2,3),使得r(x0)=φ'(x0)=0,当1≤x<x0时,有φ'(x)>0,当x>x0时,有φ'(x)<0,从而y=φ(x)在区间[1,x0]上递增,在区间[x0,+∞)上递减.又φ(1)=e﹣1+4>0,φ(2)=e﹣2+5>0,φ(3)=e﹣3+6>0,φ(4)=e﹣4+5>0,φ(5)=e﹣5+2>0,φ(6)=e﹣6﹣3<0,所以当1≤x≤5时,恒有φ(x)>0;当x≥6时,恒有φ'(x)<0.故使命题成立的正整数m的最大值为5.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2=,且直线l经过曲线C的左焦点F.(I )求直线l的普通方程;(Ⅱ)设曲线C的内接矩形的周长为L,求L的最大值.【解答】解:(I)曲线C的极坐标方程为ρ2=,即ρ2+ρ2sin2θ=4,可得直角坐标方程:x2+2y2=4,化为:+=1.∴c==,可得作焦点F.直线l的参数方程为(t为参数),消去参数t可得:x﹣y=m,把代入可得:m=﹣.∴直线l的普通方程为:x﹣y+=0.(II)设椭圆C的内接矩形在第一象限的顶点为.∴椭圆C的内接矩形的周长为L=8cosθ+4sinθ=4sin(θ+φ)≤4(其中tanφ=).∴椭圆C的内接矩形的周长的最大值为4.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1﹣2a|+|x﹣a2|,g(x)=x2﹣2x﹣4+(Ⅰ)若f(2a2﹣1)>4|a﹣1|,求实数a的取值范围;(Ⅱ)若存在实数x,y,使f(x)+g(y)≤0,求实数a的取值范围.【解答】解:(Ⅰ)若f(2a2﹣1)>4|a﹣1|,则|2a2﹣2a|+|a2﹣1|>4|a﹣1|,∴2|a|+|a+1|>4,a<﹣1,则﹣2a﹣a﹣1>4,∴a<﹣,∴a<﹣;﹣1≤a≤0,则﹣2a+a+1>4,∴a<﹣3,不成立;a>0,则2a+a+1>4,∴a>1,综上所述,a<﹣或a>1;(Ⅱ)f(x)=|x+1﹣2a|+|x﹣a2|≥|1﹣2a+a2|,g(x)=x2﹣2x﹣4+=(x ﹣1)2+﹣5≥﹣1若存在实数x,y,使f(x)+g(y)≤0,则|1﹣2a+a2|≤1,∴0≤a≤2.。
河南省洛阳市2018届高三数学第一次统考试题 理(含解析)
洛阳市2017—2018学年高中三年级第一次统一考试数学试卷(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,集合,,则()A. B. C. D.【答案】C【解析】,,所以,故,故选C................2. 若(是虚数单位),则等于()A. 3B. 2C. 0D. -1【答案】A【解析】,因,故,所以,选A. 3. 若函数同时满足下列两个条件,则称该函数为“优美丽数”:(1)对,都有;(2)对,且,都有.①;②;③;④以上四个函数中,“优美函数”的个数是()A. 0B. 1C. 2D. 3【答案】B【解析】若,则为上的奇函数,但在上不单调,故不是优美函数;若,则为上的奇函数,且在上为减函数,所以,它是优美函数;若,因,故它不是上的奇函数,故它不是优美函数;若,考虑函数在上的单调性,因在为增函数,在为增函数,所以在上为增函数且恒正,故在上为增函数,所以当时,总有,所以也不是优美函数,综上,选B.4. 已知向量,,若,则实数的值是()A. -4B. -1C. 1D. 4【答案】D【解析】因为,故,展开得到,故,,选D.5. 已知某算法的程序框图如图所示,则该算法的功能是()A. 求首项为1,公差为2 的等差数列前2017项和B. 求首项为1,公差为2 的等差数列前2018项和C. 求首项为1,公差为4 的等差数列前1009项和D. 求首项为1,公差为4 的等差数列前1010项和【答案】C【解析】由题意可知,为求首项为1,公差为4的等差数列的前1009项和.故选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.6. 设满足约束条件,则的最小值与最大值的和为()A. 7B. 8C. 13D. 14【答案】D【解析】可行域如图所示,当动直线过时,;当动直线过时,,故的最大值与最小值的和为14,选D.7. 已知函数,先将的图象上所有点的横坐标缩短到原来的(纵坐标不变),再将得到的图象上所有点向右平移个单位长度,得到的图象关于轴对称,则的最小值为()A. B. C. D.【答案】C【解析】因,将其图像上的点的横坐标缩短到原来的后所得函数的解析式为,图像在轴左侧的第一条对称轴,故至少向右平移个单位就可以得到关于轴对称的图像,选C.点睛:若三角函数的图像平移后得到的图像为奇函数或偶函数的图像,那么最小的平移往往和轴附近的对称轴或对称中心有关.8. 一个几何体的三视图如图所示,图中的三个正方形的边长均为2,则该几何体的体积为()A. B. C. D.【答案】A【解析】几何体如图所示,它为正方体中挖去两个对顶的圆锥,其体积为.9. 若,则二项式的展开式中的常数项为()A. -15B. 15C. -240D. 240【答案】D【解析】,而展开式的通项公式为令,所以,常数项的系数为,选D.10. 在中,角的对边分别为,若成等比数列,且,则()A. B. C. D.【答案】B【解析】因为,,故,而,因,故.根据正弦定理有,,故,选B.11. 已知是抛物线的焦点,曲线是以为圆心,以为半径的圆,直线与曲线从上到下依次相交于点,则()A. 16B. 4C.D.【答案】A【解析】由可以得到,解得,所以,,故,,选A.点睛:对于抛物线,若且为焦点弦或焦半径,那么,,其中为焦点.12. 已知函数满足,且当时,,则方程在上的所有根之和为()A. 8B. 9C. 10D. 11【答案】D【解析】由可得总成立,所以是偶函数,由可以得到是周期为的函数.在同一坐标系中,我们画出及的图像,故方程共有11个根,,其中在内有6个解,其和为零,在内有5个解,得和为11.选D.点睛:对于不可解方程的解的个数,通常转化为两个熟悉函数的图像的交点去考虑.题设中关于的关系式蕴含为偶函数且为周期函数,而且图像的对称轴为,又的对称轴为,故根据两个函数的图像得到11个解,它们的和为8+3=11.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,则__________.【答案】【解析】由题设有,所以,所以.14. 某校有4个社团向高一学生招收新成员,现有3名同学,每人只选报1个社团,恰有2个社团没有同学选报的报法数有__________种(用数字作答).【答案】36【解析】先选出学生选报的社团,共有种选法,再把这3名同学分配到这两个社团,共有,故恰有2个社团没有同学选报数有.15. 在半径为4的球面上有不同的四点,若,则平面被球所截得图形的面积为__________.【答案】【解析】设球心为,则,所以在平面上射影是的外心,同理在平面上射影也是的外心.因且,故在平面的异侧,如图所示,等边三角形中,,故,又为平面截所球得圆的半径,故圆的面积为.点睛:题设中,结合球的半径为,故我们可以确定出在平面的两侧,从而求出的外接圆的半径.16. 已知为双曲线的左、右焦点,是双曲线右支上的一点,连接并过作垂直于的直线交双曲线左支于,其中,为等腰三角形.则双曲线的离心率为__________.【答案】【解析】连接并延长交右支于点,设,则,因为双曲线是中心对称,且,所以四边形是平行四边形.因是等腰三角形,,所以,故,且,根据双曲线的定义,有,所以,解得,所以,所以,.点睛:圆锥曲线的离心率的计算,常常需要寻找一个关于的关系式.如果题设条件与焦点或准线有关,那么我们需要从几何性质的角度去构建的关系式.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知各项均不为零的数列的前项和为,且对任意,满足.(1)求数列的通项公式;(2)设数列满足,数列的前项和为,求证:.【答案】(1).(2)见解析.【解析】试题分析:由,可以得到的大小和的递推关系为,因此为等比数列,从而求得,再根据求出的通项,它是等差数列和等比数列的乘积,利用错位相减法求它的前项和.(1)当时,,∵,∴.∵,∴当时,,两式相减得,因,,故,∴数列是首项为4,公比为4的等比数列,∴.(2)∵,∴,∴,,两式相减得:.所以.18. 甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪80元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成6元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:甲公司送餐员送餐单数频数表送餐单数38 39 40 41 42天数10 15 10 10 5乙公司送餐员送餐单数频数表送餐单数38 39 40 41 42天数 5 10 10 20 5(1)现从甲公司记录的50天中随机抽取3天,求这3天送餐单数都不小于40的概率;(2)若将频率视为概率,回答下列两个问题:①记乙公司送餐员日工资为(单位:元),求的分布列和数学期望;②小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.【答案】(1).(2)见解析【解析】试题分析:(1)为古典概型,利用组合数公式计算基本事件的总数和随机事件中含有的基本事件的总数即可.(2)为计算离散型随机变量的分布列和数学期望,利用公式计算即可.(1)记抽取的天送餐单数都不小于40为事件,则.(2)①设乙公司送餐员送餐单数为,则当时,,当时,,当时,,当时,,当时,.所以的所有可能取值为228,234,240,247,254.故的分布列为:228 234 240 247 254所以②依题意,甲公司送餐员日平均送餐单数为所以甲公司送餐员日平均工资为元.由①得乙公司送餐员日平均工资为241.8元.因为,故推荐小王去乙公司应聘. 19. 如图,在四棱锥中,分别是的中点,底面是边长为2的正方形,,且平面平面.(1)求证:平面平面;(2)求平面与平面所成锐二面角的余弦值.【答案】(1)见解析(2).【解析】试题分析:(1)要证平面因平面,只要证平面,也就是证明和,后者可以由为等边三角形得到,前者由平面得到(因为平面平面).(2)要求锐二面角,因几何体比较规则,可以建立空间直角坐标系计算两个半平面的法向量的夹角.(1)由题,为的中点,可得,∵平面平面,,平面平面,平面,∴平面.又∵平面,∴.,∴平面.∴平面平面.(2)取的中点,的中点,连接,∵,∴.∵平面平面平面,∴平面.分别以为轴建立空间直角坐标系,则,,设平面的法向量为,则.即.可取.同理,可得平面的法向量..所以平面与平面所成锐二面角余弦值为.20. 已知短轴长为2的椭圆,直线的横、纵截距分别为,且原点到直线的距离为.(1)求椭圆的方程;(2)直线经过椭圆的右焦点且与椭圆交于两点,若椭圆上存在一点满足,求直线的方程.【答案】(1).(2)或.【解析】试题分析:直线的方程有参数,利用原点到其距离为可以得到的大小,从而得到椭圆的方程.(2)中的三点满足向量关系式,将各点坐标代入,可以得到三个点的坐标之间的关系,而在椭圆上,所以两点的坐标满足关系式,再利用两点在直线上,得到关于的一个关系式,利用韦达定理转化为的方程可以解出的值.(1)因为椭圆的短轴长为2,故.依题意设直线的方程为:,由.解得,故椭圆的方程为.(2)设当直线的斜率为0时,显示不符合题意.当直线的斜率不为0时,,设其方程为,由,得,所以①.因为,所以.又点在椭圆上,∴.又∵,∴②,将,及①代入②得,即或.故直线的方程为或.点睛:一般地,当解析几何中问题出现向量等式时,我们先寻找向量隐含的几何意义,如果没有几何意义,可以转化点的坐标讨论.解决直线与圆锥曲线位置关系式,我们常把给定的关系式转化为含有(或)的关系式,最后利用韦达定理转化为所求参数的方程.21. 已知函数,(),且曲线在点处的切线方程为.(1)求实数的值及函数的最大值;(2)当时,记函数的最小值为,求的取值范围.【答案】(1),最大值.(2)【解析】试题分析:(1)题设给出了在处的切线,也是,从中解出即可.(2)中要求的最小值,因此要考虑的单调性,也就是考虑的符号的变化,但的零点不易求得,所以利用(1)的结论先确定在给定的范围上有唯一的零点,通过零点满足的关系式化简在零点处的函数值表达式(也是的最小值),最终求出最小值得范围.(1)函数的定义域为,,因的图象在点处的切线方程为,所以也即是,解得,所以,故.令,得,当时,,单调递增;当时,,单调递减.所以当时,取得最大值.(2)∵,∴,令,由(1)知道在是增函数,故在上为增函数,又,,因此存在唯一的,使得,也就是即.当时,,所以,单调递减;当时,,单调递增,所以的最小值为.令,因为,所以在单调递减,从而,即的取值范围是.点睛:在导数问题的讨论中,如果函数的极值点不易求得,那么我们可以利用这个关系式去化简,从而讨论与相关的问题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数,),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出曲线的普通方程和曲线的直角坐标方程;(2)已知点是曲线上一点,若点到曲线的最小距离为,求的值.【答案】(1),(2)或.【解析】试题分析:(1)消去参数得到的普通方程为.利用可以把的极坐标方程化为直角坐标方程.(2)把的直角方程转化为参数方程,利用点到直线的距离公式算出距离为,利用得到.因为直线与椭圆是相离的,所以或,分类讨论就可以得到相应的值.(1)由曲线的参数方程,消去参数,可得的普通方程为:.由曲线的极坐标方程得,∴曲线的直角坐标方程为.(2)设曲线上任意一点为,,则点到曲线的距离为.∵,∴,,当时,,即;当时,,即.∴或.点睛:一般地,如果圆锥曲线上的动点到直线的距离有最小值,那么这条直线和圆锥曲线的位置关系式相离的.23. 选修4-5:不等式选讲已知函数.(1)当时,解不等式;(2)设不等式的解集为,若,求实数的取值范围.【答案】(1).(2).【解析】试题分析:(1)利用零点分段讨论求解.(2)利用化简得到在区间上是恒成立的,也就是是不等式的子集,据此得到关于的不等式组,求出它的解即可.(1)当时,原不等式可化为.①当时,原不等式可化为,解得,所以;②当时,原不等式可化为,解得,所以;③当时,原不等式可化为,解得,所以.综上所述,当时,不等式的解集为.(2)不等式可化为,依题意不等式在恒成立,所以,即,即,所以.解得,故所求实数的取值范围是.。
河南省洛阳市2018届高三上学期尖子生第一次联考物理试题答案不全
第I卷(选择题,共56分)一、选择题:本题共14小题,每小题4分,共56分。
在每小题给出的四个选项中,有的小题只有一项符合题目要求,有的小题有多项符合题目要求。
全部选对的得4分,选对但不全的得2分,有选错的得0分。
1.如图所示,两个半圆柱A、B紧靠着静置于水平地面上,其上有一m,光滑圆柱C,三者半径均为R,C的质量为m,A、B的质量都为2与地面的动摩擦因数均为μ。
现用水平向右的力拉A,使A缓慢移动,直至C恰好降到地面.整个过程中B保持静止。
设最大静摩擦力等于滑动摩擦力,重力加速度为g.下列说法正确的是( )A。
A缓慢移动时,C受到B的作用力逐渐增大B. A缓慢移动时,C受到B的作用力逐渐减小C. 未拉A时,C受到B3mgD. 动摩擦因数μ的最小值为332。
在光滑圆锥形容器中,固定了一根光滑的竖直细杆,细杆与圆锥的中轴线重合,细杆上穿有小环(小环可以自由转动,但不能上下移动),小环上连接一轻绳,绳的另一端与一质量为m的光滑小球相连,让小球在圆锥内做水平面上的匀速圆周运动,并与圆锥内壁接触.如图所示,图a 中小环与小球在同一水平面上,图b 中轻绳与竖直轴成()090θθ<角.设图a 和图b 中轻绳对小球的拉力分别为a T 和bT ,圆锥内壁对小球的支持力分别为a N 和bN ,则在下列说法中正确的是( )A. a T 一定为零,bT 一定不为零 B. a T 、aT 是否为零取决于小球速度的大小 C.a N 、b N 一定不为零D. a N 、b N 的大小与小球的速度无关3。
如图所示,小船从A 码头出发,船头始终正对河岸渡河,若小河宽度为d,小船在静水中的速度v 船恒定,河水中各水流速度大小与该点到较近河岸边的距离成正比,即,vkx x =水是各点到近岸的距离(,2d x k ≤为常量),要使小船能够到达距A 正对岸为s 的B 码头。
则下列说法中正确的是( )A. 小船渡河的速度24kd v s =船 B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洛阳市2017—2018学年上学期尖子生第一次联考高三试题数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合1|1A x x ⎧⎫=<⎨⎬⎩⎭,{}|ln 0B x x =<,则()R A B ð等于( ) A .{}|0x x ≥B .{}|1x x ≥C .RD .{}0,12.已知复数z 满足2(1)1z i i -=+(i 为虚数单位),则||z 为( )A .12B C D .13.如图,圆O :222x y π+=内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A .24πB .34πC .22πD .3π2 4.一个几何体的三视图如图所示,则该几何体的体积为( )A .2B .1C .23D .135.设3log 6a =,5log 10b =,7log 14c =,则( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>6.图中的程序框图所描述的算法,若输入209m =,121n =,则输出的m 的值为( )A .0B .11C .22D .887.在等比数列{}n a 中,3a ,16a 是方程2620x x ++=的根,则2169a a a 的值为( ) A.B.CD.8.已知点O 是锐角三角形ABC 的外心,若OC mOA nOB =+(m ,n R ∈),则( )A .2m n +≤-B .21m n -≤+<-C .1m n +<-D .10m n -<+<9.设双曲线C :221169x y -=的右焦点为F ,过F 作渐近线的垂线,垂足分别为M ,N ,若d 是双曲线上任一点P 到直线MN 的距离,则||dPF 的值为( ) A .34B .45C .54D .无法确定10.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为( ) A.3B.3C.3D.311.已知函数()sin(sin )cos(sin )f x x x =+,x R ∈,则下列说法正确的是( ) A .函数()f x 是周期函数且最小正周期为πB .函数()f x 是奇函数C .函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为⎡⎣ D .函数()f x 在,42ππ⎡⎤⎢⎥⎣⎦是增函数 12.已知函数2()(ln )(ln )f x ax x x x x =+--有三个不同的零点1x ,2x ,3x (其中123x x x <<),则2312123ln ln ln (1)(1)(1)x x x x x x ---的值为( ) A .1a -B .1a -C .1-D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知x ,y 满足条件0,,3412,x y x x y ≥⎧⎪≥⎨⎪+≤⎩则231x y x +++的取值范围是 .14.已知随机变量~(2,)X B p ,2~(2,)Y N σ,若(1)0.64P X ≥=,(02)P Y p <<=,则(4)P Y >= .15.已知5(1)ax by ++(a ,b 为常数*a N ∈,*b N ∈)的展开式中不含字母x 的项的系数和为243,则函数sin 2())4x b f x x π+=+,0,2x π⎡⎤∈⎢⎥⎣⎦的最小值为 . 16.已知数列{}n a 满足22(2)(2)n n na n a n n λ+-+=+,其中11a =,22a =,若1n n a a +<对任意的*n N ∈恒成立,则实数λ的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,在ABC ∆中,点P 在BC 边上,60PAC ∠=︒,2PC =,4AP AC +=.(1)求ACP ∠;(2)若APB ∆的面积是2,求sin BAP ∠. 18.如图1,在直角梯形ABCD 中,//AD BC ,AB BC ⊥,BD DC ⊥,点E 是BC 边的中点,将ABD ∆沿BD 折起,使平面ABD ⊥平面BCD ,连接AE ,AC ,DE ,的如图2所示的几何体.(1)求证:AB ⊥平面ADC ;(2)若1AD =,二面角C AB D --B AD E --的余弦值.19.随着移动互联的快速发展,基于互联的共享单车应运而生.某市场研究人员为了了解共享单车运营公司M 的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图.(1)由折线图可以看出,可用线性回归模型拟合阅读市场占有率y 与月份代码x 之间的关系.求y 关于x 的线性回归方程,并预测M 公司2017年4月份(即7x =时)的市场占有率;(2)为进一步扩大市场,公司拟再采购一批单车,现有采购成本分别为1000元/辆和1200元/辆的A 、B 两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两单车使用寿命频数如表:经测算,平均每辆单车每年可以带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率.如果你是M 公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?参考公式:回归直线方程为 y bxa =+ ,其中1221ni ii nii x y nx yb xnx==-=-∑∑ , ay bx =- . 20.如图,点F 是抛物线τ:22x py =(0p >)的焦点,点A 是抛物线上的定点,且(2,0)AF =,点B ,C 是抛物线上的动点,直线AB ,AC 斜率分别为1k ,2k .(1)求抛物线τ的方程;(2)若212k k -=,点D 是抛物线在点B ,C 处切线的交点,记BCD ∆的面积为S ,证明S 为定值.21.已知函数32()(63)xf x x x x t e =-++,t R ∈.(1)若函数()y f x =有三个不同的极值点,求t 的值;(2)若存在实数[]0,2t ∈,使对任意的[]1,x m ∈,不等式()f x x ≤恒成立,求正整数m 的最大值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程为,x m y ⎧=⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2241sin ρθ=+,且直线l 经过曲线C 的左焦点F . (1)求直线l 的普通方程;(2)设曲线C 的内接矩形的周长为L ,求L 的最大值. 23.选修4-5:不等式选讲已知函数2()|12|||f x x a x a =+-+-,a R ∈,224()24(1)g x x x x =--+-. (1)若2(21)4|1|f a a ->-,求实数a 的取值范围;(2)若存在实数x ,y ,使()()0f x g y +≤,求实数a 的取值范围.洛阳市2017—2018学年上学期尖子生第一次联考高三数学试题(理科)答案 一、选择题1-5:CBBCD 6-10:BBCBA 11、12:CD二、填空题13.[]3,9 14.0.1 15.2 16.[0,)+∞三、解答题17.解:(1)在APC ∆中,因为60PAC ∠=︒,2PC =,1AP AC +=, 由余弦定理得2222cos PC AP AC AP AC PAC =+-⋅⋅⋅∠, 所以2222(4)2(4)cos60AP AP AP AP =+--⋅⋅-⋅︒, 整理得2440AP AP -+=, 解得2AP =, 所以2AC =,所以APC ∆是等边三角形, 所以60ACP ∠=︒.(2)由于APB ∠是APC ∆的外角,所以120APB ∠=︒,因为APB ∆1sin 2AP PB APB ⋅⋅⋅∠=, 所以3PB =, 在APB ∆中,2222cos AB AP PB AP PB APB =+-⋅⋅⋅∠2223223cos120=+-⨯⨯⨯︒19=,所以AB = 在APB ∆中,由正弦定理得sin sin AB PBAPB BAP=∠∠,所以sinBAP ∠=38=.18.(1)证明:因为平面ABD ⊥平面BCD ,平面ABD 平面BCD BD =, 又BD DC ⊥,所以DC ⊥平面ABD , 因为AB ⊂平面ABD ,所以DC AB ⊥,又因为折叠前后均有AD AB ⊥,DC AD D = , 所以AB ⊥平面ADC .(2)解:由(1)知AB ⊥平面ADC ,所以二面角C AB D --的平面角为CAD ∠. 又DC ⊥平面ABD ,AD ⊂平面ABD ,所以DC AD ⊥.依题意tan CDCAD AD∠==因为1AD =,所以CD =,设AB x =(0x >),则BD =依题意ABD ∆~BDC ∆,所以AB CD AD BD =,即1x=解得x =AB =,BD ,3BC ==.因为DC ⊥平面ABD ,过点E 作EF //DC 交BD 于F ,则EF ⊥平面ABD , 因为AD ⊂平面ABD ,所以EF AD ⊥, 过点F 作FG AD ⊥于G ,连接GE , 所以AD ⊥平面EFG ,因此AD GE ⊥, 所以二面角B AD E --的平面角为EGF ∠,由平面几何知识求得12EF CD ==,12FG AB ==所以EG =,所以1cos 2FG EGF EG ∠==, 所以二面角B AD E --的余弦值为12.19.解:(1)由数据计算可得1234563.56x +++++==,111316152021166y +++++==,由公式计算可得2b= , 162 3.59a =-⨯=, 所以月度市场占有率y 与月份序号x 之间的线性回归方程为 29y x =+, 当7x =时, 27923y =⨯+=,故M 公司2017年4月份的市场占有率预计为23%. (2)由频率估计概率.每辆A 款车可使用1年、2年、3年和4年的概率分别为0.2,0.35,0.35和0.1, 所以每辆A 款车可产生的利润期望值为()(5001000)0.2(10001000)0.35(15001000)0.35(20001000)0.1175E X =-⨯+-⨯+-⨯+-⨯=(元),由频率估计概率.每辆B 款车可使用1年、2年、3年和4年的概率分别为0.1,0.3,0.4和0.2, ∴每辆B 款车可产生的利润期望值为()(5001200)0.1(10001200)0.3(15001200)0.4(20001200)0.2150E Y =-⨯+-⨯+-⨯+-⨯=(元),∴()()E X E Y >, ∴应该采购A 款单车.20.解:(1)设00(,)A x y ,由题知(0,)2p F ,所以00(,)2pAF x y =-- (2,0)=,所以002,,2x p y =-⎧⎪⎨=⎪⎩代入22x py =(0p >)中得24p =,即2p =,所以抛物线的方程是24x y =.(2)过D 作y 轴平行线交BC 于点E ,并设211(,)4x B x ,222(,)4x C x , 由(1)知(2,1)A -,所以22212121211144224x x x x k k x x ----=-=++, 又212k k -=,所以218x x -=,直线BD :21124x x y x =-,直线CD :22224x x y x =-,解得1212,2,4D D x x x x x y +⎧=⎪⎪⎨⎪=⎪⎩ 因直线BC 方程为21122()44x x x y x x +-=-,将D x 代入得22128E x x y +=, 所以221212121()111||()()()()322228E D x x S DE x x y y x x x x -=-=--=⋅⋅-=. 21.解:(1)32'()(393)x f x x x x t e =--++,令32()393g x x x x t =--++,则方程()0g x =有三个不同的根, 又22'()3693(23)3(1)(3)g x x x x x x x =--=--=+-, 令'()0g x =,得1x =-或3,且()g x 在区间(,1)-∞-,(3,)+∞递增,在区间(1,3)-递减,故问题等价于(1)0,(3)0,g g ->⎧⎨<⎩即有80,240,t t +>⎧⎨-<⎩解得824t -<<.(2)不等式()f x x ≤,即32(63)xx x x t e x -++≤,即3263xt xe x x x -≤-+-,转化为存在实数[]0,2t ∈,使对任意的[]1,x m ∈, 不等式3263xt xex x x -≤-+-恒成立,即不等式32063xxe x x x -≤-+-在[]1,x m ∈上恒成立,即不等式2063xe x x -≤-+-在[]1,x m ∈上恒成立.设2()63xx ex x ϕ-=-+-,则'()26x x e x ϕ-=--+,设()'()26xr x x e x ϕ-==--+,则'()2x r x e -=-,因为1r m ≤≤,有'()0r x <,故()r x 在区间[]1,m 上是减函数,又1(1)40r e -=->,2(2)20r e -=->,3(3)0r e -=-<,故存在0(2,3)x ∈,使得00()'()0r x x ϕ==,当01x x ≤<时,有'()0x ϕ>,当0x x >时,有'()0x ϕ<,从而()y x ϕ=在区间[]01,x 上递增,在区间0[,)x +∞上递减.又1(1)40e ϕ-=+>,2(2)50e ϕ-=+>,3(3)60e ϕ-=+>,4(4)50e ϕ-=+>,5(5)20e ϕ-=+>,6(6)30e ϕ-=-<,所以当15x ≤≤时,恒有()0x ϕ>;当6x ≥时,恒有'()0x ϕ<.故使命题成立的正整数m 的最大值为5.22.解:(1)因为曲线C 的极坐标方程为2241sin ρθ=+,即222sin 4ρρθ+=, 将222x y ρ=+,sin y ρθ=代入上式并化简得22142x y +=,所以曲线C 的直角坐标方程为22142x y +=,于是2222c a b =-=,(F ,直线l 的普通方程为x y m -=,将(F 代入直线方程得m =,所以直线l 的普通方程为0x y -=.(2)设椭圆C 的内接矩形在第一象限的顶点为(2cos )θθ(02πθ<<),所以椭圆C 的内接矩形的周长为2(4cos ))L θθθϕ=+=+(其中tan ϕ),此时椭圆C 的内接矩形的周长取得最大值23.解:(1)∵2(21)4|1|f a a ->-,∴22|22||1|4|1|a a a a -+->-,∴|1|(2|||1|4)0a a a -++->,∴|2||1|4a a ++>且1a ≠.①若1a ≤-,则214a a --->,∴53a <-;②若10a -<<,则214a a -++>,∴3a <-,此时a 无解; ③若0a ≥且1a ≠,则214a a ++>,∴1a >,综上所述,a 的取值范围为53a <-或1a >,即5(,)(1,)3a ∈-∞-+∞ .(2)∵224()(1)551(1)g x x x =-+-≥=--,显然可取等号, ∴min ()1g x =-,于是,若存在实数x ,y ,使()()0f x g y +≤,只需min ()1f x ≤, 又222()|12||||(12)()|(1)f x x a x a x a x a a =+-+-≥+---=-, ∴2(1)1a -≤,∴111a -≤-≤,∴02a ≤≤,即[]0,2a ∈.。