4红外光谱解析

合集下载

红外光谱解析

红外光谱解析
芳香烃: 在1650-1450 cm-1.范围内,寻找中等到强的苯的吸收双峰 C::C, CH伸 缩振动峰 比烯烃更弱。 5. 如果没有上述功能团,可以试着找烷烃 在3000 cm-1附近有个主吸收峰,是 C-H 伸缩峰. 谱图很简单, 1450 cm-1.还有 个峰. 6. 如果还是不能确定,可以寻找烷基溴 近寻找 C-H伸缩振动峰 比较简单的谱图上,可以在667 cm-1附
10 (cm ) (m)
1
4
各种振动方式及能量
分子振动方式分为:
伸缩振动 -----对称伸缩振动 s ----反对称伸缩振动 as 弯曲振动 ----面内弯曲振动 ----剪式振动 s -----平面摇摆 -----面外弯曲振动- ----非平面摇摆 -----扭曲振动 按能量高低为: as >
的,只有在立体结构上互相靠近的基团之间才能产生F效应, 例如:

环己酮 4,4-二甲基环己酮 2-溴-环己酮 4,4-二甲基-2-溴-环己酮
C=O
1712
1712
1716
1728
-氯代丙酮的三个异构体的C=O 吸收频率不同
氢键效应
氢键使吸收峰向低波数位移,并使吸收强度加强,
例如: - 和-羟基蒽醌
二氧化碳的IR光谱





O=C=O

对称伸缩振动 不产生吸收峰
O=C=O

反对称伸缩振动 2349
O=C=O

面内弯曲振动 667
O=C=O

面外弯曲振动 667
因此O=C=O的 IR光谱只有2349 和 667/cm 二个吸收峰
二、IR光谱得到的结构信息
IR光谱表示法:

第四章 红外光谱

第四章  红外光谱
一、波长和波数
电磁波的波长( )、频率( v)、能量(E)之间的关系:
2020/3/20
3
二、红外光谱的表示方法
红外光谱是研究波数在4000-400cm-1范围内不同
波长的红外光通过化合物后被吸收的谱图。谱图以波 长或波数为横坐标,以透过率为纵坐标而形成。
横坐标:波长/λ或波数/cm-1。 纵坐标:吸光度A或透过率T,
N为分子中成键原子的个数。
例1: H O H 为非线状分子,应有3N-6=9-6=3个峰。
2020/3/20
15
例2:O=C=O为线状分子,便有3N-5=9-5= 4个峰。
Why? ①νs O=C=O 不改变分子的偶极矩; ②δs O=C=O 与δw + O=C=O + 简并。
2020/3/20
16
1900~2500 cm-1,主要是:C≡C、C≡N 三键和 C=C=C、C=N=O 等累积双键的伸缩振动吸收峰。
(3) Y=Z双键伸缩振动区(第三峰区) :
1500~1900 cm-1,主要是:C=O、C=N、C=C等双 键存在。
2020/3/20
13
2)指纹区:
<1500 cm-1的低频区,主要是:C-C、C-N、 C-O等单键和各种弯曲振动的吸收峰,其特点是谱带 密集、难以辨认。
2020/3/20
1
4.1 基本原理
红外光谱就是当红外光照射有机物时,用仪器记录 下来的吸收情况(被吸收光的波长及强度等),用来进行 分析的方法。红外线可分为三个区域:
红外光谱法主要讨论有机物对中红区的吸收(振动能 级跃迁)。
2020/3/20
2
红外光谱的基本原理:
用不断改变波长的红外光照射样品,当某一波长的频 率刚好与分子中某一化学键的振动频率相同时,分子就会 吸收红外光,产生吸收峰。用波长(λ)或波长的倒数波 数(cm-1)为横坐标,百分透光率(T%)或吸收度(A) 为纵坐标做图,得到红外吸收光谱图(IR)。分子振动所 需能量对应波数范围在400 cm-1~4000 cm-1。

红外光谱(最全-最详细明了)

红外光谱(最全-最详细明了)

1. 收集谱图数据
通过红外光谱仪获取样品的光 谱数据。
3. 峰识别与标记
识别谱图中的特征峰,并对其 进行标记。
5. 结果输出
得出样品成分的红外光谱解析 结果。
谱图解析技巧
1. 峰归属参考
查阅相关资料,了解常见官能团或分子结构 的红外光谱峰归属。
3. 多谱图比对
将待测样品谱图与标准样品谱图进行比对, 提高解析准确性。
红外光谱与其他谱学的联用技术
红外光谱与拉曼光谱联用
拉曼光谱可以提供分子振动信息,与红外光 谱结合,可更全面地解析分子结构和化学组 成。
红外光谱与核磁共振谱联用
核磁共振谱可以提供分子内部结构的详细信息,与 红外光谱结合,有助于深入理解分子结构和化学键 。
红外光谱与质谱联用
质谱可以提供分子质量和结构信息,与红外 光谱结合,有助于对复杂化合物进行鉴定和 分析。
红外光谱在大数据与人工智能领域的应用
红外光谱数据的处理与分析
利用大数据技术对大量红外光谱数据进行处理、分析和挖掘,提取有用的化学和物理信息 。
人工智能在红外光谱中的应用
利用人工智能技术对红外光谱数据进行模式识别和预测,提高红外光谱的解析能力和应用 范围。
红外光谱数据库的建立与完善
建立和完善红外光谱数据库,为科研和工业界提供方便、快捷的红外光谱查询和服务。
分子振动与转动能级
1 2
分子振动
分子中的原子或分子的振动,产生振动能级间的 跃迁。
转动能级
分子整体的转动,产生转动能级间的跃迁。
3
振动与转动能级间的耦合
某些特定的振动模式会导致分子的转动能级发生 跃迁。
红外光谱的吸收峰与跃迁类型
吸收峰
由于分子振动或转动能级间的跃迁,导致光谱上出现暗线或 暗带。

红外光谱谱图解析完整版

红外光谱谱图解析完整版
双键伸缩振动区 (4)1500 670 cm-1
X—Y伸缩, X—H变形振动区
2020/4/1
2、确定分子官能团和基团的吸收峰
(1) X—H伸缩振动区(4000 2500 cm-1 ) ① —O—H 3650 3200 cm-1 确定 醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强吸收;
中红外区: 远红外区:纯转动能 级跃迁,变角、骨架 振动;异构体、金属 有机物、氢键
2020/4/1
一、认识红外光谱图
2020/4/1
1、红外光谱图
峰强:Vs(Very strong): 很强;s(strong):强; m(medium):中强; w(weak):弱。 峰形:表示形状的为宽峰、尖峰 、肩峰、双峰等类型
变形振动 亚甲基
2020/4/1
甲基的振动形式
伸缩振动 甲基:
对称 υs(CH3) 2870 ㎝-1
变形振动 甲基
2020/4/1
对称δs(CH3)1380㎝-1
不对称 υas(CH3) 2960㎝-1
不对称δas(CH3)1460㎝-1
二、解析红外光谱图
2020/4/1
一个未知化合物仅用红外光谱解析结构是十分困难的。一般在光谱解析
前,要做未知物的初步分析 红外光谱谱图的解析更带有经验性、灵活性。 解析主要是在掌握影响振动频率的因素及各类化合物的红外特征吸收谱
带的基础上,按峰区分析,指认某谱带的可能归属,结合其他峰区的相关 峰,确定其归属。
在此基础上,再仔细归属指纹区的有关谱带,综合分析,提出化合物的 可能结构。
必要时查阅标图谱或与其他谱(1H NMR,13C NMR,MS)配合, 确证其结构。
2020/4/1

红外光谱图分析步骤解析:从谱图到化合物的信息解读

红外光谱图分析步骤解析:从谱图到化合物的信息解读

红外光谱图分析步骤解析:从谱图到化合物的信息解读红外光谱图是一种常用的分析工具,可以帮助科学家们确定化合物的结构和功能。

通过分析红外光谱图,我们可以了解化合物中的官能团和化学键的存在与类型。

本文将详细介绍红外光谱图分析的步骤,帮助读者更好地理解和解读红外光谱图。

1.步骤一:获取红外光谱图在进行红外光谱图分析之前,首先需要获取待分析化合物的红外光谱图。

这可以通过红外光谱仪来实现。

红外光谱仪会向待分析样品中发射红外光,然后测量样品对不同波长光的吸收情况。

通过这个过程,我们可以得到一张红外光谱图。

2.步骤二:观察谱图的整体形态在获得红外光谱图后,我们首先要观察谱图的整体形态。

红外光谱图通常以波数为横坐标,吸收强度为纵坐标。

我们可以注意到谱图中的吸收峰和吸收带。

吸收峰通常表示特定官能团的存在,而吸收带则表示化学键的存在。

3.步骤三:确定吸收峰的位置接下来,我们需要确定红外光谱图中各个吸收峰的位置。

不同官能团和化学键在红外光谱图中有特定的吸收位置。

通过比对已知化合物的红外光谱图和待分析化合物的红外光谱图,我们可以初步确定各个吸收峰的位置。

4.步骤四:解读吸收峰的强度除了吸收峰的位置,吸收峰的强度也是红外光谱图分析的重要信息之一。

吸收峰的强度可以反映化合物中特定官能团或化学键的含量。

通过比较吸收峰的强度,我们可以推断化合物中不同官能团或化学键的相对含量。

5.步骤五:分析吸收带的形态除了吸收峰,红外光谱图中的吸收带也提供了重要的信息。

吸收带的形态可以帮助我们判断化学键的类型。

例如,C=O键通常表现为一个尖锐的吸收带,而-OH键则表现为一个宽而平坦的吸收带。

6.步骤六:结合上述信息解析化合物通过观察红外光谱图中吸收峰和吸收带的位置、强度和形态,我们可以逐步解析化合物的结构和功能。

我们可以根据已知的红外光谱图数据库,对比待分析化合物的红外光谱图,找到相似的谱图,从而确定化合物的结构和功能。

7.结论红外光谱图分析是一种重要的化学分析方法,可以帮助科学家们确定化合物的结构和功能。

红外光谱特征峰解析常识

红外光谱特征峰解析常识

红外光谱特征峰解析常识红外光谱是一种非常常用的分析技术,它可以用于确定化合物的结构和功能团,检测物质的组分和纯度,因此在化学、药学、生物学、环境科学等领域中得到了广泛的应用。

在红外光谱中,各个峰的位置和强度可以提供有关样品中化学键的信息,因此对红外光谱中常见的峰有一些基本的了解是很重要的。

1. 对称振动(伸缩)峰:对称振动是指分子中的原子以相对同样的方式沿着键轴向两个方向振动。

这种振动形成了红外光谱中的峰。

一般来说,对称伸缩振动的峰位于4000-2500 cm-1的高频区域。

它们的强度通常比较强,因为对称振动会导致比较大的偶极矩的变化。

2. 非对称振动(伸缩)峰:非对称振动是指分子中的原子以不同的方式沿着键轴向两个方向振动。

非对称振动一般出现在4000-1500 cm-1的区域。

它们的强度通常比较弱,因为非对称振动会导致较小的偶极矩的变化。

3. 弯曲振动峰:分子中的原子围绕键的轴线进行弯曲振动,形成了红外光谱中的弯曲振动峰。

这些峰通常位于1500-400 cm-1的区域。

弯曲振动的强度通常非常弱,并且其强度与非对称伸缩振动的强度相比要弱得多。

4. 指纹区域峰:指纹区域是位于1500-400 cm-1的区域,其中包含了分子结构中独特的振动模式。

这些峰的位置和形状具有高度的特异性和指示性,可以用于确定物质的结构和识别化合物。

5.进一步解析峰的位置:了解常见的波数峰值范围和化学键的振动模式是很重要的,但要对红外光谱中的峰进行更准确的解析,通常需要参考红外光谱数据库或文献中的标准光谱。

这些数据库和文献中提供了大量的已知化合物的红外光谱数据,可以用来对未知样品进行鉴定。

总之,红外光谱分析是一种非常有用的技术,可以提供关于化合物结构和功能团的重要信息。

掌握常见的红外光谱特征峰的解析常识可以帮助科学家们更好地理解和利用红外光谱技术。

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。

辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。

3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。

图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。

N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。

为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。

U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。

泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。

特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。

第4章 红外吸收光谱法(无机)

第4章 红外吸收光谱法(无机)

3.振动的非谐性 振动的基频: 振动的基频: 0→1振动能级的跃迁 v 0→1 振动的倍频: 振动的倍频: 0 → 2、3、4….振动能级的跃迁 v 0→2、 v 0→3 、 v 0→4 振动的组频: 振动的组频: 基频的和 振动的差频: 振动的差频: 基频的差 v 10 → 1 + v 20 → 1 v 10 → 1 - v 20 → 1

κ µ
振动能级的跃迁, 基本振动频率或 当△V =1时,0→ 1振动能级的跃迁,称为基本振动频率或基频吸收带。 时 振动能级的跃迁 称为基本振动频率 基频吸收带。 例1: 由表中查知 C=C 键的 k= 9.5 ~9.9 (N/cm) ,令其为9.6, 计算正己 令其为9.6, 烯中C=C键伸缩振动频率,实测值为1652 C=C键伸缩振动频率 烯中C=C键伸缩振动频率,实测值为1652 cm-1
五、影响红外吸收峰强度的因素
1.红外吸收峰强度的分类 . ε >100 20<ε<100 10<ε< 20 1<ε<10 非常强吸收峰 强吸收峰 中强吸收峰 弱吸收峰 vs s m w
2. 红外吸收峰强度的影响因素 振动能级的跃迁几率 振动的基频(v0→1) 的跃迁几率大于振动的倍频(v0→2、v 振动的基频 的跃迁几率大于振动的倍频 的吸收峰强度比倍频(v ,因此基频( 0→3、v 0→4),因此基频 v 0→1) 的吸收峰强度比倍频 0→2、 v0→3、v0→4 )强。 强 振动能级跃迁时, 振动能级跃迁时,偶极矩的变化 同样的基频振动(v 偶极矩的变化越大 同样的基频振动 0→1),偶极矩的变化越大,吸收峰也 越强。 越强。 化学键两端连接原子的电负性相差越大, 化学键两端连接原子的电负性相差越大,或分子的对称 性越差,伸缩振动时偶极矩的变化越 偶极矩的变化越大 吸收峰也越强。 性越差,伸缩振动时偶极矩的变化越大,吸收峰也越强。 吸收峰强度: 反对称伸缩振动>对称伸缩振动 对称伸缩振动>变形振动 吸收峰强度: 反对称伸缩振动 对称伸缩振动 变形振动 vC=O> vC=C

仪器分析 第4章 红外吸收光谱法

仪器分析 第4章  红外吸收光谱法

4.2 基本原理
4.2.3 多原子分子的振动类型(P56)
伸缩振动 (υ):键长发生变化 1.简正振动基本形式 变形振动 (δ):键角发生变化
伸缩振动(υ)
对称伸缩振动(υs)
不对称伸缩振动(υas)
变形振动(δ)
面内变形振动(β)
面外变形振动(γ)
亚甲基的各种振动形式
2. 基本振动的理论数(分子振动自由度)
4.4 试样的处理和制备
4.4 试样的处理和制备
4.4.1 红外光谱法对试样的要求 (1)单一组分纯物质,纯度 > 98%; (2)样品中不含游离水; (3)要选择合适的浓度和测试厚度, 使大多数吸收峰透射比处于10%~80%。
4.4 试样的处理和制备
4.4.2 制样方法 1.气体样品的制备 2.液体和溶液样品的制备 3.固体样品的制备
分子振动自由度:多原子分子的基本振动
数目,也就是基频吸收峰的数目。
基频吸收峰:分子吸收一定频率的红外光后,
其振动能级由基态跃迁到第一
激发态时所产生的吸收峰。
2. 基本振动的理论数
线型分子振动自由度 = 3N – 5(如CO2)
非线型分子振动自由度 = 3N – 6(如H2O)
图5.12 CO2分子的简正振 动形式
来指导谱图解析。
基本概念
基团频率区: 在4000~1300cm-1 范围内的吸收峰,有一 共同特点:既每一吸收峰都和一定的官能 团相对应,因此称为基团频率区。
在基团频率区,原则上每个吸收峰都可以找到归属。
基本概念
指纹区: 在1300~400cm-1范围内,虽然有些吸收也对应 着某些官能团,但大量吸收峰仅显示了化合物 的红外特征,犹如人的指纹,故称为指纹区。

红外分光光度法

红外分光光度法

CH 2 909cm1
七、吸收峰峰位及影响因素
1、吸收峰峰位(位置) 即振动能级跃迁所吸收红外线的波长(T-)或波数(T-) , 是红外光谱鉴定中的主要依据。
max , max 或 max
1)基本振动频率
√ 1
= 2
k

√ √ 1
= 2C
k

= 1302
k

(cm-1)
C、氢键效应:使伸缩振动频率降低
分子内氢键:对峰位的影响大,不受浓度影响
七、吸收峰峰位及影响因素
C、氢键效应:使伸缩振动频率降低
分子间氢键:受浓度影响较大,稀释后,吸收峰位发生变化
七、吸收峰峰位及影响因素
D、杂化的影响
杂化轨道中s 轨道成分↑,键能↑,键长↓,↑
饱和C 原子 sp3杂化 CH(饱和) 3000cm1 不饱和C 原子 sp2或sp杂化 CH(不饱和) 3000cm1
• 特征峰仅代表基团的一种振动形式 • 相关峰的数目与基团的活性振动及光谱的波数范围有关 • 用一组相关峰才可以确定一个官能团的存在 • 用一组相关峰鉴定一个基团的存在,是解析IR图谱的原则
图示
CN 2247cm1
as CH 2
3090cm1
CC 1639cm1
CH 990cm1
ΔV 2 νL 2ν
V 3 L 3
泛频峰跃迁几率小,强度较弱, 难辨认→却增加了光谱特征性
2、特征峰(特征频率)与相关峰 (根据吸收峰的频率与基团结构之间的关系区分)
1)特征峰 可用于鉴别官能团存在、又容易辨认的吸收峰
2)相关峰 由一个官能团所产生的一组具有相互依存、相互佐证关 系的特征峰

仪器分析课件-4红外光谱基本原理

仪器分析课件-4红外光谱基本原理
同基团的特征吸收并不总在一个固定频率上。 影响其吸收峰位置的主要因素分为内部因素和外部因素。
1.内部因素
(1)电子效应:引起化学键电子分布变化的效应。 a.诱导效应(Induction effect):取代基电负性-静电诱导-电 子分布改变-k 增加-特征频率增加(移向高波数)。 R-COR C=O 1715cm-1 ; R-COH C=O 1730cm-1 ; R-COCl C=O 1800cm-1 ; R-COF C=O 1920cm-1 。
10
Company Logo
11
Company Logo
因此,当一定频率的红外光照射分子时,如果分子中某 个基团的振动频率和它一致,二者就会产生共振,此时
光的能量通过分子偶极矩的变化而传递给分子,这个基
团就吸收一定频率的红外光,产生振动跃迁。
对称分子:没有偶极矩,辐射不能引起共振,无 红外活性。如:N2、O2、Cl2 等。
cm -1 1 6 6 0
c. 中介效应(Mesomeric effect):孤对电子与多重键相连产生的 p- 共轭,结果类似于共轭效应。 当诱导与共轭两种效应同时存在时,振动频率的位移的 程度取决于它们的净效应。
28
Company Logo
(2)氢键效应
形成氢键使电子云密度平均化(缔合态),使体系能量 下降,基团伸缩振动频率降低,其强度增加但峰形变宽。使 伸缩振动频率向低波数方向移动.
分子振动和转动能级的跃迁;价电子和分子轨道上的电子在电子能级 上的跃迁。
2. 研究对象不同
在振动中伴随有偶极矩变化的化合物;不饱合有机化合物特别是具有 共轭体系的有机化合物。
3.可分析的试样形式不同,使用范围不同
气、液、固均可,既可定性又可定量,非破坏性分析;既可定性又可 定量,有时是试样破坏性的。

四大光谱

四大光谱

四大光谱介绍⑴光具有波粒二象性E=hν=hc/λ,λ=c/ν,V=1/ λ。

熟悉波长λ、频率ν、波数、能量E的概念、单位及相互关系。

⑵熟悉电磁波谱图,包括紫外光区、红外光区的划分。

⑶了解分子总的能量E的组成,它包括E平动能,电子运动能E电、分子振动能量E振和分子转动能量E转。

电磁波(光波)照射物质时,分子要吸收一部分辐射,但是,吸收是量子化的,即只吸收某些特定频率的辐射,吸收的能量可以激发电子到较高的能级或增加分子振动能级和转动能级,从而产生特征的分子吸收光谱。

其中电子能级差最大、振动能级差次之,转动能级差最小。

只有恰好等于某个能级差时,分子才能吸收。

⑷了解吸收光谱与分子结构的关系。

分子中不同的基团表现出不同的吸收特征,因此,确定分子的吸收光谱可以推测分子可能存在的官能团。

⑸了解分子能级裂化与光谱的关系。

读者要了解吸收光谱的分类,以及电磁波谱区域与相应波谱方法的对应关系。

①紫外光谱法:波长在200—400nm的近紫外光,激发n及π电子跃迁②红外光谱法:波长在2.5—15μm激发振动与转动③核磁共振波谱法:波长在无线电波1—1000m激发原子核自旋能级。

质谱不同于以上三谱,不属于吸收光谱。

它不是描述一个分子吸收不同波长电磁波的能力,而是记录化合物蒸汽在高真空系统中,受到能量很小的电子束轰击后生成碎片正离子的情况。

⑹光吸收定律透射率T=透射光/入射光=I/I0,吸光度A=-logT=εbc(L-B定律)⑺物质吸收谱带的特征主要特征:位置(波长)及强度(几率)1、分子轨道形成与ζ,π及n轨道。

读者应习惯于用分子轨道表示分子结构。

处在分子轨道中的价电子主要涉及ζ,π,n,价电子的跃迁产生uv:ζ→ζ* π→π* n→n* 其能量次序大致为ζ<π<n<π*<ζ*据此,可以比较不同类型能级跃迁所需能量的大小,以及与吸收峰波长的关系。

2、电子能级和跃迁类型ζ→δ* 200nm以下,远红外区,饱和碳氢化合物,例如,CH4λmax=125nm。

红外光谱分析

红外光谱分析

红外光谱分析红外光谱及分子的结构密切相关,是研究表征分子结构的一种有效手段,及其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。

在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。

红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。

根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。

分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。

由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。

分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。

利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库,人们只需把测得未知物的红外光谱及标准库中的光谱进行比对,就可以迅速判定未知化合物的成份。

下面将对红外光谱分析的基本原理做一个简单的介绍。

红外吸收光谱是物质的分子吸收了红外辐射后,引起分子的振动-转动能级的跃迁而形成的光谱,因为出现在红外区,所以称之为红外光谱。

利用红外光谱进行定性定量分析的方法称之为红外吸收光谱法。

红外辐射是在1800年由英国的威廉.赫谢(Willian Hersher) 尔发现的。

一直到了1903年,才有人研究了纯物质的红外吸收光谱。

04 红外光谱分析

04 红外光谱分析
红外光谱又称为分子振动转动光谱,也是 一种分子吸收光谱。 红外光照射时,分子吸收某些频率的辐射, 并由其振动或转动运动引起偶极矩的净变化, 产生分子振动和转动能级从基态到激发态的跃 迁。
E E2 E1 光子 hv Ee Ev E j
分子的三种能级跃迁示意图
一、红外光区的划分
不饱和度: =1+n4+(n3-n1)/2 式中n4、n3、n1、分别为分子中所含的四价、 三价和一价元素原子的数目。 二价原子如S、O 等不参加计算。 =0时,表示分子是饱和的,不含双键; =1时,可能有一个双键或脂环; =2时,可能有两个双键和脂环,也可能有一 个叁键; =4时,可能有一个苯环等。
红外光谱在可见光区和微波光区之间,波长 范围约为 0.75 ~ 1000µ m。
红外光谱的三个波区
区域 近红外区(泛频区) 波长/nm 0.75~2.5 波数/cm-1 13158~4000 4000~400 400~10 能级跃迁类型 键的倍频吸收 分子振动,伴 随转动 分子转动
中红外区(基本振动区) 2.5~25 远红外区(转动区) 25~1000
硅碳棒

投射样品池 检测器:对红外光响应 真空热电偶:温差转变为电势 热释电检测器(硫酸三苷肽TGS): 温度升高释放电荷,响应速度快 碲镉汞(MCT)检测器: 灵敏度高,响应速度快

二、Fourier变换红外光谱仪(FTIR) 与色散型红外光度计的主要区别在于干涉仪和 电子计算机两部分。 Fourier变换 红外光谱仪 没有色散元件,主
色散型红外光谱仪的组成部件与紫外-可见分 光光度计相似,但每一个部件的结构、所用的材 料及性能不同。 红外光谱仪的样品是放在光源和单色器之间; 而紫外-可见分光光度计是放在单色器之后。

红外光谱解析

红外光谱解析
48
讲授提要
第一节:朗勃-比尔定律与紫外吸收光谱图 第二节:电子跃迁的类型 第三节:各类有机化合物的电子跃迁 第四节:紫外光谱在有机化学中的应用
49
远紫区: 4~200nm 紫外光区:4 ~400nm (也称真空紫外区)
近紫区: 200~400nm 可见光区: 400~800nm 紫外光谱仪所用波长: 200~800nm UV:200~800nm (近紫和可见光区)
(CH3)2C = C(CH3)2
HC
CH
不产生吸收.
2、频率相同的峰彼此重叠。
3、强的宽峰掩盖与它频率相近的弱峰。
4、有时吸收频率在仪器的工作频率之外。
7
第二节 红外光谱的表示
横坐标:波长(λ)、波数(ν)表示吸收的位置; 纵坐标:透射百分率(T%)或吸光度(A)表示吸收的强度。8
第三节 影响红外吸收的主要因素
51
二、紫外吸收光谱图
λmax :279nm(吸收位置) 溶剂:环己烷
εmax :14.8 (吸收强度)
52
第二节 电子跃迁的类型
σ*
能 量 ΔE
π* n
π
σ
E E E E * > n * > * > n *
53
第三节 各类有机化合物 的电子跃迁
一、饱和有机化合物的电子跃迁
41
根据红外光谱判断化合物类型:
~1715cm-1酮羰基
42
缔合羟基吸收峰:醇
43
~1810cm-1酰氯羰基
44
根据红外光谱判断化合物的结构式:
45
46
47
第二部分 紫外光谱(UV)
λ = 200 ~ 800nm △E = 145 ~ 627KJ.mol-1

红外光谱原理及解析

红外光谱原理及解析

红外光谱原理及解析红外光谱(Infrared Spectroscopy)是一种常见的分析技术,通过检测物质在红外辐射下发生的振动、转动和伸缩等分子的运动引起的能级跃迁,来获取物质的结构信息和化学特性。

红外光谱广泛应用于化学、生物、药物、材料等领域,为科学研究和工业生产提供了有力的工具。

红外光谱的原理主要基于分子吸收红外辐射的现象。

分子由原子通过共价键连接而成,光谱的测量是根据分子中一些特定键的振动模式对入射光的吸收。

利用红外光谱仪,通过在样品中通过红外光或者红外辐射,使样品中的分子以不同的方式振动,然后测量样品中被吸收或反射的红外光强度的变化。

红外光谱通常使用波数(cm-1)作为横坐标,波数是以光的频率而非波长为单位的。

不同的分子和它们的化学键具有不同的振动频率和振动强度,这些不同的频率和强度表现为光谱上不同的峰和强度。

红外光谱可以分为三个区域:近红外区(4000-1400 cm-1)、中红外区(4000-400 cm-1)和远红外区(400-10 cm-1)。

在这三个区域,最常用的是中红外区域,因为大多数有机化合物和无机物的振动吸收位于该区域。

中红外光谱主要包括振动伸缩、弯曲、转动和振转结合等谱带。

振动伸缩谱带主要来自于有机分子中的C-H、O-H、N-H和C-O键等的振动。

弯曲谱带来自于烷基、芳香和杂环等分子中的键角弯曲振动。

转动谱带来自于小分子和气体的转动运动。

而振转结合谱带是指一些具有较高分子对称性的物质在红外光谱中表现出的特殊谱带。

红外光谱的解析和分析可以通过比对红外光谱仪测得的光谱图和对应的标准谱图库进行。

这些标准谱图库包括已知物质的红外光谱图,可以通过比对谱带的位置和强度与标准样品进行鉴定和分析。

此外,红外光谱还可用于物质浓度测定、物质含量定量、反应动力学研究等。

在实际应用中,红外光谱常常与其他技术结合使用,如液相色谱(HPLC)、气相色谱(GC)等。

通过与这些技术结合,可以实现对混合物中不同组分的定性和定量分析,提高分析能力和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4000-1333cm-1范围为官能团区,可以判断化合物的种 类。
1333-650cm-1范围为指纹区,反映整个分子结构的特 点
如:苯环的存在可以由3100-3000、1600、1580、1500、 1450cm-1的吸收带判断,而苯环上的取代位置要用900 -650cm-1和2000-1900cm-1区域的吸收带判断。
• 计算分子的不饱和度,根据不饱和度的结果推断分子中 可能存在的官能团。
• 根据吸收峰的位置、强度、形状分析各种官能团及其相 对关系,推出化合物的化学结构
最后,标准红外谱图及检索
• 直接查对谱图(Sadtler Standdard Infrared Spectra) 4种索引:化合物名称字顺索引 分子式索引 化学分类索引 光谱顺序号索引
在2242cm-1处有吸收,就可以判断有C≡N 、 C≡C、C=C=C等存在。
注意: 在某个波数区域,很多官能团的吸收都会
出现,因此很难做出明确的判断。从一个谱带不 能得到肯定的结论,必须从几个波数区域谱带的 组合来判断某一个基团的存在,如,我们不能单 凭在3100-3000cm-1区域出现吸收带,就肯定 化合物中有芳环,则还需要看在1600-1500cm1处和1000-650cm-1处有无谱带,才能做出肯 定的判断。
否定法:如果已知某波数区的谱带对于某个基团
是特征的,那么当这个波数区没有出现谱带时, 就可以判断在分子中不存在这个基团。
例如,如果在1725cm-1附近没有吸收带,就可以 判断没有酯基的存在;
如果在3700-3100cm-1区域没有吸收带,就可 以判断没有NH、OH基团的存在; 如果在3100-3000、1600、1580、1500、 1450cm-1区域没有吸收带,就可以判断没有苯环 基团的存在。
90

80

70

60
50 饱和-CH3、CH2 40 对称与反对称
30
伸缩振动
29262874
20
2956
2963
10
0


1378


动 1461 基




4000 3600 3200 2800 2400 2000 1600 1200
CH3
Wavenumber(cm-1)
H3C
CH CC
CH3
2、标准图谱的对照
–如果两个化合物的红外谱图不仅 在高于1500频率范围内相同,在 指纹区也相同,该两个化合物才 是同一个化合物。
红外光谱一般解析步骤
• ●检查谱图是否符合要求。基线的透过率 在90%左右;最大吸收峰不应成平头峰。 (图谱合格)
• ● 了解样品来源、样品理化性质、其他分 析数据、样品重结晶溶剂及纯度。(样品 合格)
30
20
10
0 4000 3600
C≡C 伸缩振动 2100cm-1
-CH2面外变形 -CH3
我不知道你是谁,我却知道你不是谁
• 对于否定法应用的特征基团频率
肯定法:如果一张未知物的光谱图不能直接辨认,
则必须对其进行详细的分析。分析时一般从谱图 中主要的谱带开始,因为它往往对应化合物中的 主要官能团,也就可能较特征地反映出化合物的 结构。
有许多谱带是特征的,如某一化合物在1100cm-1 处具有一个很强、形状对称的谱带,就可以判断 有醚键;
作用: 由分子的不饱和度可以推断分子中含有 双键,三键,环,芳环的数目,验证谱图解析 的正确性。
例: C9H8O2 = (2 +29 – 8 )/ 2 = 6
例1:化合物的分子式为C6H14,IR光谱图如下如下,试推断其
可能的分子结构结构。 U=6+1&#nsmittance %
• 计算机数据库检索(仪器公司的红外谱库)
分子的不饱和度
定义: 不饱和度是指分子结构中达 到饱和所缺一价元素的“对”数。如: 乙烯变成饱和烷烃需要两个氢原子,不 饱和度为1。
不饱和度计算
U 2n 2 a b 2
其中n为分子中4价原子的数目,如C,Si;a为 分子中3 价原子的数目,如P,N;b为分子中1价原子的数目,如 H,F,Cl,Br,I。氧和硫的存在对不饱和度没有影响。
§ 红外光谱定性分析
• 官能团分析
– 根据化合物的红外光谱的特征基团频率来检定物质含 有哪些集团,从而确定有关化合物的类别
• 结构分析
– 推断有关化合物的化学结构
红外谱图的解析基本原则
1、从谱图的特征频率入手,找出 官能团可能存在的证据;再在指 纹区进一步核证该基团的存在及 其与其它基团的结合方式
红外光谱的应用
1.已知物及其纯度的定性鉴定
在得到样品的红外谱图后,与纯物质的红外谱图对照比 较,如果各吸收峰的位置与强度基本一致, 就可以认为样品 就是该种物质。
2.未知物结构的确定
充分收集与样品有关的资料与数据 样品的来源、外观、纯度 样品的元素分析结果 样品的物理性质:分子量、沸点、熔点、 折光率等
●排除可能出现的“假谱带”,常见的有: 水的吸收,在3400、 1640 和650cm-1;
CO2的吸收,在2350 和667cm-1;
●还有处理样品时重结晶的溶剂、合成产品中未反 应完的反应物或副产物等,都可能引起干扰。
● 若可以根据其他分析数据写出分子式,则应先 算出分子的不饱和度。
图谱解析“三先三后”原则 先官能团区后指纹区 先强峰后弱峰 先否定后肯定
又如:羧基可能在3600-2500、 1760-1685、1440-1210、995 -915cm-1附近出现多个吸收,而 且有一定的强度和形状。从这多个 峰的出现可以确定羧基的存在。
红外图谱的解析步骤
• 化合物类型的判断 有机物和无机物 饱和化合物与不饱和化合物 烯烃或芳烃
• 推断可能含有的功能团 先看特征频率区(3600-1350), 再看指纹区(1350-400)。 先看强峰,再看弱峰 先找特征吸收峰,再找相关峰佐证
不存在
H2 H2
CH3 CH
CH3
n≥4 722cm-1
773
乙基— CH2的 平面摇 摆振动
800
400
CH2 n
例2:化合物的分子式为C8H14,IR光谱图如下如下,试推断其
可能的分子结构结构。 U=8+1+(0-14)/2=2
100
90
80
T%
70
60
末5端0 炔≡C-H 4伸0 缩振动 3300cm-1
相关文档
最新文档