2014年秋季新版苏科版八年级数学上学期3.1、勾股定理同步练习1

合集下载

苏科版八年级数学上册《3.3-勾股定理的简单应用》同步练习题(含答案)

苏科版八年级数学上册《3.3-勾股定理的简单应用》同步练习题(含答案)

苏科版八年级数学上册《3.3 勾股定理的简单应用》同步练习题(含答案)一、选择题(本大题共9小题,共27.0分。

在每小题列出的选项中,选出符合题目的一项)1.一根竹子高9尺,折断后竹子顶端落在离竹子底端3尺处,折断处离地面高度是( )A. 3尺B. 4尺C. 5尺D. 6尺2.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑多少米?( )A. 0.4B. 0.6C. 0.7D. 0.83.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为( )A. x2−6=(10−x)2B. x2−62=(10−x)2C. x2+6=(10−x)2D. x2+62=(10−x)24.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是( )A. ℎ≤17cmB. ℎ≥8cmC. 15cm≤ℎ≤16cmD. 7cm≤ℎ≤16cm5.如图,有一个绳索拉直的木马秋千,绳索AB的长度为5米,若将它往水平方向向前推进3米(即DE=3米),且绳索保持拉直的状态,则此时木马上升的高度为( )A. 1米B. √ 2米C. 2米D. 4米6.一辆装满货物,宽为2.4米的卡车,欲通过如图的隧道,则卡车的外形高必须低于( )A. 4.1米B. 4.0米C. 3.9米D. 3.8米7.如图,王大伯家屋后有一块长12m,宽8m的长方形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用( )A. 3mB. 5mC. 7mD. 9m8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为( )A. 9B. 6C. 4D. 39.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是( )A. 50.5寸B. 52寸C. 101寸D. 104寸二、填空题10.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行米.11.如图是一个三级台阶,它的每一级的长、宽和高分别为20dm,3dm,2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是dm.12.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到点D,则橡皮筋被拉长了_____cm.13.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度是_________尺.14.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则AD=_____米.15.在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的索,划过90°的弧到达与高台A水平距离为17米,高为3米的矮台B,玛丽在荡绳索过程中离地面的最低点的高度MN=______.16.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了_____米.(假设绳子是直的)三、解答题17.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/ℎ.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s 后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/ℎ)18.如图,为了测量池塘的宽度DE,在池塘周围的平地上选择了A、B、C三点,且A、D、E、C四点在同一条直线上∠C=90°,已测得AB=100m,BC=60m,AD=20m,EC=10m,求池塘的宽度DE.19.如图所示的一块地∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求这块地的面积.20.由于大风,山坡上的一棵树甲被从A点处拦腰折断,如图所示,其树顶端恰好落在另一棵树乙的根部C处,已知AB=4米,BC=13米,两棵树的水平距离为12米,求这棵树原来的高度.21.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.答案和解析1.【答案】B【解析】解:设杆子折断处离地面x尺,则斜边为(9−x)尺根据勾股定理得:x2+32=(9−x)2解得:x=4.故选:B.杆子折断后刚好构成一直角三角形,设杆子折断处离地面x尺,则斜边为(9−x)尺.利用勾股定理解题即可.此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.2.【答案】D【解析】解:∵AB=2.5米,AC=0.7米∴BC=√ AB2−AC2=2.4(米)∵梯子的顶部下滑0.4米∴BE=0.4米∴EC=BC−0.4=2米∴DC=√ DE2−EC2=1.5米.∴梯子的底部向外滑出AD=1.5−0.7=0.8(米).故选:D.首先在直角三角形ABC中计算出CB长,再由题意可得EC长,再次在直角三角形EDC中计算出DC长,从而可得AD的长度.此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.3.【答案】D【解析】解:如图,设折断处离地面的高度为x尺,则AB=10−x,BC=6在Rt△ABC中AC2+BC2=AB2,即x2+62=(10−x)2.故选:D.根据题意画出图形,设折断处离地面的高度为x尺,再利用勾股定理列出方程即可.本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合的思想的应用.4.【答案】D【解析】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长∴ℎ=24−8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短在Rt△ABD中AD=15,BD=8,∴AB=√ AD2+BD2=17∴此时ℎ=24−17=7cm所以ℎ的取值范围是7cm≤ℎ≤16cm.故选D.如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出ℎ的取值范围.本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.5.【答案】A【解析】本题主要考查的是勾股定理的应用的有关知识,作CF⊥AB,根据勾股定理求得AF的长,可得BF的长度.【解答】解:过点C作CF⊥AB于点F根据题意得:AB=AC=5米,CF=DE=3米由勾股定理可得AF2+CF2=AC2∴AF=√ AC2−CF2=√ 52−32=4(米)∴BF=AB−AF=5−4=1(米)∴此时木马上升的高度为1米.故选A.6.【答案】A【解析】此题主要考查了勾股定理的应用,根据题意得出CD的长是解题关键.根据题意欲通过如图的隧道,只要比较距隧道中线1.2米处的高度比车高即可,根据勾股定理得出CD的长,进而得出CH的长,即可得出答案.【解答】解:∵车宽2.4米∴欲通过如图的隧道,只要比较距隧道中线1.2米处的高度与车高.在Rt△OCD中,由勾股定理可得:CD2=OC2−OD2=22−1.22=1.62(m)CD=1.6mCH=CD+DH=1.6+2.5=4.1米∴卡车的外形高必须低于4.1米.故选:A.7.【答案】A【解析】此题考查了勾股定理的应用,确定点到半圆的最短距离是难点.熟练运用勾股定理.为了不让羊吃到菜,必须小于等于点A到圆的最小距离.要确定最小距离,连接OA交半圆于点E,即AE是最短距离.在直角三角形AOB中,因为OB=6,AB=8,所以根据勾股定理得OA=10.那么AE的长即可解答.【解答】解:连接OA,交半圆O于E点在Rt△OAB中OB=6,AB=8所以OA2=OB2+AB2=102;又OE=OB=6所以AE=OA−OE=4.因此选用的绳子应该小于4m,排除B、C、D选项故选A.8.【答案】D【解析】本题考查勾股定理的应用完全平方公式的应用本题属于基础题型.由题意可知:中间小正方形的边长为:a−b根据大正方形的面积等于4个直角三角形的面积与中间小正方形面积的和列出等式即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a−b∵每一个直角三角形的面积为:12ab=12×8=4∴4×12ab+(a−b)2=25∴(a−b)2=25−16=9∵a>b∴a−b=3即中间小正方形的边长为3.故选D.9.【答案】C【解析】本题考查了勾股定理的应用弄懂题意构建直角三角形是解题的关键.构造直角三角形根据勾股定理即可得到结论.【解答】解:过D作DE⊥AB于E如图2所示:由题意得:OA=OB=AD=BC设OA=OB=AD=BC=rCD=1寸AE=(r−1)寸则AB=2r DE=10寸OE=12在Rt△ADE中AE2+DE2=AD2即(r−1)2+102=r2解得:r=50.5∴2r=101∴AB=101寸故选:C.10.【答案】10【解析】本题考查正确运用勾股定理善于观察题目的信息是解题以及学好数学的关键.根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行所行的路程最短运用勾股定理可将两点之间的距离求出.【解答】解:如图过点B作BC⊥AC于C在Rt△ABC中由勾股定理得AB2=AC2+BC2=62+82=102∴AB=10米即小鸟至少飞行10米.11.【答案】25【解析】本题考查了平面展开−最短路径问题用到台阶的平面展开图只要根据题意判断出长方形的长和宽即可解答.先将图形平面展开再用勾股定理根据两点之间线段最短进行解答即可.【解答】解:如图所示.∵三级台阶平面展开图为长方形长为20dm宽为(2+3)×3=15dm∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为xdm由勾股定理得:x2=202+152=252解得:x=25.故答案为:25.12.【答案】2【解析】此题主要考查了等腰三角形的性质以及勾股定理的应用.根据勾股定理可求出AD BD的长则AD+BD−AB即为橡皮筋拉长的距离.【解答】解:AD=BDRt△ACD中AC=1AB=4cm CD=3cm;2根据勾股定理得:AD=√ AC2+CD2=5cm;∴AD+BD−AB=2AD−AB=10−8=2cm;故橡皮筋被拉长了2cm.故答案为2.13.【答案】3.2【解析】此题考查了勾股定理的应用解题的关键是利用题目信息构造直角三角形从而运用勾股定理解题.竹子折断后刚好构成一直角三角形设竹子折断处离地面x尺则斜边为(10−x)尺利用勾股定理解题即可.【解答】解:设竹子折断处离地面x尺则斜边为(10−x)尺根据勾股定理得:x2+62=(10−x)2.解得:x=3.2∴折断处离地面的高度为3.2尺故答案为3.2.14.【答案】1.5【解析】本题考查了勾股定理的应用解题的关键是作出辅助线构造直角三角形利用勾股定理求得线段AD的长度.过点D作DE⊥AB于点E构造Rt△ADE利用勾股定理求得AD的长度即可.【解答】解:如图过点D作DE⊥AB于点E∵AB=2.5米BE=CD=1.6米ED=BC=1.2米则AE=AB−BE=2.5−1.6=0.9(米).在Rt△ADE中由勾股定理得到:AD=√ AE2+DE2=√ 0.92+1.22=1.5(米)故答案是:1.5.15.【答案】2米【解析】解:作AE ⊥OM BF ⊥OM∴∠OEA =∠BFO =90°∵∠AOE +∠BOF =∠BOF +∠OBF =90°∴∠AOE =∠OBF在△AOE 和△OBF 中{∠OEA =∠BFO∠AOE =∠OBF AO =OB,∴△AOE ≌△OBF(AAS)∴OE =BF AE =OF∵CM =AE MD =BF .即OE +OF =AE +BF =CM +MD =CD =17米∴2EO +EF =17∵EM =AC =10米 FM =BD =3米.∵EF =EM −FM =AC −BD =10−3=7(米)∴2EO =10∴OE =5(米) OF =7+5=12(米)∴OM =OF +FM =15(米)∵OE =5米 AE =OF =12米 ∠OEA =90°∴根据勾股定理 OA =√ AE 2+OE 2 =13(米)又∵ON =OA =13米∴MN =OM −ON =15−13=2(米).答:玛丽在荡绳索过程中离地面的最低点的高度MN 为2米.故答案为:2米.首先得出△AOE ≌△OBF(AAS) 进而得出OE 的长 进而求出OM MN 的长即可.此题主要考查了勾股定理的应用以及全等三角形的应用 正确得出△AOE ≌△OBF 是解题关键. 16.【答案】9【解析】此题考查勾股定理的应用 解决的关键是熟练掌握在直角三角形中 两直角边的平方和等于斜边的平方.【解答】解:根据题意AC=8BC=17根据勾股定理可得AC2+AB2=BC2即82+AB2=172解得AB=15有人用绳子拉船靠岸开始时绳子BC的长为17米此人以1米每秒的速度收绳7秒后绳子长为17−1×7=10则此时AD=√ 102−82=6所以船向岸边移动AB−AD=15−6=9m故答案为9.17.【答案】解:在Rt△ABC中AC=30m AB=50m;据勾股定理可得:BC=√ AB2−AC2=√ 502−302=40(m)∴小汽车的速度为v=40=20(m/s)=20×3.6(km/ℎ)=72(km/ℎ);2∵72(km/ℎ)>70(km/ℎ);∴这辆小汽车超速行驶.答:这辆小汽车超速了.【解析】本题求小汽车是否超速其实就是求BC的距离直角三角形ABC中有斜边AB的长有直角边AC的长那么BC的长就很容易求得根据小汽车用2s行驶的路程为BC那么可求出小汽车的速度然后再判断是否超速了.本题是将实际问题转化为直角三角形中的数学问题可把条件和问题放到直角三角形中进行解决.要注意题目中单位的统一.18.【答案】解:在Rt△ABC中AC=√ AB2−BC2=√ 1002−602=80(m)所以DE=AC−AD−EC=80−20−10=50(m)∴池塘的宽度DE为50米.【解析】本题考查了勾股定理的应用将数学知识与生活实际联系起来是近几年中考考点之一.根据已知条件在直角三角形ACB中利用勾股定理求得AC的长用AC减去AD CE求得DE即可.19.【答案】解:连接AC∵∠ADC=90°AD=4CD=3∴AC=5.由AB=13BC=12可得AC2+BC2=AB2∴△ABC是直角三角形∴S△ABC=30S△ACD=630−6=24(m2).故这块地的面积为24m2.【解析】此题主要考查勾股定理和勾股定理的逆定理等知识点难度不大解答此题的关键是连接AC 求出三角形ABC的面积再减去三角形ACD的面积即可.连接AC由AD=4m CD=3m∠ADC=90°利用勾股定理可求出AC的长再根据AB=13m BC=12m利用勾股定理的逆定理可证△ACB为直角三角形即可求出这块地的面积.20.【答案】解:如图所示:延长AB过点C作CD⊥AB交AB延长线于点D由题意可得:BC=13m DC=12m故BD 2=BC2−CD2=132−122=25∵BD>0则BD=5m即AD=AB+BD=9m则AC2=AD2+CD2=92+122=225∵AC>0则AC=15m故AC+AB=15+4=19(m).答:这棵树原来的高度是19米.【解析】本题主要考查了勾股定理的实际应用得出BD的长是解题关键属于中档题.首先构造直角三角形进而求出BD的长进而求出AC的长即可得出答案.21.【答案】解:(1)是理由是:在△CHB中∵CH2+BH2=2.42+1.82=9BC2=9∴CH2+BH2=BC2∴CH⊥AB所以CH是从村庄C到河边的最近路;(2)设AC=x千米在Rt△ACH中由已知得AC=x千米AH=(x−1.8)千米CH=2.4千米由勾股定理得:AC2=AH2+CH2∴x2=(x−1.8)2+2.42解得x=2.5答:原来的路线AC的长为2.5千米.【解析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.此题考查勾股定理及勾股定理的逆定理的应用关键是熟练掌握勾股定理及勾股定理的逆定理.。

苏科版数学八年级上3.1勾股定理同步练习含答案解析

苏科版数学八年级上3.1勾股定理同步练习含答案解析

3.1 勾股定理一.选择题(共14小题)1.(2019•荆门)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10第1题第2题2.(2016•漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个3.(2016•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.44.(2016•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0 5.(2016•济南)如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°第5题第6题6.(2016•黔东南州)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.1697.(2016•青海)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()78.(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣59.如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b >a)拼接在一起,则四边形ABCD的面积为()A.b2+(b﹣a)2B.b2+a2C.(b+a)2D.a2+2ab第9题第10题10.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°二.填空题(共8小题)11.(2016•安顺)如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=___度.12.如图,在△ABC中,∠ACB=90°,∠B=40°,D为线段AB的中点,则∠ACD=______.第11题第12题第13题13.(2016•绥化)如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=,则AE=______(提示:可过点A作BD的垂线)14.如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么(a+b)2的值为______.第13题第15题第16题15.如图,Rt△ABC的周长为,以AB、AC为边向外作正方形ABPQ和正方形ACMN.若这两个正方形的面积之和为25 cm2,则△ABC的面积是______ cm2.16.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是______.17.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4,以AC为斜边作Rt△ACC1,使∠CAC1=30°,Rt△ACC1的面积为S1;再以AC1为斜边作△AC1C2,使∠C1AC2=30°,Rt △AC1C2的面积记为S2,…,以此类推,则S n=______(用含n的式子表示)18.如图,△ABC和△DEF是两个全等的等腰直角三角形,点G在直角边BC上,BG=5,CG=1,将△DEF的顶点D放在直角边AC上,直角边DF经过点G,斜边DE经过点B,则CD=______.三.解答题(共6小题)19.(2016•益阳)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.20.作图题:如图,在6×6的正方形网格中,每个小正方形的边长都为1,请在所给网格中按下列要求画出图形.(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为5;(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,请画出所有满足条件的点C.21.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上______;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m≠n),运用构图法可求出这三角形的面积为______.22.一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围.23.在Rt△ABC中,∠C=90°,以三边为边分别向外作正方形,如图所示,过C作CH⊥AB于H,延长CH交MN于点I.(1)如图(1)若AC=3,BC=2,试通过计算证明:四边形AHIN的面积等于正方形AEFC的面积.(2)请利用图(2)证明直角三角形勾股定理:AC2+BC2=AB2.参考答案与解析一.选择题(共14小题)1.(2016•荆门)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选C.【点评】本题考查了勾股定理,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.2.(2016•漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个【分析】首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE长,然后可得AD的取值范围,进而可得答案.【解答】解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴点D的个数共有3个,故选:C.【点评】此题主要考查了等腰三角形的性质和勾股定理,关键是正确利用勾股定理计算出AD的最小值,然后求出AD的取值范围.3.(2016•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.4【分析】根据直角三角形a、b、c为边,应用勾股定理,可得a2+b2=c2.(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积;然后根据a2+b2=c2,可得S1+S2=S3.(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积;然后根据a2+b2=c2,可得S1+S2=S3.【解答】解:(1)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(2)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(3)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(4)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.综上,可得面积关系满足S1+S2=S3图形有4个.故选:D.【点评】(1)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.(2)此题还考查了等腰直角三角形、等边三角形、圆以及正方形的面积的求法,要熟练掌握.4.(2016•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n﹣m)2,整理即可求解【解答】解:如图,m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故选:C.【点评】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.5.(2016•济南)如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°【分析】根据等腰直角三角形的性质可得∠CAB=45°,根据平行线的性质可得∠2=∠3,进而可得答案.【解答】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵l1∥l2,∴∠2=∠3,∵∠1=15°,∴∠1=45°﹣15°=30°,故选:B.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.6.(2016•黔东南州)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.【解答】解:根据题意得:c2=a2+b2=13,4×ab=13﹣1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,故选C【点评】此题考查了勾股定理的证明,利用了数形结合的思想,熟练掌握勾股定理是解本题的关键.7.(2016•青海)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()7【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=()n﹣3”,依此规律即可得出结论.【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=S1=2,S3=S2=1,S4=S3=,…,∴S n=()n﹣3.当n=9时,S9=()9﹣3=()6,故选:A.【点评】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n=()n﹣3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n的值,根据数值的变化找出变化规律是关键.8.(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长.【解答】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.9.如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b >a)拼接在一起,则四边形ABCD的面积为()A.b2+(b﹣a)2B.b2+a2C.(b+a)2D.a2+2ab【分析】先求出AE即DE的长,再根据三角形的面积公式求解即可.【解答】解:∵DE=b﹣a,AE=b,∴S四边形ABCD=4S△ADE+a2=4××(b﹣a)•b=b2+(b﹣a)2.故选:A.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.10.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【分析】在直角三角形ABC中,由∠ACB与∠A的度数,利用三角形的内角和定理求出∠B的度数,再由折叠的性质得到∠CA′D=∠A,而∠CA′D为三角形A′BD的外角,利用三角形的外角性质即可求出∠A′DB的度数.【解答】解:在Rt△ABC中,∠ACB=90°,∠A=55°,∴∠B=180°﹣90°﹣55°=35°,由折叠可得:∠CA′D=∠A=55°,又∵∠CA′D为△A′BD的外角,∴∠CA′D=∠B+∠A′DB,则∠A′DB=55°﹣35°=20°.故选:C.【点评】此题考查了直角三角形的性质,三角形的外角性质,以及折叠的性质,熟练掌握性质是解本题的关键.二.填空题(共8小题)11.(2016•安顺)如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=45度.【分析】先根据等腰直角三角形的性质求出∠ABC的度数,再由平行线的性质即可得出结论.【解答】解:∵△ABC为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=45°,∵m∥n,∴∠1=45°;故答案为:45.【点评】此题考查了等腰直角三角形和平行线的性质,用到的知识点是:两直线平行,同位角相和等腰直角三角形的性质;关键是求出∠ABC的度数.12.如图,在△ABC中,∠ACB=90°,∠B=40°,D为线段AB的中点,则∠ACD=50°.【分析】由“直角三角形的两个锐角互余”得到∠A=50°.根据“直角三角形斜边上的中线等于斜边的一半”得到CD=AD,则等边对等角,即∠ACD=∠A=50°.【解答】解:如图,∵在△ABC中,∠ACB=90°,∠B=40°,∴∠A=50°.∵D为线段AB的中点,∴CD=AD,∴∠ACD=∠A=50°.故答案是:50°.【点评】本题考查了直角三角形的性质.在直角三角形中,斜边上的中线等于斜边的一半.13.(2016•绥化)如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=,则AE=2(提示:可过点A作BD的垂线)【分析】过A作AF⊥BD,交BD于点F,由三角形ABD为等腰直角三角形,利用三线合一得到AF为中线,利用直角三角形斜边上的中线等于斜边的一半求出AF的长,在直角三角形AEF中,利用30度角所对的直角边等于斜边的一半求出AE的长即可.【解答】解:过A作AF⊥BD,交BD于点F,∵AD=AB,∠DAB=90°,∴AF为BD边上的中线,∴AF=BD,∵AB=AD=,∴根据勾股定理得:BD==2,∴AF=,在Rt△AEF中,∠EAF=∠DCA=30°,∴EF=AE,设EF=x,则有AE=2x,根据勾股定理得:x2+3=4x2,解得:x=1,则AE=2.故答案为:2【点评】此题考查了勾股定理,含30度直角三角形的性质,以及等腰三角形的性质,熟练掌握勾股定理是解本题的关键.14.如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么(a+b)2的值为25.【分析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a+b)2=a2+2ab+b2即可求解.【解答】解:根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12则(a+b)2=a2+2ab+b2=13+12=25.故答案是:25.【点评】本题考查勾股定理,以及完全平方式,正确根据图形的关系求得a2+b2和ab的值是关键.15.如图,Rt△ABC的周长为,以AB、AC为边向外作正方形ABPQ和正方形ACMN.若这两个正方形的面积之和为25 cm2,则△ABC的面积是5cm2.【分析】根据正方形的面积公式,勾股定理求得a2=c2+b2=25,据此可以求得a=5.又由Rt△ABC的周长为可以求得b+c=3,所以△ABC的面积=bc= [(c+b)2﹣(c2+b2)].【解答】解:如图,a2=c2+b2=25,则a=5.又∵Rt△ABC的周长为,∴a+b+c=5+3,∴b+c=3(cm).∴△ABC的面积=bc= [(c+b)2﹣(c2+b2)]÷2= [(3)2﹣25]÷2=5(cm2).故答案是:5.【点评】本题考查了勾股定理的应用.解答此题时,巧妙地运用了完全平方公式的变形来求△ABC的面积.16.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是 1.5.【分析】连接DF,由勾股定理求出AB=5,由等腰三角形的性质得出CE=DE,由线段垂直平分线的性质得出CF=DF,由SSS证明△ADF≌△ACF,得出∠ADF=∠ACF=∠BDF=90°,设CF=DF=x,则BF=4﹣x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【解答】解:连接DF,如图所示:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB==5,∵AD=AC=3,AF⊥CD,∴CE=DE,BD=AB﹣AD=2,∴CF=DF,在△ADF和△ACF中,,∴△ADF≌△ACF(SSS),∴∠ADF=∠ACF=90°,∴∠BDF=90°,设CF=DF=x,则BF=4﹣x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4﹣x)2,解得:x=1.5;∴CF=1.5;故答案为:1.5.【点评】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质、线段垂直平分线的性质;熟练掌握勾股定理,证明三角形全等是解决问题的关键.17.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4,以AC为斜边作Rt△ACC1,使∠CAC1=30°,Rt△ACC1的面积为S1;再以AC1为斜边作△AC1C2,使∠C1AC2=30°,Rt△AC1C2的面积记为S2,…,以此类推,则S n=(用含n的式子表示)【分析】首先计算得出△ABC1的面积,进一步利用含30°角的直角三角形的特性以及勾股定理求得Rt△AC1C2和Rt△AC2C3的面积,找出规律得出结论.【解答】解:∵∠ACB=90°,∠BAC=30°,AB=4,∴BC=AB=2,∴AC=BC=2,∴S△ABC=•BC•AC=2,在△ABC1中,∵∠CAC1=30°,∴CC1═AC=,∵∠BAC=∠CAC1,∠ACB=∠AC1C=90°,∴△ACB∽△AC1C,∴=()2=()2=,∴S1=•S△ABC,同理可得,S2=•S1=()2•S△ABC,S3=()3•S△ABC,…根据此规律可得,S n=()n•S△ABC=,故答案为.【点评】此题考查勾股定理、含30°角直角三角形的性质以及三角形的面积等知识点,规律型题目,解题的关键是学会从特殊到一般的探究方法,学会找规律,利用规律解决问题,属于中考常考题型.18.如图,△ABC和△DEF是两个全等的等腰直角三角形,点G在直角边BC上,BG=5,CG=1,将△DEF的顶点D放在直角边AC上,直角边DF经过点G,斜边DE经过点B,则CD=2或3.【分析】作DM⊥AB于M,设CD=x,由等腰直角三角形的性质得出AC=BC=6,∠A=∠EDF=45°,∠C=90°,AB=BC=6,AD=6﹣x,证出△ADM是等腰直角三角形,得出AM=AD=(6﹣x),因此BM=6﹣(6﹣x),证明△CDG∽△MBD,得出对应边成比例,得出方程,解方程即可.【解答】解:作DM⊥AB于M,如图所示:设CD=x,∵△ABC和△DEF是两个全等的等腰直角三角形,BG=5,CG=1,∴AC=BC=6,∠A=∠EDF=45°,∠C=90°,∴AB=BC=6,AD=6﹣x,△ADM是等腰直角三角形,∴AM=AD=(6﹣x),∴BM=6﹣(6﹣x),∵∠BDC=∠CDG+∠EDF=∠A+∠MBD,∴∠CDG=∠MBD,又∵∠DMB=90°=∠C,∴△CDG∽△MBD,∴,即=,解得:x=2,或x=3,∴CD=2或3;故答案为:2或3.【点评】本题考查了等腰直角三角形的性质与判定、勾股定理、相似三角形的判定与性质;熟练掌握等腰直角三角形的判定与性质,证明三角形相似是解决问题的关键.三.解答题(共6小题)19.(2016•益阳)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.【分析】根据题意利用勾股定理表示出AD2的值,进而得出等式求出答案.【解答】解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,故152﹣x2=132﹣(14﹣x)2,解之得:x=9.∴AD=12.∴S△ABC=BC•AD=×14×12=84.【点评】此题主要考查了勾股定理,根据题意正确表示出AD2的值是解题关键.20.作图题:如图,在6×6的正方形网格中,每个小正方形的边长都为1,请在所给网格中按下列要求画出图形.(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为5;(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,请画出所有满足条件的点C.【分析】(1)每个小正方形的边长都为1,容易得出结果;(2)分两种情况:①当AB为等腰三角形的一腰时,分两种情况:a:以A为圆心,AB 长为半径画弧,交网络有两个格点;b:以B为圆心,AB长为半径画弧,交网络有两个格点;②当AB为等腰三角形的底边时,顶角顶点在AB的垂直平分线上,交点不在格点处,不合题意;即可得出结果.【解答】解:(1)如图1所示:由勾股定理得:AB==5,即AB即为所求的线段;(2)分两种情况:①当AB为等腰三角形的一腰时,分两种情况:a:以A为圆心,AB长为半径画弧,交网络有3个格点;b:以B为圆心,AB长为半径画弧,交网络有2个格点;②当AB为等腰三角形的底边时,顶角顶点C在AB的垂直平分线上,交点不在格点处,不合题意;综上所述:满足条件的点C有5个,如图2所示.【点评】本题考查了正方形的性质、勾股定理、等腰三角形的判定;熟练掌握勾股定理,并能进行推理作图是解决问题的关键.21.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m≠n),运用构图法可求出这三角形的面积为5mn.【分析】(1)是直角边长为1,2的直角三角形的斜边;是直角边长为1,3的直角三角形的斜边;是直角边长为2,3的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;(2)结合(1)易得此三角形的三边分别是直角边长为m,4n的直角三角形的斜边;直角边长为3m,2n的直角三角形的斜边;直角边长为2m,2n的直角三角形的斜边.同样把它整理为一个矩形的面积减去三个直角三角形的面积可得.【解答】解:(1)S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=;(2)构造△ABC如图所示,S△ABC=3m×4n﹣×m×4n﹣×3m×2n﹣×2m×2n=5mn.故答案为:(1)3;(2)5mn.【点评】此题主要考查了勾股定理应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键,关键是结合网格用矩形及容易求得面积的直角三角形表示出所求三角形的面积进行解答.22.一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围.【分析】一、(1)由勾股定理即可得出结论;(2)作AD⊥BC于D,则BD=BC﹣CD=a﹣CD,由勾股定理得出AB2﹣BD2=AD2,AC2﹣CD2=AD2,得出AB2﹣BD2=AC2﹣CD2,整理得出a2+b2=c2+2a•CD,即可得出结论;(3)作AD⊥BC于D,则BD=BC+CD=a+CD,由勾股定理得出AD2=AB2=BD2,AD2=AC2﹣CD2,得出AB2﹣BD2=AC2﹣CD2,整理即可得出结论;二、分两种情况:①当∠C为钝角时,由以上(3)得:<c<a+b,即可得出结果;②当∠B为钝角时,得:b﹣a<c<,即可得出结果.【解答】一、解:(1)∵∠C为直角,BC=a,CA=b,AB=c,∴a2+b2=c2;(2)作AD⊥BC于D,如图1所示:则BD=BC﹣CD=a﹣CD,在△ABD中,AB2﹣BD2=AD2,在△ACD中,AC2﹣CD2=AD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a﹣CD)2=b2﹣CD2,整理得:a2+b2=c2+2a•CD,∵a>0,CD>0,∴a2+b2>c2;(3)作AD⊥BC于D,如图2所示:则BD=BC+CD=a+CD,在△ABD中,AD2=AB2=BD2,在△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a+CD)2=b2﹣CD2,整理得:a2+b2=c2﹣2a•CD,∵a>0,CD>0,∴a2+b2<c2;二、解:当∠C为钝角时,由以上(3)得:<c<a+b,即5<c<7;当∠B为钝角时,得:b﹣a<c<,即1<c<;综上所述:第三边c的取值范围为5<c<7或1<c<.【点评】本题考查了勾股定理的综合运用、完全平方公式;熟练掌握勾股定理,通过作辅助线运用勾股定理是解决问题的关键.23.在Rt△ABC中,∠C=90°,以三边为边分别向外作正方形,如图所示,过C作CH⊥AB于H,延长CH交MN于点I.(1)如图(1)若AC=3,BC=2,试通过计算证明:四边形AHIN的面积等于正方形AEFC的面积.(2)请利用图(2)证明直角三角形勾股定理:AC2+BC2=AB2.【分析】(1)利用勾股定理求出AB,根据△ABC面积的两种算法求出CH,再求出AH,即可得到四边形AHIN的面积、正方形AEFC的面积,即可解答;(2)根据四边形AHIN的面积等于正方形AEFC的面积,所以AC2=AH•AB,同理可得:BC2=BH•AB,所以AC2+BC2=AH•AB+BH•AB=AB2.【解答】解:(1)∵在Rt△ABC中,∠C=90°,AC=3,BC=2,∴AB==,∴,即,∴CH=,∴AH=,∴S四边形AHIN=AH•AN=18,,∴四边形AHIN的面积等于正方形AEFC的面积.(2)∵四边形AHIN的面积等于正方形AEFC的面积.∴AC2=AH•AB,同理可得:BC2=BH•AB,∴AC2+BC2=AH•AB+BH•AB=AB2.【点评】本题考查勾股定理,解决本题的关键是应用勾股定理求边的长度.。

初中数学苏科版八年级上册第三章3.1勾股定理同步练习(解析版)

初中数学苏科版八年级上册第三章3.1勾股定理同步练习(解析版)

初中数学苏科版八年级上册第三章3.1勾股定理同步练习一、选择题1.已知等腰三角形的一条腰长是15,底边长是18,则它底边上的高为()A. 9B. 12C. 15D. 182.如图是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=12,则S2的值是()A. 12B. 8C. 6D. 43.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,D为BC上一点,将△ACD沿AD折叠,使点C恰好落在AB边上,则折痕AD的长是()A. 5B. √34C. 3√5D. √614.我国数学家华罗庚曾建议,用一副反应勾股定理的数形关系图来作为和外星人交谈的语言,就勾股定理本身而言,它揭示了直角三角形的三边之间的关系,它体现的数学思想方法是()A. 分类思想B. 方程思想C. 转化D. 数形结合5.如图,△ABC中,AD⊥BC于D,AB=5,BD=4,DC=2,则AC等于()A. 13B. √13C. √5D. 56.△ABC中,AB=17,AC=10,高AD=8,则△ABC的周长是()A. 54B. 44C. 36或48D. 54或337.等边三角形的边长为2,则它的面积为()A. √3B. 2√3C. 3√3D. 18.已知Rt△ABC的三边分别为a、b、c,则下列结论不可能成立的是()A. a2−b2=c2B. ∠A−∠B=∠CC. ∠A:∠B:∠C=3:4:5D. a:b:c=7:24:259.将一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=6√2,则CD的长为()A. 2√3B. 6−3√3C. 6−2√3D. 3√310.已知Rt△ABC中,∠C=90°,若a:b=3:4,c=10,则Rt△ABC的斜边上的高是()A. 4.8B. 2.4C. 1.2D. 48二、填空题11.在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为cm2.12.直角三角形两条直角边的长分别为5、12,斜边上的高为_______。

苏科版初中八年级数学上册3-1勾股定理第一课时勾股定理课件

苏科版初中八年级数学上册3-1勾股定理第一课时勾股定理课件

圆的面积S2= 9 π,以BC为直径的半圆的面积S3=25 π,S△ABC=6,
8
8
∴S阴影=S1+S2+S△ABC-S3=6,故选A.
13.(2023江苏南京中考,5,★☆☆)我国南宋数学家秦九韶的 著作《数书九章》中有一道问题:“问沙田一段,有三斜,其 小斜一十三里,中斜一十四里,大斜一十五里.里法三百步,欲 知为田几何?”问题大意:在△ABC中,AB=13里,BC=14里,AC =15里,则△ABC的面积是 ( C ) A.80平方里 B.82平方里 C.84平方里 D.86平方里
解析 (1)证明:∵BD⊥AC, ∴∠C+∠CBD=90°=∠EDA+∠BDF, ∵∠BDF=∠C,∴∠CBD=∠EDA. (2)设AD=x,则AB=AC=AD+CD=x+1, ∵BD=3,AD2+BD2=AB2,∴x2+32=(x+1)2, 解得x=4,∴AB=x+1=5.
能力提升全练
11.(情境题·中华优秀传统文化)(2023江苏苏州姑苏期中,5,★ ★☆)勾股定理是人类最伟大的科学发现之一,在我国古算书 《周髀算经》中早有记载.如图1,以直角三角形的各边为边 分别向外作正方形,再把较小的两个正方形按如图2所示的 方式放置在最大正方形内.若知道图中阴影部分的面积,则一 定能求出 ( C )
8.(2022江苏盐城校级期末)若一个直角三角形的两边长分别 为4和5,则第三条边长的平方为 9或41 . 解析 当5为直角边长时,第三条边长的平方为42+52=41;当5 为斜边长时,第三条边长的平方为52-42=9.故答案为9或41.
9.如图,在由边长为1的小正方形组成的网格中,A、B、C均 在格点上,求AB2-CA2的值.

苏科版数学八年级上3.1勾股定理同步练习含答案

苏科版数学八年级上3.1勾股定理同步练习含答案

勾股定理课时练第一课时1. 在直角三角形ABC 中,斜边AB=1,则AB ²+BC ²+AC ²= ( )A.2B.4C.6D.82. 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4. 如图所示,一根旗杆于离地面12m 处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m ,旗杆在断裂之前高多少m ?5.如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.6. 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7. 如图所示,无盖玻璃容器,高18,底面周长为60cm ,在外侧距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm 的F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度.8. 一个零件的形状如图所示,已知AC=3cm ,AB=4cm ,BD=12cm 求CD 的长.9. 如图所示,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB 的长.※8、如图:有一圆柱,它的高等于cm 8,底面直径等于cm 4(3=π)在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A 相对的B 点处的食物,需要爬行的最短路程大约是多少?(8题图)B A10. 如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上铺地毯,已知地毯 平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱12. 用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?第二课时18.2勾股定理的逆定理第二课时一、选择题1.下列各组数据中,不能作为直角三角形三边长的是( ) A.9,12,15 B.43,1,45 C.0.2,0.3,0.4 D.40,41,9 2.满足下列条件的三角形中,不是直角三角形的是( ) A.三个内角比为1∶2∶1 B.三边之比为1∶2∶5 C.三边之比为3∶2∶5 D. 三个内角比为1∶2∶33.已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为( ) A.2 B.102 C.10224或 D.以上都不对4. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )72425207152024257252024257202415(A)(B)(C)(D)二、填空题5. △ABC 的三边分别是7、24、25,则三角形的最大内角的度数是 .6.三边为9、12、15的三角形,其面积为 .7.已知三角形ABC 的三边长为c b a ,,满足18,10==+ab b a ,8=c ,则此三角形为 三角形.8.在三角形ABC 中,AB=12cm ,AC=5cm ,BC=13cm ,则BC 边上的高为AD= cm . 三、解答题9. 如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD 的面积.10. 如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,且AB =4,CE =4BC ,F 为CD的中点,连接AF 、AE ,问△AEF 是什么三角形?请说明理由.11. 如图,AB 为一棵大树,在树上距地面10m的D C 处有一筐水果,一只猴子从D 处上爬到树顶A 处,利用拉在A 处的滑绳AC ,滑到C 处,另一只猴子从D 处 滑到地面B ,再由B 跑到C ,已知两猴子所经路程都是15m , 求树高AB .12. 观察下列勾股数:第一组:3=2×1+1, 4=2×1×(1+1), 5=2×1×(1+1)+1; 第二组:5=2×2+1, 12=2×2×(2+1), 13=2×2×(2+1)+1; 第三组:7=2×3+1, 24=2×3×(3+1), 25=2×3×(3+1)+1; 第三组:9=2×4+1, 40=2×4×(4+1), 41=2×4×(4+1)+1; ……观察以上各组勾股数的组成特点,你能求出第七组的c b a ,,各应是多少吗?第n 组呢?第三课时1,已知一个直角三角形的两边长分别为3和5则第三边长是 ( )A . 5B .4C . 34D .4或34 2.等边三角形的面积为,它的高为( ) A 、B 、C 、D 、3. 直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为( ) A. 20 B . 22 C . 24 D . 264、一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为A .10米B .15米C .25米D .30米5、如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、以上答案都不对6.如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5和12,则b 的面积为( )A.4 B.17 C . 16 D.557、如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是( )A 、3:4B 、5:8C 、9:16D 、1:2 8、在三边分别为下列长度的三角形中,哪些不是直角三角形( )A 、5,13,12B 、2,3,C 、4,7,5D 、1,9、在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 周长为( )A 、42B 、32C 、42或32D 、37或33 10、下列命题中假命题是( )A 、三个角的度数之比为1:3:4的三角形是直角三角形B 、三个角的度数之比为1:3:2的三角形是直角三角形C 、三边长度之比为1:3:2的三角形是直角三角形D 、三边长度之比为2:2:2的三角形是直角三角形11.已知一直角三角形的木板,三边的平方和为1800cm 2,则斜边长为( ). A 、80cm B 、30cm C 、90cm D 、120cm.12.如果△ABC 的三边分别为12-m ,m 2,12+m ,其中m 为大于1的正整数,则( )BCC第7题图A .△ABC 是直角三角形,且斜边为12-m B .△ABC 是直角三角形,且斜边为m 2 C .△ABC 是直角三角形,且斜边为12+m D .△ABC 不是直角三角形13、在下面图形中,每个大正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是( )14、已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5 B 、25 C 、7 D 、15 二、填空15.将一副三角板如图放置,上、下两块三角板的面积分别为S 1和S 2 ,则S 1:S 2= .16.右上图是某广告公司为某种商品设计的商标图案,若每个小长方形的面积都是1,则阴影部分面积是 .17.如下图,已知OA =OB ,那么数轴上点A 所表示的数是____________. 18、在直线l 上依次摆放着七个正方形(如图所示)。

苏科版初中数学八年级上册《3.1 勾股定理》同步练习卷

苏科版初中数学八年级上册《3.1 勾股定理》同步练习卷

苏科新版八年级上学期《3.1 勾股定理》同步练习卷一.填空题(共20小题)1.如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012=.2.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于.3.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.5.如图,已知Rt△ABC中,∠C=90°,∠A=30°,AC=6.沿DE折叠,使得点A与点B重合,则折痕DE的长为.6.如图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE =3,AB=8,则BF=.7.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为.8.如图,△ABD和△CED均为等边三角形,AC=BC,AC⊥BC.若BE=,则CD=.9.如图所示,在△ABC中,∠C=2∠B,点D是BC上一点,AD=5,且AD⊥AB,点E是BD的中点,AC=6.5,则AB的长度为.10.如图所示,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB =8cm,BC=10cm,则EC的长为cm.11.如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,则图中阴影部分的面积为.12.如图,在△ABC中,∠ACB=90°,∠B=40°,D为线段AB的中点,则∠ACD=.13.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.14.已知等腰三角形的腰长为5,一腰上的高为3,则以底边为边长的正方形的面积为.15.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为.16.如图,在△ABC中,AB=AC=13,BC=10,D是AB的中点,过点D作DE⊥AC于点E,则DE的长是.17.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是.18.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为.19.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为.20.矩形纸片ABCD中,AD=10cm,AB=4cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE=cm.二.解答题(共15小题)21.已知△ABC中,AB=AC.(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;(2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD =3,CD=4,求BD的长;(3)如图3,在△ADE中,当BD垂直平分AE于H,且∠BAC=2∠ADB时,试探究CD2,BD2,AH2之间的数量关系,并证明.22.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段(2)已知S△ABCBA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.23.如图,在△ABC中,∠ACB=90°,∠B=30°,CD,CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2,求△CDE的周长.24.如图,AB⊥MN于A,CD⊥MN于D.点P是MN上一个动点.(1)如图①.BP平分∠ABC,CP平分∠BCD交BP于点P.若AB=4,CD=6.试求AD的长;(2)如图②,∠BPC=∠BP A,BC⊥BP,若AB=4,求CD的长.25.如图,已知AB=12;AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E 是CD的中点,求AE的长.26.如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.27.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC 边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.28.已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD.29.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.30.如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处;(1)求证:B′E=BF;(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给予证明.31.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.32.如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D 点作DE丄DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长.33.已知,如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB 于点E,且CD=AC,DF∥BC,分别与AB、AC交于点G、F.(1)求证:GE=GF;(2)若BD=1,求DF的长.34.如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y 与x的函数关系式.35.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.苏科新版八年级上学期《3.1 勾股定理》同步练习卷参考答案与试题解析一.填空题(共20小题)1.如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012=.【分析】首先根据勾股定理求出OP4,再由OP1,OP2,OP3的长度找到规律进而求出OP2012的长.【解答】解:由勾股定理得:OP4==,∵OP1=;得OP2=;依此类推可得OP n=,∴OP2012=,故答案为:.【点评】本题考查了勾股定理的运用,解题的关键是由已知数据找到规律.2.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于6.【分析】根据面积的差得出a+b的值,再利用a﹣b=2,解得a,b的值代入即可.【解答】解:∵AB=10,EF=2,∴大正方形的面积是100,小正方形的面积是4,∴四个直角三角形面积和为100﹣4=96,设AE为a,DE为b,即4×ab=96,∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,∵a﹣b=2,解得:a=8,b=6,∴AE=8,DE=6,∴AH=8﹣2=6.故答案为:6.【点评】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab的值.3.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为10.【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB﹣BF.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S=•AF•BC=10.△AFC故答案为:10.【点评】本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=4.【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.【解答】解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.【点评】运用了全等三角形的判定以及性质、勾股定理.注意发现两个小正方形的面积和正好是之间的正方形的面积.5.如图,已知Rt△ABC中,∠C=90°,∠A=30°,AC=6.沿DE折叠,使得点A与点B重合,则折痕DE的长为2.【分析】本题给出了折叠要注意找准相等的量,题目利用折痕和角平分线的性质即可求得.【解答】解:由题意可得,BE平分∠ABC,DE=CE又∠A=30°,AC=6可得DE=AE∴DE=(6﹣DE)则DE=2.故答案为2.【点评】本题主要考查平分线的性质,由已知能够注意到DE=AE是解决的关键.6.如图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE =3,AB=8,则BF=6.【分析】设BC=x,AF可用含x的式子表示,CF可以根据勾股定理求出,然后用x表示出BF,在Rt△ABF中,利用勾股定理,可建立关于x的方程,即可得出BF的长.【解答】解:由折叠的性质知:AD=AF,DE=EF=8﹣3=5;在Rt△CEF中,EF=DE=5,CE=3,由勾股定理可得:CF=4,若设AD=AF=x,则BC=x,BF=x﹣4;在Rt△ABF中,由勾股定理可得:82+(x﹣4)2=x2,解得x=10,故BF=x﹣4=6.故答案为:6.【点评】考查了勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.7.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为4或4或4.【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【解答】解:如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM==4;如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM==4,∴Rt△ABM中,AM==4,综上所述,当△ABM为直角三角形时,AM的长为4或4或4.故答案为:4或4或4.【点评】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线的综合应用,运用分类讨论以及数形结合思想是解答此题的关键.8.如图,△ABD和△CED均为等边三角形,AC=BC,AC⊥BC.若BE=,则CD=.【分析】延长DC交AB于F,易证△BCD≌△BED,得BC=BE,易证DC⊥AB,得DF为BA边上的高,则根据CD=DF﹣CF即可求解.【解答】解:延长DC交AB于F.∵CA=CB,DA=DB∴CD均在线段AB的垂直平分线上,即DF⊥AB,且∠CDB=30°∴BD为等边△CDE中∠CDE的角平分线,∠CDB=∠EDB在△CDB和△EDB中,∴△CDB≌△EDB(SAS),∴BE=BC.∵AC=BC=,∴AB==2,且DF==,且CF=BF=1,∴CD的长为DF﹣CF=﹣1.故答案为﹣1.【点评】本题考查了勾股定理在直角三角形中的运用,考查了全等三角形的判定与对应边相等的性质,本题中求BE=BC是解题的关键.9.如图所示,在△ABC中,∠C=2∠B,点D是BC上一点,AD=5,且AD⊥AB,点E是BD的中点,AC=6.5,则AB的长度为12.【分析】Rt△ABD中,AE是斜边BD上的中线,则BE=AE=DE,因此∠AEC =2∠B,由此可证得△AEC是等腰三角形,即AE=AC=6.5,由此可得到BD 的长,进而可由勾股定理求出AB的值.【解答】解:Rt△ABD中,E是BD的中点,则AE=BE=DE;∴∠B=∠BAE,即∠AED=2∠B;∵∠C=2∠B,∴∠AEC=∠C,即AE=AC=6.5;∴BD=2AE=13;由勾股定理,得:AB==12.【点评】此题主要考查的是直角三角形、等腰三角形的性质及勾股定理的综合应用能力;能够发现△AEC是等腰三角形,以此得到直角三角形的斜边长,是解答此题的关键.10.如图所示,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB =8cm,BC=10cm,则EC的长为3cm.【分析】能够根据轴对称的性质得到相关的线段之间的关系.再根据勾股定理进行计算.【解答】解:∵D,F关于AE对称,所以△AED和△AEF全等,∴AF=AD=BC=10,DE=EF,设EC=x,则DE=8﹣x.∴EF=8﹣x,在Rt△ABF中,BF==6,∴FC=BC﹣BF=4.在Rt△CEF中,由勾股定理得:CE2+FC2=EF2,即:x2+42=(8﹣x)2,解得x=3.∴EC的长为3cm.【点评】特别注意轴对称的性质以及熟练运用勾股定理.11.如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,则图中阴影部分的面积为24.【分析】在直角三角形ABC中,由AC与BC的长,利用勾股定理求出AB的长,阴影部分面积=半圆AC+半圆BC+直角三角形ABC面积﹣半圆AB,求出即可.【解答】解:在Rt△ABC中,AC=6,BC=8,根据勾股定理得:AB==10,则S阴影=S半圆AC+S半圆BC+S△ABC﹣S半圆AB=π+π+×6×8﹣π=24.故答案为:24【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.如图,在△ABC中,∠ACB=90°,∠B=40°,D为线段AB的中点,则∠ACD=50°.【分析】由“直角三角形的两个锐角互余”得到∠A=50°.根据“直角三角形斜边上的中线等于斜边的一半”得到CD=AD,则等边对等角,即∠ACD=∠A=50°.【解答】解:如图,∵在△ABC中,∠ACB=90°,∠B=40°,∴∠A=50°.∵D为线段AB的中点,∴CD=AD,∴∠ACD=∠A=50°.故答案是:50°.【点评】本题考查了直角三角形的性质.在直角三角形中,斜边上的中线等于斜边的一半.13.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为或.【分析】分①点A、D在BC的两侧,设AD与边BC相交于点E,根据等腰直角三角形的性质求出AD,再求出BE=DE=AD并得到BE⊥AD,然后求出CE,在Rt△CDE中,利用勾股定理列式计算即可得解;②点A、D在BC的同侧,根据等腰直角三角形的性质可得BD=AB,过点D作DE⊥BC交BC 的反向延长线于E,判定△BDE是等腰直角三角形,然后求出DE=BE=2,再求出CE,然后在Rt△CDE中,利用勾股定理列式计算即可得解.【解答】解:①如图1,点A、D在BC的两侧,∵△ABD是等腰直角三角形,∴AD=AB=×2=4,∵∠ABC=45°,∴BE=DE=AD=×4=2,BE⊥AD,∵BC=1,∴CE=BE﹣BC=2﹣1=1,在Rt△CDE中,CD===;②如图2,点A、D在BC的同侧,∵△ABD是等腰直角三角形,∴BD=AB=2,过点D作DE⊥BC交BC的反向延长线于E,则△BDE是等腰直角三角形,∴DE=BE=×2=2,∵BC=1,∴CE=BE+BC=2+1=3,在Rt△CDE中,CD===,综上所述,线段CD的长为或.故答案为:或.【点评】本题考查了勾股定理,等腰直角三角形的性质,难点在于要分情况讨论,作出图形更形象直观.14.已知等腰三角形的腰长为5,一腰上的高为3,则以底边为边长的正方形的面积为10或90.【分析】根据题意作出图形分为高线在三角形内和高线在三角形外两种情况,然后根据勾股定理计算求解即可.【解答】解:由题意可作图.如图1,AC=5,CD=3,CD⊥AB,根据勾股定理可知:AD==4,∴BD=1.∴BC2=12+32=10.如图2,AC=5,CD=3,CD⊥AB,根据勾股定理可知:AD==4,∴BD=9,∴BC2=92+32=90.故答案是:10或90.【点评】本题考查了等腰三角形的性质,作出图形利用三角形知识求解即可.注意:需要分类讨论.15.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为42或32.【分析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32故答案是:42或32.【点评】此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.16.如图,在△ABC中,AB=AC=13,BC=10,D是AB的中点,过点D作DE⊥AC于点E,则DE的长是.【分析】过A作BC的垂线,由勾股定理易求得此垂线的长,即可求出△ABC的面积;连接CD,由于AD=BD,则△ADC、△BCD等底同高,它们的面积相等,由此可得到△ACD的面积;进而可根据△ACD的面积求出DE的长.【解答】解:过A作AF⊥BC于F,连接CD;△ABC中,AB=AC=13,AF⊥BC,则BF=FC=BC=5;Rt△ABF中,AB=13,BF=5;由勾股定理,得AF=12;∴S△ABC=BC•AF=60;∵AD=BD,∴S△ADC =S△BCD=S△ABC=30;∵S△ADC=AC•DE=30,即DE==.故答案为:.【点评】此题主要考查了等腰三角形的性质、勾股定理、三角形面积的求法等知识的综合应用能力.17.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是10.【分析】根据正方形的面积公式,结合勾股定理,能够导出正方形A,B,C,D 的面积和即为最大正方形的面积.【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=2+5+1+2=10.故答案是:10.【点评】本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.18.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为.【分析】先用直角三角形的边长表示出阴影部分的面积,再根据勾股定理可得:AB2=AC2+BC2,进而可将阴影部分的面积求出.【解答】解:在Rt△ABC中,AB2=AC2+BC2,AB=3,S阴影=S△AHC+S△BFC+S△AEB=×+×+×=(AC2+BC2+AB2)=AB2,=×32=.故图中阴影部分的面积为.【点评】本题主要是考查勾股定理的应用,比较简单.注意:以直角三角形的两条直角边为斜边的两个等腰直角三角形的面积的和等于以斜边为斜边的等腰直角三角形的面积;等腰直角三角形的斜边是直角边的倍.19.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为.【分析】根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长.【解答】解:根据勾股定理得:AC==5,由网格得:S△ABC =×2×4=4,且S△ABC=AC•BD=×5BD,∴×5BD=4,解得:BD=.故答案为:【点评】此题考查了勾股定理,以及三角形的面积,熟练掌握勾股定理是解本题的关键.20.矩形纸片ABCD中,AD=10cm,AB=4cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE=cm.【分析】根据已知条件可以知道,DE=BE,若设DE=x,则DE=BE=x,AE =10﹣x,在Rt△ABE中可以利用勾股定理,列方程求出DE的长.【解答】解:设DE=x,则BE=DE=x,AE=10﹣x,又∵在Rt△ABE中AB2+AE2=BE2,即42+(10﹣x)2=x2,解得x=.故答案为:.【点评】在解决本题的过程中要注意折叠时出现的相等的线段,把求线段长的问题转化为解直角三角形的问题.二.解答题(共15小题)21.已知△ABC中,AB=AC.(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;(2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD的长;(3)如图3,在△ADE中,当BD垂直平分AE于H,且∠BAC=2∠ADB时,试探究CD2,BD2,AH2之间的数量关系,并证明.【分析】(1)求出∠DAC=∠BAE,再利用“边角边”证明△ACD和△ABE全等,再根据全等三角形对应边相等即可得证;(2)连接BE,先求出△ADE是等边三角形,再根据全等三角形对应边相等可得BE=CD,全等三角形对应角相等可得∠BEA=∠CDA=30°,然后求出∠BED=90°,再利用勾股定理列式进行计算即可得解;(3)过B作BF⊥BD,且BF=AE,连接DF,先求出四边形ABFE是平行四边形,根据平行四边形对边相等可得AB=EF,设∠AEF=x,∠AED=y,根据平行四边形的邻角互补与等腰三角形的性质求出∠CAD,从而得到∠CAD=∠FED,然后利用“边角边”证明△ACD和△EFD全等,根据全等三角形对应边相等可得CD=DF,然后利用勾股定理列式计算即可得解.【解答】(1)如图1,证明:∵∠DAE=∠BAC,∴∠DAE+∠CAE=∠BAC+∠CAE,即∠DAC=∠BAE.在△ACD与△ABE中,,∴△ACD≌△ABE(SAS),∴CD=BE;(2)连接BE,∵CD垂直平分AE∴AD=DE,∵∠DAE=60°,∴△ADE是等边三角形,∴∠CDA=∠ADE=×60°=30°,∵△ABE≌△ACD,∴BE=CD=4,∠BEA=∠CDA=30°,∴BE⊥DE,DE=AD=3,∴BD=5;(3)如图,过B作BF⊥BD,且BF=AE,连接DF,则四边形ABFE是平行四边形,∴AB=EF,设∠AEF=x,∠AED=y,则∠FED=x+y,∠BAE=180°﹣x,∠EAD=∠AED=y,∠BAC=2∠ADB=180°﹣2y,∠CAD=360°﹣∠BAC﹣∠BAE﹣∠EAD=360°﹣(180°﹣2y)﹣(180°﹣x)﹣y=x+y,∴∠FED=∠CAD,在△ACD和△EFD中,,∴△ACD≌△EFD(SAS),∴CD=DF,而BD2+BF2=DF2,∴CD2=BD2+4AH2.【点评】本题考查了勾股定理,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等边三角形的判定与性质,综合性较强,难度较大,作辅助线构造出全等三角形与直角三角形是解题的关键.22.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;(2)已知S=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段△ABCBA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2)由△ABC的面积求出BD、AD、CD、AC;①当MN∥BC时,AM=AN;当DN∥BC时,AD=AN;得出方程,解方程即可;②根据题意得出当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能:如果DE=DM;如果ED=EM;如果MD=ME=t﹣4;分别得出方程,解方程即可.【解答】(1)证明:设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC==5x,∴AB=AC,∴△ABC是等腰三角形;=×5x×4x=40cm2,而x>0,(2)解:S△ABC∴x=2cm,则BD=4cm,AD=6cm,CD=8cm,AC=10cm.①当MN∥BC时,AM=AN,即10﹣t=t,∴t=5;当DN∥BC时,AD=AN,得:t=6;∴若△DMN的边与BC平行时,t值为5或6.②当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;当t=4时,点M运动到点D,不构成三角形当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.如果DE=DM,则t﹣4=5,∴t=9;如果ED=EM,则点M运动到点A,∴t=10;如果MD=ME=t﹣4,过点E做EF垂直AB于F,因为ED=EA,所以DF=AF=AD=3,在Rt△AEF中,EF=4;因为BM=t,BF=7,所以FM=t﹣7则在Rt△EFM中,(t﹣4)2﹣(t﹣7)2=42,∴t=.综上所述,符合要求的t值为9或10或.【点评】本题考查了勾股定理、等腰三角形的判定与性质、平行线的性质、解方程等知识;本题有一定难度,需要进行分类讨论才能得出结果.23.如图,在△ABC中,∠ACB=90°,∠B=30°,CD,CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2,求△CDE的周长.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,得CD=AD,根据直角三角形的两个锐角互余,得∠A=60°,从而判定△ACD是等边三角形,再根据等腰三角形的三线合一的性质即可证明;(2)结合(1)中的结论,求得CD=2,DE=1,只需根据勾股定理求得CE的长即可.【解答】(1)证明:∵∠ACB=90°,CD是AB边上的中线,∴CD=AD=DB.∵∠B=30°,∴∠A=60°.∴△ACD是等边三角形.∵CE是斜边AB上的高,∴AE=ED.(2)解:由(1)得AC=CD=AD=2ED,又AC=2,∴CD=2,ED=1.∴.∴△CDE的周长=.【点评】此题综合运用了直角三角形的性质、等边三角形的判定和性质以及勾股定理.直角三角形斜边上的中线等于斜边的一半;直角三角形的两个锐角互余.有一个角是60°的等腰三角形是等边三角形.24.如图,AB⊥MN于A,CD⊥MN于D.点P是MN上一个动点.(1)如图①.BP平分∠ABC,CP平分∠BCD交BP于点P.若AB=4,CD=6.试求AD的长;(2)如图②,∠BPC=∠BP A,BC⊥BP,若AB=4,求CD的长.【分析】(1)过点P作PE⊥BC于E,过点B作BF⊥CD于F,利用角平分线性质定理可得AP=PE,再由全等三角形的判定方法可知Rt△ABP≌Rt△EBP,同理可证Rt△CEP≌Rt△CDP,进而可得AB=BE,CE=CD,即BC=10,易证四边形ABFD是矩形,所以BF=AD,利用勾股定理求出BF的长即可;(2)如图2,延长CB和P A,记交点为点Q.根据等腰△QPC“三合一”的性质证得QB=BC;由相似三角形(△QAB∽△QDC)的对应边成比例得到,则CD=2AB,问题得解;【解答】解:(1)过点P作PE⊥BC于E,过点B作BF⊥CD于F,∵AB⊥MN于A,CD⊥MN于D,BP平分∠ABC,∴AP=PE,在Rt△ABP和Rt△EBP中,,∴Rt△ABP≌Rt△EBP,∴AB=BE=4,同理可得CE=CD=6,∴BC=BE+CE=10,易证四边形ABFD是矩形,∴BF=AD,CF=6﹣4=2,∴AD==4;(2)延长CB和P A,记交点为点Q.∵∠BPC=∠BP A,BC⊥BP,∴QB=BC(等腰三角形“三合一”的性质).∵BA⊥MN,CD⊥MN,∴AB∥CD,∴△QAB∽△QDC,∴,∴CD=2AB=2×4=8.【点评】本题考查了勾股定理的运用、矩形的判定和性质、等腰三角形的判定和性质以及全等三角形的判定和性质、相似三角形的判定和性质,题目的综合性较强,难度较大,解题的关键是正确添加辅助线构造直角三角形.25.如图,已知AB=12;AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E 是CD的中点,求AE的长.【分析】如图,延长AE交BC于F,构造全等三角形△AED≌△FEC(AAS),则对应边AE=FE,AD=FC.在Rt△ABF中,利用勾股定理即可求得线段AF的长度.【解答】解:如图,延长AE交BC于F.∵AB⊥BC,AB⊥AD,∴AD∥BC∴∠D=∠C,∠DAE=∠CFE,又∵点E是CD的中点,∴DE=CE.∵在△AED与△FEC中,,∴△AED≌△FEC(AAS),∴AE=FE,AD=FC.∵AD=5,BC=10.∴BF=5在Rt△ABF中,,∴AE=AF=6.5.【点评】本题考查了勾股定理、全等三角形的判定与性质.注意,本题辅助线的作法.26.如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.【分析】(1)根据勾股定理可求得AB的长;(2)根据三角形的面积公式计算即可求解;(3)根据三角形的面积相等即可求得CD的长.【解答】解:(1)∵在△ABC中,∠ACB=90°,BC=15,AC=20,∴AB2=AC2+BC2,解得AB=25.答:AB的长是25;(2)AC•BC=×20×15=150.答:△ABC的面积是150;(3)∵CD是边AB上的高,∴AC•BC=AB•CD,解得:CD=12.答:CD的长是12.【点评】此题主要考查勾股定理及三角形的面积公式的综合运用能力,本题的难度不大.27.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC 边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.【分析】(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;(2)设出发t秒钟后,△PQB能形成等腰三角形,则BP=BQ,由BQ=2t,BP =8﹣t,列式求得t即可;(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时,则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时,则BC+CQ=12,易求得t;③当BC=BQ时,过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.【解答】解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm),∠B=90°,∴PQ===(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t=,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE==,∴CE=,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.【点评】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质,注意分类讨论思想的应用.28.已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD.【分析】(1)根据勾股定理AB2+BC2=AC2,得出AB2+BC2=2AB2,进而得出AB =BC;(2)首先证明CDEF是矩形,再根据△BAE≌△CBF,得出AE=BF,进而证明结论.【解答】证明:(1)连接AC.∵∠ABC=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2,∴BC2=AB2,∵AB>0,BC>0,∴AB=BC.(2)过C作CF⊥BE于F.∵BE⊥AD,CF⊥BE,CD⊥AD,∴∠FED=∠CFE=∠D=90°,∴四边形CDEF是矩形.∴CD=EF.∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∴在△BAE与△CBF中∴,∴△BAE≌△CBF.(AAS)∴AE=BF.∴BE=BF+EF=AE+CD.【点评】此题主要考查了勾股定理的应用以及三角形的全等证明,根据已知得出四边形CDEF是矩形以及△BAE≌△CBF是解决问题的关键.29.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.【分析】(1)根据勾股定理画出边长为的正方形即可;(2)根据勾股定理和已知画出符合条件的三角形即可;(3)连接AC、CD,求出△ACB是等腰直角三角形即可.【解答】解:(1)如图1的正方形的边长是,面积是10;(2)如图2的三角形的边长分别为2,,;(3)如图3,连接AC,CD,则AD=BD=CD==,。

苏科版八年级数学上册3.1勾股定理(2)同步练习

苏科版八年级数学上册3.1勾股定理(2)同步练习

苏科版八年级数学上3.1勾股定理(2)同步练习课堂巩固1.如图,带阴影的长方形的面积是( )A. 9 cm 2B. 24 cm 2C. 45 cm 2D. 51 cm 22.在直线l 上依次摆放着三个正方形(如图所示). 已知斜放的正方形的面积是1,正放置的两个正方形的面积依次是12,S S ,则12,,1S S 之间的关系是( )A. 121S S +=B. 121S S +>C. 121S S +<D.无法确定3.历史上对勾股定理的一种证法采用了如图所示的图形,其中两个全等的直角三角形的边,AE EB 在一条直线上.证明中用到的面积相等的关系是( )A. EDA CEB S S ∆∆=B. EDA CEB CDB S S S ∆∆∆+=C. CDAE CDEB S S =四边形四边形D. EDA CDE CEB ABCD S S S S ∆∆∆++=四边形4.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长的直角边长为a ,较短的直角边长为b .若8ab =,大正方形的面积为25,则小正方形的边长为( )A. 9B. 6C. 4D. 35.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种的验证方法,如图1,火柴盒的一个侧面ABCD 倒下到AB 'C 'D '的位置,连接CC ',设AB =a ,BC =b ,AC =c ,利用四边形BCCD '的面积验证勾股定理:a 2+b 2=c 2.6.如图,P 为正方形ABCD 内的一点,将△ABP 绕点B 顺时针旋转90°到△CBE 的位置,若BP =8,求 以PE 为边长的正方形的面积.7、观察图中的△ABC 和△DEF ,它们是直角三角形吗?其中两个小正方形的面积和等于大正方形的面积吗?课后研究1.如图,正方形ABDE 、CDFI 、EFGH 的面积分别为25、9、16,△AEH 、△BDC 、△GFI 的面积分别为S 1、S 2、S 3,则S 1+S 2+S 3=_______.2.如图,已知Rt △DEF 中,∠EFD =90°,DF =3,EF =4,以直角三角形三边向外作正方形ABDE 、CDFI 、EFGH ,连接BC ,GI ,AH ,则六边形ABCIGH 的面积为_______________.3.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图(a )是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图(b )是由图(a )放人长方形内得到的,∠BAC =90°,AB =3,AC =4,点D ,E ,F ,G ,H ,I 都在长方形KLMJ 的边上,则长方形KLMJ 的面积为 ( )A .90B .100C .110D .121 FE D CBA4.探索与研究:方法1:如图(a ),对任意的符合条件的直角三角形绕其锐角顶点旋转90°所得,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 面积相等,而四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和,根据图示写出证明勾股定理的过程;方法2:如图(b ),是任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写一种证明勾股定理的方法吗?5.如图,将△ABC 放在每个小正方形的边长为1的网格中,点A ,点B ,点C 均落在格点上. (Ⅰ)计算AC 2+BC 2的值等于11 ;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB 为一边的矩形,使该矩形的面积等于AC 2+BC 2,并简要说明画图方法(不要求证明)6.ADE ∆和ACB ∆是两直角边为,a b ,斜边为c 的全等的直角三角形,按如图所示摆放,其中90DAB ∠=︒,求证: 222a b c +=7.如图,,,B D C 三点在一条直线上,90ADB ADC ∠=∠=︒,BD DE =,45DAC ∠=︒.(1)试判定线段,AB CE 的关系,并说明理由;(2)若,,BD a AD b AB c ===,请利用此图的面积证明勾股定理.1、在最软入的时候,你会想起谁。

苏科版八年级数学上册勾股定理同步练习

苏科版八年级数学上册勾股定理同步练习

中线,DE 经过 騐⺹ 的重心 G,且 ⺹
⺹.
1 问:线段 AG 是 ⺹ 的高线还是中线?请说明理由.
2 若 騐 ᳍, ⺹ ᳍,求 AD 的长.
第 3页,共 13页
1.【答案】B
答案和解析
【解析】解:过点 A 作 ⺹ 騐⺹,
騐 ⺹,
騐⺹
⺹⺹
1 2
騐⺹
1 2
1᳍
⺹,

⺹2 ⺹⺹2 1 2 ⺹2 12 ,
, ⺹ ᳍ 2,
騐 騐⺹ ݅
᳍ 2 2 ᳍,⺹ 騐 ᳍,
2
在 ⺹ 中,
⺹,
3,
⺹ ᳍,
⺹騐 ⺹⺹ ⺹ 故选:C.
᳍ ᳍ 3 2 3, ⺹ ᳍ 2 3.
过点 B 作 騐
⺹ 于点 M,根据题意可求出 BC 的长度,然后在 ⺹ 中可求出
⺹ ᳍ ,进而可得出答案.
本题考查了解直角三角形的性质及平行线的性质,解答此类题目的关键根据题意建立直
12.【答案】᳍13
【解析】
【分析】
此题考查了勾股定理,以及三角形面积公式,熟练掌握勾股定理是解本题的关键.先利
用勾股定理求出斜边长,再利用面积法求出斜边上的高即可.
【解答】
解:
直角三角形的两条直角边的长分别为 5,12,
由勾股定理,得出斜边为 2 122 13. 设 h 为斜边上的高.
1 騐⺹ 2
騐魐
騐⺹ ⺹ ⺹

.᳍.
15.【答案】证明: 1
⺹騐 和 ⺹⺹ 都是等腰直角三角形,
⺹ 騐⺹,⺹⺹ ⺹ .
⺹騐
⺹⺹ ⺹ ,
騐⺹⺹
⺹⺹

⺹⺹.
騐⺹⺹
⺹.
在 ⺹ 和 騐⺹⺹ 中,

苏科版八年级数学上册3.1《勾股定理》同步练习.docx

苏科版八年级数学上册3.1《勾股定理》同步练习.docx

3.1《勾股定理》同步练习1.已知在Rt △ABC 中,∠C=90°。

①若a=3,b=4,则c=________; ②若a=40,b=9,则c=________;③若a=6,c=10,则b=_______; ④若c=25,b=15,则a=________。

⑤b=8,c=17,则S △ABC =________。

2.已知甲往东走了4km ,乙往南走了3km ,这时甲、乙俩人相距3.要登上8m 高的建筑物,为了安全需要,需使梯子底端离建筑物6m ,至少需要 米长的梯子.4.在Rt ⊿ABC 中,斜边AB = 2,则______222=++CA BC AB .5.直角三角形的周长为12cm ,斜边的长为5 cm ,则其面积为 .6.如果一个直角三角形的一条直角边是另一条直角边的2倍,斜边长是5 cm ,那么这个直角三角形的面积是 .7.一直角三角形的斜边长比直角边长大2,另一直角边长为6,则斜边长为( )A. 4B. 8C. 10D. 128.若等腰三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 ( )A. 12 cmB. 10 cmC. 8 cmD. 6 cm9.CD 为直角三角形ABC 斜边AB 上的高,若AB = 10,AC :BC = 3:4,则这个直角三角形的面积为( )A .6B ..8C .12D .2410.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m ,当它把绳子的下端拉开5 m 后,发现下端刚好接触地面,则旗杆的高为( )A .8mB . 10mC .12mD .14m11.下列各图中所示的线段的长度或正方形的面积为多少。

(注:1.下列各图中的三角形均为直角三角形;2.大写英文字母为图形面积,小写英文字母为线段的长CB12.受台风影响,一棵竖直的树断裂,树的顶部落在离树跟底部3米处,未断的树干高4米,求这棵树有多高? (画出示意图并求解)13.如图,在四边形ABCD 中,∠︒=90BAD ,∠︒=90DBC ,12,4,3===BC AB AD ,求CD .14.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=900,D 在AB 边上一点。

苏科版八年级数学上册《3.1 勾股定理》同步练习题-带答案

苏科版八年级数学上册《3.1 勾股定理》同步练习题-带答案

苏科版八年级数学上册《3.1 勾股定理》同步练习题-带答案一、单选题1.已知如图,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形,若斜边AB =10,则图中阴影部分的面积为 ( )A .50B .502C .100D .10022.如图,已知1S 、2S 和3S 分别是Rt ABC △的斜边AB 及直角边BC 和AC 为直径的半圆的面积,则12S S 、和3S 满足关系式为( ).A .123S S S =+B .123S S S <+C .123S S S >+D .无法判断3.如图,点A ,C 都是数轴上的点,AB=AC ,则数轴上点C 所表示的数为( )A .110B .5-C .51-D .101-4.如图,在等腰1Rt OAA 中190OAA ∠=︒,OA=1,以OA 1为直角边作等腰12Rt OA A ,以OA 2为直角边作等腰23Rt OA A ,则2n OA 的长度为( )A .2nB .2nC .2nD .225.在等腰ABC 中,AB=AC=5,13BC )A .12B .3C .32D .186.已知直角三角形的两条直角边长为6,8,那么斜边上的高为( )A .4.8B .5C .7D .107.如图,在Rt△ABC 中,△B=90°,AB=8,BC=4,斜边AC 的垂直平分线分别交AB 、AC 于点E 、O ,连接CE ,则CE 的长为( )A .5B .6C .7D .4.58.四张正方形纸片如图放置,知道下列哪两个点之间的距离,可求最大正方形与最小正方形的面积之和( )A .点K ,FB .点K ,EC .点C ,FD .点C ,E9.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为( )A .27cmB .228cmC .242cmD .249cm10.如图,在Rt △ABC 中,△C =90°,D 为AC 上一点,且DA =DB =5,又△DAB 的面积为10,那么△ABC 的面积是( )A .14B .15C .16D .403二、填空题11.在ABC 中30ABC ∠=︒,AE ⊥BC ,AD ⊥AB ,交直线BC 于点D ,若3AB =CD=1,则: (1)AE 的长为 ;(2)AC 的长为 .12.如图,ABC 中=90C ∠︒,AD 平分BAC ∠交BC 于点D ,CD=6,BD=10,AC 长为 .13.在平面直角坐标系xOy 中,点()48,33E t t +--是该平面内任意一点,连接OE ,则OE 的最小值是 . 14.如图,△ABC 中,△C =90°,AC+BC =6,△ABC 的面积为114cm 2,则斜边AB 的长是 cm .15.图1是第七届国际数学教育大会(JCME -7)的会徽图案,它是由一串有公共顶点O 的直角三角形演化而成的.若图2中的11223341OA A A A A A A ====⋯=,按此规律继续演化,则910OA A △的面积为 .三、解答题16.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45︒降为30︒,已知原滑滑板AB 的长为6米,点E 、D 、B 、C 在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方留有4米长的空地就能保证安全,已知原滑滑板的前方8米处的E 点有一棵大树,这样的改造是否可行?说明理由.2 1.414 3 1.732 6 2.449≈)17.中国最强发射震撼上演!2024年2月3日7时37分,我国在西昌卫星发射中心使用长征二号丙运载火箭,成功将吉利星座02组卫星发射升空,11颗卫星顺利进入预定轨道,发射任务获得圆满成功.如图,火箭从地面A 处垂直发射,当火箭到达B 点时从D 处的雷达站测得60km BD = 30ADB ∠=;当火箭到达C 点时,测得45ADC ∠=,求BC 的长.2 1.414≈ 3 1.732≈ 5 2.236≈,结果精确到0.1km )18.明代科学家徐光启所著的《农政全书》是中国古代四大农书之一,其中记载了中国古代的一种采桑工具——桑梯(如图1),其示意图如图2,已知180cm,160cm AB AC AD ===,AC 与AB 的张角BAC ∠记为α,为保证采桑人的安全,α可调整的范围是3060α︒≤≤︒,BC 为固定张角α大小的锁链.(1)求锁链BC 长度的最大值;(2)若60α=︒,将桑梯放置在水平地面上,求此时桑梯顶端D 到地面的距离.(结果保留根号) 19.如图,某校数学兴趣小组开展“初二几何现场实践活动”,他们在操场上设立,,,A B C D 四个点,并给出以下信息:点A 在点B 的西北方向上,点D 在点B 的北偏西15︒方向上,点D 在点A 的东北方向上90BCD ∠=︒,30CD =米,25AD =米.(1)求BC 的长;(2)若小明和小亮从点B 同时出发,分别沿B A D →→和B C D →→到达点D ,若两人的速度相同,请判断小明和小亮谁先到达?并说明理由.3 1.73≈ 2 1.41≈)20.如图所示,15只空油桶堆在一起,每只油桶的底面直径均为50厘米.现在要给它们盖一个遮雨棚,遮雨棚起码要多高?(结果精确到0.01厘米)参考答案1.A2.A3.A4.C5.B6.A7.A8.C9.D10.C11.31321 12.1213.125/2.4/22514.515.3 216.(1)2.49米(2)可行,略17.22.0km18.(1)锁链BC长度的最大值为180cm (2)桑梯顶端D到地面的距离为1703cm 19.(1)40米(2)小明先到达,略20.223.20cm。

八年级数学上册 第三章 3.1 勾股定理的证明知识点与同步训练(含解析)苏科版

八年级数学上册 第三章 3.1 勾股定理的证明知识点与同步训练(含解析)苏科版

勾股定理的证明一.勾股定理1.如果直角三角形的两直角边长分别为a,b,斜边长为c,那么222a b c+=.2.勾股定理的变形:22c a b=+,22a c b=-,22b c a=-.二.勾股定理的证明1.如下图,()22142ABCDS c a b ab==-+⨯正方形,所以222a b c+=.HGFEDCBA cba 2.如下图,2()()112222ABCDa b a bS ab c+-==⨯+梯形,所以222a b c+=.cb ac baEDCBA一.勾股定理逆定理1.如果三角形的三边长a,b,c满足222a b c+=,那么这个三角形是直角三角形.2.勾股定理与其逆定理的区别是:勾股定理以“一个三角形是直角三角形”为前提,得到这个三角形的三边长的数量关系;勾股定理的逆定理以“三角形的三边长满足222a b c+=”为前提,得到这个三角形是直角三角形.两者的题设和结论正好相反,应用时要注意其区别.二.勾股数1.满足222a b c+=的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.2.常用勾股数:3、4、5;5、12、13;6、8、10;7、24、25;8、15、17;9、40、41.题模一:证明例1.1.1请根据我国古代数学家赵爽的弦图(如图),说明勾股定理.【答案】见解析【解析】∵△ABC、△BMD、△DHE、△AGE是全等的四个直角三角形,∴AE DE BD AB===,1809090EAG BAC EAG AEG∠+∠=∠+∠=︒-︒=︒,∴四边形ABDE是正方形,∵90AGE EHD BMD ACB∠=∠=∠=∠=︒,∴90HGC∠=︒,∵GH HM CM CG b a====-,∴四边形GHMC是正方形,∴大正方形的面积是2c c c⨯=,大正方形的面积也可以是:2222214222ab b a ab a ab b a b⨯+-=+-+=+(),∴222a b c+=,即在直角三角形中,两直角边a b(、)的平方和等于斜边c()的平方.例1.1.2如图所示,P是△ABC边AC上的动点,以P为顶点作矩形PDEF,顶点D,E在边BC上,顶点F在边AB上;△ABC的底边BC及BC上的高的长分别为a,h,且是关于x的一元二次方程mx2+nx+k=0的两个实数根,设过D,E,F三点的⊙O的面积为S⊙O,矩形PDEF的面积为S矩形PDEF.(1)求证:以a+h为边长的正方形面积与以a、h为边长的矩形面积之比不小于4;(2)求OPDEFS S 矩形的最小值;(3)当OPDEFSS 矩形的值最小时,过点A 作BC 的平行线交直线BP 与Q ,这时线段AQ 的长与m ,n ,k 的取值是否有关?请说明理由.【答案】 见解析 【解析】 解法一:(1)据题意,∵a+h=-n m ,ah=k m∴所求正方形与矩形的面积之比: 2()a h ah+=2()n m k m-=2n mk (1分) ∵n 2-4mk≥0,∴n 2≥4mk,由ah=km知m ,k 同号, ∴mk>0 (2分)(说明:此处未得出mk >0只扣(1分),不再影响下面评分) ∴2n mk ≥4mk mk=4(3分) 即正方形与矩形的面积之比不小于4.(2)∵∠FED=90°,∴DF 为⊙O 的直径.∴⊙O 的面积为:S ⊙O =π(2DF )2=π24DF =4π(EF 2+DE 2). (4分)矩形PDEF 的面积:S 矩形PDEF =EF•DE. ∴面积之比:OPDEFSS 矩形=4π(EF DE+DE EF),设EF DE=f .OPDEFSS 矩形=4π(f+1f)=4π[(f )2+(1f )2-2f -1f+2f1f]=4π(f -1f)2+2π.(6分)∵(f -1f )2≥0,∴4π(f -1f)2+2π≥2π,∴f =1f,即f=1时(EF=DE ),OPDEFSS 矩形的最小值为2π(7分)(3)当OPDEFSS 矩形的值最小时,这时矩形PDEF 的四边相等为正方形.过B 点过BM⊥AQ,M 为垂足,BM 交直线PF 于N 点,设FP=e ,∵BN∥FE,NF∥BE,∴BN=EF,∴BN=FP=e. 由BC∥MQ,得:BM=AG=h . ∵AQ∥BC,PF∥BC,∴AQ∥FP, ∴△FBP∽△ABQ. (8分)(说明:此处有多种相似关系可用,要同等分步骤评分) ∴FP AQ =BNBM,(9分) ∴e AQ =eh,∴AQ=h (10分) ∴AQ=242n n mkm -±-(11分)∴线段AQ 的长与m ,n ,k 的取值有关. (解题过程叙述基本清楚即可) 解法二:(1)∵a,h 为线段长,即a ,h 都大于0,∴ah>0 (1分)(说明:此处未得出ah >0只扣(1分),再不影响下面评分) ∵(a-h )2≥0,当a=h 时等号成立. 故,(a-h )2=(a+h )2-4ah≥0.(2分) ∴(a+h )2≥4ah,∴2()a h ah+≥4.(﹡) (3分)这就证得2()a h a h+-≥4.(叙述基本明晰即可)(2)设矩形PDEF 的边PD=x ,DE=y ,则⊙O 的直径为22x y +. S ⊙O =π(222x y +)2(4分),S 矩形PDEF =xyOPDEFSS 矩形=22()4x y xyπ+=4π[22(2)2x xy y xy xy ++-]=4π[2()x y xy +-2](6分)2()x y xy+≥4由(1)(*). ∴4π[2()x y xy +-2]≥4π(4-2)=2π.∴OPDEFSS 矩形的最小值是2π(7分)(3)当OPDEFSS 矩形的值最小时,这时矩形PDEF 的四边相等为正方形.∴EF=PF.作AG⊥BC,G为垂足.∵△AGB∽△FEB,∴ABBF =AGEF.(8分)∵△AQB∽△FPB,ABBF =AQPF,(9分)∴ABBF =AGEF=AQPF.而EF=PF,∴AG=AQ=h,(10分)∴AG=h=242n n mkm-+-,或者AG=h=242n n mkm---(11分)∴线段AQ的长与m,n,k的取值有关.(解题过程叙述基本清楚即可)题模二:勾股定理例1.2.1如图,每个小正方形的边长为1,△ABC的三边a,b,c的大小关系式()A.a<c<b B.a<b<c C.c<a<b D.c<b<a【答案】C【解析】∵AC=2243+=5=25,BC=2241+=17,AB=4=16,∴b>a>c,即c<a<b.故选C.例1.2.2有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为()A.5B.7C.5或7D.不确定【答案】C【解析】本题考查勾股定理的使用.此题要分两种情况进行讨论:①当3和4为直角边时;②当4为斜边时,再分别利用勾股定理进行计算即可.①当3和4为直角边时,第三边长为22345+=②当4为斜边时,第三边长为22437-=,故选C.例1.2.3在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.365B.1225C.94D.334【答案】A【解析】根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB=22AC BC+=15,过C作CD⊥AB,交AB于点D,又S△ ABC=12AC•BC=12AB•CD,∴CD=AC BCAB=91215⨯=365,则点C到AB的距离是365.故选A例1.2.4已知直角三角形的一直角边等于35cm,另外两条边的和为49cm,求斜边长.【答案】斜边长为37cm【解析】设直角三角形的斜边长为x cm,则另一直角边为()49x-cm,根据勾股定理可列方程:()2223549x x+-=,解得37x=随练1.1勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜地发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2.证明:连结DB,过点D作BC边上的高DF,则DF=EC=b-a.∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab.又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b-a)∴12b2+12ab=12c2+12a(b-a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结____.∵S五边形ACBED=____.又∵S五边形ACBED=____.∴____.∴a2+b2=c2.【答案】(1)BD,过点B作DE边上的高BF,则BF=b-a(2)S△ ACB+S△ ABE+S△ ADE=12ab+12b2+12ab,(3)S△ ACB+S△ ABD+S△ BDE=12ab+12c2+12a(b-a)(4)12ab+12b2+12ab=12ab+12c2+12a(b-a)【解析】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,∵S 五边形ACBED =S △ ACB +S △ ABE +S △ ADE =12ab+12b 2+12ab , 又∵S 五边形ACBED =S △ ACB +S △ ABD +S △ BDE =12ab+12c 2+12a (b-a ), ∴12ab+12b 2+12ab=12ab+12c 2+12a (b-a ), ∴a 2+b 2=c 2.随练1.2 如图,在正方形网格(图中每个小正方形的边长均为1)中,△ABC 的三个顶点均在格点上,则△ABC 的周长为=_____,面积为_____【答案】 62610+;36【解析】 该题考查的是勾股定理和三角形面积计算.由勾股定理得:2239310AB =+=,226662BC =+=,1.2239310AC =+=, 2. 所以△ABC 的周长为62610AB AC BC ++=+,1199662393622ABC S =⨯-⨯⨯-⨯⨯⨯=△随练1.3 若一直角三角形两边长为6和8,则第三边长为()A . 10B . 27C . 10或D . 10【答案】C【解析】 该题考查的是勾股定理.(1)当6和8是直角边时,斜边10==;(2)当8是斜边时,另一直角边==;故选C .随练1.4 若一直角三角形两边长为6和8,则第三边长为( )A . 10B .C . 10或D . 10【答案】C【解析】 该题考查的是勾股定理.(1)当6和8是直角边时,斜边10==;(2)当8是斜边时,另一直角边==;故选C .随练1.5 设a 、b 是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是____A . 1.5B . 2C . 2.5D . 3【答案】D【解析】 本题考查了勾股定理和三角形的周长以及完全平方公式的运用.由该三角形的周长为6,斜边长为2.5可知a+b+2.5=6,再根据勾股定理和完全平方公式即可求出ab 的值.∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5,①∵a、b 是直角三角形的两条直角边,∴a 2+b 2=2.52,②由①②可得ab=3,故选D .随练1.6 已知在Rt △ABC 中,90C ∠=︒,AB c =,BC a =,AC b =.如果26c =,:5:12a b =,求a 、b 的值.【答案】 10a =,24b =【解析】 ∵Rt ABC △中,90C ∠=︒,26c =,:5:12a b =,可设5a x =,则12b x =,∴()()22251226x x +=,解得2x =,∴10a =,24b =.作业1 如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了( )m 的路,却踩伤了花草.A . 5B . 4C . 3D . 2【答案】B【解析】 该题考查的是勾股定理.根据直角三角形勾股定理两直角边长的平方和等于斜边长的平方,可得斜边长为2251213+=,因此少走的路为512134+-=.所以本题的答案是B .作业2 如图,点E 在正方形ABCD 内,满足90AEB ∠=︒,6AE =,8BE =,则阴影部分的面积是( )E ACB D A . 48B . 60C . 76D . 80【答案】C 【解析】 211100687622ABE ABCD S S S AB AE BE ∆=-=-⨯⨯=-⨯⨯=正方形阴影部分.故选C .作业3 已知一个直角三角形的两条直角边分别为6cm ,8cm ,那么这个直角三角形斜边上的高为cm.【解析】∵直角三角形的两条直角边分别为6cm,8cm,∴斜边为=10,设斜边上的高为h,则直角三角形的面积为×6×8=×10h,h=4.8cm,这个直角三角形斜边上的高为4.8cm.作业4如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于____.【答案】2π【解析】S1=12π(2AC)2=18πAC2,S2=18πBC2,所以S1+S2=18π(AC2+BC2)=18πAB2=2π.故答案为:2π.作业5学习勾股定理相关内容后,张老师请同学们交流这样的一个问题:“已知直角三角形的两条边长分别为3,4,请你求出第三边.”张华同学通过计算得到第三边是5,你认为张华的答案是否正确:_____________,你的理由是______________________________________________________________________【答案】不正确;若4为直角边,第三边为5;若4为斜边,第三边为7【解析】本题需要分类讨论.当4为直角边时,第三边的长为22345+=;当4为斜边时,第三边的长为22437-=.因此答案为5或7.作业6如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE丄DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长.【答案】5连接BD ,∵等腰直角三角形ABC 中,D 为AC 边上中点,∴BD⊥AC(三线合一),BD=CD=AD ,∠ABD=45°,∴∠C=45°,∴∠ABD=∠C,又∵DE 丄DF ,∴∠FDC+∠BDF=∠EDB+∠BDF,∴∠FDC=∠EDB,在△EDB 与△FDC 中,∵EBD C BD CD EDB FDC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EDB≌△FDC(ASA ),∴BE=FC=3,∴AB=7,则BC=7,∴BF=4,在Rt△EBF 中,EF 2=BE 2+BF 2=32+42,∴EF=5.答:EF 的长为5.作业7 操作:剪若干个大小形状完全相同的直角三角形,三边长分别记为a 、b 、c (如图①),分别用4张这样的直角三角形纸片拼成如图②③的形状,图②中的两个小正方形的面积2S 、3S 与图③中小正方形的面积1S 有什么关系?你能得到a 、b 、c 之间有什么关系?【答案】 三个小正方形的面积满足231S S S +=,其边长满足222a b c +=【解析】 分别用4张直角三角形纸片,拼成如图2、图3的形状,观察图2、图3可发现,图2中的两个小正方形的面积之和等于图3中的小正方形的面积,即231S S S +=,这个结论用关系式可表示为222a b c +=.如有侵权请联系告知删除,感谢你们的配合!。

苏科版数学八年级上册 3.1 勾股定理 同步练习

苏科版数学八年级上册 3.1 勾股定理 同步练习

苏科版数学八年级上册 3.1 勾股定理 同步练习1 / 73-1《勾股定理》一、选择题(本大题共10小题,共30.0分1. 以下列各组数为一个三角形的三边长,能构成直角三角形的是A. , ,B. , ,C. , ,D. , ,2. 若直角三角形的三边长分别为 、a 、 ,且a 、b 都是正整数,则三角形其中一边的长可能为A. 22B. 32C. 62D. 823. 设直角三角形的两条直角边分别为a 和b ,斜边长为c ,已知 , ,则A. 1B. 5C. 10D. 254. 如图,四边形ABCD 的对角线AC 与BD 互相垂直,若 , , ,则AD 的长为A.B. 4C.D.5. 如图,在 中, , , ,则BC 边上的高AD 为A. 8B. 9C.D. 106.一个直角三角形的斜边长为2,一条直角边长为,则另一条直角边长是A. 1B. 2C.D. 37.下列几组数:,,;,,;,,;,,是大于1的整数,其中是勾股数的有A. 1组B. 2组C. 3组D. 4组8.加一次暴风雨袭击过后,人们发现一棵9m高的大树被从离地面4m高的地方折断,则树顶与地面的接触点距树根可能是A. 1mB. 9mC. 3mD. 13m9.在中,若,则A. B.C. D.10.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是A. B.C. D.二、解答题苏科版数学八年级上册 3.1 勾股定理 同步练习3 / 711. 如图,在 中, , , 边上的中线求AC 的长.12. 池塘中有一株荷花的茎长为OA ,无风时露出水面部分 米,如果把这株荷花旁边拉至使它的顶端A 恰好到达池塘的水面B 处,此时荷花顶端离原来位置的距离 米,求这颗荷花的茎长OA .13.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形气旋风暴,有极强的破坏力,此时某台风中心在海域B处,在沿海城市A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米时的速度沿北偏东方向向C移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:城市是否会受到台风影响?请说明理由.若会受到台风影响,那么台风影响该城市的持续时间有多长?该城市受到台风影响的最大风力为几级?14.小智和小慧想知道学校旗杆AB的高度,他们发现旗杆上的绳子从顶端垂到地面还多了1米图,即米,当他们往外把绳子拉直,发现绳子下端刚好接触地面时,触点D离旗杆下端B的距离为5米图,于是,小智和小慧很快算出了旗杆的高度,你能推算出旗杆的高度吗?请写出过程.苏科版数学八年级上册3.1 勾股定理同步练习5 / 7【答案】1. D2. B3. B4. A5. C6. C7. D8. C9. D10. D11. 解:如图所示,是BC边上的中线.,,,.,.在中,根据勾股定理,,.12. 解:由题意可得:设,则,故,则,解得:,答:这颗荷花的茎长为2m.13. 解:该城市会受到这次台风的影响.理由是:如图,过A作于在中,,,,苏科版数学八年级上册3.1 勾股定理同步练习城市受到的风力达到或超过四级,则称受台风影响,受台风影响范围的半径为.,该城市会受到这次台风的影响.如图以A为圆心,200为半径作交BC于E、F.则.台风影响该市持续的路程为:.台风影响该市的持续时间小时.距台风中心最近,该城市受到这次台风最大风力为:级.14. 解:能推算出旗杆的高度;设旗杆的高度为x米,则绳子的长度为米,根据勾股定理可得:,解得,.答:旗杆的高度为12米.7 / 7。

3.1 勾股定理 苏科版数学八年级上册同步测试题(含答案)

3.1 勾股定理 苏科版数学八年级上册同步测试题(含答案)

2023-2024学年苏科版八年级数学上册《3.1勾股定理》同步测试题(附答案)一、单选题(满分32分)1.已知直角三角形两条直角边的长分别为3和4,则斜边的长为()A.4B.5C.6D.72.下列各组数中,是勾股数的是()A.1,1,2B.2,3,4C.6,8,10D.6,6,6 3.如图,在△ABC中,AB=AC=5,BC=6,D是BC的中点,则AD的长为()A.4B.5C.6D.74.如图,在Rt△ABC中,∠ABC=90°,作边AB的垂直平分线DE,垂足为D,交AC于点E,且AB=8,BC=6,则△BEC的周长是()A.14B.16C.18D.225.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,则图中阴影部分的正方形的面积为()A.4B.8C.16D.256.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,斜之适出.问户高、广、斜各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为()A.x2=(x+4)2+(x+2)2B.x2=(x―4)2+(x―2)2C.x2=42+(x―2)2D.x2=(x―4)2+22A.36B.24 8.已知直角三角形纸片ABC 折叠,使点A与点B重合,则A.54B.74C.154二、填空题(满分32分)9.在Rt△ABC中,斜边BC=3.则AB2+BC2+AC2的值为10.如图,BC⊥AB,CD⊥AC,且AB=4,BC=3,CD11.在△ABC上的高为12.如图,四边形积为.13.在如图所示的图形中,所有四边形都是正方形,所有三角形都是直角三角形,若正方形A,C,D的面积依次为14.如图,在Rt△ABC中,与点A重合,得折痕DE,则15.如图,在长方形ABCD中,使点C落在AB边上的F处,则CE16.如图,在△ABC中,AD、AC上的动点,则三、解答题(满分56分)17.如图所示,在边长为单位1的网格中,△ABC是格点图形,求△ABC中AB边上的高.18.如图,某自动感应门的正上方A处装着一个感应器,离地的高度AB为2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,AD为多少米?19.如图,△ABC与△DEC都是等腰直角三角形,∠ACB=∠ECD=90°.(1)求证:△BCD≌△ACE;(2)若BD=4,BA=7,求DE的长.20.如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若点P从点A出发,以每秒2cm的速度沿折线A―B―C―A运动,设运动时间为t秒(t>0).(1)若点P在BC上,且满足PA=PB,求此时t的值;(2)若点P恰好在∠ABC的角平分线上,求此时t的值:(3)在运动过程中,当t为何值时,△ACP为等腰三角形.21.公元前6世纪,古希腊数学家毕达哥拉斯发现了直角三角形三边之间的数量关系:在直角三角形中,两条直角边的平方和等于斜边的平方,这个结论称之为“勾股定理”.(1)如图1,将等腰直角三角板ABD顶点A放在直线l上,过点B作BC⊥l,过点D作DE⊥l,垂足分别为C,E,设AC=b,BC=a,AB=c,请结合此图证明勾股定理.(2)如图2,朵朵同学把四个直角三角板紧密地拼接在一起,已知外围轮廓(实线)的周长为48,OC=6,求这个图案的面积.22.问题探究(1)如图1,M,N分别是正方形ABCD的边BC,CD上的动点,∠MAN=45°,DN=2,BM=3,求MN的长.深入探究(2)若把(1)中的条件改为5DN=CD=5,∠DAM=∠AMN,求MN的长.类比探究(3)在(2)的条件下,如图2,当点M,N分别在正方形ABCD的边BC,CD的延长线上时,请直接写出MN的长度.参考答案∵∠C=90°,AB=5,AC=∴BC=AB2―AC2=52―设AB上的高为ℎ,则根据面积可得:S△ABC=12∵∠ABD=∠CDB∴AB∥CD,∴S△ABC=S△ABD∵AB=AD=5,∵S △ABC =12BC ⋅AD =∴BQ =BC ⋅ADAC =8×35=即PC +PQ 的最小值是∵△ABC 是格点图形,每个小正方形的边长为单位∴AD =3,BC =3,BD =∴在Rt △ABD 中,AB =AD ∵S △ABC =12BC·AD =12AB·CE19.(1)证明:∵△∴BC=AC,CD=CE∴∠BCD=∠ACE,∴△BCD≌△ACE(∵∠ACB=90°,AB=5∴AC=AB2―BC2=3在Rt△ACP中,由勾股定理得∴32+(4―x)2=x2,∵BP平分∠ABC,∠C=∴PD=PC,∠DBP=∠CBP 在△BCP与△BDP中,∠BDP=∠BCP∴∠A =∠ACP ,∵∠A +∠B =90°,∠ACP ∴∠B =∠BCP ,∴CP =BP =AP ,∴t =AP2=32.③如图,当P 在AB 上且AC ∵S △ABC =12AC ⋅BC =12在Rt △ACD 中,由勾股定理得∴t=AB+BP2=62=3.综上所述,当t的值为54或21.(1)证明:由已知,得∵四边形ABCD是正方形,∴AB=AD,∠B=在△ABM和△ADB∴△ABM≌△ADB∵四边形ABCD是正方形,∴AD∥BC,∠B=∴∠DAM=∠AMB又∵∠DAM=∠AMN由正方形ABCD知AD∥BC∵∠DAM=∠AMN∴∠AMB=∠AMN.即∠AMB ∵∠ABM=∠AEN=90°,∴△ABM≅△AEM(AAS)。

苏科版数学八年级上3.1勾股定理同步练习含答案解析

苏科版数学八年级上3.1勾股定理同步练习含答案解析

3.1 勾股定理一.选择题(共14小题)1.(2021•荆门)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10第1题第2题2.(2021•漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个3.(2021•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.44.(2021•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0 5.(2021•济南)如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°第5题第6题6.(2021•黔东南州)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.1697.(2021•青海)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()78.(2021•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2C.D.10﹣59.如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b >a)拼接在一起,则四边形ABCD的面积为()A.b2+(b﹣a)2B.b2+a2C.(b+a)2D.a2+2ab第9题第10题10.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°二.填空题(共8小题)11.(2021•安顺)如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=___度.12.如图,在△ABC中,∠ACB=90°,∠B=40°,D为线段AB的中点,则∠ACD=______.第11题第12题第13题13.(2021•绥化)如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=,则AE=______(提示:可过点A作BD的垂线)14.如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么(a+b)2的值为______.第13题第15题第16题15.如图,Rt△ABC的周长为,以AB、AC为边向外作正方形ABPQ和正方形ACMN.若这两个正方形的面积之和为25 cm2,则△ABC的面积是______ cm2.16.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是______.17.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4,以AC为斜边作Rt△ACC1,使∠CAC1=30°,Rt△ACC1的面积为S1;再以AC1为斜边作△AC1C2,使∠C1AC2=30°,Rt △AC1C2的面积记为S2,…,以此类推,则S n=______(用含n的式子表示)18.如图,△ABC和△DEF是两个全等的等腰直角三角形,点G在直角边BC上,BG=5,CG=1,将△DEF的顶点D放在直角边AC上,直角边DF经过点G,斜边DE经过点B,则CD=______.三.解答题(共6小题)19.(2021•益阳)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.20.作图题:如图,在6×6的正方形网格中,每个小正方形的边长都为1,请在所给网格中按下列要求画出图形.(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为5;(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,请画出所有满足条件的点C.21.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上______;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m≠n),运用构图法可求出这三角形的面积为______.22.一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围.23.在Rt△ABC中,∠C=90°,以三边为边分别向外作正方形,如图所示,过C作CH⊥AB于H,延长CH交MN于点I.(1)如图(1)若AC=3,BC=2,试通过计算证明:四边形AHIN的面积等于正方形AEFC的面积.(2)请利用图(2)证明直角三角形勾股定理:AC2+BC2=AB2.参考答案与解析一.选择题(共14小题)1.(2021•荆门)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选C.【点评】本题考查了勾股定理,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.2.(2021•漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个【分析】首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE长,然后可得AD的取值范围,进而可得答案.【解答】解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴点D的个数共有3个,故选:C.【点评】此题主要考查了等腰三角形的性质和勾股定理,关键是正确利用勾股定理计算出AD的最小值,然后求出AD的取值范围.3.(2021•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.4【分析】根据直角三角形a、b、c为边,应用勾股定理,可得a2+b2=c2.(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积;然后根据a2+b2=c2,可得S1+S2=S3.(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积;然后根据a2+b2=c2,可得S1+S2=S3.【解答】解:(1)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(2)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(3)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(4)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.综上,可得面积关系满足S1+S2=S3图形有4个.故选:D.【点评】(1)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.(2)此题还考查了等腰直角三角形、等边三角形、圆以及正方形的面积的求法,要熟练掌握.4.(2021•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n﹣m)2,整理即可求解【解答】解:如图,m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故选:C.【点评】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.5.(2021•济南)如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°【分析】根据等腰直角三角形的性质可得∠CAB=45°,根据平行线的性质可得∠2=∠3,进而可得答案.【解答】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵l1∥l2,∴∠2=∠3,∵∠1=15°,∴∠1=45°﹣15°=30°,故选:B.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.6.(2021•黔东南州)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.【解答】解:根据题意得:c2=a2+b2=13,4×ab=13﹣1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,故选C【点评】此题考查了勾股定理的证明,利用了数形结合的思想,熟练掌握勾股定理是解本题的关键.7.(2021•青海)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()7【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=()n﹣3”,依此规律即可得出结论.【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=S1=2,S3=S2=1,S4=S3=,…,∴S n=()n﹣3.当n=9时,S9=()9﹣3=()6,故选:A.【点评】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n=()n﹣3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n的值,根据数值的变化找出变化规律是关键.8.(2021•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2C.D.10﹣5【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长.【解答】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.9.如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b >a)拼接在一起,则四边形ABCD的面积为()A.b2+(b﹣a)2B.b2+a2C.(b+a)2D.a2+2ab【分析】先求出AE即DE的长,再根据三角形的面积公式求解即可.【解答】解:∵DE=b﹣a,AE=b,∴S四边形ABCD=4S△ADE+a2=4××(b﹣a)•b=b2+(b﹣a)2.故选:A.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.10.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【分析】在直角三角形ABC中,由∠ACB与∠A的度数,利用三角形的内角和定理求出∠B的度数,再由折叠的性质得到∠CA′D=∠A,而∠CA′D为三角形A′BD的外角,利用三角形的外角性质即可求出∠A′DB的度数.【解答】解:在Rt△ABC中,∠ACB=90°,∠A=55°,∴∠B=180°﹣90°﹣55°=35°,由折叠可得:∠CA′D=∠A=55°,又∵∠CA′D为△A′BD的外角,∴∠CA′D=∠B+∠A′DB,则∠A′DB=55°﹣35°=20°.故选:C.【点评】此题考查了直角三角形的性质,三角形的外角性质,以及折叠的性质,熟练掌握性质是解本题的关键.二.填空题(共8小题)11.(2021•安顺)如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=45度.【分析】先根据等腰直角三角形的性质求出∠ABC的度数,再由平行线的性质即可得出结论.【解答】解:∵△ABC为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=45°,∵m∥n,∴∠1=45°;故答案为:45.【点评】此题考查了等腰直角三角形和平行线的性质,用到的知识点是:两直线平行,同位角相和等腰直角三角形的性质;关键是求出∠ABC的度数.12.如图,在△ABC中,∠ACB=90°,∠B=40°,D为线段AB的中点,则∠ACD=50°.【分析】由“直角三角形的两个锐角互余”得到∠A=50°.根据“直角三角形斜边上的中线等于斜边的一半”得到CD=AD,则等边对等角,即∠ACD=∠A=50°.【解答】解:如图,∵在△ABC中,∠ACB=90°,∠B=40°,∴∠A=50°.∵D为线段AB的中点,∴CD=AD,∴∠ACD=∠A=50°.故答案是:50°.【点评】本题考查了直角三角形的性质.在直角三角形中,斜边上的中线等于斜边的一半.13.(2021•绥化)如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=,则AE=2(提示:可过点A作BD的垂线)【分析】过A作AF⊥BD,交BD于点F,由三角形ABD为等腰直角三角形,利用三线合一得到AF为中线,利用直角三角形斜边上的中线等于斜边的一半求出AF的长,在直角三角形AEF中,利用30度角所对的直角边等于斜边的一半求出AE的长即可.【解答】解:过A作AF⊥BD,交BD于点F,∵AD=AB,∠DAB=90°,∴AF为BD边上的中线,∴AF=BD,∵AB=AD=,∴根据勾股定理得:BD==2,∴AF=,在Rt△AEF中,∠EAF=∠DCA=30°,∴EF=AE,设EF=x,则有AE=2x,根据勾股定理得:x2+3=4x2,解得:x=1,则AE=2.故答案为:2【点评】此题考查了勾股定理,含30度直角三角形的性质,以及等腰三角形的性质,熟练掌握勾股定理是解本题的关键.14.如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么(a+b)2的值为25.【分析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a+b)2=a2+2ab+b2即可求解.【解答】解:根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12则(a+b)2=a2+2ab+b2=13+12=25.故答案是:25.【点评】本题考查勾股定理,以及完全平方式,正确根据图形的关系求得a2+b2和ab的值是关键.15.如图,Rt△ABC的周长为,以AB、AC为边向外作正方形ABPQ和正方形ACMN.若这两个正方形的面积之和为25 cm2,则△ABC的面积是5cm2.【分析】根据正方形的面积公式,勾股定理求得a2=c2+b2=25,据此可以求得a=5.又由Rt △ABC的周长为可以求得b+c=3,所以△ABC的面积=bc= [(c+b)2﹣(c2+b2)].【解答】解:如图,a2=c2+b2=25,则a=5.又∵Rt△ABC的周长为,∴a+b+c=5+3,∴b+c=3(cm).∴△ABC的面积=bc= [(c+b)2﹣(c2+b2)]÷2= [(3)2﹣25]÷2=5(cm2).故答案是:5.【点评】本题考查了勾股定理的应用.解答此题时,巧妙地运用了完全平方公式的变形来求△ABC的面积.16.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是 1.5.【分析】连接DF,由勾股定理求出AB=5,由等腰三角形的性质得出CE=DE,由线段垂直平分线的性质得出CF=DF,由SSS证明△ADF≌△ACF,得出∠ADF=∠ACF=∠BDF=90°,设CF=DF=x,则BF=4﹣x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【解答】解:连接DF,如图所示:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB==5,∵AD=AC=3,AF⊥CD,∴CE=DE,BD=AB﹣AD=2,∴CF=DF,在△ADF和△ACF中,,∴△ADF≌△ACF(SSS),∴∠ADF=∠ACF=90°,∴∠BDF=90°,设CF=DF=x,则BF=4﹣x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4﹣x)2,解得:x=1.5;∴CF=1.5;故答案为:1.5.【点评】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质、线段垂直平分线的性质;熟练掌握勾股定理,证明三角形全等是解决问题的关键.17.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4,以AC为斜边作Rt△ACC1,使∠CAC1=30°,Rt△ACC1的面积为S1;再以AC1为斜边作△AC1C2,使∠C1AC2=30°,Rt △AC1C2的面积记为S2,…,以此类推,则S n=(用含n的式子表示)【分析】首先计算得出△ABC1的面积,进一步利用含30°角的直角三角形的特性以及勾股定理求得Rt△AC1C2和Rt△AC2C3的面积,找出规律得出结论.【解答】解:∵∠ACB=90°,∠BAC=30°,AB=4,∴BC=AB=2,∴AC=BC=2,∴S△ABC=•BC•AC=2,在△ABC1中,∵∠CAC1=30°,∴CC1═AC=,∵∠BAC=∠CAC1,∠ACB=∠AC1C=90°,∴△ACB∽△AC1C,∴=()2=()2=,∴S1=•S△ABC,同理可得,S2=•S1=()2•S△ABC,S3=()3•S△ABC,…根据此规律可得,S n=()n•S△ABC=,故答案为.【点评】此题考查勾股定理、含30°角直角三角形的性质以及三角形的面积等知识点,规律型题目,解题的关键是学会从特殊到一般的探究方法,学会找规律,利用规律解决问题,属于中考常考题型.18.如图,△ABC和△DEF是两个全等的等腰直角三角形,点G在直角边BC上,BG=5,CG=1,将△DEF的顶点D放在直角边AC上,直角边DF经过点G,斜边DE经过点B,则CD=2或3.【分析】作DM⊥AB于M,设CD=x,由等腰直角三角形的性质得出AC=BC=6,∠A=∠EDF=45°,∠C=90°,AB=BC=6,AD=6﹣x,证出△ADM是等腰直角三角形,得出AM=AD=(6﹣x),因此BM=6﹣(6﹣x),证明△CDG∽△MBD,得出对应边成比例,得出方程,解方程即可.【解答】解:作DM⊥AB于M,如图所示:设CD=x,∵△ABC和△DEF是两个全等的等腰直角三角形,BG=5,CG=1,∴AC=BC=6,∠A=∠EDF=45°,∠C=90°,∴AB=BC=6,AD=6﹣x,△ADM是等腰直角三角形,∴AM=AD=(6﹣x),∴BM=6﹣(6﹣x),∵∠BDC=∠CDG+∠EDF=∠A+∠MBD,∴∠CDG=∠MBD,又∵∠DMB=90°=∠C,∴△CDG∽△MBD,∴,即=,解得:x=2,或x=3,∴CD=2或3;故答案为:2或3.【点评】本题考查了等腰直角三角形的性质与判定、勾股定理、相似三角形的判定与性质;熟练掌握等腰直角三角形的判定与性质,证明三角形相似是解决问题的关键.三.解答题(共6小题)19.(2021•益阳)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.【分析】根据题意利用勾股定理表示出AD2的值,进而得出等式求出答案.【解答】解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,故152﹣x2=132﹣(14﹣x)2,解之得:x=9.∴AD=12.∴S△ABC=BC•AD=×14×12=84.【点评】此题主要考查了勾股定理,根据题意正确表示出AD2的值是解题关键.20.作图题:如图,在6×6的正方形网格中,每个小正方形的边长都为1,请在所给网格中按下列要求画出图形.(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为5;(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,请画出所有满足条件的点C.【分析】(1)每个小正方形的边长都为1,容易得出结果;(2)分两种情况:①当AB为等腰三角形的一腰时,分两种情况:a:以A为圆心,AB 长为半径画弧,交网络有两个格点;b:以B为圆心,AB长为半径画弧,交网络有两个格点;②当AB为等腰三角形的底边时,顶角顶点在AB的垂直平分线上,交点不在格点处,不合题意;即可得出结果.【解答】解:(1)如图1所示:由勾股定理得:AB==5,即AB即为所求的线段;(2)分两种情况:①当AB为等腰三角形的一腰时,分两种情况:a:以A为圆心,AB长为半径画弧,交网络有3个格点;b:以B为圆心,AB长为半径画弧,交网络有2个格点;②当AB为等腰三角形的底边时,顶角顶点C在AB的垂直平分线上,交点不在格点处,不合题意;综上所述:满足条件的点C有5个,如图2所示.【点评】本题考查了正方形的性质、勾股定理、等腰三角形的判定;熟练掌握勾股定理,并能进行推理作图是解决问题的关键.21.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m≠n),运用构图法可求出这三角形的面积为5mn.【分析】(1)是直角边长为1,2的直角三角形的斜边;是直角边长为1,3的直角三角形的斜边;是直角边长为2,3的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;(2)结合(1)易得此三角形的三边分别是直角边长为m,4n的直角三角形的斜边;直角边长为3m,2n的直角三角形的斜边;直角边长为2m,2n的直角三角形的斜边.同样把它整理为一个矩形的面积减去三个直角三角形的面积可得.【解答】解:(1)S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=;(2)构造△ABC如图所示,S△ABC=3m×4n﹣×m×4n﹣×3m×2n﹣×2m×2n=5mn.故答案为:(1)3;(2)5mn.【点评】此题主要考查了勾股定理应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键,关键是结合网格用矩形及容易求得面积的直角三角形表示出所求三角形的面积进行解答.22.一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围.【分析】一、(1)由勾股定理即可得出结论;(2)作AD⊥BC于D,则BD=BC﹣CD=a﹣CD,由勾股定理得出AB2﹣BD2=AD2,AC2﹣CD2=AD2,得出AB2﹣BD2=AC2﹣CD2,整理得出a2+b2=c2+2a•CD,即可得出结论;(3)作AD⊥BC于D,则BD=BC+CD=a+CD,由勾股定理得出AD2=AB2=BD2,AD2=AC2﹣CD2,得出AB2﹣BD2=AC2﹣CD2,整理即可得出结论;二、分两种情况:①当∠C为钝角时,由以上(3)得:<c<a+b,即可得出结果;②当∠B为钝角时,得:b﹣a<c<,即可得出结果.【解答】一、解:(1)∵∠C为直角,BC=a,CA=b,AB=c,∴a2+b2=c2;(2)作AD⊥BC于D,如图1所示:则BD=BC﹣CD=a﹣CD,在△ABD中,AB2﹣BD2=AD2,在△ACD中,AC2﹣CD2=AD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a﹣CD)2=b2﹣CD2,整理得:a2+b2=c2+2a•CD,∵a>0,CD>0,∴a2+b2>c2;(3)作AD⊥BC于D,如图2所示:则BD=BC+CD=a+CD,在△ABD中,AD2=AB2=BD2,在△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a+CD)2=b2﹣CD2,整理得:a2+b2=c2﹣2a•CD,∵a>0,CD>0,∴a2+b2<c2;二、解:当∠C为钝角时,由以上(3)得:<c<a+b,即5<c<7;当∠B为钝角时,得:b﹣a<c<,即1<c<;综上所述:第三边c的取值范围为5<c<7或1<c<.【点评】本题考查了勾股定理的综合运用、完全平方公式;熟练掌握勾股定理,通过作辅助线运用勾股定理是解决问题的关键.23.在Rt△ABC中,∠C=90°,以三边为边分别向外作正方形,如图所示,过C作CH⊥AB于H,延长CH交MN于点I.(1)如图(1)若AC=3,BC=2,试通过计算证明:四边形AHIN的面积等于正方形AEFC的面积.(2)请利用图(2)证明直角三角形勾股定理:AC2+BC2=AB2.【分析】(1)利用勾股定理求出AB,根据△ABC面积的两种算法求出CH,再求出AH,即可得到四边形AHIN的面积、正方形AEFC的面积,即可解答;精品Word 可修改欢迎下载(2)根据四边形AHIN的面积等于正方形AEFC的面积,所以AC2=AH•AB,同理可得:BC2=BH•AB,所以AC2+BC2=AH•AB+BH•AB=AB2.【解答】解:(1)∵在Rt△ABC中,∠C=90°,AC=3,BC=2,∴AB==,∴,即,∴CH=,∴AH=,∴S四边形AHIN=AH•AN=18,,∴四边形AHIN的面积等于正方形AEFC的面积.(2)∵四边形AHIN的面积等于正方形AEFC的面积.∴AC2=AH•AB,同理可得:BC2=BH•AB,∴AC2+BC2=AH•AB+BH•AB=AB2.【点评】本题考查勾股定理,解决本题的关键是应用勾股定理求边的长度.。

八年级数学上册 2.1 勾股定理同步练习1 苏科版(1)

八年级数学上册 2.1 勾股定理同步练习1 苏科版(1)

2.1勾股定理一、选择题1 .若线段a,b,c 组成Rt△,则它们的比可以是( )A 、2∶3∶4B 、3∶4∶6C 、5∶12∶13D 、4∶6∶72 .Rt△一直角边的长为11,另两边为自然数,则Rt△的周长为( )A 、121B 、120C 、132D 、不能确定3 .如果Rt△的两直角边长分别为n 2-1,2n(n >1),那么它的斜边长是( )A 、2nB 、n+1C 、n 2-1D 、n 2+14 .已知Rt△ABC 中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC 的面积是( )A 、24cm 2B 、36cm 2C 、48cm 2D 、60cm 25 .等腰三角形底边长10 cm,腰长为13,则此三角形的面积为( )A 、40B 、50C 、60D 、706 .已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A 、25海里B 、30海里C 、35海里D 、40海里7 .如图,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm ,将△ABC 折叠,点B 与点A 重合,折痕为DE,则CD 的长为( )8 .一个直角三角形的两条直角边分别为5、12,则斜边上的高为 ( )A 、512 B 、125 C 、 1360 D 、 6013 9 .直角三角形有一条直角边为6,另两条边长是连续偶数,则其斜边中线长为( )A. 5B. 10C. 8D. 16 10.如图是某地一的长方形大理石广场示意图,如果小琴要从A 角走到C 角,至少走( )米A. 90B. 100C. 120D. 140B ACED11.已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )A、25B、14C、7D、7或2512.四边形的四条边AB、BC、CD、DA的长分别为3、4、13、12,其中∠B=90°,则四边形的面积是 ( )A.72B.66C.42D.36二、填空题13.已知直角三角形的两边长分别为3和4,则第三边长为__________14.在Rt△ABC中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则S Rt△ABC=________。15.直角三角形两直角边长分别为5和12,则它斜边上的高为__________。16.有一个长为12 c m,宽为4 c m,高为3 c m的长方体形铁盒,在其内部要放一根笔直的铁丝,则铁丝最长达到_______________c m。17.在△ABC中,AB=13cm,AC=15cm,高AD=12cm,则BC=______________。18.如图5,为修铁路凿通隧道BC,测的∠A=40°,∠B=50°,AB=5km,AC=4km,若每天凿隧道0.3km,则需_____________天才能把隧道凿通。19.如图所示的一只玻璃杯,最高为8cm,将一根筷子插入其中,杯外最长4厘米,•最短2厘米,那么这只玻璃杯的内径是________厘米.三、解答题20.直角三角形ABC中,∠C=90°,CD⊥AB于D.AC=12,BC=16,求AD.A BD C80米60米图)21.一高层住宅发生火灾,消防车立即赶到距大厦6米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问发生火灾的住户窗口距地面多高?(精确到0。01)22.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B 处有健身器材,由于居住在A处的居民践踏了绿地,小明想在A 处树立一个标牌“少走▇米,踏之何忍?”请你计算后帮小明在标牌的▇填上适当的数字.23.小明想知道学校旗杆的高度.他测量得旗杆顶端所系的绳子垂到地面还多1米,当他拎着绳子的下端点拉直,并揿在地面上时,此点离开旗杆底部是5米.你能帮助小明计算出旗杆的高度吗?24.某镇为响应中央关于建设社会主义新农村的号召,决定公路相距25km 的A,B 两站之间E 点修建一个土特产加工基地,如图,DA⊥AB 于A,CB⊥AB 于B,已知DA=15km,CB=10km,现在要使C 、D 两村到E 点的距离相等,那么基地E 应建在离A 站多少km 的地方?ADEBC2.1勾股定理参考答案一、选择题1 .C2 .C3 .D4 .A5 .C6 .D7 .D8 .A9 .A 10.B 11.D 12.D 二、填空题13.5或7 14.13 20 11 24 15.136016.13 17.14cm 或4cm 18.10, 19.6 [点拨]根据条件可得筷子长为12厘米,如图AC=10,BC=22AC AB -=22108- =6.三、解答题20.AC=12 BC=16∴AB=20 CD=201612⨯=⨯5412.AD 2=AC 2-CD 2=122-(⨯5412)2=122×(53)2 ∴AD=536 21.发生火灾的住户窗口距地面15.7522.在▇的地方应该填写的数字为6。23.解:设旗杆的高为x 米,则绳子长为(x+1)米根据题意,得222(1)5x x +=+,化简整理,得2x=24, x=12,∴旗杆的高为12米24.解:设AE= x 千米,则BE=(25-x )千米,在Rt△DAE 中,DA 2+AE 2=DE 2在Rt△EBC 中,BE 2+BC 2=CE 2∵ CE=DE∴ DA 2+AE 2 = BE 2+BC2∴ 152+x 2=102+(25-x)2解得:x=10千米 ∴ 基地应建在离A 站10千米的地方。。

苏科版八年级数学上33勾股定理的简单应用同步练习含答案初二数学试题.docx

苏科版八年级数学上33勾股定理的简单应用同步练习含答案初二数学试题.docx

3.3勾股定理的简单应用一.选择题(共10小题)12.如图,一艘轮船位于灯塔P的北偏东60。

方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30。

方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A. 60海里B. 45海里C. 20“^海里D. 30馅海里3.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A",使梯子的底端A,到墙根O的距离等于3m,同时梯子的顶端B下降至B\那么BB,()A.小于lmB.大于lmC.等于lmD.小于或等于lm4.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A. 25海里B. 30海里C. 40海里D. 50海里5.如图,学校有一块长方形花坛,有极少数人为了避开拐角走"捷径〃,在花坛内走出了一条〃路",他们仅仅少走了()步,却踩伤了花草(假设2步为1米)A. 2B. 4C. 5D. 66.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地琰的长度至少7. 如图是一个长为4,宽为3,高为12矩形牛奶盒,从上底一角的小圆孔插入一根到达底部的直吸管,吸管在盒内部分a 的长度范围是(牛奶盒的厚度、小圆孔的大小及吸管的粗细均忽 略不计)( ) 8. 小红在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如图)拉到岸 边,花柄止好与水面成60。

夹角,测得AB 长lm, 9•如图①所示,有一个由传感器A 控制的灯,要装在门上方离地高4・5m 的墙上,任何东西 只要移至该灯5m 及5m 以内时,灯就会自动发光•请问一个身高l ・5m 的学生要走到离墙多远的地方灯刚好发光?( )矩形,它们的一个顶点在AB 上,一组对边分别在AC 上或与AC 平行,另一组对边分别在 BC 上或与BC 平行.若各矩形在AC 上的边长相等,矩形a 的一边长是72cm,则这样的矩形 a> b 、c …的个数是( )A. 6 B ・7 C ・8 D ・9A. 5 B- 7 C. 8 D. 12A. 5WaWl2 B ・ 12WaW3”^C.D ・ 12WaW13 A. Im B • 2m A. 4米 B. 3米 C. 5米10・如图,在AABC 中, 己知ZC=90% AC=60cm, AB= 100cm, a, b, c …是在△ ABC 内部的 C- 3m②二・填空题(共10小题)II.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM二4米,AB=8米,ZMAD=45°, ZMBC=30°,则警示牌的高CD为__________ 米(结果精确到0」米,参考数据:V2 =1.41, = 1.73).Cas____________ I 30。

苏科版八年级数学上册 第3章 勾股定理 同步练习

苏科版八年级数学上册  第3章 勾股定理 同步练习

勾股定理及其应用练习11.如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB的中点,若BC=12,AD =8,则DE的长为.第1题第2题第4题2.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若a=4,b=3,则大正方形的面积是.3.在△ABC中,已知∠A=∠B=45°,BC=3,则AB=.4.2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为.5.阅读下列内容:设a,b,c是一个三角形的三条边的长,且a是最长边,我们可以利用a,b,c三条边长度之间的关系来判断这个三角形的形状:①若a2=b2+c2,则该三角形是直角三角形;②若a2>b2+c2,则该三角形是钝角三角形;③若a2<b2+c2,则该三角形是锐角三角形.例如:若一个三角形的三边长分别是4,5,6,则最长边是6,62=36<42+52,故由③可知该三角形是锐角三角形,请解答以下问题:(1)若一个三角形的三边长分别是7,8,9,则该三角形是三角形.(2)若一个三角形的三边长分别是5,12,x,且这个三角形是直角三角形,求x的值.6.我们知道,以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),可以看作(22﹣1,2×2,22+1);同时8,6,10也为勾股数组,记为(8,6,10),可以看作(32﹣1,2×3,32+1).类似的,依次可以得到第三个勾股数组(15,8,17).(1)请你根据上述勾股数组规律,写出第5个勾股数组;(2)若设勾股数组中间的数为2n(n≥2,且n为整数),根据上述规律,请直接写出这组勾股数组.7.一块木板如图所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,求此木板的面积.8.如图,在笔直的铁路上A,B两点相距20km,C,D为两村庄,DA=8km,CB=14km,DA⊥AB于A,CB⊥AB于B.现要在AB上建一个中转站E,使得C,D两村到E站的距离相等,求AE的长.参考答案1.如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB的中点,若BC=12,AD =8,则DE的长为5.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD=6,∴∠ADB=90°,∴AB===10,∵AE=EB,∴DE=AB=5,故答案为5.2.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若a=4,b=3,则大正方形的面积是25.【解答】解:由勾股定理可知大正方形的边长===5,∴大正方形的面积为25,故答案为25.3.在△ABC中,已知∠A=∠B=45°,BC=3,则AB=3.【解答】解:∵∠A=∠B=45°,∴AC=BC=3,∠C=90°,∴AB===3,故答案为3.4.2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为27.【解答】解:由题意可得在图1中:a2+b2=15,(b﹣a)2=3,图2中大正方形的面积为:(a+b)2,∵(b﹣a)2=3a2﹣2ab+b2=3,∴15﹣2ab=32ab=12,∴(a+b)2=a2+2ab+b2=15+12=27,故答案为:27.5.阅读下列内容:设a,b,c是一个三角形的三条边的长,且a是最长边,我们可以利用a,b,c三条边长度之间的关系来判断这个三角形的形状:①若a2=b2+c2,则该三角形是直角三角形;②若a2>b2+c2,则该三角形是钝角三角形;③若a2<b2+c2,则该三角形是锐角三角形.例如:若一个三角形的三边长分别是4,5,6,则最长边是6,62=36<42+52,故由③可知该三角形是锐角三角形,请解答以下问题:(1)若一个三角形的三边长分别是7,8,9,则该三角形是锐角三角形.(2)若一个三角形的三边长分别是5,12,x,且这个三角形是直角三角形,求x的值.【解答】解:(1)∵72+82=113,92=81,∴92<72+82,∴该三角形是锐角三角形,故答案为:锐角;(2)当最长边是12时,x==;当最长边是x时,x==13,即x=13或.6.我们知道,以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),可以看作(22﹣1,2×2,22+1);同时8,6,10也为勾股数组,记为(8,6,10),可以看作(32﹣1,2×3,32+1).类似的,依次可以得到第三个勾股数组(15,8,17).(1)请你根据上述勾股数组规律,写出第5个勾股数组;(2)若设勾股数组中间的数为2n(n≥2,且n为整数),根据上述规律,请直接写出这组勾股数组.【解答】解:(1)上述四组勾股数组的规律是:32+42=52,62+82=102,82+152=172,即(n2﹣1)2+(2n)2=(n2+1)2,所以第5个勾股数组为(12,35,37).(2)勾股数为n2﹣1,2n,n2+1.7.一块木板如图所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,求此木板的面积.【解答】解:连接AC,∵在△ABC中,AB=4,BC=3,∠B=90°,∴AC=5,∵在△ACD中,AC=5,DC=12,AD=13,∴DC2+AC2=122+52=169,AD2=132=169,∴DC2+AC2=AD2,∴△ACD为直角三角形,AD为斜边,∴木板的面积为:S△ACD﹣S△ABC=×5×12﹣×3×4=24.答:此木板的面积为24.8.如图,在笔直的铁路上A,B两点相距20km,C,D为两村庄,DA=8km,CB=14km,DA⊥AB于A,CB⊥AB于B.现要在AB上建一个中转站E,使得C,D两村到E站的距离相等,求AE的长.【解答】解:设AE=x,则BE=20﹣x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=82+x2,在Rt△BCE中,CE2=BC2+BE2=142+(20﹣x)2,由题意可知:DE=CE,所以:82+x2=142+(20﹣x)2,解得:x=13.3所以,E应建在距A点13.3km.练习21.图中阴影部分是一个正方形,则此正方形的面积为cm2.第1题第2题第3题第4题2.如图,每个小正方形的边长为1,在△ABC中,点A,B,C均在格点上,点D为AB的中点,则线段CD的长为.3.如图,池塘边一棵垂直于水面BM的笔直大树AB在点C处折断,AC部分倒下,点A与水面上的点E 重合,部分沉入水中后,点A与水中的点F重合,CF交水面于点D,DF=2m,∠CEB=30°,∠CDB =45°,求CB部分的高度为m.4.《九章算术》第九章勾股篇中记载:“今有开门去阃(kun)一尺,不合二寸,问门广几何?”其大意是:今推开双门,门框到门槛的距离(称为“去阃”)DF为一尺,双门之间的缝隙(称为“不合”)EF即为2寸(注:一尺为10寸),则门宽AB为尺.5.如图一根竹子长为16米,折断后竹子顶端落在离竹子底端8米处,折断处离地面高度是米.6.如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.7.勾股定理是数学中最常见的定理之一,熟练的掌握勾股数,对迅速判断、解答题目有很大帮助,观察下列几组勾股数:(1)你能找出它们的规律吗?(填在上面的横线上)(2)你能发现a,b,c之间的关系吗?(3)对于偶数,这个关系(填“成立”或“不成立”).(4)你能用以上结论解决下题吗?20192+20202×10092﹣(2020×1009+1)28.如图①,点O为直线AB上一点,∠AOC=60°,将一把含有45°角的直角三角板的直角顶点放在点O处,直角边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板绕点O按逆时针方向旋转至图②的位置,使得∠MOB=90°,此时∠CON角度为度;(2)将上述直角三角板从图1绕点O按逆时针旋转到图③的位置,当ON恰好平分∠AOC时,求∠AOM的度数;(3)若这个直角三角板绕点O按逆时针旋转到斜边ON在∠AOC的内部时(ON与OC、OA不重合),试探究∠AOM与∠CON之间满足什么等量关系,并说明理由.9.如图所示,已知△ABC中,AB=8cm,AC=6cm,BC=10cm.分别以三边AB,AC及BC为直径向外作半圆,求阴影部分的面积.参考答案1.图中阴影部分是一个正方形,则此正方形的面积为81cm2.【解答】解:∵正方形的边长为(cm),∴此正方形的面积为92=81(cm2),故答案为:81.2.如图,每个小正方形的边长为1,在△ABC中,点A,B,C均在格点上,点D为AB的中点,则线段CD的长为.【解答】解:∵AC=2,BC=3,AB=,∴AC2+BC2=AB2,∴∠ACB=90°,∵AD=DB,∴CD=AB=,故答案为.3.如图,池塘边一棵垂直于水面BM的笔直大树AB在点C处折断,AC部分倒下,点A与水面上的点E 重合,部分沉入水中后,点A与水中的点F重合,CF交水面于点D,DF=2m,∠CEB=30°,∠CDB =45°,求CB部分的高度为(2+)m.【解答】解:设CB部分的高度为xm.∵∠BDC=∠BCD=45°,∴BC=BD=xm.在Rt△BCD中,CD===x(m).在Rt△BCE中,∵∠BEC=30°,∴CE=2BC=2x(m).∵CE=CF=CD+DF,∴2x=x+2,解得:x=2+.∴BC=(2+)(m).答:CB部分的高度约为(2+)m,故答案为:(2+).4.《九章算术》第九章勾股篇中记载:“今有开门去阃(kun)一尺,不合二寸,问门广几何?”其大意是:今推开双门,门框到门槛的距离(称为“去阃”)DF为一尺,双门之间的缝隙(称为“不合”)EF即为2寸(注:一尺为10寸),则门宽AB为10.1尺.【解答】解:设单门的宽度是x米,根据勾股定理,得x2=1+(x﹣0.1)2,解得:x=5.05,则2x=10.1尺,故答案为:10.1.5.如图一根竹子长为16米,折断后竹子顶端落在离竹子底端8米处,折断处离地面高度是6米.【解答】解:设竹子折断处离地面x米,则斜边为(16﹣x)米,根据勾股定理得:x2+82=(16﹣x)2解得:x=6.∴折断处离地面高度是6米,故答案为:6.6.如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.【解答】解:设旗杆的高度为x米,根据勾股定理,得x2+92=(x+3)2,解得:x=12;答:旗杆的高度为12米7.勾股定理是数学中最常见的定理之一,熟练的掌握勾股数,对迅速判断、解答题目有很大帮助,观察下列几组勾股数:a b c13=1+24=2×1×25=2×2+125=2+312=2×2×313=4×3+137=3+424=2×3×425=6×4+149=4+540=2×4×541=8×5+1…………n a=2n+1b=2n(n+1)c=2n(n+1)+1(1)你能找出它们的规律吗?(填在上面的横线上)(2)你能发现a,b,c之间的关系吗?(3)对于偶数,这个关系不成立(填“成立”或“不成立”).(4)你能用以上结论解决下题吗?20192+20202×10092﹣(2020×1009+1)2【解答】解:(1)由表中数据可得:a=2n+1,b=2n(n+1),c=2n(n+1)+1,故答案为:2n+1,2n(n+1),2n(n+1)+1;(2)a2+b2=c2,理由是:∵a=2n+1,b=2n(n+1),c=2n(n+1)+1,∴a2+b2=(2n+1)2+[2n(n+1)]2=[2n(n+1)]2+4n(n+1)+1c2=[2n(n+1)+1]2=[2n(n+1)]2+4n(n+1)+1∴a2+b2=c2;(3)对于偶数,这个关系不成立,故答案为:不成立;(4)当2n+1=2019时,n=1009,∴当n=1009时,a2=20192,b2=[2n(n+1)]2=20202×10092,c2=[2n(n+1)+1]2=[2020×1009+1]2,∵a2+b2=c2;∴20192+20202×10092﹣(2020×1009+1)2=0.8.如图①,点O为直线AB上一点,∠AOC=60°,将一把含有45°角的直角三角板的直角顶点放在点O处,直角边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板绕点O按逆时针方向旋转至图②的位置,使得∠MOB=90°,此时∠CON角度为75度;(2)将上述直角三角板从图1绕点O按逆时针旋转到图③的位置,当ON恰好平分∠AOC时,求∠AOM的度数;(3)若这个直角三角板绕点O按逆时针旋转到斜边ON在∠AOC的内部时(ON与OC、OA不重合),试探究∠AOM与∠CON之间满足什么等量关系,并说明理由.【解答】解:(1)图①中的三角板绕点O按逆时针方向旋转至图②的位置,∵∠MOB=90°,∠MON=45°∠AOC=60°,∴∠COM=30°,∴∠CON=∠COM+∠MON=75°,所以此时∠CON角度为75°.故答案为75;(2)直角三角板从图1绕点O按逆时针旋转到图③的位置,∵ON恰好平分∠AOC时,∴∠AON=∠CON=AOC=30°,∴∠AOM=∠MON﹣∠AON=15°.答:∠AOM的度数为15°;(3)∠AOM与∠CON之间满足:∠AOM﹣∠CON=15°,理由如下:∵∠CON=∠AOC﹣∠AON=60°﹣∠AON=60°﹣(∠MON﹣∠AOM)=60°﹣(45°﹣∠AOM)=15°+∠AOM所以∠CON﹣∠AOM=15°.9.如图所示,已知△ABC中,AB=8cm,AC=6cm,BC=10cm.分别以三边AB,AC及BC为直径向外作半圆,求阴影部分的面积.【解答】解:∵82+62=102,∴AB2+AC2=BC2∴∠BAC=90°∴以AB为直径的半圆的面积以AC为直径的半圆的面积以BC为直径的半圆的面积S3==π(cm2)∴练习31.如图,已知等腰Rt△ABC的直角边长为1,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE…依此类推直到第n个等腰直角三角形,则第n个等腰直角三角形的图形的面积为.(n为正整数)第1题第2题第3题第4题2.图中每个小方格的边长是l,若线段EF能与线段AB、CD组成一个直角三角形,则线段EF的长度是.3.如图所示的网格是正方形网格,则∠P AB﹣∠PCD=°.(点A,B,C,D,P是网格线交点)4.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则DE等于.5.①在Rt△ABC中,∠C=90°,BC、AC、AB所对的边分别为a、b、c.(1)a=3,b=4,则c=;(2)a=7,c=25,则b=;(3)c=3,b=1,则a=;(4)∠A=30°,a=2,则b=;②若b=﹣﹣2,则a b=.6.如图,在△ABC中,AB=AC,△ABC的高BH,CM交于点P.(1)求证:PB=PC.(2)若PB=5,PH=3,求AB.7.如图为一个广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求图中△ABC的周长和面积.8.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?9.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?参考答案1.如图,已知等腰Rt△ABC的直角边长为1,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE…依此类推直到第n个等腰直角三角形,则第n个等腰直角三角形的图形的面积为2n﹣2.(n为正整数)【解答】解:∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==21﹣2;AC==,AD==2…,∴S△ACD=××=1=22﹣2;S△ADE=×2×2=2=23﹣2…∴第n个等腰直角三角形的面积是2n﹣2.故答案为:2n﹣2.2.图中每个小方格的边长是l,若线段EF能与线段AB、CD组成一个直角三角形,则线段EF的长度是或.【解答】解:AB=,CD=,当EF为斜边时,EF=,当EF是直角边时,EF=,故答案为:或.3.如图所示的网格是正方形网格,则∠P AB﹣∠PCD=45°.(点A,B,C,D,P是网格线交点)【解答】解:连接AE,PE,则∠EAB=∠PCD,故∠P AB﹣∠PCD=∠P AB﹣∠EAB=∠P AE,设正方形网格的边长为a,则P A==,PE=,AE==a,∵P A2+PE2=5a2+5a2=10a2=AE2,∴△APE是直角三角形,∠APE=90°,又∵P A=PE,∴∠P AE=∠PEA=45°,∴∠P AB﹣∠PCD=45°,故答案为:45.4.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则DE等于.【解答】解:在Rt△ACB中,由勾股定理得:BC==4,连接AE,从作法可知:DE是AB的垂直平分线,根据性质得出AE=BE,在Rt△ACE中,由勾股定理得:AC2+CE2=AE2,即32+(4﹣AE)2=AE2,解得:AE=,在Rt△ADE中,AD=AB=,由勾股定理得:DE2+()2=()2,解得:DE=.故答案为:.5.①在Rt△ABC中,∠C=90°,BC、AC、AB所对的边分别为a、b、c.(1)a=3,b=4,则c=5;(2)a=7,c=25,则b=24;(3)c=3,b=1,则a=2;(4)∠A=30°,a=2,则b=2;②若b=﹣﹣2,则a b=.【解答】解:①在Rt△ABC中,∠C=90°,BC、AC、AB所对的边分别为a、b、c.(1)a=3,b=4,则c=5;(2)a=7,c=25,则b=24;(3)c=3,b=1,则a=2;(4)∠A=30°,a=2,则b=2;②若b=﹣﹣2,可得:a=3,b=﹣2,则a b=,故答案为:①(1)5;(2)24;(3)2;(4)2;②6.如图,在△ABC中,AB=AC,△ABC的高BH,CM交于点P.(1)求证:PB=PC.(2)若PB=5,PH=3,求AB.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB.∵BH,CM为△ABC的高,∴∠BMC=∠CHB=90°.∴∠ABC+∠BCM=90°,∠ACB+∠CBH=90°.∴∠BCM=∠CBH.∴PB=PC.(2)解:∵PB=PC,PB=5,∴PC=5.∵PH=3,∠CHB=90°,∴CH=4.设AB=x,则AH=x﹣4.在Rt△ABH中,∵AH2+BH2=AB2,∴(x﹣4)2+(5+3)2=x2.∴x=10.即AB=10.7.如图为一个广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求图中△ABC的周长和面积.【解答】解:在△ABD中,∵AB=13m,AD=12m,BD=5m,∴AB2=AD2+BD2,∴AD⊥BC,在Rt△ADC中,∵AD=12m,AC=15m,∴DC==9(m),∴△ABC的周长为:AB+AC+BC=13+15+5+9=42m,△ABC的面积为:×BC×AD=×14×12=84m2.8.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC===10m,故小鸟至少飞行10m.9.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?【解答】解:∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(25﹣x),∵DA=15km,CB=10km,∴x2+152=(25﹣x)2+102,解得:x=10,∴AE=10km,∴收购站E应建在离A点10km处.练习41.如图,△ABC中,∠B=70°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ADC 的度数为.第1题第2题第4题第5题2.如图所示,在△ABC中,∠ACB=90°,DE为边AB的垂直平分线,交BC的延长线于点E,BC=3,AB=5,则CE=.3.为了迎接新年的到来,同学们做了许多拉花布置教室,小明搬来一架高为2.5m的木梯,想把拉花桂到2.4m的墙上,则梯角应距墙角m.4.如图所示,一根长为7cm的吸管放在一个圆柱形杯中,测得杯的内部底面直径为3cm,高为4cm,则吸管露出在杯外面的最短长度为cm.5.如图,在Rt△ACB中,∠C=90°,BC=4,AB=5,BD平分∠ABC交AC于点D,则AD=.6.探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…请写出下一数组:.7.如图,Rt△ABC中,∠C=90°,AC=6,BC=8.(1)用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(2)计算(1)中线段CD的长.8.如图,一架25dm长的梯子AB斜靠在一竖直的墙AO上,梯子底端B到墙的距离BO=7dm.移动梯子使底端B外移至点D,BD=8dm,求梯子顶端A沿墙下滑的距离AC的长.9.如图,已知△ABC和△BDE是等腰直角三角形,∠ABC=∠DBE=90°,点D在AC上.(1)求证:△ABD≌△CBE;(2)若DB=1,求AD2+CD2的值.10.如图,水渠两边AB∥CD,一条矩形竹排EFGH斜放在水渠中,∠AEF=45°,∠EGD=105°,竹排宽EF=2米,求水渠宽.11.如图,BF,CG分别是△ABC的高线,点D,E分别是BC,GF的中点,连结DF,DG,DE.(1)求证:△DFG是等腰三角形;(2)若BC=10,FG=6,求DE的长.勾股定理及应用参考答案与试题解析1.如图,△ABC中,∠B=70°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ADC 的度数为80°或140°或10°.【解答】解:如图,有三种情形:①当AC=AD时,∵△ABC中,∠B=70°,∠ACB=90°,∴∠CAB=20°,∵AC=AD,∴∠ADC=∠DCA=(180°﹣∠CAB)=80°;②当CD′=AD′时,∵∠CAB=20°,∴∠D′CA=∠CAB=20°,∴∠AD′C=180°﹣20°﹣20°=140°.③当AC=AD″时,则∠AD″C=∠ACD″,∵∠CAB=20°,∠AD″C+∠ACD″=∠CAB,∴∠AD″C=10°,故答案为:80°或140°或10°.2.如图所示,在△ABC中,∠ACB=90°,DE为边AB的垂直平分线,交BC的延长线于点E,BC=3,AB=5,则CE=.【解答】解:设CE=x,连接AE,∵DE是线段AB的垂直平分线,∴AE=BE=BC+CE=3+x,∵∠ACB=90°,BC=3,AB=5,∴AC=4,∴在Rt△ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,解得x=.故答案为:.3.为了迎接新年的到来,同学们做了许多拉花布置教室,小明搬来一架高为2.5m的木梯,想把拉花桂到2.4m的墙上,则梯角应距墙角0.7m.【解答】解:梯脚与墙角距离:=0.7(m).故答案为:0.74.如图所示,一根长为7cm的吸管放在一个圆柱形杯中,测得杯的内部底面直径为3cm,高为4cm,则吸管露出在杯外面的最短长度为2cm.【解答】解:设在杯里部分长为xcm,则有:x2=32+42,解得:x=5,所以露在外面最短的长度为7cm﹣5cm=2cm,故吸管露出杯口外的最短长度是2cm,故答案为:2.5.如图,在Rt△ACB中,∠C=90°,BC=4,AB=5,BD平分∠ABC交AC于点D,则AD=.【解答】解:在Rt△ACB中,∠C=90°,BC=4,AB=5,∴AC==3,过D作DE⊥AB于E,∵BD平分∠ABC,∠C=90°,∴CD=DE,在Rt△BCD与Rt△BED中,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=4,∴AE=1,∵AD2=DE2+AE2,∴AD2=(3﹣AD)2+12,∴AD=,故答案为:.6.探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…请写出下一数组:(11,60,61).【解答】解:∵(3,4,5):3=2×1+1,4=2×12+2×1,5=2×12+2×1+1;(5,12,13):5=2×2+1,12=2×22+2×2,13=2×22+2×2+1;(7,24,25):7=2×3+1,24=2×32+2×3,25=2×32+2×3+1;(9,40,41):9=2×4+1,40=2×42+2×4,41=2×42+2×4+1;∴下一组数为:11=2×5+1,60=2×52+2×5,61=2×52+2×5+1,故答案为:(11,60,61).7.如图,Rt△ABC中,∠C=90°,AC=6,BC=8.(1)用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(2)计算(1)中线段CD的长.【解答】解:(1)画角平分线正确,保留画图痕迹(2)设CD=x,作DE⊥AB于E,则DE=CD=x,∵∠C=90°,AC=6,BC=8.∴AB=10,∴EB=10﹣6=4.∵DE2+BE2=DB2,∴x2+42=(8﹣x)2,x=3,即CD长为3.8.如图,一架25dm长的梯子AB斜靠在一竖直的墙AO上,梯子底端B到墙的距离BO=7dm.移动梯子使底端B外移至点D,BD=8dm,求梯子顶端A沿墙下滑的距离AC的长.【解答】解:由题意得:在Rt△AOB中,OB=7dm,AB=25dm,∴OA==24dm,在Rt△COD中,OD=8+7=15dm,CD=25dm,∴OC==20dm,∴AC=OA﹣OC=24﹣20=4dm,答:梯子顶端A沿墙下滑的距离AC的长为4dm.9.如图,已知△ABC和△BDE是等腰直角三角形,∠ABC=∠DBE=90°,点D在AC上.(1)求证:△ABD≌△CBE;(2)若DB=1,求AD2+CD2的值.【解答】解:(1)∵△ABC是等腰直角三角形,∴AB=BC,∠ABC=90°,∠A=∠ACB=45°,同理可得:DB=BE,∠DBE=90°,∠BDE=∠BED=45°,∴∠ABD=∠CBE,在△ABD与△CBE中,AB=BC,∠ABD=∠CBE,DB=BE,∴△ABD≌△CBE(SAS).(2)∵△BDE是等腰直角三角形,∴DE=BD=,∵△ABD≌△CBE,∴∠A=∠BCE=45°,AD=CE,∴∠DCE=∠ACB+∠BCE=90°,∴DE2=DC2+CE2=AD2+CD2,∴AD2+CD2=2.10.如图,水渠两边AB∥CD,一条矩形竹排EFGH斜放在水渠中,∠AEF=45°,∠EGD=105°,竹排宽EF=2米,求水渠宽.【解答】解:过F作FP⊥AB于P,延长PF交CD于Q,则FQ⊥CD,∴∠EPF=∠FQG=90°,∵四边形EFGH是矩形,∴∠EFG=90°,∵∠AEF=45°,∴∠GFQ=∠EFP=45°,∴∠FGQ=45°,∵EF=2,∴PF2+PE2=EF2=4,∵PF=PE,∴PF=PE=,∵AB∥CD,∴∠AEG=∠EGD=105°,∵∠AEF=45°,∴∠FEG=60°∴FG=EF=2,∴FQ2+GQ2=FG2=12,∴FQ=QG=,∴PQ=PF+FQ=()(米),答:水渠宽为()米.11.如图,BF,CG分别是△ABC的高线,点D,E分别是BC,GF的中点,连结DF,DG,DE.(1)求证:△DFG是等腰三角形;(2)若BC=10,FG=6,求DE的长.【解答】(1)证明:∵BF,CG分别是△ABC的高线,∴BF⊥AC,CG⊥AB,且点B为BC的中线,∴DF=BC,DG=BC,∴DF=DG,∴△DFG是等腰三角形;(2)解:由(1)知,DF=DG=BC=5.∵点E为GF的中点,FG=6,∴EF=GF=3,且DG⊥GF,∴在直角△DEF中,由勾股定理知,DE===4.。

苏科版八上3.1勾股定理练习

苏科版八上3.1勾股定理练习

苏科版数学八上第3章勾股定理3.1勾股定理练习一、选择题1.直角三角形的两条直角边长分别为6cm、8cm,则这个直角三角形斜边.上的中线为( )A.3cmB.4cmC.5cmD.12cm.2.如图是2002年8月在北京召开的国际数学大会的会标,它是由四个相同的直角三角形与中间一个小正方形拼成一个大正方形,若大正方形的边长是13cm,每个直角三角形较短的一条直角边的长是5cm,则小正方形的边长为( )A.4cmB.5cmC.6cmD.7cm(2题图)(3题图)(3题图)(7题图)3.如图,为了求出分别位于池塘两岸的点A与点B的距离,小亮在点C处立一标杆,使∠ABC是直角,测得A C的长为85m, BC的长为75m,则点A与点B的距离是()A.20mB.40mC.30mD.50m4.如图,在Rt△BOD中,分别以BD, OD, BO为直径向外作三个半圆,其面积分别为S1, S2,S3.若S1=40, S3=l8,则S2=( )A.18B.20C.22D.245.等腰三角形的腰长为25,底边长为14,则它底边上的高为( )A.24B.7C.6D.56.在Rt△ABC中,∠C=90°.若AB-AC=4, BC=8,则AB= ( )A.5B.6C.8D.107.如图,点C是线段AB上的一点,分别以AC、BC为边向两侧作正方形.设AB=6,两个正方形的面积和S1+S2=20,则图中△BCD的面积为( )A.4B.6C.8D.108.如图,在Rt△ABC中,∠BAC=90°, AB=3, AC=4,分别以AB,AC,BC为边向△A BC外作正方形ABED,正方形ACHI,正方形BCGF.直线ED, HI交于点J,过,点F作KF∥HI,交DE于点K,过点G作GM∥IDE,与HI, KF分别交于点M, L .则四边形KLMJ的面积为( )A.90B.100C.110D.120二、填空题9.如图中A代表的正方形的面积,则A的值是 .10.在Rt△A BC中,以两直角边为边长的正方形面积如图所示,则AB的长为 .11.如图,该图形是由直角三角形和正方形构成,其中最大正方形的边长为7,则正方形A、B、C、D的面积之和为 .(9题图)(10题图)(11题图)(12题图)12.如图,在△ABC,∠C=90°, c=2,则a2+b2+c2= .13.如图,在Rt△ABC中,∠A=90°, BD平分∠ABC交AC于点D,且AB=4, BD=5,则点D到BC的距离为 .(13题图)(14题图)(16题图)14.如图,在Rt△ABC中,∠BAC=90°, AB=8,AC=6,分别以点B, C为圆心,AC, AB 长为半径作弧,两弧相交于P点,作射线AP交BC于点D,则AD的长为 .15.一个直角三角形两条直角边的比是3 : 4, 斜边长为10cm,那么这个直角三角形面积为 .16.如图,点D为△ABC的边B上一点,且AD=AC,∠B=45°,过D作DE⊥AC于E,若AE=3,四边形BDEC的面积为8,则AB的长度为 .三、解答题17.如图,在△ABC中,∠ADC=∠BDC=90°, AC=20, BC=15,BD=9,求AD的长.18.在Rt△ABC中,两条直角边AB, BC的长c, a满足|4-c|+a2-10a+25=0 .(1)求AC的长.(2)求Rt△ABC的面积.19.如图,在△DEF中,∠D=90°, DE=16cm, EF=20cm, P, Q是△DEF的边上的两个动点,其中点P从点E开始沿E→D方向运动,且速度为每秒lcm,点Q从点D开始沿D→F→E方向运动,且速度为每秒2m,它们同时出发,设出发的时间为t s .(1)DF= cm .(2)当点P在边EF的垂直平分线上时,t=____s.(3)当点Q在边EF上时,求使△DFQ成为等腰三角形的运动时间.20.如图,在△ABC中,AB=AC, AD⊥BC于点D,∠CBE=45°, BE分别交AC, AD 于点E、F.(1)如图1,若AB=13, BC=10,求AF的长度;(2)如图2,若AF=BC,求证: BF2+EF2=AE2.。

【】八年级数学上册3.1勾股定理(1)同步练习(含答案)

【】八年级数学上册3.1勾股定理(1)同步练习(含答案)

第三章勾股定理§ 3.1勾股定理(1)一.细心选一选.1•若直角三角形两边的长分别是3和4,则第三边的长为2•如图,在边长为 1个单位长度的小正方形组成的网格中,点A ,B 都是格点,线段 AB 的长度为( ) A.5B.6C.7D.253.若一个直角三角形的一条直角边长是 7 cm,另一条直角边比斜边短 1 cm,则斜边长()A.18 cmB.20 cmC.24 cmD.25 cm4.在 Rt △ ABC 中,/ C=90°,周长为60,斜边与一条直角边之比为13: 5,则这个三角形三边长分别是( )A.5 , 4, 3B.13, 12, 5C.10, 8, 6D.26 , 24, 105•如图,在△ ABC 中,A D 丄BC ,垂足为 D ,若AD=3,/ B=45 ° ,△ ABC 的面积为6,则AC 边的长是 ( )A. 6B. 10C.2、2D.3&.认真填一填.7•在等腰三角形 ABC 中,若 AB=AC=10 cm , BC=12 cm.,贝U BC 边上的高是 _____ c m. 8.下列各图中所示的线段的长度或正方形的面积为多少 ?(注:下列各图中的三角形均为直角三角形)A= _________ y= ________ B= ________6•如图,点 E 在正方形 ABCD 内,满足/ AEB=90,AE=6, BE=8,则阴影部分的面积是A.48B.60C.76D.80 第2世图第5聽图 第(5题图14•如图,在四边形.ABCD 中,/ BAD=90。

,/ DBC=90 ° , AD=3, AB=4, BC=12.求 CD的长.9•一个圆锥形的漏斗,小李用三角板测得其高度的尺寸如图所示,那么漏斗的斜壁AB 的长度为 _______ c m.10•如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A 和B 的距离为 __________ m m. 11. 以直角三角形的三边为边向形外作正方形 P , Q ,K ,若S P =4,S Q =9,则S R = _________ .12.如图,有一块边长为 24 m 的长方形绿地,在绿地旁边B 处有 !■健身器材,由于居住在A 处的居民践踏了绿地,小颖想在 A处立一个标牌"少走步,踏之何忍”但小颖不知应填什么数字,请你帮助她填上好吗 ?(假设两步为1米).耐心解一解.13.求下列图形中阴影部分的面积:(1) 阴影部分是正方形;(2) 阴影部分是长方形;(3) 阴影部分是半圆'■対紳1 丿 .15.如图,△ ACB 和厶ECD 都是等腰直角三角形,/ ACB= / ECD=90°, D 为AB 边上一点•⑴求证:△ ACE ◎△ BCD ;⑵已知 AD=5, BD=12,求DE 的长.16.假期中,小明和同学们到某海岛上去旅游,按照旅游图,他们从点A 处登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了 3千米,再折向北走了 6千米后往东一拐,又走了 1千米就到了小岛的休息点 B ,问登陆点A 到小岛的休息点 B 的距离是多少千米?17. 如图,已知斜放着的3个正方形面积分别为 1,2, 3,正放着的4个正方形的面积依次为 S i , S 2,S 3,S 4,求 S 1+S 2+S 3+S 4 的值.参考答案4.D5.C6.C7.88.A=225y=39B=2259.、3412.1613.(1) 25 cm 2 (2) 51 cm 2 (3) 8 n cm 214.1315.(1) •/△ACB 和厶 ECD 都是等腰直角三角形,••• AC=BC,EC=DC.vZ ACE= / DCE -Z DCA ,/ BCD =AC BCACE BCD , •△ ACE ^A BCD (2)由(1)可得 AE=BD=12 , Z EAC = ZDBCEC DC=45° . T Z BAC=45 °,「.Z EAD = Z EAC + Z BAC=90。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1勾股定理 一、选择题
1 .若线段a,b,c 组成Rt△,则它们的比可以是( )
A 、2∶3∶4
B 、3∶4∶6
C 、5∶12∶13
D 、4∶6∶7
2 .Rt△一直角边的长为11,另两边为自然数,则Rt△的周长为( )
A 、121
B 、120
C 、132
D 、不能确定 3 .如果Rt△的两直角边长分别为n 2-1,2n(n >1),那么它的斜边长是( )
A 、2n
B 、n+1
C 、n 2-1
D 、n 2
+1 4 .已知Rt△ABC 中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC 的面积是( )
A 、24cm 2
B 、36cm 2
C 、48cm 2
D 、60cm 2
5 .等腰三角形底边长10 cm,腰长为13,则此三角形的面积为( )
A 、40
B 、50
C 、60
D 、70
6 .已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )
A 、25海里
B 、30海里
C 、35海里
D 、40海里
7 .如图,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm ,将△ABC 折叠,点B 与点A 重合,折痕为DE,则CD 的长为
( )
8 .一个直角三角形的两条直角边分别为5、12,则斜边上的高为 ( )
A 、 512
B 、125
C 、 1360
D 、 60
13 9 .直角三角形有一条直角边为6,另两条边长是连续偶数,则其斜边中线长为( )
A. 5
B. 10
C. 8
D. 16 B
A C
E D
10.如图是某地一的长方形大理石广场示意图,如果小琴要从A 角走到C 角,至少走( )

A. 90
B. 100
C. 120
D. 140
11.已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )
A 、25
B 、14
C 、7
D 、7或25
12.四边形的四条边AB 、BC 、CD 、DA 的长分别为3、4、13、12,其中∠B=90°,则四边形的
面积是 ( )
A.72
B.66
C.42
D.36
二、填空题
13.已知直角三角形的两边长分别为3和4,则第三边长为__________
14.在Rt△ABC 中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则
b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则S Rt△ABC =________。
15.直角三角形两直角边长分别为5和12,则它斜边上的高为__________。 16.有一个长为12 c m,宽为4 c m,高为3 c m 的长方体形铁盒,在其内部要放一根笔直的铁
丝,则铁丝最长达到_______________c m 。
17.在△ABC 中,AB=13cm,AC=15cm,高AD=12cm,则BC=______________。
18.如图5,为修铁路凿通隧道BC,测的∠A=40°,∠B=50°,AB=5km,AC=4km,若每天凿隧道
0.3km,则需_____________天才能把隧道凿通。
19.如图所示的一只玻璃杯,最高为8cm,将一根筷子插入其中,杯外最长4厘米,•最短2厘
米,那么这只玻璃杯的内径是________厘米.
80米 图)
三、解答题
20.直角三角形ABC 中,∠C=90°,CD⊥AB 于D.AC=12,BC=16,求
AD.
21.一高层住宅发生火灾,消防车立即赶到距大厦6米处(车尾到大厦墙面),升起云梯到火
灾窗口,已知云梯长15米,云梯底部距地面2米,问发生火灾的住户窗口距地面多高?(精确到0。01)
22.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B 处有健身器材,由于居住在A
处的居民践踏了绿地,小明想在A 处树立一个标牌“少走▇米,踏之何忍?”请你计算后帮小明在标牌的▇填上适当的数字
.
23.小明想知道学校旗杆的高度.他测量得旗杆顶端所系的绳子垂到地面还多1米,当他拎
着绳子的下端点拉直,并揿在地面上时,此点离开旗杆底部是5米.你能帮助小明计算出旗杆的高度吗?
24.某镇为响应中央关于建设社会主义新农村的号召,决定公路相距25km 的A,B 两站之间
E 点修建一个土特产加工基地,如图,DA⊥AB 于A,CB⊥AB 于B,已知DA=15km,CB=10km,现在要使C 、D 两村到E 点的距离相等,那么基地E 应建在离A 站多少km 的地方?
A
D E B
C
2.1勾股定理参考答案
一、选择题
1 .C
2 .C
3 .D
4 .A
5 .C
6 .D
7 .D
8 .A 9 .A 10.B 11.D 12.D
二、填空题
13.5或7 14.13 20 11 24 15. 1360 16.13 17.14cm 或4cm 18
.10, 19.6 [点拨]根据条件可得筷子长为12厘米,
如图
=6.
三、解答题
20.AC=12 BC=16
∴AB=20 CD=201612⨯=⨯5412.AD 2=AC 2-CD 2=122-(⨯54
12)2=122×(53
)2
∴AD=536 21.发生火灾的住户窗口距地面15.75
22.在▇的地方应该填写的数字为6。
23.解:设旗杆的高为x 米,则绳子长为(x+1)米
根据题意,得222(1)5x x +=+,
化简整理,得2x=24,
x=12,
∴旗杆的高为12米
24.解:设AE= x 千米,则BE=(25-x )千米,
在Rt△DAE 中,DA 2+AE 2=DE 2
在Rt△EBC 中,BE 2+BC 2=CE 2
∵ CE=DE
∴ DA 2+AE 2 = BE 2+BC 2
∴ 152+x 2=102+(25-x)2
解得:x=10千米 ∴ 基地应建在离A 站10千米的地方。。

相关文档
最新文档