2006-2011年河南中考数学对照分析
2011年河南省初中学业水平暨高级中等学校招生考试试卷分析
2011年河南省初中学业水平暨高级中等学校招生考试试卷分析本套试卷在题型上沿续了10年的形式,整体难度适中,考查内容相对比较全面,与10年相比增加了部分有关计算的问题,下面就各个题分析如下:一、选择题(本题包括10个小题,每小题1分,共10分)1、考查物质的变化,物理变化与化学变化的本质区别是有无新物质生成,本题很简单,所有选项均是平时常遇到的,学生一般都能写对。
2、考查保护空气,二氧化硫的排放能导致酸雨,比较简单,学生一般不容易出错。
3、配制一定质量分数的溶液,考查实验器材,相对比较简单,学生不容易出错。
4、本质考查的是物质的构成,要求学生了解不同物质它们构成的特点,要求相对比较高,有一定的难度,不少学生可能认为酸中一定会有氧元素,这是容易出错的地方。
5、考查溶解度曲线,主要考查了溶解度随温度变化的趋势,图象交点的意义,以及饱和溶液与不饱和溶液之间的转化,是中考中经常出现的考点,没有容易出现错误的地方。
6、考查化学式,涉及物质分类;物质构成;元素质量分数的计算以及元素的质量比的计算,比较简单。
7、本质考查的是化合价的计算,通过计算反应前后同种元素的化合价,比较是否发生变化,最后按照题中所给条件下找出正确答案。
相对也比较简单。
8、考查实验,通过对实验现象进行分析,最终得出结论,不能得出正确结论的即为正确选项,正确答案比较明显,学生不容易出错。
9、考查有关化学方程式的计算,写出三个化学方程式,根据方程式最终得出正确答案,需要特别强调的是题中给出的是相同质量的三种气体,而不是消耗氧气的质量相同,这是容易出错的地方。
10、本质上考查的是复分解反应发生的条件,需要注意的是要找出题中隐藏的条件,酸性以及无色排除选项A,这是容易出错的地方,不少学生可能没注意到无色,直接选择A二、填空题(本题包括6个小题,每空1分,共16分)11、联系化学与生产生活,考查了氮气的用途以及复合肥料,比较简单,但是这两个问题是考试中经常出现的,应当重点让学生掌握。
2011年河南省中考数学试卷答案与解析
2011年河南省中考数学试卷参考答案和试题分析一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.(3分)(2013•宁德)﹣5的绝对值是()A.5B.﹣5 C.D.﹣考点:绝对值.分析:根据绝对值的性质求解.解答:解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.点评:此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2011•河南)如图,直线a,b被c所截,a∥b,若∠1=35°,则∠2的大小为()A.35°B.145°C.55°D.125°考点:平行线的性质.分析:由a∥b,根据两直线平行,同位角相等,即可求得∠3的度数,又由邻补角的定义,即可求得∠2的度数.解答:解:∵a∥b,∴∠3=∠1=35°,∴∠2=180°﹣∠3=180°﹣35°=145°.故选B.点评:此题考查了平行线的性质.注意两直线平行,同位角相等和数形结合思想的使用.3.(3分)(2011•河南)下列各式计算正确的是()A.B.C.2a2+4a2=6a4D.(a2)3=a6考点:二次根式的加减法;合并同类项;幂的乘方和积的乘方;零指数幂;负整数指数幂.分析:根据各选项进行分析得出计算正确的答案,注意利用幂的乘方的运算以及二次根式的加减,负整数指数幂等知识分别判断即可.解答:解:A、(﹣1)0﹣()﹣1=1﹣2=﹣1,故此选项错误;B、和不是同类项无法计算,故此选项错误;C、2a2+4a2=6a2,故此选项错误;D、(a2)3=a6,故此选项正确.故选D.点评:此题主要考查了二次根式的混合运算以及幂的乘方的运算和负整数指数幂等知识,此题难度不大注意计算要认真,保证计算的正确性.4.(3分)(2011•河南)不等式的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得,x>﹣2,由②得,x≤3,故此不等式组的解集为:﹣2<x≤3.在数轴上表示为:故选B.点评:本题考查的是在数轴上表示一元一次不等式组的解集,解答此类题目时一定要注意实心圆点和空心圆点的区别.5.(3分)(2011•河南)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是=610千克,=608千克,亩产量的方差分别是S2甲=29.6,S2乙=2.7.则关于两种小麦推广种植的合理决策是()A.甲的平均亩产量较高,应推广甲B.甲、乙的平均亩产量相差不多,均可推广C.甲的平均亩产量较高,且亩产量比较稳定,应推广甲D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙考点:方差;算术平均数.专题:压轴题.分析:本题需先根据甲、乙亩产量的平均数得出甲、乙的平均亩产量相差不多,再根据甲、乙的平均亩产量的方差即可得出乙的亩产量比较稳定,从而求出正确答案.解答:解:∵=610千克,=608千克,∴甲、乙的平均亩产量相差不多∵亩产量的方差分别是S2甲=29.6,S2乙=2.7.∴乙的亩产量比较稳定.故选D.点评:本题主要考查了方差和平均数的有关知识,在解题时要能根据方差和平均数代表的含义得出正确答案是本题的关键.6.(3分)(2011•河南)如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点A′的坐标为()A.(3,1)B.(1,3)C.(3,﹣1)D.(1,1)考点:坐标和图形变化-旋转;坐标和图形变化-平移.专题:压轴题;网格型;数形结合.分析:根据图示可知A点坐标为(﹣3,﹣1),它绕原点O旋转180°后得到的坐标为(3,1),根据平移“上加下减”原则,向下平移2个单位得到的坐标为(3,﹣1).解答:解:根据图示可知A点坐标为(﹣3,﹣1),根据绕原点O旋转180°横纵坐标互为相反数∴旋转后得到的坐标为(3,1),根据平移“上加下减”原则,∴向下平移2个单位得到的坐标为(3,﹣1),故选C.点评:本题主要考查了根据图示判断坐标、图形旋转180°特点以及平移的特点,比较综合,难度适中.二、填空题(每小题3分,共27分)7.(3分)(2011•河南)27的立方根为3.考点:立方根.专题:计算题.分析:找到立方等于27的数即可.解答:解:∵33=27,∴27的立方根是3,故答案为:3.点评:考查了求一个数的立方根,用到的知识点为:开方和乘方互为逆运算.8.(3分)(2011•河南)如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,则∠BDC的度数为72°.考点:等腰三角形的性质.分析:由AB=AC,CD平分∠ACB,∠A=36°,根据三角形内角和180°可求得∠B等于∠ACB,并能求出其角度,在△DBC求得所求角度.解答:解:∵AB=AC,CD平分∠ACB,∠A=36°,∴∠B=(180°﹣36°)÷2=72°,∠DCB=36°.∴∠BDC=72°.故答案为:72°.点评:本题考查了等腰三角形的性质,本题根据三角形内角和等于180度,在△CDB中从而求得∠BDC的角度.9.(3分)(2011•河南)已知点P(a,b)在反比例函数的图象上,若点P关于y轴对称的点在反比例函数的图象上,则k的值为﹣2.考点:反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.分析:本题需先根据已知条件,求出ab的值,再根据点P关于y轴对称并且点P关于y轴对称的点在反比例函数的图象上即可求出点K的值.解答:解:∵点P(a,b)在反比例函数的图象上,∴ab=2,∵点P关于y轴对称的点的坐标是(﹣a,b),∴k=﹣ab=﹣2.故答案为:﹣2.点评:本题主要考查了反比例函数图象上点的坐标的特征,在解题时要能灵活使用反比例函数图象上点的坐标的特征求出k的值是本题的关键.10.(3分)(2011•河南)如图,CB切⊙O于点B,CA交⊙O于点D且AB为⊙O的直径,点E是上异于点A、D的一点.若∠C=40°,则∠E的度数为40°.考点:切线的性质;圆周角定理.专题:常规题型;压轴题.分析:连接BD,根据直径所对的圆周角是直角,利用切线的性质得到∠ABD的度数,然后用同弧所对的圆周角相等,求出∠E的度数.解答:解:如图:连接BD,∵AB是直径,∴∠ADB=90°,∵BC切⊙O于点B,∴∠ABC=90°,∵∠C=40°,∴∠BAC=50°,∴∠ABD=40°,∴∠E=∠ABD=40°.故答案为:40°.点评:本题考查的是切线的性质,利用切线的性质和圆周角定理求出∠E的度数.11.(3分)(2011•河南)点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上两点,则y1和y2的大小关系为y1<y2(填“>”、“<”、“=”).考点:二次函数图象上点的坐标特征.分析:本题需先根据已知条件求出二次函数的图象的对称轴,再根据点A、B的横坐标的大小即可判断出y1和y2的大小关系.解答:解:∵二次函数y=x2﹣2x+1的图象的对称轴是x=1,在对称轴的右面y随x的增大而增大,∵点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上两点,2<3,∴y1<y2.故答案为:<.点评:本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活使用二次函数的图象和性质以及点的坐标特征是本题的关键.12.(3分)(2011•河南)现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是.考点:列表法和树状图法.分析:首先根据题意画树状图,然后由树状图求得所有等可能的结果和两球标号恰好相同的情况,即可根据概率公式求解.解答:解:画树状图得:∴一共有6种等可能的结果,两球标号恰好相同的有1种情况,∴两球标号恰好相同的概率是.点评:此题考查了树状图法和列表法求概率.树状图法和列表法适合两步完成的事件,可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数和总情况数之比.13.(3分)(2011•河南)如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P 是BC边上一动点,则DP长的最小值为4.考点:角平分线的性质;垂线段最短.专题:压轴题.分析:根据垂线段最短,当DP垂直于BC的时候,DP的长度最小,则结合已知条件,利用三角形的内角和定理推出∠ABD=∠CBD,由角平分线性质即可得AD=DP,由AD的长可得DP的长.解答:解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小,∵BD⊥CD,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC,又∠ADB=∠C,∴∠ABD=∠CBD,又DA⊥BA,BD⊥DC,∴AD=DP,又AD=4,∴DP=4.故答案为:4.点评:本题主要考查了直线外一点到直线的距离垂线段最短、全等三角形的判定和性质、角平分线的性质,解题的关键在于确定好DP垂直于BC.14.(3分)(2011•河南)如图是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为90π.考点:圆锥的计算;由三视图判断几何体.专题:压轴题.分析:根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积为,即可得出表面积.解答:解:∵如图所示可知,圆锥的高为12,底面圆的直径为10,∴圆锥的母线为:13,∴根据圆锥的侧面积公式:πrl=π×5×13=65π,底面圆的面积为:πr2=25π,∴该几何体的表面积为90π.故答案为:90π.点评:此题主要考查了圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.15.(3分)(2011•河南)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=2,点E是BC边的中点,△DEF是等边三角形,DF交AB于点G,则△BFG的周长为3+.考点:直角梯形;等边三角形的性质;解直角三角形.专题:几何综合题;压轴题.分析:首先由已知AD∥BC,∠ABC=90°点E是BC边的中点,推出四边形ABED是矩形,所以得到直角三角形CED,所以能求出CD和DE,又由△DEF是等边三角形,得出DF,由直角三角形AGD可求出AG、DG,进而求得FG,再证△AGD≌△BGF,得到BF=AD,从而求出△BFG的周长.解答:解:已知AD∥BC,∠ABC=90°,点E是BC边的中点,即AD=BE=CE=,∴四边形ABED为矩形,∴∠DEC=90°,∠A=90°,又∠C=60°,∴DE=CE•tan60°=×=3,又∵△DEF是等边三角形,∴DF=DE=AB=3,∠AGD=∠EDF=60°,∠ADG=30°∴AG=AD•tan30°=×=1,∴DG=2,FG=DF﹣DG=1,BG=3﹣1=2,∴AG=FG=1,∠AGD=∠FGB,BG=DG=2,∴△AGD≌△BGF,∴BF=AD=,∴△BFG的周长为2+1+=3+,故答案为:3+.点评:此题考查的知识点是直角梯形、等边三角形的性质及解直角三角形,解题的关键是先由已知推出直角三角形CED,再通过△DEF是等边三角形,解直角三角形证明三角形全等求解.三、解答题(本大题共8个小题,满分75分)16.(8分)(2011•河南)先化简,然后从﹣2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.考点:分式的化简求值.专题:开放型.分析:首先对分式进行化简、把除法转化为乘法、在进行混合运算,把分式转化为最简分式,然后确定x的整数值,把合适的值代入求值,x的值不可使分式的分母为零.解答:原式==.x满足﹣2≤x≤2且为整数,若使分式有意义,x只能取0,﹣2.∴当x=0时,原式=(或:当x=﹣2时,原式=).点评:本题主要考查分式的化简、分式的性质,解题的关键在于找到x的合适的整数值,x的取值不可是分式的分母为零.17.(9分)(2011•河南)如图,在梯形ABCD中,AD∥BC,延长CB到点E,使BE=AD,连接DE交AB于点M.(1)求证:△AMD≌△BME;(2)若N是CD的中点,且MN=5,BE=2,求BC的长.考点:梯形;全等三角形的判定和性质.专题:计算题;证明题.分析:(1)找出全等的条件:BE=AD,∠A=∠ABE,∠E=∠ADE,即可证明;(2)首先证得MN是三角形的中位线,根据MN=(BE+BC),又BE=2,即可求得.解答:(1)证明:∵AD∥BC,∴∠A=∠MBE,∠ADM=∠E,在△AMD和△BME中,,∴△AMD≌△BME(ASA);(2)解:∵△AMD≌△BME,∴MD=ME,ND=NC,∴MN=EC,∴EC=2MN=2×5=10,∴BC=EC﹣EB=10﹣2=8.答:BC的长是8.点评:本题考查了全等三角形的判断及三角形中位线定理的使用,熟记其性质、定理是证明、解答的基础.18.(9分)(2011•河南)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选).在随机调查了某市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m=20;(2)该市支持选项B的司机大约有多少人?(3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?考点:条形统计图;用样本估计总体;扇形统计图;概率公式.专题:压轴题.分析:(1)先算出C组里的人数,根据条形图B的人数,和扇形图B所占的百分比求出总人数,然后减去其他4组的人数,求出C的人数.(2)全市所以司机的人数×支持选项B的人数的百分比可求出结果.(3)根据(2)算出的支持B的人数,以及随机选择100名,给他们发放“请勿酒驾”的提醒标志,则可算出支持该选项的司机小李被选中的概率是多少.解答:解:(1)69÷23%﹣60﹣69﹣36﹣45=90(人).C选项的频数为90,m%=60÷(69÷23%)=20%.所以m=20;(2分)(2)支持选项B的人数大约为:5000×23%=1150.(6分)(3)∵总人数=5000×23%=1150人,∴小李被选中的概率是:=.(9分)点评:本题考查认知条形统计图和扇形统计图的能力,条形统计图告诉每组里面的具体数据,扇形统计图告诉部分占整体的百分比以及概率等概念从而可求出解.19.(9分)(2011•河南)如图所示,中原福塔(河南广播电视塔)是世界第﹣高钢塔.小明所在的课外活动小组在距地面268米高的室外观光层的点D处,测得地面上点B的俯角α为45°,点D到AO的距离DG为10米;从地面上的点B沿BO方向走50米到达点C处,测得塔尖A的仰角β为60°.请你根据以上数据计算塔高AO,并求出计算结果和实际塔高388米之间的误差.(参考数据:≈1.732,≈1.414.结果精确到0.1米)考点:解直角三角形的使用-仰角俯角问题.专题:探究型.分析:先作DF⊥BO于点F,根据DE∥BO,α=45°可判断出△DBF是等腰直角三角形,进而可得出BF的值,再根据四边形DFOG是矩形可求出FO和CO的值,在Rt△ACO中利用锐角三角函数的定义及特殊角的三角函数值可求出AO的长,进而可得出其误差.解答:解:作DF⊥BO于点F,∵DE∥BO,α=45°,∴∠DBF=α=45°,∴Rt△DBF中,BF=DF=268,(2分)∵BC=50,∴CF=BF﹣BC=268﹣50=218,由题意知四边形DFOG是矩形,∴FO=DG=10,∴CO=CF+FO=218+10=228,(5分)在Rt△ACO中,β=60°,∴AO=CO•tan60°≈228×1.732=394.896,(7分)∴误差为394.896﹣388=6.896≈6.9.(米).即计算结果和实际高度的误差约为6.9米.(9分)点评:本题考查的是解直角三角形的使用﹣仰角俯角问题,涉及到的知识点为:等腰直角三角形的判定和性质、矩形的性质、锐角三角函数的定义及特殊角的三角函数值,熟知以上知识是解答此题的关键.20.(9分)(2011•河南)如图,一次函数y1=k1x+2和反比例函数的图象交于点A(4,m)和B(﹣8,﹣2),和y轴交于点C.(1)k1=,k2=16;(2)根据函数图象可知,当y1>y2时,x的取值范围是﹣8<x<0或x>4;(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP和线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.考点:反比例函数综合题.专题:代数几何综合题;数形结合.分析:(1)本题须把B点的坐标分别代入一次函数y1=k1x+2和反比例函数的分析式即可求出K2、k1的值.(2)本题须先求出一次函数y1=k1x+2和反比例函数的图象的交点坐标,即可求出当y1>y2时,x 的取值范围.(3)本题须先求出四边形OCAD的面积,从而求出DE的长,然后得出点E的坐标,最后求出直线OP的分析式即可得出点P的坐标.解答:解:(1)∵一次函数y1=k1x+2和反比例函数的图象交于点A(4,m)和B(﹣8,﹣2),∴K2=(﹣8)×(﹣2)=16,﹣2=﹣8k1+2∴k1=(2)∵一次函数y1=k1x+2和反比例函数的图象交于点A(4,4)和B(﹣8,﹣2),∴当y1>y2时,x的取值范围是﹣8<x<0或x>4;(3)由(1)知,.∴m=4,点C的坐标是(0,2)点A的坐标是(4,4).∴CO=2,AD=OD=4.∴.∵S梯形ODAC:S△ODE=3:1,∴S△ODE=S梯形ODAC=×12=4,即OD•DE=4,∴DE=2.∴点E的坐标为(4,2).又点E在直线OP上,∴直线OP的分析式是.∴直线OP和的图象在第一象限内的交点P的坐标为().故答案为:,16,﹣8<x<0或x>4点评:本题主要考查了反比例函数的综合问题,在解题时要综合使用反比例函数的图象和性质以及求一次函数和反比例函数交点坐标是本题的关键.21.(10分)(2011•河南)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m≤100 100<m≤200 m>200收费标准(元/人)90 85 75甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?考点:二元一次方程组的使用.专题:压轴题;方程思想.分析:(1)由已知分两种情况讨论,即a>200和100<a≤200,得出结论;(2)根据两种情况的费用,即x>200和100<x≤200分别设未知数列方程组求解,讨论得出答案.解答:解:(1)这两所学校报名参加旅游的学生人数之和超过200人,理由为:设两校人数之和为a,若a>200,则a=18000÷75=240;若100<a≤200,则a=18000÷85=211>200,不合题意,则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.(2)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有y人,则①当100<x≤200时,得解得(6分)②当x>200时,得解得不合题意,舍去.答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.点评:此题考查的是二元一次方程组的使用,关键是把不符合题意的结论舍去.22.(10分)(2011•河南)如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC 于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.考点:菱形的性质;含30度角的直角三角形;矩形的性质;解直角三角形.专题:几何图形问题;动点型.分析:(1)在△DFC中,∠DFC=90°,∠C=30°,由已知条件求证;(2)求得四边形AEFD为平行四边形,若使▱AEFD为菱形则需要满足的条件及求得;(3)①∠EDF=90°时,四边形EBFD为矩形.在直角三角形AED中求得AD=2AE即求得.②∠DEF=90°时,由(2)知EF∥AD,则得∠ADE=∠DEF=90°,求得AD=AE•cos60°列式得.③∠EFD=90°时,此种情况不存在.解答:(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.又∵AE=t,∴AE=DF.(2)解:能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.又AE=DF,∴四边形AEFD为平行四边形.∵AB=BC•tan30°=5=5,∴AC=2AB=10.∴AD=AC﹣DC=10﹣2t.若使▱AEFD为菱形,则需AE=AD,即t=10﹣2t,t=.即当t=时,四边形AEFD为菱形.(3)解:①∠EDF=90°时,四边形EBFD为矩形.在Rt△AED中,∠ADE=∠C=30°,∴AD=2AE.即10﹣2t=2t,t=.②∠DEF=90°时,由(2)四边形AEFD为平行四边形知EF∥AD,∴∠ADE=∠DEF=90°.∵∠A=90°﹣∠C=60°,∴AD=AE•cos60°.即10﹣2t=t,t=4.③∠EFD=90°时,此种情况不存在.综上所述,当t=秒或4秒时,△DEF为直角三角形.点评:本题考查了菱形的性质,考查了菱形是平行四边形,考查了菱形的判定定理,以及菱形和矩形之间的联系.难度适宜,计算繁琐.23.(11分)(2011•河南)如图,在平面直角坐标系中,直线和抛物线交于A、B两点,点A在x轴上,点B的横坐标为﹣8.(1)求该抛物线的分析式;(2)点P是直线AB上方的抛物线上一动点(不和点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB 于点D,作PE⊥AB于点E.①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F 或G恰好落在y轴上时,直接写出对应的点P的坐标.考点:二次函数综合题.专题:代数几何综合题;压轴题;数形结合;待定系数法.分析:(1)利用待定系数法求出b,c即可;(2)①根据△AOM∽△PED,得出DE:PE:PD=3:4:5,再求出PD=y P﹣y D求出二函数最值即可;②当点G落在y轴上时,由△ACP≌△GOA得PC=AO=2,即,解得,所以得出P点坐标,当点F落在y轴上时,x=﹣﹣x+,解得x=,可得P点坐标.解答:解:(1)对于,当y=0,x=2.当x=﹣8时,y=﹣.∴A点坐标为(2,0),B点坐标为.由抛物线经过A、B两点,得解得.∴.(2)①设直线和y轴交于点M,当x=0时,y=.∴OM=.∵点A的坐标为(2,0),∴OA=2.∴AM=.∵OM:OA:AM=3:4:5.由题意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOM∽△PED.∴DE:PE:PD=3:4:5.∵点P是直线AB上方的抛物线上一动点,∵PD⊥x轴,∴PD两点横坐标相同,∴PD=y P﹣y D=﹣﹣x+﹣(x﹣)=﹣x2﹣x+4,∴=.∴.∴x=﹣3时,l最大=15.②当点G落在y轴上时,如图2,由△ACP≌△GOA得PC=AO=2,即,解得,所以,如图3,过点P作PN⊥y轴于点N,过点P作PS⊥x轴于点S,由△PNF≌△PSA,PN=PS,可得P点横纵坐标相等,故得当点F落在y轴上时,x=﹣﹣x+,解得x=,可得,(舍去).综上所述:满足题意的点P有三个,分别是.点评:此题主要考查了二次函数的综合使用以及相似三角形的判定以及待定系数法求二次函数分析式,利用数形结合进行分析以及灵活使用相似三角形的判定是解决问题的关键.。
河南近五年数学中招试卷分析
整式的乘方 随机事件; 全面调查与 抽样调查、 概率 视图 平行四边形 的性质、勾 股定理 分段函数
正方体的展 开图
解不等式组
圆的切线
一元二次函 数的性质
实数的计算 特殊的直角 三角形与平 行线
实数的计算
解一元一次 不等式组
分式的化简
作图-基本作 图、线段垂 直平分线的 性质 二次函数的 性质 随机事件与 概率 菱形的性质 、扇形面积 、旋转 全等三角形 (翻折问 题)
2
3分
不等式
科学计数法
轴对称、中 心对称
3
3分
数据的收集
众数和极差
科学计数法
4
3分
解一元二次 方程 平面直角坐 标系 图形的旋转
三角形的中 位线
数据的分析 一元二次函 数图像在平 面直角坐标 系中的平移 问题 投影与视图
5
3分
解二次函数
数据的分析
6
3分
投影与视图
中心对称
平面直角坐 标系、平移 、旋转 立方根 等腰三角形 、三角形的 外角和、角 平分线 反比例函数
试道题,每题3分共27 计75分。从2012年在题型的总数没有变 依然是45分。大题依然是8道,分值也
2013
2014
有理数中的 相反数 轴对称、中 心对称 一元二次方 程的解 数据的分析 ——中位数
有理数的大 小比较
科学计数法
垂涎、对顶 角、邻补角
特殊三角形 的实际应用 、锐角三角 函数
一次函数的 应用
20
9分
二次 函数与 一次函数与 实际问题的 反比例函数 应用 的应用 反比例函数 与一次函数 二元一次方 程组与实际 问题的应用
利用直角三 角形解决实 际问题 二元一次方 程组与实际 问题的应用
2011河南省中考数学试卷分析
2011年中考数学试卷分析一、命题的指导思想:利于高一级学校选拔合格新生,而且对初中数学教学有良好的导向作用。
2.具体特点有:(1)试题题干简洁明了,注重对数学基本知识与技能的考查。
在命题方向上,中考试题没有太多的起伏;从内容和知识点上看,试题覆盖面广,涉及到初中六册教材的核心内容,对这些知识点的考查,并不是对概念、性质的记忆上进行考查,而是对概念、性质的理解与运用上进行考查。
始终体现了“基础知识、基本技能”的基础要求,有利于引导学生摆脱题海,落实“减负”要求,试题设计循序渐进,坡度缓,有层次,有节奏,难易适中。
(2)试题注重数学思想和数学方法的理解及运用的考查数学思想、数学方法是数学的灵魂,是形成数学能力的基础,是学好数学的根本。
初中数学中最常见的思想方法有:分类、化归、数形结合、函数思想、方程思想和运动的思想等。
其中,数形结合思想、方程与函数思想、分类讨论思想等几乎是历年中考试卷考查的重点,今年的中考试题均有很好的体现。
如第6、22等题考查的是数形结合思想,第20题考查的是函数思想,第21题考查的是分类思想,第23题考查的是学生综合运用二次函数知识与几何知识。
(3)试题注重对运用数学知识解决实际问题的考查数学来源于生活。
试题内容不仅贴近学生生活实际,还与学生的认知水平相适应。
与生活相关的问题有第18、21等题。
这些与平时生活密切相关的实际问题在一定程度上能引导并促使学生关注生活、关注社会。
(4)试题注重对数学活动过程的考查这几年各省的中考试题不仅关注对学生学习结果的评价,也关注对他们数学活动过程的评价;不仅关注数学思想方法的考查,还关注对他们在一般性思维方法与创新思维能力的发展等方面的评价,尤其是注重对学生探索性思维能力和创新思维能力的考查;不仅关注知识的考查,更多的是要关注对学生的数学思维潜力的开发与提高的考查。
今年的中考试题也突出了数学活动过程的考查,如第22题,此题较好地考查了学生数学活动过程所形成的探索性思维能力和创新思维能力。
2011年河南省中考数学试卷标准答案与解析
2011年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.(3分)(2013?宁德)﹣5的绝对值是()5 A.B.﹣5 C.D.﹣考点:绝对值.分析:根据绝对值的性质求解.解答:解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.点评:此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2011?河南)如图,直线a,b被c所截,a∥b,若∠1=35°,则∠2的大小为()35°145°55°125°A.B.C.D.考点:平行线的性质.分析:由a∥b,根据两直线平行,同位角相等,即可求得∠3的度数,又由邻补角的定义,即可求得∠2的度数.解答:解:∵a∥b,∴∠3=∠1=35°,∴∠2=180°﹣∠3=180°﹣35°=145°.故选B.点评:此题考查了平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.3.(3分)(2011?河南)下列各式计算正确的是()236224A.B.C.D.a)=a (2a+4a=6a考点:二次根式的加减法;合并同类项;幂的乘方与积的乘方;零指数幂;负整数指数幂.分析:根据各选项进行分析得出计算正确的答案,注意利用幂的乘方的运算以及二次根式的加减,负整数指数幂等知识分别判断即可.解答: 1 0﹣解:A、(﹣1)﹣()=1﹣2=﹣1,故此选项错误;B、与不是同类项无法计算,故此选项错误;222C、2a+4a=6a,故此选项错误;236D、(a)=a,故此选项正确.故选D.点评:此题主要考查了二次根式的混合运算以及幂的乘方的运算和负整数指数幂等知识,此题难度不大注意计算要认真,保证计算的正确性.1河南)不等式的解集在数轴上表示正确的是(?)4.(3分)(2011 C..D.B A.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得,x>﹣2,由②得,x≤3,故此不等式组的解集为:﹣2<x≤3.在数轴上表示为:故选B.点评:本题考查的是在数轴上表示一元一次不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.5.(3分)(2011?河南)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产22=2.7SS.则关于两种小麦推广种植的合=29.6,千克,量分别是=610=608千克,亩产量的方差分别是乙甲理决策是()A.甲的平均亩产量较高,应推广甲甲、乙的平均亩产量相差不多,均可推广B.甲的平均亩产量较高,且亩产量比较稳定,应推广甲C.D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙考方差;算术平均数专压轴题分析本题需先根据甲、乙亩产量的平均数得出甲、乙的平均亩产量相差不多,再根据甲、乙的平均亩产量的差即可得出乙的亩产量比较稳定,从而求出正确答案解答解:=61千克=60千克∴甲、乙的平均亩产量相差不多22 S=2.7.,∵亩产量的方差分别是S=29.6乙甲∴乙的亩产量比较稳定.D.故选本题主要考查了方差和平均数的有关知识,在解题时要能根据方差和平均数代表的含义得出正确答案是本点评:题的关键.°旋转180先将它绕原点?分)(2011河南)如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,O3.6(的坐标为(AA2到乙位置,再将它向下平移个单位长到丙位置,则小花顶点在丙位置中的对应点′)2)1,1 D.(3)C.(3,﹣1)1 A.(3,1)B.(,平移.-旋转;坐标与图形变化-考点:坐标与图形变化压轴题;网格型;数形结合.:专题上加下“),根据平移°后得到的坐标为(3,1A点坐标为(﹣3,﹣1),它绕原点O旋转180分析:根据图示可知.1)原则,向下平移2个单位得到的坐标为(3,﹣减”,1)A点坐标为(﹣3,﹣解答:解:根据图示可知横纵坐标互为相反数180°根据绕原点O旋转,1)∴旋转后得到的坐标为(3,”原则,根据平移“上加下减),个单位得到的坐标为(3,﹣1∴向下平移2 C.故选°特点以及平移的特点,比较综合,难度适中.点评:本题主要考查了根据图示判断坐标、图形旋转180 27分)二、填空题(每小题3分,共.的立方根为33分)(2011?河南)277.(立方根.考点:计算题.专题:的数即可.找到立方等于分析:273解答:3,=27解:∵,27的立方根是3∴.故答案为:3 考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.点评:BD的度数7,则AB中AB=AC平分AC,A=3分201河南)如图,△等腰三角形的性质考,并能求出其角度等于AC18可求得C平分AC,A=3,根据三角形内角分析AB=AC DBC求得所求角度.在△,,∠ACBA=36°解:∵AB=AC,CD平分∠解答:.DCB=36°°°)÷2=72,∠180∴∠B=(°﹣36 .BDC=72°∴∠.72°故答案为:BDC的角度.度,在△CDB中从而求得∠点评:本题考查了等腰三角形的性质,本题根据三角形内角和等于180轴对称的点在反比例函数yP关于b(a,)在反比例函数的图象上,若点P(.9(3分)2011?河南)已知点.的值为﹣2k的图象上,则轴对称的点的坐标.轴、yx考点:反比例函数图象上点的坐标特征;关于轴对称的点在反比例函数yPyPab 分析:本题需先根据已知条件,求出的值,再根据点关于轴对称并且点关于3K的值.的图象上即可求出点解答:,b)在反比例函数的图象上,a解:∵点P(∴ab=2,,b),∵点P关于y轴对称的点的坐标是(﹣a ab=﹣2.∴k=﹣故答案为:﹣2.本题主要考查了反比例函数图象上点的坐标的特征,在解题时要能灵活应用反比例函数图象上点的坐标的点评:特征求出k的值是本题的关键.、上异于点A为⊙O的直径,点E是且如图,CB切⊙O 于点B,CA交⊙O于点DAB(10.(3分)2011?河南).40°D的一点.若∠C=40°,则∠E的度数为切线的性质;圆周角定理.考点:常规题型;压轴题.专题:的度数,然后用同弧所对的圆周角ABD分析:连接BD,根据直径所对的圆周角是直角,利用切线的性质得到∠的度数.相等,求出∠E ,解答:解:如图:连接BD 是直径,∵AB ,∴∠ADB=90°O于点B,BC∵切∴ABC=9∵C=4BAC=5∴ABD=4∴ABD=4∴E故答案为40E的度数.点评:本题考查的是切线的性质,利用切线的性质和圆周角定理求出∠2的大小关系与y﹣3,y)是二次函数y=x2x+1的图象上两点,则yByA(.11(3分)2011?河南)点(2,)、(2112).”””(填<y“>、“<、“=y为21二次函数图象上点的坐标特征.考点:分析:y与yBA本题需先根据已知条件求出二次函数的图象的对称轴,再根据点、的横坐标的大小即可判断出21的大小关系.42解答:x=1,y=x2x+1﹣的图象的对称轴是解:∵二次函数x的增大而增大,在对称轴的右面y随2 2x+1的图象上两点,y)是二次函数y=x﹣y)、B(3,,∵点A(221 3,2<y.∴y<21故答案为:<.本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐点评:标特征是本题的关键.的两个小球,另一个装有标号分2河南)现有两个不透明的袋子,其中一个装有标号分别为1、2011.(3分)(?12个小球,两球标号恰好相同的概1、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出别为2、3.率是列表法与树状图法.考点:首先根据题意画树状图,然后由树状图求得所有等可能的结果与两球标号恰好相同的情况,即可根据概率分析:公式求解.解:画树状图得:解答:种等可能的结果,∴一共有6 种情况,两球标号恰好相同的有1.∴两球标号恰好相同的概率是此题考查了树状图法与列表法求概率.树状图法与列表法适合两步完成的事件,可以不重不漏的表示出所点评:所求情况数与总情况数之比.有等可能的情况.用到的知识点为:概率=PC.若CD,∠ADB=∠°,AD=4,连接BD,BD⊥?13.(3分)(2011河南)如图,在四边形ABCD中,∠A=90 .长的最小值为4是BC边上一动点,则DP角平分线的性质;垂线段最短考压轴题专的长度最小,则结合已知条件,利用三角形的内角和定D垂直B的时候分析根据垂线段最短,D的长的长可DCB,由角平分线性质即可AD=D,A推出ABDD的长度最小DB的时候解答解:根据垂线段最短,当,,又∠°A=90°∵BD⊥CD,即∠BDC=90 ,∠CBDC∴∠A=∠,又∠ADB= ,BD,⊥DCDAABD=∴∠∠CBD,又⊥BA AD=4,又,∴AD=DP .DP=4∴4故答案为:.本题主要考查了直线外一点到直线的距离垂线段最短、全等三角形的判定和性质、角平分线的性质,解题点评:5.垂直于BC的关键在于确定好DP .π2011?河南)如图是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为9014.(3分)(圆锥的计算;由三视图判断几何体.:考点压轴题.:专题根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积为,即可得出表面积.分析:,,底面圆的直径为10解答:解:∵如图所示可知,圆锥的高为12 ,∴圆锥的母线为:13 π,π×5×13=65∴根据圆锥的侧面积公式:πrl=2,πr=25π底面圆的面积为:.∴该几何体的表面积为90π.故答案为:90π此题主要考查了圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.点评:是E,BC=2AD=2,点BC,∠ABC=90°,∠C=60°15.(3分)(2011?河南)如图,在直角梯形ABCD中,AD∥3+.G,则△BFG的周长为交BC边的中点,△DEF是等边三角形,DFAB于点直角梯形;等边三角形的性质;解直角三角形.考点:几何综合题;压轴题专是矩形,所以得到直角三角ABEB边的中点,推出四边ABC=9分析首先由已AB,ADD,由直角三角AG可求CE,所以能求CD,又DE是等边三角形,得BF的周长,得BF=A,从而求进而求F,再AG≌BGF解答:AD=BE=CE=,是BC边的中点,即∥BC,∠ABC=90°,点E解:已知AD 为矩形,∴四边形ABED ,,∠A=90°∴∠DEC=90°,又∠C=60°,×=3DE=CE?tan60°=∴是等边三角形,又∵△DEF ADG=30°∠EDF=60°,∠∴DF=DE=AB=3,∠AGD=,=×=1°∴AG=AD?tan30 ,﹣DG=1,∴DG=2FG=DF 1=2﹣,BG=3 ,FGB ∠,BG=DG=2AG=FG=1∴,∠AGD= BGF≌△,∴△AGD,BF=AD=∴,2+1+BFG ∴△的周长为=3+63+.故答案为:此题考查的知识点是直角梯形、等边三角形的性质及解直角三角形,解题的关键是先由已知推出直角三角点评:DEF是等边三角形,解直角三角形证明三角形全等求解.形CED,再通过△分)三、解答题(本大题共8个小题,满分75的范围内选取一个合适的整数作为22≤x≤(8分)(2011?河南)先化简,然后从﹣16.的值代入求值.x 分式的化简求值.考点:开放型.专题:的整数x分析:首先对分式进行化简、把除法转化为乘法、在进行混合运算,把分式转化为最简分式,然后确定的值不可使分式的分母为零.值,把合适的值代入求值,x 解答:=原式.= ,﹣2.≤2且为整数,若使分式有意义,x只能取0xx满足﹣2≤=).=(或:当x=﹣2时,原式∴当x=0时,原式的取值不可是分式的分x的合适的整数值,x点评:本题主要考查分式的化简、分式的性质,解题的关键在于找到母为零..ABDE交于点M延长CB到点E,使BE=AD,连接中,分)17.(9(2011?河南)如图,在梯形ABCDAD∥BC,;△AMD≌△BME(1)求证:的长.BE=2,求BC)若N是CD的中点,且MN=5,2(梯形;全等三角形的判定与性质考计算题;证明题专AD,即可证明AB,E,分析)找出全等的条件BE=AA=,即可求得.BE+BC),又BE=2((2)首先证得MN是三角形的中位线,根据MN= ,AD∥BC 解答:(1)证明:∵∠E,∴∠A=∠MBE,∠ADM= 中,BME在△AMD和△,ASA);BME∴△AMD≌△(BME)解:∵△AMD≌△,2(ND=NCMD=ME∴,,7,∴MN=EC ,EC=2MN=2×5=10∴2=8EB=10﹣.∴BC=EC﹣的长是8.答:BC 点评:本题考查了全等三角形的判断及三角形中位线定理的应用,熟记其性质、定理是证明、解答的基础.的驾车理念,某市一家报社设计了如右的调查问“开车不喝酒,喝酒不开车”分)(2011?河南)为更好地宣传18.(9 .在随机调查了某市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:卷(单选)根据以上信息解答下列问题:;1)补全条形统计图,并计算扇形统计图中m=20(B的司机大约有多少人?(2)该市支持选项的提醒标志,则支持该选项的司机请勿酒驾”的司机中随机选择100名,给他们发放“(3)若要从该市支持选项B 小李被选中的概率是多少?条形统计图;用样本估计总体;扇形统计图;概率公式.考点:压轴题专所占的百分比求出总人数,然后减去其的人数,和扇形分析)先算组里的人数,根据条形的人数组的人数,求支持选的人数的百分比可求出结果)全市所以司机的人的提醒标志,则可请勿酒)算出的支的人数,以及随机选10名,给他们发)根据出支持该选项的司机小李被选中的概率是多少345=9(人66236解解答=20m%=66239选项的频数分所m=2分的人数大约为)支持选50023%=115人)∵总人=50023%=115(9.∴小李被选中的概率是:=(分)8本题考查认知条形统计图和扇形统计图的能力,条形统计图告诉每组里面的具体数据,扇形统计图告诉部点评:分占整体的百分比以及概率等概念从而可求出解.河南)如图所示,中原福塔(河南广播电视塔)是世界第﹣高钢塔.小明所在的课外活动小组在?9分)(201119.(米;从地的距离DG为10α为45°,点D到AO处,测得地面上点距地面268米高的室外观光层的点DB的俯角并求出请你根据以上数据计算塔高AO,60测得塔尖A的仰角β为°.面上的点B沿BO方向走50米到达点C处,.结果精确到0.1米)米之间的误差.(参考数据:≈1.732,≈1.414计算结果与实际塔高388解直角三角形的应用-仰角俯角问题.考点:探究型.:专题的值,再是等腰直角三角形,进而可得出BF=45°可判断出△DBF,先作DF⊥BO于点F,根据DE∥BOα分析:中利用锐角三角函数的定义及特殊角的三角ACO的值,在FO与CORt△根据四边形DFOG是矩形可求出的长,进而可得出其误差.函数值可求出ADB 于解答解:=4DB=4DBF∴分RDB中BF=DF=26BC=550=21CF=BBC=26由题意知四边DFO是矩形FO=DG=1分CO=CF+FO=218+10=22=6AC中R分1.732=394.89°AO=Ctan6226.(米∴误差394.89388=6.89分即计算结果与实际高度的误差约6.米本题考查的是解直角三角形的应用﹣仰角俯角问题,涉及到的知识点为:等腰直角三角形的判定与性质点评矩形的性质、锐角三角函数的定义及特殊角的三角函数值,熟知以上知识是解答此题的关键.,(﹣)和,(的图象交于点A4mB与反比例函数x+2=k河南)如图,一次函数2011分)(20.9(?y811 y,与2﹣).轴交于点C9,k=16;(1)k= 21(2)根据函数图象可知,当y>y时,x的取值范围是﹣8<x<0或x>4;21(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S:S=3:1时,求点P的坐标.ODE△ODAC四边形考点:反比例函数综合题.专题:代数几何综合题;数形结合.分析:(1)本题须把B点的坐标分别代入一次函数y=kx+2与反比例函数的解析式即可求出K、k的值.1112(2)本题须先求出一次函数y=kx+2与反比例函数的图象的交点坐标,即可求出当y>y时,x2111的取值范围.(3)本题须先求出四边形OCAD的面积,从而求出DE的长,然后得出点E的坐标,最后求出直线OP的解析式即可得出点P的坐标.解答:解:(1)∵一次函数y=kx+2与反比例函数的图象交于点A(4,m)和B(﹣8,﹣2),11(﹣2)=16,)∴K=(﹣8×2+2 8k﹣2=﹣1=∴k1=)∵一次函x+与反比例函)(,的图象交于1时,x的取值范围是y∴当y>21或<﹣8x<0x>4;.)由(1)知,3(∴m=4,点C的坐标是(0,2)点A的坐标是(4,4).∴CO=2,AD=OD=4.∴.∵S:S=3:1,∴S=S=×12=4,ODEODE△△ODACODAC梯形梯形即OD?DE=4,∴DE=2.∴点E的坐标为(4,2).又点E在直线OP上,10.∴直线OP的解析式是的坐标为(的图象在第一象限内的交点与P ).∴直线OP 4>8<x<0或x故答案为:,16,﹣本题主要考查了反比例函数的综合问题,在解题时要综合应用反比例函数的图象和性质以及求一次函数与点评:反比例函数交点坐标是本题的关键.”活动,收费标准如下:河南)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游分)21.(10(2011?200>≤200 m100 人数m 0<m≤100<m75 85 90 人)收费标准(元/人,乙校报名参加的甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100 元,若两校联合组团只需花费18 000元.学生人数少于100人.经核算,若两校分别组团共需花费20 800 )两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(1 2)两所学校报名参加旅游的学生各有多少人?(二元一次方程组的应用.考点:压轴题;方程思想.专题:a200和100<≤200,得出结论;1分析:()由已知分两种情况讨论,即a>100<x≤200分别设未知数列方程组求解,讨论得出答案.x(2)根据两种情况的费用,即>200和人,理由为:)这两所学校报名参加旅游的学生人数之和超过(1200解答:解设两校人数之和75=2420,a=18000,不合题意,,则a≤200a=18000÷85=211>200<若100 则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.人,则y)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有2(200时,得≤当①100<x(解得6分)时,得②当>200x解得不合题意,舍去.80160答:甲学校报名参加旅游的学生有人,乙学校报名参加旅游的学生有人.点评:此题考查的是二元一次方程组的应用,关键是把不符合题意的结论舍去.11BC=5,∠C=30°.点D从点C出发沿CA2011?河南)如图,在Rt△ABC中,∠B=90°,方向以22.(10分)(每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.考点:菱形的性质;含30度角的直角三角形;矩形的性质;解直角三角形.专题:几何图形问题;动点型.分析:(1)在△DFC中,∠DFC=90°,∠C=30°,由已知条件求证;(2)求得四边形AEFD为平行四边形,若使?AEFD为菱形则需要满足的条件及求得;(3)①∠EDF=90°时,四边形EBFD为矩形.在直角三角形AED中求得AD=2AE即求得.②∠DEF=90°时,由(2)知EF∥AD,则得∠ADE=∠DEF=90°,求得AD=AE?cos60°列式得.③∠EFD=90°时,此种情况不存在.解答:(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.又∵AE=t,∴AE=DF.(2)解:能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.AE=D∴四边AEF为平行四边形∵AB=BC?tan30°=5=5,∴AC=2AB=10.∴AD=AC﹣DC=10﹣2t.若使?AEFD为菱形,则需AE=AD,即t=10﹣2t,t=.时,四边形AEFD为菱形.即当t=(3)解:①∠EDF=90°时,四边形EBFD为矩形.在Rt△AED中,∠ADE=∠C=30°,∴AD=2AE.即10﹣2t=2t,t=.②∠DEF=90°时,由(2)四边形AEFD为平行四边形知EF∥AD,∴∠ADE=∠DEF=90°.∵∠A=90°﹣∠C=60°,12.cos60°∴AD=AE?.2t=﹣t,t=4即10 时,此种情况不存在.③∠EFD=90°秒时,△DEF为直角三角形.综上所述,当t=秒或4难以及菱形与矩形之间的联系.考查了菱形是平行四边形,考查了菱形的判定定理,点评:本题考查了菱形的性质,度适宜,计算繁琐.两、B(2011?河南)如图,在平面直角坐标系中,直线与抛物线交于A23.(11分)8.A在x轴上,点B的横坐标为﹣点,点1)求该抛物线的解析式;(AB,交直线,过点P作x轴的垂线,垂足为C2()点P是直线AB上方的抛物线上一动点(不与点A、B重合).PE⊥AB于点E于点D,作关于x的函数关系式,并求出l的最大值;的周长为设△PDEl,点P的横坐标为x,求l①FAPFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点PA②连接,以PA为边作图示一侧的正方形y轴上时,直接写出对应的点P的坐标.或G恰好落在二次函数综合题考代数几何综合题;压轴题;数形结合;待定系数法专即可分析)利用待定系数法求,再求PD=求出二函数最值即可PEAO∽,得DPPD=根P,解得,即,轴上时,由落在y△ACP≌△GOA得PC=AO=2当点②GP点坐标.x+﹣﹣落在所以得出P点坐标,当点Fy轴上时,x=,解得x=,可得解答:﹣时,.当y=0,x=2)对于(解:1x= .﹣8y=,当∴A点坐标为(2 .,0),B点坐标为13两点,经过A、B由抛物线得.解得∴.轴交于点)①设直线与yM,(2.时,y=.∴OM=当x=0.∴AM=.,∵点A的坐标为(20),∴OA=2 5.4∵OM:OA:AM=3::.∽△由题意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOMPED ∴DE:PE:PD=3:4:5.∵点上方的抛物线上一动点,P是直线AB 轴,PD⊥x∵两点横坐标相同,∴PD)x+PD=y∴﹣y=﹣﹣﹣(x﹣DP2 x+4x=﹣,﹣∴..∴﹣∴x=3时,l=15.最大PC=AO=2,得△y ②当点G落在轴上时,如图2,由ACP≌△GOA,即,解得所以,SPSPNPN作⊥y轴于点,过点作⊥x轴于点,P3如图,过点,≌△△由PNFPSA P,可得点横纵坐标相等,PN=PS F故得当点落在轴上时,y x=,解得x+﹣x=﹣,(舍去)可得.,14综上所述:满足题意的点P有三个,分别是.此题主要考查了二次函数的综合应用以及相似三角形的判定以及待定系数法求二次函数解析式,利用数形点评:结合进行分析以及灵活应用相似三角形的判定是解决问题的关键.15。
2006---2012河南中考考点分类解析
2006—2012年河南中考数学试题分析考点1:相反数、倒数、绝对值 (2011年)1、-5的绝对值 【 】(A )5 (B )-5 (C )15(D )15-(2010年)1、21-的相反数是 【 】 (A )21(B )21- (C )2 (D )2-(2009年)1、﹣5的相反数是 【 】(A )15 (B )﹣15(C) ﹣5 (D) 5 (2008年)1、-71的绝对值是 【 】A .71 B .-71C .7D .-7 (2007年)7、25的相反数是________. (2006年)1、31-的倒数是【 】 A .3- B .3 C .31- D .31考点2:科学计数法(2012年)3.一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学计数法表示【 】A . 6.5×10-5 B. 6.5×10-6 C . 6.5×10-7 D .65×10-6(2010年)2.我省2009年全年生产总值比2008年增长10.7%,达到约19367亿元.19367亿元用科学记数法表示为【 】(A )11109367.1⨯元 (B )12109367.1⨯元(C )13109367.1⨯元 (D )14109367.1⨯元(2008年)2.为支援四川地震灾区,中央电视台于5月18日晚举办了《爱的奉献》赈灾晚会,晚会现场捐款达1514000000元.1514000000用科学计数法表示正确的是 【 】A .6101514⨯B .81015.14⨯C .9101.514⨯ D .10101.514⨯(2006年)2.2005年末我国外汇储备达到8189亿美元,8189亿用科学记数法表示保留三个有效数字是【 】A .111019.8⨯B .111018.8⨯C .121019.8⨯ D .121018.8⨯考点3:实数运算(2012年)1.下列各数中,最小的数是【 】A . -2B . -0.1C . 0D . |-1|(2012年)9.计算:=-+-20)3()2(_______. (2011年)3.、下列各式计算正确的是 【 】(A )011(1)()32---=- (B )235+=(C )224246a a a += (D )236()a a =(2011年)7、27的立方根是 。
2011河南中考数学试卷分析
试题所考知识点
题号 知识点2010/2011
题号 知识点2010/2011
1
相反数 /绝对值
9
一次函数的解析式/反比例函数k值
2
科学记数法/平行线
10
平行线、三角形有关角的计算/切线、圆周角定
理
3
众数、极差/整式运算
11
切线、直角三角形性质、圆周角定理/二次函数
性质比较y值大小
4
中位线、相似三角形/不等式 12
6.加强动态探究题的考查
动态几何探究题是近年数学中考的热点和难点,在点、 线、形的运动变化过程中,观察、猜想问题,在图形 的运动变化过程中探究,从中找到解决问题的途径, 注重考查学生思维的广度和深度。 第13题将问题转化为动态圆与直角三角形边的位置关 系. 第22题通过双动点D、E的运动,得到不同的直角三角 形形、菱形。考察了学生的分类思想。 第23题是动点P的运动带动点F、G的运动探究,高度 挑战了学生的思维。
二、1. 2011年抽取郑州考生成绩统计
总人数:32214人/31406人; 平均分:75.2分/74.43分; 及格率(65分/62分):71.1%/70.71%; 优秀率(93分/95分):30.4%/31.18%
2. 2011年考生答题情况
试卷的第一大题选择题(6个小题),主要考查学 生的基本概念、基础知识、基本技能和基本数学方 法。出错较多的是第6题。
利用树状图计算概率/计算概率
解集
5
一元二次方程的解法/平均数、 13
三视图/动点中求14
面积割补法,矩形、三角形、扇形面积/根据三
与坐标、中心对称
视图求几何体表面积
7
有理数运算/立方根
15
2011中考数学试卷分析数与代数部分1
下面,我根据我区学 生的中考试卷情况和每题 考查的内容进行细致的分 析。
第1题:
-5的绝对值
【 A 】
1 1 (A)5 (B)-5 (C) ( D) 5 5
抽样试卷数 600
考查的 知识点 目标层次
平均分 2.79
有理数的绝对值 理 解
满分率 93%
相反数
3. 下列各式计算正确的是
A C
【 D 】 B D
7.
27的立方根是
。
2 9. 已知点 P(a, b)在反比例函数 y x
的图象上,若点P关于y轴对称的点 k 在反比例函数 y 的图象上,则k x 的值为 .
11.点 A(2, y1 )、 B(3, y2 )是二次函数 2 y x 2x 1 的图象上两点,则 y1 与 y2 的大小关系为 (填“>”、“<”、 “=”).
【 B 】
表示正确的是:
5. 某农科所对甲、乙两种小麦各选用10块面 积相同的试验田进行种植试验,它们的平 均亩产量分别是 x甲=610千克, x乙 =608千克, 2 2 S S 亩产量的方差分别是 =29. 6 , =2. 7. 甲 乙 则关于两种小麦推广种植的合理决策是 【 D】 (A)甲的平均亩产量较高,应推广甲 (B)甲、乙的平均亩产量相差不多,均可推 广 (C)甲的平均亩产量较高,且亩产量比较稳 定,应推广甲 (D)甲、乙的平均亩产量相差不多,但乙的 亩产量比较稳定,应推广乙
1 1 ( 1) ( ) 3 2
0
2 3 5
2a 4a 6a
2 2
4
(a2 )3 a6
抽样试卷数
600 考查的 知识点 目标层次
平均分
2.645
满分率
2011河南省中考数学试卷分析_4874 2016河南中考数学试卷
DAO KE ER WANG LUO KE JI YOU XIAN GONG SI 少年强,则国强
为美好的明天加油 第 1 页 共 4 页
2011河南省中考数学试卷分析_4874 2016
河南中考数学试卷
2012年中考数学试卷分析
河南省2012年的数学试题在继承近几年中考命题整体思路的
基础上,坚持“整体稳定,局部调整,稳中求变、变中求新”的命题原则,贯彻《义务教育课程标准(实验稿) 》所阐述的命题指导思想,突出对基础知识、基本技能和基本数学思想的考查,关注学生的数学基础知识和基本能力、数学学习过程和数学创新意识,整套试题充满着人文关怀.充分体现和落实新课程改革的理念和精神.整套试题覆盖面广,题量适当,结构合理,难度适中,内容新颖,表述科学.在考查方向上,体现了突出基础,注重能力的思想;在考查内容上,体现了基础性、开放性、应用性、探究性和综合性.
2012年中考数学试卷和2011年相比,总体保持稳定,稳中有
变、变中有新。
试题的难度基本与2011年相当,难度稍有降低, 计算量略有增加。
试卷其突出特点是在考查基础知识、基本技能和基本方法的同时,重视对学生的数学素养的考查,尤其注意了考查学生对数学思想方法的领悟和数学思维能力的达成水平,命题实现了由“知识立意”向“能力立意”的过渡;全卷在试题结构、试题的呈现方式上较往年有了一定的调整和创新,改变了原有的“固定某个题考某个知识点”的形式,整份试卷紧扣教材,内涵丰富、立意新颖,不仅有利于高一级学校选拔合格新生,而且对初中数学教学有良好的导向作用。
一、 2012年中招数学试卷具有以下几个特点。
2006中招考试数学试卷分析
2006中招考试数学试卷分析中招考试,是为普通高中录取新生提供依据的选拔性考试。
2006年河南省中招数学试题卷23题,120分.。
试题分为选择题、填空题和解答题三大类,其分值分别占总分的15%、22.5%、62.5%,试题按其难度分为基础题、中档题和较难题,其分值比约为7:4:9就考查内容来看,“数与代数”、“空间与图形”、“概率与统计”的分值约占总分的32.5%、50%、17.5%。
2006年数学试题注重考查核心内容与基本能力,关注学生的数学素养的养成与发展;突出数学思想方法的理解与应用;考查学生提出问题、理解问题、并运用数学知识解决一些简单的实际问题的能力;关注学生获取数学消息、认识数学对象的基本过程与方法;关注在学习数学活动的过程中认识数学、掌握数学基本方法的能力. 试题突出趣味型、操作型、推理型、阅读理解型、图象信息采集型等等题目丰富多彩.。
与2005年相比题型没有变化,仍然是23道题,但难度有所增加,更加注重对学生能力的考查。
2006年中招考试,三门峡有考生29241人,数学120分1人,110分以上236人,100分以上2521人,90分以上7278人;80分以上12021人;10分以下1602人,20分以下2962人,30分以下4777人,40分以下6510人(22%),72分以下15024人(51.3%)平均分65.53算不准,忘记检验等错误。
第23题,11分。
该题属数分类讨论题,主要考查运用一次函数,直角三角形,等腰三角形,圆于直线相切的性质等知识点,此题综合性强,知识点运用较多,特别是用变量来表示点的坐标,从而增强了本题的难度,虽然多数考生会第三步,而因第二步计算不出来而不会做。
此题的0分的大于10%,2-3分的约占70%,4-5分的约占10%6-7分的约占6.9%,9分的约占2%,10分的不足1%。
平均得分2分。
多数学生能正确得出点A、B的坐标;第二步有许多考生由于考虑的不完善,运算能力差而导致大量丢分。
2006年河南省中招数学试卷分析
2006年河南省中招数学试卷分析一、主观认识1、本套试题具有很强的选拔功能。
从试卷调研(样本90)看,两极分化严重,要么90分以上,要么30分以下,最高分是117分,最低分是0分。
60—80这一段几乎断层,整体成亚铃形分布。
2、几何有三大变换,本套试卷考查了两个,如第6题是旋转与弧长公式的巧妙结合;第15题是翻转与平面直角坐标系、解Rt△、相似成例的巧妙结合。
3、强化了学科内部知识的渗透与整合。
如第16题,猛一看是一道很基本的计算题,但实际上是一道综合性很强的题,一道小小的计算题,考查了幂的性质、平方差公式、特殊三角形函数值、零指数及实数的混合运算等;第18题集古典概率、树状图(或列表)、坐标、一次函数为一体;第22题是一道几何、代数(三角)综合题,考查学生的读图、识图、联想能力尤为突出,它把“平几”中的垂直、平行、平行四边形、菱形、相似比与代数中的方程有机的结合在一起;第23题把平面直角坐标系、一次函数、直线与圆的相切、作几何草图为一体,用相似比(或锐角三角形)作为桥梁,构思巧妙,甚称一绝。
另一方面,本题还考查了分类思想和化归思想,为了降低难度,限定了“点C在线段AB上。
”4、探索性、开放性试题由数转向数形结合,由静转向动。
如第13、14、20、22、23题,尤其是20题,这种由“线”到“面“的创新型设计,在考查学生的阅读、动手画图、猜想、说理能力等方面,是一个质的跨跃。
5、本套试题在追求贴近生活,紧扣新课标,注重以上提到的“四点”外,还有三处值得大家思考的地方;(1)平均分不足65分,成绩分布亚铃形而不是正态分布,是否与题型、题量尤其是难度系数学不当有关?(2)23题的辅助线远远超过两条,这与新课标相比是否超“标”了?(3)第9题的答案是否在10n+300 的基础上加上括号更符合课本要求,即答案为(300+10n)更合适。
二、客观分析1、各部分占的比例:2、各小题得分率:(样本容量90)3、出错信息录:第2题错选C的比较多;第7题错写“X>2”或“X>2且X ≠2”的较多;第9题不知给10n+300带括号的较多;13、14、15三道题学生不知如何思考,找不到切入点;16题主要出现在2006007(2(2处理不好上,也有一部分学生出现在cos30。
2006河南中考数学试题及答案
2006年河南省高级中等学校招生统一考试试卷数学考生注意:1.本试卷共8页,三大题,满分100分,考试时间100分钟.用钢笔或圆珠笔直接答在试卷上.2.答卷前将密封线内的项目填写清楚. 题号 一 二 三总分 14 15 16 17 18 19 20 21 22 分数一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.12-的倒数是( ) A.2-B.12C.12-D.22.下列图形中,是轴对称图形的有( )A.4个 B.3个 C.2个 D.1个 3.两条直线相交所成的四个角中,下列说法正确的是( ) A.一定有一个锐角 B.一定有一个钝角 C.一定有一个直角 D.一定有一个不是钝角4.当三角形的面积S 为常数时,底边a 与底边上的高h 的函数关系的图象大致是( )5.如图,把半径为1的四分之三圆形纸片沿半径OA 剪开,依次用得到的半圆形纸片和四分之一圆形纸片做成两个圆锥的侧面,则这两个圆锥的底面积之比为( ) A.5:1 B.4:1 C.3:1 D.2:1O ah A. O a h B. O a h C. O a h D. (第5题)6.某公园的两个花圃,面积相等,形状分别为正三角形和正六边形.已知正三角形花圃的周长为50米,则正六边形花圃的周长( ) A.大于50米 B.等于50米 C.小于50米 D.无法确定 二、填空题(每小题3分,共21分) 7.计算:()213-+-=_______________.8.函数15y x =-中,自变量x 的取值范围是_______________. 9.蜜蜂建造的蜂房既坚固又省料.蜂房的巢壁厚约0.000073 米,用科学记数法表示为_______________米.10.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是_______________.11.方程组2235y x x y =-+⎧⎨+=⎩的解是_______________. 12.如图,O 从直线AB 上的点A (圆心O 与点A 重合)出发,沿直线AB 以1厘米/秒的速度向右运动(圆心O 始终在直线AB 上).已知线段6AB =厘米,O ,B 的半径分别为1厘米和2厘米.当两圆相交时,O 的运动时间t (秒)的取值范围是____________ __________________.13.如图(1),用形状相同、大小不等的三块直角三角形木板,恰好能拼成如图(2)所示的四边形ABCD .若4AE =,3CE BE =,那么这个四边形的面积是_______________. 三、解答题(本大题共9个小题,满分61分) 14.(5分)先化简,再求值:()221193x x x x x x⎛⎫-+- ⎪+⎝⎭ ,其中1005x =.(第10题) O()A B BECDA (第12题) 图(1)图(2)(第13题)15.(5分)如图,在ABCD 中,E 为CD 的中点,连结AE 并延长交BC 的延长线于点F .求证:ABF ABCD S S = △.16.(6分)在一次演讲比赛中,七位评委为其中一位选手打出的分数如下: 9.4 8.4 9.4 9.9 9.6 9.4 9.7(1)这组数据的中位数是___________,众数是___________,平均分x =___________,去掉一个最高分和一个最低分后的平均分1x =___________;(2)由(1)所得的数据x ,1x 和众数中,你认为哪个数据能反映演讲者的水平?为什么?17.(6分)同一种商品在甲、乙两个商场的标价都是每件10元,在销售时都有一定的优惠.甲的优惠条件是:购买不超过10件按原价销售,超过10件,超出部分按7折优惠;乙的优惠条件是:无论买多少件都按9折优惠.(1)分别写出顾客在甲、乙两个商场购买这种商品应付金额y 甲(元),y 乙(元)与购买件数x (件)之间的函数关系式;(2)某顾客想购买这种商品20件,他到哪个商场购买更实惠?18.(6分)关于x 的一元二次方程210x mx m ++-=的两个实数根为1x ,2x ,且22125x x +=,求实数m 的值.A D E FC B19.(7分)如图,山顶建有一座铁塔,塔高80BC =米,测量人员在一个小山坡的P 处测得塔的底部B 点的仰角为45 ,塔顶C 点的仰角为60 .已测得小山坡的坡角为30 ,坡长40MP =米.求山的高度AB (精确到1米).(参考数据:2 1.414≈,3 1.732≈)20.(7分)如图,45AOB = ∠,过OA 上到点O 的距离分别为1,2,3,4,5 的点作OA 的垂线与OB 相交,再按一定规律标出一组如图所示的黑色梯形.设前n 个黑色梯形的面积和为n S .(1)请完成下面的表格:n 1 2 3n S(2)已知n S 与n 之间满足一个二次函数关系,试求出这个二次函数的解析式.C PBA M21.(9分)如图,AB 为O 的直径,AC ,BD 分别和O 相切于点A ,B ,点E 为圆上不与A ,B 重合的点,过点E 作O 的切线分别交AC ,BD 于点C ,D ,连结OC ,OD 分别交AE ,BE 于点M ,N .(1)若4AC =,9BD =,求O 的半径及弦AE 的长;(2)当点E 在O 上运动时,试判定四边形OMEN 的形状,并给出证明.22.(10分)二次函数218y x =的图象如图所示,过y 轴上一点()02M ,的直线与抛物线交于A ,B 两点,过点A ,B 分别作y 轴的垂线,垂足分别为C ,D . (1)当点A 的横坐标为2-时,求点B 的坐标;(2)在(1)的情况下,分别过点A ,B 作AE x ⊥轴于E ,BF x ⊥轴于F ,在EF 上是否存在点P ,使APB ∠为直角.若存在,求点P 的坐标;若不存在,请说明理由; (3)当点A 在抛物线上运动时(点A 与点O 不重合),求AC BD 的值.A CEMONBDy D B MA CO x2006数学试题参考答案及评分标准说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分多少,但原则上不超过后继部分应得分数之半. 3.评分标准中,如无特殊说明,均为累计给分. 4.评分过程中,只给整数分数. 一、选择题(每小题3分,共18分) 题号 1 2 3 4 5 6 答案 A CDB B C 二、填空题(每小题3分,共21分)题号 78910111213答案45x ≠57.310-⨯ 212+12121221x x y y ==⎧⎧⎨⎨==⎩⎩,,;. 35t <<或79t <<163三、解答题(本大题共9个小题,满分61分)14.解:原式1324x x x =-+-=-. ························································ 4分 当1005x =时,原式2006=. ·································································· 5分 15.证明: 四边形ABCD 为平行四边形,AD BC ∴∥. DAE F ∴=∠∠,D ECF =∠∠. E 是DC 的中点,DE CE ∴=. AED FEC ∴△≌△. ············································································· 3分AED FEC S S ∴=△△.ABF CEF ABCE AEDABCE S S S S S ∴=+=+△△四边形△四边形 ABCD S = ·················································································· 5分 16.(1)9.4分,9.4分,9.4分,9.5分. ··················································· 4分 (2)答案不惟一,言之有理即可,如1x .理由:1x 既反映了多数评委所打分数的平均值,又避免了个别评委打分过高或过低对选手成绩的影响. ·························································································· 6分 17.解:(1)当购买件数x 不超过10件时,10y x =甲;当购买件数x 超过10件时,730y x =+甲. ················································· 2分 9y x =乙.····························································································· 3分(2)当20x =时,170y =甲,180y =乙.y y ∴<甲乙.∴若顾客想购买20件这种商品,到甲商场购买更实惠. ································· 6分 18.解:由题意,得12x x m +=-,121x x m =-. ········································ 1分()22212121225x x x x x x +=+-= ,()()2215m m ∴---=.解得13m =,21m =-. ·········································································· 4分()()224120m m m ∆=--=- ≥,3m ∴=或1-. ······················································································ 6分 19.解:如图,过点P 作PE AM ⊥于E ,PF AB ⊥于F .在Rt PME △中,30PME = ∠,40PM =,20PE ∴=.四边形AEPF 是矩形,20FA PE ∴==. ··············································· 2分 设BF x =米.45FPB =∠,FP BF x ∴==. 60FPC = ∠,tan603CF PF x ∴== .80CB = ,803x x ∴+=.解得()4031x =+. ·············································································· 6分()40312060403129AB ∴=++=+≈(米).答:山高AB 约为129米. ········································································ 7分20.解:(1)n 1 2 3n S325212············································································································ 3分 (2)设二次函数的解析式为2n S an bn c =++.BCP EM AF则3254221932a b c a b c a b c ⎧=++⎪⎪=++⎨⎪⎪=++⎩,,,解得1120a b c =⎧⎪⎪=⎨⎪=⎪⎩,,. ······························································ 6分∴所求二次函数的解析式为212n S n n =+. ················································· 7分 21.解:(1)AC ,BD ,CD 分别切O 于A ,B ,E ,4AC =,9BD =, 4CE AC ∴==,9DE BD ==. 13CD ∴=.AB 为O 的直径,90BAC ABD ∴== ∠∠.过点C 作CF BD ⊥于F ,则四边形ABFC 是矩形.5FD ∴=,2213512CF =-=.12AB ∴=,O ∴ 的半径为6. ······························································· 3分连结OE .CA CE = ,OA OE =, OC ∴垂直平分弦AE .2264213OC =+= ,121313AO AC AM OC ∴==. 2413213AE AM ∴==. ········································································ 6分 (2)当点E 在O 上运动时,由(1)知OC 垂直平分AE .同理,OD 垂直平分BE .AB 为直径,90AEB ∴= ∠.∴四边形OMEN 为矩形. ···························· 8分当动点E 满足OE AB ⊥时,OA OE = ,45OEA ∴=∠.MO ME ∴=.∴矩形OMEN 为正方形. ········································································ 9分 22.解:(1)根据题意,设点B 的坐标为218x x ⎛⎫ ⎪⎝⎭,,其中0x >.点A 的横坐标为2-,122A ⎛⎫∴- ⎪⎝⎭,. ······················································· 2分 AC y ⊥轴,BD y ⊥轴,()02M ,,AC BD ∴∥,32MC =,2128MD x =-. Rt Rt BDM ACM ∴△∽△. BD MD AC MC∴=. 即2128322x x -=.解得12x =-(舍去),28x =.()88B ∴,. ··························································································· 5分 (2)存在. ··························································································· 6分 连结AP ,BP .由(1),12AE =,8BF =,10EF =. 设EP a =,则10PF a =-.AE x ⊥轴,BF x ⊥轴,90APB = ∠, AEP PFB ∴△∽△. AE EP PF BF ∴=. 12108aa ∴=-. 解得521a =±.经检验521a =±均为原方程的解.∴点P 的坐标为()3210+,或()3210-,. ··············································· 8分 (3)根据题意,设218A m m ⎛⎫⎪⎝⎭,,218B n n ⎛⎫ ⎪⎝⎭,,不妨设0m <,0n >.由(1)知BD MDAC MC =, 则22128128n n m m -=--或22128128n n m m -=--. 化简,得()()160mn m n +-=.0m n - ≠,16mn ∴=-.16AC BD ∴= . ··················································································· 10分。
2011河南省中考试题分析(讲稿)
数与代数
2009年
51分占 42.5% 54分占 45.0% 15分占 12.5%
2010年
44分占 36.7% 61分占 50.8% 15分占 12.5%
2011年
59分占 49.1% 46分占 38.3% 15分占 12.5%
47分占 39.2% 52分占 43.3% 21分占 17.5%
(二).填空题
填空题涉及的知识面较广,注重对学生双 基能力的考查,其中7、8、9、10、11、12 题较好答,出现错误集中反应在第14、15两题。 14题利用几何体的三视图,考察学生的空 间想象能力与圆有关的计算。错误主要是公式不 清,计算不正确,理解不准确。 15题是一个几何运算,主要考察学生对等 边三角形、矩形性质的理解与掌握。错误主要是 图形性质的认识不清楚及计算方法不知道。
(二).填空题
13.如图,在四边形ABCD中,∠A=90°,AD=4, 连接BD,BD⊥CD,∠ADB=∠C. 若P是BC边上一动点,则DP长的最小值为 _______.
失分原因:
(1)不知道何时最小! 实质是点到线的最短距离! (2)角平分线的性质及应用不明确!
(二)填空题
14.如图是一个几何体的三视图,根据图示的 数据可计算出该几何体的表面积为 _______.
从知 识领 域看
统计与概率 空间与图形
近4年中考数学试卷难易题对照表
1、试卷中试题有许多相近与相似之处
填空、选择题相同相近题 8 4 5 10 11 13 14 15 (平 (解 (平 6 (圆 (阴 (几何 行、 (相
三角 形角 度) 中角 似三 的度 角形) 数) (概 率) 影面 积) 难 综合、 取值范 围)难
1、看题不认真:
2011年河南省中考数学试卷分析
2011年河南省中考数学试卷分析一、试卷总体评价2011年的中考数学试题与去年相比,试卷考查的内容稍有变化,试题注重通性通法,淡化特殊技巧,解答题设置了多个问题,层次分明,难度适中,比较平和,同去年变化不大,但更加突出了对考生解决实际问题能力的考查,有利于高中阶段学校综合、有效地评价学生的数学学习状况。
1、试题题型稳中有变试卷体现了“稳中求变,稳中求新”。
今年的试题将去年去掉的“解直角三角形的应用”重新拿过来,将去年的几何探索性问题去掉,这样的调整从整体上降低了题目的难度,而最后的压轴题难度的提高成为大多数好学生的丢分之处,重视基础知识、基本技能、基本思想方法和基本活动经验等考查,试题涉及的生活实际应用题共计37分,约占整个试卷的31﹪,这一改变正体现了“贴近学生学习、生活实际”这一新的教育教学理念。
2、试卷突出对数学思想方法与数学活动过程的考查试卷中综合实践与应用的能力要求数学知识要回归本质,学以致用,这份试卷充分体现了课改精神,共考察了函数、方程、统计、概率思想,同时还渗透数形结合、待定系数、归纳等方法,如第4题和第20题考查数形结合思想。
二、试题错误原因分析1、选择题失分情况分析选择题突出了对学生基本知识和基本技能的考查,试题难度不大,从学生答卷的情况看,失分原因有以下两个方面:(1)、概念不清,如第5小题考查统计问题中的平均数与方差的性质。
(2)、选择题的解答方面不灵活,如第6小题2、填空题失分情况分析填空题涉及的知识面较广,注重对学生双基能力的考查,其中7、8、9、10、11、12题较好答,出现错误集中反应在第14、15两题,其中14题利用几何体的三视图,考察学生对空间想象能力,求出几何体的表面积,部分学生看到这样的题就怕了,第15题求三角形周长,有一部分学生掌握不好,平时没有训练类似的题型,因此无从下手而出现错误。
3、解答题失分情况分析解答题共8个小题,满分75分,作为试卷的重要组成部分对总分起着至关重要的作用,它可以考查学生的基本运算能力、数学语言的表达能力、获取信息整合信息的能力、解决实际问题的能力等等,从阅卷过程中我们发现整体上16、17、18做的不错,试题失分原因主要分为以下几点:(1)、缺乏良好的书写习惯部分学生对试题的解答书写不规范,如第17题、第22题几何证明题本来可以得分,可部分同学写的非常复杂,或者证明全等时相应的字母位置写错。
河南省2006-2011年中考数学考点分析
动手操作矩形和折叠 圆锥侧面积
18
19
扇形、正方形中求阴 影部分面积 分式化简选值代入求 分式化简求值 值 平行四边形折叠与三 得用全等证两线段间 角形全等 的关系 统计中补全扇形统计 统计中求频数、圆心 图、求扇形圆心角的 角主度数 度数、求概率 梯形中条件开放、动 实际生活中的一次函 点能否构成菱形 数
22
动点中形成菱形、 直角三角形 求二次函数的解析式、 动点、用函数表示三角 形的周长、动点使其成 为正方形
23
一次函数与反比例函 数、求解析式、利用 图像确定自变量的取 值范围、通过计算求 两条线段相等 操作、发现问题、解 决问题 已知三点求抛物线表 达式、用字母表示面 积为二次函数并求其 最大值、动点使其成 为平行四边形
梯形中条件开放、动 平行四边形、垂径定 等腰三角形中的三角 点能否构成菱形 理、点的坐标 函数
方程、不等式、函数 方案设计 求二次函数的解析式 、动点、用函数表示 线段长并求其最大值 、动点使其成为等腰 三角形
方程、不等式、函数 方程、不等式、函数 、方案设计 、方案设计 等腰三角形、一次函 求二次函数的解析式 数、动点、分类讨论 、动点、用函数表示 直角三角形 面积存在
矩形、三角形中求阴 角平分线性质 影部分面积 分式化简求值 统计 解分式方程 平行四边形中证明全 等 统计
旋转、三角形全等
列表或画树状图求概 转盘求概率 率 正方形、弧长、判断 两线段的位置关系
20 解 答 题 21
一次函数与方案设计
实际生活中的三角函 梯形中的三角函数 数
方程组及分类讨论 解决实际问题
待定系数法求解析式 整式的运算 平行线求角的度数 众数、中位数 待定系数法求解析式 切线、圆周角与圆心 角的关系
2011河南中考数学
2011河南中考数学题目类型及解答策略2011年河南省中考数学试卷包含了选择题、计算题和解答题等类型。
对于每一类型的题目,我们都需要采取相应的解答策略。
选择题选择题是数学试卷中常见的题型之一。
在2011年的河南中考数学试卷中,选择题占有一定的比重。
解答选择题时,应注意以下几点:1.仔细阅读题目,理解题意。
2.查看选项,对比选项之间的差别。
3.排除明显错误的选项。
4.运用逻辑思维,使用合理的推理方法进行答题。
计算题计算题在数学试卷中要求学生进行具体计算步骤,得到最终答案。
解答计算题时,应注意以下几点:1.将题目中的数据提取出来,按照题目要求进行合理的计算。
2.使用正确的计算方法和公式。
3.仔细检查计算步骤,确保没有漏算或者算错。
4.注意单位换算,保持答案的准确性。
解答题解答题要求学生利用所学知识,进行推理和证明。
在2011年河南中考数学试卷中,解答题包含了证明题、应用题等。
解答题的解答策略如下:1.仔细审题,理解所给条件和要求。
2.思考解题思路,构思解题的整体框架。
3.利用所学知识,进行推理和证明。
4.在解答过程中,给出准确的结果和合理的解释。
在证明题中,要给出完整的证明过程。
试题分析选择题2011年河南中考数学试卷的选择题涵盖了各个知识点,包括代数、几何、统计等。
其中,多项式和方程的求解是重点考察的内容之一。
选择题中的计算题和应用题也需要注意。
计算题计算题主要考察了四则运算、比例关系、百分数等内容。
题目中的数据给出了具体的数值,要求学生按要求进行计算,并得出最终结果。
解答题解答题还是偏向于应用题为主。
试卷中涉及了几何、函数、图表等,要求学生综合运用所学知识,进行分析和解答。
解题思路和方法选择题解答选择题时,建议先读题、标注。
理解题意后,对照选项分析,排除明显错误的选项,然后使用逻辑思维和推理方法进行答题。
计算题计算题主要涉及数值计算,应按照题目给出的具体条件进行计算。
注意使用正确的计算方法和公式,仔细检查计算步骤,确保答案的准确性。
2011年河南省初中学业水平暨高级中等学校招生考试数学试题答案
2011年河南省初中学业水平暨高级中等学校招生考试数学试卷参考答案及评分标准说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分. 2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半. 3.评分标准中,如无特殊说明,均为累计给分. 4.评分过程中,只给整数分数.一、选择题(每小题3分,共18分)二、填空题(每小题3分,共27分)(注:若第8题填为72°,第10题填为40°,不扣分)三、解答题(本大题共8个小题,满分75分 ) 16.原式=22(1)(1)1(2)x x x x x -+-∙--…………………………………………………………3分 =12x x +-.……………………………………………………………………………5分x 满足-2≤x ≤2且为整数,若使分式有意义,x 只能取0,-2.……………………7分 当x =0时,原式=12-(或:当x =-2时,原式=14).…………………8分 17.(1)∵AD ∥BC ,∴∠A =MBE ,∠ADM =∠E .…………………………………2分 在△AMD 和△BME 中,∴△AMD ≌△BME . ……………………………………5分(2)∵△AMD ≌△BME ,∴MD =ME . 又ND =NC ,∴MN =12EC . (7)分∴EC =2MN =2×5=10.∴BC=EC-EB=10-2=8.………………………………………………9分18.(1)(C选项的频数为90,正确补全条形统计图);……………2分20.…………………………………………………………………4分(2)支持选项B的人数大约为:5000×23%=1150.……………………………………6分(3)小李被选中的概率是:1002………………………………………………9分115023.19.∵DE∥BO,α=45°,∴∠DBF=α=45°.∴Rt△DBF中,BF=DF=268.…………………………………………………………2分∵BC=50,∴CF=BF-BC=268-50=218.由题意知四边形DFOG是矩形,∴FO=DG=10.∴CO=CF+FO=218+10=228.……………………………………………………………5分在Rt△ACO中,β=60°,∴AO =CO ·tan60°≈228×1.732=394.896……………………………………………7分∴误差为394.896-388=6.896≈6.9(米). 即计算结果与实际高度的误差约为 6.9米.…………………………………………9分 20.(1)12,16;………………………………………………………………2分(2)-8<x <0或x >4;…………………………………………………………4分(3)由(1)知,121162,.2y x yx=+=∴m =4,点C 的坐标是(0,2)点A 的坐标是(4,4). ∴CO =2,AD =OD =4.………………………………………………………………5分 ∴24412.22ODAC CO AD S OD ++=⨯=⨯=梯形∵:3:1,ODEODACS S =梯形∴1112433ODEODACSS =⨯=⨯=梯形……………………………………………7分即12OD ·DE =4,∴DE =2. ∴点E 的坐标为(4,2).又点E 在直线OP 上,∴直线OP 的解析式是12y x =. ∴直线OP 与216yx=的图象在第一象限内的交点P 的坐标为(.……9分21.(1)设两校人数之和为a. 若a >200,则a =18 000÷75=240.若100<a ≤200,则13180008521117a =÷=,不合题意.所以这两所学校报名参加旅游的学生人数之和等于240人,超过200人.……3分(2)设甲学校报名参加旅游的学生有x 人,乙学校报名参加旅游的学生有y 人,则①当100<x ≤200时,得240,859020800.x y x y +=⎧⎨+=⎩解得160,80.x y =⎧⎨=⎩…………………………………………………………………6分 ②当x >200时,得 解得153,32186.3x y ⎧=⎪⎪⎨⎪=⎪⎩此解不合题意,舍去.∴甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.……10分 22.(1)在△DFC 中,∠DFC =90°,∠C =30°,DC =2t ,∴DF =t . 又∵AE=t ,∴AE=DF.……………………………………………………2分(2)能理由如下:∵AB ⊥BC ,DF ⊥BC ,∴AE ∥DF .又AE =DF ,∴四边形AEFD 为平行四边形.…………………………………………………3分∵AB =BC ·tan30°=5,210.AC AB =∴==若使AEFD为菱形,则需10.102,.3AE AD t t t ==-=即 即当103t =时,四边形AEFD为菱形.……………………………………………………5分(3)①∠EDF =90°时,四边形EBFD 为矩形. 在Rt △AED 中,∠ADE =∠C =30°,∴AD =2AE .即10-2t =2t ,52t =.………………7分 ②∠DEF=90°时,由(2)知EF ∥AD ,∴∠ADE =∠DEF =90°.∵∠A =90°-∠C =60°,∴AD =AE ·cos60°.即1102, 4.2t t t -==…………………………………………………………………………9分③∠EFD =90°时,此种情况不存在.综上所述,当52t =或4时,△DEF 为直角三角形.……………………………………10分23.(1)对于3342y x =-,当y =0,x =2.当x =-8时,y =-152. ∴A 点坐标为(2,0),B 点坐标为15(8,).2--………………………………………1分由抛物线214y xbx c=-++经过A 、B 两点,得解得235135..42442b c y x x =-=∴=--+,…………………………………………3分(2)①设直线3342y x =-与y 轴交于点M 当x =0时,y =32-.∴OM =32. ∵点A 的坐标为(2,0),∴OA =2.∴AM5.2=………………4分∵OM :OA :AM =3∶4:5.由题意得,∠PDE =∠OMA ,∠AOM =∠PED =90°,∴△AOM ~△PED . ∴DE :PE :PD =3∶4:5.…………………………………………………………………5分∵点P 是直线AB 上方的抛物线上一动点, ∴PD =y P -y D =213444x x --+.………………………………………………………………………6分∴21213(4)542l xx =--+231848.555x x =--+…………………………………………………………………7分23(3)15.315.5l x x l ∴=-++∴=-=最大时,……………………………………8分②满足题意的点P 有三个,分别是1233(2),(2),22P P ---377(,22P -+-……………………………………………………………11分 【解法提示】当点G 落在y 轴上时,由△ACP ≌△GOA 得PC=AO =2,即21352442x x --+=,解得32x -±=,所以122),2).P P当点F 落在y 轴上时,同法可得3P ,477(22P --(舍去).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006-2011年河南中考数学试题对照分析 第一题,选择题 第1题1.(2011) -5的绝对值 【 】 (A )5 (B )-5 (C )15 (D )15- 1.(2010)21-的相反数是 【 】 (A )21 (B )21- (C )2 (D )2-1.(2009)﹣5的相反数是 【 】(A )15 (B )﹣15(C) ﹣5 (D) 5 1.(2008)-7的相反数是( ) A. 7 B. -7 C.71 D.17- 1.(2007)计算3(1)-的结果是( ) A .—1 B .1 C .—3 D .3 1.(2006)31-的倒数是 【 】 A .3- B .3 C .31- D .31第2题2.(2011) 如图,直线a ,b 被c 所截,a ∥b ,若∠1=35°,则∠2的大小为 【 】(A )35° (B )145° (C )55° (D )125°2.(2010)我省200年全年生产总值比2008年增长10.7%,达到约19367亿元.19367亿元用科学记数法表示为【 】(A )11109367.1⨯元 (B )12109367.1⨯元 (C )13109367.1⨯元 (D )14109367.1⨯元2.(2009)不等式﹣2x <4的解集是 【 】(A )x >﹣2 (B )x <﹣2 (C) x >2 (D) x <2 2.(2008)直角三角形在正方形网格纸中的位置如图所示,则cos α的值是( ) A.43 B. 34 C. 53 D. 54 2.(2007)使分式2xx +有意义的x 的取值范围为( )A.x ≠2B. x ≠-2C.x >-2D.x <2 2.(2006)2005年末我国外汇储备达到的倒数是8189亿美元,8189亿用科学记数法表示(保留)个有效数字是 【】A .111019.8⨯ B .111018.8⨯ C .121019.8⨯ D .121018.8⨯ 第3题3. (2011)下列各式计算正确的是 【 】(A )011(1)()32---=- (B=(C )224246a a a += (D )236()a a =3.(2010)在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:m )分别为: 1.71,1.85,1.85,1.96,2.10,2.31.则这组数据的众数和极差分别是【 】 (A )1.85和0.21 (B )2.11和0.46 (C )1.85和0.60 (D )2.31和0.603.(2009)下列调查适合普查的是 【 】 (A )调查2009年6月份市场上某品牌饮料的质量(B )了解中央电视台直播北京奥运会开幕式的全国收视率情况 (C) 环保部门调查5月份黄河某段水域的水质量情况 (D)了解全班同学本周末参加社区活动的时间3.(2008)如图,是中国共产主义青年团团旗上的图案,点A 、B 、C 、D 、E 五等分圆,则A B C D E ∠+∠+∠+∠+∠等于( )A. ︒360B. ︒180C. ︒150D. ︒1203.(2007)如图,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B 的 度数为( )A .30oB .50oC .90oD .100oCB ′(第3题) l3.(2006)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色其他外完全相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的频率分别为15%和45%,则口袋中白色球的数目很可能是 【 】A .6B .16C .18D .24 第4题 4.(2011)不等式4.(2010)如图,△ABC 中,点DE 分别是ABAC 的中点,则下列结论:①BC =2DE ;②△ADE ∽△ABC ;③ACABAE AD =.其中正确的有【 】 (A )3个 (B )2个 (C )1个 (D )0个4.(2009)方程2x =x 的解是 【 】 (A )x =1 (B )x =0 (C) x 1=1 x 2=0 (D) x 1=﹣1 x 2=04.(2008)初三年级某班十名男同学“俯卧撑”的测试成绩(单位:次数)分别是9,14,10,15,7,9,16,10,11,9,这组数据的众数、中位数、平均数依次是( ) A. 9,10,11 B.10,11,9 C.9,11,10 D.10,9,114.(2007)为了了解某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:则这10户家庭的月用水量,下列说法错误..的是( ) A .中位数是5吨 B .众数是5吨 C .极差是3吨 D .平均数是5.3吨 4.如图,一次函数b kx y +=的图像经过A 、B 两点, 则0>+b kx 解集是 【 】 A .0>x B .3>x C .2>x D .23<<-x 第5题5. (2011)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们x +2>0, x -1≤2的解集在数轴上表示正确的是 【 】ED CBA(第4题)的平均亩产量分别是x 甲=610千克,x 乙=608千克,亩产量的方差分别是2S 甲=29. 6, 2S 乙=2. 7. 则关于两种小麦推广种植的合理决策是 【 】(A )甲的平均亩产量较高,应推广甲(B )甲、乙的平均亩产量相差不多,均可推广(C )甲的平均亩产量较高,且亩产量比较稳定,应推广甲(D )甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙 5.(2010)方程032=-x 的根是【 】(A )3=x (B )3,321-==x x (C )3=x (D )3,321-==x x5.(2009)如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转900得到月牙②,则点A 的对应点A ’的坐标为 【 】(A )(2,2) (B )(2,4) (C)(4,2) (D)(1,2) 5.(2008)如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( )A.k >14-B.k >14-且0k ≠C.k <14-D.14k ≥-且0k ≠5.(2007)由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是( )5.(2006)由一些大小相同的小正方形组成的几何体三 视图如图所示,那么,组成这个几何体的小整 个正方体有 【 】 A .6块 B .5块 C .4块 D .3块 第6题A B C D 主视图 左视图俯视图6. (2011)如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O 旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A 在丙位置中的对应点A ′的坐标为 【 】(A )(3,1) (B )(1,3) (C )(3,-1) (D )(1,1)6.(2010)如图,将△ABC 绕点C (0,-1)旋转180°得到△ABC ,设点A 的坐标为),(b a 则点A 的坐标为【 】(A )),(b a -- (B ))1.(---b a (C ))1,(+--b a (D ))2,(---b a 6.(2009)一个几何体由一些大小相同的小正方体组成,如图 是它的主视图和俯视图,那么组成该几何体所需小正 方体的个数最少为 【 】(A )3 (B ) 4 (C) 5 (D)66.(2008)如图,已知□ABCD 中,AB=4,AD=2,E 是AB 边上的一动点(动点E 与点A 不重合,可与点B 重合),设AE=x ,DE 的延长线交CB 的延长线于点F ,设CF=y ,则下列图象能正确反映y 与x 的函数关系的是( )6.(2007)二次函数221y ax x a =++-的图象可能是( )(第6题)ABCD6.(2006)如图,一块含有30º角的直角三角形ABC ,在水平桌面上绕点C 按顺时针方向旋转到 A ’B ’C ’的位置。
若 BC 的长为15cm ,那么顶点A 从开始到结束所经过的路 径长为【 】A .π10cmB .π310cmC .π15cmD .π20cm 第二题 填空题 第7题7. (2011)27的立方根是 。
7.(2010)计算2)2(1-+-=__________________. 7.(2009)16的平方根是 . 7.(2008)16的平方根是 7.(2007)25的相反数是______________. 7.函数2-=x y 中,自变量的取值范围是_________________.第8题8. (2011)如图,在△ABC 中,AB =AC ,CD 平分∠ACB ,∠A =36°,则∠BDC 的度数为 .8.(2010)若将三个数11,7,3-表示在 数轴上,其中能被如图所示的墨迹覆盖的数是__________________.8.(2009)如图,AB //CD ,C E 平分∠ACD ,若∠1=250,那么∠2的度数是 .8.(2008)如图,直线a,b 被直线c 所截,若a ∥b ,︒=∠501,则=∠2 8.(2007)计算:24(2)3x x -⋅=______________.8.(2006)写出一个图象位于第二、四象限的反比例函数的表达式是______________________. 第9题9.(2011) 已知点(,)P a b 在反比例函数2y x=的图象上,若点P 关于y 轴对称的点在(第8题)反比例函数kyx=的图象上,则k的值为.9.(2010)写出一个y随x增大而增大的一次函数的解析式:__________________.9.(2009)下图是一个简单的运算程序.若输入X的值为﹣2,则输出的数值为.9.(2008)样本数据3,6,a,4,2的平均数是5,则这个样本的方差是9.(2007)写出一个图象经过点(1,—1)的函数的表达式_____________________. 9.(2006)在“手拉手活动”中,小明为捐助某贫困山区的一名同学,现已存款300元,他计划今后每月存款10元,n月后存款总数是__________________元.第10题10. (2011)如图,CB切⊙O于点B,CA交⊙O于点D且AB为⊙O的直径,点E是 ABD 上异于点A、D的一点.若∠C=4010.(2010)将一副直角三角板如图放置,使含30°角的三角板的段直角边和含45°角的三角板的一条直角边重合,则∠1的度数为______________.10.(2009)如图,在 ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB 的长是.10.(2008)如图所示,AB为⊙0的直径,AC为弦,OD∥BC交AC于点D,若AB=20cm,︒=∠30A,则AD= cm10.(2007)如图,PA、PB切⊙O于点A、B,点C是⊙O上一点,且∠ACB = 65o,则∠P = _____度.10.(2006)如图,点A、B、C是⊙O上的三点,若∠BOC =56°,则∠A=___________°第11题(第10题)第10题第10题11.(2011)点1(2,)A y 、2(3,)B y 是二次函数221y x x =-+的图象上两点,则1y 与2y 的大小关系为1y 2y (填“>”、“<”、“=”).11.(2010)如图,AB 切⊙O 于点A ,BO 交⊙O 于点C ,点D 是⌒CmA 上异于点C 、A 的一点,若∠ABO =32°,则∠ADC 的度数是______________.11.(2009)如图,AB 为半圆O 的直径,延长AB 到点P ,使BP =12AB ,PC 切半圆O 于点C ,点D 是 AC 上和点C 不重合的一点,则D ∠的度数为 .11.(2008)某花木场有一块如等腰梯形ABCD 的空地(如图),各边的中点分别是E 、F 、G 、H ,用篱笆围成的四边形EFGH 场地的周长为40cm ,则对角线AC= cm 11.(2007)如图,在直角梯形ABCD 中,AB ∥CD ,AD ⊥CD , AB = 1㎝,AD = 2㎝,CD = 4㎝,则BC = _________㎝. 11.(2006)如图,C 、D 分别是一个湖的南、北两 端A 和B 正东方向的两个村庄,CD = 6 km ,且D 位于C 的北偏东30°方向上,则AB =____________km . 第12题12.(2011)现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另—个装有标号分别为2、3、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是 。