5.画多边形
《多边形》PPT课件
➢ 正多边形属于多边形,正多边形的内角和为( − ) × °
➢ 正多边形内角都相等,边也都相等
➢ 正边形的每个内角的度数均为
(−)×°
多边形的外角和
➢ 在边形的每个顶点处各取一个外角,这些外角的和叫做n边形的外角和
➢边形的外角和为°
(2)多边形的内角和为(n-2)×180°;多边形的外角和为360°
(3)三角形是最简单的多边形,以上公式对三角形依然成立
(4)一个多边形的内角和取决于它的边数,随着边数的增加、内角和也随之增加,
并且每增加一条边,内角和就增加180°;
多边形的外角和与边数无关,总是等于360°
(5)正多边形,边相等,内角也相等,外角也相等。
- .
第一课时
多边形的相关概念
➢ 多边形的概念
➢ 凸多边形与凹多边形
➢ 多边形的表示
➢ 正多边形的概念
➢ 多边形的对角线(重点)
复习
三角形的定义:由不在同一条直线上的三条线段首尾
顺次相连所组成的图形
三角形的边:
组成三角形的线段
三角形的顶点:相邻两边的公共端点
三角形的内角:相邻两条边所组成的角
三角形的外角:三角形内角的一边与另一边的反向延
(3)在平面内,内角都相等,边也都相等的多边形叫做正多边形
(4)对角线:连接多边形不相邻的两个顶点的线段
①从n边形的一个顶点出发可以引(n-3)条对角线
②这些对角线把这个多边形分成(n-2)个三角形
(−)
③n边形共有
条对角线
练习
1.下列图形为正多边形的是
A
B
C
D
2.下列图形不是凸多边形的是
第三节 多边形的边和角-学而思培优
第三节 多边形的边和角一、课标导航。
二、核心纲要1.多边形的有关概念 (1)多边形:在平面内,由不在同一条直线上的一些线段首尾顺次相接组成的图形叫做多边形. (2)多边形的内角和外角:多边形相邻的两边组成的角叫做多边形的内角;多边形的边与它的邻边的 延长线组成的角叫做多边形的外角.(3)多边形的对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线. (4)正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.(5)凸、凹多边形:画出多边形的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的图形叫做凸多边形,否则称为凹多边形.注:没有特殊说明的情况下,我们所说的多边形都是凸多边形.2.多边形的内角和n 边形的内角和公式:.180)2(⋅-n 3.多边形的外角和 n 边形的外角和等于.360注:多边形的外角和与边数无关. 4.多边形的对角线的条数 多边形的对角线的条数为:).3(2)3(≥-n n n 5.镶嵌(1)定义:用形状相同或不同的封闭的平面图形进行拼接,彼此之间不留空隙,不重叠地拼接在一起, 这类问题叫做平面镶嵌.(2)镶嵌的条件:拼在同一顶点的几个多边形的内角和恰好为.360注:①用同一种多边形进行镶嵌的图形有:三角形、四边形、正六边形.(其中三角形和四边形是任意的)②用两种正多边形进行镶嵌的图形常用的有:常用的有正三角形和正四边形;正三角形和正六边形;正四边形和正八边形;还有正三角形和正十二边形;正五边形和正十边形, 本节重点讲解:一个条件(镶嵌的条件),两个概念(多边形的有关概念和镶嵌),两个定理(多边形的内角和及外角和定理).三、全能突破基 础 演 练1.如果一个多边形的内角和等于它的外角和的两倍,则这个多边形是( ). A.四边形 B .五边形 C .六边形 D .七边形2.某校初一数学兴趣小组对教材《多边形的内角和与外角和》的内容进行热烈的讨论,甲说:“多边形的边数每增加1,则内角和增加 180”;乙说:“多边形的边数每增加1,则外角和增加 180”;丙说:“多边形的内角和不小于其外角和”;丁说:“只要是多边形,外角和都是 360”.你认为正确的是( ) A.甲和丁 B .乙和丙 C .丙和丁 D .以上都不对3.小华家装修房屋,用同边长的几种不同的正多边形砖铺地,顶点连着顶点,为铺满地面而不重叠,瓷砖的形状可能有( )A.正三角形、正六边形 B .正三角形、正五边形、正八边形 C .正六边形、正五边形 D .正八边形、正三角形4.如图11-3—1所示,在锐角△ABC 中,BD 、CE 分别是AC 、AB 边上的高,且BD ,CE 交于点F ,若=∠A,52 则BFC ∠的度数是( ).108.A 128.B 138.C 158.D5.如图11-3-2所示,以六边形的每个顶点为圆心,1为半径画圆,则图中阴影部分的面积为( ).2.πA 3.πB 4.πC π2.D6.如图11-3 -3所示,小林从P 点向西直走12米后,向左转,转动的角度为a ,再走12米,如此重复,小林共走了108米回到点P ,则=α7.如图11-3 -4所示,求F E D C B A ∠+∠+∠+∠+∠+∠的度数.8.(1)已知,P AOB ,65=∠是平面上的任意一点,过点P 作,,OB PF OA PE ⊥⊥垂足分别为点E 、F 求∠EPF 的度数.(2)探究AOB EPF ∠∠与有什么关系?(直接写出结论)(3)通过上面这两道题,你能说出如果一个角的两边分别垂直于另一个角的两边,则这两个角是什么关系?9.在四边形ABCD 中,,90=∠=∠D B(1)如图ll-3-5(a)所示,AE 、CF 分别是DCB BAD ∠∠和的角平分线,判断AE 与CF 的位置关系,并证明. (2)如图ll-3-5(b)所示,AE 、CF 分别是HCB GAD ∠∠和的角平分线,直接写出AE 与CF 的位置关系; (3)如图ll-3-5(c)所示,AE 、CF 分别是ECB BAD ∠∠和的角平分线,判断AE 与CF 的位置关系,并证明.能 力 提 升10.在凸十边形的所有内角中,锐角的个数最多是( ). A .O B .1 C .3 D .511.小学生雷雷要用一块等边三角形的硬纸片(如图ll-3-6(a)所示)做一个底面为等边三角形且高相等的无盖的盒子(边缝忽略不计,如图ll-3-6(b)所示),他在△ABC 内先画了一个等边△DEF,然后打算剪掉三个角(如四边形AMDN),可是比划了半天,还是不知如何下手,用你学过的知识判断,若想正好剪下三个角,么MDN 的度数应为( ).o A 100. 110.B 120.C 130.D12.已知:如图11-3 -7所示,求=∠+∠+∠+∠+∠+∠+∠+∠+∠I H G F E D C B A13.过m 边形的一个顶点有7条对角线,n 边形没有对角线,K 边形共有K 条对角线,则nK m )(-=14.(1) 一个凸多边形除一个内角外,其余各角之和为,2750这个多边形的边数为 ,除去的这个内角的度数为(2)一个多边形截去一个角后,形成另一个多边形的内角和是则原来多边形的边数是 (3)一个凸多边形的某一个内角的外角与其余内角的和恰为,500那么这个多边形的边数是15.遥控一辆赛车,先前进1m ,然后原地逆时针方向旋转角)1800(<<αα被称为一次操作,若五次操作后,发现赛车回到出发点,则α为16.探究题:我们知道等腰三角形的两个底角相等,如下面每个图中的△ABC 中,AB 、BC 是两腰,所以.BCA BAC ∠=∠利用这条性质,解决下面的问题:已知下面的正多边形中,相邻四个顶点连接的对角线交于点0,它们所夹的锐角为⋅321,,ααα如图11-3 -8所示:=1α =2α =3α当正多边形的边数是他(n>3)时,则=α17.已知:如图11-3 -9所示,在六边形ABCDEF 中,+∠=∠+∠+∠D C B A ,F E ∠+∠猜想可得六边形ABCDEF 中必有两条边是平行的. (1)根据图形写出你的猜想:(2)请证明你在(1)中写出的猜想.18.在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下空隙,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角)360(时,就拼成了一个平面图形. (1)请根据下列图形,填写表中空格,(2)如图11-3 -10所示,如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形. (3)不能用正五边形形状的材料铺满地面的理由是什么?(4)正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.19.阅读理解:如图11-3 -11所示,在正△ABC 中,M 、N 分别在BC 、AC 边上,若,60=∠AMN 则.21∠=∠小强是 这样论证的:‘.‘△ABC 是正三角形,.6011.603180+∠=∠+∠=∠∴==∠∴B AMC B又.21.602,60,2∠=∠∴+∠=∠∴=∠∠+∠=∠AMC AMN AMN AMC(1)类比应用:如图11-3 -12所示,将阅读理解中的正三角形换成正四边形ABCD ,M 、N 分别为BC 、CD 上的点,类似地:若=∠AMN ,则.21∠=∠请你用小强的证明方法论证. (2)拓展延伸:请你将上述命题推广到一般,如图11-3 -13所示,ABCDEF--是正n 边形. 写出命题:20.如图11-3 -14所示,在四边形ABCD 中,ABC ∠的角平分线及外角DCE ∠的平分线所在的直线相交于点F ,若;,βα=∠=∠D A(1)如图(a)所示,,180>+βα试用βα,表示 ,F ∠直接写出结论; (2)如图(b)所示,,180 <+βα请在图(b)中画出,F ∠并试用βα,表示 ;F ∠(3)一定存在F ∠吗?如有,写出F ∠的值,如不一定,直接写出βα,满足什么条件时,不存在.F ∠中 考 链 接21.(2012.北京)正十边形的每个外角等于( ).18.A 36.B 45.C 60.D22.(2012.四川德阳)已知一个多边形的内角和是外角和的,23则这个多边形是23.(2012.河北)用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图ll-3-15(a)所示,用n 个全等的正六边形按这种方式拼接,如图ll-3-15(b)所示,若围成一圈后中间也形成一个正多边形,则n 的值为 .巅 峰 突 破24.凸n 边形中有且仅有两个内角为钝角,则n 的最大值是( ). 4.A 5.B 6.C 7.D25.在一个多边形中,除了两个内角外,其余内角之和为,2002则这个多边形的边数是26.如图11-3 -16所示,六边形ABCDEF 中,=∠=∠=∠=∠=∠E D C B A ,F ∠且,3,11=-=+CD FA BC AB 求DE BC +的值.。
苏科版五年级信息技术05《画正多边形》教案
苏科版五年级信息技术05《画正多边形》教案一. 教材分析《画正多边形》是苏科版五年级信息技术第5课的内容。
本节课主要让学生学习如何利用信息技术工具绘制正多边形,培养学生动手操作能力和创新思维能力。
通过本节课的学习,让学生了解正多边形的概念,掌握正多边形的性质,以及学会利用信息技术工具绘制正多边形。
二. 学情分析五年级的学生已经具备了一定的信息技术基础,对计算机操作有一定的熟悉程度。
但是,对于正多边形的概念和性质,他们可能比较陌生。
因此,在教学过程中,需要先让学生了解正多边形的概念和性质,再进行信息技术工具的运用。
三. 教学目标1.让学生了解正多边形的概念和性质。
2.让学生掌握利用信息技术工具绘制正多边形的方法。
3.培养学生的动手操作能力和创新思维能力。
四. 教学重难点1.正多边形的概念和性质。
2.利用信息技术工具绘制正多边形的方法。
五. 教学方法采用“问题驱动”的教学方法,通过引导学生自主探究、合作交流,让学生在实践中掌握知识,提高能力。
六. 教学准备1.计算机及相关设备。
2.正多边形的图片或实物。
3.信息技术工具的使用说明书。
七. 教学过程1.导入(5分钟)利用信息技术工具展示正多边形的图片或实物,引导学生关注正多边形的美观和规律。
提问:“你们知道这是什么图形吗?它有什么特点?”2.呈现(5分钟)介绍正多边形的概念和性质。
正多边形是指所有边相等、所有角相等的多边形。
正多边形的边数与它的内角有关,例如,正五边形的内角为108度,正六边形的内角为120度。
3.操练(10分钟)让学生利用信息技术工具绘制正多边形。
首先,引导学生了解信息技术工具的使用方法,然后让学生动手操作,尝试绘制不同边数的正多边形。
在学生操作过程中,教师给予个别指导,确保学生能够正确掌握方法。
4.巩固(5分钟)让学生利用信息技术工具绘制一个自己设计的正多边形图案。
学生可以自由发挥,创新设计,培养他们的创新思维能力。
5.拓展(5分钟)引导学生思考:如何利用信息技术工具绘制一个特定的正多边形图案?例如,如何绘制一个中心有一个小圆的正多边形图案?学生分组讨论,合作探索,分享成果。
苏科版信息技术五年级课件:第5课 画正多边形
等边三角形 (正三角形)
正方形 (正等,所有的边都相等,这就是 正多边形
如何画正多边形
• • • • • 小组比赛,用简单命令画图形(边长为100) 第一组:画正三角形(角度为120度) 第二组:画正方形(角度为90度) 第三组:画正五边形(角度为72度) 第四组:画正六边形(角度为60度)
七组完全相同的命令
REPEAT 7[FD 30 RT 360/7]
用重复命令画正多边形
• 画一个正多边形的公式是: REPEAT 边数[FD 边长 RT 360/边数] 或 REPEAT 边数[FD 边长 LT 360/边数]
练一练
• 用REPEAT命令,画正18边形(边长为30)
课堂小结
• 用重复命令(REPEAT)画图时,小海龟总是每 次走的步数相同,转的角度相同,每次共转 360度。 • 只要设置好下面三个数,就可以正确使用重复 命令 1.重复的次数 2.每次走的步数 3.每次转动的度数 REPEAT 边数[FD 边长 RT 360/边数]
正多边形需要转动的角之和是360°
每一个旋转角的度数=360/边数
练一练
• 画一个边长为30的正七边形。
FD 30 RT 360/7 FD 30 RT 360/7 FD 30 RT 360/7 FD 30 RT 360/7 FD 30 RT 360/7 FD 30 RT 360/7 FD 30 RT 360/7
FD 100
FD 100 FD 100
RT 120
RT 120 RT 120
FD 100
FD 100 FD 100 FD 100
加起来都是360°
RT 90
RT 90 RT 90 RT 90
5_多边形和圆的初步认识_教案2
《4.5多边形和圆的初步认识》教案教学目标:知识与技能目标: 1、在具体情境中认识多边形、正多边形、圆、扇形。
2、能根据扇形和圆的关系求扇形的圆心角的度数。
过程与方法目标:经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩。
情感态度与价值观目标:在丰富的活动中发展学生有条理的思考和表达能力。
重点:经历从现实世界中抽象出平面图形的过程,在具体的情境中认识多边形、扇形。
难点:探索分割平面图形的一些规律,感受图形世界的丰富图形,养成把数学应用于生活实际问题的习惯. 教学方法:观察法、动手操作教学过程:第一环节创设情境,激发兴趣.内容:请学生观看两个片段,思考这些有趣的图形是由哪些基本图形组成的?在学生得出三角形、四边形、五边形、六边形、圆等的基础上,提问学生它们有什么共同特征?从而得出多边形的概念;接着就图中的圆,逐步得出弧和扇形等概念。
第二环节实验猜想,合作探究.内容:1数一数,图中有多少个扇形?2从一个多边形内部的任意一点出发,分别连接这个点与其余各顶点,可以把这个多边形分割成若干个三角形。
你能看出什么规律吗?从一个多边形的同一个顶点出发,分别连接这个顶点与其余各顶点,也可以把这个多边形分割成若干个三角形。
你又能找出什么规律呢?若这个点为边上除顶点外的任意一点呢?你又能找到什么规律呢?3下列的图看起来象什么?分别由几个三角形或四边形组成?第三环节设计创意,提高能力.幻灯片显示――我能行:以两个圆、两个三角形、两条平行线段为构件,尽可能多地构思出独特且有意义的图形,并写出一两句贴切、诙谐的解说词。
如:小和尚打伞无法无天第四环节回顾思考,巩固拓展. 通过本节课的学习你有哪些收获?五、作业1、课本P130习题4.32、选用课时作业七、教后反思。
2022-2023学年上海九年级数学上学期同步精讲精练第20讲正多边形与圆(解析版)
第20讲 正多边形与圆1.正多边形 各边相等,各角也相等的多边形叫做正多边形.有n 条边的正多边形(n 是正整数,且3n )就称作正n 边形.2.正n 边形的对称性正n 边形是轴对称图形,对称轴的条数 = n .当n 为偶数时,正n 边形是中心对称图形,对称中心是它的两条对称轴的交点.3.正多边形的外接圆和内切圆任何一个正多边形都有一个外接圆和一个内切圆,外接圆和内切圆的圆心都是这个正多边形的对称轴的交点.正多边形外接圆(或内切圆)的圆心叫做正多边形的中心.正多边形外接圆的半径叫做正多边形的半径.知识一、直线与圆的位置关系正多边形内切圆的半径长叫做正多边形的边心距.正多边形一边所对的关于外接圆的圆心角叫做正多边形的中心角.每一个中心角=n 0360=它的每一个外角4.正多边形的性质1.正多边形都只有一个外接圆,圆有无数个内接正多边形.2.正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.3.正多边形都是轴对称图形,对称轴的条数与它的边数相同,每条对称轴都通过正n边形的中心;当边数是偶数时,它也是中心对称图形,它的中心就是对称中心.4.边数相同的正多边形相似。
它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.5.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆要点诠释:(1)各边相等的圆的内接多边形是圆的内接正多边形;(2)各角相等的圆的外切多边形是圆的外切正多边形.5.正多边形的画法(1)用量角器等分圆由于在同圆中相等的圆心角所对的弧也相等,因此作相等的圆心角(即等分顶点在圆心的周角)可以等分圆;根据同圆中相等弧所对的弦相等,依次连接各分点就可画出相应的正n边形.(2)用尺规等分圆对于一些特殊的正n边形,可以用圆规和直尺作图.①正四、八边形。
在①O中,用尺规作两条互相垂直的直径就可把圆分成4等份,从而作出正四边形。
再逐次平分各边所对的弧(即作①AOB的平分线交于E) 就可作出正八边形、正十六边形等,边数逐次倍增的正多边形。
六年级数学下册知识讲义-5 多边形和正多边形-鲁教版(五四学制)
学习目标一、考点突破了解多边形和正多边形的有关定义,知道正多边形的特点,能够解决简单的多边形问题。
二、重难点提示重点:掌握正多边形的定义和简单性质。
难点:对多边形和正多边形中角的认识。
考点精讲1. 多边形由若干条不在同一直线上的线段首尾顺次相连所组成的封闭平面图形叫做多边形。
如多边形ABCDEF 中,点A 、B 、C 、D 、E 、F 是多边形的顶点;线段AB 、BC 、CD 、DE 、EF 、FA 是多边形的边;∠FAB 、∠ABC 、∠BCD 、∠CDE 、∠DEF 、∠EFA 是多边形的内角(简称多边形的角);AC 、AD 、AE 都是连接不相邻两个顶点的线段,像这样的线段叫做多边形的对角线。
ACDEF思考:边形有多少个顶点?多少条边?多少个内角?过边形的每一个顶点有多少条对角线?(边形有个顶点,条边,个内角。
过边形的每一个顶点有()条对角线。
)2. 正多边形各边相等、各角相等的多边形叫做正多边形。
正多边形的性质:各边相等;各角相等。
正三角形正四边形正五边形正六边形正八边形判断:各个内角都相等的多边形为正多边形。
( )答案:错误,长方形的各个内角都等于90°,但不是正四边形,必须同时满足各边相等,各角也相等。
例题1 把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是( )A. 六边形B. 五边形C. 四边形D. 三角形 思路分析:一个n 边形剪去一个角后,剩下的形状可能是n 边形或(n +1)边形或(n -1)边形。
答案:当剪去一个角后,剩下的部分是一个四边形,则这张纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形。
故选A。
技巧点拨:剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条。
例题2一个四边形的周长是46cm,已知第一条边长是a cm,第二条边长比第一条边长的三倍还少5cm,第三条边长等于第一、第二条边长的和。
第5课 画正多边形(课件)小学信息技术五年级(苏科版)
它们是什么图形?
边和角有什么特点?
苏科版小学信息技术五年级第5课
画正多边形
授课:XXX
画直线
哪一个模块可以画出正多边形呢?
任务一
画一条颜色为红色,画笔粗细为10,120步长的线段
小猫画线段动图
任务二
画一个画笔颜色为红色、粗细为10、120步边长的正方形
有规律的、重复性动作
简短
清晰
对比:正方形和正三角形的区别?
60
边数
旋转角度
90
画正三角形
任务三
复制、修改脚本,画出正三角形
60
边数
旋转角度
90
外角
外角
内角
内角
外角和为360度
初始化
位置
方向
清空
颜色
粗细
绘制图形
360/边数
拓 展
拓展
复制、修改脚本,画出正六边形
60
拓展
复杂图形
总 结
本节课主要内容:
你能画其他的正多边形吗?
画正N边形需要重复执行N次,旋转角度为360/N度。
下
节
课
再
见
人教版数学八年级上册11.3.1《多边形》教学设计
人教版数学八年级上册11.3.1《多边形》教学设计一. 教材分析《多边形》是人教版数学八年级上册第11.3.1节的内容,本节主要介绍多边形的定义、性质以及多边形的计算。
本节课的内容是学生学习了平面几何基础知识后的进一步拓展,对于学生来说,掌握多边形的定义和性质,了解多边形的计算方法,对于提高他们的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析八年级的学生已经掌握了平面几何的基本知识,具备了一定的逻辑思维能力和空间想象能力。
但是,对于多边形的定义和性质,以及多边形的计算方法,他们可能还比较陌生。
因此,在教学过程中,我需要注重引导学生从已有的知识出发,逐步理解和掌握多边形的相关概念。
三. 教学目标1.了解多边形的定义和性质,能正确识别各种多边形。
2.掌握多边形的计算方法,能熟练计算多边形的周长和面积。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.多边形的定义和性质。
2.多边形的计算方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出多边形的相关概念。
2.使用多媒体教学,通过动画和图片展示多边形的性质和计算方法。
3.学生进行小组讨论和合作交流,提高他们的逻辑思维能力和空间想象能力。
六. 教学准备1.多媒体教学设备。
2.教学PPT。
3.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入多边形的概念,例如:“一个正六边形的边长是6cm,求这个正六边形的周长和面积。
”让学生思考并讨论,引出多边形的定义和性质。
2.呈现(15分钟)使用PPT展示多边形的定义和性质,通过动画和图片展示多边形的各种形态,让学生直观地感受多边形的特征。
同时,引导学生回顾平面几何的基本知识,为新知识的学习做好铺垫。
3.操练(15分钟)让学生通过练习题来巩固所学知识。
练习题包括识别多边形、计算多边形的周长和面积等。
在学生练习过程中,教师应及时给予指导和解答疑问。
4.巩固(5分钟)通过小组讨论和合作交流,让学生进一步巩固多边形的定义和性质,以及多边形的计算方法。
【志鸿全优设计】2013-2014学年八年级数学上册 第十一章 11.3 多边形及其内角和例题与讲解
11.3 多边形及其内角和1.多边形及其有关概念(1)多边形定义:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.多边形按组成它的线段的条数分为三角形、四边形、五边形、六边形、……由n条线段组成的多边形就叫做n边形.如图,是一个五边形,可表示为五边形ABCDE.三角形是最简单,边数最少的多边形.(2)多边形的边:组成多边形的线段叫做多边形的边.(3)多边形的内角、外角:多边形相邻两边组成的角叫做多边形的内角,也称为多边形的角;多边形的边与它的邻边的延长线组成的角叫做多边形的外角.如图,∠B,∠C,∠D,…是五边形的内角,∠1是五边形的外角.谈重点多边形外角的理解多边形每一个顶点处有两个外角,并且同顶点的外角与内角互为邻补角.(4)多边形的对角线:①定义:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.如图,AC,AD 就是五边形ABCDE中的两条对角线.②拓展理解:一个n 边形从一个顶点可以引(n -3)条对角线,把n 边形分成(n -2)个三角形.一个n 边形一共有n (n -3)2条对角线.析规律多边形的对角线条数与顶点数的关系 ①从多边形一个顶点引出的对角线能将多边形分割成不同的三角形,这就把多边形问题转化为三角形问题来研究;②所有的四边形都有2条对角线,五边形有5条对角线,也就是说一个边数一定的多边形的对角线的条数是一定的.(5)凸多边形和凹多边形:①在图(1)中,画出四边形ABCD 的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;②在图(2)中,画出DC (或BC )所在直线,整个四边形不都在这条直线的同一侧,我们称这个四边形为凹四边形,像这样的多边形称为凹多边形.谈重点凸多边形的认识 没有特殊说明,今后学习中所指的多边形都是凸多边形.【例1】 填空:(1)十边形有________个顶点,________个内角,________个外角,从一个顶点出发可画________条对角线,它共有________条对角线.(2)从多边形一个顶点出发画对角线将它分成了四个三角形,这个多边形是________边形.解析:(1)一个n 边形有n 个顶点,n 个角,2n 个外角,从一个顶点能画出(n -3)条对角线,共有n (n -3)2条对角线;(2)一个n 边形从一个顶点可以引(n -3)条对角线,把n 边形分成(n -2)个三角形,所以n -2=4,n =6,这个多边形是六边形.答案:(1)10 10 20 7 35(2)六2.正多边形(1)定义:各个角都相等,各条边都相等的多边形叫做正多边形.如等边三角形、正方形等.(2)特点:不仅边都相等,角也都相等,两个条件必须同时具备才是正多边形.如长方形四个角都是直角,都相等,但边不等,所以不是正多边形.析规律正多边形外角的特征因为边数相同的正多边形各个内角都相等,同顶点的内角与外角互为邻补角,所以边数相同的正多边形的各个外角也相等.【例2】下列说法正确的个数有( ).(1)由四条线段首尾顺次相接组成的图形是四边形;(2)各边都相等的多边形是正多边形;(3)各角都相等的多边形一定是正多边形;(4)正多边形的各个外角都相等.A.1 B.2C.3 D.4解析:(1)不正确,一是要在同一平面内,二是不能在同一条直线上;(2)不正确,各边都相等,各角也都相等的多边形才是正多边形,这两个条件必须同时具备,如菱形虽然四边都相等,但它不是正多边形;(3)不正确,如长方形四个角都是直角,都相等,但边不一定相等,所以不是正多边形;(4)正确,因为边数相同的正多边形各个内角都相等,同顶点的内角与外角互为邻补角,所以边数相同的正多边形的各个外角也相等.故选A.答案:A3.多边形的内角和(1)公式:n边形内角和等于(n-2)×180°.(2)探究过程:如图,以五边形、六边形为例.①从五边形的一个顶点出发,可以画2条对角线,它们将五边形分成3个三角形,五边形的内角和等于180°×3=540°;②从六边形的一个顶点出发,可以画3条对角线,它们将六边形分成4个三角形,六边形的内角和等于180°×4=720°;③从n边形的一个顶点出发,可以画(n-3)条对角线,它们将n边形分成(n-2)个三角形,n边形的内角和等于180°×(n-2).所以多边形内角和等于(n-2)×180°.析规律多边形内角和公式的推导 推导多边形内角和公式的方法很多,但都是将多边形内角和转化为三角形内角和进行推导的,这也是研究问题的一种思路方法,将多边形问题转化为三角形问题解决.(3)应用:①运用多边形内角和公式可以求出任何边数的多边形的内角和;②由多边形内角和公式可知,边数相同的多边形内角和也相等,因此已知多边形内角和也能求出边数.【例3】 选择:(1)十边形的内角和为( ).A .1 260° B.1 440°C .1 620° D.1 800°(2)一个多边形的内角和为720°,那么这个多边形的对角线共有( ).A .6条B .7条C .8条D .9条解析:(1)运用多边形内角和公式计算:180°×(10-2)=1 440°,故选B ;(2)一个多边形的内角和为720°,即180°×(n -2)=720°,解得n =6,所以该多边形是六边形,六边形有6×(6-3)2=9条对角线,故选D. 答案:(1)B (2)D4.多边形的外角和(1)公式:多边形的外角和等于360°.(2)探究过程:如图,以六边形为例.①外角和:在每个顶点处各取一个外角,即∠1,∠2,∠3,∠4,∠5,∠6,它们的和为外角和.②因为同顶点处的一个内角和外角互为邻补角,所以六边形内、外角和等于180°×6=1 080°,所以∠1+∠2+∠3+∠4+∠5+∠6=1 080°-180°×(6-2)=360°.③n 边形外角和=n ×180°-(n -2)×180°=360°.(3)拓展理解:①多边形的外角和是一个恒值,即任何多边形的外角和都是360°,与边数无关.②多边形的外角和与多边形所有外角的和不是一回事,多边形的外角和是每个顶点处取一个外角的和.解技巧多边形的内角与相邻外角的关系的运用同顶点的每一个内角和外角互为邻补角是解决含内、外角问题的关键,是内、外角转换的纽带.【例4】填空:(1)一个多边形每个外角都是60°,这个多边形是__________边形,它的内角和是__________度,外角和是__________度;(2)多边形边数每增加一条,它的内角和会增加__________,外角和增加__________.解析:(1)因为每个外角都是60°,所以360°÷60°=6,所以是六边形.根据内角和公式计算出内角和是720°,外角和是恒值为360°(也可以由每个外角都是60°,得每个内角都是120°,进而得到内角和是720°);(2)多边形边数每增加一条,它的内角和会增加180°,但外角和不变.答案:(1)六720 360 (2)180°0°5.多边形内角和公式的应用多边形内角和只与边数有关,因此当一个多边形的边数确定时,多边形的内角和就是一定的,所以多边形内角和公式就有两个作用:(1)已知多边形边数(顶点数、内角个数)就可以求出多边形内角和度数,方法是直接将边数n代入公式(n-2)×180°求出.(2)已知多边形内角和求多边形边数,只要根据多边形内角和公式列出以n为未知数的方程,解方程,求出n即可得到边数.破疑点多边形内角和的理解①用内角和除以180°得到的是n-2的值,不是边数,边数是n,这点要注意.②熟记多边形内角和公式是这部分内容应用的关键.【例5-1】若一个四边形的四个内角度数的比为3∶4∶5∶6,则这个四边形的四个内角的度数分别为__________.解析:设每一份为x°,那么四个角分别为3x°,4x°,5x°,6x°.根据四边形内角和是360°,列出方程3x+4x+5x+6x=360,解得x=20,然后求出各角;也可以用360°÷18=20°,每一份是20°,然后求解.答案:60°,80°,100°,120°【例5-2】一个多边形的内角和等于1 440°,则它的边数为__________.解析:根据多边形内角和公式列出以n为未知数的方程(n-2)×180=1 440,解方程得n=10.所以这个多边形为十边形.答案:10【例5-3】一个多边形的内角和不可能是( ).A.1 800° B.540°C.720° D.810°解析:因为边数只能是整数,所以多边形的内角和必须是180°的整数倍,故选D.答案:D6.多边形外角、外角和公式的应用多边形外角和是360°,它是一个恒值,不论多边形是几边形,它的外角和都是360°,与边数无关,所以对于普通多边形,根据多边形外角和无法判断多边形的边数,因此多边形外角很少单独考查,它一般应用于正多边形中或各角都相等时的情况,因为正多边形的每一个内角都相等,所以正多边形的每一个外角也都相等,因此只要知道正多边形中任一个外角的度数就能求出边数,或知道外角的个数也能求出每一个外角的度数,进而能求出内角度数和内角和的度数.同顶点的外角和内角互为邻补角,所以多边形外角和内角又是相互联系的,知道内角能求外角,知道外角也能求内角,它们之间能相互转换.破疑点多边形外角和与外角的关系多边形的外角和与多边形所有外角的和不是一回事,多边形的外角和是每个顶点处各取一个外角的和,是360°,而多边形所有外角的和是360°的2倍,是720°,这点要注意.【例6-1】如图所示,已知∠ABE=138°,∠BCF=98°,∠CDG=69°,则∠DAB=__________.解析:方法一:根据同顶点的外角和内角互为邻补角,求出已知角的邻补角.根据四边形内角和为360°,求出∠A;方法二:根据四边形外角和为360°,求出与∠A同顶点的邻补角(A点处的外角),再求出∠A.答案:125°【例6-2】如图,在四边形ABCD中,∠1,∠2分别是∠BCD和∠BAD的邻补角,且∠B +∠ADC=140°,则∠1+∠2等于( ).A.140° B.40°C.260° D.不能确定解析:方法一:因为四边形内角和是360°,且∠B+∠ADC=140°,所以∠DAB+∠DCB =220°,∠1+∠2+∠DAB+∠DCB=180°×2,所以∠1+∠2=360°-220°=140°;方法二:可求出与∠B,∠ADC同顶点的两外角和为220°,根据四边形外角和是360°,得出∠1+∠2=360°-220°=140°;方法三:连接BD,根据三角形一个外角等于和它不相邻的两内角和,求出∠1+∠2的度数.答案:A正多边形是特殊的多边形,它特殊在每一个内角、外角、每一条边都相等,所以在正多边形中,只要知道一个角的度数,就能知道所有角的度数,包括每一个外角的度数.知道一边的长度,就能知道每一边的长度.因此它的应用主要包括两个方面:(1)已知内角(或外角)能求边数、内角和;已知边数能求每一个外角(或内角)的度数及内角和,即在内角和、边数、内角度数、外角度数四个量中知道一个量就能求出其他三个量.(2)因为正多边形每一条边都相等,所以知道周长能求边长,知道边长能求周长(因较简单所以考查较少).解技巧利用方程思想求多边形的边数正多边形中已知一个内角的度数求边数时,一是将内角根据“同顶点的内、外角互补”转化为外角,再根据外角和是360°,由360°除以一个外角的度数得到边数;二是根据内角和公式和每个角度数都相等列方程解出边数n.【例7-1】若八边形的每个内角都相等,则其每个内角的度数是__________.解析:由多边形内角和定理知,八边形的内角和是1 080°,每个内角都相等,所以1 080°÷8=135°.答案:135°【例7-2】 一个多边形的每一个外角都等于30°,这个多边形的边数是__________,它的内角和是__________.解析:多边形的外角和是360°,每个外角都是30°,所以360°÷30°=12,所以该多边形是十二边形,内角和是1 800°,本题也可根据共顶点的内、外角互补,求出内角和.答案:12 1 800°【例7-3】 一个多边形的每一个内角都等于144°,求这个多边形的边数.分析:方法一:可设这个多边形的边数为n ,那么内角和就是(n -2)×180°,因为每一个内角都是144°,所以内角和为144°×n ,根据“表示同一个量的两个式子相等”列方程解出;方法二:因为每一个内角都等于144°,所以每一个外角都是36°.根据多边形外角和为360°,用360°÷36°=10,也可以得出这个多边形为十边形.解:设这个多边形的边数为n ,则(n -2)×180°=n ×144°,解得n =10.答:这个多边形的边数为10.8.边数、顶点数、内角和、对角线条数之间关系的综合应用在多边形问题中,当多边形的边数n 一定时,不论多边形形状如何,多边形的内角和也是一定的,是(n -2)×180°,多边形对角线的条数也是一定的,是n (n -3)2,并且从一个顶点引出的对角线的条数也是一定的,是(n -3)条,所以在多边形问题中,在这些量中,只要知道其中一个量,就可以求出所有的量.在多边形问题的综合应用中,一般是边数、对角线的条数、内角和之间的关系应用较多,有时还与正多边形知识相结合.因知识限制,一般是给出内角和,求边数或对角线条数题目较多,如:已知一个多边形内角和是 1 080°,它有几条对角线?根据内角和公式列方程,(n -2)×180=1 080求出边数,再根据对角线公式求出对角线条数.【例8-1】 过n 边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是( ).A .8B .9C .10D .11解析:过多边形一个顶点的所有对角线将一个多边形分成(n -2)个三角形,所以n -2=8,解得n =10,即这个多边形是十边形,故选C.答案:C【例8-2】 多边形的每一个内角都是150°,则此多边形的一个顶点引出的对角线的条数是( ).A .7B .8C .9D .10解析:根据每一个内角都是150°,求出这个多边形是十二边形,它的一个顶点引出的对角线的条数是n -3=12-3=9,故选C.答案:C【例8-3】 一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的内角和. 分析:设边数为n ,根据对角线的条数是边数的4倍,列方程求出边数,再代入多边形内角和公式求出内角和.解:设这个多边形的边数为n ,根据题意,得n (n -3)2=4n ,解得n =11,所以这个多边形的内角和为:(n -2)×180°=(11-2)×180°=1 620°.在多边形问题中,有一类问题是将多边形截去一个角后,探讨多边形边数变化和内角和变化的问题.在这类问题中,因截法不同,会出现不同的变化,现以四边形为例加以说明.如图所示,将正方形的桌面截去一个角,那么余下的多边形的内角和度数将怎样变化?因截法有三种情况,所以内角和也就有三种情况:(1)当是图①所示情况时,不过任何一个顶点,四边形变为五边形,边数增加1,所以内角和为540°.(2)当是图②所示情况时,过一个顶点,四边形边数不变,所以内角和也不变,为360°.(3)当是图③所示情况时,过两个顶点,四边形变为三角形,边数减少1,所以内角和也变为180°.析规律分类解决问题 对于其他多边形(三角形除外,因为三角形只有两种情况)也有这样的三种情况,并且截法相同,解法也相同.【例9-1】 一个多边形截去一个角后,变为十六边形,则原来的多边形的边数为( ).A.15或17 B.16或17C.16或18 D.15或16或17解析:因截法不同,所以有三种可能,①当不过任何一个顶点时,截完后边数会增加1,因此原来多边形应为十五边形;②当过一个顶点时,截完后边数不变,所以这种情况下原来的多边形为十六边形;③当过两个顶点时,边数比原来减少1,所以原来就是十七边形,所以原来的多边形的边数为15或16或17,故选D.答案:D【例9-2】一个多边形截去一个角(截线不过顶点)之后,所形成的一个多边形的内角和是2 520°,那么原多边形的边数是( ).A.13 B.15 C.17 D.19解析:一个多边形截去一个角,因截线不过任何顶点,所以新得到的多边形边数比原来的多边形的边数应该增加1.因为新得到的多边形内角和是2 520°,根据多边形内角和公式列方程得(n-2)×180°=2 520°,解得n=16,新多边形为十六边形,所以原多边形为十五边形,故选B.答案:B【例9-3】如果一个多边形的边数增加一倍,它的内角和是2 880°,那么原来的多边形的边数是( ).A.10 B.9 C.8 D.7解析:现在的多边形的内角和是 2 880°,根据多边形内角和公式(n-2)×180°=2 880°,求出n=18,所以原来的多边形的边数就是18÷2=9,因此是九边形,故选B.答案:B因为多边形的边数只能是整数,由多边形内角和公式(n-2)×180°可知,n-2是正整数,所以多边形的内角和必定是180°的整数倍,因此:①当所给内角和是多计算一个角的情况时,用所给内角和除以180°,因为多加的角大于0°小于180°,所以得到的余数部分就是多加角的度数,得到的整数部分加2就是边数;②当所给内角和是少计算一个角的情况时,因为少加了角,所以得到的整数部分加2比实际的角个数少1,所以用所给内角和除以180°,整数部分加3才是边数,180°减余数部分就是少加的角的度数.破疑点多边形内角和与边数的关系内角和除以180°所得到的整数并不是边数(或角的个数)n,而是n-2的值,所以得到的整数加2才是边数,这是易错点,要注意.word【例10-1】一个多边形除了一个内角之外,其余内角之和为2 670°,求这个多边形的边数和少加的内角的大小.分析:因为这个多边形的内角和少加了一个内角,所以内角和实际要大于2 670°,并且加上这个角后就是180°的整数倍,2 670°÷180°=14……150°,所以n-2=14,n =16,因少加一个角,所以实际有16+1=17个角,所以边数是17条,少加的内角是180°-150°=30°.解:因为2 670°÷180°=14……150°,所以n-2=14+1,n=17.所以这个多边形的边数是17.少加的内角是180°-150°=30°.【例10-2】若多边形所有内角与它的一个外角的和为600°,求这个多边形的边数及内角和.分析:由已知可知,600°是多加了一个外角后的内角和,减去多加的角就应是180°的整数倍,因此600°÷180°=3……60°,因此n-2=3,所以n=5,这个多边形为五边形,边数是5,代入多边形内角和公式即可求出内角和.因为多加了一个角,并且多加的角是余数60°,也可以用600°减去余数(60°)得到内角和度数.解:由题意,得600°÷180°=3……60°,所以n-2=3,n=5.所以这个多边形的边数是5.所以这个多边形的内角和为:180°×(5-2)=540°.答:这个多边形的边数是5,内角和是540°.11 / 11。
正多边形和圆ppt课件
D.60°或120°
随堂练习
2. 如图,点O是正五边形ABCDE的中心,求∠BAO的度数.
解:连接OB,则OB=OA,
∴∠BAO=∠ABO,
∵点O是正五边形ABCDE的中心,
∴∠AOB=360°÷5=72°,
∴∠BAO= (180°﹣72°)=54°.
随堂练习
3. 如图,已知等边△ABC内接于⊙O,BD为内接正十二边形的一边,
(3)正多边形每一边所对的圆心角叫做正多边形的中心角.
(4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.
知识讲解
知识点1 正多边形及有关概念
【例1】矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?
解析:矩形不是正多边形,因为矩形不符合各边相
等;菱形不是正多边形,因为菱形不符合各角相等.
显然,A、E、F(或C、B、D)是⊙O的3等分点.
知识讲解
知识点3 正多边形的画法
②正六、三、十二边形的作法.
同样,在图(3)中平分每条边所对的弧,就可把⊙O 12等分…….
知识讲解
知识点3 正多边形的画法
【例 4】如图,已知半径为R的⊙O,用多种工具、多种方法作出圆内
接正三角形.
点拨:【度量法】用量角器量出圆心角是120度
而作出正四边形. 再逐次平分各边所对的弧就可作出正八边形、正十六
边形等,边数逐次倍增的正多边形.
知识讲解
知识点3 正多边形的画法
②正六、三、十二边形的作法.
通过简单计算可知,正六边形的边长与其半径相等,所以,在⊙O中,
任画一条直径AB, 分别以A、 B为圆心,以⊙O的半径为半径画弧与⊙O
相交于C、D和E、F,则A、C、E、B、F、D是⊙O的6等分点.
html5canvas绘图-多边形的绘制
html5canvas绘图-多边形的绘制现在,我们已经将CANVAS绘图环境对象所⽀持的全部基本图形都讲完了。
它们包括:线段、矩形、圆弧、圆形以及贝塞尔曲线。
但是,我们肯定需要在canvas之中绘制除此之外的其他图形,⽐⽅说,三⾓形、六边形和⼋边形。
在本节中,你将会学到如下图所⽰的应⽤程序,对任意对变形进⾏描边及填充。
使⽤moveTo()与lineTo()⽅法,再结合⼀些简单的三⾓函数,就可以绘制出任意边数的多边形。
html代码:1<html>2<head>3<title>Drawing Polygons</title>45<style>6 body {7 background: #eeeeee;8 }910 #controls {11 position: absolute;12 left: 25px;13 top: 25px;14 }1516 #canvas {17 background: #ffffff;18 cursor: pointer;19 margin-left: 10px;20 margin-top: 10px;21 -webkit-box-shadow: 4px 4px 8px rgba(0,0,0,0.5);22 -moz-box-shadow: 4px 4px 8px rgba(0,0,0,0.5);23 box-shadow: 4px 4px 8px rgba(0,0,0,0.5);24 }25</style>26</head>2728<body>29<canvas id='canvas' width='850' height='600'>30 Canvas not supported31</canvas>3233<div id='controls'>34 Stroke color: <select id='strokeStyleSelect'>35<option value='red'>red</option>36<option value='green'>green</option>37<option value='blue'>blue</option>38<option value='orange'>orange</option>39<option value='cornflowerblue' selected>cornflowerblue</option>40<option value='goldenrod'>goldenrod</option>41<option value='navy'>navy</option>42<option value='purple'>purple</option>43</select>4445 Fill color: <select id='fillStyleSelect'>46<option value='rgba(255,0,0,0.5)'>semi-transparent red</option>47<option value='green'>green</option>48<option value='rgba(0,0,255,0.5)'>semi-transparent blue</option>49<option value='orange'>orange</option>50<option value='rgba(100,140,230,0.5)'>semi-transparent cornflowerblue</option>51<option value='goldenrod' selected>goldenrod</option>52<option value='navy'>navy</option>53<option value='purple'>purple</option>54</select>5556 Sides: <select id='sidesSelect'>57<option value=4 select>4</option>58<option value=6>6</option>59<option value=8>8</option>60<option value=10>10</option>61<option value=12>12</option>62<option value=20>20</option>63</select>6465 Start angle: <select id='startAngleSelect'>66<option value=0 select>0</option>67<option value=22.5>22.5</option>68<option value=45>45</option>69<option value=67.5>67.5</option>70<option value=90>90</option>71</select>7273 Fill <input id='fillCheckbox' type='checkbox' checked/>74<input id='eraseAllButton' type='button' value='Erase all'/>75</div>7677<script src = 'example.js'></script>78</body>79</html>example.js代码:1var canvas = document.getElementById('canvas'),2 context = canvas.getContext('2d'),3 eraseAllButton = document.getElementById('eraseAllButton'),4 strokeStyleSelect = document.getElementById('strokeStyleSelect'),5 startAngleSelect = document.getElementById('startAngleSelect'), 67 fillStyleSelect = document.getElementById('fillStyleSelect'),8 fillCheckbox = document.getElementById('fillCheckbox'),910 sidesSelect = document.getElementById('sidesSelect'),1112 drawingSurfaceImageData,1314 mousedown = {},15 rubberbandRect = {},16 dragging = false,1718 sides = 8,19 startAngle = 0,2021 guidewires = true,2223 Point = function (x, y) {24this.x = x;25this.y = y;26 };272829// Functions.....................................................3031function drawGrid(color, stepx, stepy) {32 context.save()3334 context.strokeStyle = color;35 context.fillStyle = '#ffffff';36 context.lineWidth = 0.5;37 context.fillRect(0, 0, context.canvas.width, context.canvas.height); 3839for (var i = stepx + 0.5; i < context.canvas.width; i += stepx) {40 context.beginPath();41 context.moveTo(i, 0);42 context.lineTo(i, context.canvas.height);43 context.stroke();44 }4546for (var i = stepy + 0.5; i < context.canvas.height; i += stepy) {47 context.beginPath();48 context.moveTo(0, i);49 context.lineTo(context.canvas.width, i);50 context.stroke();51 }5253 context.restore();54 }5556function windowToCanvas(e) {57var x = e.x || e.clientX,58 y = e.y || e.clientY,59 bbox = canvas.getBoundingClientRect();6061return { x: x - bbox.left * (canvas.width / bbox.width),62 y: y - bbox.top * (canvas.height / bbox.height)63 };64 }6566// Save and restore drawing surface..............................6768function saveDrawingSurface() {69 drawingSurfaceImageData = context.getImageData(0, 0,70 canvas.width,71 canvas.height);72 }7374function restoreDrawingSurface() {75 context.putImageData(drawingSurfaceImageData, 0, 0);76 }7778// Rubberbands...................................................7980function updateRubberbandRectangle(loc) {81 rubberbandRect.width = Math.abs(loc.x - mousedown.x);82 rubberbandRect.height = Math.abs(loc.y - mousedown.y);8384if (loc.x > mousedown.x) rubberbandRect.left = mousedown.x;85else rubberbandRect.left = loc.x;8687if (loc.y > mousedown.y) rubberbandRect.top = mousedown.y;88else rubberbandRect.top = loc.y;89 }9091function getPolygonPoints(centerX, centerY, radius, sides, startAngle) {92var points = [],93 angle = startAngle || 0;9495for (var i=0; i < sides; ++i) {96 points.push(new Point(centerX + radius * Math.sin(angle),97 centerY - radius * Math.cos(angle)));98 angle += 2*Math.PI/sides;99 }100101return points;102 }103104function createPolygonPath(centerX, centerY, radius, sides, startAngle) { 105var points = getPolygonPoints(centerX, centerY, radius, sides, startAngle); 106107 context.beginPath();108109 context.moveTo(points[0].x, points[0].y);110111for (var i=1; i < sides; ++i) {112 context.lineTo(points[i].x, points[i].y);113 }114115 context.closePath();116 }117118function drawRubberbandShape(loc, sides, startAngle) {119 createPolygonPath(mousedown.x, mousedown.y,120 rubberbandRect.width,121 parseInt(sidesSelect.value),122 (Math.PI / 180) * parseInt(startAngleSelect.value));123 context.stroke();124125if (fillCheckbox.checked) {126 context.fill();127 }128 }129130function updateRubberband(loc, sides, startAngle) {131 updateRubberbandRectangle(loc);132 drawRubberbandShape(loc, sides, startAngle);133 }134135// Guidewires....................................................136137function drawHorizontalLine (y) {138 context.beginPath();139 context.moveTo(0,y+0.5);140 context.lineTo(context.canvas.width,y+0.5);141 context.stroke();142 }143144function drawVerticalLine (x) {145 context.beginPath();146 context.moveTo(x+0.5,0);147 context.lineTo(x+0.5,context.canvas.height);148 context.stroke();149 }150151function drawGuidewires(x, y) {152 context.save();153 context.strokeStyle = 'rgba(0,0,230,0.4)';154 context.lineWidth = 0.5;155 drawVerticalLine(x);156 drawHorizontalLine(y);157 context.restore();158 }159160// Event handlers................................................161162 canvas.onmousedown = function (e) {163var loc = windowToCanvas(e);164165 saveDrawingSurface();166167 e.preventDefault(); // prevent cursor change168169 saveDrawingSurface();170 mousedown.x = loc.x;171 mousedown.y = loc.y;172 dragging = true;173 };174175 canvas.onmousemove = function (e) {176var loc;177178if (dragging) {179 e.preventDefault(); // prevent selections180181 loc = windowToCanvas(e);182 restoreDrawingSurface();183 updateRubberband(loc, sides, startAngle);184185if (guidewires) {186 drawGuidewires(mousedown.x, mousedown.y);187 }188 }189 };190191 canvas.onmouseup = function (e) {192var loc = windowToCanvas(e);193 dragging = false;194 restoreDrawingSurface();195 updateRubberband(loc);196 };197198 eraseAllButton.onclick = function (e) {199 context.clearRect(0, 0, canvas.width, canvas.height);200 drawGrid('lightgray', 10, 10);201 saveDrawingSurface();202 };203204 strokeStyleSelect.onchange = function (e) {205 context.strokeStyle = strokeStyleSelect.value;206 };207208 fillStyleSelect.onchange = function (e) {209 context.fillStyle = fillStyleSelect.value;210 };211212// Initialization................................................213214 context.strokeStyle = strokeStyleSelect.value;215 context.fillStyle = fillStyleSelect.value;216 drawGrid('lightgray', 10, 10);上述程序清单中的代码⾸先获取了指向canvas绘图环境对象的引⽤,并且定义了⼀个名为point的对象。
多边形边角关系
(三角形的“五心三线段” {多边形的概念与性质 [多边形的镶嵌、\prepare1. 判断:三角形的高是一条直线.( )2. 判断:三角形的三条高必交一点.( )3. 判断:所有内角都相等的多边形是正多边形.()4.正六边形的一个内角等于度.【解析】错,错,错,120. 删叶卄“五心”(1)三角形的“三线段”指的是三角形的角平分线.中线、高.⑵三角形的“五心”指的是三角形的内心、重心、垂心、外心、旁心.①三角形的三条角平分线的交点叫做内心.② 三角形的三条中线的交点叫做重心.③ 三角形的三条高所在的直线的交点叫做垂心.④ 三角形的三条边的中垂线的交点叫做外心.⑤ 三角形的任意两个外角的外角平分线和第三个内角平分线的交点叫做旁心.(虽然课本没有, 但中考中出现了很多与旁心相关的题)锐角三角形的内心直角三角形的内心 钝角三角形的内心 三角形内切岡的恻心锐角三角形的重心直角三角形的重心 钝角三角形的重心【例1】⑴如图1, 30平分Z4BC, ⑵如图2, BO 平分ZABC, ⑶如图3, BO 平分乙CBD , CO 平分ZACD,写出ZA 与ZO 之间的等童关系.CO 平分ZACB,写出ZA 与上O 之间的等童关系. CO 平分ZBCE,写出ZA 与ZO 之间的等量关系.角平分线 中线 高钝角三角形的垂心说角三角形的垂心直角三角形的垂心 钝角三角形的外心Z0+Z1+22 = 180°ZA+(180°- 2Z1) + (180° - 2Z2) =180° 【变式】如下图,ZAEB=ZCEB, ZADB=ZCDB,写出ZA, ZB, ZC 之间的等童关系.【解析】用上一讲的结论:■乙2 3 4,.・.2Z5=ZA +ZC . ZC=Z1+Z2 + ZB【例2】已知BD 、CE 是A4BC 的两条高,直线BD 、CE 交于点O,且D.E.A.O 互不重合,ZBOC = a, 请用a^ZBAC的度数.【解析】1•锐角三角形的情形:ZBAC = lSO°-a.二、Z4为钝角三角形的锐角,如图:ZBAC = a.2 直角三角形不符合的情形;3 钝角三角形的情形:一、ZA 为钝角三角形的钝角,如图:ZBAC = lSO°-a.【解析】(D由外角定理: 2Z1+ZA = 2Z2 Z1 + ZO=Z2 ,・・・ZO =丄乙4.由三角形内角和定理:2Z1 + 2Z2+ZA = 18O° Z1+Z2+ZO = 180°,・・・込9。
(初二数学课件)人教版初中八年级数学上册第11章三角形11.3.1 多边形教学课件
……
三角形 四边形 五边形 六边形 八边形
多边形
三角形 四边形 五边形 六边形 八边形 n边形
从同一顶点引出
的对角线的条数 0
1
2
3
5 n-3
分割出的三角形
的个数
1
2
3
4
6 n-2
探究新知
11.3 多边形及其内角和/
归纳总结
从n(n≥3)Leabharlann 形的一个顶点可以作出(n-3)条对角线. 将多边形分成(n-2)个三角形.
n(n≥3)边形共有对角线 n(n 3) 条.
2
探究新知
11.3 多边形及其内角和/
素养考点 2 利用多边形的对角线相关公式求边数
例2 过多边形的一个顶点的所有对角线的条数与这些对 角线分该多边形所得三角形的个数的和为21,求这个多 边形的边数.
解:设这个多边形为n边形,则有(n-3)条对角线,所 分得的三角形个数为n-2,
组成的图形叫做三角形.
问题2: 观察画某多边形的过程,类比三角形的概念,你 能说出什么是多边形吗?
在平面内,由一些线段首尾 顺次相接组成的封闭图形叫 做多边形.
探究新知
11.3 多边形及其内角和/
【思考】 比较多边形的定义与三角形的定义,为什 么要强调“在平面内”呢?怎样命名多边形呢?
这是因为三角形中的三个顶点肯定都在同一个平面内, 而四点,五点,甚至更多的点就有可能不在同一个平面内.
H
如图(1)这样,画出多边形的任何一条边所在的直线, 整个多边形都在这条直线的同一侧,那么这个多边形就是凸多 边形.
探究新知
11.3 多边形及其内角和/
素养考点 1 多边形的截角问题
例1 凸六边形纸片剪去一个角后,得到的多边形的边
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.画多边形
【教学目标与要求】
1.学习“多边形”工具的使用方法。
2.能运用“多边形”工具画多边形。
3.体验使用“多边形”工具进行绘图创作的过程。
4.运用所学知识,创作出具有创意性的作品,体会工具的用途。
【教学重点与难点】
重点:“多边形”工具的使用方法。
难点:“多边形”工具与“椭圆”“矩形”等工具的组合使用。
【教学方法与手段】
本课让学生带着任务探究、尝试,在具体的获取信息、处理信息的过程中锻炼其发现问题、解决问题的能力。
【课时安排】
安排1课时。
【教学准备】
多媒体教学网、练习文件、课件。
教学反思:。