负载敏感变量泵中负载敏感阀的设计与分析

合集下载

负载敏感多路阀的工作原理

负载敏感多路阀的工作原理

负载敏感多路阀的工作原理
负载敏感多路阀是一种用于控制液压系统的阀门,它能够根据负载的变化实时调整流量和压力。

下面是负载敏感多路阀的工作原理:
1. 压力传感器:负载敏感多路阀通常配备有压力传感器。

压力传感器会实时监测系统中的液压压力变化。

2. 液压流量调节:负载敏感多路阀根据压力传感器的反馈信号来调节系统中的液压流量。

当系统中的负载增加时,压力传感器会检测到压力的变化并将这一信号传递给阀门。

3. 比例阀控制:根据压力传感器的反馈信号,负载敏感多路阀中的比例阀会自动调整阀门的开度。

比例阀的开度变化会影响液压系统中的液压流量和压力。

4. 系统调节:当负载增加时,阀门会自动打开以增加液压流量和压力,从而满足系统的需求。

当负载减少时,阀门会自动关闭以减少流量和压力。

总的来说,负载敏感多路阀通过压力传感器检测系统中的液压压力变化,并根据这些变化自动调节阀门的开度,从而实现对液压流量和压力的控制。

这种阀门能够根据系统的需求实时调整工作参数,提高系统的效率和性能。

(完整版)负载敏感

(完整版)负载敏感

一、负载敏感和压力补偿概念(一)负载敏感(Load Sensing)和压力补偿(Pressure Compensation)是60年代提出的液压传动和控制的新概念。

以往液压系统在使用操纵过程中,存在着以下需解决的问题:1.节能要求,适应负载变化提供负载所需要的液压功率(流量和压力),尽量减少流量和压力损失,将节流调速改变为以容积调速为主,特别按负载需要提供负载所需的流量。

2.操纵阀调速控制时,调速受负载压力变化和油泵流量变化的影响,难以操纵控制。

3.单泵供多执行器:当多执行器同时动作时,要求相互不干涉,能够操纵各执行器按所需流量供油。

合理地分配流量,实现理想复合动作。

4. 液压泵和原动机的匹配问题,能充分利用原动机的功率,保持在发动机最大功率点工作,同时能防止发动机熄火,为了减少能耗节能,要求液压泵和发动机在联合工作最经济点上工作。

为了解决以上问题,60年代提出液压传动控制新概念—负载敏感和压力补偿。

目前液压传动仍存在问题有待解决。

例如液压传动遵循帕斯卡原理,一个泵供多个执行器时,系统压力由克服各负载中所需最大压力来确定,因此供给负载较低的执行器时必然存在压力损失。

目前人们正在研究采用电路中变压器这类东西,来解决这个问题。

(二)负载敏感和压力补偿的定义:负载敏感是一个系统概念,因此应称为负载敏感系统,可把它看作是一个意义广泛的名词。

(即广义的负载敏感和压力补偿)。

负载敏感通过感应检测出负载压力,流量和功率变化信号,向液压系统进行反馈,实现节能控制、流量和调速控制、恒力矩控制、力矩限制、恒功率控制、功率限制、转速限制、同时动作和与原动机动力匹配等控制的总称。

负载敏感系统所采用的控制方式包括液压控制和电子控制。

从负载敏感系统的液压元件来看可分:负载敏感阀:将压力、流量和功率变化信号,向阀进行反馈,实现控制功能的阀。

负载敏感泵:将压力、流量和功率变化信号,向泵进行反馈,实现控制功能的泵和马达。

负载敏感系统可降低液压系统能耗,提高机械生产率,改善系统可控性,降低系统油温,延长液压系统寿命。

负载敏感阀讲解及应用案例

负载敏感阀讲解及应用案例
8
负载传感控制原理二
9
负载传感控制原理三
M4 /SB 多路阀 FR DR
A10VO 31
X - port 负荷传感 FR 压力截断 DR
10
负载传感控制原理四 LRDS
Dp
M4, M7 多路阀
orifice
负荷传感FR (el. / hydr. remote control) 压力截断DR 功率调节LR (el./hydr. remote control)
M4-22 Size
20
压力流量恒功率控制A10VO系列
21
11
流量分配控制
负荷敏感多路阀在流量不饱和状态下,流量的分配会受执行机构的负荷影响,大负 荷的执行机构将降低速度,甚至停止运动。这样,执行机构的运动将不能与指令信 号同步,系统操控性差。 为了改善阀的操控性能,我们改变阀的压力补偿方式,形成了与压力无关的流量分 配阀。
12
流量分配控制原理
13
负载敏感阀M4阀体结构
Pilot Valves
(interchangeable)
w/ Deutsch or AMP
Connector
Shock / Anti Cav.Valve
Pilot Cover B w/ Stroke Limiter
LS-Pressure Relief Valves (A/B)
LS-Check Valve
Inlet Elements
Closed Center midinlet
with Priority
Closed Center mid-inlet
End Cover standard w/ power beyond
14
力士乐敏感阀M4工作联结构

负载敏感多路阀工作原理

负载敏感多路阀工作原理

负载敏感多路阀工作原理负载敏感多路阀(Load Sensitive Multiple Valve)是一种常见的液压传动元件,它可以根据系统的负载情况自动调节液压流量和压力。

它主要应用于液压系统中,可以有效地控制和调节工作装置的运动速度,提高系统的工作效率。

负载敏感多路阀的工作原理是基于流量和压力的反馈控制。

它由多个节点和一个控制器组成。

每个节点都有一个单向或双向阀门,用于控制液压流量和压力。

控制器通过感知系统的负载情况,通过调节阀门的开关状态,以达到控制液压流量和压力的目的。

当负载敏感多路阀工作时,首先需要测量系统的负载情况。

这可以通过安装传感器来实现,传感器可以测量液体的流速、压力和温度等参数。

这些数据将传输给控制器,控制器将分析这些数据并根据负载情况做出相应的调节。

根据系统的负载情况,控制器会判断是否需要增加或减少液压流量。

当系统负载较小时,控制器会适当地增加阀门的开度,以增加液压流量。

当系统负载较大时,控制器会相应地减少阀门的开度,以减少液压流量。

这样,就可以在不同的负载情况下保持适当的液压流量,以达到最佳工作状态。

另外,负载敏感多路阀还可以自动调节液压压力。

在系统负载较小的情况下,控制器会增加阀门的压力限制,以增加液压压力。

而在系统负载较大的情况下,控制器会减小阀门的压力限制,以减少液压压力。

这样,就可以在不同的负载情况下保持适当的液压压力,以确保系统的安全和稳定运行。

负载敏感多路阀还可以通过组合和联动控制多个阀门,以实现更复杂的液压系统控制。

通过调节不同阀门的开关状态和流量限制,可以精确控制工作装置的运动速度和位置。

总之,负载敏感多路阀通过感知系统的负载情况,自动调节液压流量和压力,从而提高液压系统的工作效率。

它是现代液压系统中不可或缺的重要元件,广泛应用于工程机械、农业机械、船舶等领域。

随着科技的不断进步,负载敏感多路阀将进一步发展和应用,为更多行业带来更高效、更安全的液压系统。

在现代工程领域,负载敏感多路阀扮演着举足轻重的角色。

负载敏感液压系统典型工况原理分析

负载敏感液压系统典型工况原理分析

负载敏感液压系统典型工况原理分析作者:李现友来源:《价值工程》2013年第26期摘要:重点讲述了负载敏感系统的基本结构,包括负载敏感泵及匹配元件。

详细分析了系统待机状态,压力自适应变化,流量按需分配及过载安全保护的四个典型工作工况及负载敏感系统中存在的流量欠饱和现象及处理方案。

Abstract: The structure of load sensing hydraulic system was described,including the load sensing pump and matched element. Four typical working conditions were analyzed, that including standby model, adaptive changes in pressure, flow distribution according to need and overload protection. The solution of under saturated flow in load sensing hydraulic system was presented.关键词:负载敏感技术;变量泵;流量分配;压力最适应Key words: loading sensing technology;variable pump;flow distribution;adaptive changes in pressure中图分类号:TH137 文献标识码:A 文章编号:1006-4311(2013)26-0051-020 引言液压控制技术所具有的优势使其在各个领域得到了广泛应用,但其在应用过程中为了满足控制需求必然存在节流、溢流、减压等工况,这种工况会使工作过程的效率降低、能耗变大。

如果系统在运行中存在执行机构需要多少流量、压力液压泵就能提供多大的流量、压力,而不存在溢流、节流、减压的损失,真正达到“按需供给”,那么将大大改善液压控制技术的效率问题。

负载敏感多路阀工作原理

负载敏感多路阀工作原理

负载敏感多路阀工作原理负载敏感多路阀(Load Sensitive Multiport Valve)是一种可以根据负载变化自动调节流量的阀门。

它在液压系统中具有重要作用,可以有效地平衡流体的压力,降低系统的能量消耗,提高系统的响应速度和稳定性。

负载敏感多路阀由阀体、阀芯、弹簧、调节阀、负载敏感元件等组成。

当液压系统中有负载变化时,负载敏感元件会感知负载的变化,并通过调节阀控制阀芯的移动,进而改变液压系统的流量。

具体工作原理如下:当液压系统中没有负载作用时,阀芯处于初始位置,流体通过阀体的中心通道直接流过,不受阀芯控制,流量较大。

同时,弹簧的压力将阀芯保持在初始位置。

当液压系统中有负载作用时,负载敏感元件会感知到负载的变化。

如果负载增加,负载敏感元件会发出信号,通过调节阀补充液压系统中的压力。

增加液压系统中的压力可以推动阀芯的运动。

阀芯的运动会改变阀体中通道的截面积,从而改变液体的流量。

负载敏感多路阀会根据负载的变化,自动调整阀芯的位置,控制液体的流量。

当液压系统中的负载减少时,负载敏感元件会感知到负载的变化,并通过调节阀降低液压系统中的压力。

降低压力可以使阀芯回到初始位置,恢复到较大的流量状态。

通过以上工作原理,负载敏感多路阀可以根据负载的变化自动调节流量,从而使液压系统能够更好地适应实际的工作状态。

它可以实时监测负载的变化,并迅速响应,及时调整流量,平衡系统的压力,提高系统的工作效率和稳定性。

负载敏感多路阀在液压系统中的应用非常广泛。

例如,在挖掘机、起重机、农机等大型设备中,负载敏感多路阀可以根据负载变化,精确控制液压系统的流量,从而实现平稳的工作,减少能量消耗,延长设备的使用寿命。

负载敏感多路阀的工作原理简单而可靠,它通过监测负载的变化,自动调节流量,提高了液压系统的工作效率和稳定性。

同时,它还可以降低系统的能源消耗,节约成本。

因此,负载敏感多路阀在液压系统中具有重要作用,为现代工程机械的发展提供了有力的支撑。

负载敏感阀讲解及应用案例

负载敏感阀讲解及应用案例
力士乐负载敏感阀种类
gpm l/min
100 400
48 35
180 130
16
60 SP08 M4-12 M4-15-2x M4-22 Size
20

Beijing Road-Hydraulic System Technology Co.,Ltd.
压力流量恒功率控制A10VO系列
21
Beijing Road-Hydraulic System Technology Co.,Ltd.
谢谢大家!
22
负载传感控制原理三
X - port M4 /SB 多路阀 负荷传感 FR
FR
DR 压力截断 DR
A10VO 31
10
Beijing Road-Hydraulic System Technology Co.,Ltd.
负载传感控制原理四
LRDS
orifice
Dp
M4, M7 多路阀
负荷传感FR (el. / hydr. remote control) 压力截断DR 功率调节LR (el./hydr. remote control)
12
Beijing Road-Hydraulic System Technology Co.,Ltd.
流量分配控制原理
13
Beijing Road-Hydraulic System Technology Co.,Ltd.
负载敏感阀M4阀体结构
End Cover standard int.
pilot oil supply


✔ ✔ ✔ ✔
✔ ✔
✔ ✔ ✔


Worldwide Service

《负载敏感多路阀结构优化设计》范文

《负载敏感多路阀结构优化设计》范文

《负载敏感多路阀结构优化设计》篇一一、引言随着现代工业技术的快速发展,负载敏感多路阀在各种机械设备中扮演着越来越重要的角色。

负载敏感多路阀是一种能够根据系统负载变化自动调节流量和压力的液压控制元件,其性能的优劣直接影响到整个机械系统的运行效率和稳定性。

因此,对负载敏感多路阀的结构进行优化设计,提高其性能,具有非常重要的现实意义。

本文旨在探讨负载敏感多路阀的结构优化设计,以期为相关研究和应用提供参考。

二、负载敏感多路阀的基本结构与工作原理负载敏感多路阀主要由阀体、阀芯、弹簧、液压控制装置等部分组成。

其工作原理是通过液压控制装置感知系统负载的变化,进而调节阀芯的位置,改变流体在阀体内的流通路径和流量,以实现系统压力和流量的自动调节。

三、结构优化设计的必要性随着机械设备向高效率、高精度、高可靠性方向发展,对负载敏感多路阀的性能要求也越来越高。

然而,现有的一些负载敏感多路阀在结构上存在一些问题,如流体流通不畅、压力调节不精确、易磨损等,这些问题严重影响了阀的性能和使用寿命。

因此,对负载敏感多路阀的结构进行优化设计,提高其性能和使用寿命,成为当前研究的热点。

四、结构优化设计的措施1. 优化阀体结构:通过改进阀体的流道设计,使流体在阀体内的流通更加顺畅,减少流阻,提高流体的流通效率。

2. 优化阀芯设计:采用先进的材料和制造工艺,提高阀芯的耐磨性和抗腐蚀性,延长其使用寿命。

同时,优化阀芯的形状和尺寸,使其更符合流体动力学原理,提高调节精度。

3. 优化液压控制装置:改进液压控制装置的感知和调节功能,使其能够更准确地感知系统负载的变化,并快速、准确地调节阀芯的位置和流量。

4. 引入智能化设计:将智能化技术引入负载敏感多路阀的设计中,如引入传感器、控制器等,实现阀的自动化控制和故障诊断,提高系统的可靠性和维护便利性。

五、优化设计后的性能分析经过上述优化设计后,负载敏感多路阀的性能得到了显著提高。

具体表现在以下几个方面:1. 流体流通效率提高:优化阀体和阀芯结构后,流体在阀体内的流通更加顺畅,流阻减小,提高了流体的流通效率。

负载敏感液压系统典型工况原理分析

负载敏感液压系统典型工况原理分析
阀 弹 簧压 力 时 ,通 过 5负 载 敏 感 阀进 入 7大 腔 活 塞 无 杆
② 负载敏感系统将溢流损失 降至 为零 , 但还存在节流
2 . 2压 力 自 ‘ 适 应 变化 压 力 自适 应 变 化 是 指 系 统 可 以 损失 , 并且 负载压力相 差越大 , 节流损失 能耗越严重。 根 据 负载 的大 小 变化 , 总 能 自动 的提 供 比最 大 负载 所 需压 ③负载运行 的压力越接近设定工作压力 , 其效率越高。 力 高 出某 一 近 似 定 值 的 压 力 。
新 的平 衡 状 态 ,此 时 的 压 力 升 高 以 满 足 最 高 负 载 的要
求 。但 无 论 对 于 左 位 负 载 还 是 右 位 负 载 根 据 流 量 公 式 O : C A A P  ̄ 可 知 其 流 量 并 未 发 生 改 变。 因为 总要 满足 最 高 负载 压 力 的 需 求 ,所 以随 着 左 位负载的增加 , P 一 P 的 差 值 也 随 之增 加 ,即 左 位 负载 的 节 流 损 失 急剧 增 加 。 所 以 多 负载 工 作 的负 载 敏 感 系统 工作
减 小 。5负 载 敏 感 阀 阀 芯平 衡 遭 到 破 坏 , 阀芯 左 移 , 7大 腔
活 塞 压 力 得 到 释放 , 从 而使 斜 盘 倾 角 变 大 , 流 量 变 大。 经 过
震荡 , 4压 力 补偿 阀和 5负 载敏 感 阀又 都 处 于 新 的 平 衡 状 态 。 此 时 的 流 量 满足 流 量 的需 求 。 2 . 4过 载 安 全 保 护 如 果 负 载 突 然增 大 ,此 时油 源 压
停机转为待机状态。 对于一般 的液压 系统此时的流量可以 联 负 载 的流 量 减 少 , 速 度 降低 甚 至 停 止 , 而低 压 负载 的 流 通 过 卸荷 阀卸 荷 , 对 于 低 压 系 统 短 时 间待 机 也 可 以 通 过 溢 量 不 会 发 生 变化 。这 就 不 能 实 现 工 程 上 的 复 合 动作 要 求 。 流 阀 溢流 。 为 了解决这一 问题力 士乐公司发明 了 L U D V系统 , 可以很

负载敏感多路阀数学建模及分析

负载敏感多路阀数学建模及分析
摘பைடு நூலகம்
2 2 1 0 0 4 ; 2 . 徐 州 重型 机械 有 限公 司 , 江苏 徐州
2 2 1 0 0 4 )
要: 该 文 以 阀前 补偿 负 载 敏感 多路 阀 为研 究 对象 , 系 统 的介 绍 了其 工 作 原 理 。建 立 了 阀前 补 偿 负 载 敏感 阀数 学 模 型及 方 块 图 。
阀芯左 腔 ,换 向阀进 口压 力 p 。 通 过反 馈油 道作 用 于补
偿 阀阀 芯右 腔 。负载 反馈 压力 、 换 向 阀进 口压力 和补偿 阀阀芯 弹 簧力 共 同作用 于 补偿 阀 阀芯 .调 整补 偿 阀 阀 芯位移 量 。 先导压 力 p 作用 于换 向 阀左/ 右腔 , 调整换
A B
由 于负 载 敏感 装 置 与变 量 泵 的变 量 调 节机 构 联 系 在一
文 献标 识 码 : A 文章编号 : 1 0 0 8 — 0 8 1 3 ( 2 0 1 3 ) 1 1 - 0 0 1 5 — 0 3
关键词 : 负载敏感多路阀 ; 阀前 补 偿 ; 数 学 模 型
中 图分 类 号 : T H1 3 7 . 1
Ma t h e ma t i c a l M o d e l i n g a nd Ana l y s i s o f Lo a d— — s e n s i t i v i t y M u l t i — — wa y Va l v e
O 引 言
目前 , 负 载 敏 感 多 路 阀凭 借 其 节 能 、 环保 、 适 应 性
强、 调 速 范 围广 、 可操作性强 。 同 时 又 能满 足 工 程 机 械
虽 然 负 载敏 感技 术 已经在 工 程 机械 液压 系统 上 的得 到

负载敏感多路阀原理

负载敏感多路阀原理

负载敏感多路阀原理引言:负载敏感多路阀(Load-Sensitive Multiple Orifice Valve)是一种在流体系统中广泛使用的控制元件,其原理基于负载敏感的特性,可以实现对流体流量的精确调节和分配。

本文将介绍负载敏感多路阀的原理、工作方式以及在实际应用中的优势。

一、负载敏感多路阀的原理负载敏感多路阀的原理基于流体在通过阀体时的压力差异,通过调节阀口的大小和数量,实现对流体流量的控制。

该阀在不同负载条件下能够自动调节阀口的开启程度,从而保持稳定的流量输出。

二、负载敏感多路阀的工作方式负载敏感多路阀由多个阀口组成,每个阀口都可以独立地控制流体的通断。

当系统中的负载增加时,流体通过阀体的压力降将增大,这会导致阀口自动调整以增加流量输出。

相反,当系统中的负载减少时,流体通过阀体的压力降将减小,阀口会自动调整以减少流量输出。

通过这种方式,负载敏感多路阀能够实时监测系统的负载情况,并自动调节流量以适应负载的变化。

三、负载敏感多路阀的优势1. 精确控制:负载敏感多路阀通过自动调节阀口的大小和数量,能够实现对流体流量的精确控制。

无论负载变化多大,都能够保持稳定的流量输出。

2. 高效能耗:负载敏感多路阀能够根据负载的变化自动调节流量,避免流体过量或不足的情况,从而提高能源利用效率。

3. 系统稳定:负载敏感多路阀能够实时监测系统的负载情况,并根据负载的变化调节流量,保持系统的稳定性和可靠性。

4. 安全可靠:负载敏感多路阀在设计上考虑了各种负载情况,并能够自动调节流量以适应负载的变化,确保系统的安全运行。

5. 适应性强:负载敏感多路阀可以根据不同的应用需求进行调整和配置,适用于各种流体系统,具有较强的通用性和适应性。

结论:负载敏感多路阀作为一种流体控制元件,在现代工业自动化系统中具有重要的应用价值。

其原理基于负载敏感的特性,通过调节阀口的大小和数量实现对流体流量的精确调节和分配。

负载敏感多路阀具有精确控制、高效能耗、系统稳定、安全可靠和适应性强等优势,能够满足不同流体系统的需求。

负载敏感变量泵的工作原理

负载敏感变量泵的工作原理

负载敏感变量泵的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
附图图是负载敏感变量泵的工作原理图,此原理图是最基本的LS型变量控制方式:泵出口压力是P,执行元件的负载压力是Pls。

泵输出的流量Q通过主阀节流口被引入到执行元件(马达或油缸),主阀节流口两端的压差ΔP=P-Pls;P作用在变量阀芯的左端,负载压力Pls和弹簧预设压力Pk共同作用在变量阀芯的右端。

当变量阀受力平衡时,即Pk= P –Pls=ΔP。

此时泵维持在一个稳定的排量。

(通常Pk设置2Mpa)当节流口变化时,动态的ΔP将会大于或小于弹簧预设压力Pk,此时变量滑阀受力处于不平衡状态,为了恢复到受力平衡状态,变量滑阀会向左或向右移动,变量阀的左右移动就会改变泵的排量,从而使输出流量Q变大或变小,重新使ΔP= Pk =定值。

(压差ΔP变大,说明主阀节流口开度变小,此时变量阀芯向右移动,压力油被引到变量活塞的大腔,压力油的作用下,变量柱塞左移,泵的斜盘倾角变小,流量变小,压差变小,直到压差ΔP=P k时,滑阀受力平衡,泵的斜盘倾角不再变化,此时泵输出与节流口相匹配的流量;压差ΔP变小,说明主阀节流口开度变大,此时变量阀芯左移,变量活塞的大腔油被接回油箱,泵的斜盘倾角变大,输出流量变大,直到直到压差ΔP=P k时,滑阀受力平衡,泵的斜盘倾角不在变化,此时泵输出与节流口相匹配的流量。

负载敏感泵是外部节流且压差ΔP为定常,通过外部节流口的开度进行泵的斜盘倾角控制,节流口变小,泵的输出流量变小;节流口变大,泵的输出流量变大。


2。

《负载敏感多路阀结构优化设计》

《负载敏感多路阀结构优化设计》

《负载敏感多路阀结构优化设计》篇一一、引言随着现代工程机械的不断发展,对于设备的性能、效率和稳定性要求越来越高。

其中,负载敏感多路阀作为工程机械液压系统的重要组成部分,其性能的优劣直接影响到整个设备的运行效果。

因此,对负载敏感多路阀的结构进行优化设计,提高其性能和可靠性,具有非常重要的意义。

本文将重点探讨负载敏感多路阀的结构优化设计,旨在为相关研究和应用提供参考。

二、负载敏感多路阀的基本原理与结构负载敏感多路阀是一种能够根据系统负载变化自动调节液压系统压力的阀门。

其基本原理是通过感应系统负载的变化,自动调整阀门的开度,从而保持系统的压力稳定。

该阀门主要由主阀芯、副阀芯、先导阀、弹簧等部分组成。

主阀芯是控制流体的主要部件,其开度的大小直接影响到流体的流量和压力。

副阀芯则起到辅助控制的作用,通过与主阀芯的配合,实现流体的分流和合流。

先导阀则负责感应系统负载的变化,并据此调整主阀芯和副阀芯的开度。

弹簧则起到平衡力和保持阀门稳定的作用。

三、负载敏感多路阀结构优化设计的必要性随着工程机械的不断发展,对负载敏感多路阀的性能要求也越来越高。

传统的负载敏感多路阀在结构上存在一些缺陷,如响应速度慢、稳定性差、易泄漏等问题。

因此,对负载敏感多路阀的结构进行优化设计,提高其性能和可靠性,具有重要的现实意义。

四、负载敏感多路阀结构优化设计的关键技术(一)优化主阀芯和副阀芯的结构设计主阀芯和副阀芯是负载敏感多路阀的核心部件,其结构设计的优劣直接影响到阀门的性能。

因此,在结构优化设计中,应重点关注主阀芯和副阀芯的结构设计。

通过改进材料的选用、优化加工工艺、提高表面处理质量等方式,提高主阀芯和副阀芯的耐磨性、抗腐蚀性和密封性,从而延长阀门的使用寿命。

(二)改进先导阀的设计先导阀是负载敏感多路阀中感应系统负载变化的关键部件。

在结构优化设计中,应关注先导阀的响应速度和稳定性。

通过改进先导阀的结构设计,提高其感应速度和准确性,从而快速调整主阀芯和副阀芯的开度,保持系统的压力稳定。

负载敏感变量泵的动态特性研究

负载敏感变量泵的动态特性研究

负载敏感变量泵的动态特性研究液压传动具有无级变速、传动环节少、操作简单、对外界载荷适应能力强和易于实现自动化控制等优点,被广泛地应用。

但液压传动能量损失大,效率低,是其系统的一大缺陷。

为了解决此问题,人们提出许多解决方法,负载敏感技术就是其中之一。

负载敏感技术是指系统能够按照负载的需求来控制泵输出压力与流量,使液压系统效率提高,增加其使用寿命。

负载敏感技术有阀控与泵控两种,泵控负载敏感系统主要依靠负载敏感变量泵完成相应工作,本文主要分析该泵的工作原理与动态特性的影响因素。

1 负载敏感变量泵工作原理负载敏感变量泵的工作原理如图1所示,由变量泵、负载敏感阀、恒压阀和变量活塞等组成。

负载敏感变量泵根据负载所需的压力PL 调节恒压阀与负载敏感阀的阀芯的位移,使变量活塞受力发生变化,进而改变泵的排量,实现泵的输出压力PP、输出流量与负载的压力PL、流量相匹配。

负载敏感变量泵中的恒压阀2控制优先级高于负载敏感阀1的控制优先级。

负载敏感变量泵有三种状态:待机状态、正常工作状态和过载状态。

(1)待机状态,节流阀5处于关闭状态。

负载敏感阀1和恒压阀2的阀芯在弹簧作用下处于左位,变量泵4的出口压力油进入变量活塞3的两腔,推动变量活塞3,从而减小泵斜盘倾角,使得泵的排量减小到最小值,泵出口压力PP降到与负载敏感阀1中调整弹簧预紧力相等的值。

变量泵输出一定的流量,用于补偿泵自身的内泄漏。

(2)正常工作时。

启动负载敏感变量泵,变量泵4提供压力PP 小于负载所需压力PL,负载敏感阀1的阀芯右移,阀口开度逐渐增大,变量活塞3右侧的油液流回油箱,变量泵4的斜盘倾角变大,从而排量增大。

当泵完全启动后,泵的出口压力及流量会随着负载的变化而变化。

负载PL稳定时,负载敏感阀1受力平衡时,方程为:式中:A——负载敏感阀的弹簧腔压力油作用面积,Fs——弹簧预紧力。

当PL减小,ΔPFs/A,负载敏感阀1的弹簧作用力产生的压力大于负载压力,从而推动负载敏感阀1的阀芯向左移动,阀口开度减小,变量活塞3右侧流回油箱的油液减少,压力逐渐增大,从而使斜盘倾角减小,泵出口压力与排量减小,直到负载所需求的压力。

《负载敏感多路阀结构优化设计》范文

《负载敏感多路阀结构优化设计》范文

《负载敏感多路阀结构优化设计》篇一一、引言随着现代工业技术的快速发展,负载敏感多路阀在各种机械设备中扮演着越来越重要的角色。

负载敏感多路阀是一种能够根据系统负载变化自动调节流量和压力的液压控制元件,其性能的优劣直接影响到整个机械系统的运行效率和稳定性。

因此,对负载敏感多路阀的结构进行优化设计,提高其性能,成为当前研究的热点问题。

本文旨在探讨负载敏感多路阀的结构优化设计,以提高其工作效率和可靠性。

二、负载敏感多路阀基本原理及结构特点负载敏感多路阀是一种具有流量和压力自动调节功能的液压控制阀,其基本原理是通过感应系统负载的变化,自动调节阀门的开度和流量,以实现系统压力和流量的平衡。

该阀主要由主阀、控制阀、先导阀等部分组成,具有结构紧凑、操作简便、节能环保等优点。

然而,在实际应用中,负载敏感多路阀仍存在一些问题,如工作效率低、可靠性差、易损坏等。

这些问题主要源于其结构设计的不足,因此,对负载敏感多路阀的结构进行优化设计具有重要意义。

三、负载敏感多路阀结构优化设计针对负载敏感多路阀存在的问题,本文提出以下结构优化设计:1. 主阀优化设计:主阀是负载敏感多路阀的核心部件,其性能直接影响到整个阀的工作效率。

因此,优化主阀的结构设计,提高其密封性能和耐磨性能,是提高阀工作效率和可靠性的关键。

具体而言,可以采用高性能的密封材料和表面处理技术,提高主阀的密封性能;同时,优化主阀的结构布局,减轻其质量,提高其耐磨性能。

2. 控制阀优化设计:控制阀是负载敏感多路阀的调节部件,其性能直接影响到阀的调节精度和响应速度。

因此,优化控制阀的结构设计,提高其调节精度和响应速度,是提高阀整体性能的重要措施。

具体而言,可以优化控制阀的流道设计,减小流阻,提高流速;同时,采用先进的控制算法,实现精确的流量和压力控制。

3. 先导阀优化设计:先导阀是负载敏感多路阀的感应部件,其性能直接影响到阀对系统负载的感应速度和准确性。

因此,优化先导阀的结构设计,提高其感应速度和准确性,是提高阀整体性能的关键。

负载敏感制动阀设计及仿真分析

负载敏感制动阀设计及仿真分析

负载敏感制动阀设计及仿真分析王亚军;姚平喜【摘要】针对液压缸制动过程中出现的液压冲击,为实现对液压缸的双向缓冲制动,借助负载敏感技术理论,提出了一种新型的负载敏感制动阀.对阀体结构特点及其工作原理作了进一步阐述,并建立相应工况的数学模型,借助MATLAB/Simulink进行动态仿真.通过分析仿真结果,该阀能够匹配液压缸的制动力与负载惯性力并实现连续制动,相较于现有的溢流阀制动回路,其制动距离与制动时间都较短,制动过程中产生的冲击、震动和噪声较小,可以对液压缸的运行实现双向缓冲制动的效果.%Aiming at hydraulic shock appeared in the process of hydraulic cylinder brake,we put forward a new kind of load sensitive brake valve in order to achieve the two-way buffer brake of hydraulic cylinder with the aid of the load sensing technology.We further elaborate structure characteristics and working principle of valve,then we establish a mathematical model of corresponding working conditions and carry out dynamic simulation by means of MATLAB/Simulink.The research results show that the valve can match braking force with load inertia force of hydraulic cylinder and achieve continuous pared with an existing overflow valve for hydraulic cylinder brake circuit,this valve shows shorter braking distance,less braking time,smaller braking vibration and less noise,and it can realize the bi-directional buffer brake on operation of hydraulic cylinder.【期刊名称】《液压与气动》【年(卷),期】2018(000)006【总页数】6页(P25-30)【关键词】制动阀;Simulink;动态仿真;负载敏感【作者】王亚军;姚平喜【作者单位】太原理工大学机械工程学院,山西太原030024;精密加工山西省重点实验室,山西太原030024;太原理工大学机械工程学院,山西太原030024;精密加工山西省重点实验室,山西太原030024【正文语种】中文【中图分类】TH137.5引言在液压系统中,液压控制元件发生开启、换向或者闭合动作,对应区域会发生油液速度剧烈变化,出现液压冲击。

负载敏感型比例多路阀工作原理介绍

负载敏感型比例多路阀工作原理介绍

阻尼效果
LS-压力
20 bar
t1
t2
t3 t4
组成: t1 - 快速压力信号/通过单向阀 t2 - 实际工作区,含低于20bar的震荡(通过节流阀阻尼) t3 - 工作结束,通过背压阀快速释放 (p > 20 bar) t4 - 阀芯复位流量控制阻尼,通过节流阀
02.07.2020
PSL和PSV比例多路阀产品介绍
• 节流阀的压差只决定于 弹簧力大小。不受负载 影响。
• 该阀有一个进口两个出 口也称三通流量控制阀
02.07.2020
PSL和PSV比例多路阀产品介绍
三通流量阀的作用
✓卸荷系统总流量 ✓控制每片阀的流量 ✓建立系统所需压力 ✓具有一定减震作用
02.07.2020
PSL和PSV比例多路阀产品介绍
三通流量控制阀工作原理(三)
02.07.2020
无级控制,与负载变化 无关
多缸组合动作,满足多 个执行元件同时工作
提高液压系统效率,减 少发热
有减振要求,对系统平 稳性要求高
高集成性,节约安装 空间,减轻整机重量
PSL和PSV比例多路阀产品介绍
液压系统基本工作原理
• 压力损失原理 • 压力控制阀-溢流阀原理 • 流量控制阀-节流阀原理 • 流量控制阀-调速阀原理
中位卸荷 0(bar)X80(L/min)②
油缸到位憋压 320(bar)X80(L/min)
系统二(定量泵 +负载敏感) 系统二(变量泵 +负载敏感)
309(bar)X0(L/min) 314(bar)X0(L/min)① 309(bar)X60(L/min) 314(bar)X0(L/min) 109(bar)X0(L/min) 114(bar)X0(L/min) 109(bar)X60(L/min) 114(bar)X0(L/min) 9(bar)X80(L/min) 14(bar)X0(L/min) 320(bar)X80(L/min) 320(bar)X0(L/min)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档