七年级下册概率初步练习题

合集下载

2023年北师大版七年级下册数学第六章《概率初步》单元测试卷

2023年北师大版七年级下册数学第六章《概率初步》单元测试卷

D.随机事件发生的概率介于0和1之间
·数学
5.书架上有2本数学书、3本语文书、3本英语书,从中随机 抽取一本,是数学书的概率是( A )
A.14
B.38
C.18
D.34
6.(跨学科融合)在单词statistics(统计学)中任意选择一个字母,
字母为“s”的概率是( C )
A.110
B.15
C.130
球的概率相同,那么a与b的关系是 a+b=10.
14.在x2 2xy y2的空格“ ”中,分别填上“+”或“-”,在
所得的代数式中,能构成完全平方式的概率是
1 2
.
·数学
15.如图,在4×4的正方形网格中,有3个小正方形已经涂黑, 若再涂黑任意一个白色的小正方形(每一分的图形是轴对
奖”这一事件是 随机事件 (填“必然事件”“不可能事件”
或“随机事件”).
12.有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.
从中随机抽取一张,编号是偶数的概率等于 2 5
.
·数学
13.一个袋中装有a个红球,10个黄球,b个白球,每个球除
颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄
顾客购物10元以上就能获得一次转动转盘的机会,
当转盘停止时,指针落在哪一区域就可以获得相应
的奖品.下表是活动进行中的几组统计数据. (1)计算并完成表格:
转动转盘的次数n 100 落在“铅笔”的次数m 67 落在“铅笔”的频率mn 0.670
200 145
0.725
500 357
0.714
800 552
(2)(1)(3)(5)(4).
·数学
21.暑假将至,某商场为了吸引顾客,设计了可以自由转动 的转盘(如图,转盘被均匀地分为20份),并规定:顾客每消 费200元的商品,就能获得一次转动转盘的机会.如果转盘停 止后,指针正好对准红色、黄色、绿色区域,那么顾客就可 以分别获得200元、100元、50元的购物券,凭购物券可以在 该商场继续购物.若某顾客购物300元. (1)求他此时获得购物券的概率是多少? (2)他获得哪种购物券的概率最大?请说明理由.

七年级数学下课本习题第6章概率初步

七年级数学下课本习题第6章概率初步

第六章概率初步第1节感受可能性1、P138-随堂练习-1下列事件中,哪些就是必然事件?哪些就是随机事件?(1)将油滴入水中,油会浮在水面上;(2)任意掷一枚质地均匀的骰子,掷出的点数就是奇数。

2、P138-随堂练习-2小明任意买一张电影票,座位号就是2的倍数与座位号就是5的倍数的可能性哪个大?3、P138-习题6、1-1下列事件中,哪些就是必然事件?哪些就是不可能事件?哪些就是随机事件?(1)抛出的篮球会下落;(2)一个射击运动员每次射击的命中环数;(3)任意买一张电影票,座位号就是2的倍数;(4)早上的太阳从西方升起。

4、P138-习题6、1-2一个袋中装有8个红球、2个白球,每个球除颜色外都相同。

任意摸出一个球,摸到哪种颜色球的可能性大?说说您的理由。

5、P138-习题6、1-3下图就是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在哪个区域的可能性大?说明您的理由。

6、P139-习题6、1-4下图表示各袋中球的情况,每个球除颜色外都相同,任意摸出一个球,请您按照摸到红球的可能性由大到小进行排列。

7、P139-习题6、1-5如图就是一个可以自由转动的转盘,利用这个转盘与同伴做下面的游戏:(1)自由转动转盘,每人分别将转出的数填入四个方格中的任意一个(2)继续转动转盘,每人再将转出的数填入剩下的任意一个方格中;(3)转动四次转盘后,每人得到一个“四位数”;(4)比较两人得到的“四位数”,谁的大谁就获胜。

多做几次上面的游戏,在做游戏的过程中,您的策略就是什么?您积累了什么样的获胜经验?第2节频率的稳定性8、P142-随堂练习某射击运动员在同一条件下进行射击,结果如下表所示:(1)完成上表;(2)根据上表,画出该运动员击中靶心的频率的折线统计图;(3)观察画出的折线统计图,击中靶心的频率的变化有什么规律?对某批产品的质量进行随机抽查,结果如下表所示: 随机抽取的产品数n 1 500 1000 合格的产品数m 9 19 47 93 187 467 935 合格率m n(1)完成上表;(2)根据上表,画出产品合格率变化的折线统计图;(3)观察画出的折线统计图,产品合格率的变化有什么规律?10、 P142-习题6、2-2抛一个如图所示的瓶盖,盖口向上或盖口向下的可能性就是否一样大?怎样才能验证自己结论的正确性?11、 P145-随堂练习-1小凡做了5次抛均匀硬币的试验,其中有3次正面朝上,2次正面朝下,因此她认为正面朝上的概率大约为35 ,朝下的概率约为25 ,您同意她的观点不?您认为她再多做一些试验,结果还就是这样不?掷一枚质地均匀的硬币,正面朝上的概率为12 ,那么,掷100次硬币,您能保证恰好50次正面朝上不?与同伴进行交流。

(好题)初中数学七年级数学下册第六单元《概率初步》检测(包含答案解析)

(好题)初中数学七年级数学下册第六单元《概率初步》检测(包含答案解析)

一、选择题1.下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中靶心B.任取一个实数x,都有|x|≥0C.画一个三角形,使其三边的长分别为8cm,6cm,2cmD.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 2.一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是()A.16B.13C.12D.233.下列说法:①概率为0的事件不一定是不可能事件;②试验次数越多,某情况发生的频率越接近概率;③事件发生的概率与实验次数无关;④在抛掷图钉的试验中针尖朝上的概率为13,表示3次这样的试验必有1次针尖朝上.其中正确的是()A.①②B.②③C.①③D.①④4.下列说法正确的是()A.扔100次硬币,都是国徽面向上,是不可能事件B.小芳在扔图钉游戏中,扔10次,有6次都是钉尖朝下,所以钉尖朝下的可能性大C.王明同学一直是级部第一名,他能考上重点高中是必然事件D.投掷一枚均匀的骰子,投出的点数是10,是一个确定事件5.下列事件中,是确定事件的是()A.车辆随机经过一个路口,遇到红灯B.三条线段能组成一个三角形C.将油滴入水中,油会浮在水面D.掷一枚质地均匀的骰子,掷出的点数是质数6.在一个不透明的口袋中,装有3个红球2个白球,它们除颜色外其余都相同,从中任意摸出一个球,摸到白球的概率为()A.12B.15C.25D.357.下列事件为随机事件的是()A.367人中至少有2人生日相同B.打开电视,正在播广告C.没有水分,种子发芽D.如果a、b都是实数,那么+=+a b b a 8.下列说法正确的是()A.明天会下雨是必然事件B.不可能事件发生的概率是0C.在水平的桌面上任意抛掷一枚图钉,一定针尖向下D.投掷一枚之地近月的硬币1000次,正面朝下的次数一定是500次9.下列说法正确的是()A.要了解我市居民的低碳生活状况,适宜采用抽样调查的方法B.一组数据2,2,3,6的众数和中位数都是2C.“掷一枚硬币正面朝上的概率是12”,表示每抛硬币2次就有1次正面朝上D.随机抽取甲乙两名同学的5次数学成绩,平均分都是90分,方差分别是S甲2=5,S乙2=10,说明乙的成绩较为稳定10.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书,正好是第38页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是611.下列事件是随机事件的是()A.太阳东升西落 B.水中捞月 C.明天会下雨 D.人的生命有限12.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是()A.1 B.67C.12D.0二、填空题13.如图,在4×4的正方形网络中,已将部分小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是________.14.六一期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外其余都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2附近,由此可以估计纸箱内有红球________个.15.在一不透明的口袋中有4个为红球,3个绿球,2个白球,它们除颜色不同外完全一样,现从中任摸一球,恰为红球的概率为__________.16.在一个不透明的口袋中装有4个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为___________.17.从一副扑克牌中任意抽取 1 张:①这张牌是“A”;②这张牌是“红心”;③这张牌是“大王”.其中发生的可能性最大的事件是_____.(填序号)18.一个不透明的袋子中装有除颜色外完全相同的三个黄球和两个红球,现从中随机摸出球,则摸出的球是红球的概率等于______.19.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数12345678910黑棋数1302342113根据以上数据,估算袋中的白棋子数量为_______枚.20.一个布袋内只装有1个红球和2个黄球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黄球的概率是________.三、解答题21.如图为一个封闭的圆形装置,整个装置内部为A、B、C三个区域(A、B两区域为圆环,C区域为小圆),具体数据如图.(1)求出A、B、C三个区域三个区域的面积:S A=,S B=,S C=;(2)随机往装置内扔一粒豆子,多次重复试验,豆子落在B区域的概率P B为多少?(3)随机往装置内扔180粒豆子,请问大约有多少粒豆子落在A区域?22.一个口袋中放有290个涂有红、黑、白三种色的质地相同的小球,若红球个数是黑球个数的2倍多3个,从袋中任取一个球是白球的概率是1 10.(1)求袋中红球的个数.(2)求从袋中任取一个球是黑球的概率.23.某餐厅新开业,为了吸引顾客,推出“模球有礼”优惠活动,餐厅在一个不透明的纸箱中装入除颜色外完全相同的小球共50个,其中红色球3个、黄色球5个、蓝色球12个,剩余为绿色。

2023年北师大版七年级数学下册第六章《概率初步》试题卷附答案解析

2023年北师大版七年级数学下册第六章《概率初步》试题卷附答案解析

2023年北师大版七年级数学下册第六章《概率初步》试题卷一、单选题1.下列事件中,是确定事件的是()A.掷一枚硬币,正面朝上B.三角形的内角和是180C.明天会下雨D.明天的数学测验,小明会得满分2.下列语句所描述的事件是随机事件的是()A.两点决定一直线B.清明时节雨纷纷C.没有水分,种子发芽D.太阳从东方升起3.小明过马路时,恰好是红灯.这个事件是()A.必然事件B.随机事件C.不可能事件D.不确定事件4.在“石头、剪刀、布”游戏中,对方出“剪刀”.这个事件是()A.必然事件B.随机事件C.不可能事件D.确定性事件5.一个不透明的袋子里装有3个红球,2个黄球,1个白球,这些球除颜色外无其他差别,从袋子中随机取出一个球,取出球的颜色可能性最大的是()A.红色B.黄色C.白色D.可能性一样大6.一个不透明的袋子中只装有8个除颜色外完全相同的小球,其中4个红球,3个黄球,1个黑球.从中随机摸出一个小球,摸到红球的概率是()A.12B.14C.18D.387.不透明的袋子中装有3个红球和2个白球,这些球除了颜色外都相同,从袋子中随机地摸出1个球,则这个球都是红球..的概率是()A.15B.35C.23D.138.有20瓶饮料,其中有2瓶已过保质期,小明从20瓶饮料中任取1瓶,那么他取到没有过保质期的饮料的概率是()A.910 B.110 C.118 D.1209.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是()A.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B.掷一枚质地均匀的硬币,落地时结果是“正面向上”C.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是2D.从一副扑克牌中随机抽取一张,抽到的牌是梅花10.一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同,若从布袋里任意摸出1个球是红球的概率为14,则a等于()A.1B.2C.3D.4二、填空题11.一只不透明的袋子中有1个白球,100个黄球,这些球除颜色外都相同,将球搅匀,从中任意摸出一个球是白球;这一事件是___________事件.(填“必然”、“随机”、“不可能”)12.一个不透明的布袋里装有6个只有颜色不同的球,其中有1个黑球、2个白球、3个红球,从布袋里随机摸出1个球,摸出白球的概率为_________.13.现分别有长2cm和5cm的两条线段,再从下列长度:1cm、2cm、3cm、4cm、5cm、6cm、7cm、8cm的线段中随机选取一条组成一个三角形,那么能组成三角形的概率是_____.14.在一个不透明的箱子中有黄球和红球共6个,它们除颜色外都相同,若任意摸出一个球,摸到红球的概率为23,则这个箱子中红球的个数为________个.15.某公司组织内部抽奖活动,共准备了100张奖券,设一等奖10个,二等奖20个,三等奖30个.若每张奖券获奖的可能性相同,则随机抽一张奖券中一等奖的概率为______.16.如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖(每次飞镖均落在纸板上),则击中阴影区域的概率是___________.17.一个不透明的口袋中装有红色、黄色、蓝色玻璃球共200个,这些球除颜色外都相同.小明通过大量随机摸球试验后,发现摸到红球的频率稳定在30%左右,则可估计红球的个数约为_______.18.不透明的布袋中装有除颜色外完全相同的10个球,其中红色球有m个,如果从布袋中任意摸出一个球恰好为红色球的概率是15,那么m ________.19.不透明袋子中装有7个球,其中有4个红球,3个白球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.20.因疫情原因,杭州亚运会定于2023年9月23日至10月8日举行,名称仍为杭州2022年第19届亚运会.莲莲从网上购买杭州2022年第19届亚运会吉祥物(如图)一件,则物流配送的恰好是“莲莲”的概率为________.三、解答题21.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是1 3.(1)求任意摸出一个球是黑球的概率;(2)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率1 4若能,请写出如何调整白球数量;若不能,请说明理由.21.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?23.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,请你根据大转盘(如图)来计算:(1)享受七折优惠的概率;(2)得20元的概率;(3)得10元的概率;(4)中奖得钱的概率是多少?24.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?25.如图,有一个可以自由转动的转盘,被均匀分成5等份,分别标上1、2、3、4、5五个数字,转动转盘一次,当转盘停止后,指针指向的数字即为转出的数字.(1)转出的数字是3的概率是多少?(2)转出的数字小于4的概率是多少?(3)转出的数字是偶数的概率是多少?(4)甲乙两人玩一个游戏,其规则如下:任意转动转盘一次,如果转出的数字是偶数,则甲胜;如果转出的数字是奇数,则乙胜.你认为这样的游戏规则对甲、乙两人是否公平?为什么?26如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?解答1.B2.B3.B4.B5.A6.A7.B8.A9.C10.C11.随机12.1313.3814.415.0.116.5917.6018.2194720.1321.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是1 3.(1)求任意摸出一个球是黑球的概率;(2)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率1 4若能,请写出如何调整白球数量;若不能,请说明理由.(1)解:∵红球3个,白球5个,黑球若干个,从中任意摸出一个白球的概率是1 3,∴盒子中球的总数为:15153÷=(个),∴盒子中黑球的个数为:15357--=(个);∴任意摸出一个球是黑球的概率为:7 15;(2)解:∵任意摸出一个球是红球的概率为1 4∴盒子中球的总量为:13124÷=,∴可以将盒子中的白球拿出3个.14.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是31 62 =;(2)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是42 63 =.23.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,请你根据大转盘(如图)来计算:(1)享受七折优惠的概率;(2)得20元的概率;(3)得10元的概率;(4)中奖得钱的概率是多少?解:(1)享受七折优惠的概率为802 3609=;(2)得20元的概率为901 3604=;(3)得10元的概率为1201 3603=;(4)中奖得钱的概率是906060736012++=.24.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是3162=;(3)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是4263=.25.如图,有一个可以自由转动的转盘,被均匀分成5等份,分别标上1、2、3、4、5五个数字,转动转盘一次,当转盘停止后,指针指向的数字即为转出的数字.(1)转出的数字是3的概率是多少?(2)转出的数字小于4的概率是多少?(3)转出的数字是偶数的概率是多少?(4)甲乙两人玩一个游戏,其规则如下:任意转动转盘一次,如果转出的数字是偶数,则甲胜;如果转出的数字是奇数,则乙胜.你认为这样的游戏规则对甲、乙两人是否公平?为什么?解:(1)转盘共分为5份,数字3占其中一份,故转出的数字是3的概率为15(2)共有5种等可能结果,转出的数字小于4的有1、2、3共3个,所以转出的数字小于4的概率为35(3)共有5种等可能结果,转出的数字是偶数的有2、4两个数字,所以转出的数字是偶数的概率为25(4)不公平,转出的数字是偶数的概率为5转出的数字是奇数的概率为35.2355<,所以这样的游戏规则对甲、乙两人不公平26.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是31 62 =;(2)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是42 63 =.。

人教版七年级数学下《概率练习》习题

人教版七年级数学下《概率练习》习题

人教版七年级数学下《概率练习》习题
1. 骰子的概率问题
- 问题:如果我们掷一颗六面的普通骰子,那么掷到数字4的
概率是多少?
- 解答:普通骰子有六个面,每个面上的数字分别是1、2、3、4、5、6。

因此,掷到数字4的概率是1/6。

2. 抽取彩球的概率问题
- 问题:一个箱子里有10个彩球,其中3个红色,4个蓝色,3个绿色。

如果我们从箱子中随机抽取一个球,那么抽到红色球的概
率是多少?
- 解答:总共有10个球,其中3个是红色的。

因此,抽到红色
球的概率是3/10。

3. 一个魔术师的把戏
- 问题:一个魔术师手中有10张牌,其中4张是红色的,6张
是蓝色的。

他让观众从中选一张牌,然后重新洗牌,最后再由观众
自己将选中的牌找出来。

在观众重新洗牌之前,魔术师有没有可能
知道观众选中的牌是哪一张?
- 解答:魔术师手中有10张牌,观众只选中其中一张。

因此,
魔术师在观众重新洗牌之前不可能知道观众选中的是哪张牌。

4. 抽奖的概率问题
- 问题:在一个抽奖活动中,一个人购买了5张彩票,总共有100张彩票参与抽奖。

那么这个人中奖的概率是多少?
- 解答:这个人购买了5张彩票,总共有100张彩票参与抽奖。

因此,这个人中奖的概率是5/100,或者可以简化为1/20。

以上是《概率练习》中的一些习题及其解答。

希望对你的学习
有所帮助!。

七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)

七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)

七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)一、选择题(共10小题,每小题3分,共30分) 1. 下列事件中,是必然事件的是( ) A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为415,买10 000张该种彩票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2. 在一个布袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2个、红球6个、黑球4个.将布袋中的球搅匀,闭上眼睛随机从布袋中取出1个球,则取出黑球的概率是( ) A .12 B .14 C .13 D .163. 一个布袋中有10个球,其中6个红球、4个黑球,每个球除颜色不同外其余均相同.现在甲、乙进行摸球游戏,从中随机摸出一球,摸到红球,乙胜;摸到黑球,甲胜,则下列说法你认为正确的是( ) A .甲获胜的可能性大B .乙获胜的可能性大C .甲、乙获胜的可能性相等D .以上说法都不对4. 如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动转盘,当转盘停止时,指针落在有阴影的区域内的概率为a(若指针落在分界线上,则重转);如果投掷一枚质地均匀的硬币,正面向上的概率为b.关于a ,b 大小的判断正确的是( )A .a >bB .a =bC .a <bD .不能判断5. 有4张正面分别写有1、3、4、6的卡片,除数字外其他完全相同.将卡片的背面朝上并洗匀,从中抽取一张,抽到的数是奇数的概率为( ) A.14B.12C.34D .16. 某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .掷一个质地均匀的正方体骰子,落地时面朝上的点数是6C .一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上D .用2,3,4三个数字随机排成一个三位数,排成的数是偶数7. 在下列四个转盘中,若让转盘自由转动一次,转盘停止后,指针落在阴影区域内的概率最大的转盘是( )8. 一个不透明的口袋中有红球和黑球若干个,这些球除颜色外都相同,每次摸出1个球,记下颜色后放回,进行大量的摸球试验后,发现摸到黑球的频率在0.4附近摆动,据此估计摸到红球的概率约为( ) A .0.4 B .0.5 C .0.6 D .0.79. 在边长为1的小正方形组成的网格中,有如图所示的A ,B 两点,在格点上任意放置点C ,恰好能使△ABC 的面积为1的概率为( )A.316B.38C.14D.51610. 在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数分布表:试验种子数n(粒) 5 50 100 200 500 1000 2000 3000 发芽频数m 4 45 92 188 476 951 1900 2850 发芽频率mn0.800.900.920.940.9520.9510.950.95A .2700B .2800C .3000D .4000二.填空题(共8小题,每小题3分,共24分)11. “一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是_____________.(填“必然事件”、“不可能事件”或“随机事件”)12. 将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为______.13. 某足球运动员在同一条件下进行射门,结果如下表所示:射门次数n2050100200500800踢进球门频数m133558104255400踢进球门频率0.650.70.580.520.520.514. 如图,质地均匀的小立方体的一个面上标有数字1,两个面上标有数字2,三个面上标有数字3,抛掷这个小立方体一次,则向上一面的数字是________的可能性最大.15. 一个袋子中装有5个白球和3个红球,甲摸到白球胜,乙摸到红球胜,为使甲、乙两人获胜的可能性一样大,那么必须往袋中再放入________个________球(只能再放入同一颜色的球).16. 现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片约有________张.17. 小明正在玩飞镖游戏,如果小明将飞镖随意投中如图所示的正方形木框中,那么投中阴影部分的概率为________.18. 若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,任意抽取一个数,抽到偶数的概率为________ .三.解答题(共7小题,66分)19.(8分) 下列事件中,哪个是必然事件?哪个是不可能事件?哪个是随机事件?(1)打开电视机,正在播放新闻;(2)种瓜得瓜;(3)三角形三边之长为4 cm,5 cm,10 cm.20.(8分) 手机微信抢红包有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以随机生成不等金额的红包.现有一用户设定“拼手气红包”的红包个数为4,且随机被甲、乙、丙、丁四人抢到.(1)以下说法正确是__________. A .甲抢到的红包金额一定最多 B .乙抢到的红包金额一定最多 C .丙抢到的红包金额一定最多 D .丁不一定抢到金额最少的红包(2)若这四个红包的金额分别为35元、33元、20元、12元,则甲抢到红包的金额超过30元的概率是多少?21.(8分) 如图,在一个大的圆形区域内包含一个小的圆形区域,大圆的半径为2,小圆的半径为1.一只在天空自由飞翔的小鸟要落在它的上面,那么小鸟落在小圆区域外大圆区域内(阴影部分)的概率是多少?22.(8分) 在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.试验种子n(粒) 1 5 50 100 200 500 1 000 2 000 3 000 发芽频数m 1 4 45 92 188 476 951 1 900 2 850 发芽频率mn10.800.900.920.940.9520.951ab(1)(2)估计该小麦种子的发芽概率;(3)如果该小麦种子发芽后,只有87%的麦芽可以成活,现有100 kg 小麦种子,则有多少千克的小麦种子可以成活为秧苗?23.(10分) 将一副扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中任意抽取1张,给出下列事件:(1)抽出的牌的点数是8; (2)抽出的牌的点数是0; (3)抽出的牌是“人像”; (4)抽出的牌的点数小于6; (5)抽出的牌是“红色的”.上述事件发生的可能性哪个最大?哪个最小?将这些事件的序号按发生的可能性从大到小的顺序排列.24.(10分) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,由于该十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在该十字路口向右转的频率为25,向左转和直行的频率都为310.(1)假设平均每天通过路口的汽车为5000辆,求汽车在此左转、右转、直行的车辆是多少辆;(2)目前在此路口,汽车左转、右转、直行的绿灯的时间分别为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你利用概率的知识对此路口三个方向的路灯亮的时间做出合理的调整.25.(14分) 综合与探究: 问题再现:(1)图①是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少? 类比设计:(2)请在图②中设计一个转盘:自由转动这个转盘,当它停止转动时,三等奖:指针落在红色区域的概率为38,二等奖:指针落在白色区域的概率为38,一等奖:指针落在黄色区域的概率为14.拓展运用:(3)某书城为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:顾客每购买100元的图书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域(若指针恰好指在分割线上,则重转一次,直到指针指向某一扇形区域为止),那么顾客就可以分别获得50元、30元、20元的购书券,凭购书券可以在书城继续购书.若甲顾客购书130元,转动一次转盘,求他获得购书券的概率.参考答案1-5DCBBB 6-10BACDA 11. 不可能事件 12. 2713. 0.52 14. 3 15. 2;红 16. 15 17. 518 18.71119. 解:(2)是必然事件,(3)是不可能事件,(1)是随机事件.20.解:(1)D(2)一共有4种可能出现的结果,其中红包的金额超过30元的有2种,所以甲抢到红包的金额超过30元的概率是24=12.21. 解:小圆的面积为π,大圆的面积为4π,所以阴影部分的面积为3π.所以小鸟落在小圆区域外大圆区域内的概率为3π4π=34.22. 解:(1)a =1 900÷2 000=0.95,b =2 850÷3 000=0.95.(2)观察发现:随着大量重复试验,发芽频率逐渐稳定到常数0.95附近,所以该小麦种子的发芽概率约为0.95. (3)100×0.95×87%=82.65(kg),所以约有82.65千克的小麦种子可以成活为秧苗. 23. 解:(1)抽出的牌的点数是8;发生的概率为113(2)抽出的牌的点数是0;发生的概率为0 (3)抽出的牌是“人像”;发生的概率为313(4)抽出的牌的点数小于6;发生的概率是513(5)抽出的牌是“红色的”,发生的概率为100%.由此可知:事件(5)可能性最大,事件(2)可能性最小;发生的可能性从大到小的顺序为(5)(4)(3)(1)(2) 24. 解:(1)汽车在此左转的车辆数为5000×310=1500(辆),在此右转的车辆数为5000×25=2000(辆),在此直行的车辆数为5000×310=1500(辆).(2)根据频率估计概率的知识,得P(汽车向左转绿灯时间)=30×310=9秒,P(汽车向右转绿灯时间)=30×25=12秒,P(汽车直行绿灯时间)=30×310=9秒.25. 解:(1)P(红色)=120360=13;P(白色)=240360=23.(2)(答案不唯一)如图.(3)因为转盘被平均分成12份,共有12种等可能的情况,其中红色占1份,黄色占2份,绿色占3份,所以任意转动一次转盘获得购书券的概率是1+2+312=12.。

概率初步-可能性大小 经典练习

概率初步-可能性大小 经典练习

概率初步(可能性大小)经典练习1、袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A3个B不足3个C4个D5个或5个以上2下列说法正确的是()A商家卖鞋,最关心的是鞋码的中位数B365人中必有两人阳历生日相同C要了解全市人民的低碳生活状况,适宜采用抽样调查的方法D随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别是=5,=12,说明乙的成绩较为稳定3、在一个不透明的口袋中装有大小,外形等一模一样的5个红球,4个蓝色球和3个白球,则下列事情中,是必然发生的是()A从口袋中任意取出1个,这是一个红色球B从口袋中一次任取出5个,全是蓝色球C从口袋中一次任取出7个,只有蓝色球和白色球,没有红色球D从口袋中一次任取出10个,恰好红,蓝,白色球三种颜色的球都齐4、某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A、4B、8C、12D、165、小丽有3件不同的上衣,4件不同的裤子,她想从中选出一件上衣一条裤子配成一套漂亮的服装参加演出,共有()种不同的搭配方法.A、3B、4C、7D、126、中央电视台“非常6+1”栏目中有个互动环节,在电视直播现场有三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此.有一个打进电话的观众,选择并打开后得到礼物的可能性是()A、B、C、D、7、某商店举办有奖销售活动,办法如下:凡购买货物满100元得奖券1张,多购多得,现有100000张奖券,设特等奖1个,一等奖10个,二等奖100个,那么1张奖券中特等奖()A不可能B一定C不太可能D很有可能8、经过某个路口的汽车,它可能继续直行或向右转,若两种可能性大小相同,则两辆汽车经过该路口全部继续直行的概率为_________.9.玉树地震灾区小朋友卓玛从某地捐赠的2种不同款式的书包和2种不同款式的文具盒中,分别取一个书包和一个文具盒进行款式搭配,则不同搭配的可能有_________种.10.夏雪同学每次数学测试成绩都是优秀,则在这次中考中他的数学成绩_________(填“可能”,“不可能”,“必然”)是优秀.11.在一个不透明的袋中有5个红球、4个黄球、3个白球,每个球除颜色外,其他都相同,从中任意摸出一个球,摸出_________(哪种颜色)的可能性最大.12.如图,转动如图所示的一些可以自由转动的转盘,当转盘停止时,猜想指针落在黑色区域内的可能性大小,将转盘的序号按可能性从小到大的顺序排列为_________.13.一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其它都相同.搅均后从中任意摸出1个球,摸出白球可能性_________摸出黄球可能性;摸出白球可能性_________摸出红球可能性.(填“等于”或“小于”或“大于”).14.掷一枚质地均匀的骰子(各面的点数分别为1,2,3,4,5,6),对于下列事件:(1)朝上一面的点数是2的倍数;(2)朝上一面的点数是3的倍数;(3)朝上一面的点数大于2.如果用P1、P2、P3分别表示事件(1)(2)(3)发生的可能性大小,那么把它们从大到小排列的顺序是_________.15.袋子里放入15个白球,10个黄球和5个红球,这些球除颜色不同外,其他均一样,若从袋子里摸出一球,则摸到_________颜色球的可能性最大,摸到_________颜色的可能性最小.16.盒中己有红球4个,再放入_________个白球,摇匀后,摸到白球的可能性大.(填一个合适的数即可)17.一枚均匀骰子连续掷300次,你认为出现6点大约为_________次,出现偶数大约为_________次.18.从π,﹣1,,5,这五个数中随机取出一个数,取出的数是无理数的可能性是_________.19.如下图,把图中自由转动的转盘的序号按转出黑色(阴影)的可能性从大到小的顺序排列起来是_________.20.掷一枚硬币,出现国徽朝上的可能性是_________.21.某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计.成绩x(分)频数频率50≤x<60 10 _________60≤x<70 16 0.0870≤x<80 _________0.280≤x<90 62 _________90≤x<100 72 0.36(2)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩等级哪一个等级的可能性大?请说明理由.22.(1)已知:甲篮球队投3分球命中的概率为,投2分球命中的概率为,某场篮球比赛在离比赛结束还有1min,时,甲队落后乙队5分,估计在最后的1min,内全部投3分球还有6次机会,如果全部投2分球还有3次机会,请问选择上述哪一种投篮方式,甲队获胜的可能性大?说明理由.(2)现在“校园手机”越来越受到社会的关注,为此某校九年级(1)班随机抽查了本校若干名学生和家长对中学生带手机现象的看法,统计整理并制作了统计图(如图所示,图②表示家长的三种态度的扇形图)1)求这次调查的家长人数,并补全图①;2)求图②表示家长“赞成”的圆心角的度数;3)从这次接受调查的家长来看,若该校的家长为2500名,则有多少名家长持反对态度?23.不透明的口袋里装有2个红球2个白球(除颜色外其余都相同).事件A:随机摸出一个球后放回,再随机摸出一个球,两次都摸到红球;事件B:随机摸出一个球后不放回,再随机摸出一个球,两次都摸到相同颜色的球.试比较上述两个事件发生的可能性哪个大?请说明理由.24.某市七年级有15000名学生参加安全应急预案知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了400名学生的得分(得分取正整数,满分100分)进行统计:分组频数频率49.5~59.5 20 A59.5~69.5 32 0.0869.5~79.5 B 0.2079.5~89.5 124 0.3189.5~100.5 144 0.36合计400 1(1)直接写出频率分布表的A,B的值,并补全频数分布直方图;(2)若将得分转化为等级,规定得分低于59.5分评为“D”,59.5~69.5分评为“C”,69.5~89.5分评为“B”,89.5~100.5分评为“A”,这次15000名学生中约有多少人评为“D”?(3)以(2)的等级为标准,如果随机抽取一名参赛学生的成绩等级,则这名学生的成绩评为“A”、“B”、“C”、“D”哪一个等级的可能性大?请说明理由.25.如图,一个转盘被平均分成12份,每份上写上不同的数字,游戏方法:先猜数后转动转盘,若指针指向的数字与所猜的数一致,则猜数者获胜.现提供三种猜数方法:(1)猜是“奇数”,或是“偶数”.(2)猜是“大于10的数”,或是“不大于10的数”.(3)猜是“3的倍数”,或是“不是3的倍数”.如果你是猜数者,你愿意选择哪一种猜数方法?怎样猜?并说明理由.26.根据你的经验,分别写出下列事件发生的机会,并用番号A、B、C把这些事件发生的机会在直线上表示出来.A、在一个不透明的袋中装有红球3个,白球2个,黑球1个,每种球除颜色外其余都相同,摇匀后随机地从袋中取出1个球,取到红球的机会是_________;B、投掷一枚普通正方体骰子,出现的点数为7的机会是_________;C、投掷两枚普通硬币,出现两个正面的机会是_________.27.某校初一在校学生出生月份统计如图所示,(1)如果2月份出生77人,那么该校初一在校学生多少_________;(2)10月份出生人数是多少_________,若8月份出生人数在扇形图中占36°,则8月份出生人数是多少_________;(3)这些学生至少有两个人是6月7日出生的事件是什么事件_________;(4)如果你从这些学生中随机找一名学生,那么他出生在哪个月份的可能性大_________.28.某班50名同学进行数学测验,将所得成绩(得分取整数,最低分为50分)进行整理后分成五组,并绘成统计图(如图).请结合统计图提供的信息,回答下列问题.(1)请将该统计图补充完整;(2)请你写出从图中获得的三个以上的信息;(3)老师随机抽取一份试卷来分析,抽取到哪一组学生试卷的可能性较大?29.某学校八年级有学生900人,为了了解他们的身高情况,抽样调查了部分学生,将所得数据处理后制成扇形统计图(部分)和频数分布直方图(部分)如下(每组只含最低值,不含最高值,身高单位cm,测量时精确到1cm)(1)请根据所提供的信息补全频数分布直方图;(2)样本的中位数在统计图的哪个范围内?_________;(3)该校全体八年级学生身高在160~170cm之间的大约有多少人?如果随机抽查一名学生的身高,你认为落在哪个范围内的可能性大?请说明理由.30.如图所示,下面第一排表示了各袋中球的情况,请用第二排中的语言来描述摸到红球的可能性大小,并用线连起来.答案1、解:∵袋中有红球4个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选D.2、解:A、商家卖鞋,最关心的鞋码是众数,故本选项错误;B、365人中可能人人的生日不同,故本选项错误;C、要了解全市人民的低碳生活状况,适宜采用抽样调查的方法,故本选项正确;D、方差越大,越不稳定,故本选项错误;故选C.3、解:∵根据口袋中装有大小,外形等一模一样的5个红球,4个蓝色球和3个白球,A.从口袋中任意取出1个,这是一个红色球,∵袋中有三种颜色的小球,故任取一球可以得出三种可能;故此选项错误;B.从口袋中一次任取出5个,全是蓝色球,∵袋中有三种颜色的小球,故任取5球可以得出三种可能;故此选项错误;C.从口袋中一次任取出7个,只有蓝色球和白色球,没有红色球,∵袋中有三种颜色的小球,故任取7球可以得出三种可能;∴故此选项错误;D.从口袋中一次任取出10个,恰好红,蓝,白色球三种颜色的球都齐,∴从口袋中一次任取出10个,至少有白球1个,∴恰好红,蓝,白色球三种颜色的球都齐,故D正确.故选D.4、解:∵主动轴上有三个齿轮,齿数分别是48,36,24;∴主动轴上可以有3个变速,∵后轴上有四个齿轮,齿数分别是36,24,16,12,∴后轴上可以有4个变速,∵变速比为2,1.5,1,3的有两组,又∵前后齿轮数之比如果一致,则速度会相等,∴共有3×4﹣4=8种变速,故选B.5、解:共有3×4=12种不同的搭配方法,故选D6、解:三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此,有一个打进电话的观众,选择并打开后得到礼物的可能性是为.故选D.7、解:∵100000张奖券,设特等奖1个,∴1张奖券中特等奖的概率是,中奖率很小.故选C.8、解:画树状图得出:∴一共有4种情况,两辆汽车经过这个十字路口全部继续直行的有一种,∴两辆汽车经过这个十字路口全部继续直行的概率是:.故答案为:.9、解:每种书包有2种不同款式的文具盒搭配,2种书包就有2×2=4种搭配方式.10、解:在这次中考中他的数学成绩不确定,可能是优秀.11、解:因为袋子中有4个红球、3个黄球和5个蓝球,从中任意摸出一个球,①为红球的概率是;②为黄球的概率是=;③为白球的概率是=.可见摸出红球的可能性大.故答案为:红球.12、解:自由转动下列转盘,指针落在黑色部分多的可能性大,按从小到大的顺序排列,序号依次是④①②③,故答案为:④①②③.13、解:∵袋子中有1个白球、1个红球和2个黄球,从中任意摸出一个球,①为白球的概率是;②为红球的概率是;③为黄球的概率是=,∴摸出白球可能性<摸出黄球的可能性,摸出白球可能性=摸出红球的可能性.故答案为小于,等于.14、解:朝上一面的点数是2的倍数的概率是=,朝上一面的点数是3的倍数的概率是=,∴朝上一面的点数大于2的概率是=,∴P3>p1>p2.故答案为P3>p1>p2.15、解:∵袋子里放入15个白球,10个黄球和5个红球,这些球除颜色不同外,其他均一样,∴摸到白球的可能为:=,摸到黄球的可能为:=,摸到白球的可能为:=,∴摸到白颜色球的可能性最大,摸到红颜色的可能性最小.故答案为:白,红.16、解:由已知得:只要放入的白球个数大于红球个数即可得出摸到白球的可能性大,故可放入5个白球(答案不唯一),故答案为:5个白球(答案不唯一).17、解:每一面出现的概率为,则出现6点大约有300×=50次;出现偶数点的概率为=,则出现偶数点大约有300×=150次.故答案为:50,150.18、解:∵π,﹣1,,5,这五个数中无理数共有两个,∴五个数中随机取出一个数,取出的数是无理数的可能性是:.故填:.19、解:根据几何概率的求法:①黑色区域为6,整个转盘共有8个区域,所以P1==;②黑色区域为4,整个转盘共有8个区域,所以P1==;③黑色区域为3,整个转盘共有8个区域,所以P1=;④黑色区域为5,整个转盘共有8个区域,所以P1=;⑤黑色区域为2,整个转盘共有8个区域,所以P1==.因为>>>>,所以黑色(阴影)的可能性从大到小的顺序排列起来是①④②③⑤,故答案为①④②③⑤.20、解:掷一枚硬币,总共有两种情况,其中一种国徽朝上,故出现国徽朝上的可能性是.21、解:(1)根据题意得:16÷0.08=200(人),则70≤x<80分数段的频数为200﹣(10+16+62+72)=40(人),50≤x<60分数段频率为0.05,80≤x<90分数段的频率为0.31,补全条形统计图,如图所示:;故答案为:0.05;40;0.31;(2)由表格可知:评为“D”的频率是=,由此估计全区八年级参加竞赛的学生约有×3000=150(人)被评为“D”;∵P(A)=0.36;P(B)=0.51;P(C)=0.08;P(D)=0.05,∴P(B)>P(A)>P(C)>P(D),∴随机调查一名参数学生的成绩等级“B”的可能性较大.22、解:(1)∵甲篮球队投3分球命中的概率为,投2分球命中的概率为,在最后的1min 内全部投3分球还有6次机会,如果全部投2分球还有3次机会,∴投3分球可能得×6×3=6(分)投2分球可能得×3×2=4(分),∴应选择投3分球;(2)1)这次调查的家长人数是:120÷20%=600(人),则反对的家长人数是;600﹣60﹣120=420人,如图:2)∵家长“赞成”的人数所占的百分比是;×100%=10%,∴表示家长“赞成”的圆心角的度数是360°×10%=36°,3)若该校的家长为2500名,则持反对态度的家长有2500×(1﹣10%﹣20%)=1750(人),答:有1750名家长持反对态度.23、解:事件A:随机摸出一个球后放回,再随机摸出一个球,两次都摸到红球的可能性均为×=;事件B:随机摸出一个球后不放回,再随机摸出一个球,两次都摸到相同颜色的球的可能性为=.<.答:事件B发生的可能性较大.24、解:(1)A=1﹣0.08﹣0.20﹣0.31﹣0.36=0.05,B=400﹣20﹣32﹣124﹣144=80,(2)15000×0.05=750(人);(3)B等级的可能性大,∵B的频率=0.20+0.31=0.51,∴0.51>0.36>0.08>0.05,即B>D>C>A,故B等级的可能性大.25、解:选择第(3)种方法,猜是“3的倍数”,∵转盘中,奇数与偶数的个数相同,大于10与不大于10的数的个数也相同,∴(1)与(2)游戏是公平的,转盘中的数是3的倍数的有7个,不是3的倍数的有5个,∴猜3的倍数,获胜的机会大.26、解:A、袋中装有6个球,其中红球3个故随机地从袋中取出1个球,取到红球的机会是=;B、一枚普通正方体骰子,上没有7点,故出现的点数为7是不可能事件,故概率为0;C、投掷两枚普通硬币,有4种情况;出现两个正面只有一种情况,故其出现的机会是.在直线上表示如图所示.27、解:(1)7÷7%=1100人;(2)8月份的百分比是:×100%=10%,1100×(1﹣9%﹣7%﹣8%﹣12%﹣6%﹣5%﹣8%﹣10%﹣7%﹣8%﹣7%)=143人,8月份出生人数是1100×10%=110人;(3)不确定事件;(4)10月份的百分比是=13%,是各组中比例最大的,因而他出生在哪个月份的可能性大的是10月.28、解:(1)由题意得:90.5~100.5分数段得人数为:50﹣18﹣12﹣10﹣4=6,所画图形如下:(2)根据图形可得50.5~60.5分数段得人数为4,60.5~70.5分数段得人数为10,众数所在的分数段为70.5~80.5.(3)∵总数一定,抽取到频数大的可能性较大,∴可得抽取到70.5~80.5试卷的可能性较大29、解:(1)被调查的学生总人数:18÷18%=100,165~170的人数:100×10%=10,160~165的人数:100﹣18﹣18﹣32﹣10﹣4=100﹣82=18人,补全统计图如图所示;(2)∵第50、51两人都在155~160cm,∴样本的中位数在155~160cm;(3)900×=252人,落在155~160cm的可能性最大.30、解:。

北师大版数学七年级下册数学第6章概率初步单元练习卷含解析

北师大版数学七年级下册数学第6章概率初步单元练习卷含解析

第6章概率初步一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.14.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A .B .C.D.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子个数187 282 435 624 718 814 901发芽种子频率0.935 0.940 0.870 0.891 0.898 0.904 0.901下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:日期次数教室星期一星期二星期三星期四星期五A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期的下午找到空教室的可能性最大.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:五星四星三星及三星以下合计评价条数等级酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34根据以上信息,回答下列问题:(1)m的值为,n的值为;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为;若乙企业生产的某批产品共5万件,估计质量优秀的有万件;(3)根据图表数据,你认为企业生产的产品质量较好,理由为.(从某个角度说明推断的合理性)19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40 求“厨余垃圾”投放正确的概率.参考答案与试题解析一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、直角三角形的两个锐角互余是必然事件,符合题意;B、买一张电影票座位号是偶数号,是随机事件,不合题意;C、投掷一个骰子正面朝上的点数是7,是随机事件,不合题意;D、打开“学习强国APP”,正在播放歌曲《我和我的祖国》是随机事件,不合题意.故选:A.2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖【分析】事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.依据概率的意义进行判断即可.【解答】解:A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次不一定抛掷出5点,本选项错误;B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等,本选项正确;C.明天降雨的概率是80%,表示明天不一定有80%的时间降雨,本选项错误;D.某种彩票中奖的概率是1%,因此买100张该种彩票不一定会中奖,本选项错误;故选:B.3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.1【分析】根据概率=所求情况数与总情况数之比解答即可.【解答】解:∵共3个素数,分别是5,7,11,∴抽到的数是7的概率是;故选:C.4.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生【分析】根据不可能事件、随机事件、必然事件的有关概念和题意分别对每一项进行判断即可.【解答】解:A、可能性很大的事件在一次试验中不一定会发生,故本选项错误;B、可能性很大的事件在一次试验中不一定会发生,正确;C、必然事件在一次实验中一定会发生,故本选项错误;D、不可能事件在一次实验中不可能发生,故本选项错误;故选:B.5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【解答】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,【分析】利用概率公式求得概率后即可解得本题.【解答】解:∵白色的有30颗,橘色的有10颗,∴摇匀后倒出一颗,是白色的可能性为,橘色的可能性为,故选:B.7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A.B.C.D.【分析】首先设设正方形的面积,再表示出阴影部分面积,然后可得概率.【解答】解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为,则点取自黑色部分的概率为:=,故选:C.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子187 282 435 624 718 814 901 个数0.935 0.940 0.870 0.891 0.898 0.904 0.901发芽种子频率下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.9左右,于是得到种子发芽的概率约为0.9,据此求出1000kg种子中大约有100kg种子是不能发芽的即可.【解答】解:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率大约是0.891;故错误;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);故正确;③实验的种子个数最多的那次实验得到的发芽种子的频率不一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽,故正确;其中合理的是②④,故选:D.9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.【分析】分别求出背面印有“改革”字样的卡片数和总的卡片数,再根据概率公式计算即可.【解答】解:∵背面印有“改革”字样的卡片有2张,共有6张卡片,∴从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是=.故选:A.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2【分析】设袋中绿球的个数有x个,根据概率公式列出算式,求出x的值即可得出答案.【解答】解:设袋中绿球的个数有x个,根据题意得:=,解得:x=5,答:袋中绿球的个数有5个;故选:B.二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.【分析】根据掷得面朝上的点数大于4情况有2种,进而求出概率即可.【解答】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是:=;故答案为:.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:星期一星期二星期三星期四星期五日期次数教室A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期三的下午找到空教室的可能性最大.【分析】找到使用次数最少的一天下午即可得到答案.【解答】解:观察表格发现星期三下午使用1+0+1=2次,最少,∴本次彩排安排在星期三的下午找到空教室的可能性最大,故答案为:三.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵有6张质地、大小、背面完全相同的卡片,在它们正面分别写着:“我”“参”“与”“我”“快”“乐”这6个汉字,∴抽出的卡片正面写着“我”字的可能性是:=.故答案为:.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.【分析】根据题意分析可得:摇奖箱内装有20个小球,所以随机抽取一个小球共20种情况,其中有5种情况是小球中奖,故其概率是=.【解答】解:P(中奖)==.故本题答案为:.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:标号小于4的有1,2,3三个球,共5个球,任意摸出1个,摸到标号小于4的概率是.故答案为:16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:④①③②.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:∵有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,∴①取到凉白开的概率是=,②取到白糖水的概率是,③取到矿泉水的概率是=,④没有取到矿泉水的概率是=,∴按事件发生的可能性从大到小排列:④①③②;故答案为:④①③②.三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:评价条数等级五星四星三星及三星以下合计酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?【分析】(1)用1000减去五星和四星的条数,即可得出x的值;(2)①根据概率公式先求出A、B、C获得良好用餐体验的可能性,再进行比较即可得出答案;②根据概率的意义分析即可.【解答】解:(1)x=1000﹣412﹣388=200(条);(2)①选择A酒店获得良好用餐体验的可能性为=0.8,选择B酒店获得良好用餐体验的可能性为=0.81,选择C酒店获得良好用餐体验的可能性为=0.7,∵0.81>0.8>0.78,∴选择B酒店获得良好用餐体验的可能性最大.②不一定,根据可能性只能说明享受到良好用餐体验可能性大,但不一定能够享受到良好用餐体验.18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34 根据以上信息,回答下列问题:(1)m的值为10 ,n的值为0.64 ;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为0.96 ;若乙企业生产的某批产品共5万件,估计质量优秀的有 3.5 万件;(3)根据图表数据,你认为甲企业生产的产品质量较好,理由为甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.(从某个角度说明推断的合理性)【分析】(1)根据题意和频数分布表中的数据,可以先求的n的值,然后再求m的值;(2)根据频数分布表可以求得从甲企业生产的产品中任取一件,估计该产品质量合格的概率,根据频数分布直方图可以求得乙企业生产的某批产品共5万件,质量优秀的有的件数;(3)根据频数分布直方图和分布表可以解答本题,注意本题答案不唯一,只要合理即可.【解答】解:(1)n=32÷50=0.64,m=50×(1﹣0.04﹣0.64﹣0.12﹣0.00)=10,故答案为:10,0.64;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为:1﹣0.04=0.96,乙企业生产的某批产品共5万件,估计质量优秀的有:5×=3.5(万件),故答案为:0.96,3.5;(3)我认为甲企业生产的产品质量较好,理由:甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好,故答案为:甲,甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40求“厨余垃圾”投放正确的概率.【分析】(1)根据题意画出树状图得出所有情况数,再求出垃圾投放正确的情况数,最后根据概率公式计算即可.(2)用厨余垃圾数量除以总的数量即可.【解答】解:(1)四类垃圾随机投入四类垃圾箱的所有结果用树状图表示如下:。

(好题)初中数学七年级数学下册第六单元《概率初步》测试题(有答案解析)

(好题)初中数学七年级数学下册第六单元《概率初步》测试题(有答案解析)

一、选择题1.学完《概率初步》这一章后,老师让同学结合实例说一说自己的认识,请你判断以下四位同学说法正确的是()A.小智说,做3次掷图钉试验,发现2次钉尖朝上,因此钉尖朝上的概率是2 3B.小慧说,某彩票的中奖概率是5%,那么如果买100张彩票一定会有5张中奖C.小通说,射击运动员射击一次只有两种结果:中靶与不中靶,所以它们发生的概率都是12D.小达做了20次抛掷均匀硬币的试验,其中有5次正面朝上,15次正面朝下,他认为再做一次,正面朝上的概率是二分之一2.下列事件是必然事件的是()A.太阳从西方升起B.若a<0,则|a|=﹣aC.打开电视正在播放动画片《喜羊羊与灰太狼》D.某运动员投篮时连续3次全中3.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.大量反复抛掷每100次出现正面朝上50次B.连续抛掷10次不可能都正面朝上C.抛掷硬币确定谁先发球的规则是公平的D.连续抛掷2次必有1次正面朝上4.下列说法正确的是()A.抛掷一枚硬币10次,正面朝上必有5次;B.掷一颗骰子,点数一定不大于6;C.为了解某种灯光的使用寿命,宜采用普查的方法;D.“明天的降水概率为90%”,表示明天会有90%的地方下雨.5.在抛掷硬币的试验中,下列结论正确的是()A.经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B.抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C.抛掷50000次硬币,可得“正面向上”的频率为0.5D.若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.5186.九年级一班在参加学校4×100米接力赛时,安排了甲,乙,丙,丁四位选手,他们比赛的顺序由抽签随机决定,则丙跑第一棒的概率为()A.14B.18C.112D.1167.下列事件中,是必然事件的是()A.任意掷一枚骰子一定出现奇数点 B.彩票中奖率20%,买5张一定中奖C.晚间天气预报说明天有小到中雪 D.在13同学中至少有2人生肖相同8.下列事件中,不可能事件是()A.今年的除夕夜会下雪B.在只装有红球的袋子里摸出一个黑球C.射击运动员射击一次,命中10环D.任意掷一枚硬币,正面朝上9.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是()A.1 B.67C.12D.010.某校开设了文艺、体育、科技和学术四类社团,要求每位学生从中任选一类社团参加.现统计出八年级(1)班40名学生参加社团的情况,如下图:如果从该班随机选出一名学生,那么该生是体育类社团成员的可能性大小是()A.15B.25C.14D.32011.抛掷一枚质地均匀的硬币,“反面朝上”的概率为12,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是()A.每两次必有1次反面朝上B.可能有50次反面朝上C.必有50次反面朝上D.不可能有100次反面朝上12.下列成语描述的事件是必然事件的是()A.守株待兔B.翁中捉鳖C.画饼充饥D.水中捞月二、填空题13.掷一枚均匀的硬币,前20次抛掷的结果都是正面朝上,那么第21次抛掷的结果正面朝上的概率为______.14.图中有四个可以自由转动的转盘,每个转盘被分成若干等分,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是()A.转盘②与转盘③B.转盘②与转盘④C.转盘③与转盘④D.转盘①与转盘④15.同时抛掷两个质地均匀的正方形骰子,骰子的六个面上分别刻有1到6的点数,则两个骰子向上的一面的点数和为6的概率为______.16.如图,一个圆形飞镖板被等分为四个圆心角相等的扇形.假设飞镖投中游戏板上的每一个点都是等可能的(若投中圆的边界、图中的分割线或没有投中,则重投1次),则任意投掷一次,飞镖投中阴影部分的概率是_______.17.从一副扑克牌中级抽取一张,①抽到王牌;②抽到Q;③抽到梅花.上述事件,概率最大的是_____.18.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数12345678910黑棋数1302342113根据以上数据,估算袋中的白棋子数量为_______枚.19.盒中有6枚黑棋和n枚白棋,从中随机取一枚棋子,恰好是白棋的概率为14,则n的值为______.20.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25。

第6章 概率初步 北师大版七年级数学下册单元测试卷(含答案)

第6章 概率初步 北师大版七年级数学下册单元测试卷(含答案)

北师大新版七年级下册《第6章概率初步》2024年单元测试卷一、选择题1.“任意买一张电影票,座位号是2的倍数”,此事件是( )A.不可能事件B.随机事件C.必然事件D.确定事件2.小军旅行箱的密码是一个三位数,每位上的数字是0至9中的一个,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )A.B.C.D.3.下列事件发生的概率为0的是( )A.随意掷一枚硬币两次,有一次正面朝上B.早晨太阳从东方升起C.|a|=2,a=2D.从三个红球中摸出一个黑球4.在一个不透明的口袋中装有2个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在20%附近,则口袋中白球可能有( )A.5个B.6个C.7个D.8个5.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则( )A.P1>P2B.P1<P2C.P1=P2D.以上都有可能6.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”.下列说法正确的是( )A.抽10次奖必有一次抽到一等奖B.抽一次不可能抽到一等奖C.抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖7.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( )A.1B.C.D.8.小明要给朋友小林打电话,电话号码是七位正整数,他只记住了电话号码前四位顺序,后三位是3,6,7三位数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨对的概率是( )A.B.C.D.9.有一盒水彩笔除了颜色外无其他差别,其中各种颜色的数量统计如图所示.小腾在无法看到盒中水彩笔颜色的情形下随意抽出一支.小腾抽到蓝色水彩笔的概率为( )A.B.C.D.10.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为3的概率是( )A.B.C.D.二、填空题11.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 .12.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出红球的概率是0.2,则n= .13.小明和爸爸进行射击比赛,他们每人都射击10次.小明击中靶心的概率为0.6,则他击不中靶心的次数为 次;爸爸击中靶心8次,则他击不中靶心的概率为 .14.一个圆形转盘的半径为2cm,现将转盘分成若干个扇形,并分别相间涂上红、黄两种颜色.转盘转动10000次,指针指向红色部分有2500次.转盘上黄色部分的面积大约是 .15.已知一包糖共有5种颜色(糖果只有颜色差别),如图所示是这包糖果分布的百分比的统计图在这包糖中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是 .16.如图所示是一条线段,AB的长为10厘米,MN的长为2厘米,假设可以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为 .17.在世界大学生运动会射击运动员选拔活动中,甲、乙两组各四名选手的射击平均环数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名选手,则这两名选手的射击平均环数为19的概率 .三、解答题18.抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后:(1)朝上的点数有哪些结果?他们发生的可能性一样吗?(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?19.如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?20.米奇家住宅面积为90平方米,其中客厅30平方米,大卧室18平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:(1)P (在客厅捉到小猫);(2)P (在小卧室捉到小猫);(3)P (在卫生间捉到小猫);(4)P (不在卧室捉到小猫).21.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601(1)请估计:当n 很大时,摸到白球的频率将会接近  ;(2)假如你去摸一次,你摸到白球的概率是  ,摸到黑球的概率是  ;(精确到0.1)(3)试估算口袋中黑、白两种颜色的球各有多少只?22.用10个球设计一个摸球游戏,且分别满足下列要求:(1)使摸到红球的概率为;(2)使摸到红球和白球的概率都是.23.将正面分别写有数字1,2,3的三张卡片(卡片的形状、大小、质地、颜色等其他方面完全相同)洗匀后,背面朝上放在桌面上.甲从中随机抽取一张卡片,记该卡片上的数字为a,然后放回洗匀,背面朝上放在桌面上;再由乙从中随机抽取一张卡片,记该卡片上的数字为b,组成数对(a,b).(1)请写出数对(a,b)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽取一次卡片,按照得到的数对计算ab2的值,若ab2的值为奇数则甲赢;ab2的值为偶数则乙赢.你认为这个游戏公平吗?请说明理由.北师大新版七年级下册《第6章概率初步》2024年单元测试卷参考答案与试题解析一、选择题1.【解答】解:“任意买一张电影票,座位号是2的倍数”,此事件是随机事件.故选:B.2.【解答】解:∵末尾数字是0至9这10个数字中的一个,∴小军能一次打开该旅行箱的概率是,故选:A.3.【解答】解:A、随意掷一枚硬币两次,有一次正面朝上,是随机事件,发生的概率大于0并且小于1,不符合题意;B、早晨太阳从东方升起,是必然事件,发生的概率为1,不符合题意;C、|a|=2,a=2,是随机事件,发生的概率大于0并且小于1,不符合题意;D、从三个红球中摸出一个黑球,是不可能事件,发生的概率为0,符合题意;故选:D.4.【解答】解:设袋中白球的个数为x,根据题意,得:=20%,解得x=8,经检验x=8是分式方程的解,所以口袋中白球可能有8个,故选:D.5.【解答】解:由图甲可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值==,∴在甲种地板上最终停留在黑色区域的概率为P1是,由图乙可知,黑色方砖3块,共有9块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P2是,∵>,∴P1>P2;故选:A.6.【解答】解:根据概率的意义可得“抽到一等奖的概率为0.1”就是说抽10次可能抽到一等奖,也可能没有抽到一等奖,故选:C.7.【解答】解:能够凑成完全平方公式,则4a前可是“﹣”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选:B.8.【解答】解:因为后3位是3,6,7三个数字共6种排列情况,而正确的只有1种,故小明第一次就拨对的概率是.故选:B.9.【解答】解:图中共有水彩笔2+3+4+3+6+2=20支,其中蓝色水彩笔6支,则抽到蓝色水彩笔的概率为=;故选:C.10.【解答】解:列树状图得:共有6种情况,和为3的情况数有3种,所以概率为,故选:A.二、填空题11.【解答】解:P(答对)=.12.【解答】解:根据题意得:=0.2,解得:n=12,经检验:n=12是原分式方程的解.故答案为:12.13.【解答】解:由题意知:小明不中靶心的次数为10×(1﹣0.6)=4次,爸爸击中靶心8次,则他击不中靶心有2次,故其概率为0.2.故本题答案为:4;0.2.14.【解答】解:转盘转动10000次,指针指向红色部分为2500次,指针指向红色的概率2500÷10000=25%,即红色面积占总面积的25%;而黄色面积占75%,其面积为0.75×4π=3π(cm2).故答案为:3πcm2.15.【解答】解:棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=,故答案为:.16.【解答】解:AB间距离为10,MN的长为2,故以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为=.17.【解答】解:画树状图如图:∵共有16种等可能结果,两名同学的射击平均环数为19的结果有5种结果,∴这两名同学的射击平均环数为19的概率为,故答案为:.三、解答题18.【解答】解:(1)因为抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后朝上的点数可能是1、2、3、4、5、6,所以它们的可能性相同;(2)因为朝上的点数是奇数的有1,3,5,它们发生的可能性是,朝上的点数是偶数的有2,4,6,它们发生的可能性是所以发生的可能性大小相同;(3)因为朝上的点数大于4的数有5,6,发生可能性是=,朝上的点数不大于4的数有1,2,3,4,发生可能性是=,所以朝上的点数大于4与朝上的点数不大于4可能性大小不相等,朝上的点数不大于4发生的可能性大.19.【解答】解:根据几何概率的意义可得:P(红色区域)==,P(白色区域)===,答:指针落在白色区域的概率是,指针落在红色区域的概率是.20.【解答】解:(1)P(在客厅捉到小猫)==.(2)P(在小卧室捉到小猫)==.(3)P(在卫生间捉到小猫)==.(4)P(不在卧室捉到小猫)===.21.【解答】解:(1)根据题意可得当n很大时,摸到白球的频率将会接近0.60,故答案为:0.60;(2)因为当n很大时,摸到白球的频率将会接近0.60;所以摸到白球的概率是0.6;摸到黑球的概率是0.4;故答案为:0.6,0.4;(3)因为摸到白球的概率是0.6,摸到黑球的概率是0.4,所以口袋中黑、白两种颜色的球有白球有30×0.6=18个,黑球有30×0.4=12个.22.【解答】解:(1)10个除颜色外均相同的球,其中2个红球,8个黄球;(2)10个除颜色外均相同的球,其中4个红球,4个白球,2个其他颜色球.23.【解答】解:(1)如图所示:(2)由树状图知,共有9种等可能结果,其中ab2的值为奇数的有1、9、3、27这4种结果,ab2的值为偶数的有4、2、8、18、12这5种结果,所以甲赢的概率为,乙赢的概率为,∵≠,∴这个游戏不公平.。

(必考题)初中数学七年级数学下册第六单元《概率初步》测试(包含答案解析)

(必考题)初中数学七年级数学下册第六单元《概率初步》测试(包含答案解析)

一、选择题1.下列说法正确的是( )A .抛掷一枚质地均匀的硬币两次,必有一次正面朝上B .“汽车累积行驶10000km ,从未出现故障”是不可能事件C .湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨D .“0a ≥”是必然事件2.下列事件中,为必然事件的是( ) A .明天早晨,大家能看到太阳从东方冉冉升起 B .成绩一直优秀的小华后天的测试成绩也一定优秀C .从能被2整除的数中,随机抽取一个数能被8整除D .从10本图书中随机抽取一本是小说3.下列事件中,确定事件是( )A .向量BC 与向量CD 是平行向量B 40=有实数根;C .直线()20y ax a =+≠与直线23y x =+相交D .一组对边平行,另一组对边相等的四边形是等腰梯形4.下列事件中,是必然事件的是( ) A .多边形的外角和等于360° B .车辆随机到达一个路口,遇到红灯 C .如果a 2=b 2,那么a =bD .掷一枚质地均匀的硬币,正面向上 5.下列事件为必然事件的是( ) A .掷一枚硬币,正面朝上 B .打开电视机,正在播放动画片C .三根长度为2cm 、3cm 、5cm 的木棒首尾相接能摆成三角形D .两角及一边对应相等的两个三角形全等 6.下列事件中,是确定事件的是( ) A .车辆随机经过一个路口,遇到红灯 B .三条线段能组成一个三角形C .将油滴入水中,油会浮在水面D .掷一枚质地均匀的骰子,掷出的点数是质数7.在一个不透明的口袋中装有红、黄、蓝三种颜色的球,如果口袋中有 5 个红球,且摸出红球的概率为13,那么袋中总共球的个数为() A .15 个B .12 个C .8 个D .6 个8.如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .16B .13C .12D .239.一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小林在袋中放入10个与红球形状大小完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复试验后发现,摸到红球的频率稳定在,则袋中的红球个数约为( ) A .6B .16C .22D .2410.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计得到凸面向上的次数为420次,凸面向下的次数为580次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为( ) A .0.42 B .0.50C .0.58D .0.7211.下列事件:(1)打开电视机,正在播放新闻; (2)下个星期天会下雨;(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1; (4)一个有理数的平方一定是非负数; (5)若a ,b 异号,则0a b +<; 属于确定事件的有( )个. A .1B .2C .3D .412.以下事件为必然事件的是( )A .掷一枚质地均匀的骰子,向上一面的点数小于6B .多边形的内角和是360︒C .二次函数的图象不过原点D .半径为2的圆的周长是4π二、填空题13.一个袋中装有m 个红球,10个黄球,n 个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m 与n 的关系是________. 14.一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为_____.15.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下: 评价条数 等级 餐厅五星四星三星二星一星合计甲53821096129271000乙460187154169301000丙4863888113321000芸选择在________(填"甲”、“乙"或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.16.一个口袋里有相同的红、绿、黄三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是14,则任意摸出一个黄球的概率是_____.17.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是_______.18.如图:同学们在操场的一个圆形区域内玩投掷沙包的游戏,圆形区域由5个过同一点且半径不同的圆组成.经过多次实验,发现沙包如果都能落在区域内时,落在2、4两个阴影内的概率分别是0.36和0.21,设最大的圆的直径是5米,则1、3、5三个区域的面积和是_____.19.一袋中装有5个红球、4个白球和3个黄球,每个球除颜色外都相同.从中任意摸出一个球,则:P(摸到红球)=______,P(摸到白球)=_______.20.一个不透明的盒子中装有3个红球,2个黄球,这些球除了颜色外其余都相同,从中随机摸出3个小球,则事件“所摸3个球中必含一个红球”是_____(填“必然事件”、“随机事件”或“不可能事件”)三、解答题21.口袋里有红,黄,绿,三种颜色的球,这些球除颜色外完全相同,其中有红球4个,绿球5个,从中任意摸出一个球是绿色的概率是14.求:(1)口袋里黄球的个数;(2)任意摸出一个球是黄球的概率.22.同时抛掷两枚材质均匀的正方体骰子,(1)通过画树状图或列表,列举出所有向上点数之和的等可能结果;(2)求向上点数之和为8的概率1P;(3)求向上点数之和不超过5的概率2P.23.在一个不透明的袋子中装有 4 个红球和 6 个黄球,这些球除颜色外都相同,将袋子中的球充分摇匀后,随机摸出一球.(1)分别求摸出红球和摸出黄球的概率(2)为了使摸出两种球的概率相同,再放进去 8 个同样的红球或黄球,那么这 8 个球中红球和黄球的数量分别是多少?24.将表示下列事件发生的概率的字母标在下图中:(1)投掷一枚骰子,掷出7点的概率1P;(2)在数学测验中做一道四个选项的选择题(单选题),由于不知道那个是正确选项,现任选一个,做对的概率2P;(3)袋子中有两个红球,一个黄球,从袋子中任取一球是红球的概率3P;(4)太阳每天东升西落4P;(5)在1---100之间,随机抽出一个整数是偶数的概率5P.25.“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了的统计图,请回答下列问题:(1)这次抽查的家长总人数是多少?(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生,则抽到持哪一类态度学生的可能性大?26.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时:(1)求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为25,向左转和直行的频率均为310.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据题意逐项分析,即可求解.【详解】解:A.“抛掷一枚质地均匀的硬币两次,必有一次正面朝上”,不一定发生,不是必然事件,判断错误,不合题意;B. “汽车累积行驶10000km,从未出现故障”,有可能发生,是随机事件,判断错误,不合题意;C. 湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨,70%意味着降雨的可能性较大,但不一定下雨,判断错误,不合题意;a ”是必然事件,判断正确,符合题意.D. “0故选:D【点睛】本题考查了必然事件、不可能事件、可能性大小等知识,理解题意,熟知相关概念,知识,理解可能性的意义是解题关键.2.A解析:A【分析】必然发生的事件是必然事件,根据定义解答A.【详解】A、明天早晨,大家能看到太阳从东方冉冉升起是必然事件;B、成绩一直优秀的小华后天的测试成绩也一定优秀是随机事件;C、从能被2整除的数中,随机抽取一个数能被8整除是随机事件;D、从10本图书中随机抽取一本是小说是随机事件;故选:A.【点睛】此题考查必然事件定义,熟记定义、理解必然事件与随机事件发生的可能性的大小是解题的关键.3.B解析:B根据“必然事件和不可能事件统称确定事件”逐一判断即可. 【详解】A. 向量BC 与向量CD 是平行向量,是随机事件,故该选项错误;B. 40=有实数根,是确定事件,故该选项正确;C. 直线()20y ax a =+≠与直线23y x =+相交,是随机事件,故该选项错误;D. 一组对边平行,另一组对边相等的四边形是等腰梯形,是随机事件,故该选项错误; 故选:B . 【点睛】本题主要考查确定事件,掌握确定事件和随机事件的区别是解题的关键.4.A解析:A 【分析】根据事件发生的可能性大小判断相应事件的即可. 【详解】解:A 、多边形的外角和等于360°,是必然事件; B 、车辆随机到达一个路口,遇到红灯,是随机事件; C 、如果a 2=b 2,那么a =b ,是随机事件;D 、掷一枚质地均匀的硬币,正面向上,是随机事件; 故答案为A . 【点睛】本题考查了随机事件,解决本题的关键是正确理解必然事件、不可能事件、随机事件的概念.5.D解析:D 【分析】根据事件发生的可能性大小判断相应事件的类型即可. 【详解】A .掷一枚硬币,正面朝上是随机事件,;B .打开电视机,正在播放动画片是随机事件;C .三根长度为2cm 、3cm 、5cm 的木棒首尾相接能摆成三角形是不可能事件;D .两角及一边对应相等的两个三角形全等是必然事件. 故选D . 【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A选项:车辆随机经过一个路口,遇到红灯,可能事件;B选项:三条线段能组成一个三角形,可能事件;C选项:将油滴入水中,油会浮在水面,确定事件;D选项:掷一枚质地均匀的骰子,掷出的点数是质数,可能事件;故选:C.【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.A解析:A【解析】【分析】根据红球的概率公式列出方程求解即可.【详解】解:根据题意设袋中共有球m个,则513 m=所以m=15.故袋中有15个球.故选:A.【点睛】本题考查了随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.8.C解析:C【解析】【分析】利用轴对称图形的定义得出符合题意的图形,再利用概率公式求出答案.【详解】如图所示:当涂黑②④⑤时,与图中阴影部分构成轴对称图形,则构成轴对称图形的概率为:31 62 =故选:C.此题主要考查了几何概率以及轴对称图形的定义,正确得出符合题意的图形是解题关键.9.A解析:A【解析】【分析】根据口袋中有10个白球,利用红色小球在总数中所占比例得出与实验比例应该相等求出即可.【详解】解:设袋中的红球的个数为x,根据题意,得:解得:x=6,经检验:x=6是原分式方程的解,∴袋中红球的个数为6,故选:A.【点睛】本题考查用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解题关键.10.A解析:A【解析】【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【详解】∵抛掷同一枚啤酒瓶盖420+580=1000次.经过统计得“凸面向上”的次数约为420次,∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为420=0.42,1000故选A.【点睛】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率.11.B解析:B【分析】根据事件发生的可能性大小逐一判断相应事件的类型,即可得答案.【详解】(1)打开电视机,正在播放新闻是随机事件,(2)下个星期天会下雨是随机事件,(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1是不可能事件,是确定事件, (4)一个有理数的平方一定是非负数是确定事件, (5)若a 、b 异号,则a+b <0是随机事件. 综上所述:属于确定事件的有(3)(4),共2个, 故选:B . 【点睛】本题考查的是必然条件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握基础知识是解题的关键.12.D解析:D 【分析】必然事件是指一定会发生的事件,概率为1,根据该性质判断即可. 【详解】掷一枚质地均匀的骰子,每一面朝上的概率为16,而小于6的情况有5种,因此概率为56,不是必然事件,所以A 选项错误; 多边形内角和公式为()2180n -︒,不是一个定值,而是随着多边形的边数n 的变化而变化,所以B 选项错误;二次函数解析式的一般形式为2y ax bx c =++()0a ≠,而当c=0时,二次函数图象经过原点,因此不是必然事件,所以C 选项错误;圆周长公式为2C r π=,当r=2时,圆的周长为4π,所以D 选项正确. 故选D . 【点睛】本题考查了必然事件的概念,关键是根据不同选项所包含的知识点的概念进行判断对错;必然事件发生的概率为1,随机事件发生的概率为0<P<1,不可能事件发生的概率为0.二、填空题13.m+n =10【分析】直接利用概率相同的频数相同进而得出答案【详解】∵一个袋中装有m 个红球10个黄球n 个白球摸到黄球的概率与不是黄球的概率相同∴m 与n 的关系是:m+n =10故答案为m+n =10【点睛】解析:m +n =10.【分析】直接利用概率相同的频数相同进而得出答案. 【详解】∵一个袋中装有m 个红球,10个黄球,n 个白球,摸到黄球的概率与不是黄球的概率相同,∴m与n的关系是:m+n=10.故答案为m+n=10.【点睛】此题主要考查了概率公式,正确理解概率求法是解题关键.14.【分析】小敏第一次从布袋中摸出一个红球的概率为第二次从布袋中摸出一个红球的概率为据此可得两次摸出的球都是红球的概率【详解】∵小敏第一次从布袋中摸出一个红球的概率为第二次从布袋中摸出一个红球的概率为∴解析:16 81.【分析】小敏第一次从布袋中摸出一个红球的概率为49,第二次从布袋中摸出一个红球的概率为49,据此可得两次摸出的球都是红球的概率.【详解】∵小敏第一次从布袋中摸出一个红球的概率为49,第二次从布袋中摸出一个红球的概率为49,∴两次摸出的球都是红球的概率为:49×49=1681.故答案为16 81.【点睛】本题主要考查了概率的计算,用到的知识点为:概率=所求情况数与总情况数之比.15.丙【分析】不低于四星即四星与五星的和居多为符合题意的餐厅【详解】不低于四星即比较四星和五星的和丙最多故答案是:丙【点睛】考查了可能性的大小和统计表解题的关键是将问题转化为比较四星和五星的和的多少解析:丙【分析】不低于四星,即四星与五星的和居多为符合题意的餐厅.【详解】不低于四星,即比较四星和五星的和,丙最多.故答案是:丙.【点睛】考查了可能性的大小和统计表.解题的关键是将问题转化为比较四星和五星的和的多少.16.【解析】【分析】由一个口袋里有相同的红绿黄三种颜色的小球其中有6个红球5个绿球若任意摸出一个绿球的概率是可求得球的总个数继而求得黄球的个数然后利用概率公式求解即可求得答案【详解】解:∵一个口袋里有相解析:9 20【解析】【分析】由一个口袋里有相同的红、绿、黄三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是14,可求得球的总个数,继而求得黄球的个数,然后利用概率公式求解即可求得答案.【详解】解:∵一个口袋里有相同的红、绿、黄三种颜色的小球,其中有6个红球,5个绿球.任意摸出一个绿球的概率是14,∴共有球:5÷14=20(个),∴黄球有:20﹣6﹣5=9(个),∴任意摸出一个黄球的概率是:920.故答案为:9 20.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.17.【解析】试题分析:抽出的数字可能是1234总共有4种结果其中是奇数的结果有2种所以抽出的数字是奇数的概率是故答案为考点:概率的计算解析:【解析】试题分析:抽出的数字可能是1,2,3,4,总共有4种结果,其中是奇数的结果有2种,所以抽出的数字是奇数的概率是12.故答案为12.考点:概率的计算.18.6875πm2【解析】【分析】根据题意可得大圆的面积再由几何概率的意义可得第24两个阴影的面积所占的比例进而可得135三个区域的面积和占的比例计算可得其面积之和【详解】根据题意得最大的圆的直径是5米解析:6875πm2.【解析】【分析】根据题意,可得大圆的面积,再由几何概率的意义,可得第2、4两个阴影的面积所占的比例,进而可得1、3、5三个区域的面积和占的比例,计算可得其面积之和.【详解】根据题意得,最大的圆的直径是5米,则大圆的面积为6.25πm2,又有落在2、4两个阴影内的概率分别是0.36和0.21,则第2、4部分的面积和占总面积的0.36+0.21=0.57,即57%,则1、3、5三个区域的面积占总面积的1-0.57=0.43,即43%,故1、3、5三个区域的面积和为6.25π×0.43=2.6875π m2.故答案是:2.6875π m2.【点睛】考查了利用概率解决问题,解题关键是利用:部分数目=总体数目乘以相应概率.19.【解析】∵有5个红球4个白球和3个黄球∴总球数是:5+4+3=12(个)∴P(摸到红球)=;P(摸到白球)==;故答案为:解析:51213【解析】∵有5个红球、4个白球和3个黄球,∴总球数是:5+4+3=12(个),∴P(摸到红球)= 512;P(摸到白球)=412=13;故答案为:512,13.20.随机事件【解析】试题分析:∵盒子中装有3个红球2个黄球∴从中随机摸出3个小球则事件所摸3个球中必含一个红球是随机事件故答案为随机事件考点:随机事件解析:随机事件.【解析】试题分析:∵盒子中装有3个红球,2个黄球,∴从中随机摸出3个小球,则事件“所摸3个球中必含一个红球”是随机事件,故答案为随机事件.考点:随机事件.三、解答题21.(1)口袋中黄球有11个;(2)11 20.【解析】【分析】(1)设有x个黄球,用绿球的个数除总数等于14,即可解答(2)用黄球个数除总数即可解答【详解】(1)设有x个黄球,根据题意,得:51 544x=++,解得:x=11,即口袋中黄球有11个;(2)∵袋子中共有11+4+5=20个小球,其中黄球有11个,∴任意摸出一个球是黄球的概率为1120.【点睛】此题考查概率公式,难度不大22.(1)列表见解析,共有36种等可能的结果;(2)15 36P=(3)25 18P=【解析】【分析】(1)首先根据题意列出表格,注意在列表的时候做到不重不漏,然后由表格求得所有等可能的结果;(2)由(1)可求得向上点数之和为8的情况,再利用概率公式即可求得答案;(3)由(1)可求得向上点数之和不超过5的情况,再利用概率公式即可求得答案.【详解】解:(1)列表得:(2)∵向上点数之和为8的有5种情况,∴15 36P=;(3)∵向上点数之和不超过5的有10种情况,∴2105 3618P==.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.23.(1)P(摸到红球)=,P(摸到黄球)=;(2)5 个, 3 个.【解析】分析:(1)直接利用概率公式计算即可求出摸出的球是红球和黄球的概率;(2)设放入红球x个,则黄球为(8−x)个,由摸出两种球的概率相同建立方程,解方程即可求出8个球中红球和黄球的数量分别是多少.详解:(1)∵袋子中装有4个红球和6个黄球,∴随机摸出一球是红球和黄球的概率分别是:P(摸到红球)=,P(摸到黄球)=;(2)设放入红球x个,则黄球为(8−x)个,由题意列方程得:解得:x=5.所以这8个球中红球和黄球的数量分别应是5个和3个.点睛:本题考查的是求随机事件的概率,解决这类题目要注意具体情况具体对待.用到的知识点为:可能性等于所求情况数与总情况数之比.24.【解析】试题分析:(1)根据骰子没有7点,所以这种情况不可能发生,可知概率为0;(2)选择题的答案是4选1,因此其概率为14;(3)袋子中摸到红球的概率为23;(4)太阳的东升西落是必然事件,因此其概率为1;(5)由1---100之间有50个偶数可知随机抽取一个数为偶数的概率为501 1002=.试题考点:概率25.(1)这次调查了100个家长;(2)图形见解析;(3)持“赞成”态度的学生估计约有300个.【解析】试题分析:(1)根据“无所谓”的人数除以占的百分比得到调查的总家长数;(2)由调查家长的总数求出“反对”的人数,补全条形统计图,求出“反对”与“赞成”的百分比,补全扇形统计图即可;(3)求出学生中“赞成”的百分比,乘以1200即可得到结果.试题(1)根据题意得:20÷20%=100(个),则这次调查了100个家长;(2)家长“反对”的人数为100﹣(10+20)=70(个);占的百分比为70÷100=70%;“赞成”占的百分比为10÷100=10%;补全统计图,如图所示:(3)根据题意得:1200×=300(个),则持“赞成”态度的学生估计约有300个,考点:1、条形统计图;2、扇形统计图;3、用样本估计总体26.(1)19;(2)727;(3)左转绿灯亮时间为90×310=27(秒),直行绿灯亮时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒).【分析】(1)首先根据题意画出树状图,由树状图即可求得所有等可能的结果与三辆车全部同向而行的情况,然后利用概率公式求解即可求得答案;(2)由(1)中的树状图即可求得至少有两辆车向左转的情况,然后利用概率公式求解即可求得答案;(3)由汽车向右转、向左转、直行的概率分别为233,,51010,即可求得答案.【详解】解:(1)分别用A,B,C表示向左转、直行,向右转;根据题意,画出树形图:∵共有27种等可能的结果,三辆车全部同向而行的有3种情况,∴P(三车全部同向而行)=19;(2)∵至少有两辆车向左转的有7种情况,∴P(至少两辆车向左转)=727;(3)∵汽车向右转、向左转、直行的概率分别为233 ,, 51010,∴在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90×310=27(秒),直行绿灯亮时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒).【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意:概率=所求情况数与总情况数之比.。

七年级数学下册第六章概率初步测试题

七年级数学下册第六章概率初步测试题

七年级数学下册第六章概率初步测试题一、选择题(每题3分,共30分)1. 以下事情发作的概率为0的是( )A.小明的爸爸买体彩中了大奖 B.小强的体重只要25公斤 C.未来的某天会有370天 D .未来三天必有强降雨2.小明用一枚平均的硬币实验,前7次掷得的结果都是下面向上,假设将第8次掷得下面向上的概率记为P,那么( )A.P=0.5 B.P0.5 C.P0.5 D.无法确定3. 一幅扑克去掉大小王后,从中任抽一张是红桃的概率是( )A. B. C. D.4.一个袋中有a只红球,b只红球,它们除颜色不同外,其它均相反,假定从中摸出一个球是红球的概率为 ( )A. B. C.D .5. 小狗在如下图的方砖上走来走去,最终停在黑色方砖上的概率为( )A. B. C. D .6. 一次抽奖活动中,印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的时机是( )A. B. C. D.7.四张卡片区分标有0、1、2、3的数字,抽出一张的数字是偶数的概率为( )A. B. C. D.28.以下说法正确的选项是( ) A.小强往年12岁,明年百分之二百地是13岁. B.同时抛掷两枚硬币,同是正面或同是反面朝上的能够性比一正一反大.C.恣意掷出一枚骰子,点数6朝上的概率与点数1朝上的概率相反.D.盒子里装有10个完全相反的纸团,其中只要一个纸团内写有奖,而另九个纸团内均为谢谢惠顾,10名参与者可从中任摸一个纸团,那么先摸的比后摸的中奖概率要大.9.图中有四个可以自在转动的转盘,每个转盘被分红假定干等分,转动转盘,当转盘中止后,指针指向白色区域的概率相反的是( ).A.转盘2与转盘3B. 转盘2与转盘4C. 转盘3与转盘4D. 转盘1与转盘410. 李明用6个球设计了一个摸球游戏,共有四种方案,一定不能成功的是( )A.摸到黄球、红球的概率是B.摸到黄球的概率是,摸到红球、白球的概率都是C.摸到黄球、红球、白球的概率区分为、、D.摸到黄球、红球、白球的概率都是二.填空题:(每题3分,共30分)11. 小明在一个小正方体的六个面上区分标了1、2、3、4、5、6六个数字,随意地掷出小正方体,那么P(掷出地数字小于7)=________. P(掷出地数字等于7)=________.12. 王刚设计了一个转盘游戏:随意转动转盘,使指针最后落在白色区域的概率为1/3,假设他将转盘等分红12份,那么白色区域应占的份数是 .13. 甲、乙两人下棋,甲赢的概率是0.5(填一定或不一定)14. 某商场举行有奖销售活动,方法如下:凡购货满100元者得奖券一张,多购多得.每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,某人买了120元的商品,那他中奖的概率应该是 .15.同地掷出两枚硬币,那么同为正面朝上的概率为 .16.有大小两个同心圆,它们的半径区分是1和3,飞镖钉在小圆中的概率是17.以下三个事情,它们的概率区分为多少,填在前面的横线上。

(典型题)初中数学七年级数学下册第六单元《概率初步》测试题(有答案解析)

(典型题)初中数学七年级数学下册第六单元《概率初步》测试题(有答案解析)

一、选择题1.下列事件为必然事件的是()A.打开电视,正在播放新闻B.买一张电影票,座位号是奇数号C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上2.下列事件为必然事件的是()A.掷一枚硬币,正面朝上B.打开电视机,正在播放动画片C.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形D.两角及一边对应相等的两个三角形全等3.某林业部门要考察某种幼树在一定条件下的移植成活率,下图是这种幼树在移植过程中成活情况的一组数据统计结果.下面三个推断:①当移植棵数是1500时,该幼树移植成活的棵数是1356,所以“移植成活”的概率是0.904;②随着移植棵数的增加,“移植成活”的频率总在0.880附近摆动,显示出一定的稳定性,可以估计这种幼树“移植成活”的概率是0.880;③若这种幼树“移植成活”的频率的平均值是0.875,则“移植成活”的概率是0.875.其中合理的是()A.①③B.②③C.①D.②4.下列事件中,是必然事件的为()A.明天会下雨B.x是实数,x2<0C.两个奇数之和为偶数D.异号两数相加,和为负数5.下列事件是必然事件的是()A.长度分别是3,5,6cm cm cm的三根木条能组成一个三角形B.某彩票中奖率是1%,买100张一定会中奖C.2019年女足世界杯,德国队一定能夺得冠军D.打开电视机,正在播放动画片6.下列说法正确的是()A.要了解我市居民的低碳生活状况,适宜采用抽样调查的方法B.一组数据2,2,3,6的众数和中位数都是2C.“掷一枚硬币正面朝上的概率是12”,表示每抛硬币2次就有1次正面朝上D.随机抽取甲乙两名同学的5次数学成绩,平均分都是90分,方差分别是S甲2=5,S乙2=10,说明乙的成绩较为稳定7.下列说法正确的是( )A .蜡烛在真空中燃烧是一个随机事件B .在射击比赛中,运动员射中靶心和没有射中靶心的可能性相同C .某抽奖游戏的中奖率为1%,说明只有抽奖100次,才能中奖1次D .天气预报明天降水概率为80%,表示明天下雨的可能性较大8.九年级一班在参加学校4×100米接力赛时,安排了甲,乙,丙,丁四位选手,他们比赛的顺序由抽签随机决定,则丙跑第一棒的概率为( )A .14B .18C .112D .1169.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是( )A .1B .67C .12D .010.下列事件是必然事件的是( ).A .购买一张彩票中奖B .通常加热到100℃时,水沸腾C .明天一定是晴天D .任意一个三角形,其内角和是360°11.下列事件:(1)打开电视机,正在播放新闻;(2)下个星期天会下雨;(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1;(4)一个有理数的平方一定是非负数;(5)若a ,b 异号,则0a b +<;属于确定事件的有( )个.A .1B .2C .3D .412.如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是( )A .19B .16C .29D .13二、填空题13.任意掷一枚骰子,面朝上的点数大于2的可能性是_____.14.如图,在4×4的正方形网络中,已将部分小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是________.15.有一小球在如图所示的地板上自由滚动,地板上的每个三角形均为等边三角形,则小球在地板上最终停留在黑色区域的概率为__.16.一副没有大小王的扑克,共 52 张,从中任意抽取一张牌恰好是红桃的机会为____. 17.如图是一个可以自由转动的转盘,被等分成六个扇形.请在转盘适当的扇形区域内涂上阴影,使自由转动的该转盘停止转动时,指针指向阴影区域的概率是_____.18.一个不透明的袋子中装有除颜色外完全相同的三个黄球和两个红球,现从中随机摸出球,则摸出的球是红球的概率等于______.19.如图,A、B是边长1的小正方形组成的网格上的两个格点,在格点上任意放置点C (除去A、B两点),以A、B、C三点为顶点能画出三角形的概率是_____.20.香洲区某所中学下午安排三节课,分别是数学、体育、物理,把数学课安排在第一节课的概率为____.三、解答题21.(1)如图1是一个可以自由转动的转盘,转动转盘,当转盘停止转动时,指针落在红色区域和白色区域的概率分别是多少?(2)请在图2中设计一个转盘:自由转动这个转盘,当转盘停止转动时,指针落在红色区域的概率为58,落在黄色区域的概率为14,落在白色区域的概率为18.22.在一个不透明的袋中装有3个绿球,5个红球和若干白球,它们除颜色外其他都相同,将球搅匀,从中任意摸出一个球.(1)若袋内有4个白球,从中任意摸出一个球,是绿球的概率为,是红球的概率为,是白球的概率为.(2)如果任意摸出一个球是绿球的概率是15,求袋中有几个白球?23.如图所示,转盘被等分..成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?(2)若自由转动转盘,当它停止转动时,指针指向的数小于或等于4的概率是多少?24.某中学为了调查本校初2021级学生的跳绳水平,抽取了某班60名学生的跳绳成绩(满分为10分,分数均为自然数),绘制如下两幅不完整的统计图.请根据统计图的信息,回答下列问题.(1)在扇形统计图中,a的值是,成绩为10分所在扇形的圆心角是度;(2)补全条形统计图;(3)若从该班男生中随机抽取一人,求这名男生跳绳成绩不是10分的概率.25.(7分)在平面直角坐标系xOy中,直线y=-x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数l、2、3、、的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,再在剩下的4张卡片中任取一张,将该卡片上的数作为点P的纵坐标,请用所学的知识求出点P落在△AOB内部的概率.26.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时:(1)求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为25,向左转和直行的频率均为310.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、打开电视,正在播放新闻,是随机事件,故A错误;B、买一张电影票,座位号是奇数号,是随机事件,故B错误;C、任意画一个三角形,其内角和是180°,是必然事件,故C正确;D、掷一枚质地均匀的硬币,正面朝上,是随机事件,故D错误;故选:C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.D解析:D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A.掷一枚硬币,正面朝上是随机事件,;B.打开电视机,正在播放动画片是随机事件;C.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形是不可能事件;D.两角及一边对应相等的两个三角形全等是必然事件.故选D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.D解析:D【分析】根据统计图中的数据和频率与概率的关系,可以判断各个小题中的结论是否成立,从而可以解答本题.【详解】当移植棵数是1500时,该幼树移植成活的棵数是1356,所以此时“移植成活”的频率是0.904,但概率不一定是0.904,故①错误,随着移植棵数的增加,“移植成活”的频率总在0.880附近摆动,显示出一定的稳定性,可以估计这种幼树“移植成活”的概率是0.880,故②正确,若这种幼树“移植成活”的频率的平均值是0.875,则“移植成活”的概率也不一定是0.875,因为某一次或几次的频率太高或太低会影响估计概率,概率是一件事情发生的可能性,故③错误,故选:D.【点睛】此题考查频率与概率,统计图,解题关键在于看懂图中数据.4.C解析:C【解析】【分析】直接利用随机事件以及必然事件、不可能事件分别分析得出答案.【详解】A、明天会下雨是随机事件,故此选项错误;B、x是实数,x2<0,是不可能事件,故此选项错误;C、两个奇数之和为偶数,是必然事件,正确;D、异号两数相加,和为负数是随机事件,故此选项错误.故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关时间的定义是解题关键.5.A解析:A【解析】【分析】必然事件是一定会发生的事件,据此求解即可.【详解】A、长度分别是3cm,5cm,6cm的三根木条能组成一个三角形,是必然事件;B、某彩票中奖率是1%,买100张一定会中奖是随机事件;C、2019年女足世界杯,德国队一定能夺得冠军,是随机事件;D、打开电视机,正在播放动画片,是随机事件,故选:A.【点睛】此题考查了概率的意义及随机事件的知识,必然事件是一定会发生的事件.6.A解析:A【解析】【分析】根据抽样调查的可靠性和适用情况、众数和中位数的定义、概率的意义及方差的意义逐一判断即可得.【详解】A.要了解我市居民的低碳生活状况,适宜采用抽样调查的方法,此选项正确;B.一组数据2,2,3,6的众数是2,中位数是2.5,此选项错误;C.“掷一枚硬币正面朝上的概率是”,表示每抛硬币2次可能有1次正面朝上,此选项错误;D.随机抽取甲乙两名同学的5次数学成绩,平均分都是90分,方差分别是S甲2=5,S乙2=10,说明甲的成绩较为稳定;故选A.【点睛】本题主要考查概率的意义,解题的关键是掌握抽样调查的可靠性和适用情况、众数和中位数的定义、概率的意义及方差的意义.7.D解析:D【解析】【分析】根据概率的定义,事件的定义一一判断即可.【详解】解:A、蜡烛在真空中燃烧是一个随机事件,错误,蜡烛在真空中燃烧是一个不可能事件.B、在射击比赛中,运动员射中靶心和没有射中靶心的可能性相同,错误,射中靶心和没有射中靶心的两种情况的机会不等,因而不是等可能事件.C、某抽奖游戏的中奖率为1%,说明只有抽奖100次,才能中奖1次,错误,抽100次奖只能推断为:有可能中奖一次,也有可能一次也不中,还有可能中好几次,属于不确定事件中的可能性事件,而不是买100张一定会一等中奖.D、天气预报明天降水概率为80%,表示明天下雨的可能性较大,正确.故选D.【点睛】本题考查概率,事件的定义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.A解析:A【解析】【分析】根据概率公式直接进行解答即可.【详解】解:∵有甲,乙,丙,丁四位选手,∴丙跑第一棒的概率为14;故选:A.【点睛】本题考查概率公式.随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.9.C解析:C【解析】【分析】根据大量重复试验事件发生的频率接近事件发生的可能性的大小(概率),时间确定了则概率是不变的,而频率是改变的,根据此特点可得答案.【详解】解:掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是1 2 .故选C.【点睛】本题考查概率,大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).10.B解析:B【分析】根据随机事件的分类,对各个选项逐个分析,即可得到答案.【详解】购买一张彩票中奖,是不确定事件,故选项A错误;通常加热到100℃时,水沸腾,是必然事件,故选项B正确;明天一定是晴天,是不确定事件,故选项C错误;任意一个三角形,其内角和是360°,是不可能事件,故选项D错误;故选:B.【点睛】本题考查了随机事件的知识;解题的关键是熟练掌握随机事件的分类,从而完成求解.11.B解析:B【分析】根据事件发生的可能性大小逐一判断相应事件的类型,即可得答案.【详解】(1)打开电视机,正在播放新闻是随机事件,(2)下个星期天会下雨是随机事件,(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1是不可能事件,是确定事件,(4)一个有理数的平方一定是非负数是确定事件,(5)若a、b异号,则a+b<0是随机事件.综上所述:属于确定事件的有(3)(4),共2个,故选:B.【点睛】本题考查的是必然条件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握基础知识是解题的关键.12.D解析:D【分析】直接利用轴对称图形的性质分析得出答案.【详解】如图所示:当1,2两个分别涂成灰色,新构成灰色部分的图形是轴对称图形,故新构成灰色部分的图形是轴对称图形的概率是:21 63 .故选D.【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.二、填空题13.【分析】根据掷得面朝上的点数大于2情况有4种进而求出概率即可【详解】解:掷一枚均匀的骰子时有6种情况出现点数大于2的情况有4种掷得面朝上的点数大于2的概率是=;故填:【点睛】此题考查了概率的求法:如解析:2 3【分析】根据掷得面朝上的点数大于2情况有4种,进而求出概率即可.【详解】解:掷一枚均匀的骰子时,有6种情况,出现点数大于2的情况有4种,掷得面朝上的点数大于2的概率是46=23;故填:23.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.14.【分析】根据概率的计算公式解答【详解】∵共有16个小正方形其中有4个涂上阴影∴小虫落到阴影部分的概率是故答案为:【点睛】此题考查简单事件的概率计算掌握事件发生的所有可能性及该事件可能发生的次数是解题解析:1 4【分析】根据概率的计算公式解答.【详解】∵共有16个小正方形,其中有4个涂上阴影,∴小虫落到阴影部分的概率是41164,故答案为:14.【点睛】此题考查简单事件的概率计算,掌握事件发生的所有可能性及该事件可能发生的次数是解题的关键.15.【分析】先求出黑色等边三角形在整个地板中所占的比值再根据其比值即可得出结论【详解】∵由图可知黑色等边三角形4块共有16块等边三角形地板∴黑色等边三角形地板在整个地板中所占的比值∴小球停留在黑色区域的解析:1 4【分析】先求出黑色等边三角形在整个地板中所占的比值,再根据其比值即可得出结论.【详解】∵由图可知,黑色等边三角形4块,共有16块等边三角形地板,∴黑色等边三角形地板在整个地板中所占的比值41164==,∴小球停留在黑色区域的概率是14.故答案为:14.【点睛】本题考查了几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.16.【解析】【分析】由一副扑克牌(除大小王外)共52张红桃的有13张直接利用概率公式求解即可求得答案【详解】解:∵一副扑克牌(除大小王外)共52张红桃的有13张∴一副扑克牌(除大小王外)共52张从中随意解析:1 4【解析】【分析】由一副扑克牌(除大、小王外)共52张,红桃的有13张,直接利用概率公式求解即可求得答案.【详解】解:∵一副扑克牌(除大、小王外)共52张,红桃的有13张,∴一副扑克牌(除大、小王外)共52张,从中随意抽一张是红桃的概率是:131524=.故答案为:1 4 .【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.17.【解析】【分析】根据几何概率的求法:指针落在阴影区域的概率就是阴影区域的面积与总面积的比值【详解】如图所示:因为整个圆面被平均分成6个部分其中阴影部分占3份时指针落在阴影区域的概率为:【点睛】本题考解析:1 2【解析】【分析】根据几何概率的求法:指针落在阴影区域的概率就是阴影区域的面积与总面积的比值.【详解】如图所示:因为整个圆面被平均分成6个部分,其中阴影部分占3份时,指针落在阴影区域的概率为: 3162,【点睛】本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率. 18.【解析】【分析】直接根据概率公式求解:摸出的球是红球的概率=【详解】解:摸出的球是红球的概率=故答案为【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结解析:2 5【解析】【分析】直接根据概率公式求解:摸出的球是红球的概率=25.【详解】解:摸出的球是红球的概率=25.故答案为25.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数..19.3134【解析】【分析】在5×5的网格中共有36个格点除去AB两点有34个格点再找到以ABC三点为顶点画出三角形的格点数即可利用概率公式求解【详解】在5×5的网格中共有36个格点除去AB两点有34个解析:【解析】【分析】在5×5的网格中共有36个格点,除去A、B两点有34个格点,再找到以A、B、C三点为顶点画出三角形的格点数,即可利用概率公式求解.【详解】在5×5的网格中共有36个格点,除去A. B两点有34个格点,而以A. B. C三点为顶点画出三角形的格点有31个,故以A. B. C三点为顶点能画出三角形的概率是31÷34=.故答案为:.【点睛】本题考查的知识点是概率公式,解题的关键是熟练的掌握概率公式.20.【解析】试题分析:根据随机事件概率大小的求法找准两点:①符合条件的情况数目②全部情况的总数二者的比值就是其发生的概率的大小解:把数学课安排在第一节课的概率为故答案为考点:概率公式解析:【解析】试题分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.解:把数学课安排在第一节课的概率为,故答案为考点:概率公式.三、解答题21.(1)13,23;(2)见解析【分析】(1)用红色区域的面积除以圆的面积可得到指针落在红色区域的概率;用白色区域的面积除以圆的面积可得到指针落在白色区域的概率;(2)把圆分成8等份,然后把红色占5份,黄色占2份,白色占1份即可.【详解】解:(1)P(指针落在红色区域)1201 3603︒==︒.P(指针落在白色区域)3601202402 3603603︒︒︒︒︒-===(2)如图:(答案不唯一)【点睛】本是考查的是简单事件的概率问题,掌握概率的计算方法是解决此类问题的关键.22.(1)14,512,13;(2)袋中有7个白球.【解析】【分析】(1)依据有5个红球,3个绿球和4个白球,即可得到任意摸出一个球是绿球的概率,红球的概率,白球的概率;(2)设袋子内有n个白球,依据概率公式列出方程,即可得到白球的数量.【详解】(1)一共有3+5+4=12个球,任意摸出一个球是绿球的概率是312=14,任意摸出一个球是红球的概率是5 12,任意摸出一个球是白球的概率是412=13;故答案为:14,512,13;(2)设袋中有n个白球,则3 35n ++=15,解得:n=7,经检验n=7是分式方程的解,所以,袋中内有7个白球.【点睛】本题考查概率的求法与运用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.23.(1)12;(2)23【解析】【分析】(1)先指出指向数字总共的结果,再指出指向奇数区的结果即可;(2)先指出指向数字总共的结果,再指出指针指向的数小于或等于4的结果即可.【详解】解:(1)自由转动转盘,当它停止转动时,指针指向数字的结果总共有6种,指针指向奇数区的结果有3种,所以指针指向奇数区的概率是12.(2)自由转动转盘,当它停止转动时,指针指向数字的结果总共有6种,指针指向的数小于或等于4的结果有4种,所以指针指向的数不大于4的概率是42 63 =.【点睛】本题考查的是概率,熟练掌握概率是解题的关键.24.(1)10,216; (2)见解析;(3)7 15.【解析】【分析】(1)用8分的人数除以60可求得a的值,用360度乘以10分所占的百分比即可求得答案;(2)分别求出8分以下的女生人数、16分的女生人数,然后补全条形统计图即可;(3)先求出男生的总人数,然后确定出成绩不是10分的人数,根据概率公式进行计算即可.【详解】(1)a%=(2+4)÷60=10%,所以a=10,成绩为10分所在扇形的圆心角是360°×(1-10%-10%-20%)=216°,故答案为:10,216;(2)成绩为8分以下的人数为:60×10=6,其中女生人数为:6-2=4人,成绩为16分的人数为:60×(1-10%-10%-20%)=36,其中女生人数为:36-16=20人,所以补全条形统计图如图所示:(3)男生共有2+4+8+16=30人,其中成绩为10分的有16人,成绩不是10分的有14人,所以从该班男生中随机抽取一人,成绩不是10分的概率是147 3015=.【点睛】本题考查了条形统计图与扇形统计图的综合运用,简单的概率计算,准确识图,从中找到有用的信息是解题的关键.25.1231(2,1)(3,1)(,1)(,1)2(1,2)(3,2)(,2)(,2)3(1,3)(2,3)(,3)(,3)(1,)(2,)(3,)(,)(1,)(2,)(3,)(,)当时,∴点(1,),(1,)在△AOB内部,当时,∴点(2,),(2,)在△AOB内部,当时,∴设上述点在△AOB内部,当时,则点(,1)(,2),(,)在△AOB内部,当时,则点(,1)(,2), (,)在△AOB内点,则点P在△AOB的内部概率P(内部)【解析】试题分析:由列表法得到所有的点,再找出在△AOB内部的点的个数即可.试题由题意得,列表如下:1231(1,2)(1,3)(1,)(1,)2(2,1)(2,3)(2,)(2,)3(3,1)(3,2)(3,)(3,)(,1)(,2)(,3)(,)(,1)(,2)(,3)(,)所有的点共有20个,当x=1时,y=2,点(1,),(1,)在△AOB内部,有2个;当x=2时,y=1,点(2,),(2,)在△AOB内部,有2个;当x=3时,y=0,没有点在△AOB内部,有0个;当x=时,y=,点(,1),(,2),(,)在△AOB内部,有3个;当x=时,y=,点(,1),(,2),(,)在△AOB内部,有3个;可以发现落在△AOB内的点共有10个,所以点P落在△AOB内的概率为=.考点:1.概率公式;2.一次函数的性质.26.(1)19;(2)727;(3)左转绿灯亮时间为90×310=27(秒),直行绿灯亮时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒).【分析】(1)首先根据题意画出树状图,由树状图即可求得所有等可能的结果与三辆车全部同向而行的情况,然后利用概率公式求解即可求得答案;(2)由(1)中的树状图即可求得至少有两辆车向左转的情况,然后利用概率公式求解即可求得答案;(3)由汽车向右转、向左转、直行的概率分别为233,,51010,即可求得答案.【详解】解:(1)分别用A,B,C表示向左转、直行,向右转;根据题意,画出树形图:∵共有27种等可能的结果,三辆车全部同向而行的有3种情况,∴P(三车全部同向而行)=19;(2)∵至少有两辆车向左转的有7种情况,∴P(至少两辆车向左转)=727;(3)∵汽车向右转、向左转、直行的概率分别为233 ,, 51010,∴在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90×310=27(秒),直行绿灯亮时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒).【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意:概率=所求情况数与总情况数之比.。

(必考题)初中数学七年级数学下册第六单元《概率初步》测试(有答案解析)

(必考题)初中数学七年级数学下册第六单元《概率初步》测试(有答案解析)

一、选择题1.投掷一枚质地均匀的硬币4次,其中3次正面向上,1次反面向上,则第5次掷出反面向上的概率为()A.12B.13C.14D.152.下列说法正确的是()A.抛掷一枚质地均匀的硬币两次,必有一次正面朝上B.“汽车累积行驶10000km,从未出现故障”是不可能事件C.湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨D.“0a ”是必然事件3.下列事件为必然事件的是()A.打开电视,正在播放新闻B.买一张电影票,座位号是奇数号C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上4.下列事件为必然事件的是()A.掷一枚硬币,正面朝上B.打开电视机,正在播放动画片C.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形D.两角及一边对应相等的两个三角形全等5.在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、圆、平行四边形、等腰三角形、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关,那么一次过关的概率是()A.B.C.D.6.下列事件中,是必然事件的为()A.明天会下雨B.x是实数,x2<0C.两个奇数之和为偶数D.异号两数相加,和为负数7.下列事件属于必然事件的是( )A.掷一枚均匀的硬币,正面朝上B.车辆行驶到下一路口,遇到绿灯。

C.若a2=b2,则a=b D.若|a|>|b|,则a2>b28.“两个相等的角一定是对顶角”,此事件是()A.不可能事件B.不确定事件C.必然事件D.确定事件9.“学习强国”的英语“Learningpower”中,字母“n”出现的频率是()A.1 B.12C.213D.210.下列词语所描述的事件是必然事件的是()A.拔苗助长B.刻舟求剑C.守株待兔D.冬去春来11.下列事件是随机事件的是()A.太阳东升西落 B.水中捞月 C.明天会下雨 D.人的生命有限12.下列语句中描述的事件必然发生的是()A.15个人中至少有两个人同月出生B.一位同学在打篮球,投篮一次就投中C.在1,2,3,4中任取两个数,它们的和大于7D.掷一枚硬币,正面朝上二、填空题13.某商场为消费者设置了购物后的抽奖活动,总奖项数量若干,小红妈妈在抽奖的时候,各个奖项所占的比例如图,则小红妈妈抽到三等奖以上(含三等奖)的可能性为__________.14.某班有男生和女生各若干,若随机抽取1人,抽到男生的概率是0.4,则抽到女生的概率是__________.15.一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,随机抽取一张,抽中标号为偶数的卡片的概率是_____.16.有5张正面分别写有数字﹣1,-14,0,1,3的卡片,它们除数字不同外全部相同.将它们背面朝上,洗匀后从中随机的抽取一张,记卡片上的数字为a,则使以x为自变量的反比例函数37ayx-=经过二、四象限,且关于x的方程2221111ax x x+=-+-有实数解的概率是_____.17.一个不透明的盒子中装有4个白球,5个红球,这些球除颜色外无其他区别,从这个盒子中随意摸出一个球,摸到红球的可能性的大小是_____.18.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.19.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是___.20.把一副普通扑克牌中的数字2,3,4,5,6,7,8,9,10的9张牌洗均匀后正面向下放在桌面上,从中随机抽取一张,抽出的牌上的数恰为3的倍数的概率是_____.三、解答题21.在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了.请判断以下事情是不确定事件、不可能事件,还是必然事件.()1从口袋中任意取出一个球,是一个白球;()2从口袋中一次任取5个球,全是蓝球;()3从口袋中一次任意取出9个球,恰好红蓝白三种颜色的球都齐了.22.丹尼斯超市举行有奖促销活动:顾客凡一次性购买满300元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被等分成16个扇形,如果转盘停止后,指针正好对准红黄或蓝色区域,顾客就可以分别获得一、二、三等奖奖金依次为60元、50元、40元一次性购物满300元者,如果不摇奖可返还奖金15元.(1)摇奖一次,获一等奖、二等奖、三等奖的概率分别是多少?(2)小李一次性购物满300元他是参与摇奖划算,还是领15元现金划算?请你帮他算算23.一个口袋中放有290个涂有红、黑、白三种色的质地相同的小球,若红球个数是黑球个数的2倍多3个,从袋中任取一个球是白球的概率是1 10.(1)求袋中红球的个数.(2)求从袋中任取一个球是黑球的概率.24.永辉超市进行有奖促销活动.活动规则:购买500元商品就可以获得一次转转盘的机会(转盘分为5个扇形区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以获得该区域相应等级奖品一件.商场工作人员在制作转盘时,将获奖扇形区域圆心角分配如下表:奖次特等奖一等奖二等奖三等奖圆心角1︒36︒53︒150︒促销公告凡购买我商场商品均有可能获得下列大奖:特等奖:彩电一台一等奖:自行车一辆二等奖:圆珠笔一支三等奖:卡通画一张(1)获得圆珠笔的概率是多少?(2)不获奖的概率是多少?(3)如果不用转盘,请设计一种等效试验方案.(要求写清楚替代工具和实验规则)25.请你依据下面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:(1)用树状图(或表格)表示出所有可能的寻宝情况;(2)求在寻宝游戏中胜出的概率.26.在一个不透明的袋子中装有3个红球和6个黄球,每个球除颜色外其余都相同.(1)从中任意摸出1个球,摸到________球的可能性大;(2)如果另拿5个球放入袋中并搅匀,使得从中任意摸出1个球,摸到红球和黄球的可能性大小相等,那么应放入几个红球,几个黄球?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先确定掷硬币共有正面和反面两种可能性,后根据概率计算公式计算即可.【详解】∵掷硬币共有正面和反面两种可能性,∴第5次掷出反面向上的概率为:1;2故选A.【点睛】本题考查了简单概率的计算,准确计算事件的所有等可能性和事件A的等可能性是解题的关键.2.D解析:D【分析】根据题意逐项分析,即可求解.【详解】解:A.“抛掷一枚质地均匀的硬币两次,必有一次正面朝上”,不一定发生,不是必然事件,判断错误,不合题意;B. “汽车累积行驶10000km,从未出现故障”,有可能发生,是随机事件,判断错误,不合题意;C. 湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨,70%意味着降雨的可能性较大,但不一定下雨,判断错误,不合题意;a ”是必然事件,判断正确,符合题意.D. “0故选:D【点睛】本题考查了必然事件、不可能事件、可能性大小等知识,理解题意,熟知相关概念,知识,理解可能性的意义是解题关键.3.C解析:C【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、打开电视,正在播放新闻,是随机事件,故A错误;B、买一张电影票,座位号是奇数号,是随机事件,故B错误;C、任意画一个三角形,其内角和是180°,是必然事件,故C正确;D、掷一枚质地均匀的硬币,正面朝上,是随机事件,故D错误;故选:C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.D解析:D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A.掷一枚硬币,正面朝上是随机事件,;B.打开电视机,正在播放动画片是随机事件;C.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形是不可能事件;D.两角及一边对应相等的两个三角形全等是必然事件.故选D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.D解析:D【解析】【分析】先根据轴对称的性质分别求出5种图象中是轴对称图形的个数,除以总数5即为一次过关的概率.【详解】∵5种图象中,等腰梯形、圆、等腰三角形、菱形4种是轴对称图形,∴一次过关的概率是.故选D.【点睛】此题考查概率公式,轴对称图形,解题关键在于掌握概率计算公式.6.C解析:C【解析】【分析】直接利用随机事件以及必然事件、不可能事件分别分析得出答案.【详解】A、明天会下雨是随机事件,故此选项错误;B、x是实数,x2<0,是不可能事件,故此选项错误;C、两个奇数之和为偶数,是必然事件,正确;D、异号两数相加,和为负数是随机事件,故此选项错误.故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关时间的定义是解题关键.7.D解析:D【解析】【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.根据定义即可解决.【详解】A. 任意掷一枚均匀的硬币,正面朝上是随机事件,故本选项错误;B. 车辆行驶到下一路口,遇到绿灯是随机事件,故本选项错误;C. 若a2=b2,则a=b,也可能a,b互为相反数,所以是随机事件,故本选项错误;D. |a|>|b|,则a2>b2,是必然事件,故本选项正确。

七年级数学下册 第六章《概率初步》测试卷习题课件下册数学课件

七年级数学下册 第六章《概率初步》测试卷习题课件下册数学课件
12/8/2021
13. 如图所示的是正方形花园,四边形 ABGF,DIGH 都是正方形,AB 为 2 米,BC 为 3 米,则小鸟任意落下,
12 落在阴影部分的概率是 25 .
12/8/2021
14. (2018·宿迁)小明和小丽按如下规则做游戏:桌面 上放有 7 根火柴棒,每次取 1 根或 2 根,最后取完者获 胜.若由小明先取,且小明获胜是必然事件,则小明第 一次应该取走火柴棒的根数是 1 .
12/8/2021
A.从一装有 2 个白球和 1 个红球的袋子中任取一 球,取到红球的概率
B.掷一枚正六面体的骰子,出现 1 点的概率 C.抛一枚硬币,出现正面的概率 D.任意写一个整数,它能被 2 整除的概率
12/8/2021
二、填空题(每小题 4 分,共 24 分) 9. (2018·亭湖区二模)成语“守株待兔”反映的事件是 随机 事件(填“必然”“不可能”或“随机”).
血型 A B AB O 人数 12 10 5 23
12/8/2021
(1)这次随机抽取的献血者人数为 50 人,m= 20 ; (2)补全上表中的数据; (3)若这次活动中该市有 3000 人义务献血,请你根据 抽样结果回答:从献血者人群中任抽取一人,其血型是 A 型的概率是多少?并估计这 3000 人中大约有多少人是 A 型血?
“兵”字面朝上
频数
14 a 38 47 52 66 78 88
相应频率 0.7 0.45 0.63 0.59 0.52 b 0.56 0.55
12/8/2021
(1)求数据表中 a,b 的值; (2)画出“兵”字面朝上的频率分布折线图; (3)如果试验继续进行下去,根据上表的数据,这个 试验的频率将稳定在它的概率附近,请你估计这个概率 是多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册概率初步练习题(1)
班级姓名
1.(2015·成都)在本次知识竞赛活动中,A,B,C,D 四所学校表现突出。

现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法,求恰好选到A,B 两所学校的概率。

请用树状图或列表法说明理由.
2.(2014·成都)现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.
(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;
(2)若某项工作只在甲、乙两人中选一人,以下列方式决定由谁参加,规则如下:将四张牌面数字分别为2、3、4、5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?
3.(2013·成都)将本次参赛作品获得A 等级(共4名)的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.请用树状图或列表法说明理由.
4.(2012·成都)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.
5.(2011•成都)某结业考试规定:每位考生先在三个笔试题(题签分别用代码B 1、B 2、B 3表示)中抽取一个,再在三个上机题(题签分别用代码J 1、J 2、J 3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地各抽取一个题签.
(1)用树状图或列表法表示出所有可能的结构;
(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B 1”的下表为“1”)均为奇数的概率.
6.(2010•成都)若A馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.”请用画树状图或列表的方法说明这个规则对双方是否公平.
7.(2009•成都)有一枚均匀的正四面体,四个面上分别标有数字l,2,3,4,小红随机地抛掷一次,把着地一面的数字记为x;另有三张背面完全相同,正面上分别写有数字一2,一l,1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出S=x+y的值.
(1)用树状图或列表法表示出S的所有可能情况;(2)分别求出当S=0和S<2时的概率.
8.(2007•成都)小华与小丽设计了A、B两种游戏:
游戏A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若和为奇数,则小丽获胜.游戏B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.
9.(2004•成都)将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌面上。

(1)随机地抽取一张,求P(奇数);
(2)随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是“32”的概率为多少?。

相关文档
最新文档