数据的分析:平均数课件

合集下载

3.1 平均数 课件(共32张PPT) 鲁教版数学八年级上册

3.1 平均数  课件(共32张PPT) 鲁教版数学八年级上册
中国男子篮球职业联赛2011~2012赛季冠、亚军球 队队员身高、年龄如下:
课时导入
北京金隅队 号 身高 年龄/ 码 /cm 岁 3 188 35 6 175 28 7 190 27 8 188 22 9 196 22 10 206 22
广东东莞银行队 号 身高 年龄/ 码 /cm 岁 3 205 31 5 206 21 6 188 23 7 196 29 8 201 29 9 211 25
2 一组数据的和为87,平均数是3,则这组数据的 个数为( C ) A.87 B.3 C.29 D.90
知识点 2 加权平均数
感悟新知
想一想 小明是这样计算北京金隅队队员的平均年龄的:
年龄/岁 19 22 23 26 27 28 29 35 相应的队员数 1 4 2 2 1 2 2 1
平均年龄=(19×1+22×4+23×2+26×2+27×1+28×2+29 ×2+ 35×1) ÷(1+4+2+2+1+2+2+1) =25.4 (岁). 你能说说小明这样做的道理吗?
感悟新知
总结
根据捐款总人数等于各部分人数之 和以及加权平均数公式建立方程组求 出未知量. 方程思想是解与平均数有 关的实际应用问题的一种常用方法.
感悟新知
1 (中考·无锡)某种蔬菜按品质分成三个等级销售, 销售情况如下表:
等级 一等
单价(元/kg) 销售量(kg)ຫໍສະໝຸດ 5.020二等
4.5
40
三等
4.0
感悟新知
例 3 某广告公司欲招聘广告策划人员一名,对A,B,C
三名候选人进行了三项素质测试.他们的各项测试成

新人教版初中数学八年级下册第20章 数据的分析《20.1.1 平均数》教学PPT

新人教版初中数学八年级下册第20章 数据的分析《20.1.1 平均数》教学PPT
灯泡只数
600≤x <1 000
5
1 000≤x <1 400
10
1 400≤x <1 800
12
1 800≤x <2 200
17
2 200≤x <2 600
6
解:即样本平均数为1 672. 因此,可以估计这批灯泡的平均使用寿命大约是 1 672 h.
样本估计总体
练一练
问题2 某校为了解八年级男生的身高,从八年级
各班随机抽查了共40 名男同学,测量身高情况(单位:
cm)如下图.试估计该 人数
校八年级全部男生的平 20
20
均身高.
15
10
10
6
5
4
0 145 155 165 175 185 身高/cm
课堂小结
(1)在抽样调查得到样本数据后,你如何处理样本 数据并估计总体数据的集中趋势? 样本平均数估计总体平均数.
解:他们的平均身高为: 156+158+160+162+170 =161.2 5
所以,他们的平均身高为161.2 cm.
做一做
问题2 某班级为了解同学年龄情况,作了一次年 龄调查,结果如下:13岁8人,14岁16人,15岁24人, 16岁2人.求这个班级学生的平均年龄(结果取整数).
解:这个班级学生的平均年龄为:
课堂小结
(1)当一组数据中有多个数据重复出现时,如何简便 地反映这组数据的集中趋势? 利用加权平均数.
(2)据频数分布求加权平均数时,你如何确定数据与 相应的权?试举例说明.
数据
频数

组中值
课后作业
作业: 必做题:教科书第121页复习巩固第1题; 选做题:教科书第122页综合应用第6题.

平均数课件

平均数课件
计算平均数的方法:将一组数据中的所有数值相加,再除以这组数据的个数。用 数学公式表示为:平均数=总和÷数量。
用于反映一组数据的集中趋势
平均数是反映一组数据集中趋势的重要指标之一。在统计学中,我们通常会使用平均数来描述一组数 据的中心位置,从而揭示这组数据的集中趋势。例如,我们可以通过计算一组股票价格的平均值来了 解这组股票价格的总体趋势。
连续型随机变量的期望与方差
连续型随机变量的定义
01
连续型随机变量是指在一定范围内可以取任意数值的随机变量
,其取值具有连续无限的可能性。
连续型随机变量的期望
02
连续型随机变量的期望是指其概率密度函数与实数轴上的积分
值在正无穷与负无穷之间的差值。
连续型随机变量的方差与标准差
03
方差是随机变量取值与期望的平方差的平均值,标准差是方差
平均数课件
目录
• 平均数的定义与计算 • 平均数的应用 • 平均数的计算实例 • 平均数的拓展知识 • 平均数的实际应用案例 • 总结与展望
01
平均数的定义与计算
平均数的定义
01
02
平均数是描述一组数据集中程度的统计量,通常用这”趋势,可以用来比较不同组数据的 水平。
在社会调查中的应用
计算受访者的平均年龄
在社会调查中,计算受访者的平均年龄是评 估调查样本结构的重要指标之一。通过计算 受访者的平均年龄,调查人员可以更好地了 解调查样本的结构和特点,并采取措施提高 调查的代表性和准确性。
计算受访者的平均收入
在社会调查中,计算受访者的平均收入是评 估社会经济状况和消费水平的重要指标之一 。通过计算受访者的平均收入,调查人员可 以更好地了解社会经济状况和消费水平,并 采取措施提高调查的代表性和准确性。

《平均数》PPT优秀教学课件1

《平均数》PPT优秀教学课件1

演讲效果 95 95
权是百分数的形式 由上可知选手 B 获得第一名,选手 A 获得第二名.
(1)权能够反映某个数据的重要程度,权越大, 该数据所占的比重越大;权越小,该数据所占的 比重越小. (2)权常见的三种表现形式:①数据出现的次 数(个数)的形式;②百分数的形式;③连比的 形式.
例2 某跳水队为了解运动员的年龄情况,作了一次年龄调查,
14.某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主 测评,A,B,C,D,E五位老师作为评委,对“演讲答辩”情况进行评价, 全班50位同学参与了民主测评,结果如下表所示:
成绩如下:
写作能力 普通话水平 计算机水平
小亮 小丽
90分 60分
75分 84分
51分 72分
将写作能力、普通话水平、计算机水平这三项的总分由原先按3∶5∶2
计算,变成按5∶3∶2计算,总分变化情况是( B)
A.小丽增加多
B.小亮增加多
C.两人成绩不变化 D.变化情况无法确定
12.(杭州中考)某计算机程序第一次算得m个数据的平均数为x, 第二次算得另外n个数据的平均数为myx,+ny 则这m+n个数据的平均数等于_____m_+__n______.
综合得分=演讲答辩分×(1-a)+民主测评分×a(0. 表1 演讲答辩得分表(单位:分)
听、说、读、写成绩按照 2:1:3:4 的比确定,这说明赋予各项成绩的“重要程度”有所不同.
以都能录取. 小明认为两个人的总分一样,所以都能录取.
A.小丽增加多
B.小亮增加多
10.如果一组数据a1,a2,…,an的平均数是2,
人教版 · 数学· 八年级(下)
第20章 数据的分析 20.1.1 平均数

初中人教部编版八年级数学下册教案《平均数》数据的分析PPT课件

初中人教部编版八年级数学下册教案《平均数》数据的分析PPT课件

载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71
91 111
频数(班次)
3 5 20 22 18 15
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
之间有何关系?
面积
=
总耕地面积 人口总数
郊 县
人数(万)
人均耕地面积(公顷)
A
15
0.15
B
7
0.21
C
10
0.18
总耕地
人均耕地
面积
面积
=
人口总数
思考1:总耕地面积
三个郊县耕地面积之和
思考2:人口总数
三个郊县人数之和
解答:这个市郊县的人均耕地面积是: 0.15×15 + 0.21×7 + 0.18×10 15+7+10
共汽车每个运行班次的载客量,得到下表,这天5路公共汽车平均每班
的载客量是多少?
载客量/人 1≤x<21 21 ≤x<41 41 ≤x<61 61 ≤x<81
频数(班次) 3 5 20 22
表格中载客量是六个 数据组,而不是一个具体 的数,各组的实际数据应 该选谁呢?
81 ≤x<101
18
101 ≤x<121
15
组中值:数据分组后,这个小组的两个端点的数的平均数叫做 这个组的组中值.
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71

课件《平均数》PPT_完美课件_人教版2

课件《平均数》PPT_完美课件_人教版2
所以从综合能力来看应该录取甲
刚才的计算方式来求平均数吗?
情景二
应试者





85
78
85
73

73
80
82
83
如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成 绩按照2:1:3:4的比确定,计算两名应试者的平均成绩(百分制). 从他们的成绩看,应该录取谁?
应试者 听




85
78
85
、16、24、2分别为权。
因为乙的平均成绩比甲高, 某校规定学生的体育成绩由三部分组成:早锻炼及体育课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%.
权直接以数据出现的次数形式给出
上述两支球队中,哪支球队队员的身高更高?依据是什么?
所以从成绩来看应该录取乙.
归纳总结
一般地,若n个数x1,x2,…,xn的权分别
73

73
80
82
83
(2)如何衡量两个球队的身高? 所以从成绩来看应该录取乙 因为乙的平均成绩比甲高,

2: 1: 3: 4
权数
所以从成绩来看应该录取乙
上述两支球队中,哪支球队队员的身高更高?依据是什么?
是w1,w2,…,wn,则 从他们的成绩看,应该录取谁?
会用算术平均数和加权平均数解决实际生活中的问题.(难点)
求这个跳水队运动员的平均年龄(结果取整数)。
从他们的成绩看,应该录取谁?
(2)如何衡量两个球队的身高?
所以从综合能力来看应该录取甲
日常生活中,我们常用平均数表示一组数据的“平均水平”.
所以从成绩来看应该录取乙

《均值、方差、标准差》课件

《均值、方差、标准差》课件

详细描述
通过对一个班级的学生成绩进行均值分析, 可以了解整体平均水平;通过方差分析,可 以了解成绩分布的离散程度,即个体成绩与 平均成绩的偏差程度;通过标准差分析,可 以进一步了解成绩分布的稳定性,即成绩分 布是否过于集中或分散。
实例二
总结词
投资组合风险的均值、方差和标准差分析有 助于评估投资组合的风险水平。
06
详细描述
方差越小,说明数据点越集中在平均值周围, 数据的离散程度越低。
方差和标准差的关系
总结词
标准差是方差的平方根
详细描述
标准差是方差的平方根,用于衡量数据的离散程度。标 准差的单位与数据的单位相同,而方差的单位是该数据 的单位的平方。
总结词
标准差和方差具有相同的符号
详细描述
如果数据的方差为正,则标准差也为正;如果方差为负 ,则标准差也为负。这是因为标准差是方差的平方根, 所以它们的符号必须相同。
均值、方差、标准差之间的关 系
均值和方差的关系
总结词
方差越大,数据分布越分散
01
总结词
均值相同,方差不一定相同
03
总结词
方差越小,数据越集中
05
02
详细描述
方差是衡量数据点与平均值之间离散程度的 指标。方差越大,说明数据点在平均值周围 的分布越分散,离散程度越高。
04
详细描述
即使两个数据集的平均值相同,它们 的方差也可能不同。这取决于数据点 与平均值的离散程度。
其中 $n$ 是数值的个数,$x_i$
是每一个数值。
计算方法
首先,将所有数值加起来得到总和。 然后,将总和除以数值的个数得到均值。
均值的应用
描述一组数据的“平均水平”。 比较不同组数据的“平均水平”。

课件《平均数》优秀PPT课件 _人教版1

课件《平均数》优秀PPT课件 _人教版1

72分
D.
乙:(80×4+70×3+80×3)÷(4+3+3)=77(分);
某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:
第六章 数据的分析
(2)根据实际需要,学校将笔试、面试、民主测评三项得分按照4∶3∶3的比例确定个人成绩,三人中谁的得分最高?
估计这次数学竞赛的平均成绩是( )
估计这次数学竞赛的平均成绩是( )
C. 37.7件 乙:(80×4+70×3+80×3)÷(4+3+3)=77(分);
36件
如果将创新能力、计算机能力、公关能力三项得分按5∶3∶2的比例确定各人的最终得分,则本次招聘中应试者
将被录用(填
D. 38件 “甲”或“乙”).
电( C )
A. 41度 B. 42度 C. 45.5度 D. 46度
4. 统计某车间一周里加工一种零件的日产量的情况:有
8
D.
根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率如扇形统计图所示,每得一票记1分(没
有89弃分权2,天每位是同学只3推5荐件1人,). 有1天是41件,有4天是37件,这周里平均日
“甲”或“乙”).
将被录用(填
如果将创新能力、计算机能力、公关能力三项得分按5∶3∶2的比例确定各人的最终得分,则本次招聘中应试者
将被录用(填
“甲”或“乙”).
(2)甲:(75×4+93×3+50×3)÷(4+3+3)=72.
解:根据已知条件,得小红家4月初连续7天的每天用电量分别为3度,4度,5度,6度,3度,4度,3度.

人教版《平均数》PPT精品课件

人教版《平均数》PPT精品课件
平均每棵苹果树上的苹果为 154 个.
(2)为了进一步估计果园中苹果的总产量(单位:kg), 果农从这 10 棵苹果树的每一棵树上分别随机摘取 4 个苹 果,这些苹果的质量分布如下表:
苹果的质量 0.2≤x<0.3 0.3≤x<0.4 0.4≤x<0.5 0.5≤x<0.6
频数
4
12
16
8
请你估计出这批苹果的平均质量. 平均每个苹果的质量约为 0.42kg.
12
17
6
分析:抽出的 50 只灯泡的使用寿命组成了一个 样本,我们可以利用样本的平均使用寿命来估计 这批灯泡的平均使用寿命.
你能确定各小组的“组中值”和 “权”吗?
解:由表可以得出每组数据的组中值,则抽出 的 50 只灯泡的平均使用寿命为
从计算结果来看,样本的平均数为 1672,则估计这 批灯泡的平均使用寿命大约是 1672h.
成绩
组中值
6.(2020·镇江)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.
频数(人数)
(2)求该班本次考试的平均成绩.
(1)填写表中“组中值”一栏的空白; (2)该班本次考试的平均成绩为分
使用了节水龙头20天的日用水量频数分布表:
49.5~59.5
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71 91 111
频数(班次)
3 5 20 22 18 15
思考1 表格中的组中值指什么?如何确定呢?
(2)求该班本次考试的平均成绩. 这天 5 路公共汽车平均每班的载客量是多少(结果取整数)? 1000≤x<1400 (结果精确到个位)是( ) 绘制了频数分布直方图(如图,满分120分). (1)该班有____名学生; 当要考察的对象很多,或者对考察对象带有破坏性时,统计中常常通过用样本估计总体的方法来获得对总体的认识. 6.(2020·镇江)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19. (1)填写表中“组中值”一栏的空白; (2)该班本次考试的平均成绩为分 绘制了频数分布直方图(如图,满分120分). 现在你能总结出用样本平均数估计总体平均数的一般步骤吗? -10,+5,0,+5,0,0,-5,0,+5,+10. (1)果农从 100 棵苹果树中任意选出 10 棵,分别数出10棵苹果树上苹果的个数,得到以下数据:150,157 ,154 ,155 ,152 ,153 ,150 , 159,155 ,155,你能估算出 平均每棵树上苹果的个数吗? 1800≤x<2200 5 m3 D.260 m3

移多补少(平均数)课件

移多补少(平均数)课件
移多补少(平均数)课件
目 录
• 平均数的定义与计算 • 移多补少法 • 平均数在ห้องสมุดไป่ตู้活中的应用 • 平均数的优缺点分析 • 平均数与中位数、众数的比较
contents
01
平均数的定义与计算
平均数的定 义
01
02
03
平均数的定义
平均数是所有数据之和除 以数据的个数,表示一组 数据的总体“平均水平”。
对异常值进行处理
在计算平均数之前,可以对异常值进 行处理,例如使用 winsorization 方 法将极端值替换为较接近的数据点。
考虑数据的离散程度
在分析平均数时,可以同时考虑数据 的离散程度,例如使用标准差来衡量 数据的波动性。
提供全面的数据分析
在报告分析结果时,除了平均数外, 还可以同时提供其他统计指标,如中 位数、众数、方差、标准差等,以全 面反映数据的特征。
05
平均数与中位数、众数的 比较
平均数与中位数的比 较
平均数是一组数据的总和除以数据的个数,表示数据的平均 水平;中位数是将一组数据从小到大排列后,位于中间位置 的数值。
平均数与中位数都是描述数据集中趋势的统计量,但它们的 计算方法和适用场景有所不同。平均数更适用于数据量较大、 数据分布较为均匀的情况,而中位数更适用于数据量较小、 数据分布不均或存在异常值的情况。
微小变化。
02
移多补少法
移多补少法的概念
总结词
移多补少法是一种通过移动多出来的部分并补充到缺少的部分,以实现整体平 衡的方法。
详细描述
移多补少法是一种数学和逻辑推理方法,其基本思想是将多余的部分移动到缺 少的部分,以使整体达到平衡或平均状态。这种方法在解决各种问题时非常有 效,尤其是在数学、统计学和经济学等领域中。

平均数平均数课件ppt

平均数平均数课件ppt
公式
$(\prod_{i=1}^{n} x_i)^{\frac{1}{n}}$
调和平均数
定义
将一组数据的倒数和的倒数称为调和平均数。
公式
$(\frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n})^{-1}$
03
平均数的应用
国民经济核算
国民经济核算体系
财务管理
投资收益
在投资领域,平均数被用来衡量投资组合的收益水平,帮助投资者做出理性的投 资决策。
财务分析
通过计算财务比率、制作财务比率图表等手段,利用平均数对企业的偿债能力、 盈利能力、营运能力和发展能力进行分析和评价。
市场调研
消费者调查
在市场调研中,平均数常被用来反映消费者对产品或服务的 整体评价和满意度。
市场分割
通过计算各个市场部分的平均收入、平均消费水平等指标, 帮助企业更好地了解市场需求和消费者行为。
04
平均数的局限与不足
不能反映极端值
平均数不能真实反映数据分布的实际情况。当数据集中存在 极端值时,平均数会受到极大影响,导致结果失真。
例如,在衡量收入水平时,如果一个国家中只有极少数人拥 有极高收入,而大多数人的收入较低,那么平均收入会受到 这些高收入人群的影响,不能真实反映全国人民的收入水平 。
平均数平均数课件ppt
xx年xx月xx日
contents
目录
• 什么是平均数 • 平均数的计算方法 • 平均数的应用 • 平均数的局限与不足 • 平均数与其他统计指标的关系 • 平均数的实际案例分析
01
什么是平均数
定义与计算
平均数的定义
平均数是一组数据的总和除以数据个数,是表示数据集中趋 势的统计量。

博望区第七中学八年级数学上册第六章数据的分析1平均数第1课时平均数课件新版北师大版

博望区第七中学八年级数学上册第六章数据的分析1平均数第1课时平均数课件新版北师大版
4+ 3+ 1
因此候选人B将被录用.
结论
实际问题中,一组数据里的各个数据的〞重要程度” 未必相同.因而,在计算这组数据的平均数时 , 往往 给每个数据一个〞权”.
例如,在例题中4,3,1分别是创新、综合知识、语言
三项测试成绩的权.而称 724+503+881
4+3+1
项测试成绩的加权平均数.
为A的三
3
因此候选人A将被录用.
〔2〕根据题意 , 三人的测试成绩如下 :
A的测试成绩为 724+503+881=54+ 7 43+ 4 5 1=7 5 .8 7 5分 .
4+3+ 1
C的测试成绩为 6 7 4+ 7 03+ 6 7 1=6 8 .1 2 5分 .
14.(2019·广安)如下图 , 点E是▱ABCD的CD边的中点 , AE , BC的延长线交于点F , CF=3 , CE=2 , 求▱ABCD的周长.
解 : ∵四边形ABCD是平行四边形 , ∴AD∥BC , ∴∠DAE=∠F , ∠D=∠ECF.又∵ED=EC , ∴△ADE≌△FCE(AAS). ∴AD=CF=3 , DE=CE=2.∴DC=4. ∴平行四边形ABCD的周长为2(AD+DC)=14
那么△CDE的周长是( ) A.7 B.10 C.11 D.12
11.如下图 , 在平行四边形ABCD中 , ∠ABE=∠AEB , AE∥DF ,
DC是∠ADF的平分线 , 以下说法 :
①BE=CF ; ②AE是∠DAB的平分线 ; ③∠DAE+∠DCF=120°.
其中准确的选项C是哪一项:( )
2. 某校规定学生的体育成绩由三部分组成 : 早锻炼及体育 课外活动表现占成绩的20% , 体育理论测试占30% , 体育技 能测试占50%.小颖的上述三项成绩依次是 : 92分 , 80分 , 84 分 , 那么小颖这学期的体育成绩是多少 ?

《平均数》数据的分析PPT

《平均数》数据的分析PPT

生的平时成绩与考试成绩相加除以2而是按照“平时练习占
40%, 考试成绩占60% ”的比例计算,其中考试成绩更为重要.
这样,如果一个学生的平时成绩为70分,考试成绩为90分,那
么他的学期总评成绩就应该为多少呢?
平时 40%
考试 60%
解 该同学的学期总评成绩是: 加权平均数
: 70×30% + 90×60% =82(分
解: (1)A的平均成绩为(72+50+88)/3=70(分).
B的平均成绩为(85+74+45)/3=68(分).
C的平均成绩为(67+70+67)/3=68(分).
由70>68,故A被录用.
(2)根据题意,
A的测试成绩为
(72 4 50 3 88 1) 4 31
65.75(分).
B的测试成绩为 (85 4 74 3 45 1) 75.875(分).
成绩更好,谁更稳定?你是怎么判断的?除了直观感
觉外,我们如何用量化的环数 数据来刻画“更好”“更稳
10
定”呢?
8

6

4

2
0 1 2 3 4 5 6 7 8 9 10 次数
讲授新课
一 算术平均数
问题:当你听到“小亮的身高在班上是中等偏上的”,“A 篮 球队队员比B 队更年轻”等诸如此类的说法时,你思考过这些 话的含义吗?你知道人们是如何作出这一判断的吗?
数学上,我们常借助平均数、中位数、众数、方差等来 对数据进行分析和刻画.
想一想
影响比赛的成绩有哪些因素? 如何衡量两个球队队员的身高? 怎样理解“甲队队员的身高比乙队更高”? 要比较两个球队队员的身高,需要收集哪些 数据呢?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:(1)听、说、读、写的成绩按照3:3:2:2的比确定, 则甲的平均成绩为
85 3 83 3 78 2 75 2 81 33 2 2
乙的平均成绩为
73 3 80 3 85 2 82 2 79.3 33 2 2 显然甲的成绩比乙高,所以从成绩看,应该录取甲。
载客量(人) 组中值
频数(班次)
1 ≤X<21 21 ≤X<41
41 ≤X<61 61 ≤X<81
81 ≤X<101 101≤X<121
11 31
51 71 91
111
3 5
20 22 18
15
载客量/人 1≤x<21 21≤x<41 41≤x<61 61≤x<81
组中值 11 31 51 71
频数(班次) 3 5 20 22
(1)某次考试,5名学生的平均分是82,除甲外,其余4名学生的平均分是 80,那么甲的得分是( D )
(A)84
(B) 86
(C) 88
(D) 90
(2)若m个数的平均数为x,n个数的平均数为y,则这(m+n)个数的平均 数是( B ) A:(x+y)/2 B:(mx+ny)/(m+n) C:(x+y)/(m+n) D:(mx+ny)/(x+y)
为了了解5路公共汽车的运营情况,公 交部门统计了某天5路公共汽车每个运 行班次的载客量,得到下表:
载客量/人 组中值是 1≤X<21 怎么得来 21 ≤X<41 的 41 ≤X<61 61 ≤X<81

81 ≤X<101 101≤X<121
组中值 11 31 51 71 91
111
频数(班次) 3 5 20 22 18
x1, x 2 , ,xn
则:
的权分别是
w1, wห้องสมุดไป่ตู้ , ,wn
x1w1 x2 w2 xn wn w1 w2 w3 wn
叫做这n个数的加权平均数。 数据的权能够反映的数据的相对“重要程度”。
知 识 升 华
30位同学的数学成绩如下:
86、 86、 86、 86、 86、 90、 90、 90、 90、 90、 90、 90、 92、 92、 92、 92、 92、 92、 92、 92、 100、 100、 100、 100、 100、 100、 100、 100、100 、 100
频数
14 12
练习2:为了绿化环境,柳荫 街引进一批法国梧桐,三年后 这些树的树干的周长情况如图 所示,计算这批法国梧桐树干 的平均周长(精确到0.1cm)。
10 8 6 4 2 0 40 50 60 70 80 90
周长/cm
45 8 55 12 65 14 75 10 85 6 x 63.8(cm) 8 12 14 10 6
15
这天5路公共汽车平均每班的载客量是多少?
导航1:“组中值”是数据分组后,这个小组的两个 端点的数的平均数。例如小组1≤x<21的组中值 为11。 导航2:根据上面的频数分布表求加权平均数时, 统计中常用各组的组中值代表各组的实际数据。 把各组的频数看作相应组中值的权。例如 在21 ≤ x<41之间的载客量近似地看作组中值31,组中 值3l的权就是它的频数5。
年龄 频数 13 1 14 4 15 5 16 2
求校女子排球队队员的平均年龄。 解:
13 1 14 4 15 5 16 2 x 15( 岁) 1 4 5 2
答:校女子排球队队员的平均年龄约为15岁.
练习:
种菜能手李大叔种植了 一批新品种的黄瓜,为 了考察这种黄瓜的生长 情况,李大叔抽查了部 分黄瓜株上长出的黄瓜 根数,得到右面的条形 图,请估计这个新品种 黄瓜平均每株结多少根 黄瓜。 解:
八年级
下册
知识回扣
某地一农户去年挖出的百合每箩筐质量如下 (单位:千克): 24 25 29 31 27 30 25 28 26 23 请同学们求出该农户每筐百合的平均质量.
解:平均质量=
24+25+29+31+27+30+25+28+26+23
10
=26.8(千克)
日常生活中,我们常用平均数表示一 组数据的“平均水平”
株数 20 15 10 5 0 10 13 14 15 黄瓜根数
10 10 15 13 20 14 18 15 x 13 10 15 20 18
答:这个新品种黄瓜平均每株结约13根黄瓜。
例1 一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、 说、读、写的英语水平测试,他们各项的成绩(百分制)如下: 应试者 甲 乙 听 85 73 说 83 80 读 78 85 写 75 82
答:这批梧桐树干的平均周长是63.8cm。
问题:当所要考察的对象很多或考察本 身带有破坏性时,统计学中常常使用什 么方法来获得对总体的认识?
常常用样本来估计总体
例如:实际生活中经常用样本的平均数来估计总 体的平均数。
某灯泡厂为测量一批灯泡的使用寿命,从中抽查 了100只灯泡,它们的使用寿命如下表所示:
若灯泡的使用寿命大于或等于1450小时为 合格,那这批灯泡的合格率是多少?
主要知识内容:
若n个数
x1, x 2 , ,xn
则:
的权分别是
加 权 平 均 数
w1, w2 , ,wn
x1w1 x2 w2 xn wn w1 w2 w3 wn
叫做这n个数的加权平均数。 数据的权能够反映的数据的相对“重要程度”。
小明求得这个市郊县的人均耕地面积为:
0.15 0.21 0.18 x 0.18(公顷) 3
你认为小明的做法有道理吗?为什么?
小明求得这个市郊县的人均耕地面积为:
0.15 0.21 0.18 x 0.18(公顷) 3
你认为小明的做法有道理吗?为什么?
由于各郊县的人数不同,各郊县的人均耕地面积对这个市郊县的人均耕地
解:根据表格,可以得出各小组的组中值,于是
x
800 12 1200 19 1600 25 2000 34 2400 12 1676 100
即样本平均数为1676.
思考:用全面调查的方法考查这批灯泡的平均 使用寿命合适吗?
由此可以估计这批灯泡的平均使用寿命大约是1676小时。
(1)如果这家公司想招一名口语能力比较强的翻译,听、说、读、 写成绩按照3:3:2:2的比确定,计算两名应试者的平均成绩,从他 们的成绩看,应该录取谁? (2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、 写成绩按照2:2:3:3的比确定,计算两名应试者的平均成绩,从 他们的成绩看,应该录取谁?
由上可知选手B获得第一名,选手A获得第二名
晨光中学规定学生的学期体育成绩满分为100分,其中早 锻炼及体育课外活动占20%,期中考试成绩占30%,期末 成绩占50%。小桐的三项成绩(百分制)依次是95分、90 分、85分,小桐这学期的体育成绩是多少?
95 0.2 90 0.3 85 0.5 x 88.5 (分) 20% 30% 50%
x甲 x乙 甲将被录用
(2)如果公司认为,作为公关人员面试的成绩应该比笔试更重要,并分别 赋予它们6和4的权,计算甲、两人各自的平均成绩,看看谁将被录取。
86 6 90 4 x甲 87.6 10
92 6 83 4 x乙 88.4 10
x乙 x甲 乙将被录用
解:这天5路公共汽车平均每班的载客量是:
11 3 31 5 51 20 71 22 9118 11115 x 3 5 20 22 18 15 73 (人)
这一天5路公共汽车大约有多少班次 的载客量在平均载客量以上?占全天总 班次的百分比是多少?(精确到1%)
这30位同学的数学平均成绩是多少?你是如何来做 的? (只列式子不求解)
在求n个数的算术平均数时,如果x1出现f1 次,x2出现f2次,------xk出现fk次(f1+f2+---+fk=n)则这几个数的算术平均数为:
x f x f x
1 1 2
2
xk n
f
k
练习
1、下表是校女子排球队队员的年龄分布:
使用寿命x (单位:时)
灯泡数 (单位:个)
600≤x< 1000
10
1000≤x <1400
19
1400≤x <1800
25
1800≤x <2200
34
2200≤x <2600
12
这批灯泡的平均使用寿命是多少?
分析:抽出的100只灯泡的使用寿命组成一个样本,可以利用样本 的平均使用寿命来估计这批灯泡的平均使用寿命。
面积的影响不同,因此这个市郊县的人均耕地面积不能是三个郊县人均耕
地面积的算术平均数x 0.15 0.21 0.18 0.18(公顷) ,而应该是:
0.15×15表示A县 耕地面积吗?你能 说出这个式子中分 子,分母各表示什 么吗?
0.15 15 0.21 7 0.18 10 0.17(公顷) 15 7 10
(2)听、说、读、写的成绩按照2:2:3:3的比确定,则 甲的平均成绩为 85 2 83 2 78 3 75 3 79.5 2 233 乙的平均成绩为
73 2 80 2 85 3 82 3 80.7 2 233 显然乙的成绩比甲高,所以从成绩看,应该录取乙。
认真体会加权平均数 权 的意义。
相关文档
最新文档