高考数学冲刺专题训练集合和复数
2023届重庆高考冲刺训练数学试题及参考答案
2023年重庆高考冲刺训练数学试题及参考答案一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A ={y |y =x },B ={x |y =x },全集为R ,则A ∩(∁R B )等于()A .[0,+∞)B .(-∞,0)C .{0,1}D .{(0,0),(1,1)}2.已知复数z 的共轭复数为z ,若z +z =4,(z -z )i =2(i 为虚数单位),则z 等于()A .2+iB .2-iC .-2+iD .-2-i3.已知|a |=5,b =(1,2),且a ∥b ,a ·b <0,则a 的坐标为()A .(1,2)B .(-1,2)C .(1,-2)D .(-1,-2)4.甲、乙、丙三人参加社区义工活动,每人从编号为1到6的社区中任选一个,所选社区编号数各不相同且不相邻,则不同的选择方案的种数为()A .12B .24C .36D .485.已知数列{a n }满足a 1=2,S n +1=2(1+S n ),若a 6是a m ,a 2n 的等比中项,m ,n ∈N *,则m +2n 等于()A .12B .123C .22D .46.如图所示,F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 1的直线与C 的左、右两支分别交于A ,B 两点.若|AB |∶|BF 2|∶|AF 2|=3∶4∶5,则双曲线的离心率为()A .2B .15 C.13 D.37.如图,已知三棱锥P -ABC 的四个顶点都在球O 的表面上,PA ⊥平面ABC ,AC =BC =2,AB =2,球心O 到平面ABC 的距离为3,则球O 的体积为()A.32π3B.16π3C .16πD .32π8.已知f(x)=x(l n x-a),不等式f(x)≥x2-e x-1恒成立,则实数a的取值范围是() A.(-∞,-1]B.(-∞,0]C.(-∞,1]D.(-∞,e]二、选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对得5分,部分选对得2分,有选错的得0分)9.已知函数f(x)=sin2x+3cos2x,则下列四个命题正确的是()A.f(x)的最小值为-2B.f(x)向右平移π3个单位长度后得到的函数是奇函数C.f(x)在0,π12上单调递增D.f(x)关于直线x=7π12对称10.已知x>0,y>0,且x+y+xy-3=0,则()A.x y的取值范围是[1,9]B.x+y的取值范围是[2,+∞)C.x+4y的最小值是3D.x+2y的最小值是42-311.有两个箱子,第1个箱子有3个白球,2个红球,第2个箱子有4个白球,4个红球,现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中随机取1个球放到第1个箱子里,则下列判断正确的是()A.从第2个箱子里取出的球是白球的概率为2345B.从第2个箱子里取出的球是红球的概率为2245C.若从第2个箱子里取出的球是白球,则从第1个箱子里取出的是白球的概率为1523D.两次取出的球颜色不同的概率为5912.如图,正方体ABCD-A1B1C1D1的棱长为a,线段B1D1上有两个动点E,F,且EF=2a2.则下列结论正确的是()A.当E与D1重合时,异面直线AE与BF所成的角为π3B.三棱锥B-AEF的体积为定值C.EF在平面ABB1A1内的射影长为a2D.当E向D1运动时,二面角A-EF-B的平面角保持不变三、填空题(本大题共4小题,每小题5分,共20分)13.在的二项展开式中,所有项的系数之和为81,则常数项为________.14.设曲线y=12x2在点A1,12y=x l n x在点P处的切线互相平行,则点P的坐标为________.15.以模型y=c e k x(c>0)去拟合一组数据时,设z=l n y,将其变换后得到经验回归方程z =2x-1,则c=________.16.在△ABC中,AB=2,AC=23,BC=4,点O为△ABC的外心,则AO→·BC→=________,P是△ABC外接圆圆O上一动点,则PA→·(PB→+PC→)的最小值为________.四、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)在①a3+a11=20,②a3S10=310这两个条件中任选一个,补充到下面问题中,若1a n a n+1n∈N*)的前2023项和;若问题中的数列不存在,说明理由.问题:是否存在正项等差数列{a n}(n∈N*),其前n项和为S n,且a1=1,________?18.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,△ABC的面积为S,已知a c o s C+c c o s A=3,a=2b.(1)求a;(2)若S=312(a2+c2-b2),求A.19.(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,△PAB为正三角形,且侧面PAB⊥底面ABCD,M为PD的中点.(1)求证:PB∥平面ACM;(2)求直线BM与平面PAD所成角的正弦值.20.(12分)某新华书店将在六一儿童节进行有奖促销活动,凡在该书店购书达到规定金额的小朋友可参加双人PK赢取“购书券”的游戏.游戏规则为:游戏共三局,每局游戏开始前,在不透明的箱中装有5个号码分别为1,2,3,4,5的小球(小球除号码不同之外,其余完全相同).每局由甲、乙两人先后从箱中不放回地各摸出一个小球(摸球者无法摸出小球号码).若双方摸出的两球号码之差为奇数,则甲被扣除2个积分,乙增加2个积分;若号码之差为偶数,则甲增加n(n∈N*)个积分,乙被扣除n个积分.PK游戏开始时,甲、乙的初始积分均为零,PK游戏结束后,若双方的积分不等,则积分较大的一方视为获胜方,将获得“购书券”奖励;若双方的积分相等,则均不能获得奖励.(1)设PK游戏结束后,甲的积分为随机变量ξ,求ξ的分布列;(2)以(1)中的随机变量ξ的均值为决策依据,当游戏规则对甲获得“购书券”奖励更为有利时,记正整数n的最小值为n0.①求n0的值,并说明理由;②当n=n0时,求在甲至少有一局被扣除积分的情况下,甲仍获得“购书券”奖励的概率.21.(12分)在平面直角坐标系中,已知F为抛物线C:y2=2px(p>0)的焦点,点P(t,s)(s>0)为抛物线C上一点,P关于x轴对称的点为Q,且△OPQ和△OPF的面积分别为16和2.(1)求C的方程;(2)设点D(a,2),A,B为抛物线C上不同的三点,直线DA,DB的倾斜角分别为α,β,且满足tanα+tanβ=1,证明:直线AB经过定点.22.(12分)已知函数f(x)=ln x+ax-b(其中a,b为参数).(1)求函数f(x)的单调区间;(2)若a=1,函数g(x)=f(x e x)有且仅有2个零点,求b的取值范围.参考答案1.B 2.B 3.D4.B5.A6.C7.A[如图,因为AC =BC =2,AB =2,所以AC 2+BC 2=AB 2,所以AC ⊥BC .因为PA ⊥平面ABC ,AB ,BC ⊂平面ABC ,所以PA ⊥AB ,PA ⊥BC .又AC ∩PA =A ,PA ,AC ⊂平面PAC ,所以BC ⊥平面PAC ,所以BC ⊥PC ,所以球心O 是PB 的中点.取AB 的中点D ,连接OD ,则OD ∥PA ,所以OD ⊥平面ABC ,所以OD = 3.设球O 的半径为R ,在Rt △ODB 中,R =OB =OD 2+DB 2=(3)2+12=2,所以球O 的体积为43πR 3=43×π×23=32π3.]8.B[由题意可知x >0,由f (x )≥x 2-e x -1,可得a ≤e x -1x+l n x -x .∵e x -1x +l n x -x =1e ·e x x +l n x e x ,令t =e xx ,则t ′=e x x -e x x 2=e x (x -1)x 2,∴t =e xx在(0,1)上单调递减,在(1,+∞)上单调递增,∴t ≥t (1)=e ,因此令φ(t )=1e t +ln 1t =1e t -ln t (t ≥e),φ′(t )=t -e t e ≥0,∴φ(t )在[e ,+∞)上单调递增,故φ(t )≥φ(e)=0,∴a ≤0.]9.ACD 10.BD[因为x >0,y >0,所以x +y ≥2xy ,所以3-xy ≥2xy ,解得0<xy ≤1,即0<xy ≤1,故A 错误;因为x >0,y >0,所以x y ,所以3-(x +y ),即(x +y )2+4(x +y )-12≥0,解得x +y ≥2,故B 正确;因为x +y +x y -3=0,所以x =-y +3y +1=-1+4y +1,则x +4y =-1+4y +1+4y =4y +1+4(y +1)-5≥2×4-5=3,当且仅当4y +1=4(y +1),即y =0时等号成立.因为y >0,所以x +4y >3,故C 错误;x +2y =-1+4y +1+2y =4y +1+2(y +1)-3≥42-3,当且仅当4y +1=2(y +1),即y =2-1时等号成立,故D 正确.]11.ABC[从第2个箱子里取出的球是白球的概率为35×59+25×49=2345,故A 正确;从第2个箱子里取出的球是红球的概率为35×49+25×59=2245,故B 正确;设从第2个箱子取出的球是白球为事件A ,从第1个箱子取出的球是白球为事件B ,则P (B |A )=P (AB )P (A )=35×592345=1523,故C 正确;两次取出的球颜色不同的概率为35×49+25×49=49,故D 错误.]12.BCD[当E 与D 1重合时,因为EF =22a ,此时F 为B 1D 1的中点,记BD中点为O ,连接D 1O ,如图,由正方体性质可知,BO ∥D 1F ,BO =D 1F ,所以四边形BOD 1F 为平行四边形,所以D 1O ∥BF ,所以AE 与BF 所成的角为∠AD 1O .又D 1O=6a 2,AD 1=2a ,AO =2a 2,所以cos ∠AD 1O =3a 22+2a 2-a 222×6a2×2a=32,故A 错误;V B -AEF =V A -BEF ,易知点A 到平面BB 1D 1D 的距离和点B 到直线B 1D 1的距离为定值,且EF =2a2为定值,所以三棱锥A -BEF 的体积为定值,故B 正确;易知∠A 1B 1D 1=π4,EF 在平面ABB 1A 1内的射影在A 1B 1上,所以射影长为2a 2×cos π4=a2,故C 正确;二面角A -EF -B 即为二面角A -B 1D 1-B ,显然其平面角不变,故D 正确.]13.8;14.(1,0);15.1e 解析由z =l n y ,得l n y =2x -1,y =e 2x -1=e -1·e 2x ,所以c =e -1=1e.16.40解析因为AB 2+AC 2=BC 2,所以AB ⊥AC ,所以O 是BC 的中点.以A 为原点,AB ,AC 所在直线分别为x 轴、y 轴建立平面直角坐标系,如图所示,则A (0,0),B (2,0),C (0,23),O (1,3),AO →=(1,3),BC →=(-2,23),所以AO →·BC →=4.圆O 的方程为(x -1)2+(y -3)2=4.设P (x ,y ),则PA →=(-x ,-y ),PB →=(2-x ,-y ),PC →=(-x ,23-y ),所以圆上点P d min =r -1=2-1=1,所以PA →·(PB →+PC →)的最小值为2×12-2=0.17.解若选择①1=1,3+a 11=a 1+2d +a 1+10d =20,所以d =32,所以a n =1+(n -1)×32=32n -12.由a 3S 10=(1+2d+10×92d 310,得d =32(舍负),因此a n =1+(n -1)×32=32n -12.因为1a n a n +1=所以1a 1a 2+1a 2a 3+1a 3a 4+…+1a 2023a 2024=-1a 2+1a 2-1a 3+…+1a 2023=23×=40466071.18.解(1)在△ABC 中,由a cos C +c cos A =3及余弦定理,可得a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc =3,即2b 2=23b ,则b =3,而a =2b ,所以a = 6.(2)由S =312(a 2+c 2-b 2),得S =312×2ac ×cos B =36ac cos B ,又S =12ac sin B ,所以12ac sin B =36ac cos B ,则tan B =33,因为B ∈(0,π),故B =π6,根据a =2b ,得sin A =2sin B =22,又A >B ,A ∈(0,π),所以A =π4或3π4.19.(1)证明连接BD 交AC 于点N ,连接MN ,如图,在正方形ABCD 中,N 为BD 的中点,而M 为PD 的中点,则PB ∥MN ,而MN ⊂平面ACM ,PB ⊄平面ACM ,所以PB ∥平面ACM .(2)解取AB 的中点O ,连接PO ,如图,在正△PAB 中,PO ⊥AB ,因为侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,PO ⊂侧面PAB ,则PO ⊥平面在平面ABCD 内,过点O 作OE ⊥AB 交CD 于点E ,则射线OB ,OE ,OP 两两垂直,以O 为原点,射线OB ,OE ,OP 分别为x ,y ,z 轴的非负半轴建立空间直角坐标系,则B (1,0,0),A (-1,0,0),D (-1,2,0),P (0,0,3),-12,1AD →=(0,2,0),AP →=(1,0,3),BM →-32,1设平面PAD 的法向量为m =(x 1,y 1,z 1)·AD →=2y 1=0,·AP →=x 1+3z 1=0,令z 1=1,得m =(-3,0,1),设直线BM 与平面PAD 所成的角为θ,则sin θ=|cos 〈m ,BM →〉|=|m ·BM →||m ||BM →|=232×2=32,所以直线BM 与平面PAD 所成角的正弦值为32.20.解(1)记“一局游戏后甲被扣除2个积分”为事件A ,“一局游戏后乙被扣除n 个积分”为事件B ,由题意可知P (A )=C 12C 13A 22A 25=35,则P (B )=1-P (A )=25,当三局均为甲被扣除2个积分时,ξ=-6,当两局为甲被扣除2个积分,一局为乙被扣除n 个积分时,ξ=n -4,当一局为甲被扣除2个积分,两局为乙被扣除n 个积分时,ξ=2n -2,当三局均为乙被扣除n 个积分时,ξ=3n ,所以P (ξ=-6)=27125,P (ξ=n -4)=C 23×25=54125,P (ξ=2n -2)=C 13×35×=36125,P (ξ=3n )=8125,所以随机变量ξ的分布列为ξ-6n -42n -23n P2712554125361258125(2)①由(1)易得E (ξ)=(-6)×27125+(n -4)×54125+(2n -2)×36125+3n ×8125=6n -185,显然甲、乙双方的积分之和恒为零,当游戏规则对甲获得“购书券”奖励更为有利时,则需E (ξ)=6n -185>0,所以n >3,即正整数n 的最小值n 0=4.②当n =4时,记“甲至少有一局被扣除积分”为事件C ,则P (C )=1=117125,由题设可知若甲获得“购书券”奖励,则甲被扣除积分的局数至多为1,记“甲获得‘购书券’奖励”为事件D ,易知事件CD 为“甲恰好有一局被扣除积分”,则P (CD )=C 13×35×=36125,所以P (D |C )=P (CD )P (C )=36125×125117=413,即在甲至少有一局被扣除积分的情况下,甲仍获得“购书券”奖励的概率为413.21.(1)解由题意知|PQ |=2s ,所以△OPQ 的面积为12×t ×2s =ts ,则ts =16.①又因为焦点|OF |=p 2,则△OPF 的面积为12×p 2×s =ps 4,则ps4=2.②由①②联立解得t =2p ,s =8p,则p将P 点坐标代入抛物线方程得=2p ·2p ,解得p =2,故C 的方程为y 2=4x .(2)证明将D (a ,2)代入抛物线C 的方程得22=4a ,解得a =1,所以D (1,2).设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my +n ,=my +n ,2=4x ,消去x 得y 2-4my -4n =0,所以y 1+y 2=4m ,y 1y 2=-4n .因为tan α+tan β=1,即k DA +k DB =1,所以y 1-2x 1-1+y 2-2x 2-1=1,所以y 1-2y 214-1+y 2-2y 224-1=4y 1+2+4y 2+2=1,整理得y 1y 2-2(y 1+y 2)-12=0,所以-4n -2×4m -12=0,则n =-2m -3,所以直线AB 的方程为x =my -2m -3,即x +3=m (y -2),所以直线AB 经过定点(-3,2).22.解(1)函数f (x )的定义域为(0,+∞),f ′(x )=x -ax2.当a ≤0时,f ′(x )>0,所以f (x )的单调递增区间为(0,+∞),无单调递减区间;当a >0时,令f ′(x )>0,解得x >a ,令f ′(x )<0,解得0<x <a ,11所以f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).(2)当a =1时,g (x )=f (x e x )=ln x e x +1x e x -b =ln x +x +1x ex -b ,g ′(x )=1x +1-x +1x 2e x =(x +1)(x e x -1)x 2ex .令g ′(x )=0,则x e x =1(x =-1舍去),令h (x )=x e x -1(x >0),则h ′(x )=(x +1)e x >0,所以h (x )在(0,+∞)上单调递增.又=12e -1<0,h (1)=e -1>0,且函数h (x )在(0,+∞)上的图象是连续不断的曲线,所以根据零点存在定理,存在唯一的x 0h (x 0)=x 00e x -1=0,并且当x ∈(0,x 0)时,h (x )<0,当x ∈(x 0,+∞)时,h (x )>0,所以当x ∈(0,x 0)时,g ′(x )<0,函数g (x )单调递减;当x ∈(x 0,+∞)时,g ′(x )>0,函数g (x )单调递增,所以g (x )min =g (x 0)=ln x 0+x 0+1e x x 00-b =1-b .因为函数g (x )有且仅有2个零点,所以必须有g (x )min <0,即b >1.下面证明当b >1时,函数g (x )有且仅有2个零点.因为g (x 0)=1-b <0,g (b )=ln b +1b eb >0,且g (x )在(x 0,+∞)上单调递增且连续,所以g (x )在(x 0,+∞)上有且仅有1个零点,因为g (x )=f (x e x )=ln x e x +1x e x -b ,令x e x =t (0<t <x 0),则F (t )=ln t +1t-b .因为b >1,所以0<e -b <1e <12,F (e -b )=ln e -b +e b -b =e b -2b ,令φ(b )=e b -2b ,b >1,显然φ(b )=e b -2b 在(1,+∞)上单调递增,所以φ(b )=e b -2b >e -2>0,又g (x 0)=1-b <0,所以g (x )在(0,x 0)上有且仅有1个零点.综上,b >1.。
高考数学复数专题复习(专题训练)
一、复数选择题1.若复数(1)()(i a i i -+是虚数单位)为纯虚数,则实数a 的值为( ) A .2 B .1 C .0D .1-2.若复数()()24z i i =--,则z =( ) A .76i -- B .76-+iC .76i -D .76i +3.已知复数21iz i=-,则复数z 在复平面内对应点所在象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限4.已知复数5i5i 2iz =+-,则z =( )A B .C .D .5.已知i 为虚数单位,若复数()12iz a R a i+=∈+为纯虚数,则z a +=( )A B .3C .5D .6.设()2211z i i=+++,则||z =( )A B .1C .2D7.若复数z 满足()322iz i i -+=+,则复数z 的虚部为( ) A .35B .35i -C .35D .35i8.设2iz i+=,则||z =( )A B C .2D .59.若复数2i1ia -+(a ∈R )为纯虚数,则1i a -=( )A B C .3D .510.在复平面内,复数z 对应的点是()1,1-,则1zz =+( ) A .1i -+ B .1i +C .1i --D .1i -11.若1i iz ,则2z z i ⋅-=( )A .B .4C .D .812.在复平面内,复数z 对应的点为(,)x y ,若22(2)4x y ++=,则( )A .22z +=B .22z i +=C .24z +=D .24z i +=13.复数2ii -的实部与虚部之和为( ) A .35 B .15- C .15D .3514.复数()()212z i i =-+,则z 的共轭复数z =( ) A .43i + B .34i - C .34i + D .43i - 15.已知i 是虚数单位,2i z i ⋅=+,则复数z 的共轭复数的模是( )A .5BC D .3二、多选题16.i 是虚数单位,下列说法中正确的有( ) A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限17.已知复数12z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .2020122z =-+ 18.(多选题)已知集合{},nM m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()11i i -+B .11ii-+ C .11ii+- D .()21i -19.下面关于复数的四个命题中,结论正确的是( ) A .若复数z R ∈,则z R ∈ B .若复数z 满足2z ∈R ,则z R ∈ C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z =20.下列说法正确的是( ) A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件21.下列关于复数的说法,其中正确的是( ) A .复数(),z a bi a b R =+∈是实数的充要条件是0b = B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称 22.已知i 为虚数单位,则下列选项中正确的是( ) A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =- D .对任意的复数z ,都有20z23.已知i 为虚数单位,以下四个说法中正确的是( ).A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 24.已知复数122,2z i z i =-=则( ) A .2z 是纯虚数 B .12z z -对应的点位于第二象限C .123z z +=D .12z z =25.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s nn nz i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .22z z = B .当1r =,3πθ=时,31z =C .当1r =,3πθ=时,12z =D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数26.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=27.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数 B .若32a bi i -=+,则3,2a b == C .若0b =,则a bi +为实数 D .纯虚数z 的共轭复数是z -28.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '=29.已知i 为虚数单位,下列命题中正确的是( ) A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y == B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数 30.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.D 【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解. 【详解】 ,它为纯虚数, 则,解得. 故选:D . 解析:D 【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解. 【详解】2(1)()1(1)i a i a i ai i a a i -+=+--=++-,它为纯虚数,则1010a a +=⎧⎨-≠⎩,解得1a =-.故选:D .2.D 【分析】由复数乘法运算求得,根据共轭复数定义可求得结果. 【详解】 ,. 故选:.解析:D 【分析】由复数乘法运算求得z ,根据共轭复数定义可求得结果. 【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D .3.B 【分析】对复数进行化简,再得到在复平面内对应点所在的象限. 【详解】,在复平面内对应点为,在第二象限. 故选:B.解析:B 【分析】对复数z 进行化简,再得到z 在复平面内对应点所在的象限. 【详解】21i z i =-()()()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.4.B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】 由题,得,所以. 故选:B.解析:B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】 由题,得()()()5i 2+i 5i5i 5i 1+7i 2i 2i 2+i z =+=+=---,所以z == 故选:B.5.A【分析】根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得 【详解】由复数为纯虚数,则,解得 则 ,所以,所以 故选:A解析:A 【分析】根据复数运算,化简后由纯虚数的概念可求得a ,.进而求得复数z ,再根据模的定义即可求得z a + 【详解】()()()()()()2221222*********i a i a a i a ii a z a i a i a i a a a +-++--++====+++-+++ 由复数()12i z a R a i +=∈+为纯虚数,则222012101a aa a +⎧=⎪⎪+⎨-⎪≠⎪+⎩,解得2a =- 则z i =- ,所以2z a i +=--,所以z a += 故选:A6.D 【分析】利用复数的乘除法运算法则将化简,然后求解. 【详解】 因为, 所以,则. 故选:D . 【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,解析:D 【分析】利用复数的乘除法运算法则将z 化简,然后求解||z . 【详解】因为()()()()2221211*********i z i i i i i i i i i -=++=+++=-++-=+++-,所以1z i =-,则z = 故选:D . 【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,需要给分子分母同乘以分母的共轭复数然后化简.7.A 【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论. 【详解】 由题意,得, 其虚部为, 故选:A.解析:A 【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论. 【详解】 由题意,得()()()()()23343313343434552i i ii z ii i i i ----====-++-+, 其虚部为35, 故选:A.8.B 【分析】利用复数的除法运算先求出,再求出模即可. 【详解】 , .故选:B .解析:B 【分析】利用复数的除法运算先求出z ,再求出模即可. 【详解】()22212i ii z i i i++===-,∴z ==故选:B .9.B 【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模. 【详解】 由复数()为纯虚数,则 ,则 所以 故选:B解析:B 【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模. 【详解】由()()()()()()21i 2221112a i a a ia i i i i ----+-==++- 复数2i 1i a -+(a ∈R )为纯虚数,则202202a a -⎧=⎪⎪⎨+⎪≠⎪⎩ ,则2a =所以112ai i -=-=故选:B10.A 【分析】由得出,再由复数的四则运算求解即可. 【详解】 由题意得,则. 故选:A解析:A 【分析】由()1,1-得出1i z =-+,再由复数的四则运算求解即可. 【详解】由题意得1i z =-+,则1i 1i i 111i 1i i i 1z z -----+==⋅==-++-.11.A 【分析】化简复数,求共轭复数,利用复数的模的定义得. 【详解】 因为,所以, 所以 故选:A解析:A 【分析】化简复数z ,求共轭复数z ,利用复数的模的定义得2i z z --. 【详解】 因为1111i z i i i+==+=-,所以1z i =+,所以()()211222z z i i i i i ⋅-=-+-=-= 故选:A12.B 【分析】利用复数模的计算公式即可判断出结论. 【详解】因为复数对应的点为,所以 ,满足则 故选:B解析:B 【分析】利用复数模的计算公式即可判断出结论. 【详解】因为复数z 对应的点为(,)x y ,所以z x yi =+x ,y 满足22(2)4x y ++=则22z i +=故选:B13.C 【分析】利用复数代数形式的乘除运算化简得答案. 【详解】,的实部与虚部之和为. 故选:C易错点睛:复数的虚部是,不是.解析:C 【分析】利用复数代数形式的乘除运算化简得答案. 【详解】()()()2+1212222+555i i i i i i i i -+===-+--,2i i ∴-的实部与虚部之和为121555-+=. 故选:C 【点睛】易错点睛:复数z a bi =+的虚部是b ,不是bi .14.D 【分析】由复数的四则运算求出,即可写出其共轭复数. 【详解】 ∴, 故选:D解析:D 【分析】由复数的四则运算求出z ,即可写出其共轭复数z . 【详解】2(2)(12)24243z i i i i i i =-+=-+-=+∴43z i =-, 故选:D15.C 【分析】首先求出复数的共轭复数,再求模长即可. 【详解】 据题意,得,所以的共轭复数是,所以. 故选:C.解析:C 【分析】首先求出复数z 的共轭复数,再求模长即可. 【详解】据题意,得22(2)12121i i i i z i i i ++-+====--,所以z 的共轭复数是12i +,所以z =.故选:C.二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为111312244z z ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为22112222z ⎛⎫-=-- ⎪ ⎪⎝⎭=,12z =,所以2z z ≠,所以B 错误;因为321112222z z z i ⎛⎫⎛⎫=⋅=---=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()202063364431112222z z z z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.18.BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解. 19.AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.20.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.21.AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.22.AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 23.AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.【详解】,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.【详解】234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.24.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确.故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单. 25.AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.【详解】对于A 选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确; 对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cos sin 332z i ππ=+=+,则12z =,C 选项正确;对于D 选项,()cos sin cos sin cos sin 44n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误.故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.26.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=. 故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题.27.AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为当且时复数为纯虚数,此时,故A 错误,D 正确;当时,复数为实数,故C 正确;对于B :,则即,故B 错误;故错误的有AB解析:AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为(,)z a bi a b R =+∈当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确;当0b =时,复数为实数,故C 正确;对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩,故B 错误; 故错误的有AB ;故选:AB【点睛】本题考查复数的代数形式及几何意义,属于基础题. 28.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥, 此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 29.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误;4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.30.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.。
2024高考数学计算题型训练
专题1 集合的运算 1专题2 解一元二次不等式 7专题3 复数的四则运算 14专题4 函数定义域的相关计算 20专题5 指数与对数运算 26专题6 数列求和的运算 36专题7 导数计算 43专题8 向量运算的坐标表示 50专题9 诱导公式的化简求值 55专题10 三角恒等变换 63专题11 排列组合数的计算 67专题12 二项式定理的相关计算 72专题1集合的运算1已知集合A =x ∣x 2-4x ≤0,x ∈Z ,B ={x ∣-1≤x <4},则A ∩B =()A.[-1,4] B.[0,4) C.{0,1,2,3,4}D.{0,1,2,3}2设全集U =-2,-1,0,1,2 ,集合A =x ∈N y =lg 2-x +1x +2,则∁U A =()A.-2,-1,2 B.-2,2 C.∅D.-2,-1,0,2 3已知集合A =0,1,a 2 ,B =0,2-a ,A ∪B =A ,则a =()A.1或-2 B.-2 C.-1或2D.24已知集合A =x |x 2<2x ,集合B =x log 2x -1 <1 ,则A ∩B =()A.x 0<x <3 B.x 1<x <2 C.x 2≤x <3D.x 0<x <2 5已知集合A =x x 2-x -6<0 ,B =x 2x +3>0 ,则A ∩B =()A.-2,-32 B.32,3 C.-32,3 D.-32,2 6已知集合A ={x |-2≤x <7},B =x 2x≥1 ,则A ∩∁R B 为()A.{x |-2≤x <7} B.{x |-2≤x <0或2<x <7}C.{x |-2≤x ≤0或2<x <7}D.{x |-2≤x <0或2≤x <7}7已知集合A ={x ∣-2<x ≤3,x ∈R },B =0,2,4,6 ,则A ∩B =.计算专题训练1集合的运算临渊羡鱼不如退而结网8已知集合A =1,3 ,B =2,+∞ ,则A ∩B =.9已知A =x x -1x ≤0 ,B =x x ≥1 ,则A ∩B =.10已知集合A =x x 2-x -2≤0 ,B =x x -1≤2 ,则A ∩B =11设全集U =R ,集合A =x y =1-lg 1-2x ,B =x ∈Z x 2+2x -3≤0 ,则B ∩∁U A =12若集合A =x x -x >0 ,B =x x >2 ,则A ∩∁R B =13已知集合A =x x <3 ,B =x y =2-x ,则A ∪B =.14设集合A ={1,3,5,7,9},B ={x ∣2≤x ≤5},则A ∩B =.15已知集合A =x ∈N x ≤2 ,B =y |y =e 2x -x 2,x ∈A ,则A ∩∁R B =16设集合U =x ∈N x ≤6 ,M =1,2,3,5 ,N =2,3,4 ,则∁U M ∪N =.17已知集合A ={1,2,3},B ={x |-3x +a =0},若A ∩B ≠∅,则a 的值为.18已知集合A =x ∣x 2-6x +8≤0 ,B =x x -3 <2,x ∈Z ,则A ∩B =.19已知集合A =x |x >1,x ∈Z ,B =x |0<x <4 ,则A ∩B =.20已知集合A ={1,2,3},B ={x |x <2},则A ∩B =.21已知全集U =R ,集合A =x y =lg x ,集合B =y y =x +1 ,那么A ∩∁U B =.22若集合A =x |3x 2-14x +16≤0 ,B =x 3x -7x >0 ,则A ∩B =.23已知全集U =R ,集合A =x 1+x >2x +4 ,则∁U A =.24已知集合A ={x |x ≤1},集合B ={x |x ≥-2},则A ∩B =.25已知集合A =x 1<x <3 ,B =x 2<x <4 ,则A ∩B =.26设集合A =x 2+x ≥4 ,集合B =x -1≤x ≤5 ,则A ∩B =.27函数y =2x +1+log 22-x 的定义域为.计算专题训练1集合的运算临渊羡鱼不如退而结网28已知集合A =x |-2≤x ≤5 ,集合B =x |m +1≤x ≤2m -1,m ∈R ,若A ∩B =B ,则实数m 的取值范围是.29已知集合A =x -2<x <1 ,B =x x >-1 ,则A ∪B =.30设集合M =1,2,3,4,5 ,集合N =2,4,6 ,集合T =4,5,6 ,则M ∩T ∪N =.31集合M =y ∣y =-x 2+2 ,N ={x ∣y =3x -1},则M ∩N =.32已知集合A ={-1,0,1},B =[0,+∞),则A ∩B =.33若A =1,a ,B =a 2 ,且A ∩B =B ,则实数a 的值为.34设全集U ={1,2,3,4,5,6},A ={1,2},B ={2,3,4},则∁U A ∩B =.35定义M -N ={x x ∈M 且x ∉N },若集合A =1,3,5,6,8 ,B =2,3,4,6 ,A -B =.36已知全集U =R ,A =x 2x -1x +1≥1 ,则∁U A =.37设集合A =x x +1≤0 ,B =x lg x 2-2 =lg x ,则A ∪B =.38已知A =y y =3x ,B =x y =ln (2-x ) ,则A ∩B =.39设集合A =x ||2x -1|≤3 ,B =x y =lg x -1 ,则A ∩B =.40设全集U =R ,若集合A ={0,1,2},B ={x |-1<x <2},A ∩(∁U B )=.41已知集合A =x x >1 ,B =x -1≤x ≤3 ,则A ∩B =;42若集合A ={x ∣1≤x ≤3,x ∈R },B =Z ,则A ∩B =.43已知全集为R ,A =x log 2x +1 <2 ,则∁R A =.44已知集合A =x ∣x 2+4x +3=0 ,B =x ∣x 2=1 ,则A ∩B =.45已知集合A =x x x -1≥0,x ∈R ,B =y y =x 2+1,x ∈R ,则A ∩B =.46集合A ={x |0≤x <3且x ∈Z },B ={x |x 2≤9且x ∈Z },则A ∩B =.47已知全集U =R ,A =x x -3x ≤0 ,B ={x |x >2},则A ∩∁U B =.计算专题训练1集合的运算临渊羡鱼不如退而结网48已知集合M ={x ||x -1|≤3},N =x |3x ≥1 ,则M ∩N =.(用区间作答)49已知集合A =x x 2-3x -18≤0 ,B =x y =ln x -2 ,则A ∩B =.50已知集合A =x -2<x <0 ,集合B =x 0≤x ≤1 ,则A ∪B =.51已知集合A ={-1,0,1,2},B ={x ∈R ||3x -2∣≤4},则A ∪B =.52已知集合A ={x ∣x 2-x -2<0},B =x ∣y =11-x ,则A ∩B =.53已知全集U ={x ∈Z |-1≤x ≤3},集合A ={x ∈Z |0≤x ≤3},则∁U A =54若集合A =0,1,2,3 ,B =x x <2 ,则A ∩B =.专题2解一元二次不等式1解不等式(1)-x2+3x+40>0(2)3x+1<12解不等式:(1)-x2+x≥3x+1;(2)x2-2x>2x2+2.3解一元二次不等式:(1)4x2+4x+1>0;(2)2x2-x-3≤0.4解下列不等式:(1)x-13+2<x-3<2x+32;(2)3x+4-x2<0.5求解下列不等式的解集:(1)-x2+4x+5<0;(2)2x2-5x+2≤0;(3)4x-1-7≤0;(4)x+1x-52x-2<0;(5)4-x2x+3≥1. 6解下列不等式:(1)x2-5x+6<0;(2)-x2+2x+3<0;(3)3x+13-x >-1;(4)x+1x-3≥0.7解下列不等式(1)log2x2-2≤1;(2)x-1x-4≥0;(3)-3x2-2x+8≥0;计算专题训练1解一元二次不等式临渊羡鱼不如退而结网8解下列关于x的不等式:(1)-x2+2x+4>0;(2)2x-3x+1≥1 9求下列不等式的解集:(1)4x+3x-1>5;(2)2x-3<3x-210解下列不等式:(1)2x2+5x-3<0;(2)-3x2+6x≤2;(3)x+5x-3≤12;(4)x-1x-2<x2x-5+311解下列不等式:(1)x2<3x+4;(2)2+x-x2≥0;(3)x9-x>0.12求下列不等式的解集:(1)x2-3x-10>0;(2)-3x2+5x-4>013解下列不等式:(1)2+3x-2x2>0;(2)x2-2x+3>0.14解不等式:(1)x2+x-6≤0;(2)6-2x2-x<0.15解下列不等式:(1)2+3x-2x2>0;(2)x3-x≤x x+2-1.16解下列不等式.(1)x2-5x+6>0;(2)-3x2+5x-2>0.17解下列不等式:(1)2x2+x-3>0;(2)-4x2+4x-1≥0;(3)-4x2+3x-2<0 18求下列不等式的解集:(1)-x2+3x+2<6x-2;(2)2x+1x-3>3x2+219解下列不等式:(1)2x-1x+2≤0;(2)|1-2x|>3.20解下列关于x的不等式:(1)-x2+4x-4<0;(2)1-xx-5>021(1)4x-2x-2<0;(2)log2x2-5log2x+6≥0.22求下列不等式的解集:(1)-3x2-2x+8≥0;(2)3x2x+1≤1.23解下列不等式的解集:(1)x2-4x+4>0;(2)-3x2+5x-2>0;(3)2x2+7x+3>0;(4)2x2<x-1.计算专题训练1解一元二次不等式临渊羡鱼不如退而结网24解下列不等式:(1)4x 2-4x +1>0;(2)x 2-6x +9≤0;(3)-x 2+2x -3>0;(4)(x +2)(x -3)<6.25解下列不等式.(1)-2x 2+3x -1<0;(2)x 2+x +2<0.26求下列不等式的解集.(1)-2x 2+5x -3≤0;(2)x +4x +1≥227解下列不等式:(1)x 2+x -2<0;(2)x +2 3-x ≤028解下列不等式(1)-2x 2+x +3<0;(2)2x -13-4x≥1;(3)x -2 x -1 <x .29求下列不等式的解集(1)x -1x>2;(2)-x 2+5x +6x -1≥0.30解下列不等式(组)(1)-2<1-3x ≤4;(2)1-2x ≤52x -3 >1;(3)2x +5>5x -1-x 2+23x ≤331解关于x 的不等式.(1)2x 2-x -6>0;(2)-2x 2+x +3≥0;(3)x 2-3x -2<0.32解下列不等式:(1)-2x2+x+1<0;(2)x-2x-1≥2.33求下列不等式的解集:(1)2x 2-5x+3<0;(2)3x+12-x<0.34求下列不等式的解集:(1)(x+1)(x-4)>0;(2)-x2+4x-4<035解下列关于x的不等式:(1)x2-3x+2>0;(2)x2+x+1>0.36利用函数解下列不等式:(1)2x2+7x+3>0;(2)x2-4x-5≤0;(3)-12x2+3x -5>0;(4)x-3x+7<0;(5)x-43-x≥137解关于x的不等式:(1)x2-14x+45≤0;(2)2x+1x-1≤1 38求下列不等式和不等式组的解集(1)2x-1x+3≤1(2)x x+2>0x2<1计算专题训练1解一元二次不等式临渊羡鱼不如退而结网39解不等式:(1)x2-2x-3>0;(2)x-12x<140解不等式-x2+2x+3<0.41解下列不等式(1)2x2-x<4;(2)2x-13x+1>142解下列不等式5-xx+3>043解下列不等式:(1)3x2+5x-2>0;(2)-2x2x-1>1.44求下列不等式的解集(1)x-1x-2<0;(2)x2-5x+4≤0;(3)1-2x≥3;(4)2x+1x-3>045求下列不等式的解集:(1)x2-5x+6>0;(2)-12x2+3x-5>0;(3)2x+3x-1≥146解下列关于x的不等式:(1)x2-3x<10;(2)1-2xx+2≥047解下列不等式(1)1x <4;(2)2x-1<7.48解下列不等式:(1)x-2x+1<4;(2)x-2x +1≥0.49解下列不等式;(1)-x2+2x-3>0;(2)x-21-3x>2;(3)x+1x-2≥3计算专题训练1解一元二次不等式临渊羡鱼不如退而结网专题3复数的四则运算1i3+i4的共轭复数为()A.1+iB.1-iC.-1+iD.-1-i2若z =2i+i21+i,则z=()A.12+32i B.12-32i C.-12+32i D.-12-32i3已知z+i=z i,则z =()A.22B.0 C.12D.14已知iz=1+i(其中i为虚数单位),若z 是z的共轭复数,则z-z =()A.-1B.1C.-iD.i554-3i=()A.-4+3iB.4+3iC.-45+35i D.45+35i6若复数z满足i⋅z=4+3i,则z =()A.2B.5C.3D.57若a 为实数,且7+a i3+i=2-i ,则a =()A.2B.1C.-1D.-28(1+3i )2=()A.2+23iB.2-23iC.-2+23iD.-2-23i9已知复数z =3+i1+2i+2i ,则z =()A.1B.2C.2D.2210z 1-i =1-3i ,则z=()A.1+iB.1-iC.2+2iD.2-2i11设z =11+i,则z -z =()A.-iB.iC.1D.012已知i 为虚数单位,复数z =1-3i2+i ,则z =()A.2B.3C.2D.513已知i 为虚数单位,复数z 满足(1+3i )z=3+i ,则z =()A.-iB.3-iC.32-12i D.32+12i 计算专题训练3复数的四则运算临渊羡鱼不如退而结网14若复数z=4-3ii,则z =()A.25B.20C.10D.515设复数z满足z1-i=4,则z =()A.22B.1C.2D.216已知复数z=1-i2+a ia∈R在复平面对应的点在实轴上,则a=()A.12B.-12C.2D.-217已知复数z满足(z-1)(2-3i)=3+2i,则z=()A.0B.iC.-1+iD.1+i18若复数z满足i⋅z =1-2i,则z=()A.-2-iB.-2+iC.2+iD.2-i19设i为虚数单位,若复数z满足zi =3-i1-i,则z的虚部为()A.-2B.-1C.1D.220已知复数z满足(2+i)z=2-4i,则z的虚部为()A.-2iB.2iC.-2D.221已知z1-2i=i,i为虚数单位,则z=()A.-2+iB.2-iC.2+iD.-2-i22已知复数z 满足1-i z -2i =2i ,则z 的虚部为()A.-1B.-iC.3D.3i23已知复数z =a +i a ∈R 满足z ⋅z=5,则a 的值为()A.6B.2C.±6D.±224已知复数z 是方程x 2-2x +2=0的一个根,则z =()A.1B.2C.2D.325若复数z =a -2i2+ia ∈R 是纯虚数,则a =()A.-2B.2C.-1D.126已知复数z 满足1+i z =3-i ,则复数z =()A.2B.5C.22D.1027已知复数z =32+12i ,则z 3 =()A.34B.32C.1D.7228已知复数z 满足z⋅i =4+3i ,则z =.293+ii=计算专题训练3复数的四则运算临渊羡鱼不如退而结网30复数z 满足2z +z=6-i (i 是虚数单位),则z 的虚部为.31设复数z 满足1+i z =2i (i 为虚数单位),则z =.32复数z 1,z 2在复平面上对应的点分别为Z 12,1 ,Z 21,-2 ,则z 1+z 2=.33若复数z =21+i(i 为虚数单位),则z -i =.34若复数z 满足z (1-i )=1+2i (i 是虚数单位),则复数z =.35若z 1+2i =1+3i ,则z 1+i =36若复数z 满足2z-1=3+6i (其中i 是虚数单位),则z =.37已知复数i z2+i=-1+2i ,则z 的虚部为.38已知复数z 满足z 2+z +1=0,则z ⋅z=.39已知复数z 满足z 1-i =i (i 为虚数单位),则z 的虚部为.40在复平面内,复数z所对应的点为(1,1),则z⋅z =.41已知复数z满足z1+2i=|4-3i|(其中i为虚数单位),则复数z的共轭复数为.42复数1+2i3+i3的值是.计算专题训练3复数的四则运算临渊羡鱼不如退而结网专题4函数定义域的相关计算1函数f (x )=x -1x 2+1的定义域为.2函数f x =tan x -1+lg 1-x 2 的定义域为.3函数f x =13-x +ln x -1 的定义域为.4函数y =5-5x 的定义域是.(结果写成集合或区间)5求函数f (x )=1-2cos x +ln sin x -22 的定义域为.6函数f x =2x 2-4x +4+x 2-2x 的最小值为.7求函数y =lg sin x -22 +1-2cos x 的定义域为.8函数y =tan x -1tan x +π6 的定义域为.9函数y =3-1x 的定义域为.10函数y =12+cos x 的定义域为.11函数y =1-3x 2-2x -3的定义域为.12函数y =x +1 0x -x +1-6x 2+x -2的定义域是.13若y =x 2-9+9-x 2x -2+1,则3x +4y =.14函数y =lgsin x +12-cos x 的定义域是.15函数y =1log 52x -1 的定义域是.16函数y =1x -1+(x -3)0的定义域是.17函数f (x )=11-x 2的定义域为.计算专题训练4定义域的相关计算临渊羡鱼不如退而结网18函数f (x )=x +1x 的定义域是.19已知函数f x =16-x 2log 3(2-x )的定义域为.20函数f x =3-3-x +ln x 的定义域为.21函数f (x )=3-x 的定义域是.22函数y =x -1的定义域为.23函数f x =1e x -2+lg (2x -x 2)的定义域为.24函数y =12 x -1的定义域为.25函数y =lg (-x )+2x 2-1的定义域为.26函数f x =lg x -1 x -2的定义域为.27函数f x =3-xx+2的定义域是.28函数f(x)=8-2x+log3x-3的定义域为.29函数f(x)=ln(2x-1)的定义域为.30函数f x =1-x+1x的定义域为.31函数y=lg x+12-x的定义域是.32函数y=1x-1的定义域为.33函数f x =lg x +2+12-x的定义域为.34函数y=lg3x-1的定义域是.35函数y=4-x2+1lg2x-3的定义域为.计算专题训练4定义域的相关计算临渊羡鱼不如退而结网36函数f x =4-3x-x22x+1的定义域为.37函数y=2ln2-x的定义域是.38函数y=2x+1+log22-x的定义域为.39已知函数f x =x-2·x+5的定义域是.40函数f x =x-2+1x-3的定义域是.41函数f x =log22-x+9-x2的定义域为.42函数f x =1-2x+1x+3的定义域为.43函数f x =4-x2+1x-1的定义域为.44函数f x =x-1+1x-2的定义域为.45函数f(x)=lg4-x2+1-tan x的定义域是.46已知函数y=f2x-1的定义域为-1,2,则函数y=f x+1的定义域为.47已知函数f x =lg ax2-ax+1的定义域是R,则实数a的取值范围是.48函数f x =log3x-2+6-x的定义域为.49函数y=x+1+1-x2-x+2的定义域是.50函数y=xx-1-log24-x2的定义域是.计算专题训练4定义域的相关计算临渊羡鱼不如退而结网专题5指数与对数运算1求值:(1)23-2+5-π 0-3116 0.5;(2)e 2ln3-log 149⋅log 278+lg4+lg25.2计算(1)823-214-12+π0+-23 2(2)log 218-lg2-lg5+2log 233求值:(1)7+43 0+3235-2×18 -23+32×4-13 -1;(2)e 2ln3-log 49⋅log 278+lg4+lg25.4计算:(1)lg2-lg14+3lg5-log 32×log 49;(2)lg 1100-log 23×log 52×log 35+ln e +21+log 23.5求下列各式的值:(1)0.027 23+27125-13-279 0.5;(2)log 535-2log 573+log 57-log 51.8.6计算:(1)lg8+lg125-lg2-lg5lg 10×lg0.1;(2)log 62 2+log 63 2+3log 62×log 6318-13log 62 7计算或化简下列各式:(1)22 23-61412+ln e +3⋅33⋅63(2)(log 23+log 89)(log 34+log 98+log 32)+(lg2)2+lg20×lg58计算下列各式的值:(1)823--780+43-π 4+2-2;(2)log 327+lg 1100+ln e +2log 23.9计算下列各式的值:(1)2713-0.25+12 -2-16 0;(2)2log 32-log 332+log 38.10计算下列两个小题:(1)e ln3+2lg 2+lg15+lg 13;(2)80.25×42+(2×33)6+π0.11求下列式子的值:(1)21412+9.6 0--8 -23-31.5 6.(2)lg25+2lg2-log 316⋅log 43+e ln3.计算专题训练5 指数运算和对数运算临渊羡鱼不如退而结网12计算与化简:(1)log 427×log 58×log 325(2)a 12b 13 ⋅-2-2a 23b 12 ÷8-23a 76b -16 .(3)135 0+2-2×9412-(0.01)0.5(4)2lg5+23lg8+lg5⋅lg20+(lg2)2.13(1)214 12-(-9.6)0-338 23+(1.5)2;(2)log 535-2log 573+log 57-log 595.14化简求值:(1)8 -23-34×213+350;(2)log 327+lg25+lg4+7log 72.15化简或求值:(1)279 0.5+0.1-2-π0+13;(2)lg14-2lg 73+lg7-lg18;(3)3-2 2+3-1 2.16计算:(1)16912-3-1 0-0.25 -1+6-3 6;(2)lg4+2lg5+log 25×log 58+lg10.17计算下列各式的值:(1)6423+13-2-2e -π 0+413×512 6;(2)log 327-lg2-lg5-log 516⋅log 25+e ln2.18计算下列各题:(1)8116 0.5+-1 -1÷0.75-2+6427-23;(2)log 327+lg25+lg4+7log 72+-9.8 0.19化简求值(1)27813+(0.002)-12-10(5-2)-1;(2)1-log 63 2+log 62×log 618 ÷log 64.20(1)计算:21412-(-2.5)0-338 23+23 -2;(2)已知a x =log 327+lg25+2lg2-7log 72,求a 3x +a -3x a x +a -x的值.21求值:(1)0.027-13+25912-2-1 0;(2)log 227×log 38-2log 510-log 0.24.22求值:(1)532+823+π-4 0+49-12;(2)log 354-log 32+log 23⋅log 34.23计算下列式子(1)log 327+lg25+lg4+7log 72+-9.8 0(2)lg8+lg125lg 10×lg0.1-log 23×log 34计算专题训练5 指数运算和对数运算临渊羡鱼不如退而结网24计算:(1)3164--3220--8 13+16-34;(2)lg2+lg5+log 234-log 26.25计算:(1)3-4 3-3⋅2723+422 2+2;(2)43lg2+log 1002 +lg5 2-lg2 2.26求值:(1)0.027-13+17 0-116;(2)lg20-lg4+lg 15+e ln2.27求值:(1)-2764-23+4-29 4+3-2 20223+2 2022;(2)log 49×log 2764+3log 916+lg2×lg5+lg 21+20220 +lg5.28计算(1)2log 23-lg100+2-1 lg1(2)214 -0.5+43-π 4+8 2329计算下列各式的值:(1)412+327-18114;(2)2log 32-log 312+log 25×log 58.30求下列各式的值:(1)0.064-13--450-2-4⋅3 4(2)lg25+23lg8-log 227×log 32+2log 23.31求解下列问题:(1)(2-1)0+6427-23+(8)-43;(2)lg 1100-ln e +2log 23-log 427⋅log 98.32计算下列各式的值:(1)log 33+lg5+lg2+2log 22.(2)cos20°sin50°-cos50°cos70°.33计算下列各式,写出演算过程(1)214 12+-2 2-827 23+32-2;(2)lg4+2lg5+2log 510-log 520-ln e -log 25⋅log 58.34化简求值:(1)0.252×0.5-4-338-23-(3-π)0+0.064-13+4(-2)4;(2)log 39+12lg25+lg2-log 49×log 38+2log 23-1+ln e .35求值:(1)94 12--9.3 0-23-1+log 24(2)lg2+lg5+lg1+5log 52计算专题训练5 指数运算和对数运算临渊羡鱼不如退而结网36化简求值:(1)(2-3)2+0.512+(-4)02;(2)2lg5-log 322+1lg4 -1+5log 0.25.37计算下列各式的值:(1)54 -13×-23 0+913×33-45 23;(2)log 34273+lg25-3log 3314+lg438化简求值:(1)49-12+lg2+lg5-2log 31;(2)sin 76π+cos 113π+tan 134π.39化简或求值(1)(0.064)-13--78 0+811614+|-0.1|(2)lg14-2lg 73+lg7-lg18(3)(3-π)2+3(-2)340计算求值(1)log 827×log 96÷log 166+e 2ln3;(2)log 48-log 193-log 2441计算:(1)0.01-12-3215-π+1 0+3-2 3;(2)log 28+lg2+lg5-3log 32.42计算:(1)214 12-827-13+-32 4;(2)lg2+lg2⋅lg5+(lg5)2.43化简求值:(1)3-54 3+827-23+5-2 -1+43-π 4;(2)1+12lg9-lg2401-23lg27+lg 365+9log 32.44求值:(1)332×13-(-8)23+(2-π)0;(2)(lg5)2+(lg2)2-log 827log 49+lg5×lg log 216 .45计算:(1)lg25+2lg2+e ln2(2)82723-949 -0.5+0.125 -1346(1)求值:(3)2+1634+(3-1)0;(2)求值:lg25+lg4+5log 52+log 327.47求值:(1)18-13+53×345-π-3 0;(2)log 28+log 27×log 7log 381 .计算专题训练5 指数运算和对数运算临渊羡鱼不如退而结网48(1)8116 14+316 32+120220-e ln 32(2)log 34+log 132 log 43+log 163 49计算:(1)(-1)0+32 -2⋅27823+[(-3)2]12;(2)2lg5+lg4-log 23⋅log 34+log 327.50计算下列各式的值:(1)e 2ln2-lg 12-lg20;(2)lg25+23lg8-log 227×log 32.51化简下列各式:(1)sin 7π2+cos 5π2+cos (-5π)+tan π4;(2)log 20.25+ln e +24⋅log 23+lg4+2⋅lg5-4(-2)4.52计算下列各式的值:(1)823--9.6 0-278 -23+32-2;(2)log 327+lg25+lg4+7log 72+(-9.8)0.53计算求值:(1)1200-12-102-1 +103-2 0+-8 43;(2)lg2×lg2500+8×lg 5 2+2log 49+log 29⋅log 34.54计算下列各式的值:(1)23 -3+2-3 0-21432(2)2log 34-log 33227+log 32+5log 5355求下列各式的值:(1)235 0+2-2×214 -12-42×80.25;(2)lg 1100+log 139-log 5125-log 8132.56化简求值:(1)ab -1 3a 3b -3 12a >0,b >0 ;(2)lg5+lg 22+lg2lg5+log 25×log 254+7log 75.57计算:(1)827-23-1614+π0-3125;(2)2lg4+lg 58+log 25⋅log 54+e 3ln2.58计算:(1)5log 53-log 311⋅log 1127+log 82+log 48;(2)若3m -3-m =23,求9m +9-m 的值.计算专题训练5 指数运算和对数运算临渊羡鱼不如退而结网专题6数列求和的运算1等比数列a n 的公比为2,且a 2,a 3+2,a 4成等差数列.(1)求数列a n 的通项公式;(2)若b n =log 2a n ⋅a n +1 +a n ,求数列b n 的前n 项和T n .2正项数列a n 的前n 项和为S n ,已知2a n S n =a 2n +1.(1)求证:数列S 2n 为等差数列,并求出S n ,a n ;(2)若b n =(-1)n a n,求数列b n 的前2023项和T 2023.3已知数列a n 为:1,1,2,1,1,2,3,1,1,2,1,1,2,3,4⋯.即先取a 1=1,接着复制该项粘贴在后面作为a 2,并添加后继数2作为a 3;再复制所有项1,1,2并粘贴在后面作为a 4,a 5,a 6,并添加后继数3作为a 7,⋯依次继续下去.记b n 表示数列a n 中n 首次出现时对应的项数.(1)求数列b n 的通项公式;(2)求a 1+a 2+a 3+⋯+a 63.4已知等差数列a n 的前n 项和为S n ,a 5=5,S 5=15,(1)求数列a n 的通项公式;(2)若b n =1a n a n +1,求数列b n 的前2023项和.5已知a n 是首项为2,公差为3的等差数列,数列b n 满足b 1=4,b n +1=3b n -2n +1.(1)证明b n -n 是等比数列,并求a n ,b n 的通项公式;(2)若数列a n 与b n 中有公共项,即存在k ,m ∈N *,使得a k =b m 成立.按照从小到大的顺序将这些公共项排列,得到一个新的数列,记作c n ,求c 1+c 2+⋯+c n .6设数列a n 的前n 项和为S n ,已知S n +1=2a n n ∈N * .(1)求a n 的通项公式;(2)设b n =a n ,n =2k -1n ,n =2k 且k ∈N *,求数列b n 的前n 项和为T n .7已知数列a n 满足:a 1=2,且对任意的n ∈N *,a n +1=a n 2n,n 是奇数,2n +1a n +2,n 是偶数.(1)求a 2,a 3的值,并证明数列a 2n -1+23 是等比数列;(2)设b n =a 2n -1n ∈N * ,求数列b n 的前n 项和T n .8已知正项数列a n 的前n 项和为T n ,a 1=2且对任意n ≥2,a n T n ,a 1,a n T n -1成等差数列,又正项等比数列b n 的前n 项和为S n ,S 2=43,S 3=139.(1)求数列a n 和b n 的通项公式;(2)若数列c n 满足c n =T 2n ⋅b n ,是否存在正整数n ,使c 1+c 2+⋯+c n >9.若存在,求出n 的最大值;若不存在,请说明理由.9已知各项均为正数的等比数列a n ,其前n 项和为S n ,满足2S n =a n +2-6,(1)求数列a n 的通项公式;(2)记b m 为数列S n 在区间a m ,a m +2 中最大的项,求数列b n 的前n 项和T n .10已知等差数列a n 的公差d >0,且满足a 1=1,a 1,a 2,a 4成等比数列.(1)求数列a n 的通项公式;(2)若数列b n 满足b n =2a n,n 为奇数1a n a n +2,n 为偶数 求数列b n 的前2n 项的和T 2n .计算专题训练6数列求和计算临渊羡鱼不如退而结网11设S n 是数列a n 的前n 项和,已知a 3=0,a n +1+(-1)n S n =2n .(1)求a 1,a 2;(2)令b n =a n +1+2a n ,求b 2+b 4+b 6+⋯+b 2n .12已知a n 是递增的等差数列,b n 是等比数列,且a 1=1,b 2=a 2,b 3=a 5,b 4=a 14.(1)求数列a n 与b n 的通项公式;(2)∀n ∈N ∗,数列c n 满足c 1b 2+c 2b 3+⋅⋅⋅+c n b n +1=a n +13,求c n 的前n 项和S n .13已知数列a n 的前n 项和为S n ,且S n =2a n +2n -5.(1)求数列a n 的通项公式;(2)记b n =log 2a n +1-2 ,求数列1b n ⋅b n +1的前n 项和T n .14已知S n 为数列a n 的前n 项和,a 1=1,且na n -S n =n 2-n ,n ∈N *.(1)求数列a n 的通项公式;(2)若b n =2a n 2a n -1 2a n +1-1 ,求数列b n 的前n 项和T n .15已知函数a n 的首项a 1=35,且满足a n +1=3a n 2a n +1.(1)求证1a n-1 为等比数列,并求a n .(2)对于实数x ,x 表示不超过x 的最大整数,求1a 1+2a 2+3a 3+⋯+100a 100的值.16已知各项均为正数的数列{a n }满足a 1=1,a n =2a n -1+3(正整数n ≥2)(1)求证:数列a n +3 是等比数列;(2)求数列{a n }的前n 项和S n .17已知在数列a n 中,a 1=12,且1a n 是公差为1的等差数列.(1)求数列a n 的通项公式;(2)设b n =a n +1a n +a n ,数列b n 的前n 项和为T n ,求使得T m ≤425的最大整数m 的值;(3)设c n =1-an 2n ⋅a n,求数列c n 的前n 项和Q n18已知数列a n 各项都不为0,前n 项和为S n ,且3a n -2=S n ,数列b n 满足b 1=-1,b n +1=b n +n .(1)求数列a n 和b n 的通项公式;(2)令c n =2a n bn n +1,求数列c n 的前n 项和为T n19已知等比数列a n 的公比为2,数列b n 满足b 1=2,b 2=3,a n b n +1-a n =2n b n .(1)求a n 和b n 的通项公式;(2)记S n 为数列b na n 的前n 项和,证明:1≤S n <3.20在数列a n 中,a 1=-1,a n =2a n -1+3n -6n ≥2,n ∈N * .(1)求证:数列a n +3n 为等比数列,并求数列a n 的通项公式;(2)设b n =a n +n ,求数列b n 的前n 项和T n .21记S n 为数列a n 的前n 项和,已知a 1=1,2n a n 是公差为2的等差数列.(1)求a n 的通项公式;(2)证明:S n <4.22已知数列a n 满足a n =2a n -1-2n +4(n ≥2,n ∈N *),a 1=4.(1)求证:数列a n -2n 为等比数列,并求a n 的通项公式;(2)求数列-1 n a n 的前n 项和S n .计算专题训练6数列求和计算临渊羡鱼不如退而结网23已知数列a n 是公差为d d ≠0 的等差数列,且满足a 1=1,a n +1=xa n +2.(1)求a n 的通项公式;(2)设b n =(-1)n ⋅4na n a n +1,求数列b n 的前10项和S 10.24已知数列a n 的前n 项和为S n ,且S n =2a n -4.(1)求a n 的通项公式;(2)求数列nS n 的前n 项和T n .25已知等比数列a n 的各项均为正数,且a 2+a 3+a 4=39,a 5=2a 4+3a 3.(1)求a n 的通项公式;(2)数列b n 满足b n =n ⋅a n ,求b n 的前n 项和T n .26已知数列a n 中,a 1=1,a n =a n +12n ,n ∈N *.(1)求数列a n 的通项公式;(2)设b n =log 2a 2n +3n ,数列1b n的前n 项和S n ,求证:S n <34.27数列a n 满足a 1=3,a n +1-a 2n =2a n ,2b n=a n +1.(1)求证:b n 是等比数列;(2)若c n =nb n+1,求c n 的前n 项和为T n .28已知正数数列a n ,a 1=1,且满足a 2n -n -1 a n a n -1-na 2n -1=0n ≥2 .(1)求数列a n 的通项公式;(2)设b n =n -1a n,求数列b n 的前n 项和S n .29已知数列a n 、b n ,满足a 1=100,a n +1=a 2n ,b n =lg a n .(1)求数列b n 的通项公式;(2)若c n =log 2b n +log 2b n +1+⋯+log 2b 2n ,求数列1c n的前n 项和S n .30已知数列a n 中,a 1=1,S n 是数列a n 的前n 项和,数列2S na n是公差为1的等差数列.(1)求数列a n 的通项公式;(2)证明:1S 1+1S 2+⋯+1S n<2.31已知在等差数列a n 中,a 1+a 4+a 7=-24,a 2+a 5+a 8=-15.(1)求数列a n 的通项公式;(2)求数列-1 n a n 的前n 项和T n .32记数列a n 的前n 项和为S n ,已知a n +1=a n +1,n =2k -1,a n +t ,n =2k ,k ∈N *,S 3=7a 1,a 4=a 2+3.(1)求a 1,t ;(2)求数列a n 的通项公式;(3)求数列a n 的前n 项和S n .33数列a n 中,a 1=1,且a n +1=2a n +n -1.(1)证明:数列a n +n 为等比数列,并求出a n ;(2)记数列b n 的前n 项和为S n .若a n +b n =2S n ,求S 11.34已知数列a n 满足a 1=3,2a n +1-a n a n +1=1.(1)记b n =1a n -1求数列b n 的通项公式;(2)求数列1b n b n +1 的前n 项和.计算专题训练6数列求和计算临渊羡鱼不如退而结网35已知等比数列a n 的前n 项和为S n ,且2n +1,S n ,a 成等差数列.(1)求a 的值及数列a n 的通项公式;(2)若b n =2n -1 a n 求数列b n 的前n 项和T n36已知数列a n 和b n ,a 1=2,1b n-1a n =1,a n +1=2b n .(1)求数列a n 和b n 的通项公式;(2)求数列n b n的前n 项和T n .37等比数列a n 的前n 项和为S n ,已知a 1=1,且3a 2-1,a 3,S 3成等差数列.(1)求a n 的通项公式;(2)若a n +1=2a nb n,数列b n 的前n 项和T n .38已知数列a n 的前n 项和为S n ,a n >0,且满足4S n =a n +1 2.(1)求数列a n 的通项公式;(2)设b n =4S na n a n +1的前n 项和为T n ,求T n .39已知数列{a n }满足:a 1=3,a n +1=n +1n2a n +n .(1)证明:数列a nn+1是等比数列;(2)设c n =a n +n ,求数列{c n }的前n 项和T n .40已知正项等差数列a n 的前n 项和为S n ,其中a n +2-a n =4,4(S 2+1)=(a 2+1)2.(1)求数列a n 的通项公式及S n ;(2)若b n =a n ⋅34n -1,求数列b n 的前n 项和T n .专题7导数计算1求下列函数的导数:(1)y =cos xsin x -cos x;(2)y =x e 2x 2+1.2求下列函数的导数.(1)f x =-2x +1 2;(2)f x =ln 4x -1 ;(3)f x =23x +2;(4)f x =5x +4;3求下列函数的导数:(1)y =2x 3-3x 2+5;(2)y =2x +4x +1;(3)y =log 2x ;(4)y =x n e x ;(5)y =x 3-1sin x ;(6)y =sin xsin x +cos x.4求下列函数的导数:(1)y =(x +1)1x -1 ;(2)y =3ln x +a x (a >0,a ≠1);(3)y =x sin 2x +π2 cos 2x +π2(4)y =ln (2x +3)x 2+1.5求下列函数的导数:(1)y =3x 2+cos x ;(2)y =x +1 ln x ;(3)y =x -sinx 2cos x 2;6求下列函数的导数.(1)y =x -2+x 2;(2)y =ln xx 2+1计算专题训练7导数计算临渊羡鱼不如退而结网7求下列函数的导数:(1)f (x )=(1+sin x )(1-x 2);(2)f (x )=xx +1-3x .8求下列函数的导数:(1)y =x 2log 2(3x );(2)y =cos (2x +1)x.9求下列函数的导数:(1)y =1+x 1-x +1x;(2)y =x ln (2x +1).10求下列函数的导数:(1)y =ln 2x +1x;(2)y =ln 2x -5 ;(3)y =x sin 2x +π2 cos 2x +π2.11求下列函数的导函数.(1)y =4x 3+x 2-ln x +1;(2)y =4-cos xx 2+2;(3)y =e 2x +1sin x .12求下列函数的导数.(1)y =1-x 1+1x; (2)y =ln xx.13求下列函数的导数:(1)y =log 52x ;(2)y =8x ;(3)y =cos2x ;(4)y =2x 43.14求下列函数的导数:(1)y=x8;(2)y=4x;(3)y=log3x;(4)y=sin x+π2;(5)y=e2.15求下列函数的导数.(1)y=x12;(2)y=1x4;(3)y=3x;(4)y=ln x;(5)y=cos x.16求下列函数的导函数(1)y=x4-3x2-5x+6;(2)y=x+1x2;(3)y=x2cos x;(4)y=tan x17求下列函数的导函数.(1)f x =-2x3+4x2;(2)f x =13x3-x2+ax+1(3)f(x)=x +cos x,x∈(0,1);(4)f(x)=-x2+3x-ln x(5)y=sin x;(6)y=x+1x-118求下列函数的导数:(1)y=(2x2-1)(3x+1);(2)y=e x cos x;19求下列函数在指定点处的导数.(1)f x =xπ,x=1;(2)f x =sin x,x=π2.20求下列函数的导数.(1)y=x12;(2)y=1x4;(3)y=3x;(4)y=log5x.计算专题训练7导数计算临渊羡鱼不如退而结网21求下列函数的导数:(1)y =3x 2+cos x ;(2)y =x +1 ln x ;22求下列函数的导数.(1)y =2x 2+3 3x -1 ;(2)y =1-sin x1+cos x.23求下列函数的导数.(1)f x =x ln x +sin x ;(2)f x =2x +15e x.24求下列函数的导数:(1)f x =sin xx 2+2x(2)f x =e 3x ln 2x +425求下列函数的导数:(1)f x =ln 1+x 2;(2)y =cos 2x +1x.26求下列函数的导函数.(1)y =2x 2+3 3x -1 ;(2)y =x +3x 2+3.27求下列函数的导数:(1)y =2x 3-3x 2-4;(2)y =ln xx.28求下列函数的导数:(1)y =x 3-1e x(2)y =ln (5x +2)(3)y =cos (2x +1)x29求下列函数的导数.(1)y=ln x+1x ;(2)y=x-sin x2cos x2;(3)y=cos xe x30求下列函数的导数:(1)y=x+1x2;(2)y =e x sin x;(3)y=x ln x2+3x.31y=x ln x2+3x.32y=x+1x 2;33求下列函数的导数(1)y=(x-2)(3x+1)2;(2)y=x2cos2x34求下列函数的导数(1)f x =12x2-x-1x;(2)f x =e x+ln x+sin x35求下列函数的导数.(1)y=ln(2x+1);(2)y=sin xcos x;(3)y=x ln1+x2;(4)y=(x+1)(x+2)(x+3). 36求下列函数的导函数.(1)f x =x4+ln x;(2)f x =sin xx -cos x;(3)f x =e2x-1.计算专题训练7导数计算临渊羡鱼不如退而结网37求下列函数的导数.(1)y =x +x 5+sin xx 2;(2)y =x +1 x +2 x +3 ;(3)y =11-x +11+x.38求下列函数的导数:(1)y =x -1 x 3-1 ;(2)y =sin3x ;(3)y =x 2+1e x.39求下列函数的导数:(1)y =sin x +tan x x ∈0,π2;(2)y =ln 3x 2+5 .40求下列函数的导数:(1)y =x +1x2;(2)y =x ln x 2+3x .41求下列函数的导数.(1)f x =ln x +2xx 2;(2)f x =ln 4x +5 3.42求下列函数的导数:(1)y =3x 2+2x +1 cos x ;(2)y =3x 2+x x -5x +1x;(3)y =x 18+sin x -ln x ;(4)y =2x cos x -3x log 3x ;(5)y =3x sin x -3log 3x ;(6)y =e x cos x +tan x .43求下列函数的导数:(1)y =e -ax 2+bx ;(2)y =2sin (1-3x );(3)y =3cos 2x +x ;(4)y =ln 1+sin x ;(5)y =lg sin x 2+x 2;(6)y =cos 21+x 2e x.。
高考数学专题训练 (5)
专题训练51.若集合{}A=|1x x x R ≤∈,,{}B=|0x x x R ≥∈,,则A B ⋂=A. {}|11x x -≤≤B. {}|0x x ≥C. {}|01x x ≤≤D. ∅2.已知复数i z +=21,21z ai =-,a R ∈,若z = 12z z ⋅在复平面上对应的点在虚轴上,则a 的值是A .-12B .12C .2D .-2 3.已知数列{}n a 的通项公式是()()11n n a n =-+,则12310a a a a ++++=A .55-B .5-C .5D .554.若,x y 满足约束条件2100408x y x y +≥⎧⎪≤≤⎨⎪≤≤⎩,则43z x y =+的最小值为A .20B .22C .24D .285.已知点(,)(,)P x y x y R ∈,则“22x y ≥≥且”是“点(,)P x y 在圆224x y +=外”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 6.如图所示的程序框图运行的结果是A .12012 B .12013C .20112012D .20122013 7.函数sin()y A x ωϕ=+的部分图像如图所示,则其解析式可以是A .3sin(2)3y x π=+ B .3sin(2)3y x π=-+C .13sin()212y x π=+D .13sin()212y x π=-+8.已知抛物线C 的顶点为原点,焦点在x 轴上,直线y=x 与抛物线C 交于A ,B 两点,若()2,2P 为AB 的中点,则抛物线C 的方程为A .24y x = B. 24y x =- C. 24x y = D. 28y x =9.若偶函数满足()()x f x f 11-=+,且时, ()2x xf =,则方程的解的个数是( )A. 2个B. 3个C. 4个D. 多于4个10.若a>0,b>0,且函数f (x )=3242x ax bx --在x=1处有极值,则ab 的最大值等于( )A .2B .3C .6D .911.对任意实数,x y ,定义运算x y ax by cxy *=++,其中,,a b c 是常数,等式右边的运算是通常的加法和乘法运算。
高考数学压轴专题专题备战高考《复数》真题汇编及答案
【高中数学】数学《复数》复习知识点一、选择题1.设i 是虚数单位,则复数734i i ++在复平面内所对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 【答案】D【解析】因为734ii ++(7)(34)2525=1(34)(34)25i i ii i i +--==-+-,所以所对应的点为(1,1)-,位于第四象限,选D. 2.设i 是虚数单位,若复数()103a a R i -∈-是纯虚数,则a 的值为( )A .-3B .-1C .1D .3【答案】D【解析】【分析】【详解】 因,故由题设, 故,故选D .考点:复数的概念与运算.3.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( )A .1B .iC .1-D .i -【答案】A【解析】()12i z i +=22(1)112ii i z i i -⇒===++,所以z 的虚部是1,选A.4.已知复数i z x y =+(x ,y ∈R ),且23z +=1y x -的最大值为()A 3B 6C .26+D .26【答案】C【解析】【分析】根据模长公式,求出复数z 对应点的轨迹为圆,1y x -表示(,)x y 与(0,1)连线的斜率,其最值为过(0,1)点与圆相切的切线斜率,即可求解.【详解】∵复数i z x y =+(x ,y ∈R),且2z +==()2223x y ++=. 设圆的切线l :1y kx =+=化为2420k k --=,解得2k =∴1y x-的最大值为2 故选:C.【点睛】 本题考查复数的几何意义、轨迹方程、斜率的几何意义,考查数形结合思想,属于中档题.5.已知复数z 满足121i z i i +⋅=--(其中z 为z 的共轭复数),则z 的值为( ) A .1B .2 CD 【答案】D【解析】【分析】 按照复数的运算法则先求出z ,再写出z ,进而求出z .【详解】 21(1)21(1)(1)2i i i i i i i ++===--+Q , 1222(2)121i i z i i z i z i i i i i+-∴⋅=-⇒⋅=-⇒==--=---,12||z i z ∴=-+⇒==故选:D【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.6.已知i 是虚数单位,则复数242i z i-=+的共轭复数在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】【分析】先将复数化为代数形式,再根据共轭复数的概念确定对应点,最后根据对应点坐标确定象限.【详解】 解:∵()()()()242232424242105i i i z i i i i ---===-++-, ∴32105z i =+, ∴复数z 的共轭复数在复平面内对应的点的坐标为(32105,),所在的象限为第一象限. 故选:A . 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi7.已知2a i b i i +=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A .-1B .1C .2D .3【答案】B【解析】【分析】利用复数除法运算法则化简原式可得2ai b i -=+,再利用复数相等列方程求出,a b 的值,从而可得结果.【详解】 因为22222a i ai i ai b i i i+--==-=+- ,,a b ∈R , 所以2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩,则+1a b =,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.8.已知z C ∈,2z i z i ++-=,则z 对应的点Z 的轨迹为( )A .椭圆B .双曲线C .抛物线D .线段【答案】D【解析】【分析】由复数模的几何意义,结合三角不等式可得出点Z 的轨迹.【详解】 2z i z i ++-=的几何意义为复数z 对应的点Z 到点()0,1A -和点()0,1B 的距离之和为2,即ZA ZB AB +=,另一方面,由三角不等式得ZA ZB AB +≥.当且仅当点Z 在线段AB 上时,等号成立.因此,点Z 的轨迹为线段.故选:D.【点睛】本题考查复数模的几何意义,将问题转化为距离之和并结合三角不等式求解是解题的关键,考查分析问题和解决问题的能力,属于中等题.9.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由著名数学家欧拉发明的,他将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式,若将2i e π表示的复数记为z ,则(12)z i +的值为( )A .2i -+B .2i --C .2i +D .2i -【答案】A【解析】【分析】 根据欧拉公式求出2cossin 22i z e i i πππ==+=,再计算(12)z i +的值.【详解】 ∵2cos sin 22i z e i i πππ==+=,∴(12)(12)2z i i i i +=+=-+.故选:A.【点睛】此题考查复数的基本运算,关键在于根据题意求出z .10.设2i 2i 1i z =++-,则复数z =( ) A .12i - B .12i + C .2i + D .2i -【答案】A【解析】【分析】根据复数的运算法则,求得12z i =+,再结合共轭复数的概念,即可求解.【详解】 由题意,可得复数()()()2i 1i 2i 2i 2i 12i 1i 1i 1i z +=++=++=+--+, 所以12i z =-.故选:A .【点睛】本题主要考查了复数的运算,以及复数的共轭复数的概念及应用,其中解答中熟记复数的运算法则,准确运算是解答的关键,着重考查了运算能力.11.在复平面内,复数121i z i -=+对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】 试题分析:1213122i i i -=--+在复平面内所对应的点坐标为,位于第三象限,故选C .考点:复数的代数运算及几何意义.12.若复数1a i z i +=-,且3·0z i >,则实数a 的值等于( ) A .1B .-1C .12D .12- 【答案】A【解析】【分析】由3·0z i >可判定3·z i 为实数,利用复数代数形式的乘除运算化简复数z ,再由实部为0,且虚部不为0列式求解即可.【详解】 ()()()()()i 1i 11i i 1i 1i 1i 2a a a a z ++-+++===--+Q , 所以3·z i =()()()()341i 1i 1i 122a a a a -++--++=,因为3·0z i >,所以3·z i 为实数,102a --= 可得1a =,1a =时3,?10z i =>,符合题意,故选A. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.13.(2018江西省景德镇联考)若复数2i 2a z -=在复平面内对应的点在直线0x y +=上,则z =( )A .2BC .1 D.【答案】B【解析】分析:化简复数z ,求出对应点坐标,代入直线方程,可求得a 的值,从而可得结果. 详解:因为复数2i 22a a z i -==-, 所以复数2i 2a z -=在复平面内对应的点的坐标为,12a ⎛⎫- ⎪⎝⎭, 由复数2i 2a z -=在复平面内对应的点在直线0x y +=上, 可得10212a a z i -=⇒==-,,z ==,故选B.14.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,4ii e e ππ表示的复数在复平面中位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】【分析】 根据欧拉公式计算4i i e e ππ,再根据复数几何意义确定象限.【详解】因为444iie cos isincos isineππππππ+===+,所以对应点22-(,,在第二象限,选B.【点睛】本题考查复数除法以及复数几何意义,考查基本分析求解能力,属基本题.15.设复数z a bi=+(i为虚数单位,,a b∈R),若,a b满足关系式2ab t=-,且z在复平面上的轨迹经过三个象限,则t的取值范围是( )A.[0,1]B.[1,1]-C.(0,1)(1,)⋃+∞D.(1,)-+∞【答案】C【解析】【分析】首先根据复数的几何意义得到z的轨迹方程2xy t=-,再根据指数函数的图象,得到关于t的不等式,求解.【详解】由复数的几何意义可知,设复数对应的复平面内的点为(),x y,2ax ay b t=⎧⎨==-⎩,即2xy t=-,因为z在复平面上的轨迹经过三个象限,则当0x=时,11t-<且10t-≠,解得0t>且1t≠,即t的取值范围是()()0,11,+∞U.故选:C【点睛】本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.16.设复数4273izi-=-,则复数z的虚部为()A.1729-B.1729C.129-D.129【答案】C【解析】【分析】根据复数运算法则求解1712929z i=-,即可得到其虚部.【详解】 依题意,()()()()427342281214634217173737358582929i i i i i i z i i i i -+-+-+-=====---+ 故复数z 的虚部为129-故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握运算法则,准确计算,正确辨析虚部的概念.17.下列命题中,正确命题的个数是( )①若,,则的充要条件是;②若,且,则; ③若,则. A . B . C . D .【答案】A【解析】对①,由于x ,y ∈C ,所以x ,y 不一定是x +yi 的实部和虚部,故①是假命题; 对②,由于两个虚数不能比较大小,故②是假命题;③是假命题,如12+i 2=0,但1≠0,i≠0.考点:复数的有关概念.18.已知复数134z i=+,则下列说法正确的是( ) A .复数z 的实部为3B .复数z 的虚部为425iC .复数z 的共轭复数为342525i + D .复数的模为1【答案】C【解析】【分析】直接利用复数的基本概念得选项.【详解】 1343434252525i z i i -===-+, 所以z 的实部为325,虚部为425- ,z 的共轭复数为342525i +15=, 故选C.【点睛】该题考查的是有关复数的概念和运算,属于简单题目.19.已知复数z 在复平面内对应点是()1,2-,i 为虚数单位,则21z z +=-( ) A .1i --B .1i +C .312i -D .312i + 【答案】D【解析】 21z z +=-323122i i i -=+- ,选D.20.复数52i -的共轭复数是( ) A .2i + B .2i -C .2i -+D .2i -- 【答案】C【解析】【分析】 先化简复数代数形式,再根据共轭复数概念求解.【详解】 因为522i i =---,所以复数52i -的共轭复数是2i -+,选C. 【点睛】本题考查复数运算以及共轭复数概念,考查基本求解能力.。
2023年新高考数学创新题型微专题14 集合,复数,逻辑语言专题(数学文化)(解析版)
专题14 集合,复数,逻辑语言专题(数学文化)一、单选题1.(2022·高一课时练习)数系的扩张过程以自然数为基础,德国数学家克罗内克(Kronecker ,1823﹣1891)说“上帝创造了整数,其它一切都是人造的”设为虚数单位,复数Z 满足()202012Z i i =+,则Z 的共轭复数是( ) A .2i + B .2i − C .12i − D .12i +【答案】C【分析】利用虚数单位的幂的运算规律化简即得12Z i =+,然后利用共轭复数的概念判定. 【详解】解:()505202041,12,12i i Z i Z i ==∴=+∴=−,故选:C.2.(2022秋·浙江温州·高一乐清市知临中学校考期中)某国近日开展了大规模COVID -19核酸检测,并将数据整理如图所示,其中集合S 表示( )A .无症状感染者B .发病者C .未感染者D .轻症感染者【答案】A【分析】由S A B =I 即可判断S 的含义.【详解】解:由图可知,集合S 是集合A 与集合B 的交集, 所以集合S 表示:感染未发病者,即无症状感染者, 故选:A.3.(2021秋·湖北十堰·高一校联考期中)必修一课本有一段话:当命题“若p ,则q ”为真命题,则“由p 可以推出q ”,即一旦p 成立,q 就成立,p 是q 成立的充分条件.也可以这样说,若q 不成立,那么p 一定不成立,q 对p 成立也是很必要的.王安石在《游褒禅山记》中也说过一段话:“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”.从数学逻辑角度分析,“有志”是“能至”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件【答案】B【分析】本题可根据充分条件与必要条件的定义得出结果.【详解】因为“非有志者不能至也”即“有志”不成立时“能至”一定不成立, 所以“能至”是“有志”的充分条件,“有志”是“能至”的必要条件, 故选:B.4.(2022秋·云南曲靖·高一校考期中)杜甫在《奉赠韦左丞丈二十二韵》中有诗句:“读书破万卷,下笔如有神.”对此诗句的理解是读书只有读透书,博览群书,这样落实到笔下,运用起来才有可能得心应手,如有神助一般,由此可得,“读书破万卷”是“下笔如有神”的( ) A .充分不必要条件 B .充要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】C【分析】根据充分条件和必要条件的定义分析判断.【详解】杜甫的诗句表明书读得越多,文章未必就写得越好,但不可否认的是,一般写作较好的人,他的阅读量一定不会少,而且所涉猎的文章范畴也会比一般读书人广泛. 因此“读书破万卷”是“下笔如有神”的必要不充分条件. 故选:C5.(2020·陕西榆林·z a bi =+(a ,b ∈R )对应向量OZ (O 为坐标原点),设OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则()cos sin z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,则()()12121212cos sin z z r r i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理可以导出复数乘方公式:()()cos sin cos sin nnr i r n i n θθθθ+=+⎡⎤⎣⎦,已知)4z i =,则z =( )A .B .4C .D .16【答案】D【解析】根据复数乘方公式:()()cos sin cos sin nnr i r n i n θθθθ+=+⎡⎤⎣⎦,直接求解即可.【详解】)4441216cos sin 266z ii i ππ⎡⎤⎫⎛⎫===+⎢⎥⎪ ⎪⎪⎝⎭⎢⎥⎝⎭⎣⎦16cos 4sin 4866i ππ⎡⎤⎛⎫⎛⎫=⨯+⨯=−+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,16z .故选:D【点睛】本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.6.(2021春·重庆沙坪坝·高三重庆一中校考阶段练习)在代数史上,代数基本定理是数学中最重要的定理之一,它说的是:任何一元n 次复系数多项式()f x 在复数集中有n 个复数根(重根按重数计)那么()31f x x =−在复平面内使()0f x =除了1和12−这两个根外,还有一个复数根为( )A .12B .12−C .12D .12−【答案】B【分析】利用方程根的意义,把12−代入方程,经化简变形即可得解.【详解】因12−是方程()0f x =的根,即32111))22(1(2−−−=⇒==221111)())222(2(−=−−−+⇒=3111)())1222222((−−=−+−⇒=,所以12−是方程()0f x =的根.故选:B7.(2021春·安徽宣城·高一校联考期中)瑞士著名数学家欧拉发现了公式i cos isin x x x e =+(i 为虚数单位),它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.根据欧拉公式可知,3i 4e π表示的复数在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B【分析】根据欧拉公式代入求解即可. 【详解】解:根据欧拉公式i e cos isin x x x=+,得3πi 43π3πecosisin 44=+=+,即它在复平面内对应的点为22⎛ ⎝⎭, 故位于第二象限. 故选:B.8.(2022·全国·高三专题练习)“虚数”这个名词是17世纪著名数学家、哲学家笛卡尔()ReneDescartes 创制的,直到19世纪虚数才真正闻人数的领域,虚数不能像实数一样比较大小.已知复数z ,1z =且(1i)0z ⋅+>(其中i 是虚数单位),则复数z =( )ABC D 【答案】C【分析】根据条件,设i z a b =+,再列式求,a b ,即可得到复数. 【详解】设i z a b =+,221a b +=,①()()()()i 1i i>0a b a b a b ++=−++,得0a b +=,且0a b −> ②,由①②解得:a =b =所以22z =−. 故选:C9.(2022·全国·高三专题练习)2022年1月,中科大潘建伟团队和南科大范靖云团队发表学术报告,分别独立通过实验,验证了虚数i 在量子力学中的必要性,再次说明了虚数i 的重要性.对于方程310x +=,它的两个虚数根分别为( )A .12B .12−C D 【答案】A【分析】根据方程根的定义进行验证.【详解】首先实系数多项式方程的虚数根成对出现,它们互为共轭复数,因此排除CD ,A 选项,31110+=+==, 因此选项A 正确,则选项B 错误(因为3次方程只有3个根(包括重根)).故选:A .10.(2022·全国·高三专题练习)人们对数学研究的发展一直推动着数域的扩展,从正数到负数、从整数到分数、从有理数到实数等等.16世纪意大利数学家卡尔丹和邦贝利在解方程时,首先引进了2i 1=−,17世纪法因数学家笛卡儿把i 称为“虚数”,用i(R)a b a b +∈、表示复数,并在直角坐标系上建立了“复平面”.若复数z 满足方程2250z z ++=,则z =( ) A .12i −+ B .2i −−C .12i −±D .2i −±【答案】C【分析】设出复数z 的代数形式,再利用复数为0列出方程组求解作答. 【详解】设i(,R)z a b a b =+∈,因2250z z ++=,则2(i)2(i)50a b a b ++++=,即22(25)2(1)i 0a b a b a −++++=,而,R a b ∈,则222502(1)0a b a b a ⎧−++=⎨+=⎩,解得12a b =−⎧⎨=±⎩,所以12i z =−±. 故选:C11.(2022·高一单元测试)中国古代重要的数学著作《孙子算经》下卷有题:今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?现有如下表示:已知{}32,A x x n n N *==+∈,{}53,B x x n n N *==+∈,{}72,C x x n n N *==+∈,若x A B C ∈⋂⋂,则下列选项中符合题意的整数x 为 A .8 B .127C .37D .23【答案】D【解析】将选项中的数字逐一代入集合A 、B 、C 的表达式,检验是否为A 、B 、C 的元素,即可选出正确选项.【详解】因为8711=⨯+,则8C ∉,选项A 错误;1273421=⨯+,则127A ∉,选项B 错误; 373121=⨯+,则37A ∉,选项C 错误;23372=⨯+,故23A ∈;23543=⨯+,故x B ∈;23732=⨯+,故x C ∈,则23A B C ∈⋂⋂,选项D 正确. 故选:D .12.(2022秋·浙江温州·高一校考阶段练习)在数学漫长的发展过程中,数学家发现在数学中存在着神秘的“黑洞”现象.数学黑洞:无论怎样设值,在规定的处理法则下,最终都将得到固定的一个值,再也跳不出去,就像宇宙中的黑洞一样.目前已经发现的数字黑洞有“123黑洞”、“卡普雷卡尔黑洞”、“自恋性数字黑洞”等.定义:若一个n 位正整数的所有数位上数字的n 次方和等于这个数本身,则称这个数是自恋数.已知所有一位正整数的自恋数组成集合A ,集合{}34,|B x x x =−<<∈Z ,则A B ⋂的子集个数为( ) A .3 B .4C .7D .8【答案】D【分析】根据自恋数的定义可得集合A ,再根据交集的定义求出A B ⋂,从而可得答案. 【详解】解:依题意,{}1,2,3,4,5,6,7,8,9A =,{}2,1,0,1,2,3B =−−, 故{}1,2,3A B =,故A B ⋂的子集个数为8. 故选:D .13.(2019·江西·高三校联考阶段练习)我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为ba 和d c (,,,abcd N +∈),则b da c ++是x 的更为精确的不足近似值或过剩近似值.我们知道 2.71828e =⋯,若令2714105e <<,则第一次用“调日法”后得4115是e 的更为精确的过剩近似值,即27411015e <<,若每次都取最简分数,那么第三次用“调日法”后可得e 的近似分数为 A .10940B .6825C .197D .8732【答案】C【解析】利用“调日法”进行计算到第三次,即可得到本题答案. 【详解】第一次用“调日法”后得4115是e 的更为精确的过剩近似值,即27411015e <<;第二次用“调日法”后得6825是e 的更为精确的过剩近似值,即27681025<<e ;第三次用“调日法”后得197是e 的更为精确的不足近似值,即1968725<<e ,所以答案为197. 故选:C【点睛】本题考查“调日法”,主要考查学生的计算能力,属于基础题.14.(2022·上海·高一专题练习)古希腊科学家阿基米德在《论平面图形的平衡》一书中提出了杠杆原理,它是使用天平秤物品的理论基础,当天平平衡时,左臂长与左盘物品质量的乘积等于右臀长与右盘物品质量的乘积,某金店用一杆不准确的天平(两边臂不等长)称黄金,某顾客要购买10g 黄金,售货员先将5g 的砝码放在左盘,将黄金放于右盘使之平衡后给顾客;然后又将5g 的砝码放入右盘,将另一黄金放于左盘使之平衡后又给顾客,则顾客实际所得黄金( ) A .大于10g B .小于10gC .大于等于10gD .小于等于10g【答案】A【分析】设天平左臂长为a ,右臂长为b (不妨设a b >),先称得的黄金的实际质量为1m ,后称得的黄金的实际质量为2m .根据天平平衡,列出等式,可得12,m m 表达式,利用作差法比较12m m +与10的大小,即可得答案.【详解】解:由于天平的两臂不相等,故可设天平左臂长为a ,右臂长为b (不妨设a b >), 先称得的黄金的实际质量为1m ,后称得的黄金的实际质量为2m . 由杠杆的平衡原理:15bm a =⨯,25am b =⨯.解得15a m b =,25bm a=, 则1255b am m a b+=+. 下面比较12m m +与10的大小:(作差比较法)因为()()2125551010b a b a m m a b ab−+−=+−=, 因为a b ¹,所以()250b a ab−>,即1210m m +>. 所以这样可知称出的黄金质量大于10g . 故选:A15.(2022·图所示,我们教材中利用该图作为几何解释的是( )A .如果,a b b c >>,那么a c >B .如果0a b >>,那么22a b >C .如果,0a b c >>,那么ac bc >D .对任意实数a 和b ,有222a b ab +≥,当且仅当a b =时,等号成立 【答案】D【分析】直角三角形的两直角边长分别为,a b ,斜边长为c ,则222c a b =+,利用大正方形的面积与四个直角三角形面积和的不等关系得结论.【详解】直角三角形的两直角边长分别为,a b ,斜边长为c ,则222c a b =+,在正方形的面积为2c ,四个直角三角形的面积和为2ab ,因此有22c ab ≥,即222a b ab +≥,当且仅当a b =时,中间没有小正方形,等号成立. 故选:D .16.(2022秋·北京丰台·高一统考期末)《几何原本》卷Ⅱ的几何代数法成了后世西方数学家处理数学问题的重要依据.通过这一原理,很多代数的定理都能够通过图形实现证明,也称之为无字证明现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,可以直接通过比较线段OF 与线段CF 的长度完成的无字证明为( )A .a 2+b 2≥2ab (a >0,b >0)B .0,0)2a ba b +>>>C .2a b +≤a >0,b >0) D .2aba b≤+a >0,b >0) 【答案】C【分析】由图形可知()1122OF AB a b ==+,()12OC a b =−,在Rt △OCF 中,由勾股定理可求CF ,结合CF ≥OF 即可得出.【详解】解:由图形可知,()1122OF AB a b ==+,()()1122OC a b b a b =+−=−, 在Rt △OCF 中,由勾股定理可得,CF ∵CF ≥OF ,()12a b ≥+,故选:C.17.(2022·全国·高三专题练习)18世纪末,挪威测量学家维塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离.已知复数z 满足2z =,则34i z −−的最大值为( ) A .3 B .5 C .7 D .9【答案】C【分析】由复数几何意义可得(),Z x y 的轨迹为圆224x y +=,从而将问题转化为点(),Z x y 到点()3,4的距离,则所求最大值为圆心到()3,4的距离加上半径. 【详解】2z =,z ∴对应的点(),Z x y 的轨迹为圆224x y +=;34i z −−的几何意义为点(),Z x y 到点()3,4的距离,max 34i 27z ∴−−==.故选:C.18.(2022·全国·高三专题练习)数学家欧拉发现了复指数函数和三角函数的关系,并给出以下公式i e cos isin x x x =+,(其中i 是虚数单位,e 是自然对数的底数,x ∈R ),这个公式在复变论中有非常重要的地位,被称为“数学中的天桥”,根据此公式,有下列四个结论,其中正确的是( )A .i πe 10−=B .i i 2cos e e x x x −=+C .i i 2sin e e x x x −=−D .2022i 122⎛⎫+=− ⎪ ⎪⎝⎭【答案】B【分析】根据已知条件的公式及诱导公式,结合复数运算法则逐项计算后即可求解. 【详解】对于A ,πi e πcos i πsin 1=+=−,所以i πe 1112−=−−=−,故A 不正确; 对于B ,i e cos isin x x x =+,()()i ecos isin cos isin xx x x x −=−+−=−,所以i i e e 2cos x x x −+=,故B 正确; 对于C ,i e cos isin x x x =+,()()i ecos isin cos isin xx x x x −=−+−=−,所以i i e e 2isin x x x −=−,故C 不正确;对于D ,202220222022πi 4ππ2022π2022πcos isin e cosisin 4444⎫⎛⎫⎛⎫=+==+⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ ππcosisin i 22=−−=−,故D 不正确. 故选:B.19.(2020·天津·南开中学校考模拟预测)由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴金德提出了“戴金德分割”才结束了持续2000多年的数学史上的第一次大危机.所谓戴金德分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足M N ⋃=Q ,M N ⋂=∅,M 中的每一个元素都小于N 中的每一个元素,则称(),M N 为戴金德分割.试判断,对于任一戴金德分割(),M N ,下列选项中一定不成立的是( )A .M 没有最大元素,N 有一个最小元素B .M 没有最大元素,N 也没有最小元素C .M 有一个最大元素,N 有一个最小元素D .M 有一个最大元素,N 没有最小元素 【答案】C【分析】本题目考察对新概念的理解,举具体的实例证明成立即可,A,B,D 都能举出特定的例子,排除法则说明C 选项错误【详解】若{},0M x Q x =∈<,{},0N x Q x =∈≥;则M 没有最大元素,N 有一个最小元素0;故A 正确;若{,M x Q x =∈,{,N x Q x =∈≥;则M 没有最大元素,N 也没有最小元素;故B 正确; 若{},0M x Q x =∈≤,{},0N x Q x =∈>;M 有一个最大元素,N 没有最小元素,故D 正确; M 有一个最大元素,N 有一个最小元素不可能,故C 不正确.故选:C20.(2021春·安徽·高三校联考阶段练习)不定方程的整数解问题是数论中一个古老的分支,其内容极为丰富,西方最早研究不定方程的人是希腊数学家丢番图.请研究下面一道不定方程整数解的问题:已知()202022,x y y x Z y Z +=∈∈,则该方程的整数解有( )组.A .1B .2C .3D .4【答案】D【分析】原方程可化为20202(1)1x y +−=,所以2||1,(1)1,x y ≤−≤即11,02x y −≤≤≤≤,(),x y Z ∈再列举每种情况即可.【详解】设此方程的解为有序数对(,)x y , 因为202022,(,)x y y x y Z +=∈ 所以20202(1)1x y +−=当20201x >或2(1)1y −>时,等号是不能成立的, 所以2||1,(1)1,x y ≤−≤即11,02x y −≤≤≤≤,(),x y Z ∈ (1)当=1x −时,2(1)0y −=即1y = (2)当0x =时,2(1)1y −=即0y =或2y = (3)当1x =时,2(1)0y −=即1y =综上所述,共有四组解()()()()1,1,0,0,0,2,1,1−− 故选:D21.(2022秋·四川成都·高一成都七中校考期中)对于直角三角形的研究,中国早在商朝时期,就有商高提出了“勾三股四弦五”这样的勾股定理特例,而西方直到公元前6世纪,古希腊的毕达哥拉斯才提出并证明了勾股定理.如果一个直角三角形的斜边长等于5,则这个直角三角形周长的最大值等于( ). A.B .10 C .5+D .252【答案】C【分析】先由勾股定理得2225a b +=,再利用基本不等式易得()250a b +≤,由此得到5a b c ++≤+问题得解.【详解】不妨设该直角三角形的斜边为5c =,直角边为,a b ,则22225a b c +==,因为222ab a b ≤+,所以()222222a b ab a b ++≤+,即()250a b +≤,当且仅当a b =且2225a b +=,即a b ==因为0,0a b >>,所以a b +≤所以该直角三角形周长5a b c c ++≤=+5+. 故选:C.22.(2017·湖北·校联考一模)我国古代太极图是一种优美的对称图.如果一个函数的图像能够将圆的面积和周长分成两个相等的部分,我们称这样的函数为圆的“太极函数”.下列命题中错误..命题的个数是 1:P 对于任意一个圆其对应的太极函数不唯一;2:P 如果一个函数是两个圆的太极函数,那么这两个圆为同心圆;3:P 圆22(1)(1)4x y −+−=的一个太极函数为32()33f x x x x =−+; 4:P 圆的太极函数均是中心对称图形;5:P 奇函数都是太极函数;6:P 偶函数不可能是太极函数.A .2B .3C .4D .5【答案】B【详解】由定义可知过圆O 的任一直线都是圆O 的太极函数,故1P 正确;当两圆的圆心在同一条直线上时,那么该直线表示的函数为太极函数,故2P 错误;∵()()3323311f x x x x x =−+=−+,∴()f x 的图象关于点()1,1成中心对称,又∵圆()()22114x y −+−=关于点()1,1成中心对称,故()3233f x x x x =−+可以为圆()()22114x y −+−=的一个太极函数,故3P 正确;太极函数的图象一定过圆心,但不一定是中心对称图形,例如:故4P 函数可以为太极函数,故5P 正确;如图所示偶函数可以是太极函数,故6P 错误;则错误的命题有3个,故选B.二、多选题23.(2021春·广东梅州·高二统考期末)欧拉公式i cos isin x e x x =+(其中i 为虚数单位,x R ∈)是由瑞士著名数学家欧拉创立的,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关联,在复变函数论里而占有非常重要的地位,被誉为数学中的天桥,依据欧拉公式,下列选项正确的是( )A .复数i e 对应的点位于第一象限B .i e π为纯虚数C ix 的模长等于12D .i 6e π的共轭复数为12【答案】AC【分析】根据欧拉公式计算出各复数,再根据复数的几何意义,纯虚数的概念,复数模的计算公式,共轭复数的概念即可判断各选项的真假. 【详解】对A ,i cos1isin1e =+,因为012π<<,所以cos10,sin10>>,即复数i e 对应的点()cos1,sin1位于第一象限,A 正确;对B ,i cos isin 1e πππ=+=−,i e π为实数,B 错误;对C ()i cos isin ix x x +,ix12,C 正确;对D ,πi 6ππ1cos isin i 662e =++1i 2−,D 错误. 故选:AC .24.(2022春·广东梅州·高一统考期末)欧拉公式i e cos isin x x x =+(本题中e 为自然对数的底数,i 为虚数单位)是由瑞士若名数学家欧拉创立,该公式建立了三角函数与指数函数的关系,在复变函数论中占有非常重要的地位,被誉为“数学中的天桥”,依据欧拉公式,则下列结论中正确的是( ) A .i πe 10+=B .复数2i e 在复平面内对应的点位于第二象限C .复数πi 3e 1i 2D .复数i e )(R θθ∈在复平面内对应的点的轨迹是圆 【答案】ABD【分析】由欧拉公式和特殊角的三角函数值可判断A ;由欧拉公式和三角函数在各个象限的符号可判断B ;由欧拉公式和共轭复数的概念可判断C ;由欧拉公式和复数的几何意义可判断D. 【详解】对于A ,i πcos πisin π1101e 10=++=−+++=,A 正确; 对于B ,2i e cos2isin 2=+,cos 20,sin 20<>,∴复数2i e 在复平面内对应的点位于第二象限,B 正确;对于C ,πi 3cosis ππ1e 33n i 2==+,共轭复数为12,C 错误; 对于D ,i e cos isin (R)θθθθ+∈=,在复平面内对应的点为()cos ,sin θθ, 又()()22cos 0sin 01θθ−+−=,∴在复平面内对应的点的轨迹是圆.故选:ABD.25.(2022·高一课时练习)群论是代数学的分支学科,在抽象代数中具有重要地位,且群论的研究方法也对抽象代数的其他分支有重要影响,例如一元五次及以上的方程没有根式解就可以用群论知识证明.群的概念则是群论中最基本的概念之一,其定义如下:设G 是一个非空集合,“· ”是G 上的一个代数运算,即对所有的a 、b ∈G ,有a ·b ∈G ,如果G 的运算还满足:①∀a 、b 、c ∈G ,有(a ·b )·c =a ·(b ·c );②e G ∃∈,使得a G ∀∈,有e a a e a ⋅=⋅=,③a G ∀∈,b G ∃∈,使a ·b =b ·a =e ,则称G 关于“·”构成一个群.则下列说法正确的有( )A .{1,0,1}G =−关于数的乘法构成群B .G ={x |x =1k,k ∈Z ,k ≠0}∪{x |x =m ,m ∈Z ,m ≠0}关于数的乘法构成群C .实数集关于数的加法构成群D .{|,Z}G m m n =∈关于数的加法构成群 【答案】CD【分析】根据群的定义需满足的三个条件逐一判断即可.【详解】对于A :若{1,0,1}G =−,对所有的a 、b G ∈,有{1,0,1}a b G ⋅∈−=, 满足乘法结合律,即①成立,满足②的e 为1,但当0a =时,不存在b G ∈,使得··1a b b a e ===,即③不成立, 即选项A 错误; 对于B :因为12a G =∈,且3b G =∈,但13322a b G ⋅=⨯=∉,所以选项B 错误;对于C :若R G =,对所有的a 、R b ∈,有R a b +∈, 满足加法结合律,即①成立,满足②的e 为0,R a ∀∈,R b a ∃=−∈,使0a b b a +=+=,即③成立;即选项C 正确;对于D:若{|,Z}G m m n =∈,所有的11a m =、22b m G =∈,有1212(+)a b m m n n G +=+∈,,,,a b c G ∀∈()()++=++a b c a b c 成立, 即①成立;当0a b ==时,0a =,满足的0e =,即②成立;a m G ∀=∈,b m G ∃=−∈,使0a b b a +=+=,即③成立;即选项D 正确. 故选:CD.26.(2020秋·江苏盐城·高二江苏省东台中学校考期中)《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形,该矩形长为a b +,宽为内接正方形的边长d .由刘徽构造的图形可以得到许多重要的结论,如图3.设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形对角线AE ,过点A 作AF BC ⊥于点F ,则下列推理正确的是( )①由图1和图2面积相等得abd a b=+; ②由AE AF ≥2a b+≥; ③由AD AE ≥211a b ≥+; ④由AD AF ≥可得222a b ab +≥. A .①B .②C .③D .④【答案】ABCD【解析】根据图1,图2面积相等,可求得d 的表达式,可判断A 选项正误,由题意可求得图3中,,AD AEAF的表达式,逐一分析B 、C 、D 选项,即可得答案.【详解】对于①:由图1和图2面积相等得()S ab a b d ==+⨯,所以abd a b=+,故①正确; 对于②:因为AF BC ⊥,所以12a b AF ⨯⨯,所以AF =,设图3中内接正方形边长为t ,根据三角形相似可得a t t a b−=,解得abt a b =+,所以AE ==因为AE AF ≥,所以a b ≥+2a b +≥,故②正确; 对于③:因为D 为斜边BC的中点,所以AD =因为AD AE ≥≥211a b≥+,故③正确; 对于④:因为AD AF ≥≥,整理得:222a b ab +≥,故④正确; 故选:ABCD【点睛】解题的关键是根据题意及三角形的性质,利用几何法证明基本不等式,求得,,AD AE AF 的表达式,根据图形及题意,得到,,AD AE AF 的大小关系,即可求得答案,考查分析理解,计算化简的能力. 27.(2022秋·黑龙江佳木斯·高一桦南县第一中学校考期中)《几何原本》卷Ⅱ的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据.通过这一原理,很多代数的公理或定理都能够通过图形实现证明,也称为无字证明.现有如图所示图形,点D 在半圆O 上,点C 在直径AB 上,且CD AB ⊥.设AC a =,CB b =,CE OD ⊥,垂足为E ,则该图形可以完成的无字证明为( )A2aba b+B.2a b +≤C.2a b+≥ D.22a b +≥【答案】AC【解析】直接利用射影定理和基本不等式的应用求出结果.【详解】解:根据图形,利用射影定理得:2CD DE OD =,由于:OD CD …,所以:0,0)2a ba b +>>. 由于2·CD AC CB ab ==,所以22CD abDE a b OD ==+所以由于CD DE …,2aba b+. 故选:AC .【点睛】关键点点睛:射影定理的应用,基本不等式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.28.(2022秋·辽宁大连·高一大连八中校考阶段练习)古希腊时期,人们认为最美人体的头顶至肚脐的长度0.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此..若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( ) A .168cm B .172cmC .176cmD .180cm【答案】BC【分析】设身高为cm x ,运用黄金分割比例,结合图形得到对应成比例的线段,计算可估计身高. 【详解】设头顶、咽喉、肚脐、足底分别为点A B C D 、、、,假设身高为cm x ,即cm =AD x ,,ACCD∴=AC∴=.AC CD x+=,且AC=,=CD x+,=x,12CD x∴==,ABBC∴=,AB∴=,AB BC CD x++=,且AB,CD=,BC x+=,)2BC x∴=,)2AB x∴===,由题意可得26105AB xCD⎧=<⎪⎪⎨⎪=>⎪⎩,xx⎧<⎪⎪∴⎨⎪>⎪⎩178.21169.89xx<⎧∴⎨>⎩,169.89178.21x∴<<,故BC正确.故选:BC29.(2021秋·全国·高一期末)早在西元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.而今我们称2a b+为正数,a b,a b的几何平均数,并把这两者()0,02a ba b+≤>>叫做基本不等式.下列与基本不等式有关的命题中正确的是()A.若4ab=,则4a b+≥B.若0a>,0b>,则()112a ba b⎛⎫++⎪⎝⎭最小值为C.若(),0,a b∈+∞,21a b+=,1142a b+≥D .若实数,a b 满足0a >,0b >,4a b +=,则2211a b a b +++的最小值是83 【答案】CD【分析】通过反例可知A 错误;根据基本不等式“1”的应用可求得BC 正误;令11a m +=>,11b n +=>,将所求式子化为62mn+,利用基本不等式可知D 正确. 【详解】对于A ,若2a =−,2b =−,则44a b +=−<,A 错误;对于B ,0a >,0b >,0a b∴>,0ba >,()1122333a b a b a b b a ⎛⎫∴++=++≥++ ⎪⎝⎭2a b b a =,即a =时取等号),即()112a ba b ⎛⎫++ ⎪⎝⎭的最小值为3+B 错误;对于C ,(),0,a b ∈+∞,0a b∴>,0ba >,又21ab +=,()111122224222b a a b a b a b a b ⎛⎫∴+=++=++≥+ ⎪⎝⎭(当且仅当22b a a b =,即122b a ==时取等号),C 正确;对于D ,令11a m +=>,11b n +=>,则6m n +=,()()22221111116422211m n a bm n a b m n m n m n mn−−+=+=+++−=++=+∴≥+++26832m n =+⎛⎫ ⎪⎝⎭(当且仅当3m n ==时取等号),即2211a ab ++的最小值是83,D 正确. 故选:CD.30.(2022秋·辽宁大连·高一统考期末)十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,不等号的引入对不等式的发展影响深远.若a ,b ,R c ∈,则下列命题正确的是( ) A .若0ab ≠且a b <,则11a b> B .若a b >,01c <<,则a b c c < C .若1a b >>,1c >,则log log a b c c < D .若1a b <<−,0c >,则cca b b a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭【答案】BCD【分析】利用不等式性质结合可判断A ,根据指数函数的性质可判断B ,根据不等式性质结合对数函数的性质可判断C ,根据幂函数的性质可判断D.【详解】A 中,0a b <<时,则11a b<,错误;B 中,因为a b >,01c <<,所以a b c c <成立,正确;C 中,因为1a b >>,1c >,所以log log 0c c a b >>,10log log c c a b>⋅,所以11log log c c a b<,即log log a b c c <,正确; D 中,由1a b <<−,可得10a b b a >>>,又0c >,所以cca b b a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,正确.故选:BCD.三、填空题31.(2022·全国·高三专题练习)中国古代数学著作《九章算术》中记载了平方差公式,平方差公式是指两个数的和与这两个数差的积,等于这两个数的平方差.若复数53i,43i a b =+=+(i 为虚数单位),则22a b −=__________. 【答案】96i +【分析】先要平方差公式,再按照复数的四则运算规则计算即可.【详解】()()()()2253i 43i 53i 43i 96i a b a b a b −=+−=++++−−=+ ;故答案为:96i + .32.(2022·全国·高三专题练习)毛泽东同志在《清平乐●六盘山》中的两句诗为“不到长城非好汉,屈指行程二万”“到长城”是“好汉”的__________条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 【答案】必要不充分【分析】根据充分、必要条件的知识确定正确选项. 【详解】“好汉”⇒“到长城”, “到长城”⇒“好汉”, 所以“到长城”是“好汉”的必要不充分条件. 故答案为:必要不充分33.(2022·高一课时练习)中国古代数学专著《孙子算经》中有一问题“今有三女,长女五日一归,中女四日一归,少女三日一归,问:三女几何日相会?”,则此三女前三次相会经过的天数组成的集合用列举法可表示为______,此三女相会经过的天数组成的集合用描述法可表示为______.【答案】 {}60,120,180 {}*60,N x x n n =∈【分析】根据题设集合元素为5,4,3的公倍数,进而应用列举法、描述法分别写出集合即可.。
高考数学专题《复数》习题含答案解析
专题10.2 复数1.(2020·全国高考真题(理))复数113i-的虚部是( )A .310-B .110-C .110D .310【答案】D 【解析】因为1131313(13)(13)1010i z i i i i +===+--+,所以复数113z i =-的虚部为310.故选:D.2.(2020·全国高考真题(文))(1–i )4=( )A .–4B .4C .–4i D .4i【答案】A 【解析】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-.故选:A.3.(2021·北京·高考真题)在复平面内,复数z 满足(1)2i z -=,则z =( )A .1i --B .1i-+C .1i-D .1i+【答案】D 【分析】由题意利用复数的运算法则整理计算即可求得最终结果.【详解】由题意可得:()()()()2121211112i i z i i i i ++====+--+.故选:D.4.(2021·全国·高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i-C .62i+D .42i+【答案】C 【分析】练基础利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i+=-+--=+故选:C.5.(2021·全国·高考真题(文))已知2(1)32i z i -=+,则z =( )A .312i--B .312i-+C .32i-+D .32i--【答案】B 【分析】由已知得322iz i+=-,根据复数除法运算法则,即可求解.【详解】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++⋅-+====-+--⋅.故选:B.6.(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =( )A .12i -B .12i+C .1i+D .1i-【答案】C 【分析】设z a bi =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【详解】设z a bi =+,则z a bi =-,则()()234646z z z z a bi i ++-=+=+,所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1z i =+.故选:C.7.(2021·全国·高考真题(文))设i 43i z =+,则z =( )A .–34i -B .34i-+C .34i-D .34i+【答案】C 【分析】由题意结合复数的运算法则即可求得z 的值.【详解】由题意可得:()2434343341i i i i z i i i ++-====--.故选:C.8.(2021·浙江·高考真题)已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a =( )A .1-B .1C .3-D .3【答案】C 【分析】首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a 的值.【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-.故选:C.9.(2019·北京高考真题(文))已知复数z =2+i ,则( )ABC .3D .5【答案】D 【解析】∵ 故选D.10.(2019·全国高考真题(文))设,则=( )A.2B CD .1【答案】C 【解析】因为,所以,所以,故选C .1.(2010·山东高考真题(文))已知 ,,其中 为虚数单位,则=( )A .-1B .1C .2D .3【答案】B 【解析】z z ⋅=z 2i,z z (2i)(2i)5=+⋅=+-=3i12iz -=+z 312iz i -=+(3)(12)17(12)(12)55i i z i i i --==-+-z ==2a ib i i+=+,a b ∈R i +a b 练提升因为 ,,所以,则,故选B.2.(全国高考真题(理))复数的共轭复数是( )A .B .iC .D .【答案】A 【解析】,故其共轭复数为.所以选A.3.(2018·全国高考真题(理))设,则( )A .B .C .D【答案】C 【解析】,则,故选c.4.(2009·重庆高考真题(理))已知复数的实部为,虚部为2,则的共轭复数是( )A .B .C .D .【答案】B 【解析】由题意得:所以,共轭负数为2+i 故选B5.(2017·山东高考真题(理))已知,是虚数单位,若,,22222a i ai i ai b i i i+--==-=+-,a b ∈R 2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩+1a b =212ii+-i -35i-35i()()()()2i 12i 5i i12i 12i 5++==-+i -1i2i 1iz -=++||z =0121()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+i 2i i =-+=1z =z 1-5iz2i -2i+2i--2i-+R a ∈i z a =4z z ⋅=则( )A .1或B或C .D【答案】A 【解析】由得,所以,故选A.6.(2021·广东龙岗·高三期中)已知复数z 满足()2i 34i z +=+(其中i 为虚数单位),则复数z =( )A .2i -B .2i-+C .2i+D .2i--【答案】C 【分析】根据复数除法运算求出z ,即可得出答案.【详解】()2i 35z +=+= ,()()()52i 52i 2i 2i 2i z -∴===-++-,则2i z =+.故选:C.7.(2021·安徽·合肥一六八中学高一期中)欧拉公式i s co in s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i 3e π表示的复数位于复平面中的( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】先由欧拉公式计算可得312e π=,然后根据复数的几何意义作出判断即可.【详解】根据题意i s co in s i xe x x +=,故i3is n 1cos 33i 2e πππ=+=,对应点12⎛ ⎝,在第一象限.故选:A .8.【多选题】(2021·全国·模拟预测)已知复数z =(i 为虚数单位),则下列说法正确的是()A .复数z 在复平面内对应的点坐标为()sin 3cos3,sin 3cos3+-a =1-,4z a z z =+⋅=234a +=1a =±B .z 的虚部为C .2z z ⋅=D .z ⋅为纯虚数【答案】CD 【分析】根据复数的概念、共轭复数的概念、复数的几何意义以及四则运算法则即可求解.【详解】复数3cos3i sin 3cos3z =++-.因为334ππ<<,所以sin 3cos3304π⎛⎫+=+< ⎪⎝⎭,sin 3cos30->,所以原式()()sin 3cos3i sin 3cos3=-++-,所以选项A 错误;复数z B错误;222z z ⋅=+=,所以选项C 正确;z ⋅=()i 1sin 61sin 62i⋅=++-=,所以选项D 正确.故选:CD.9.【多选题】(2021·河北武强中学高三月考)已知复数cos isin z θθ=+(其中i 为虚数单位),下列说法正确的是( )A .1z z ⋅=B .1z z+为实数C .若83πθ=,则复数z 在复平面上对应的点落在第一象限D .若(0,)θπ∈,复数z 是纯虚数,则2πθ=【答案】ABD 【分析】对选项A ,根据计算1z z ⋅=即可判断A 正确,对选项B ,根据12cos z zθ+=即可判断B 正确,对选项C ,根据88cosisin 33z ππ=+在复平面对应的点落在第二象限,即可判断C 错误,对选项D ,根据z 是纯虚数得到2πθ=即可判断D 正确.【详解】对选项A ,()()()2222cos isin cos isin cos isin cos sin 1z z θθθθθθθθ⋅=+-=-=+=,故A 正确.对选项B ,因为11cos isin cos isin z z θθθθ+=+++()()cos isin cos isin cos isin cos isin θθθθθθθθ-=+++-cos isin cos isin 2cos θθθθθ=++-=,所以1z z+为实数.故B 正确.对选项C ,因为83πθ=为第二象限角,所以8cos03π<,8sin 03π>,所以88cos isin 33z ππ=+在复平面对应的点落在第二象限.故C 错误.对选项D ,复数z 是纯虚数,则cos 0sin 0θθ=⎧⎨≠⎩,又因为(0,)θπ∈,所以2πθ=,故D 正确.故选:ABD10.(2021·福建·厦门一中模拟预测)在复平面内,复数(,)z a bi a b R =+∈对应向量OZ(O为坐标原点),设||OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则(cos sin )z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:1111(cos sin )z r i θθ=+,2222(cos sin )z r i θθ=+,则12121212[cos()sin()]z z rr i θθθθ=+++,由棣莫弗定理可以推导出复数乘方公式:[(cos sin )](cos sin )n n r i r n i n θθθθ+=+,已知4)z i =,则||z =______;若复数ω满足()*10n n ω-=∈N ,则称复数ω为n 次单位根,若复数ω是6次单位根,且ω∉R ,请写出一个满足条件的ω=______.【答案】16 ()22cossin 1,2,4,566k k i k ππ+= 【分析】2(cos sin )66i i ππ+=+,则4222(cos sin )33z i ππ=+,再由||||z z =求解,由题意知61ω=,设cos sin i ωθθ=+,即可取一个符合题意的θ,即可得解.【详解】解: 2(cos sin )66i i ππ=+,∴4422)2(cos sin )33z i i ππ==+,则4||||216z z ===.由题意知61ω=,设cos sin i ωθθ=+,则6cos 6sin 61i ωθθ=+=,所以sin 60cos 61θθ=⎧⎨=⎩,又ω∉R ,所以sin 0θ≠,故可取3πθ=,则cossin33i ππω=+故答案为:16,cossin33i ππω=+(答案不唯一).1.(2021·江苏·高考真题)若复数z 满足()1i 3i z +=-,则z 的虚部等于( )A .4B .2C .-2D .-4【答案】C 【分析】利用复数的运算性质,化简得出12z i =-.【详解】若复数z 满足()1i 3i z +=-,则()()()()3i 1i 3i 12i 1i 1i 1i z ---===-++-,所以z 的虚部等于2-.故选:C.2.(2021·全国·高考真题)复数2i13i--在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】利用复数的除法可化简2i13i--,从而可求对应的点的位置.【详解】()()2i 13i 2i 55i 1i13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫ ⎪⎝⎭,该点在第一象限,故选:A.3.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |=( )A .0B .1C D .2练真题【答案】D 【解析】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.4.(2020·全国高考真题(文))若312i i z =++,则||=z ( )A .0B .1CD .2【答案】C 【解析】因为31+21+21z i i i i i =+=-=+,所以z ==故选:C .5.(2019·全国高考真题(理))设z =-3+2i ,则在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】由得则对应点(-3,-2)位于第三象限.故选C .6.(2018·江苏高考真题)若复数满足,其中i 是虚数单位,则的实部为________.【答案】2【解析】因为,则,则的实部为.z 32,z i =-+32,z i =--32,z i =--z i 12i z ⋅=+z i 12i z ⋅=+12i2i iz +==-z 2。
福建省2024年(冲刺高考)高考适应性训练数学试题 含答案
(冲刺高考)2024年福建省高考适应性训练数学试题一、单选题) 已知集合A={寸五于叶,B={寸守>1},则A u B =( ) A.{x ix>一2} B.{xjx<-2或x>O}C. {xjx<-2或x>l} D. {xjO<x<I }2.)是虚数单位,复数z满足;(2-4i)=-10i ,则z= () A. --2iC.2-iB.1+2i D.2+i 兀3.已知两单位向性e 1与e 2的夹角为-,则向榄e,十让,与2e,-3今的夹角0=() 3A !!...B !!... c 竺6 - 3 - 3 4.在锐角..A BC中,若B=2A,sinB 则——的取值范围是(sin AA.(石,勾8.[抖]c 停引D . 3冗D .[甘)5.数列{F,,}: I, 1,2,3,5,8,13,21,34,...,成为斐波那契数列,是由十三世纪意大利数学家列昂纳多斐波那契以兔子繁殖为例子而引入,故又称为"兔子数列“,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{F,,)的前n项和为S,',则下列结论正确的是(A. S 20,9 =片。
21+2B. S 20,9 = "2021 -IC.Sw,9 =乓。
w +2D.S 20,9 = F 2020 -I6.生物学家认为,睡眠中的恒温动物的脉拇率f (单位:心跳次数.min -')与体重W (单位:k g)的-次方成反比若A、B为两个睡眠中的恒温动物,A的体重为2k g、脉搏3率为210次min -',B的脉搏率是70次min_,,则8的体重为() A.6k g B. 8k gC . 18k g D.54kg 7.已知正三棱锥S-ABC的底面边长为五导,外按球表面积为3,r,SA<✓2,点M,N分别是线段AB ,AC的中点,点P,Q分别是线段SN和平面SCM上的动点,则AP+PQ 的最小值为()2石-石拆+石A 4 B 4 c 孚五2D 8.点A (x。
高考数学压轴专题(易错题)备战高考《复数》难题汇编及答案
【最新】数学《复数》高考知识点一、选择题1.设复数z 满足()13i z i +=+,则z =( ) A .2 B .2C .22D .5【答案】D 【解析】分析:先根据复数除法得z ,再根据复数的模求结果. 详解:因为()13i z i +=+,所以31(3)(1)212i z i i i i +==+-=-+, 因此5,z = 选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为22a b +、对应点为(,)a b 、共轭为.-a bi2.设i 是虚数单位,若复数()103a a R i-∈-是纯虚数,则a 的值为( ) A .-3 B .-1C .1D .3【答案】D 【解析】 【分析】 【详解】 因,故由题设,故,故选D .考点:复数的概念与运算.3.已知复数i z x y =+(x ,y ∈R ),且23z +=1y x-的最大值为( ) A 3B 6 C .26+ D .26【答案】C 【解析】【分析】根据模长公式,求出复数z 对应点的轨迹为圆,1y x-表示(,)x y 与(0,1)连线的斜率,其最值为过(0,1)点与圆相切的切线斜率,即可求解. 【详解】∵复数i z x y =+(x ,y ∈R),且2z +==()2223x y ++=.设圆的切线l :1y kx =+=化为2420k k --=,解得2k =∴1yx -的最大值为2 故选:C. 【点睛】本题考查复数的几何意义、轨迹方程、斜率的几何意义,考查数形结合思想,属于中档题.4.已知复数z 满足121iz i i+⋅=--(其中z 为z 的共轭复数),则z 的值为( ) A .1 B.2CD 【答案】D 【解析】 【分析】按照复数的运算法则先求出z ,再写出z ,进而求出z . 【详解】21(1)21(1)(1)2i i i i i i i ++===--+Q , 1222(2)121i iz i i z i z i i i i i+-∴⋅=-⇒⋅=-⇒==--=---,12||z i z ∴=-+⇒==故选:D 【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.5.已知复数z,则|z |=( )A .14B .12C .1D .2【答案】B 【解析】 【分析】 【详解】解:因为===,因此|z |=126.已知z 是复数,则“2z 为纯虚数”是“z 的实部和虚部相等”的( ) A .充分必要条件 B .充分不必要条 C .必要不充分条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】设z a bi =+,2z 为纯虚数得到0a b =±≠,得到答案. 【详解】设z a bi =+,,a b ∈R ,则()2222z a babi =-+,2z 为纯虚数22020a b a b ab ⎧-=⇔⇔=±≠⎨≠⎩,z 的实部和虚部相等a b ⇔=. 故选:D. 【点睛】本题考查了既不充分也不必要条件,意在考查学生的推断能力.7.在复平面内,若复数z 满足|z +1|=|1+i z |,则z 在复平面内对应点的轨迹是( ) A .直线 B .圆 C .椭圆 D .抛物线【答案】A 【解析】 【分析】设()z x yi x y R =+∈、,代入11z iz +=+,求模后整理得z 在复平面内对应点的轨迹是直线. 【详解】设()z x yi x y R =+∈、,1x yi ++=,()11iz i x yi +=++=y x =-,所以复数z x yi =+对应点的轨迹为直线,故选A. 【点睛】本题考查复数的代数表示法及其几何意义,考查复数模的求法,动点的轨迹问题,是基础题.8.在复平面内,复数21iz i=+ (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D 【解析】分析:首先求得复数z ,然后求解其共轭复数即可.详解:由复数的运算法则有:()()()()2121211112i i i i i z i i i i --====+++-, 则1z i =-,其对应的点()1,1-位于第四象限. 本题选择D 选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.9.若复数()21a ia R i-∈+为纯虚数,则3ai -=( )A B .13C .10D【答案】A 【解析】 【分析】由题意首先求得实数a 的值,然后求解3ai -即可. 【详解】由复数的运算法则有:2(2)(1)221(1)(1)22a i a i i a ai i i i ++-+-==+++-, 复数()21a ia R i -∈+为纯虚数,则2020a a +=⎧⎨-≠⎩,即2,|3|a ai =--= 本题选择A 选项. 【点睛】复数中,求解参数(或范围),在数量关系上表现为约束参数的方程(或不等式).由于复数无大小之分,所以问题中的参数必为实数,因此,确定参数范围的基本思想是复数问题实数化.10.复数(1)(2)z ai a i =-+在复平面内对应的点在第一象限,其中a R ∈,i 为虚数单位,则实数a 的取值范围是( )A .B .)+∞C .(,-∞D .(【答案】A 【解析】 【分析】利用复数代数形式的乘除运算、化简,再由实部与虚部均大于0,列出不等式组,即可求解. 【详解】由题意,复数2(1)(2)3(2)z ai a i a a i =-+=+-在复平面内对应的点在第一象限,所以23020a a >⎧⎨->⎩,解得0a <<,即实数a 的取值范围是. 故选:A . 【点睛】本题主要考查了复数的乘法运算,以及复数的代数表示法及其几何意义的应用,着重考查了推理与运算能力.11.若复数1a iz i+=-,且3·0z i >,则实数a 的值等于( ) A .1 B .-1C .12D .12-【答案】A 【解析】 【分析】由3·0z i >可判定3·z i 为实数,利用复数代数形式的乘除运算化简复数z ,再由实部为0,且虚部不为0列式求解即可. 【详解】()()()()()i 1i 11ii 1i 1i 1i 2a a a a z ++-+++===--+Q , 所以3·z i =()()()()341i 1i 1i 122a a a a -++--++=,因为3·0z i >,所以3·z i 为实数,102a --= 可得1a =,1a =时3,?10z i =>,符合题意,故选A.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.12.如果复数z 满足336z i z i ++-=,那么1z i ++的最小值是( )A .1 BC .2D 【答案】A 【解析】分析:先根据已知336z i z i ++-=找到复数z 对应的点Z 的轨迹,再利用数形结合求1z i ++的最小值.详解:设复数z 对应的点Z(x,y),6=,它表示点Z 到A (0,-3)和B (0,3)的距离和为6, 所以点Z 的轨迹为线段AB,因为1z i ++Z 到点C (-1,-1)的距离, 所以当点Z 在点D(0,-1)时,它和点C (-1,-1)的距离最小,且这个最小距离为1. 故答案为:A点睛:(1)本题主要考查复数的几何意义,意在考查学生对这些知识的掌握水平和数形结合的思想方法.(2)z a bi ++表示复数z 对应的点到(-a,-b )的距离,类似这样的结论还有一些,大家要结合直角坐标理解它的几何意义,并做到能利用它解题.13.已知复数122iz i+=- (i 为虚数单位),则z 的虚部为( ) A .-1 B .0C .1D .i【答案】C 【解析】 【分析】利用复数的运算法则,和复数的定义即可得到答案. 【详解】 复数()()()()1221252225i i i iz i i i i +++====--+,所以复数z 的虚部为1,故选C . 【点睛】本题主要考查了复数的运算法则和复数的概念,其中解答中熟记复数的基本运算法则和复数的概念及分类是解答的关键,着重考查了推理与运算能力,属于基础题.14.设复数z a bi =+(i 为虚数单位,,a b ∈R ),若,a b 满足关系式2a b t =-,且z 在复平面上的轨迹经过三个象限,则t 的取值范围是( ) A .[0,1] B .[1,1]- C .(0,1)(1,)⋃+∞ D .(1,)-+∞【答案】C 【解析】 【分析】首先根据复数的几何意义得到z 的轨迹方程2xy t =-,再根据指数函数的图象,得到关于t 的不等式,求解.【详解】由复数的几何意义可知,设复数对应的复平面内的点为(),x y ,2ax ay b t=⎧⎨==-⎩ ,即2x y t =- , 因为z 在复平面上的轨迹经过三个象限, 则当0x =时,11t -< 且10t -≠ , 解得0t >且1t ≠ ,即t 的取值范围是()()0,11,+∞U . 故选:C 【点睛】本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.15.复数1122ii ++的虚部为( ) A .110 B .110-C .310D .310-【答案】A 【解析】 【分析】化简复数111122510i i i +=++,结合复数的概念,即可求解复数的虚部,得到答案,. 【详解】由题意,复数()()1121112212122510i i i i i i i -+=+=+++-, 所以复数1122ii ++的虚部为110.故选:A.【点睛】本题主要考查了复数的运算法则,以及复数的概念,其中解答中熟记复数的运算法则,准确化简是解答的关键,着重考查了推理与计算能力,属于基础题.16.已知m 为实数,i 为虚数单位,若()24m m +- 0i >,则222m ii+=-( ) A .i B .1 C .- iD .1-【答案】A 【解析】因为2(4)0m m i +->,所以2(4)m m i +-是实数,且20{240m m m >⇒=-=,故22(1)222(1)m i i i i i ++==--,应选答案A .17.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解. 【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.已知方程()()2440x i x ai a R ++++=∈有实根b ,且z a bi =+,则复数z 等于( ) A .22i - B .22i +C .22i -+D .22i --【答案】A 【解析】【详解】由b 是方程()()2440x i x ai a R ++++=∈的根可得()2440b i b ai ++++=,整理可得:()()2440b a i b b ++++=,所以20440b a b b +=⎧⎨++=⎩,解得22a b =⎧⎨=-⎩,所以22z i =-,故选A .19.复数z 满足|||3|z i z i -=+,则||z ( ) A .恒等于1B .最大值为1,无最小值C .最小值为1,无最大值D .无最大值,也无最小值【答案】C 【解析】 【分析】设复数z x yi =+,其中x ,y R ∈,由题意求出1y =-,再计算||z 的值. 【详解】解:设复数z x yi =+,其中x ,y R ∈, 由|||3|z i z i -=+,得|(1)||(3)|x y i x y i +-=++,2222(1)(3)x y x y ∴+-=++, 解得1y =-;222||11z x y x ∴=+=+…,即||z 有最小值为1,没有最大值. 故选:C . 【点睛】本题考查了复数的概念与应用问题,是基础题.20.已知复数为纯虚数(为虚数单位),则实数( )A .-1B .1C .0D .2【答案】B 【解析】 【分析】 化简得到,根据纯虚数概念计算得到答案. 【详解】为纯虚数,故且,即.故选:. 【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.。
高中数学总复习知识点专题讲解与练习1集合、复数、逻辑
高中数学总复习知识点专题讲解与练习专题1集合、复数、逻辑一、单项选择题1.(2021·华大新高考联盟5月)已知集合M={(x,y)|x-y=0},N={(x,y)|y=x3},则M∩N 中元素的个数为()A.0 B.1 C.2 D.3答案 D解析因为直线y=x与曲线y=x3交于(-1,-1),(0,0),(1,1)三点,所以M∩N中有3个元素.故选D.2.(2021·安徽六校联考)设全集为实数集R,集合P={x|x≤1+2,x∈R},集合Q={1,2,3,4},则图中阴影部分表示的集合为()A.{4} B.{3,4}C.{2,3,4} D.{1,2,3,4}答案 B解析本题考查集合的表示方法.因为全集为U=R,集合P={x|x≤1+2,x∈R},Q ={1,2,3,4},所以∁U P={x|x>1+2,x∈R},所以图中阴影部分表示的集合为(∁U P)∩Q ={3,4}.故选B.3.(2021·湖北八市联考)1943年19岁的曹火星在平西根据地进行抗日宣传工作,他以切身经历创作了歌曲《没有共产党就没有中国》,后毛泽东主席将歌曲改名为《没有共产党就没有新中国》.2021年是中国共产党建党100周年.仅从逻辑学角度来看,“没有共产党就没有新中国”这句歌词中体现了“有共产党”是“有新中国”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件答案 B4.(2021·山东临沂一模)如图,若向量OZ →对应的复数为z ,且|z |=5,则1z-=( )A.15+25i B .-15-25i C.15-25i D .-15+25i答案 D解析 由题意,设z =-1+b i(b >0),则|z |=1+b 2=5,解得b =2,即z =-1+2i ,所以1z -=1-1-2i =-1+2i (-1-2i )(-1+2i )=-1+2i 5=-15+25i.故选D. 5.(2021·唐山市三模)已知i 是虚数单位,a ∈R ,若复数a -i 1-2i为纯虚数,则a =( ) A .-2 B .2 C .-12 D.12 答案 A解析 由题意a -i 1-2i =(a -i )(1+2i )(1-2i )(1+2i )=a -i +2a i +21+4=a +25+2a -15i.又因为a -i 1-2i 为纯虚数,所以⎩⎪⎨⎪⎧a +25=0,2a -15≠0,解得a =-2.故选A. 6.(2021·江西九江三校联考)已知f (x )=sin x -tan x ,命题p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)<0,则( )A .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0 B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 C .p 是真命题,綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 D .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 答案 C解析 当x ∈⎝ ⎛⎭⎪⎫0,π2时,sin x -tan x <0,可知命题p 是真命题.綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0.故选C.7.若向量a =(a -1,2),b =(b ,4),则“a ∥b ”是“a =1,b =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 由a ∥b 可知4(a -1)-2b =0,即2a -b =2,推不出“a =1,b =0”;而a =1,b =0,满足2a -b =2,可推出“a ∥b ”.故选B.8.(2021·皖南八校第三次联考,理)设集合A ={x |y =log 2(x +1)},B ={y |y =sin x ,x ∈R },且(∁R A )∩B =( )A .∅B .{-1}C .(-1,1]D .[-1,1]答案 B解析 A =(-1,+∞),B =[-1,1],∁R A =(-∞,-1],可得(∁R A )∩B ={-1}.故选B.9.(2021·重庆月考)已知复数z 的共轭复数是z -,若z -3z -=1+2i ,则|z |=( ) A.22 B.12 C.52 D.52答案 A解析 设z =a +b i(a ,b ∈R ),则z -=a -b i ,由题意,-2a +4b i =1+2i ,则a =-12,b =12,所以|z |=a 2+b 2=22.故选A.10.(2021·江淮十校质量检测,理)下列命题中,真命题是( )A .∀x ∈R ,∃n ∈N *,使得n <x 2B .sin 2x +2sin x ≥3(x ≠k π,k ∈Z )C .函数f (x )=2x -x 2有两个零点D .a >1,b >1是ab >1的充分不必要条件答案 D解析 当x =0时,没有正整数小于0,A 错误;当sin x =-1时,sin 2x +2sin x =-1,B错误;f (x )=2x -x 2有三个零点(2,4,还有一个小于0),C 错误;(这时就可选D)当a >1,b >1时,一定有ab >1,但当a =-2,b =-3时,ab =6>1也成立.故D 正确.11.若命题“∃x ∈R ,使得3x 2+2ax +1<0”是假命题,则实数a 的取值范围是( )A .(-3,3)B .(-∞,-3)∪[3,+∞)C.[-3,3] D.(-∞,-3)∪(3,+∞)答案 C解析命题“∃x∈R,使得3x2+2ax+1<0”是假命题,即“∀x∈R,3x2+2ax+1≥0”是真命题,故Δ=4a2-12≤0,解得-3≤a≤ 3.故选C.12.已知p:2xx-1<1,q:(x-a)(x-3)>0,p为q的充分不必要条件,则a的取值范围是()A.[1,+∞) B.(1,+∞) C.[0,+∞) D.(-1,+∞) 答案 A解析根据题意,对于p:2xx-1<1,解可得-1<x<1,即不等式的解集为(-1,1).若p为q的充分不必要条件,则(-1,1)是不等式(x-a)(x-3)>0解集的真子集.当a>3时,解得q:x>a或x<3,满足条件;当a<3时,解得q:x>3或x<a,即a≥1;当a=3时,不等式化为(x-3)2>0,解得x>3或x<3满足条件,综上a≥1,即a的取值范围为[1,+∞).故选A.二、多项选择题13.已知集合A={x∈N||x|≤3},B={a,1},若A∩B=B,则实数a的值可以是() A.0 B.1 C.2 D.3答案ACD解析∵A∩B=B,∴B⊆A,又A ={x ∈N |-3≤x ≤3}={0,1,2,3},B ={a ,1},∴a =0,2,3.14.(2021·石家庄一模)设z 为复数,则下列命题中正确的是( )A .|z |2=z z -B .z 2=|z |2C .若|z |=1,则|z +i|的最大值为2D .若|z -1|=1,则0≤|z |≤2 答案 ACD解析 设复数z =a +b i(a ∈R ,b ∈R ),|z |2=a 2+b 2,z ·z -=(a +b i)·(a -b i)=a 2+b 2,故A 正确;z 2=(a +b i)2=a 2-b 2+2ab i ,|z |2=a 2+b 2,故B 错误;|z |=1,表示z 对应的点Z 在单位圆上,|z +i|表示点z 对应的点与(0,-1)的距离.故|z +i|的最大值为2,故C 正确;|z -1|=1表示z 对应的点Z 在以(1,0)为圆心,1为半径的圆上,|z |表示z 对应的点Z 与原点(0,0)的距离,故0≤|z |≤2,D 正确.故选ACD.15.a <0,b <0的一个必要条件为( )A .a +b <0B .(a +1)2+(b +3)2=0 C.a b >0 D.a b <0答案 AC三、填空题16.(2021·石家庄二质检)已知i 为虚数单位,复数z =1-i 2 0211-i 2 018,则z 的虚部为________. 答案 -12解析 i 2 021=i 4×505+1=i ,i 2 018=i 4×504+2=i 2=-1,∴复数z =1-i 2 0211-i 2 018=1-i 1-(-1)=12-12i ,则z 的虚部为-12.17.设函数f (x )=(m 2-1)sin x cos x -cos 2x (m ∈R ),则“f (x )为偶函数”的一个充分不必要条件是________.答案 m =1(或m =-1)解析 f (x )=(m 2-1)sin x cos x -cos 2x =m 2-12sin 2x -cos 2x (m ∈R ). 若m =±1,则f (x )=-cos 2x 是偶函数,若f (x )为偶函数,则f (-x )=f (x ),所以m 2-12sin 2(-x )-cos 2(-x )=m 2-12·sin 2x -cos 2x ,即(m 2-1)sin 2x =0对任意x ∈R 恒成立,所以m =±1.故“m =±1”是“f (x )为偶函数”的充要条件.所以“f (x )为偶函数”的一个充分不必要条件是m =1(也可以填m =-1).18.已知下列命题:①到两定点(-1,0),(1,0)距离之和等于1的点的轨迹为椭圆;②∃x ∈N ,x 2-2x -1≤0;③已知a =(2,3,m ),b =(2n ,6,8),则“a ,b 为共线向量”是“m +n =6”的必要不充分条件.其中假命题有________.答案 ①③解析 对于命题①:到两定点(-1,0),(1,0)距离之和等于1的点不存在,故命题①是假命题;对于命题②:解不等式x 2-2x -1≤0,得1-2≤x ≤1+2,又∵x ∈N ,∴x =0或1或2,∴∃x ∈N ,使得x 2-2x -1≤0,故命题②是真命题;对于命题③:已知a =(2,3,m ),b =(2n ,6,8),若a ,b 为共线向量,则⎩⎨⎧2n =4,8=2m ,∴⎩⎨⎧m =4,n =2,∴m+n=6,反之若m+n=6,则m不一定为4,n不一定为2,∴“a,b为共线向量”是“m+n=6”的充分不必要条件,∴命题③是假命题.19.【多选题】已知M,N为R的两个不等的非空子集,若M∩(∁R N)=∅,则下列结论正确的是()A.∃x∈N,使得x∈M B.∃x∈N,使得x∉MC.∀x∈M,都有x∈N D.∀x∈N,都有x∈M答案ABC解析对于D,∵M∩(∁R N)=∅,∴M是N的真子集或M,N相等,又M,N不相等且非空,∴M是N的非空真子集.∴不能保证∀x∈N,都有x∈M.20.设a,b均为单位向量,则“cos〈a,b〉<0”是“|a-b|=|2a+b|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 B解析记条件p:cos〈a,b〉<0,条件q:|a-b|=|2a+b|,|a-b|=|2a+b|左右平方得a2-2a·b+b2=4a2+4a·b+b2⇒3a2=-6a·b,a,b均为单位向量,则3=-6cos〈a,b〉,则|a-b|=|2a+b|可以推出cos〈a,b〉=-12<0,但cos〈a,b〉<0不能得到cos〈a,b〉=-12,即q⇒p,但p推不出q,p是q的必要不充分条件.故选B.1.已知集合A={4,a},B={1,a2},a∈R,则A∪B不可能是() A.{-1,1,4} B.{1,0,4}C .{1,2,4}D .{-2,1,4}答案 A解析 若A ∪B 含3个元素,则a =1或a =a 2或a 2=4,当a =1时,不满足集合元素的互异性,当a =0,a =2或a =-2时满足题意.∴A ∪B 不可能是{-1,1,4}.故选A.2.(2021·山东临沂一模)已知全集U =A ∪B =(0,4],A ∩∁U B =(2,4],则集合B =( )A .(-∞,2]B .(-∞,2)C .(0,2]D .(0,2)答案 C解析 因为U =A ∪B =(0,4],A ∩∁U B =(2,4],所以B =∁U (A ∩∁U B )=(0,2].故选C.3.已知集合M ={y |y =2x +1,x ∈R },集合N ={x |-x 2+5x +6>0},则M ∩N =( )A .(-2,3)B .(0,6)C .(6,+∞)D .(1,6)答案 D解析 ∵M ={y |y >1},N ={x |-1<x <6},∴M ∩N =(1,6).故选D.4.(2021·长郡十五校联考(二))已知复数z 满足:z 2=74+6i(i 为虚数单位),且z 在复平面内对应的点位于第三象限,则复数z -的虚部为( )A .2iB .3 C.32 D.32i答案 C解析 设z =a +b i(a ,b ∈R ),∴z 2=a 2-b 2+2ab i =74+6i ,∴⎩⎪⎨⎪⎧a 2-b 2=74,2ab =6,∵a <0,b <0,∴a =-2,b =-32,∴z =-2-32i ,∴z -=-2+32i.故选C.5.(2021·潍坊市二模)已知集合A ={x |y =ln(x -1)},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y |y =⎝ ⎛⎭⎪⎫12x ,x >-2,则A ∩B=( )A .∅B .[1,4)C .(1,4)D .(4,+∞)答案 C解析 ∵A ={x |x >1},B ={y |0<y <4},∴A ∩B =(1,4).故选C.6.(2021·湖南期中试卷)设(-1+2i)x =y -1-6i ,x ,y ∈R ,则|x -y i|=( )A .6B .5C .4D .3答案 B解析 因为(-1+2i)x =y -1-6i ,所以⎩⎨⎧2x =-6,-x =y -1,解得⎩⎨⎧x =-3,y =4,所以|x -y i|=|-3-4i|=(-3)2+(-4)2=5.故选B.7.(2021·江淮十校质量检测,理)已知集合U =[-5,4],A ={x |x2-2x ≤0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x +2x ≤0,则(∁U A )∩B =( )A .∅B .[0,2]C .[-2,0)D .[-2,2]答案 C解析 由题知A =[0,2],B =[-2,0),所以A ∩B =∅,B ⊆(∁U A ),(∁U A )∩B =B =[-2,0).故选C.8.(2021·长沙市一中模拟(一))若复数z =(1+a i)·(1-i)的模等于2,其中i 为虚数单位,则实数a 的值为( )A .-1B .0C .1D .±1答案 D解析 因为z =(1+a i)·(1-i)=1-i +a i -a i 2=(1+a )+(a -1)i ,则|z |=(1+a )2+(a -1)2=2a 2+2=2,解得a =±1.9.(2021·哈师大第三次理考)设全集U ={1,2,3,4,5,6},且U 的子集可表示由0,1组成的6位字符串,如:{2,4}表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定,空集表示的字符串为000000;对于任意两集合A ,B ,我们定义集合运算A -B ={x |x ∈A 且x ∉B },A *B =(A -B )∪(B -A ).若A ={2,3,4,5},B ={3,5,6},则A *B 表示的6位字符串是( )A .101010B .011001C .010101D .000111答案 C10.(2021·东北三校第二次联考)定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={1,2,3},则集合A *B 的所有元素之和为( )A .16B .18C .14D .8答案 A解析 因为A ={1,2},B ={1,2,3},所以A *B ={1,2,3,4,6},所以A *B 的所有元素之和为1+2+3+4+6=16.故选A.11.(2021·南昌市一模)已知角α是△ABC 的一个内角,则“sin α=12”是“cos α=32”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 因为角α是△ABC 的一个内角,所以α∈(0,π).由sin α=12可得α=π6或α=5π6,此时cos α=32或cos α=-32.由cos α=32可得α=π6,此时sin α=12.所以“sin α=12”是“cosα=32”的必要不充分条件.故选B.12.(2021·吉林五校联考)已知α⊥β,α∩β=l,n⊂α,m⊂β,则“m⊥n”是“m⊥l”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析在如图所示的正方体中,设平面ABCD为α,平面ADD1A1为β,AD1为m,AB为n,AD为l,则n⊥β,而m⊂β,所以n⊥m,但是m与l不垂直,所以m⊥n不是m⊥l 的充分条件;因为α⊥β,α∩β=l,m⊂β,m⊥l,则m⊥α,所以m⊥n,所以m⊥n 是m⊥l的必要条件.于是m⊥n是m⊥l的必要不充分条件.故选B.13.(2021·辽宁锦州第一次联考)若命题“∃x0∈R,使得x02+(a-1)x0+1<0”是假命题,则实数a的取值范围是()A.1≤a≤3 B.-1≤a≤3 C.-3≤a≤3 D.-1≤a≤1答案 B解析由特称命题“∃x0∈R,使得x02+(a-1)x0+1<0”是假命题,可知该命题的否定“∀x∈R,x2+(a-1)x+1≥0”是真命题.则对于方程x2+(a-1)x+1=0,有Δ=(a-1)2-4≤0,解得-1≤a≤3.故选B.14.【多选题】(2021·八省八校联考)下列命题中正确的是()A .∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13xB .∀x ∈(0,1),log 12x >log 13x C .∀x ∈⎝ ⎛⎭⎪⎫0,12,⎝ ⎛⎭⎪⎫12x >x 12 D .∃x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x >log 13x 答案 ABC解析 对于A ,分别画出y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫13x 的图象如图1所示,由图可知,当x ∈(0,+∞)时,⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x ,故A 正确.对于B ,分别画出y =log 12x ,y =log 13x 的图象如图2所示,由图可知,当x ∈(0,1)时,log 12x >log 13x ,故B 正确.对于C ,分别画出y =⎝ ⎛⎭⎪⎫12x ,y =x 12的图象如图3所示,由图可知,当x ∈⎝ ⎛⎭⎪⎫0,12时,⎝ ⎛⎭⎪⎫12x >x 12,故C 正确.对于D ,当x ∈⎝ ⎛⎭⎪⎫0,13时,⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫120=1,log 13x >log 1313=1,所以D 错误.故选ABC. 15.已知f (x )是R 上的奇函数,则“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 本题考查充分条件与必要条件、函数的奇偶性.当f (x )为R 上的奇函数时,若x 1+x 2=0,则有x 1=-x 2,所以f (x 1)=f (-x 2)=-f (x 2),即f (x 1)+f (x 2)=0;若f (x )=0,则当x 1=-1,x 2=2时,f (x 1)+f (x 2)=0,但x 1+x 2≠0,所以“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的充分不必要条件.故选A.16.已知集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4},若A ∩B 只有4个子集,则a 的取值范围是( )A .(-2,-1]B .[-2,-1]C .[0,1]D .(0,1]答案 D分析 A ∩B 只有4个子集,则元素有两个.解析 集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4}={x ∈Z |x ≤2},A ∩B ={x ∈Z |a ≤x ≤2},A ∩B 只有4个子集,则A ∩B 中元素只能有2个,即A ∩B ={1,2},所以0<a ≤1.故选D.评说 结合数轴、动态演示,效果更佳,结果更明显.17.【多选题】“∀x ∈[1,2],ax 2+1≤0”为真命题的必要不充分条件是( )A .a ≤-1B .a ≤-14C.a≤-2 D.a≤0答案BD解析∵∀x∈[1,2],ax2+1≤0,∴ax2≤-1,∴a<0,∵x∈[1,2],∴ax2∈[4a,a],∴a≤-1,∴“∀x∈[1,2],ax2+1≤0”⇒“a≤-1”,“a≤-1”⇒“∀x∈[1,2],ax2+1≤0”.∴“∀x∈[1,2],ax2+1≤0”为真命题的充分必要条件是a≤-1.故必要不充分条件为B、D.18.(2021·浙江适应性试卷)已知a,b∈R,则“a2>b2”是“a>|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析若a=-2,b=1,此时a2>b2成立,而a>|b|不成立,而a>|b|时,由不等式的性质,两边平方得,a2>b2,所以“a2>b2”是“a>|b|”的必要不充分条件.故选B.19.(2021·湖北十一校第二次联考)已知非空集合A,B满足以下两个条件:(1)A∪B={1,2,3,4},A∩B=∅;(2)A的元素个数不是A中的元素,B的元素个数不是B中的元素.则有序集合对(A,B)的个数为()A.1 B.2 C.3 D.4答案 B解析若集合A中只有1个元素,则集合B中有3个元素,则1∉A,3∉B,即3∈A,1∈B,此时有1个有序集合对(A,B);同理,若集合B中只有1个元素,则集合A中有3个元素,则3∈B ,1∈A ,此时有1个有序集合对(A ,B );若集合A 中有2个元素,则集合B 中有2个元素,则2∉A ,且2∉B ,不满足条件.所以满足条件的有序集合对(A ,B )的个数为1+1=2.故选B.20.【多选题】下列说法正确的是( )A .设a ,b 为两个非零向量,则“a ·b =|a |·|b |”是“a 与b 共线”的充分不必要条件B .“平面向量a ,b 的夹角是钝角”的充分不必要条件是“a ·b <0”C .已知数列{a n },则“a n ,a n +1,a n +2成等比数列”是“a n +12=a n a n +2”的充要条件D .在三角形ABC 中,“A >B ”的充要条件是“sin A >sin B ”答案 AD解析 若a ·b =|a |·|b |,则a 与b 方向相同;若a 与b 共线,则a 与b 方向相同或相反,不一定有a ·b =|a |·|b |,故A 正确;因为a ·b <0时,〈a ,b 〉∈(90°,180°],所以“a ·b <0”是“平面向量a ,b 的夹角是钝角”的必要不充分条件,故B 错误;由“a n ,a n +1,a n +2成等比数列”,可得“a n +12=a n a n +2”成立,反之不成立,如a n +1=a n =a n +2=0,故C 错误;由A >B 得a >b ,由正弦定理a sin A =b sin B ,得sin A >sin B ,反之也成立,故D 正确.故选AD.21.设p :|x -a |≤3,q :(x +1)(2x -1)≥0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.答案 (-∞,-4]∪⎣⎢⎡⎭⎪⎫72,+∞ 解析 由|x -a |≤3,可得a -3≤x ≤a +3,即p :a -3≤x ≤a +3.由(x +1)(2x -1)≥0,可得x≤-1或x≥12,即q:x≤-1或x≥12.因为p是q的充分不必要条件,所以a+3≤-1或a-3≥12,解得a≤-4或a≥72.故a的取值范围是(-∞,-4]∪⎣⎢⎡⎭⎪⎫72,+∞.。
高考数学复习高频考点题型精讲精练专题02 复数
高考数学复习高频考点题型精讲精练专题02 复数考向:复数是以考查复数的四则运算为主,偶尔与其他知识交汇,难度较小。
考查代数运算的同时,主要涉及考查的概念有:复数的代数形式、复数的模、复数的几何意义等。
考点:复数的四则运算、复数的模、共轭复数、复数的代数形式、复数的几何意义。
导师建议:复数在高考中考查的比较基础,化简能力和计算能力是重中之重!特别是化简中移项、多项式的运算!1.复数的概念(1)虚数单位:①=-1;②实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍成立.(2)复数的定义形如(,∈R )的数叫复数,叫复数的实部,叫复数的虚部. (3)复数的分类i 2i a bi a b a b1.对于复数z它的共轭复数为z一、单选题1.已知i 52i z ⋅=-,则z 的虚部是( ). A .5B .5i -C .5-D .1- 【答案】C 【详解】52i i(52i)25i i i (i)z ---===--⋅-,虚部是5-.故选:C. 2.已知复数z 满足()1i 2i z -=-,则复数z 的虚部为( ) A .12B .1i 2C .32D .3i 2【答案】A【详解】由()1i 2i z -=-可得()()()()222i 1i 2i 22i i i 31i 1i 1i 1i 1i 22z -+-+--====+--+-, 所以复数z 的虚部为12.故选:A 3.已知复数z 满足()20231i iz -=(i 是虚数单位),则z 的虚部是( )A .12-B .12C .1i 2-D .1i 2【答案】A【详解】因为()50520235054343i i i i i ⨯+==⨯=-,所以()2023i 1i iz -==-,故()()()i 1i i 1i 1i 1i 1i 1i 222z -+--====---+,所以z 的虚部为12-. 故选:A.4.已知复数1i z =-,则212z z+的实部为( ) A .110B .110-C .15D .15- 【答案】A【详解】解:因为1i z =-,所以222(1i)2(1i)24i z z +=-+-=-, 所以21124i 24i 11i 224i (24i)(24i)20105z z ++====++--+,所以212z z +的实部为110.故选:A. 5.若i 为虚数单位,复数z 满足()1i 34i i z +=+-,则z 的实部为( ). A .3-B .3C .2-D .2 【答案】D【详解】()1i 34i i i 5i z +=+-==-,则()()()()5i 1i 5i 46i23i 1i 1i 1i 2z ----====-++-,则z 的实部为2.故选:D.6.已知复数z 满足()1i 1z +=,则z z ⋅=( )A .14BC .12D 【答案】C解法二:先求z ,利用2z z z ⋅=求解.(拓展:求复数的模时,可直接根据复数的模的公式和性质(=z z ,22z z z z ==⋅,1212z z z z ⋅=⋅,1122z z z z =)进行计算) 【详解】解法一:由()1i 1z +=得()111i 1i 2z ==-+,所以()11i 2z =+,因此2142z z ⋅==. 解法二:因为()1i 1z +=,所以()1i 1z +=,1=,所以z =故212z z z ⋅==, 故选:C.7.复数z 满足:12,2iz z z +==-( )A .21i 515-B .21i 155-C .21i 155+D .21i 155- 【答案】A【详解】解:设i,,R z a b a b =+∈,则i z a b =-, 由122iz z +=-得()()()12i 21i i i 2i 2i 2i 2i 55a b a b a b a b +⎛⎫++=++=+++=- ⎪--+⎝⎭, 225125a a b b ⎧+=⎪⎪∴⎨⎪+=-⎪⎩,解得25115a b ⎧=⎪⎪⎨⎪=-⎪⎩,21i 515z ∴=-.故选:A . 8.已知i 是虚数单位,复数2(12i)-的共轭复数的虚部为( ) A .4i B .3-C .4D .4- 【答案】C【详解】22(12i)14i 4i 144i 34i -=-+=--=--,故复数2(12i)-的共轭复数为34i -+,故共轭复数的虚部为4.故选:C9.若复数z 满足(13i)z 24i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则z =( ) A .258B.2 【答案】C【详解】因为复数z 满足(13i)z 24i +=+,则24i (24i)((13i)71z i (13i)(13i)(13i)55++-===-+++, 所以复数z 的共轭复数为71i 55z =-,则z =C .10.若()3i3ia a +∈+R 是纯虚数,则a =( ) A .-1B .1C .-9D .9【答案】A 【详解】()()()()()3i 3i 93i 33i 3i 3i 3i 1010a a a a +--++==+++-, 因为3i 3i a ++是纯虚数,故()330109010a a +⎧=⎪⎪⎨-⎪≠⎪⎩,得1a =-,故选:A.11.已知复数()2i z m m m =-+为纯虚数,则实数m 的值为( )A .1-B .0C .1D .0或1 【答案】C【详解】因为()2i z m m m =-+为纯虚数,所以200m m m ⎧-=⎨≠⎩,解得1m =.故选:C.12.若虚数z 使得z 2+z 是实数,则z 满足( ) A .实部是12-B .实部是12C .虚部是0D .虚部是12【答案】A【详解】设i z a b =+(,R a b ∈且0b ≠),222222(i)(i)2i i (2)i z z a b a b a ab b a b a a b ab b +=+++=+-++=+-++, 2z z +是实数,因此20ab b +=,0b =(舍去),或12a =-.故选:A .13.已知复数()1i z a a =+-,其中a ∈R ,若z 是实数,则=a ( ) A .0B .1C .1-D .i 【答案】B【详解】因为复数()1i z a a =+-,且z 是实数,则101a a -=⇒=,故选:B.14.已知()i32i ,R 1ia b a b -=+∈+,则a b +=( ) A .3B .4C .5D .7 【答案】C 【详解】由i32i 1ia b -=++可得()()()i 1i 32i 3223i a b b b -=++=-++, 则32231b ab -=⎧⎨+=-⎩,所以72a b =⎧⎨=-⎩,故5a b +=.故选:C.15.已知5i i a b =+(,R a b ∈),则a +b 的值为( ) A .-1B .0C .1D .2 【答案】C【详解】5i i =,故i i a b +=,所以0,1a b ==,1a b +=.故选:C 16.已知a ∈R ,(5i)i 15i a +=+(i 为虚数单位),则=a ( ) A .1-B .1C .3-D .3 【答案】A【详解】由题意知,(5i)i 5i 15i a a +=-+=+,则1a =-.故选:A.17.已知复数z 的共轭复数为z ,且(1i)(1i)z z -=+,则下列四个选项中,z 可以为( ) A .12i +B .2i -C .22i -D .22i + 【答案】D【详解】设()i ,R z a b a b =+∈,由已知得(1i)(i)(1i)(i)a b a b -+=+-,即()i ()i a b b a a b a b ++-=++-,∴b a a b -=-,即a b =,对照各选项,只有D 满足.故选:D .18.已知i 是虚数单位,若i2iz =-,则||z =( ) A .1B .3【答案】C 【详解】因为()()()i 2i i 12i 12i 2i 2i 2i 555z +-+====-+--+,所以||z ==C. 19.已知复数z 满足()1i 1i z -=+,i 为虚数单位,则z =( )A .iB +C .11i 22+D .1i + 【答案】B【详解】1i i)i)==1i 1i 1i (1i)(1i)222z +++===+----+,故选:B20.若()31i 2z -=-,则z =( )A.3 【答案】B【详解】由()31i 2z -=-得()()1i 2z -⋅-=-,所以212i iz -==-,则12z i =+,所以z :B . 21.已知复数2i1iz =-,则以下判断正确的是( )A .复数z 的模为1B .复数zC .复数z 的虚部为iD .复数z 的虚部为1- 【答案】B【详解】由2i1i z =-可得()()()222i 1i 2i 2i 1i 1i 1i 1i z ++===-+-+-;即复数z 的虚部为1,所以CD 错误;则复数z 即A 错误,B 正确;故选:B22.复数()i 12i z =-+在复平面内对应的点位于( ) A .第一象限B .第二象限 C .第三象限D .第四象限 【答案】D【详解】因为()i 12i 2i z =-+=-,可知复数z 在复平面内对应的点为()2,1-, 所以z 在复平面内对应的点位于第四象限.故选:D 23.在复平面内,复数1ii-+对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A 【详解】()()()1i i 1i 1i i i i -+⋅--+==+⋅-,故1ii-+在复平面内对应的点坐标为()1,1,位于第一象限.故选:A24.已知i 52i z ⋅=-,则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【详解】由题意得()252i i52i 25i i i z --===--, 所以复数z 在复平面内对应的点为()2,5--,位于第三象限,故选:C 25.复数z 满足2i3i iz -=+(i 是虚数单位),则z 的共轭复数z 对应的点在复平面内位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C 【详解】因为2i 13i 1i 1z --=+=-+,所以1i z =--,所以z 在复平面上的对应点的坐标为()1,1--,点()1,1--位于第三象限.故选:C. 26.在复平面内,复数()2i z a a =+∈R 对应的点在直线2y x =-上,则i1iz -=+( ) A .1B .i C .i -D .35i 22--【答案】B【详解】复平面内,复数()2i z a a =+∈R 对应的点为(),2a , 又在直线2y x =-上,所以22a =-,解得1a =-,所以12i z =-+,则()()()()1i 1i i 12i i 1i 2ii 1i 1i 1i 1i 1i 2-+---+--+=====++++-z .故选:B.1.若复数z 满足(1)i 1i z -⋅=-,则z 的虚部是( ) A .1B .1-C .i D .i - 【答案】B【详解】由(1)i 1i z -⋅=-得:1i11i iz --==--,i z ∴=- z ∴的虚部为1-.故选:B.2.设复数z 满足12i 1iz=+-,则z 的虚部为( ) A .1-B .1C .i -D .i 【答案】A【详解】()()12i 1i 3i z =+-=+,3i z ∴=-,z ∴的虚部为1-.故选:A. 3.若i(1)1z -=,则z z +=( ) A .2-B .1-C .1D .2 【答案】D【详解】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D4.若1z =-,则1z zz =-( )A .1-B .1-C .13-D .13- 【答案】C【详解】1(1113 4.z zz =-=--=+=113z zz ==--故选 :C5.若复数z 满足i 34i z ⋅=-,则z =( )A .1B .5C .7D .25【答案】B【详解】由题意有()()()34i i 34i 43i i i i z ---===--⋅-,故|5|z =.故选:B . 6.若1i z =+.则|i 3|z z +=( )A ....【答案】D【详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z +故选:D.7.复数2i 13i--在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【详解】()()2i 13i 2i 55i 1i 13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫ ⎪⎝⎭, 该点在第一象限,故选:A.8.已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( )A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==【答案】B【详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=,故选:B.9.设()()2346i z z z z ++-=+,则z =( )A .12i -B .12i +C .1i +D .1i -【答案】C【详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+,所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+.故选:C. 10.已知a R ∈,()13ai i i +=+,(i 为虚数单位),则=a ( )A .1-B .1C .3-D .3【答案】C【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-.故选:C.11.设复数z 满足i 3i z z +=- ,z 在复平面内对应的点为(,)x y ,则( )A .1x =B .1y =C .=1x -D .1y =-【答案】B【详解】复数z 满足i 3i z z +=-,即(i)3i z z --=-,其几何意义为复平面内的点z 到点(0,1)-和点(0,3)的距离相等,即点z 的轨迹为(0,1)-和(0,3)的垂直平分线1312y -+==, 即z 在复平面内对应的点(,)x y 在直线1y =上,故1y =,故选:B12.复数12i z i=+的共轭复数在复平面内所对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【详解】(12)22112(12)(12)555i i i i z i i i i -+====+++-,2155z i =-,对应点为21(,)55-,在第四象限.故选:D.z 的实部为( )A .1B .1-C .0D .i -【答案】C【详解】解:()1i 1i z -=+, 所以()()()()1i 1i 1i 2i i 1i 1i 1i 2z +++====-+-,i z ∴=-,z ∴的实部为0.故选:C 2.复数112i +的虚部为( ) A .1i 5B .15C .25-D .2i 5- 【答案】C【详解】()()112i 12i 12i 12i 12i 55-==-++-,∴复数112i +的虚部为25-.故选:C . 3.若复数243i 32i z +⎛⎫=- ⎪-⎝⎭,则z 的共轭复数为( ) A .64i --B .4i -C .64i -+D .4i【答案】A【详解】()()()()43i 2i 43i 510i 12i 2i 2i 2i 5++++===+--+,所以()212i 364i z =+-=-+,则64i z =--.故选:A4.已知复数z 满足2i 3i 0z z --+=,则z 的共轭复数z =( )A .1i +B .1i -C .1i 5+D .1i 5- 【答案】B【详解】由2i 3i 0z z --+=,得3i 12i z -=-(3i)(12i)(12i)(12i)-+=-+55i 1i 5+==+,所以1i z =-.故选:B5.若复数()3i 3ia z a +=∈+R 是纯虚数,则z =( ) A .1-B .i -C .i a -D .3i【答案】B【详解】()()()3i 3i 339i 1010a a a z +-++-==为纯虚数,1,i a z =-=,i z =-,故选:B . 6.已知复数z 是纯虚数,11i z ++是实数,则z =( ) A .-i B .i C .-2i D .2i【答案】A【详解】由题意设()i R z b b =∈,则11i (1i)(1i)(1)(1)i 1i 1i (1i)(1i)2z b b b b +++-++-===++-+, 因为11iz ++是实数,所以10b -=,得1b =,所以i z =,所以i z =-,故选:A. 7.已知复数2i z =-,且i z az b -+=,,其中a ,b 为实数,则a b -=( )A .-2B .0C .2D .3【答案】C 【详解】由题意得2i z =+,则代入原式得:()2i 2i i a b +--+=,即()()221i i a b a -+++=,所以22011a b a -+=⎧⎨+=⎩, 解得02a b =⎧⎨=-⎩,所以2a b -=.故选:C . 8.已知复数z 满足i 212i z +=+,则z =( )A .2i --B .2i -+C .2i -D .2i +【答案】D【详解】由i 212i z +=+得:i 12i z =-+,因此12i (12i)(i)2i i i (i)z -+-+-===+⋅-.故选:D 9.已知复数z 满足(i 1)2i z -=,则z =( )A .1B.2【答案】B【详解】(i 1)2i z -=∵,2i 2i(i 1)1i i 1(i 1)(i 1)z --===-----∴,||z ∴故选:B . 10.若复数z 满足2i 2iz =-,则1z +=( )A .5D .17【答案】C 【详解】∵2i 2iz =-,∴()2i 2i 24i z =-=+,∴134i 5z +=+=.故选:C.11.在复平面内,复数11i-(i 为虚数单位)的共轭复数对应的点位于( ). A .第一象限;B .第二象限;C .第三象限;D .第四象限.【答案】D 【详解】解:()()11i 1i 11i 1i 1i 1i 222++===+--+,所以其共轭复数为11i 22-,它在复平面所对应的点坐标为11,22⎛⎫- ⎪⎝⎭,位于第四象限.故选:D. 12.在复平面内,复数z 对应的点的坐标为()1,1-,则i z ⋅=( )A .1i +B .1i --C .1i -D .1i -+【答案】D【详解】因为在复平面内,复数z 对应的点的坐标为()1,1-,所以1i z =-,所以1i z =+,故()2i i 1i i i 1i z ⋅=+=+=-+,故选:D二、多选题13.把复数z 的共轭复数记作z ,已知1i z =+(i 为虚数单位),则下列结论正确的有( ) A .22i z =B .2z z +=C .2zz =D .2i z z= 【答案】BC【详解】由1+i z =,可得1i z =-,有:()2221i =12i i 2i z =--+=-,选项A 错误. 1i 1i=2z z +=++-,选项B 正确;()()21i 1i =1i =2z z ⋅=+⋅--,选项C 正确;()2221i 1i 12i i i 1i 1i 2z z ++++====--,选项D 错误.故选:BC . 14.已知复数113i z =-,23i z =+,则( )A .126+=z zB .1222i z z -=-+C .1268i z z =-D .12z z 在复平面内对应的点位于第四象限【答案】BCD【详解】对于A 选项,1242i z z +=-,所以,12z z +==A 错; 对于B 选项,1213i 3i 22i z z -=+--=-+,B 对;对于C 选项,()()1213i 3i 68i z z =-+=-,C 对;对于D 选项,12z z 在复平面内对应的点位于第四象限,D 对.故选:BCD.15.下列命题中的真命题有( )A .复数2i -的虚部是i -B .()()3i 2i 7i -+=+C .复数3i z a =+的模为5时实数4a =D .若z 的共轭复数仍是z ,则z R ∈【答案】BD【详解】由复数虚部概念知2i -的虚部是1-,排除A ;由复数乘法法则计算知B 正确;复数3i z a =+的模为5时实数4a =±,排除C ;若z 的共轭复数仍是z ,则z 的虚部为0,所以D 中的命题为真.故选:BD .16.若复数z 满足()1i 1z -=,则( )A .1i z =-+B .z 的实部为1C .1i z =+D .22i z =【答案】BD【详解】由()1i 1z -=得:()21i 21i 1-i z z -=⇒==+,因此A 错误,实部为1,则B 正确,1i z =-,故C 错误,()2221i 12i+i 2i z =+=+=,故D 正确.故选:BD17.已知复数z 满足20232i 1i z-=+,则( ) A .z 的实部为32B .31i 22z =-+ C .z 在复平面内对应的点位于第二象限D .232i 2z =+ 【答案】AD 【详解】由题意得2i (2i)(1i)31i 1i (1i)(1i)22z --+===+--+,A 选项正确,31i 22z =-,B 选项错误 z 在复平面内对应的点位于第四象限,C 选项错误,22313i 2i 222z ⎛⎫=+=+ ⎪⎝⎭,D 选项正确.故选:AD.18.已知i 为虚数单位,复数()122i 2i R z a z a a =-=+∈,,,下列结论正确的有( ) A .12=z zB .12z z =C .若()12122z z z z +=⋅,则2a =D .若2i z =-,则0a =【答案】AC【详解】A 选项,12z z =,A 选项正确. B 选项,122i z a z =+≠,B 选项错误. C 选项,()()1222424i z z a a +=++-, ()21244i z z a a ⋅=+-,若()12122z z z z +=⋅,则2244244a a a a +=⎧⎨-=-⎩,解得2a =,所以C 选项正确. D 选项,当0a =时,22i z =≠-,所以D 选项错误.故选:AC。
高考数学《集合》专项练习
高考数学《集合》专项练习1.给定集合A={1,3,5,7},B={x|2≤x≤5},求A∩B。
解析:A与B的公共元素为3和5,因此A∩B={3,5},故选B。
2.给定集合A={1,2,3},B={x|x^2<9},求A∩B。
解析:由x^2<9得-3<x<3,因此B={x|-3<x<3}。
因为A={1,2,3},所以A∩B={1,2},故选D。
3.给定集合A={0,2,4,6,8,10},B={4,8},求A-B。
解析:根据补集的概念,得到A-B={0,2,6,10},故选C。
4.给定集合A={x|x-4x+30},求A∩B。
解析:对于集合A,解方程x-4x+30,得到x>3/2,因此B={x|x>3/2}。
因此A∩B={x|3/2<x<3},故选D。
5.已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是()。
解析:要使复数z对应的点在第四象限,应满足m+3<0且m-1<0,解得-3<m<1,故选A。
6.给定集合S={x(x-2)(x-3)≥0},T={x|x>0},求S∩T。
解析:S表示x在2和3之间或者小于等于0的实数,T表示x大于0的实数,因此S∩T=[2,3],故选A。
7.已知集合A={x|25},求AB。
解析:AB表示既属于A又属于B的元素,因此AB={x|2<x<3},故选C。
已知集合$A=\{x\mid |x|<2\}$,$B=\{-1,0,1,2,3\}$,则$A\cap B$的元素为$-1,0,1$,因此选项$\textbf{(C)}$正确。
解析:对于不等式$x-3<1$,两边加上$3$得$x<4$,因此不等式$x-3<1$的解集为$(\textbf{2},4)$。
因此选项$\textbf{(A)}$正确。
设集合$U=\{1,2,3,4,5,6\}$,$A=\{1,3,5\}$,$B=\{3,4,5\}$,则$AB=\{3,5\}$,因此$U-AB=\{1,2,4,6\}$,即选项$\textbf{(D)}$正确。
高中数学集合、复数必做题型(含解析)
集合,复数---高考题型一.选择题(共40小题)1.已知集合M={x||x﹣1|≥2},N={﹣1,0,1,2,3},则(∁R M)∩N=()A.{0,1,2}B.{1,2}C.{﹣1,0,1,2}D.{2,3}2.已知集合U={0,1,2,3},S={0,3},T={2},则∁U(S∪T)=()A.{1}B.{0,2}C.{1,2,3}D.{0,1,2,3} 3.设集合A={x|x<2},,则(∁U A)∩B=()A.(1,2)B.[1,2]C.[2,3)D.[2,3]4.设集合M={2m﹣1,m﹣3},若﹣3∈M,则实数m=()A.0B.﹣1C.0或﹣1D.0或15.已知集合M={x|x2+x﹣6<0},集合,则M∪N=()A.{x|﹣3<x<1}B.{x|﹣4<x<1}C.{x|﹣4<x<2}D.{x|﹣3<x<2} 6.设全集U={﹣3,﹣2,﹣1,0,1,2,3},集合A={﹣3,﹣2,2,3},B={﹣3,0,1,2},则(∁U A)∩B=()A.∅B.{1}C.{0,1}D.{0,1,2} 7.已知集合A={x|﹣1≤2x﹣1≤3},B={x|x2﹣3x<0},则A∪B=()A.(0,2]B.[0,2]C.[0,3)D.[0,3]8.设集合A={x|0<x≤1},B={x|x2﹣2x≤0},则A∩B=()A.[0,+∞)B.[0,1]C.(0,1]D.[0,1)9.已知集合A={x|x2≤4},集合B={x|x>0},则A∪B=()A.(﹣∞,﹣2]B.[﹣2,0)C.[﹣2,+∞)D.(0,2]10.已知集合A={x|x2﹣2<0},且a∈A,则a可以为()A.﹣2B.﹣1C.D.11.设集合A={x|1<2x<8},B={x||x+1|≥3},则A∩B=()A.(0,2]B.[2,3)C.(2,3]D.(0,3)12.已知集合,N={x||x﹣1|≤2},则M∩N=()A.[﹣1,3]B.[1,2]C.[﹣1,2)D.(2,3]13.若集合A={x|2x2+3x﹣9≤0},B={x|2x>﹣3,x∈Z},则A∩B=()A.{﹣3,﹣2,﹣1,0,1}B.{﹣2,﹣1,0}C.{﹣1,0,1}D.{﹣2,﹣1,0,1}14.已知集合A={x∈Z|x2﹣2x﹣3<0},则集合A的子集个数为()A.3B.4C.8D.16 15.若集合M={x|x2﹣3x﹣4≤0},N={x|﹣2≤x≤2},则M∪N=()A.[﹣1,2]B.[﹣1,4]C.[﹣2,2]D.[﹣2,4] 16.已知集合A={x∈Z|x2﹣2x﹣3<0},B={﹣2,﹣1,0,1},则A∪B=()A.{﹣2,﹣1}B.{﹣2,﹣1,0,1,2} C.{﹣2,﹣1,0}D.{0,1}17.已知集合,B={x||x﹣1|<2},则A∩B=()A.[2,3]B.[2,3)C.(2,3)D.(2,3] 18.已知集合A={x|﹣5<x<2},B={x||x|<3},则A∪B=()A.(﹣∞,2)B.(﹣∞,3)C.(﹣3,2)D.(﹣5,3)19.已知集合A={x|﹣2≤x≤2},B={x|0<x<2},则()A.A⊆B B.B⊆A C.A∪B=R D.A∩B=∅20.已知集合A={x|≥1},B={x|﹣2<x<1},则A∩(∁R B)=()A.(﹣2,2)B.[﹣1,1]C.(﹣∞,﹣2]∪[2,+∞)D.(﹣∞,﹣1)∪(1,+∞)21.设i是虚数单位,复数,则在复平面内z所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限22.设复数z=1﹣i,则=()A.B.C.D.23.已知i为虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限24.若复数z满足z•(2+3i)=3﹣2i,其中i为虚数单位,则|z|=()A.0B.﹣1C.D.1 25.复数的共轭复数是()A.i+2B.i﹣2C.﹣i﹣2D.2﹣i26.若复数z=2﹣i,则i•z的虚部是()A.2i B.i C.2D.127.若复数z=i(i﹣1),则|z﹣1|=()A.﹣2﹣i B.﹣i C.D.528.已知复数z满足z=(2+i)(1+3i)(i为虚数单位),则复数z的共轭复数的虚部为()A.﹣7i B.7i C.﹣7D.﹣129.已知a,b∈R,i为虚数单位,若,则|a+bi|=()A.3B.5C.9D.230.已知a,b∈R,a+i与3+bi互为共轭复数,则|a﹣bi|=()A.2B.3C.D.431.复数(2﹣3i)i的实部为()A.﹣2B.2C.﹣3D.332.设复数z在复平面内对应的点为(2,5),则1+z在复平面内对应的点为()A.(3,﹣5)B.(3,5)C.(﹣3,﹣5)D.(﹣3,5)33.已知复数(为虚数单位),则|z|=()A.2B.C.D.34.若复数z满足,则复数z的虚部为()A.B.C.D.35.复平面内表示复数的点位于()A.第一象限B.第二象限C.第三象限D.第四象限36.已知z+i=zi,则|z|=()A.B.0C.D.137.已知,i为虚数单位,则z=()A.﹣2+i B.2﹣i C.2+i D.﹣2﹣i38.已知复数,则=()A.B.C.D.39.若(z+1)i=z,则z2+i=()A.B.C.D.40.已知复数z满足(1﹣i)(z+4i)=2i,则z的虚部为()A.﹣3B.﹣3i C.﹣1D.﹣i集合,复数---高考题型参考答案与试题解析一.选择题(共40小题)1.已知集合M={x||x﹣1|≥2},N={﹣1,0,1,2,3},则(∁R M)∩N=()A.{0,1,2}B.{1,2}C.{﹣1,0,1,2}D.{2,3}【解答】解:集合M={x||x﹣1|≥2}={x|x≥3或x≤﹣1},则∁R M={x|﹣1<x<3},又N={﹣1,0,1,2,3},则(∁R M)∩N={0,1,2}.故选:A.2.已知集合U={0,1,2,3},S={0,3},T={2},则∁U(S∪T)=()A.{1}B.{0,2}C.{1,2,3}D.{0,1,2,3}【解答】解:U={0,1,2,3},S={0,3},T={2},根据集合补集的概念和运算得:S∪T={0,2,3},∁U(S∪T)={1}.故选:A.3.设集合A={x|x<2},,则(∁U A)∩B=()A.(1,2)B.[1,2]C.[2,3)D.[2,3]【解答】解:集合A={x|x<2},={x|1≤x<3},∴∁U A={x|x≥2},(∁U A)∩B={x|2≤x<3}.故选:C.4.设集合M={2m﹣1,m﹣3},若﹣3∈M,则实数m=()A.0B.﹣1C.0或﹣1D.0或1【解答】解:设集合M={2m﹣1,m﹣3},∵﹣3∈M,∴2m﹣1=﹣3或m﹣3=﹣3,当2m﹣1=﹣3时,m=﹣1,此时M={﹣3,﹣4};当m﹣3=﹣3时,m=0,此时M={﹣3,﹣1};所以m=﹣1或0.故选:C.5.已知集合M={x|x2+x﹣6<0},集合,则M∪N=()A.{x|﹣3<x<1}B.{x|﹣4<x<1}C.{x|﹣4<x<2}D.{x|﹣3<x<2}【解答】解:集合M={x|x2+x﹣6<0}={x|﹣3<x<2},集合={x|﹣4<x<1},则M∪N={x|﹣4<x<2}.故选:C.6.设全集U={﹣3,﹣2,﹣1,0,1,2,3},集合A={﹣3,﹣2,2,3},B={﹣3,0,1,2},则(∁U A)∩B=()A.∅B.{1}C.{0,1}D.{0,1,2}【解答】解:∵U={﹣3,﹣2,﹣1,0,1,2,3},A={﹣3,﹣2,2,3},B={﹣3,0,1,2},∴∁U A={﹣1,0,1},(∁U A)∩B={0,1}.故选:C.7.已知集合A={x|﹣1≤2x﹣1≤3},B={x|x2﹣3x<0},则A∪B=()A.(0,2]B.[0,2]C.[0,3)D.[0,3]【解答】解:因为A={x|﹣1≤2x﹣1≤3}={x|0≤x≤2}=[0,2],B={x|x2﹣3x<0}={x|0<x<3}=(0,3),所以A∪B=[0,2]∪(0,3)=[0,3).故选:C.8.设集合A={x|0<x≤1},B={x|x2﹣2x≤0},则A∩B=()A.[0,+∞)B.[0,1]C.(0,1]D.[0,1)【解答】解:x2﹣2x≤0,x(x﹣2)≤0,∴0≤x≤2,B=[0,2],又A=(0,1],则A∩B=(0,1].故选:C.9.已知集合A={x|x2≤4},集合B={x|x>0},则A∪B=()A.(﹣∞,﹣2]B.[﹣2,0)C.[﹣2,+∞)D.(0,2]【解答】解:由题意A={x|x2≤4}={x|﹣2≤x≤2},B={x|x>0},所以A∪B={x|﹣2≤x≤2}∪{x|x>0}={x|x≥﹣2}=[﹣2,+∞).故选:C.A.﹣2B.﹣1C.D.【解答】解:由题意可得集合A={x|﹣<x<},因为a∈A,所以﹣<a<,故选项B正确,ACD错误.故选:B.11.设集合A={x|1<2x<8},B={x||x+1|≥3},则A∩B=()A.(0,2]B.[2,3)C.(2,3]D.(0,3)【解答】解:因为1<2x<8⇒20<2x<23,所以0<x<3,即A=(0,3),且|x+1|≥3⇒x+1≥3或x+1≤﹣3,所以x≥2或x≤﹣4,即B=(﹣∞,﹣4]∪[2,+∞),所以A∩B=[2,3).故选:B.12.已知集合,N={x||x﹣1|≤2},则M∩N=()A.[﹣1,3]B.[1,2]C.[﹣1,2)D.(2,3]【解答】解:∵,N={x|﹣1≤x≤3},∴M∩N=(2,3].故选:D.13.若集合A={x|2x2+3x﹣9≤0},B={x|2x>﹣3,x∈Z},则A∩B=()A.{﹣3,﹣2,﹣1,0,1}B.{﹣2,﹣1,0}C.{﹣1,0,1}D.{﹣2,﹣1,0,1}【解答】解:由2x2+3x﹣9≤0解得,所以,因为B={x|2x>﹣3,x∈Z},所以,所以A∩B={﹣1,0,1},故选:C.A.3B.4C.8D.16【解答】解:∵集合A={x|x∈Z|x2﹣2x﹣3<0}={x∈Z|﹣1<x<3}={0,1,2},∴集合A的子集个数为23=8.故选:C.15.若集合M={x|x2﹣3x﹣4≤0},N={x|﹣2≤x≤2},则M∪N=()A.[﹣1,2]B.[﹣1,4]C.[﹣2,2]D.[﹣2,4]【解答】解:∵M={x|﹣1≤x≤4},N={x|﹣2≤x≤2},∴M∪N=[﹣2,4].故选:D.16.已知集合A={x∈Z|x2﹣2x﹣3<0},B={﹣2,﹣1,0,1},则A∪B=()A.{﹣2,﹣1}B.{﹣2,﹣1,0,1,2} C.{﹣2,﹣1,0}D.{0,1}【解答】解:∵B={﹣2,﹣1,0,1},集合A={x∈Z|x2﹣2x﹣3<0}={0,1,2},∴A∪B={﹣2,﹣1,0,1,2}.故选:B.17.已知集合,B={x||x﹣1|<2},则A∩B=()A.[2,3]B.[2,3)C.(2,3)D.(2,3]【解答】解:∵,B={x|﹣1<x<3},∴A∩B=(2,3).故选:C.18.已知集合A={x|﹣5<x<2},B={x||x|<3},则A∪B=()A.(﹣∞,2)B.(﹣∞,3)C.(﹣3,2)D.(﹣5,3)【解答】解:∵A={x|﹣5<x<2},B={x|﹣3<x<3},∴A∪B=(﹣5,3).故选:D.19.已知集合A={x|﹣2≤x≤2},B={x|0<x<2},则()A.A⊆B B.B⊆A C.A∪B=R D.A∩B=∅【解答】解:∵集合A={x|﹣2≤x≤2},B={x|0<x<2},∴B⊆A,A∪B=A,A∩B=B,因此选项B正确,选项A,C,D错误;故选:B.20.已知集合A={x|≥1},B={x|﹣2<x<1},则A∩(∁R B)=()A.(﹣2,2)B.[﹣1,1]C.(﹣∞,﹣2]∪[2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:A={x|≥1}={x|x<﹣1或x≥2},B={x|﹣2<x<1},则∁R B={x|x≥1或x≤﹣2},故A∩(∁R B)=(﹣∞,﹣2]∪[2,+∞).故选:C.21.设i是虚数单位,复数,则在复平面内z所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:=,故在复平面内z所对应的点(﹣1,1)在第二象限.故选:B.22.设复数z=1﹣i,则=()A.B.C.D.【解答】解:由题意,,故.故选:B.23.已知i为虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:因为,所以,复数在复平面内对应的点的坐标为,位于第二象限.故选:B.24.若复数z满足z•(2+3i)=3﹣2i,其中i为虚数单位,则|z|=()A.0B.﹣1C.D.1【解答】解:z•(2+3i)=3﹣2i,则z=,故|z|==.故选:D.25.复数的共轭复数是()A.i+2B.i﹣2C.﹣i﹣2D.2﹣i【解答】解:∵复数==﹣2﹣i,∴共轭复数是﹣2+i故选:B.26.若复数z=2﹣i,则i•z的虚部是()A.2i B.i C.2D.1【解答】解:z=2﹣i,则iz=i(2﹣i)=1+2i,其虚部为2.故选:C.27.若复数z=i(i﹣1),则|z﹣1|=()A.﹣2﹣i B.﹣i C.D.5【解答】解:z=i(i﹣1)=﹣1﹣i,则z﹣1=﹣2﹣i,故|z﹣1|=|2﹣i|=.故选:C.28.已知复数z满足z=(2+i)(1+3i)(i为虚数单位),则复数z的共轭复数的虚部为()A.﹣7i B.7i C.﹣7D.﹣1【解答】解:因为z=(2+i)(1+3i)=﹣1+7i,所以,所以复数z的共轭复数的虚部为﹣7.故选:C.29.已知a,b∈R,i为虚数单位,若,则|a+bi|=()A.3B.5C.9D.2【解答】解:若,则a+bi=(2+i)(1﹣2i)=4﹣3i,故|a+bi|==5.故选:B.30.已知a,b∈R,a+i与3+bi互为共轭复数,则|a﹣bi|=()A.2B.3C.D.4【解答】解:∵a+i与3+bi互为共轭复数,∴a=3,b=﹣1,∴|a﹣bi|=|3+i|==.故选:C.31.复数(2﹣3i)i的实部为()A.﹣2B.2C.﹣3D.3【解答】解:(2﹣3i)i=3+2i,其实部为3.故选:D.32.设复数z在复平面内对应的点为(2,5),则1+z在复平面内对应的点为()A.(3,﹣5)B.(3,5)C.(﹣3,﹣5)D.(﹣3,5)【解答】解:复数z在复平面内对应的点为(2,5),则z=2+5i,故1+z=1+2+5i=3+5i,其在复平面内对应的点为(3,5).故选:B.33.已知复数(为虚数单位),则|z|=()A.2B.C.D.【解答】解:,则=.故选:D.34.若复数z满足,则复数z的虚部为()A.B.C.D.【解答】解:设z=a+bi(a,b∈R),则,∵,∴a﹣bi﹣3i=a+bi,即﹣b﹣3=b,解得b=.故选:B.35.复平面内表示复数的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:=﹣1﹣i,则z在复平面对应的点(﹣1,﹣1)位于第三象限.故选:C.36.已知z+i=zi,则|z|=()A.B.0C.D.1【解答】解:z+i=zi,则z(1﹣i)=﹣i,故z=,所以|z|=.故选:A.37.已知,i为虚数单位,则z=()A.﹣2+i B.2﹣i C.2+i D.﹣2﹣i 【解答】解:,则z=(1﹣2i)i=2+i.故选:C.38.已知复数,则=()A.B.C.D.【解答】解:==,则.故选:D.39.若(z+1)i=z,则z2+i=()A.B.C.D.【解答】解:由(z+1)i=z得:(1﹣i)z=i,即,所以.故选:D.40.已知复数z满足(1﹣i)(z+4i)=2i,则z的虚部为()A.﹣3B.﹣3i C.﹣1D.﹣i【解答】解:因为,所以z的虚部为﹣3.故选:A.。
高考数学压轴专题最新备战高考《复数》难题汇编及答案解析
分析:直接利用复数代数形式的乘除运算化简复数,然后求 的共轭复数,即可得到 在复平面内对应的点所在的象限.
详解:由题意,
则 的共轭复数 对应的点在第二象限.
故选B.
点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
故 ,
故 ,解得 .
所以 .
故选:C.
【点睛】
本题考查复数的运算,共轭复数的求解,属综合基础题.
15.若复数 ,且 ,则实数 的值等于()
A.1B.-1C. D.
【答案】A
【解析】
【分析】
由 可判定 为实数,利用复数代数形即可.
【详解】
,
所以 ,
A. B. C. D.
【答案】D
【解析】
【分析】
化简得到 ,再计算复数模得到答案.
【详解】
,∴ ,∴ ,∴ .
故选: .
【点睛】
本题考查了复数的运算,复数模,意在考查学生的计算能力.
14.已知复数z满足 ,则
A. B.
C. D.
【答案】C
【解析】
【分析】
设出复数 ,根据复数相等求得结果.
【详解】
设 ,则 ,
16.已知复数 ( 为虚数单位),则 的虚部为()
A.-1B.0C.1D.
【答案】C
【解析】
【分析】
利用复数的运算法则,和复数的定义即可得到答案.
【详解】
复数 ,所以复数 的虚部为1,故选C.
【点睛】
本题主要考查了复数的运算法则和复数的概念,其中解答中熟记复数的基本运算法则和复数的概念及分类是解答的关键,着重考查了推理与运算能力,属于基础题.
【详解】
设 ,则 ,
专题01集合逻辑复数2021年新高考数学培优题专题练(教师版)
专题01 基本初等函数姓名:__________________ 班级:______________ 得分:_________________一、选择题1.已知集合{}22A xx =-≤≤∣,{}lg(1)B x y x ==-∣.则A B =( )A .{}2xx ≥-∣ B .{}12xx <<∣ C .{}12xx <≤∣ D .{}2xx ≥∣ 【答案】C【解析】由题意得,{}{}lg(1)1B x y x x x ==-=>∣∣, 因为{}22A xx =-≤≤∣, 所以{}12AB x x =<≤∣,故选:C.2.已知集合{}40log 1A x x =<<,{}21x B x e -=≤,则A B =( )A .(),4-∞B .()1,4C .()1,2D .(]1,2【答案】A【解析】{}{}40log 1=14A x x x x =<<<<{}{}21=2x B x e x x -=≤≤,则A B =(),4-∞故选:A3.已知集合{}1381xM x =≤≤,(){}23log 421N x x x =-->,则()N M ⋃=R( )A .[]0,3B .()0,3C .()1,5-D .[]1,5-【答案】D【解析】由题意,集合{}{}1381|04xM x x x =≤≤=≤≤,又由()23log 421x x -->,即2450x x -->,解得1x <-或5x >,即集合{|1N x x =<-或5}x >,则{|15}N x x =-≤≤R所以()[]{|15}1,5N M x x ⋃=-≤≤=-R.4.某班有学告50人,解甲、乙两道数学题.已知解对甲题者有34人,解对乙题者有28人,两题均对者有20人.则至少解对一题者的人数是( ) A .8 B .22C .30D .42【答案】D【解析】如下图所示:至少解对一题的人数为:342020282042-++-=人,故选:D.5.对于任意两个正整数m ,n ,定义某种运算“⊕”如下:当m ,n 都为正偶数或正奇数时,m n m n ⊕=+;当m ,n 中一个为正偶数,另一个为正奇数时,m n mn ⊕=,则在此定义下,集合{}(,)|12,*,*M a b a b a b =⊕=∈∈N N 中的元素个数是( ).A .10个B .15个C .16个D .18个【答案】B【解析】根据定义知12a b ⊕=分两类进行考虑,,a b 一奇一偶,则12ab =,,a b N *∈,所以可能的取值为(1,12),(12,1),(3,4),(4,3), 共4个,,a b 同奇偶,则12a b +=,由,a b N *∈,所以可能的取值为(2,10),(10,2),(1,11),(11,1),3,9(),(9,3),(4,8),(8,4),(5,7),(7,5),(6,6),共11个,所以符合要求的共15个,故选B.6.高二一班共有学生50人,每名学生要从物理、化生物、历史、地理、政治这六门课程中选择三门课程进行学习.已知选择物理、化生物的学生各有至少20人,这三门课程都不选的有10人,这三门课程都选的有10人,在这三门课程中选择任意两门课程的都至少有13人,物理、化学只选一科的学生都至少6人,那么选择物理和化学这两门课程的学生人数至多( ) A .16 B .17 C .18 D .19【答案】C【解析】把学生50人看出一个集合U ,选择物理科的人数组成为集合A , 选择化的人数组成集合B ,选择生物颗的人数组成集合C , 要使选择物理和化学这两门课程的学生人数最多,除这三门课程都不选的有10人,这三门课程都选的有10人, 则其它个选择人数均为最少,即得到单选物理的最少6人, 单选化学的最少6人,单选化生物的最少3人, 单选物理、生物的最少3人,单选生物的最少4人, 以上人数最少42人,可作出如下图所示的韦恩图, 所以单选物理、化学的人数至多8人,所以至多选择选择物理和化学这两门课程的学生人数至多10818+=人. 故选:C.7.若()()()32z i a i a R =-+∈为纯虚数,则z =( )A .163i B .6i C .203i D .20【答案】C【解析】()()()32326z i a i a a i =-+=++- ∵()()()32z i a i a R =-+∈为纯虚数, ∴320a +=且60a -≠ 得23a =-,此时203z i =故选:C.8.设复数z 满足()332z i i +=,则复数z =( )A .2313i -+ B .2313i+ C .3213i+ D .3213i- 【答案】A【解析】由题意得:()()()3232i 322332i 32321313i i i i i z i i ---+--====++-, 所以2313iz -+=. 9.若复数z 满足()21213z i i -+=+(i 为虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】因为2|13|10(12)10(12)2412(12)(12)5i i i z i i i i +--+===-=---+-+--,所以该复数在复平面内对于的点位于第三象限,应选答案C .10.若341iz iz i+=+-(i 是虚数单位),则||z =( ) A .32 B .2C .52D .3【答案】C【解析】()3411i i z i +-=-,化简,得到322z i =-+,因此52z ==,故选C. 11.复数z 满足170z z z z ⋅++-=,则32z i +-的最大值为( )A B .C . D .【答案】D【解析】设复数z 在复平面上的对应点为(),Z x y ,由17z z z z ⋅++=可得22217x y x ++=即()22118x y ++=,所以点Z 的轨迹是以()1,0-为圆心,圆心到点()3,2-的距离为d ==,所以32z i +-的最大值为r d +=12.已知复数(,)z x yi x y R =+∈,且|2|z -=,则1y x+的最大值为( )A B C .2D .2【答案】C【解析】解:∵复数(,)z x yi x y R =+∈,且2z -== ∴()2223x y -+=.设圆的切线:1l y kx =-=化为2420k k --=,解得2k =±.∴1y x+的最大值为2+.13.“0,0a b >>”是“a b +≥”成立的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】由0,0a b >>一定能推出a b +≥,但是由a b +≥不一定能推出0,0a b >>,例如当0ab 时,显然a b +≥成立,但0,0a b >>不成立,故“0,0a b >>”是“a b +≥成立的充分非必要条件.14.命题:P x R ∀∈,211x +≥,则P ⌝是( ) A .x R ∀∈,211x +<B .x R ∀∈,211x +≥C .0x R ∃∈,2011x +<D .0x R ∃∈,2011x +≥【答案】C【解析】命题的否定是:0x R ∃∈,2011x +<,故选:C .15.设函数2()log f x x x m =+-,则“函数()f x 在1,42⎛⎫ ⎪⎝⎭上存在零点”是(1,6)m ∈的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】解:函数2()log f x x x m =+-在区间()0,∞+上单调递增,由函数()f x 在1,42⎛⎫ ⎪⎝⎭上存在零点,则11022f m ⎛⎫=--< ⎪⎝⎭,(4)60f m =->,解得162m -<<,故“函数()f x 在1,42⎛⎫⎪⎝⎭上存在零点”是“(1,6)m ∈”的必要不分条件. 16.下列有关命题的说法正确的是( )A .若命题p :0x R ∃∈,01x e <,则命题p ⌝:x R ∀∈,1x e ≥B .“sin 2x =”的一个必要不充分条件是“3x π=”C .若+=-a b a b ,则a b ⊥D .α,β是两个平面,m ,n 是两条直线,如果m n ⊥,m α⊥,βn//,那么αβ⊥ 【答案】A【解析】对于A ,命题p :0x R ∃∈,01x e <,则命题p ⌝:x R ∀∈,1x e ≥,A 正确;对于B ,当3x π=时, sin 2x =成立,所以“3x π=”是“sin 2x =”的充分条件,所以B 错误; 对于C ,a b >且两向量反向时 +=-a b a b 成立, a b ⊥不成立C 错误; 对于D ,若m n ⊥,m α⊥,βn//,则α,β的位置关系无法确定,故D 错误. 17.(多选题)下列命题中正确的是( ) A .()0,x ∃∈+∞,23x x >B .()0,1x ∃∈,23log log x x <C .()0,x ∀∈+∞,131log 2xx ⎛⎫> ⎪⎝⎭D .10,3x ⎛⎫∀∈ ⎪⎝⎭,131log 2xx ⎛⎫< ⎪⎝⎭【答案】BD【解析】对于A ,当0x >时,22133xx x ⎛⎫=< ⎪⎝⎭,23x x <恒成立,A 错误;对于B ,23log lg lg 3lg 31log lg 2lg lg 2x x x x =⨯=>,当01x <<时,2log 0x <,3log 0x <,23log log x x <,B 正确;对于C ,当12x =时,122x ⎛⎫= ⎪⎝⎭,12log 1x =,则121log 2xx ⎛⎫> ⎪⎝⎭,C 错误;对于D ,由对数函数与指数函数的单调性可知,当10,3x ⎛⎫∈ ⎪⎝⎭时,1311log 2xx ⎛⎫<< ⎪⎝⎭恒成立,D 正确.故选:BD.18.(多选题)对x ∀∈R ,[]x 表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是( ) A .,[]1x x x ∃∈+RB .,,[][][]x y x y x y ∀∈++RC .函数[]()y x x x =-∈R 的值域为[0,1)D .若t ∃∈R ,使得3451,2,3,,2nt t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则正整数n 的最大值是5【答案】BCD【解析】[]x 是整数, 若[]1x x ≥+,[]1x +是整数,∴[][]1x x ≥+,矛盾,∴A 错误;,x y ∀∈R ,[],[]x x y y ≤≤,∴[][]x y x y +≤+,∴[][][]x y x y +≤+,B 正确;由定义[]1x x x -<≤,∴0[]1x x ≤-<,∴函数()[]f x x x =-的值域是[0,1),C 正确;若t ∃∈R ,使得3451,2,3,,2n t t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则1t ≤<t <t ≤<t ≤<t <=若6n ≥,则不存在t 同时满足1t ≤<t ≤<只有5n ≤时,存在t ∈满足题意,故选:BCD .二、填空题19.今年由于猪肉涨价太多,更多市民选择购买鸡肉、鸭肉、鱼肉等其他肉类.某天在市场中随机抽取100名市民调查其购买肉类的情况,其中不买猪肉的有30位,买了肉的有90位,买了猪肉且买了其他肉的人共25位,以这100个样本估计这一天该市只买了猪肉且没买其他肉的人数与全市人数的比值为_______ 【答案】0.45【解析】由题意,随机抽取的100位市民中,只买了猪肉且没买其他肉的有100302545--=,由此估计该市只买了猪肉且没买其他肉的人数与全市人数的比值为450.45100=. 20.已知复数1z =,i 为虚数单位,则34z i -+的最小值为_________. 【答案】4【解析】解:复数z 满足1z =,i 为虚数单位, 复数z 表示:复平面上的点到(0,0)的距离为1的圆.34z i -+的几何意义是圆上的点与()34-,的距离,14= . 故答案为:4.三、解答题21.已知函数()()lg 3f x x =-的定义域为集合A ,又集合{}216B x x =≤,{}30C x x m =+<. (1)求A B ,()RA B ⋃;(2)若x C ∈是x A ∈的必要条件,求m 的取值范围.【解析】解:(1)由6030x x +≥⎧⎨-<⎩得{}63A x x =-≤<,{}44B x x =-≤≤{}43A B x x ⋂=-≤<,{}64A B x x ⋃=-≤≤,(){ 6RA B x x ⋃=<-或}4x >.(2)由30x m +<得,3mx <-∴3m C x x ⎧⎫=<-⎨⎬⎩⎭. ∵x C ∈是x A ∈的必要条件,∴A C ⊆ ∴33m-≥ 得9m ≤-.22.已知虚数z 满足4z z+是实数,且42z z ≤+≤(1)试求z 的模;(2)若22z i --取最小值m 时对应的复数z 记为0z ,试求 ①m 的值;②求200z 的值.【解析】(1)设,,,0z a bi a b R b =+∈≠, 则224444a bi z a bi a bi z a bi a b-+=++=++++, 整理得到2222444a b z a b i z a b a b ⎛⎫+=++- ⎪++⎝⎭, 因为4z z+是实数,故2240b b a b -=+, 但0b ≠,故224a b +=,即z 的模为2.(2)由(1)可得42z a z+=,故22a ≤≤即1a ≤≤ 又22z i --=它表示圆224a b +=上的点到点()2,2Q 的距离, 其最小值为2,当且仅当(),,,O P ab Q 共线时取最小值. 由2241a b a b a ⎧=⎪+=⎨⎪≤≤⎩可得a b ⎧=⎪⎨=⎪⎩ 故22z i --取最小值时0)z i =+,所以202020102102010200(1)2[(1)]22z i i i =⋅+=⋅+=⋅=-.故202002,2m z ==-.。
高考数学压轴专题(易错题)备战高考《复数》知识点总复习含答案
【高中数学】数学复习题《复数》知识点练习一、选择题1.设复数4273i z i -=-,则复数z 的虚部为( ) A .1729- B .1729 C .129- D .129【答案】C【解析】【分析】 根据复数运算法则求解1712929z i =-,即可得到其虚部. 【详解】 依题意,()()()()427342281214634217173737358582929i i i i i i z i i i i -+-+-+-=====---+ 故复数z 的虚部为129-故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握运算法则,准确计算,正确辨析虚部的概念.2.已知i 是虚数单位,44z 3i (1i)=-+,则z (= )A .10BC .5D 【答案】B【解析】【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】4244z 3i 3i 13i (1i)(2i)=-=-=--+Q ,z ∴== 故选B .【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( )A B C .2 D .3【解析】()11z i i i =-=+,故2z =,故选A.4.若复数z 满足232,z z i +=-其中i 为虚数单位,则z=A .1+2iB .1-2iC .12i -+D .12i --【答案】B 【解析】试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.5.a 为正实数,i 为虚数单位,2a i i+=,则a=( ) A .2B 3C 2D .1【答案】B【解析】【分析】【详解】 2||21230,3a i a a a a i+=+=∴=±>∴=Q ,选B.6.设i 是虚数单位,则()()3211i i -+等于( ) A .1i -B .1i -+C .1i +D .1i --【答案】B【解析】【分析】化简复数得到答案.【详解】 ()()3221(1)(1)2(1)1221i i i i i i i ii -----===-++ 故答案选B本题考查了复数的计算,意在考查学生的计算能力.7.复数21i z i+=-,i 是虚数单位,则下列结论正确的是A .z =B .z 的共轭复数为31+22iC .z 的实部与虚部之和为1D .z 在复平面内的对应点位于第一象限 【答案】D【解析】【分析】 利用复数的四则运算,求得1322z i =+,在根据复数的模,复数与共轭复数的概念等即可得到结论.【详解】 由题意()()()()22121313111122i i i i z i i i i i ++++====+--+-,则22z ==,z 的共轭复数为1322z i =-, 复数z 的实部与虚部之和为2,z 在复平面内对应点位于第一象限,故选D .【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为a bi -.8.(2018江西省景德镇联考)若复数2i 2a z -=在复平面内对应的点在直线0x y +=上,则z =( )A .2B C .1 D .【答案】B【解析】分析:化简复数z ,求出对应点坐标,代入直线方程,可求得a 的值,从而可得结果. 详解:因为复数2i 22a a z i -==-, 所以复数2i 2a z -=在复平面内对应的点的坐标为,12a ⎛⎫- ⎪⎝⎭,由复数2i 2a z -=在复平面内对应的点在直线0x y +=上, 可得10212a a z i -=⇒==-,,z ==,故选B.9.已知(,)a bi a b R +∈是11i i +-的共轭复数,则a b +=( ) A .1-B .12-C .12D .1 【答案】A【解析】【分析】 先利用复数的除法运算法则求出11i i+-的值,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b .【详解】 ()()21(1)21112i i i i i i ++===-+-i , ∴a +bi =﹣i ,∴a =0,b =﹣1,∴a +b =﹣1,故选:A .【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.10.在复平面内与复数21i z i =+所对应的点关于虚轴对称的点为A ,则A 对应的复数为( )A .1i --B .1i -C .1i +D .1i -+ 【答案】D【解析】【分析】根据复数的运算法则求出1z i =+,即可得到其对应点关于虚轴对称点的坐标,写出复数.【详解】 由题()()()2122211112i i i i z i i i i -+====+++-,在复平面对应的点为(1,1), 关于虚轴对称点为(-1,1),所以其对应的复数为1i -+.故选:D【点睛】此题考查复数的几何意义,关键在于根据复数的乘法除法运算准确求解,熟练掌握复数的几何意义.11.若复数z 满足2(12)1i z z +=+,则其共轭复数z 为( )A .1188i +B .1188i -+C .1188i --D .1188i - 【答案】B【解析】【分析】 计算得到18i z --=,再计算共轭复数得到答案. 【详解】 21111(12)1,,44888i i z z z z i i --+=+∴===-+-Q . 故选:B .【点睛】本题考查了复数的化简,共轭复数,意在考查学生的计算能力.12.设i 是虚数单位,则复数734i i ++在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】 因为734i i ++(7)(34)2525=1(34)(34)25i i i i i i +--==-+-, 所以所对应的点为(1,1)-,位于第四象限,选D.13.已知z C ∈,2z i z i ++-=,则z 对应的点Z 的轨迹为( )A .椭圆B .双曲线C .抛物线D .线段【答案】D【解析】【分析】由复数模的几何意义,结合三角不等式可得出点Z 的轨迹.【详解】 2z i z i ++-=的几何意义为复数z 对应的点Z 到点()0,1A -和点()0,1B 的距离之和为2,即ZA ZB AB +=,另一方面,由三角不等式得ZA ZB AB +≥.当且仅当点Z 在线段AB 上时,等号成立.因此,点Z 的轨迹为线段.故选:D.【点睛】本题考查复数模的几何意义,将问题转化为距离之和并结合三角不等式求解是解题的关键,考查分析问题和解决问题的能力,属于中等题.14.已知复数z 满足21zi z i +=-,则z =A .12i +B .12i -C .1i +D .1i - 【答案】C【解析】【分析】设出复数z ,根据复数相等求得结果.【详解】设(),z a bi a b R =+∈,则z a bi =-, 故()()()()22221zi z a bi i a bi b a a b i i +=++-=-++-=-,故2121b a a b -+=⎧⎨-=-⎩,解得11a b =⎧⎨=⎩. 所以1z i =+.故选:C .【点睛】本题考查复数的运算,共轭复数的求解,属综合基础题.15.在复平面内,复数21i z i =+ (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】分析:首先求得复数z ,然后求解其共轭复数即可. 详解:由复数的运算法则有:()()()()2121211112i i i i i z i i i i --====+++-, 则1z i =-,其对应的点()1,1-位于第四象限.本题选择D 选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.16.如果复数z 满足336z i z i ++-=,那么1z i ++的最小值是( )A .1B C .2 D 【答案】A【解析】 分析:先根据已知336z i z i ++-=找到复数z 对应的点Z 的轨迹,再利用数形结合求 1z i ++的最小值.详解:设复数z 对应的点Z(x,y),6=,它表示点Z 到A (0,-3)和B (0,3)的距离和为6,所以点Z 的轨迹为线段AB,因为1z i ++Z 到点C (-1,-1)的距离,所以当点Z 在点D(0,-1)时,它和点C (-1,-1)的距离最小,且这个最小距离为1. 故答案为:A点睛:(1)本题主要考查复数的几何意义,意在考查学生对这些知识的掌握水平和数形结合的思想方法.(2)z a bi ++表示复数z 对应的点到(-a,-b )的距离,类似这样的结论还有一些,大家要结合直角坐标理解它的几何意义,并做到能利用它解题.17.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( )A .1B .iC .1-D .i -【答案】A【解析】 ()12i z i +=22(1)112i i i z i i -⇒===++,所以z 的虚部是1,选A. 18.已知复数z 在复平面内对应点是()1,2-,i 为虚数单位,则21z z +=-( ) A .1i --B .1i +C .312i -D .312i + 【答案】D【解析】 21z z +=-323122i i i -=+- ,选D.19.已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z z =.则其中正确命题的个数为( )A .0个B .1个C .2个D .3个【答案】C【解析】【分析】 运用复数的模、共轭复数、虚数等知识对命题进行判断.【详解】对于①中复数1z 和2z 的模相等,例如1=1+z i ,2z ,则1z 和2z 是共轭复数是错误的;对于②1z 和2z 都是复数,若12+z z 是虚数,则其实部互为相反数,则1z 不是2z 的共轭复数,所以②是正确的;对于③复数z 是实数,令z a =,则z a =所以z z =,反之当z z =时,亦有复数z 是实数,故复数z 是实数的充要条件是z z =是正确的.综上正确命题的个数是2个.故选C【点睛】本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.20.已知复数z 满足()11z i i +=-,则z = ( )A .iB .1C .i -D .1-【答案】B【解析】 ()()1i 1i z +=-,则()()()21i 1i 2i 1i 1i 1i 2z ---====-++-i ,1z ∴=,故选B.。
高考数学压轴专题(易错题)备战高考《复数》技巧及练习题
【最新】数学《复数》专题解析一、选择题1.已知复数z 满足11212i i z+=+(i 为虚数单位),则z 的虚部为( ) A .4 B .4i C .4- D .4i -【答案】C 【解析】112i 11420i 34i 12i 5z ++-===-+ ,所以z 的虚部为4-,选C.2.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( )AB C .2 D .3【答案】A【解析】 ()11z i i i =-=+,故z = A.3.已知复数z 的模为2,则z i -的最大值为:( )A .1B .2CD .3【答案】D【解析】 因为z i -213z i ≤+-=+= ,所以最大值为3,选D.4.若z C ∈且342z i ++≤,则1z i --的最大和最小值分别为,M m ,则M m -的值等于( )A .3B .4C .5D .9【答案】B【解析】【分析】根据复数差的模的几何意义可得复数z 在复平面上对应的点的轨迹,再次利用复数差的模的几何意义得到,M m ,从而可得M m -的值.【详解】 因为342z i ++≤,故复数z 在复平面上对应的点P 到134z i =--对应的点A 的距离小于或等于2, 所以P 在以()3,4C --为圆心,半径为2的圆面内或圆上, 又1z i --表示P 到复数21z i =+对应的点B 的距离,故该距离的最大值为()()22231412412AB +=--+--+=+, 最小值为2412AB -=-,故4M m -=.故选:B.【点睛】本题考查复数中12z z -的几何意义,该几何意义为复平面上12,z z 对应的两点之间的距离,注意12z z +也有明确的几何意义(可把12z z +化成()12z z --),本题属于中档题.5.设i 是虚数单位,则()()3211i i -+等于( ) A .1i -B .1i -+C .1i +D .1i --【答案】B【解析】【分析】化简复数得到答案.【详解】 ()()3221(1)(1)2(1)1221i i i i i i i ii -----===-++ 故答案选B【点睛】本题考查了复数的计算,意在考查学生的计算能力.6.已知为虚数单位, m R ∈,复数()()22288z m m m m=-+++-,若z 为负实数,则m 的取值集合为( )A .{}0B .{}8C .()2,4-D .()4,2-【答案】B 【解析】由题设可得2280{280m m m m -=-++<,解之得8m =,应选答案B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A)
(B)2 (C)0 (D) 2
(2)(2014 理科)设集合 M={0,1,2},N=x | x2 3x 2≤0,则 M N =( )
A. {1}
B. {2}
C. {0,1}
D. {1,2}
试题分析
• 能力要求:知道集合的三种运算,常见的集合的表示方法,会解一
元二次方程和一元二次不等式,偶尔出现含绝对值的不等式,此题 目比较简单,考生只需把高考题中集合题一次都做完就有感觉,而 我的微课只对部分解不等式和解方程,含绝对值不等式的方法做一 个回顾,让大家心中有数,此5分必拿。
高考数学基础拿分训练(真题演练)• 课程编号133254传课 之数学讲堂媒体链接:
微信公众号:bianzhihuaeduFra bibliotek个人主页:
学校账号支付账号:3566776(欢迎积极批评指正)
集合高考题目分析
(1)(2014 文科)知集合 A=﹛-2,0,2﹜,B=﹛ x | x2 - x - 2 0 ﹜,则 AB
2
x
-
x-2
0
X
-2
X
1
(x-2)(x+1)=0 X=2或X=-1
x2 3x 2≤0
(x-2)(x-1)≤0 1≤x≤2
十字相乘法
小于取中间 大于取两边
复数分析
(2014 文科) 1 3i
1 i
(A)1 2i (B) 1 2i
(C)1-2i
(D) 1-2i
(2014 理科)设复数 z1 , z2 在复平面内的对应点关于虚轴对称, z1 2 i ,则 z1z2 ( )
A. - 5
B. 5
C. - 4+ i
D. - 4 - i
复数主要考察化简,定义,实部虚部, 模长,共轭复数这几块知识点。当然顺 便涉及到一些简单的代数式运算,最常 用的平方差公式等。