各类梁弯矩剪力计算汇总表

合集下载

各类梁弯矩剪力计算汇总表

各类梁弯矩剪力计算汇总表
览山4昴t车妤”上
12(26] + *)
学号截面简圏
截面积
A
戴面抵抗矩
W
回转半轻
W=^(RH3'bfi2)
Drl
序号戡面简图
A=Ki+
旳=
1
2
J;-H■yx
"十如十E屛e(e-历
x3-J)']
H
■粗BHUM"诂吹心讪牛心的厝疙豁
A
rfiH®+(Bib}ti
X■■-|-
'L日注l+6A十
(Bl-占M2円二

某一段梁上的外力情况
剪力图的特征
弯矩图的特征
无载荷11
水平直线
斜直线、^或
集中力1F
突变
r
F
转折\或\/或
Me
集中力偶’门、
突变]M e
无变化
q
均布载荷]]]][
斜直线
抛物线—或
零点
极值厂
表Байду номын сангаас
约束类型
位移边界条件
力边界条件
(约束端无集中载荷)
固定端y”
w0,0

简支端垢JT3
w0
M0
自由端=

M O'Fs0
注:力边界条件即剪力图、弯矩图在该约束处的特征。
蔽面积
常用截面几何与力学特征表
主轴的距离予
对主轴的情性矩鬣面抵抗幫
Lw
回转半程
■b
i =O.2t59ft
*=0.236A
A=-y (fr+t>i)h
(bi+2b)h
X1=
(b + 2t|)h

各类梁的弯矩剪力计算汇总表

各类梁的弯矩剪力计算汇总表

表1 简单载荷下基本梁的剪力图与弯矩图表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

2)三跨等跨梁的内力和挠度系数 表2-12注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

各类梁的弯矩剪力计算归纳表

各类梁的弯矩剪力计算归纳表

各类梁的弯矩剪力计算归纳表-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII表1 简单载荷下基本梁的剪力图与弯矩图2注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁32.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI w 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。

[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·mV B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。

[解] M1=0.080×11.76×62=33.87kN ·m 。

2)三跨等跨梁的内力和挠度系数 表2-12注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

各类梁的弯矩剪力计算汇总表

各类梁的弯矩剪力计算汇总表

表1 简单载荷下基本梁的剪力图与弯矩图梁的简图剪力Fs 图弯矩M 图1laFsF F l a F l al -+-F la l a )(-+M2l eMsF lM e +MeM +3laeMsF lM e +Me M lal -e M la +-4lqsF +-2ql 2qlM82ql +2l5lq asF +-la l qa 2)2(-lqa 22M2228)2(l a l qa -+la l qa 2)(2-la l a 2)2(-6lqsF +-30l q 60l qM3920l q +3)33(l-7aFlsF F+Fa-M8aleMsF+eM M9lqs F ql+M22ql -10lqsF 2l q +M620l q -注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁表2 各种载荷下剪力图与弯矩图的特征某一段梁上的外力情况 剪力图的特征弯矩图的特征无载荷水平直线斜直线或集中力 F突变 F 转折 或或集中力偶eM 无变化 突变e M均布载荷q斜直线抛物线 或零点极值表3 各种约束类型对应的边界条件约束类型 位移边界条件力边界条件(约束端无集中载荷)固定端0=w ,0=θ—简支端 0=w0=M 自由端—0=M ,0=S F注:力边界条件即剪力图、弯矩图在该约束处的特征。

3常用截面几何与力学特征表 表2-5。

4。

5。

6。

7。

8。

9注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰∙=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

各类梁的弯矩剪力计算汇总表

各类梁的弯矩剪力计算汇总表

表1 简单载荷下基本梁的剪力图与弯矩图表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。

[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。

各类梁的弯矩剪力计算汇总表

各类梁的弯矩剪力计算汇总表

表1 简单载荷下基本梁得剪力图与弯矩图2。

单跨梁得内力及变形表(表2-6~表2—10) (1)简支梁得反力、剪力、弯矩、挠度表2—6(2)悬臂梁得反力、剪力、弯矩与挠度表2-7(3)一端简支另一端固定梁得反力、剪力、弯矩与挠度表2-8(4)两端固定梁得反力、剪力、弯矩与挠度表2-9(5)外伸梁得反力、剪力、弯矩与挠度表2-103.等截面连续梁得内力及变形表(1)等跨连续梁得弯矩、剪力及挠度系数表(表2-11~表2—14)1)二跨等跨梁得内力与挠度系数表2-11注:1。

在均布荷载作用下:M=表中系数×ql2;V=表中系数×ql;。

2.在集中荷载作用下:M=表中系数×Fl;V=表中系数×F;。

[例1]已知二跨等跨梁l=5m,均布荷载q=11、76kN/m,每跨各有一集中荷载F=29、4kN,求中间支座得最大弯矩与剪力。

[解] M B支=(-0、125×11、76×52)+(-0、188×29、4×5)=(-36、75)+(-27、64)=-64、39kN·mVB左=(-0、625×11、76×5)+(-0、688×29、4)=(-36、75)+(-20、23)=-56、98kN[例2]已知三跨等跨梁l=6m,均布荷载q=11、76kN/m,求边跨最大跨中弯矩.[解]M1=0、080×11、76×62=33、87kN·m。

2)三跨等跨梁得内力与挠度系数表2—12注:1.在均布荷载作用下:M=表中系数×ql2;V=表中系数×ql;.2。

在集中荷载作用下:M=表中系数×Fl;V=表中系数×F;。

3)四跨等跨连续梁内力与挠度系数表2-13注:同三跨等跨连续梁。

4)五跨等跨连续梁内力与挠度系数表2-14注:同三跨等跨连续梁.(2)不等跨连续梁得内力系数(表2—15、表2—16)1)二不等跨梁得内力系数表2—15注:1。

各类梁的弯矩剪力计算汇总表

各类梁的弯矩剪力计算汇总表

表1简单载荷下基本梁的剪力图与弯矩图注:外伸梁=悬臂梁+端部作用集中力偶的简支梁2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6序次 图类荷载图示项目 反力剪力 育矩弯矩剪力挠度 反力荷载剪力 弯矩弯矩挠度V A =K Al V S = -_ F/JM 甸 _48EIA =-y-Ft Ji a =y-FV A =J?A i V H =-居 若时,在工=J 寺(a + 2fr}St t剪力反力荷载剪力 弯矩弯矩剪力挠度反力荷载剪力 ill 仙Hill弯矩 弯矩剪力aiaaa挠度荷载^miinnmrn^反力 剪力 剪力 挠度弯拒_ FH. I(a 2 + 2ab)W™^9EH V 3R A = K B = FiW YDU 二Ffl :Wmui=24El (3£1^4a i )V A =R A 5 V B =19F 厂乂曲_曲4应V B = -5*址冲_ 384則序次 图类 图 示 项目 汁算式6 反力荷载剪力 V A =K A ; V B = -F B弯矩剪力* b彳---------=r8 弯矩剪力荷载弯审剪力 荷载弯矩剪力弯矩 挠度反力対力____ i C|[[||[l挠度反力4J J,右」,口. 卜―二 1 t —k ___71」川川弯矩挠度反力 剪力弯矩剪力 弯矩 挠度M 吟=*~奸= <3l 2~2a 2)221V^R Ai V B - -J?当工"黠[(Rf郭汗)当工=(4 +务时7 —誓“勺舉R A -R h =^-2丄层 壬 d■.予V\=尺屮讨耳=-尺$M nai =^X (工亠E }(x>fr 时)(CB段)讹沪儿应亠疋)WriUi_384£/\ F F 丿图类 图 示项目计算式1U 11 反力2怡盼畔荷载弯矩 剪力荷載弯矩翦力剪力 v^= V B = - R E™Snnn皿I 」川|[|叫' 川11爪 ________....... xtitLO弯矩挠度反力 剪力 弯矩挠度—籍[S 冲呼…卩咗严式中:JC — a +R A . = Rg=V A =R A ; V B = -Ka-u(2)悬臂梁的反力、剪力、弯矩和挠度表2-7序次图类 项目荷载剪力弯矩 ■rTfTTrrT (nr[n?弯矩賊严一 F R ; Mg 二M B 二一科剪力 1111挠度荷载反力J?B - F剪力 V B =-R 3^^^YfiiTiiTr nTi弯矩-F {jr-fl); M^=M &= -Fb剪力~rrnnirm挠度序次 图类 图 示 项目 计 算 式荷载弯矩剪力rTTTT一 ^fTrfTTlTI反力剪力弯矩挠度 v B - _扯如人工遵7 (吃酹斗沪中M ?)(3)—端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8序次 图类 项目 荷载 弯矩剪力荷載弯矩剪力 荷載弯矩 剪力[IIILIfEMiHillll 1________________........反力剪力殍矩一挠度 反力剪力弯矩 挠度反力剪力弯矩挠度 尺厂佥F; K B=^FV B = -J?B当 J 7 = 0.447^ 时,-x'™ = 0.00932上J当 H =<L 时,3- y-u a = 7^7[ R A (3i 2x - x 3) 一 3FfeG + F (尤亠 G"]U JC J I(2・3卜3舊h R ^f(2 + 3f-^jM c = K A a ;蚯=-琴'[1 -亍)CL> 段;w K = ( J R^ (311^2: & z 3) = 3F (Z 2 " 2al + 2a.2) x+ F (x-a)3]图类 图 示计 算 式反力荷裁(L263£ -463 + J8/JJ?B= i - R 扎弯矩 剪力BS剪力 弯矩挠度 V A =fiA ; V B = -R B当1=01+些时.匾*«=氏』尙十計)muAC 段124£1〔4尺几(3“工-工节-(12沪+尿)工]3段;UJ K = 2AE1〔球尺人(3”工一疋‘)-tjbi (12A 1 1 bl )x(4)两端固定梁的反力、剪力、弯矩和挠度表2-9序快 图类项目反力 剪力弯矩弯矩 剪力挠度反力荷载剪力2弯矩弯矩^A~ J?A? ”厂 _ 阳Rf R B =V A =P A ; V B =图 示Mg 二百珂FP_t£l = ---------------------- ~™ 192Er荷載H1TriTin剪力□nn nnrm IIIIII橈度2al_ IF迄彳打#不評 +(3a + 6ji剪力HI [[[ 挠度叫H诙(宀知制(5)外伸梁的反力、剪力、弯矩和挠度表2-10序次图类图示1项且计算式1荷载f 五反力肌二“+亍)八R* -十艮C牛引f ------ 剪力Vc= -F; F-K B= J-F弯矩^rfTnTnTTrrrF^弯矩^A=-Fa剪力crnrirm川ill挠度W^3M(1+T)当x^a+0.5l时,UT湎h-0.伽轻書2 荷载L ____________ J反力/?A= R B~Fr f --------- : ----- 4_r剪力F-R A; v B=R B弯矩mi【川HTllHK弯矩M A- iVf B= - Fa剪力盯-™HUD挠度^=w^^(3 + 2f)当X =a +0H5!时、仙水-H-=VBAsAV力3 •等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11〜表2-14 ) 1) 二跨等跨梁的内力和挠度系数表2-11Fl 3Fl ; V =表中系数X F ; w =表中系数 一巳 100EI均布荷载q = 11.76kN/m ,每跨各有一集中荷载 F =29.4kN ,求中间支座的最大弯矩和剪力。

各类梁的弯矩剪力计算汇总表

各类梁的弯矩剪力计算汇总表

精品资料表1 简单载荷下基本梁的剪力图与弯矩图梁的简图剪力Fs 图弯矩M 图1laFsF F l a F l al -+-F la l a )(-+M2l eMsF lM e +MeM +3laeMsF lM e +Me M lal -e M la +-4lqsF +-2ql 2qlM82ql +2l5lqasF +-la l qa 2)2(-lqa 22M2228)2(l a l qa -+la l qa 2)(2-la l a 2)2(-6lqsF +-30l q 60l qM3920l q +3)33(l-7aFlsF F+Fa-M精品资料8aleMsF+eM M9lqs F ql+M22ql -10lqsF 2l q +M620l q -注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁表2 各种载荷下剪力图与弯矩图的特征某一段梁上的外力情况 剪力图的特征弯矩图的特征无载荷水平直线斜直线或集中力 F突变 F 转折或或集中力偶eM 无变化 突变e M均布载荷q斜直线抛物线或零点极值表3 各种约束类型对应的边界条件约束类型位移边界条件力边界条件精品资料(约束端无集中载荷)固定端0=w ,0=θ —简支端0=w0=M 自由端—0=M ,0=S F注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5精品资料精品资料精品资料精品资料精品资料精品资料精品资料______________________________________________________________________________________________________________精品资料注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰∙=A dA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:max y IW =3.i 称截面回转半径(mm ),其基本计算公式如下:AI i = 4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

各类梁弯矩剪力计算汇总表

各类梁弯矩剪力计算汇总表

表1 简单载荷下基本梁的剪力图与弯矩图1d注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件2d注:力边界条件即剪力图、弯矩图在该约束处的特征。

3d常用截面几何与力学特征表表2-54d5d6d7d8d9d10d注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。

[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。

各类梁的弯矩剪力计算汇总表

各类梁的弯矩剪力计算汇总表

在此输入你的公司名称LOGO各类梁的弯矩剪力计算汇总表表1 简单载荷下基本梁的剪力图与弯矩图注:外伸梁= 悬臂梁+ 端部作用集中力偶的简支梁表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰∙=A dA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:max y IW =3.i 称截面回转半径(mm ),其基本计算公式如下:AI i = 4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI w 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。

[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·mV B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。

各类梁弯矩剪力计算汇总表

各类梁弯矩剪力计算汇总表

表1 简单载荷下基本梁的剪力图与弯矩图注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =m ,每跨各有一集中荷载F =,求中间支座的最大弯矩和剪力。

[解] M B 支=(-××52)+(-××5)=(-)+()=-·m V B 左=(-××5)+(-×)=(-)+(-)=-[例2] 已知三跨等跨梁l =6m ,均布荷载q =m ,求边跨最大跨中弯矩。

各类梁的弯矩剪力计算汇总表

各类梁的弯矩剪力计算汇总表

表1 简单载荷下基本梁的剪力图与弯矩图表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。

[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。

各类梁弯矩剪力计算汇总表

各类梁弯矩剪力计算汇总表

各类梁弯矩剪力计算汇总表表1 简单载荷下基本梁的剪力图与弯矩图表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4 )。

基本计算公式如下:??=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =m ,每跨各有一集中荷载F =,求中间支座的最大弯矩和剪力。

[解] M B 支=(-××52)+(-××5)=(-)+()=-·m V B 左=(-××5)+(-×)=(-)+(-)=-[例2] 已知三跨等跨梁l =6m ,均布荷载q =m ,求边跨最大跨中弯矩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表1 简单载荷下基本梁的剪力图与弯矩图
表2 各种载荷下剪力图与弯矩图的特征
表3 各种约束类型对应的边界条件
注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5
注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=
A
dA y
I 2
2.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:max
y I W =
3.i 称截面回转半径(mm ),其基本计算公式如下:A
I
i =
4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10)
(1)简支梁的反力、剪力、弯矩、挠度表2-6
(2)悬臂梁的反力、剪力、弯矩和挠度表2-7
(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8
(4)两端固定梁的反力、剪力、弯矩和挠度表2-9
(5)外伸梁的反力、剪力、弯矩和挠度表2-10
3.等截面连续梁的内力及变形表
(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)
1)二跨等跨梁的内力和挠度系数表2-11
注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;
EI
w 100ql 表中系数4⨯
=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EI
w 100Fl 表中系数3
⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =m ,每跨各有一集中荷载F =,求中间支座的最大弯矩和剪力。

[解] M B 支=(-××52)+(-××5)
=(-)+()=-·m V B 左=(-××5)+(-×)
=(-)+(-)=-
[例2] 已知三跨等跨梁l =6m ,均布荷载q =m ,求边跨最大跨中弯矩。

[解] M1=××62=·m 。

2)三跨等跨梁的内力和挠度系数 表2-12
注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI
w 100ql 表中系数4
⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EI
w 100Fl 表中系数3
⨯=。

3)四跨等跨连续梁内力和挠度系数 表2-13
注:同三跨等跨连续梁。

4)五跨等跨连续梁内力和挠度系数表2-14
注:同三跨等跨连续梁。

(2)不等跨连续梁的内力系数(表2-15、表2-16)
1)二不等跨梁的内力系数表2-15
注:1.M=表中系数×ql21;V=表中系数×ql1;2.(M max)、(V max)表示它为相应跨内的最大内力。

2)三不等跨梁内力系数表2-16
注:1.M=表中系数×ql21;V=表中系数×ql1;2.(M max)、(V max)为荷载在最不利布置时的最大内力。

4.双向板在均布荷载作用下的内力及变形系数表(表2-17~表2-22) 符号说明如下:
刚度 )1(1223
υ-=Eh K
式中 E ——弹性模量;
h ——板厚; ν——泊松比;
ω、ωmax ——分别为板中心点的挠度和最大挠度;
M x ——为平行于l x 方向板中心点的弯矩; M y ——为平行于l y 方向板中心点的弯矩; M x 0——固定边中点沿l x 方向的弯矩; M y 0——固定边中点沿l y 方向的弯矩。

正负号的规定:
弯矩——使板的受荷面受压者为正; 挠度——变位方向与荷载方向相同者为正。

四边简支 表2-17
三边简支,一边固定 表2-18
两边简支,两边固定表2-19
一边简支,三边固定表2-20
四边固定表2-21
两边简支,两边固定表2-22
5.拱的内力计算表(表2-23)
各种荷载作用下双铰抛物线拱计算公式表2-23
注:表中的K为轴向力变形影响的修正系数。

(1)无拉杆双铰拱
1)在竖向荷载作用下的轴向力变形修正系数
式中I c——拱顶截面惯性矩;
A c——拱顶截面面积;
A——拱上任意点截面面积。

当为矩形等宽度实腹式变截面拱时,公式I=I c/cosθ所代表的截面惯性矩变化规律相当于下列的截面面积变化公式:
此时,上式中的n可表达成如下形式:
下表中列出了矩形等宽度实腹式变截面拱的n值。

f/l
n
2)在水平荷载作用下的轴向力变形修正系数,近似取
K=1
(2)带拉杆双铰拱
1)在竖向荷载作用下的轴向力变形修正系数
式中E——拱圈材料的弹性模量;
E1——拉杆材料的弹性模量;
A1——拉杆的截面积。

2)在水平荷载作用下的轴向力变形修正系数(略去拱圈轴向力变形影响)
式中f——为矢高;
l——为拱的跨度。

6.刚架内力计算表
内力的正负号规定如下:
V——向上者为正;
H——向内者为正;
M——刚架中虚线的一面受拉为正。

(1)“┌┐”形刚架内力计算(表2-24、表2-25)
“┌┐”形刚架内力计算表(一)表2-34
“┌┐”形刚架内力计算表(二)表2-35
(2)“”形刚架的内力计算(表2-26)“”形刚架的内力计算表表2-26。

相关文档
最新文档