Distributed weighted-multidimensional scaling for node localization in sensor networks
脑网络一些基本概念
节点度(degree)、度分布(degree distribution). 度是对节点互相连接统计特性最重要的描述, 也反映重要的网络演化特性. 度k 定义为与节点直接相连的边数. 节点的度越大则该节点的连接就越多, 节点在网络中的地位也就越重要. 度分布P(k)是网络最基本的一个拓扑性质, 它表示在网络中等概率随机选取的节点度值正好为k 的概率, 实际分析中一般用网络中度值为k 的节点占总节点数的比例近似表示. 拥有不同度分布形式的网络在面对网络攻击时会表现出截然不同的网络行为.集群系数(clustering coefficient).或称聚类系数.集群系数衡量的是网络的集团化程度, 是度量网络的另一个重要参数, 表示某一节点i 的邻居间互为邻居的可能. 节点i 的集群系数C i 的值等于该节点邻居间实际连接的边的数目(e i)与可能的最大连接边数(k i(k i–1)/2)的比值(图1(a)), 即网络中所有节点集群系数的平均值为网络的集群系数, 即易知0≤C≤1. 由于集群系数只考虑了邻居节点间的直接连接, 后来有人提出局部效率(local efficiency) E loc 的概念. 任意节点i 的局部效率为其中, G i 指节点i 的邻居所构成的子图, l jk 表示节点j,k 之间的最短路径长度(即边数最少的一条通路). 网络的局部效率为所有节点的局部效率的平均, 即集群系数和局部效率度量了网络的局部信息传输能力, 也在一定程度上反映了网络防御随机攻击的能力.最短路径长度(shortest path length).最短路径对网络的信息传输起着重要的作用, 是描述网络内部结构非常重要的一个参数. 最短路径刻画了网络中某一节点的信息到达另一节点的最优路径,通过最短路径可以更快地传输信息, 从而节省系统资源. 两个节点i,j 之间边数最少的一条通路称为此两点之间的最短路径, 该通路所经过的边的数目即为节点i,j 之间的最短路径长度, l ij (图1(b)). 网络最短路径长度L 描述了网络中任意两个节点间的最短路径长度的平均值.通常最短路径长度要在某一个连通图中进行运算, 因为如果网络中存在不连通的节点会导致这两个节点间的最短路径长度值为无穷. 因此有人提出了全局效率(global efficiency)E glob的概念.最短路径长度和全局效率度量了网络的全局传输能力. 最短路径长度越短, 网络全局效率越高, 则网络节点间传递信息的速率就越快.中心度(centrality). 中心度是一个用来刻画网络中节点作用和地位的统计指标, 中心度最大的节点被认为是网络中的核心节点(hub). 最常用的度中心度(degree centrality)以节点度刻画其在网络中的中心程度, 而介数中心度(betweenness centrality)则从信息流的角度出发定义节点的中心程度. 对于网络G 中的任意一点i, 其介数中心度的计算公式如下:其中σjk 是从节点j 到节点k 的所有最短路径的数量,σjk(i)是这些最短路径中通过节点i 的数量.“小世界”网络. 研究表明, 规则网络具有较高的集群系数和较长的最短路径长度, 与此相反,随机网络拥有较低的集群系数和较短的最短路径长度. 兼具高集群系数和最短路径长度的网络称为“小世界”网络. 将随机网络作为基准,如果所研究网络相对于随机网络具有较大的集群系数和近似的最短路径长度, 即γ = C real/C random>> 1, λ= L real/L random ~ 1 (其中脚标random 表示随机网络,real 表示真实网络), 则该网络属于“小世界”网络范畴.σ =γ /λ来衡量“小世界”特性, 当σ>1 时网络具有“小世界”属性, 且σ越大网络的“小世界”属性越强.概念:小世界网络( small-world network)无标度网络( scale-free network)随机网络( random network)规则网络( regular network)无向网络( undirected network)加权网络( weighted network)图论( Graph theory)邻接矩阵( adjacency matrix)结构性脑网络( structural brain networks 或anatomical brain networks) 功能性脑网络( functional brain networks)因效性脑网络( effective brain networks)感兴趣脑区( region of interest,ROI)血氧水平依赖( BOLD,blood oxygenation level depended)体素( voxel)自发低频震荡( spontaneous low-frequency fluctuations,LFF)默认功能网络( default mode network,DMN)大范围皮层网络( Large-scale cortical network)效应连接(effective connectivity)网络分析工具箱(Graph Analysis Toolbox,GAT)自动解剖模板(automatic anatomical template,AAL)技术:脑电图(electroencephalogram, EEG)脑磁图(magnetoencephalogram, MEG)功能磁共振成像(Functional magnetic resonance imaging, fMRI)弥散张量成像(Diffusion Tensor Imaging, DTI)弥散谱成像( diffusion spectrum imaging ,DSI)细胞结构量化映射( quantitative cytoarchitecture mapping)正电子发射断层扫描(PET, positron emisson tomography)精神疾病:老年痴呆症( Alzheimer’ s disease,AD)癫痫( epilepsy)精神分裂症( Schizophrenia)抑郁症( major depression)单侧注意缺失( Unilateral Neglect)轻度认知障碍(mild cognitive impairment, MCI)正常对照组(normal control, NC)指标:边( link,edge)节点(vertex 或node)节点度(degree)区域核心节点(provincial hub)度分布(degree distribution)节点强度( node strength)最短路径长度(shortest path length)特征路径长度( characteristic path length)聚类系数( clustering coefficient)中心度(centrality)度中心度(degree centrality)介数中心度( betweenness centrality)连接中枢点( connector hub)局部效率(local efficiency)全局效率( global efficiency)相位同步( phase synchronization)连接密度(connection density/cost)方法:互相关分析( cross-correlation analysis)因果关系分析( Causality analysis)直接传递函数分析( Directed Transfer Function,DTF)部分定向相干分析( Partial Directed Coherence,PDC)多变量自回归建模( multivariate autoregressive model,MV AR) 独立成分分析( independent component analysis,ICA)同步似然性(synchronization likelihood, SL)结构方程建模(structural equation modeling, SEM)动态因果建模(dynamic causal modeling, DCM)心理生理交互作用模型(Psychophysiological interaction model) 非度量多维定标(non-metric multidimensional scaling)体素形态学(voxel-based morphometry, VBM)统计参数映射(statistical parametric mapping,SPM)皮尔逊相关系数(Pearson correlation)偏相关系数(Partial correlation)脑区:楔前叶( precuneus)后扣带回( posterior cingulated cortex,PCC)腹侧前扣带回( ventral anterior cingulated cortex,vACC)前额中分( medial prefrontal cortex,MPFC)额叶眼动区( the frontal eye field,FEF)副视区( the supplementary eye field,SEF)顶上小叶( the superior parietal lobule,SPL)顶内沟( the intraparietal sulcus,IPS)。
小快拍高分辨目标方位估计算法GMUSIC的性能分析
小快拍高分辨目标方位估计算法GMUSIC的性能分析郭拓;王英民【摘要】针对水下运动阵列在运动过程中进行方位估计时存在快拍不足的问题,研究了基于随机矩阵理论的MUSIC改进算法GMUSIC,该方法通过Stieltjes变换建立起统计协方差矩阵真实特征值、特征向量与样本协方差矩阵之间在逼近域中的关联,以修正样本协方差特征分解的结果,进而实现小快拍方位估计.仿真与试验表明:GMUSIC算法可以更好地分辨相邻目标,且需要的快拍数较MUSIC算法要少;在低信噪比情况下,GMUSIC算法方位估计均方根误差远小于MUSIC算法,估计成功概率远大于MUSIC算法.因此,GMUSIC算法适用于解决水声目标的小快拍方位估计问题.【期刊名称】《应用声学》【年(卷),期】2018(037)005【总页数】6页(P781-786)【关键词】方位估计;小快拍;阵列信号处理;高分辨【作者】郭拓;王英民【作者单位】陕西科技大学电气与信息工程学院西安 710021;西北工业大学航海学院西安 710072【正文语种】中文【中图分类】TB5661 引言通常情况下,不管是采用电磁波探测的雷达系统,还是采用声波探测的声呐系统,它们都具有目标测向与测距这两个基本功能。
目标测向也称为目标方位估计,它是阵列信号处理的主要研究内容之一。
基于阵列的目标方位估计技术经过几十年的发展,取得了长足的进步。
最早的方位估计方法常规波束形成(Conventional beamforming,CBF)[1]要追溯到二战时期,其思路很简单,就是设法选取一个适当的加权向量以补偿同一信号到达各个阵元上的传播时延,以使得某一个方向上的来波到达阵列各个阵元时是同相位的,然后对各阵元信号同相求和,进而在该方向上产生一个空间响应的极大值。
CBF的本质是时频域的离散傅里叶变换在空域上的应用,故其分辨能力受制于阵列瑞利(Rayleigh)限的限制,因此其方位分辨性能有限,迫切需要发展高分辨的方位估计方法。
AI专用词汇
AI专⽤词汇LetterAAccumulatederrorbackpropagation累积误差逆传播ActivationFunction激活函数AdaptiveResonanceTheory/ART⾃适应谐振理论Addictivemodel加性学习Adversari alNetworks对抗⽹络AffineLayer仿射层Affinitymatrix亲和矩阵Agent代理/智能体Algorithm算法Alpha-betapruningα-β剪枝Anomalydetection异常检测Approximation近似AreaUnderROCCurve/AUCRoc曲线下⾯积ArtificialGeneralIntelligence/AGI通⽤⼈⼯智能ArtificialIntelligence/AI⼈⼯智能Associationanalysis关联分析Attentionmechanism注意⼒机制Attributeconditionalindependenceassumption属性条件独⽴性假设Attributespace属性空间Attributevalue属性值Autoencoder⾃编码器Automaticspeechrecognition⾃动语⾳识别Automaticsummarization⾃动摘要Aver agegradient平均梯度Average-Pooling平均池化LetterBBackpropagationThroughTime通过时间的反向传播Backpropagation/BP反向传播Baselearner基学习器Baselearnin galgorithm基学习算法BatchNormalization/BN批量归⼀化Bayesdecisionrule贝叶斯判定准则BayesModelAveraging/BMA贝叶斯模型平均Bayesoptimalclassifier贝叶斯最优分类器Bayesiandecisiontheory贝叶斯决策论Bayesiannetwork贝叶斯⽹络Between-cla ssscattermatrix类间散度矩阵Bias偏置/偏差Bias-variancedecomposition偏差-⽅差分解Bias-VarianceDilemma偏差–⽅差困境Bi-directionalLong-ShortTermMemory/Bi-LSTM双向长短期记忆Binaryclassification⼆分类Binomialtest⼆项检验Bi-partition⼆分法Boltzmannmachine玻尔兹曼机Bootstrapsampling⾃助采样法/可重复采样/有放回采样Bootstrapping⾃助法Break-EventPoint/BEP平衡点LetterCCalibration校准Cascade-Correlation级联相关Categoricalattribute离散属性Class-conditionalprobability类条件概率Classificationandregressiontree/CART分类与回归树Classifier分类器Class-imbalance类别不平衡Closed-form闭式Cluster簇/类/集群Clusteranalysis聚类分析Clustering聚类Clusteringensemble聚类集成Co-adapting共适应Codin gmatrix编码矩阵COLT国际学习理论会议Committee-basedlearning基于委员会的学习Competiti velearning竞争型学习Componentlearner组件学习器Comprehensibility可解释性Comput ationCost计算成本ComputationalLinguistics计算语⾔学Computervision计算机视觉C onceptdrift概念漂移ConceptLearningSystem/CLS概念学习系统Conditionalentropy条件熵Conditionalmutualinformation条件互信息ConditionalProbabilityTable/CPT条件概率表Conditionalrandomfield/CRF条件随机场Conditionalrisk条件风险Confidence置信度Confusionmatrix混淆矩阵Connectionweight连接权Connectionism连结主义Consistency⼀致性/相合性Contingencytable列联表Continuousattribute连续属性Convergence收敛Conversationalagent会话智能体Convexquadraticprogramming凸⼆次规划Convexity凸性Convolutionalneuralnetwork/CNN卷积神经⽹络Co-oc currence同现Correlationcoefficient相关系数Cosinesimilarity余弦相似度Costcurve成本曲线CostFunction成本函数Costmatrix成本矩阵Cost-sensitive成本敏感Crosse ntropy交叉熵Crossvalidation交叉验证Crowdsourcing众包Curseofdimensionality维数灾难Cutpoint截断点Cuttingplanealgorithm割平⾯法LetterDDatamining数据挖掘Dataset数据集DecisionBoundary决策边界Decisionstump决策树桩Decisiontree决策树/判定树Deduction演绎DeepBeliefNetwork深度信念⽹络DeepConvolutionalGe nerativeAdversarialNetwork/DCGAN深度卷积⽣成对抗⽹络Deeplearning深度学习Deep neuralnetwork/DNN深度神经⽹络DeepQ-Learning深度Q学习DeepQ-Network深度Q⽹络Densityestimation密度估计Density-basedclustering密度聚类Differentiab leneuralcomputer可微分神经计算机Dimensionalityreductionalgorithm降维算法D irectededge有向边Disagreementmeasure不合度量Discriminativemodel判别模型Di scriminator判别器Distancemeasure距离度量Distancemetriclearning距离度量学习D istribution分布Divergence散度Diversitymeasure多样性度量/差异性度量Domainadaption领域⾃适应Downsampling下采样D-separation(Directedseparation)有向分离Dual problem对偶问题Dummynode哑结点DynamicFusion动态融合Dynamicprogramming动态规划LetterEEigenvaluedecomposition特征值分解Embedding嵌⼊Emotionalanalysis情绪分析Empiricalconditionalentropy经验条件熵Empiricalentropy经验熵Empiricalerror经验误差Empiricalrisk经验风险End-to-End端到端Energy-basedmodel基于能量的模型Ensemblelearning集成学习Ensemblepruning集成修剪ErrorCorrectingOu tputCodes/ECOC纠错输出码Errorrate错误率Error-ambiguitydecomposition误差-分歧分解Euclideandistance欧⽒距离Evolutionarycomputation演化计算Expectation-Maximization期望最⼤化Expectedloss期望损失ExplodingGradientProblem梯度爆炸问题Exponentiallossfunction指数损失函数ExtremeLearningMachine/ELM超限学习机LetterFFactorization因⼦分解Falsenegative假负类Falsepositive假正类False PositiveRate/FPR假正例率Featureengineering特征⼯程Featureselection特征选择Featurevector特征向量FeaturedLearning特征学习FeedforwardNeuralNetworks/FNN前馈神经⽹络Fine-tuning微调Flippingoutput翻转法Fluctuation震荡Forwards tagewisealgorithm前向分步算法Frequentist频率主义学派Full-rankmatrix满秩矩阵Func tionalneuron功能神经元LetterGGainratio增益率Gametheory博弈论Gaussianker nelfunction⾼斯核函数GaussianMixtureModel⾼斯混合模型GeneralProblemSolving通⽤问题求解Generalization泛化Generalizationerror泛化误差Generalizatione rrorbound泛化误差上界GeneralizedLagrangefunction⼴义拉格朗⽇函数Generalized linearmodel⼴义线性模型GeneralizedRayleighquotient⼴义瑞利商GenerativeAd versarialNetworks/GAN⽣成对抗⽹络GenerativeModel⽣成模型Generator⽣成器Genet icAlgorithm/GA遗传算法Gibbssampling吉布斯采样Giniindex基尼指数Globalminimum全局最⼩GlobalOptimization全局优化Gradientboosting梯度提升GradientDescent梯度下降Graphtheory图论Ground-truth真相/真实LetterHHardmargin硬间隔Hardvoting硬投票Harmonicmean调和平均Hessematrix海塞矩阵Hiddendynamicmodel隐动态模型H iddenlayer隐藏层HiddenMarkovModel/HMM隐马尔可夫模型Hierarchicalclustering层次聚类Hilbertspace希尔伯特空间Hingelossfunction合页损失函数Hold-out留出法Homo geneous同质Hybridcomputing混合计算Hyperparameter超参数Hypothesis假设Hypothe sistest假设验证LetterIICML国际机器学习会议Improvediterativescaling/IIS改进的迭代尺度法Incrementallearning增量学习Independentandidenticallydistributed/i.i.d.独⽴同分布IndependentComponentAnalysis/ICA独⽴成分分析Indicatorfunction指⽰函数Individuallearner个体学习器Induction归纳Inductivebias归纳偏好I nductivelearning归纳学习InductiveLogicProgramming/ILP归纳逻辑程序设计Infor mationentropy信息熵Informationgain信息增益Inputlayer输⼊层Insensitiveloss不敏感损失Inter-clustersimilarity簇间相似度InternationalConferencefor MachineLearning/ICML国际机器学习⼤会Intra-clustersimilarity簇内相似度Intrinsicvalue固有值IsometricMapping/Isomap等度量映射Isotonicregression等分回归It erativeDichotomiser迭代⼆分器LetterKKernelmethod核⽅法Kerneltrick核技巧K ernelizedLinearDiscriminantAnalysis/KLDA核线性判别分析K-foldcrossvalidationk折交叉验证/k倍交叉验证K-MeansClusteringK–均值聚类K-NearestNeighb oursAlgorithm/KNNK近邻算法Knowledgebase知识库KnowledgeRepresentation知识表征LetterLLabelspace标记空间Lagrangeduality拉格朗⽇对偶性Lagrangemultiplier拉格朗⽇乘⼦Laplacesmoothing拉普拉斯平滑Laplaciancorrection拉普拉斯修正Latent DirichletAllocation隐狄利克雷分布Latentsemanticanalysis潜在语义分析Latentvariable隐变量Lazylearning懒惰学习Learner学习器Learningbyanalogy类⽐学习Learn ingrate学习率LearningVectorQuantization/LVQ学习向量量化Leastsquaresre gressiontree最⼩⼆乘回归树Leave-One-Out/LOO留⼀法linearchainconditional randomfield线性链条件随机场LinearDiscriminantAnalysis/LDA线性判别分析Linearmodel线性模型LinearRegression线性回归Linkfunction联系函数LocalMarkovproperty局部马尔可夫性Localminimum局部最⼩Loglikelihood对数似然Logodds/logit对数⼏率Lo gisticRegressionLogistic回归Log-likelihood对数似然Log-linearregression对数线性回归Long-ShortTermMemory/LSTM长短期记忆Lossfunction损失函数LetterM Machinetranslation/MT机器翻译Macron-P宏查准率Macron-R宏查全率Majorityvoting绝对多数投票法Manifoldassumption流形假设Manifoldlearning流形学习Margintheory间隔理论Marginaldistribution边际分布Marginalindependence边际独⽴性Marginalization边际化MarkovChainMonteCarlo/MCMC马尔可夫链蒙特卡罗⽅法MarkovRandomField马尔可夫随机场Maximalclique最⼤团MaximumLikelihoodEstimation/MLE极⼤似然估计/极⼤似然法Maximummargin最⼤间隔Maximumweightedspanningtree最⼤带权⽣成树Max-P ooling最⼤池化Meansquarederror均⽅误差Meta-learner元学习器Metriclearning度量学习Micro-P微查准率Micro-R微查全率MinimalDescriptionLength/MDL最⼩描述长度Minim axgame极⼩极⼤博弈Misclassificationcost误分类成本Mixtureofexperts混合专家Momentum动量Moralgraph道德图/端正图Multi-classclassification多分类Multi-docum entsummarization多⽂档摘要Multi-layerfeedforwardneuralnetworks多层前馈神经⽹络MultilayerPerceptron/MLP多层感知器Multimodallearning多模态学习Multipl eDimensionalScaling多维缩放Multiplelinearregression多元线性回归Multi-re sponseLinearRegression/MLR多响应线性回归Mutualinformation互信息LetterN Naivebayes朴素贝叶斯NaiveBayesClassifier朴素贝叶斯分类器Namedentityrecognition命名实体识别Nashequilibrium纳什均衡Naturallanguagegeneration/NLG⾃然语⾔⽣成Naturallanguageprocessing⾃然语⾔处理Negativeclass负类Negativecorrelation负相关法NegativeLogLikelihood负对数似然NeighbourhoodComponentAnalysis/NCA近邻成分分析NeuralMachineTranslation神经机器翻译NeuralTuringMachine神经图灵机Newtonmethod⽜顿法NIPS国际神经信息处理系统会议NoFreeLunchTheorem /NFL没有免费的午餐定理Noise-contrastiveestimation噪⾳对⽐估计Nominalattribute列名属性Non-convexoptimization⾮凸优化Nonlinearmodel⾮线性模型Non-metricdistance⾮度量距离Non-negativematrixfactorization⾮负矩阵分解Non-ordinalattribute⽆序属性Non-SaturatingGame⾮饱和博弈Norm范数Normalization归⼀化Nuclearnorm核范数Numericalattribute数值属性LetterOObjectivefunction⽬标函数Obliquedecisiontree斜决策树Occam’srazor奥卡姆剃⼑Odds⼏率Off-Policy离策略Oneshotlearning⼀次性学习One-DependentEstimator/ODE独依赖估计On-Policy在策略Ordinalattribute有序属性Out-of-bagestimate包外估计Outputlayer输出层Outputsmearing输出调制法Overfitting过拟合/过配Oversampling过采样LetterPPairedt-test成对t检验Pairwise成对型PairwiseMarkovproperty成对马尔可夫性Parameter参数Parameterestimation参数估计Parametertuning调参Parsetree解析树ParticleSwarmOptimization/PSO粒⼦群优化算法Part-of-speechtagging词性标注Perceptron感知机Performanceme asure性能度量PlugandPlayGenerativeNetwork即插即⽤⽣成⽹络Pluralityvoting相对多数投票法Polaritydetection极性检测Polynomialkernelfunction多项式核函数Pooling池化Positiveclass正类Positivedefinitematrix正定矩阵Post-hoctest后续检验Post-pruning后剪枝potentialfunction势函数Precision查准率/准确率Prepruning预剪枝Principalcomponentanalysis/PCA主成分分析Principleofmultipleexplanations多释原则Prior先验ProbabilityGraphicalModel概率图模型ProximalGradientDescent/PGD近端梯度下降Pruning剪枝Pseudo-label伪标记LetterQQuantizedNeu ralNetwork量⼦化神经⽹络Quantumcomputer量⼦计算机QuantumComputing量⼦计算Quasi Newtonmethod拟⽜顿法LetterRRadialBasisFunction/RBF径向基函数RandomFo restAlgorithm随机森林算法Randomwalk随机漫步Recall查全率/召回率ReceiverOperatin gCharacteristic/ROC受试者⼯作特征RectifiedLinearUnit/ReLU线性修正单元Recurr entNeuralNetwork循环神经⽹络Recursiveneuralnetwork递归神经⽹络Referencemodel参考模型Regression回归Regularization正则化Reinforcementlearning/RL强化学习Representationlearning表征学习Representertheorem表⽰定理reproducingke rnelHilbertspace/RKHS再⽣核希尔伯特空间Re-sampling重采样法Rescaling再缩放Residu alMapping残差映射ResidualNetwork残差⽹络RestrictedBoltzmannMachine/RBM受限玻尔兹曼机RestrictedIsometryProperty/RIP限定等距性Re-weighting重赋权法Robu stness稳健性/鲁棒性Rootnode根结点RuleEngine规则引擎Rulelearning规则学习LetterS Saddlepoint鞍点Samplespace样本空间Sampling采样Scorefunction评分函数Self-Driving⾃动驾驶Self-OrganizingMap/SOM⾃组织映射Semi-naiveBayesclassifiers半朴素贝叶斯分类器Semi-SupervisedLearning半监督学习semi-SupervisedSupportVec torMachine半监督⽀持向量机Sentimentanalysis情感分析Separatinghyperplane分离超平⾯SigmoidfunctionSigmoid函数Similaritymeasure相似度度量Simulatedannealing模拟退⽕Simultaneouslocalizationandmapping同步定位与地图构建SingularV alueDecomposition奇异值分解Slackvariables松弛变量Smoothing平滑Softmargin软间隔Softmarginmaximization软间隔最⼤化Softvoting软投票Sparserepresentation稀疏表征Sparsity稀疏性Specialization特化SpectralClustering谱聚类SpeechRecognition语⾳识别Splittingvariable切分变量Squashingfunction挤压函数Stability-plasticitydilemma可塑性-稳定性困境Statisticallearning统计学习Statusfeaturefunction状态特征函Stochasticgradientdescent随机梯度下降Stratifiedsampling分层采样Structuralrisk结构风险Structuralriskminimization/SRM结构风险最⼩化S ubspace⼦空间Supervisedlearning监督学习/有导师学习supportvectorexpansion⽀持向量展式SupportVectorMachine/SVM⽀持向量机Surrogatloss替代损失Surrogatefunction替代函数Symboliclearning符号学习Symbolism符号主义Synset同义词集LetterTT-Di stributionStochasticNeighbourEmbedding/t-SNET–分布随机近邻嵌⼊Tensor张量TensorProcessingUnits/TPU张量处理单元Theleastsquaremethod最⼩⼆乘法Th reshold阈值Thresholdlogicunit阈值逻辑单元Threshold-moving阈值移动TimeStep时间步骤Tokenization标记化Trainingerror训练误差Traininginstance训练⽰例/训练例Tran sductivelearning直推学习Transferlearning迁移学习Treebank树库Tria-by-error试错法Truenegative真负类Truepositive真正类TruePositiveRate/TPR真正例率TuringMachine图灵机Twice-learning⼆次学习LetterUUnderfitting⽋拟合/⽋配Undersampling⽋采样Understandability可理解性Unequalcost⾮均等代价Unit-stepfunction单位阶跃函数Univariatedecisiontree单变量决策树Unsupervisedlearning⽆监督学习/⽆导师学习Unsupervisedlayer-wisetraining⽆监督逐层训练Upsampling上采样LetterVVanishingGradientProblem梯度消失问题Variationalinference变分推断VCTheoryVC维理论Versionspace版本空间Viterbialgorithm维特⽐算法VonNeumannarchitecture冯·诺伊曼架构LetterWWassersteinGAN/WGANWasserstein⽣成对抗⽹络Weaklearner弱学习器Weight权重Weightsharing权共享Weightedvoting加权投票法Within-classscattermatrix类内散度矩阵Wordembedding词嵌⼊Wordsensedisambiguation词义消歧LetterZZero-datalearning零数据学习Zero-shotlearning零次学习。
稀疏信号处理简介
2021/3/31
11
Fisher information
2021/3/31
12
1.2 MMSE是最优的?
Hewen Wei, Qun Wan, Shangfu Ye, Multidimensional scaling based passive emitter localization from range-difference measurements, IET Signal Processing, Volume 2, Issue 4, December 2008 Page(s):415 - 423
超分辨是一个欠定问题
在线测量 + 先验模型 稀疏
2021/3/31
20
1.5 机器学习:支持向量是稀疏的?
the training sample hyperplane that does the separation
-
2021/3/31
21
primal formulation of the problem
O
2021/3/31
17
BWE
2021/3/31
18
1GHz (S) + 1GHz (X) = 10GHz ?
L band 1 to 2 GHz
S band 2 to 4 GHz
C band 4 to 8 GHz
2021/3/31
X band 8 to 12 GHz
19
Ku band 12 to 18 GHz
数字信号专业英语翻译
电子与通信专业英语Digital Signal Processing (英文翻译)姓名:赵豪班级:信工 122学号:2012020217Digital Signal Processing1、IntroductionDigital signal processing (DSP) is concerned with the representation of th e signals by a sequence of numbers or symbols and the processing of these s ignals. Digital signal processing and analog signal processing are subfields of signal processing. DSP includes subfields like audio and speech signal proce ssing, sonar and radar signal processing, sensor array processing, spectral es timation, statistical signal processing, digital image processing, signal process ing for communications, biomedical signal processing, seismic data processin g, etc.Since the goal of DSP is usually to measure or filter continuous real-world analog signals, the first step is usually to convert the signal from an analog to a digital form, by using an analog to digital converter. Often, the required outp ut signal is another analog output signal, which requires a digital to analog co nverter. Even if this process is more complex than analog processing and has a discrete value range, the stability of digital signal processing thanks to error detection and correction and being less vulnerable to noise makes it advanta geous over analog signal processing for many, though not all, applications.DSP algorithms have long been run on standard computers, on specializ ed processors called digital signal processors (DSP)s, or on purpose-built har dware such as application-specific integrated circuit (ASICs). Today there areadditional technologies used for digital signal processing including more powe rful general purpose microprocessors, field-programmable gate arrays (FPGA s), digital signal controllers (mostly for industrial applications such as motor co ntrol), and stream processors, among others.In DSP, engineers usually study digital signals in one of the following do mains: time domain (one-dimensional signals), spatial domain (multidimensio nal signals), frequency domain, autocorrelation domain, and wavelet domains. They choose the domain in which to process a signal by making an informed guess (or by trying different possibilities) as to which domain best represents t he essential characteristics of the signal. A sequence of samples from a meas uring device produces a time or spatial domain representation, whereas a disc rete Fourier transform produces the frequency domain information that is the f requency spectrum. Autocorrelation is defined as the cross-correlation of the s ignal with itself over varying intervals of time or space.2、Signal SamplingWith the increasing use of computers the usage of and need for digital si gnal processing has increased. In order to use an analog signal on a compute r it must be digitized with an analog to digital converter (ADC). Sampling is us ually carried out in two stages, discretization and quantization. In the discretiz ation stage, the space of signals is partitioned into equivalence classes and q uantization is carried out by replace the signal with representative signal value s are approximated by values from a finite set.The Nyquist-Shannon sampling theorem states that a signal can be exact ly reconstructed from its samples if the samples if the sampling frequency is g reater than twice the highest frequency of the signal. In practice, the sampling frequency is often significantly more than twice the required bandwidth.A digital to analog converter (DAC) is used to convert the digital signal ba ck to analog signal.The use of a digital computer is a key ingredient in digital control systems .3、Time and Space DomainsThe most common processing approach in the time or space domain is e nhancement of the input signal through a method called filtering. Filtering gen erally consists of some transformation of a number of surrounding samples ar ound the current sample of the input or output signal. There are various ways to characterize filters, for example: A“linear” filter is a linear transformation of i nput samples; other filters are “non-linear.” Linear filters satisfy the superpositi on condition, i.e. if an input is a weighted linear combination of different signal s, the output is an equally weighted linear combination of the corresponding o utput signals.A “causal” filter uses only previous samples of the input or output signals; while a “non-causal” filter uses future input samples. A non-causal filter can u sually be changed into a causal filter by adding a delay to it.A“time-invariant” filter has constant properties over time; other filters suchas adaptive filters change in time.Some filters are “stable”, others are “unstable”. A stable filter produces an output that converges to a constant value with time, or remains bounded withi n a finite interval. An converges to a constant value with time, or remains bou nded within a finite interval. An unstable filter can produce an output that grow s without bounds, with bounded or even zero input.A“Finite Impulse Response” (FIR) filter uses only the input signal, while a n “Infinite Impulse Response” filter (IIR) uses both the input signal and previou s samples of the output signal. FIR filters are always stable, while IIR filters m ay be unstable.Most filters can be described in Z-domain (a superset of the frequency do main) by their transfer functions. A filter may also be described as a difference equation, a collection of zeroes and poles or, if it is an FIR filter, an impulse r esponse or step response. The output of an FIR filter to any given input may b e calculated by convolving the input signal with the impulse response. Filters c an also be represented by block diagrams which can then be used to derive a sample processing algorithm to implement the filter using hardware instruction s.4、Frequency DomainSignals are converted from time or space domain to the frequency domai n usually through the Fourier transform. The Fourier transform converts the si gnal information to a magnitude and phase component of each frequency. Often the Fourier transform is converted to the power spectrum, which is the mag nitude of each frequency component squared.The most common purpose for analysis of signals in the frequency domai n is analysis of signal properties. The engineer can study the spectrum to dete rmine which frequencies are present in the input signal and which are missing .Filtering, particularly in non real-time work can also be achieved by conve rting to the frequency domain, applying the filter and then converting back to t he time domain. This is a fast, O (nlogn) operation, and can give essentially a ny filter shape including excellent approximations to brickwall filters.There are some commonly used frequency domain transformations. For example, the cepstrum converts a signal to the frequency domain Fourier tran sform, takes the logarithm, then applies another Fourier transform. This emph asizes the frequency components with smaller magnitude while retaining the o rder of magnitudes of frequency components.Frequency domain analysis is al so called spectrum or spectral analysis.5、signal processing,Signal usually need in different ways.For example, from a sensor output signal may be contaminated the redundant electrical "noise".Electrode is connected to a patient's chest, electrocardiogram (ecg) is measured by the heart and other muscles activity caused by small voltage variation.Due to the strong effect electrical interference from the power supply, signal picked up the"main" is usually adopted.Processing signal filter circuit can eliminate or at least reduce unwanted part of the signal.Now, more and more, is by the DSP technology to extract the signal filter to improve the quality of signal or important information, rather than the analog electronic technology.6、the development of DSPThe development of digital signal processing (DSP) in the 1960 s to large Numbers of digital computing applications using fast Fourier transform (FFT), which allows the frequency spectrum of a signal can be quicklycalculated.These techniques have not been widely used at the time, because suitable computing equipment is usually only in university and other research institutions can be used.7、the digital signal processor (DSP)In the late 1970 s and early 1980 s the introduction of microprocessor makes DSP technology is used in the wider range.General microprocessor, such as Intel x86 family, however, is not suitable for the calculation of DSP intensive demand, with the increase of DSP importance in the 1980 s led to several major electronics manufacturers (such as Texas instruments, analog devices and MOTOROLA) to develop a digital signal processor chip, microprocessor, specifically designed for use in the operation of the digital signal processing requirements type of architecture.(note that abbreviation DSP digital signal processing (DSP) of different meanings, this word is used in digital signal processing, a variety of technical or digital signal processor, aspecial type of microprocessor chips).As a common microprocessors, DSP is one kind has its own local instruction code of programmable devices.DSP chip is able to millions of floating point operations per second, as they are of the same type more famous universal device, faster and more powerful versions are introduced.DSP can also be embedded in a complex "system chip" devices, usually includes analog and digital circuit.8、the application of digital signal processorsDSP technology is widespread in mobile phones, multimedia computers, video recorders, CD players, hard disk drives and controller of the modem equipment, and will soon replace analog circuits in TV and telephone service.DSP is an important application of signal compression and decompression.Signal compression is used for digital cellular phone, in every place of the "unit" let more phone is processed at the same time.DSP signal compression technology not only makes people can talk to each other, and can be installed on the computer by using the small camera make people through the monitor to see each other, and these together is the only needs to be a traditional phone line.In audio CD system, DSP technology to perform complex error detection and correction of raw data, because it is read from CD.Although some of the underlying mathematical theory of DSP technology, such as Fourier transform and Hilbert transform, the design of digital filter and signal compression, can be quite complex, and the actual implementation of these technologies needed for numerical computation is very simple, mainlyincluding operations can be in a cheap four function calculator.A kind of structure design of the DSP chip to operate very fast, deal with the sample of the hundreds of millions of every second, and provide real-time performance: that is, to a real-time signal processing, because it is sample, and then the output signal processing, such as speakers or video display.All of the DSP applications mentioned above instance, such as hard disk drives and mobile phone, for real-time operation.Major electronics manufacturers have invested heavily in DSP technology.Because they now find application in mass-market products, DSP chip electronic device occupies very large proportion in the world market.Sales of billions of dollars a year, and may continue to grow rapidly.DSP is mainly used of audio signal processing, audio compression, digital image processing, video compression, speech processing, speech recognition, digital communication, radar, sonar, earthquake, and biologicalmedicine.Concrete example is in digital mobile telephone voice compression and transmission, space balanced stereo matching, amplification area, good weather forecasts, economic forecasts, seismic data processing, and analysis of industrial process control, computer generated animation film, medical image such as CAT scans and magnetic resonance imaging (MRI),MP3compression, image processing, hi-fi speaker divider and equilibrium, and compared with electric guitar amplifier using audio effect.9、the experiment of digital signal processingDigital signal processing is often use special microprocessor, such as dsp56000 TMS320, or SHARC.These often processing data using the fixed point operation, although some versions can use floating-point arithmetic and more powerful.Faster application of FPGA can flow from a slow start the emergence of application processor Freescale company, traditional slower processors, such as single chip may be appropriate.数字信号处理1、介绍数字信号处理(DSP)的关心表示信号序列的数字或符号和处理这些信号。
脑科学专业术语中英对照
小世界网络( small-world network)无标度网络( scale-free network)随机网络( random network)规则网络( regular network)无向网络( undirected network)加权网络( weighted network)图论( Graph theory)邻接矩阵( adjacency matrix)结构性脑网络( structural brain networks 或anatomical brain networks)功能性脑网络( functional brain networks)因效性脑网络( effective brain networks)感兴趣脑区( region of interest,ROI)血氧水平依赖( BOLD,blood oxygenation level depended)体素( voxel)自发低频震荡( spontaneous low-frequency fluctuations,LFF) 默认功能网络( default mode network,DMN)大范围皮层网络( Large-scale cortical network)效应连接(effective connectivity)网络分析工具箱(Graph Analysis Toolbox,GAT)自动解剖模板(automatic anatomical template,AAL)脑电图(electroencephalogram, EEG)脑磁图(magnetoencephalogram, MEG)功能磁共振成像(Functional magnetic resonance imaging, fMRI)弥散张量成像(Diffusion Tensor Imaging, DTI)弥散谱成像( diffusion spectrum imaging ,DSI)细胞结构量化映射( quantitative cytoarchitecture mapping)正电子发射断层扫描(PET, positron emisson tomography)精神疾病:阿尔茨海默症( Alzheimer’ s disease,AD)癫痫( epilepsy)精神分裂症( Schizophrenia)抑郁症( major depression)单侧注意缺失( Unilateral Neglect)轻度认知障碍(mild cognitive impairment, MCI)正常对照组(normal control, NC)MMSE (Mini-mental state examination) 简易精神状态检查量表CDR (Clinic dementia rating) 临床痴呆量表边( link,edge)节点(vertex 或node)节点度(degree)区域核心节点(provincial hub)度分布(degree distribution)节点强度( node strength)最短路径长度(shortest path length)特征路径长度( characteristic path length) 聚类系数( clustering coefficient)中心度(centrality)度中心度(degree centrality)介数中心度( betweenness centrality)连接中枢点( connector hub)局部效率(local efficiency)全局效率( global efficiency)相位同步( phase synchronization)连接密度(connection density/cost)方法:互相关分析( cross-correlation analysis) 因果关系分析( Causality analysis)直接传递函数分析( Directed Transfer Function,DTF)部分定向相干分析( Partial Directed Coherence,PDC)多变量自回归建模( multivariate autoregressive model,MV AR) 独立成分分析( independent component analysis,ICA)同步似然性(synchronization likelihood, SL)结构方程建模(structural equation modeling, SEM)动态因果建模(dynamic causal modeling, DCM)心理生理交互作用模型(Psychophysiological interaction model)非度量多维定标(non-metric multidimensional scaling)体素形态学(voxel-based morphometry, VBM)统计参数映射(statistical parametric mapping,SPM)皮尔逊相关系数(Pearson correlation)偏相关系数(Partial correlation)DTI指标:MD (Mean diffusivity) 平均扩散率ADC (Apparent diffusion coefficient) 表观弥散系数FA (Fractional anisotropy) 部分各向异性DCavg (Average diffusion coefficient) 平均弥散系数RA (Relative anisotropy) 相对各项异性VR (V olume ratio) 体积比AI (Anisotrop index) 各项异性指数TBSS (Tract-based Spatial Statistics) 基于纤维追踪束体素的空间统计DWI (Diffusion Weight Imaging) 弥散加权成像。
统计学专业名词(中英对照)
统计学专业名词·中英对照我大学毕业已经多年,这些年来,越发感到外刊的重要性。
读懂外刊要有不错的英语功底,同时,还需要掌握一定的专业词汇。
掌握足够的专业词汇,在国内外期刊的阅读和写作中会游刃有余。
在此小结,按首字母顺序排列。
这些词汇的来源,一是专业书籍,二是网上查找,再一个是比较重要的期刊。
当然,这些仅是常用专业词汇的一部分,并且由于个人精力、文献查阅的限制,难免有不足和错误之处,希望读者批评指出。
Aabscissa 横坐标absence rate 缺勤率Absolute deviation 绝对离差Absolute number 绝对数absolute value 绝对值Absolute residuals 绝对残差accident error 偶然误差Acceleration array 加速度立体阵Acceleration in an arbitrary direction 任意方向上的加速度Acceleration normal 法向加速度Acceleration space dimension 加速度空间的维数Acceleration tangential 切向加速度Acceleration vector 加速度向量Acceptable hypothesis 可接受假设Accumulation 累积Accumulated frequency 累积频数Accuracy 准确度Actual frequency 实际频数Adaptive estimator 自适应估计量Addition 相加Addition theorem 加法定理Additive Noise 加性噪声Additivity 可加性Adjusted rate 调整率Adjusted value 校正值Admissible error 容许误差Aggregation 聚集性Alpha factoring α因子法Alternative hypothesis 备择假设Among groups 组间Amounts 总量Analysis of correlation 相关分析Analysis of covariance 协方差分析Analysis of data 分析资料Analysis Of Effects 效应分析Analysis Of Variance 方差分析Analysis of regression 回归分析Analysis of time series 时间序列分析Analysis of variance 方差分析Angular transformation 角转换ANOVA (analysis of variance)方差分析ANOVA Models 方差分析模型ANOVA table and eta 分组计算方差分析Arcing 弧/弧旋Arcsine transformation 反正弦变换Area 区域图Area under the curve 曲线面积AREG 评估从一个时间点到下一个时间点回归相关时的误差ARIMA 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper 算术格纸Arithmetic mean 算术平均数Arithmetic weighted mean 加权算术均数Arrhenius relation 艾恩尼斯关系Assessing fit 拟合的评估Associative laws 结合律Assumed mean 假定均数Asymmetric distribution 非对称分布Asymmetry coefficient 偏度系数Asymptotic bias 渐近偏倚Asymptotic efficiency 渐近效率Asymptotic variance 渐近方差Attributable risk 归因危险度Attribute data 属性资料Attribution 属性Autocorrelation 自相关Autocorrelation of residuals 残差的自相关Average 平均数Average confidence interval length 平均置信区间长度average deviation 平均差Average growth rate 平均增长率BBar chart/graph 条形图Base period 基期Bayes' theorem Bayes 定理Bell-shaped curve 钟形曲线Bernoulli distribution 伯努力分布Best-trim estimator 最好切尾估计量Bias 偏性Biometrics 生物统计学Binary logistic regression 二元逻辑斯蒂回归Binomial distribution 二项分布Bisquare 双平方Bivariate Correlate 二变量相关Bivariate normal distribution 双变量正态分布Bivariate normal population 双变量正态总体Biweight interval 双权区间Biweight M-estimator 双权M 估计量Block 区组/配伍组BMDP(Biomedical computer programs) BMDP 统计软件包Box plot 箱线图/箱尾图Breakdown bound 崩溃界/崩溃点CCanonical correlation 典型相关Caption 纵标目Cartogram 统计图Case fatality rate 病死率Case-control study 病例对照研究Categorical variable 分类变量Catenary 悬链线Cauchy distribution 柯西分布Cause-and-effect relationship 因果关系Cell 单元Censoring 终检census 普查Center of symmetry 对称中心Centering and scaling 中心化和定标Central tendency 集中趋势Central value 中心值CHAID -χ2 Automatic Interaction Detector 卡方自动交互检测Chance 机遇Chance error 随机误差Chance variable 随机变量Characteristic equation 特征方程Characteristic root 特征根Characteristic vector 特征向量Chebshev criterion of fit 拟合的切比雪夫准则Chernoff faces 切尔诺夫脸谱图chi-sguare(X2) test 卡方检验卡方检验/χ2 检验Choleskey decomposition 乔洛斯基分解Circle chart 圆图Class interval 组距Classification 分组、分类Class mid-value 组中值Class upper limit 组上限Classified variable 分类变量Cluster analysis 聚类分析Cluster sampling 整群抽样Code 代码Coded data 编码数据Coding 编码Coefficient of contingency 列联系数Coefficient of correlation 相关系数Coefficient of determination 决定系数Coefficient of multiple correlation 多重相关系数Coefficient of partial correlation 偏相关系数Coefficient of production-moment correlation 积差相关系数Coefficient of rank correlation 等级相关系数Coefficient of regression 回归系数Coefficient of skewness 偏度系数Coefficient of variation 变异系数Cohort study 队列研究Collection of data 资料收集Collinearity 共线性Column 列Column effect 列效应Column factor 列因素Combination pool 合并Combinative table 组合表Combined standard deviation 合并标准差Combined variance 合并方差Common factor 共性因子Common regression coefficient 公共回归系数Common value 共同值Common variance 公共方差Common variation 公共变异Communality variance 共性方差Comparability 可比性Comparison of bathes 批比较Comparison value 比较值Compartment model 分部模型Compassion 伸缩Complement of an event 补事件Complete association 完全正相关Complete dissociation 完全不相关Complete statistics 完备统计量Complete survey 全面调查Completely randomized design 完全随机化设计Composite event 联合事件Composite events 复合事件Concavity 凹性Conditional expectation 条件期望Conditional likelihood 条件似然Conditional probability 条件概率Conditionally linear 依条件线性Confidence interval 置信区间Confidence level 可信水平,置信水平Confidence limit 置信限Confidence lower limit 置信下限Confidence upper limit 置信上限Confirmatory Factor Analysis 验证性因子分析Confirmatory research 证实性实验研究Confounding factor 混杂因素Conjoint 联合分析Consistency 相合性Consistency check 一致性检验Consistent asymptotically normal estimate 相合渐近正态估计Consistent estimate 相合估计Constituent ratio 构成比,结构相对数Constrained nonlinear regression 受约束非线性回归Constraint 约束Contaminated distribution 污染分布Contaminated Gausssian 污染高斯分布Contaminated normal distribution 污染正态分布Contamination 污染Contamination model 污染模型Continuity 连续性Contingency table 列联表Contour 边界线Contribution rate 贡献率Control 对照质量控制图Control group 对照组Controlled experiments 对照实验Conventional depth 常规深度Convolution 卷积Coordinate 坐标Corrected factor 校正因子Corrected mean 校正均值Correction coefficient 校正系数Correction for continuity 连续性校正Correction for grouping 归组校正Correction number 校正数Correction value 校正值Correctness 正确性Correlation 相关,联系Correlation analysis 相关分析Correlation coefficient 相关系数Correlation 相关性Correlation index 相关指数Correspondence 对应Counting 计数Counts 计数/频数Covariance 协方差Covariant 共变Cox Regression Cox 回归Criteria for fitting 拟合准则Criteria of least squares 最小二乘准则Critical ratio 临界比Critical region 拒绝域Critical value 临界值Cross-over design 交叉设计Cross-section analysis 横断面分析Cross-section survey 横断面调查Crosstabs 交叉表Crosstabs 列联表分析Cross-tabulation table 复合表Cube root 立方根Cumulative distribution function 分布函数Cumulative frequency 累积频率Cumulative probability 累计概率Curvature 曲率/弯曲Curvature 曲率Curve Estimation 曲线拟合Curve fit 曲线拟和Curve fitting 曲线拟合Curvilinear regression 曲线回归Curvilinear relation 曲线关系Cut-and-try method 尝试法Cycle 周期Cyclist 周期性DD test D 检验data 资料Data acquisition 资料收集Data bank 数据库Data capacity 数据容量Data deficiencies 数据缺乏Data handling 数据处理Data manipulation 数据处理Data processing 数据处理Data reduction 数据缩减Data set 数据集Data sources 数据来源Data transformation 数据变换Data validity 数据有效性Data-in 数据输入Data-out 数据输出Dead time 停滞期Degree of freedom 自由度degree of confidence 可信度,置信度degree of dispersion 离散程度Degree of precision 精密度Degree of reliability 可靠性程度degree of variation 变异度Degression 递减Density function 密度函数Density of data points 数据点的密度Dependent variableDepth 深度Derivative matrix 导数矩阵Derivative-free methods 无导数方法Design 设计design of experiment 实验设计Determinacy 确定性Determinant 行列式Determinant 决定因素Deviation 离差Deviation from average 离均差diagnose accordance rate 诊断符合率Diagnostic plot 诊断图Dichotomous variable 二分变量Differential equation 微分方程Direct standardization 直接标准化法Direct Oblimin 斜交旋转Discrete variable 离散型变量DISCRIMINANT 判断Discriminant analysis 判别分析Discriminant coefficient 判别系数Discriminant function 判别值Dispersion 散布/分散度Disproportional 不成比例的Disproportionate sub-class numbers 不成比例次级组含量Distribution free 分布无关性/免分布Distribution shape 分布形状Distribution-free method 任意分布法Distributive laws 分配律Disturbance 随机扰动项Dose response curve 剂量反应曲线Double blind method 双盲法Double blind trial 双盲试验Double exponential distribution 双指数分布Double logarithmic 双对数Downward rank 降秩Dual-space plot 对偶空间图DUD 无导数方法Duncan's new multiple range method 新复极差法/Duncan 新法EError Bar 均值相关区间图Effect 实验效应Effective rate 有效率Eigenvalue 特征值Eigenvector 特征向量Ellipse 椭圆Empirical distribution 经验分布Empirical probability 经验概率单位Enumeration data 计数资料Equal sun-class number 相等次级组含量Equally likely 等可能Equation of linear regression 线性回归方程Equivariance 同变性Error 误差/错误Error of estimate 估计误差Error of replication 重复误差Error type I 第一类错误Error type II 第二类错误Estimand 被估量Estimated error mean squares 估计误差均方Estimated error sum of squares 估计误差平方和Euclidean distance 欧式距离Event 事件Exceptional data point 异常数据点Expectation plane 期望平面Expectation surface 期望曲面Expected values 期望值Experiment 实验Experiment design 实验设计Experiment error 实验误差Experimental group 实验组Experimental sampling 试验抽样Experimental unit 试验单位Explained variance (已说明方差)Explanatory variable 说明变量Exploratory data analysis 探索性数据分析Explore Summarize 探索-摘要Exponential curve 指数曲线Exponential growth 指数式增长EXSMOOTH 指数平滑方法Extended fit 扩充拟合Extra parameter 附加参数Extrapolation 外推法Extreme observation 末端观测值Extremes 极端值/极值FF distribution F 分布F test F 检验Factor 因素/因子Factor analysis 因子分析Factor Analysis 因子分析Factor score 因子得分Factorial 阶乘Factorial design 析因试验设计False negative 假阴性False negative error 假阴性错误Family of distributions 分布族Family of estimators 估计量族Fanning 扇面Fatality rate 病死率Field investigation 现场调查Field survey 现场调查Finite population 有限总体Finite-sample 有限样本First derivative 一阶导数First principal component 第一主成分First quartile 第一四分位数Fisher information 费雪信息量Fitted value 拟合值Fitting a curve 曲线拟合Fixed base 定基Fluctuation 随机起伏Forecast 预测Four fold table 四格表Fourth 四分点Fraction blow 左侧比率Fractional error 相对误差Frequency 频率Freguency distribution 频数分布Frequency polygon 频数多边图Frontier point 界限点Function relationship 泛函关系GGamma distribution 伽玛分布Gauss increment 高斯增量Gaussian distribution 高斯分布/正态分布Gauss-Newton increment 高斯-牛顿增量General census 全面普查Generalized least squares 综合最小平方法GENLOG (Generalized liner models) 广义线性模型Geometric mean 几何平均数Gini's mean difference 基尼均差GLM (General liner models) 通用线性模型Goodness of fit 拟和优度/配合度Gradient of determinant 行列式的梯度Graeco-Latin square 希腊拉丁方Grand mean 总均值Gross errors 重大错误Gross-error sensitivity 大错敏感度Group averages 分组平均Grouped data 分组资料Guessed mean 假定平均数HHalf-life 半衰期Hampel M-estimators 汉佩尔M 估计量Happenstance 偶然事件Harmonic mean 调和均数Hazard function 风险均数Hazard rate 风险率Heading 标目Heavy-tailed distribution 重尾分布Hessian array 海森立体阵Heterogeneity 不同质Heterogeneity of variance 方差不齐Hierarchical classification 组内分组Hierarchical clustering method 系统聚类法High-leverage point 高杠杆率点High-Low 低区域图Higher Order Interaction Effects,高阶交互作用HILOGLINEAR 多维列联表的层次对数线性模型Hinge 折叶点Histogram 直方图Historical cohort study 历史性队列研究Holes 空洞HOMALS 多重响应分析Homogeneity of variance 方差齐性Homogeneity test 齐性检验Huber M-estimators 休伯M 估计量Hyperbola 双曲线Hypothesis testing 假设检验Hypothetical universe 假设总体IImage factoring 多元回归法Impossible event 不可能事件Independence 独立性Independent variable 自变量Index 指标/指数Indirect standardization 间接标准化法Individual 个体Inference band 推断带Infinite population 无限总体Infinitely great 无穷大Infinitely small 无穷小Influence curve 影响曲线Information capacity 信息容量Initial condition 初始条件Initial estimate 初始估计值Initial level 最初水平Interaction 交互作用Interaction terms 交互作用项Intercept 截距Interpolation 内插法Interquartile range 四分位距Interval estimation 区间估计Intervals of equal probability 等概率区间Intrinsic curvature 固有曲率Invariance 不变性Inverse matrix 逆矩阵Inverse probability 逆概率Inverse sine transformation 反正弦变换Iteration 迭代JJacobian determinant 雅可比行列式Joint distribution function 分布函数Joint probability 联合概率Joint probability distribution 联合概率分布KK-Means Cluster 逐步聚类分析K means method 逐步聚类法Kaplan-Meier 评估事件的时间长度Kaplan-Merier chart Kaplan-Merier 图Kendall's rank correlation Kendall 等级相关Kinetic 动力学Kolmogorov-Smirnove test 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test Kruskal 及Wallis 检验/多样本的秩和检验/H 检验Kurtosis 峰度LLack of fit 失拟Ladder of powers 幂阶梯Lag 滞后Large sample 大样本Large sample test 大样本检验Latin square 拉丁方Latin square design 拉丁方设计Leakage 泄漏Least favorable configuration 最不利构形Least favorable distribution 最不利分布Least significant difference 最小显著差法Least square method 最小二乘法Least Squared Criterion,最小二乘方准则Least-absolute-residuals estimates 最小绝对残差估计Least-absolute-residuals fit 最小绝对残差拟合Least-absolute-residuals line 最小绝对残差线Legend 图例L-estimator L 估计量L-estimator of location 位置L 估计量L-estimator of scale 尺度L 估计量Level 水平Leveage Correction,杠杆率校正Life expectance 预期期望寿命Life table 寿命表Life table method 生命表法Light-tailed distribution 轻尾分布Likelihood function 似然函数Likelihood ratio 似然比line graph 线图Linear equation 线性方程Linear programming 线性规划Linear regression 直线回归Linear Regression 线性回归Linear trend 线性趋势Loading 载荷Location and scale equivariance 位置尺度同变性Location equivariance 位置同变性Location invariance 位置不变性Location scale family 位置尺度族Log rank test 时序检验Logarithmic curve 对数曲线Logarithmic normal distribution 对数正态分布Logarithmic scale 对数尺度Logarithmic transformation 对数变换Logic check 逻辑检查Logistic distribution 逻辑斯特分布Logit transformation Logit 转换LOGLINEAR 多维列联表通用模型Lognormal distribution 对数正态分布Lost function 损失函数Lower limit 下限Lowest-attained variance 最小可达方差LSD 最小显著差法的简称Lurking variable 潜在变量MMain effect 主效应Major heading 主辞标目Marginal density function 边缘密度函数Marginal probability 边缘概率Marginal probability distribution 边缘概率分布Matched data 配对资料Matched distribution 匹配过分布Matching of distribution 分布的匹配Matching of transformation 变换的匹配Mathematical expectation 数学期望Mathematical model 数学模型Maximum L-estimator 极大极小L 估计量Maximum likelihood method 最大似然法Mean 均数Mean squares between groups 组间均方Mean squares within group 组内均方Means (Compare means) 均值-均值比较Median 中位数Median effective dose 半数效量Median lethal dose 半数致死量Median polish 中位数平滑Median test 中位数检验Minimal sufficient statistic 最小充分统计量Minimum distance estimation 最小距离估计Minimum effective dose 最小有效量Minimum lethal dose 最小致死量Minimum variance estimator 最小方差估计量MINITAB 统计软件包Minor heading 宾词标目Missing data 缺失值Model specification 模型的确定Modeling Statistics 模型统计Models for outliers 离群值模型Modifying the model 模型的修正Modulus of continuity 连续性模Morbidity 发病率Most favorable configuration 最有利构形MSC(多元散射校正)Multidimensional Scaling (ASCAL) 多维尺度/多维标度Multinomial Logistic Regression 多项逻辑斯蒂回归Multiple comparison 多重比较Multiple correlation 复相关Multiple covariance 多元协方差Multiple linear regression 多元线性回归Multiple response 多重选项Multiple solutions 多解Multiplication theorem 乘法定理Multiresponse 多元响应Multi-stage sampling 多阶段抽样Multivariate T distribution 多元T 分布Mutual exclusive 互不相容Mutual independence 互相独立NNatural boundary 自然边界Natural dead 自然死亡Natural zero 自然零Negative correlation 负相关Negative linear correlation 负线性相关Negatively skewed 负偏Newman-Keuls method q 检验NK method q 检验No statistical significance 无统计意义Nominal variable 名义变量Nonconstancy of variability 变异的非定常性Nonlinear regression 非线性相关Nonparametric statistics 非参数统计Nonparametric test 非参数检验Nonparametric tests 非参数检验Normal deviate 正态离差Normal distribution 正态分布Normal equation 正规方程组Normal P-P 正态概率分布图Normal Q-Q 正态概率单位分布图Normal ranges 正常范围Normal value 正常值Normalization 归一化Nuisance parameter 多余参数/讨厌参数Null hypothesis 无效假设Numerical variable 数值变量OObjective function 目标函数Observation unit 观察单位Observed value 观察值One sided test 单侧检验One-way analysis of variance 单因素方差分析Oneway ANOVA 单因素方差分析Open sequential trial 开放型序贯设计Optrim 优切尾Optrim efficiency 优切尾效率Order statistics 顺序统计量Ordered categories 有序分类Ordinal logistic regression 序数逻辑斯蒂回归Ordinal variable 有序变量Orthogonal basis 正交基Orthogonal design 正交试验设计Orthogonality conditions 正交条件ORTHOPLAN 正交设计Outlier cutoffs 离群值截断点Outliers 极端值OVERALS 多组变量的非线性正规相关Overshoot 迭代过度PPaired design 配对设计Paired sample 配对样本Pairwise slopes 成对斜率Parabola 抛物线Parallel tests 平行试验Parameter 参数Parametric statistics 参数统计Parametric test 参数检验Pareto 直条构成线图(佩尔托图)Partial correlation 偏相关Partial regression 偏回归Partial sorting 偏排序Partials residuals 偏残差Pattern 模式PCA(主成分分析)Pearson curves 皮尔逊曲线Peeling 退层Percent bar graph 百分条形图Percentage 百分比Percentile 百分位数Percentile curves 百分位曲线Periodicity 周期性Permutation 排列P-estimator P 估计量Pie graph 构成图饼图Pitman estimator 皮特曼估计量Pivot 枢轴量Planar 平坦Planar assumption 平面的假设PLANCARDS 生成试验的计划卡PLS(偏最小二乘法)Point estimation 点估计Poisson distribution 泊松分布Polishing 平滑Polled standard deviation 合并标准差Polled variance 合并方差Polygon 多边图Polynomial 多项式Polynomial curve 多项式曲线Population 总体Population attributable risk 人群归因危险度Positive correlation 正相关Positively skewed 正偏Posterior distribution 后验分布Power of a test 检验效能Precision 精密度Predicted value 预测值Preliminary analysis 预备性分析Principal axis factoring 主轴因子法Principal component analysis 主成分分析Prior distribution 先验分布Prior probability 先验概率Probabilistic model 概率模型probability 概率Probability density 概率密度Product moment 乘积矩/协方差Profile trace 截面迹图Proportion 比/构成比Proportion allocation in stratified random sampling 按比例分层随机抽样Proportionate 成比例Proportionate sub-class numbers 成比例次级组含量Prospective study 前瞻性调查Proximities 亲近性Pseudo F test 近似F 检验Pseudo model 近似模型Pseudosigma 伪标准差Purposive sampling 有目的抽样QQR decomposition QR 分解Quadratic approximation 二次近似Qualitative classification 属性分类Qualitative method 定性方法Quantile-quantile plot 分位数-分位数图/Q-Q 图Quantitative analysis 定量分析Quartile 四分位数Quick Cluster 快速聚类RRadix sort 基数排序Random allocation 随机化分组Random blocks design 随机区组设计Random event 随机事件Randomization 随机化Range 极差/全距Rank correlation 等级相关Rank sum test 秩和检验Rank test 秩检验Ranked data 等级资料Rate 比率Ratio 比例Raw data 原始资料Raw residual 原始残差Rayleigh's test 雷氏检验Rayleigh's Z 雷氏Z 值Reciprocal 倒数Reciprocal transformation 倒数变换Recording 记录Redescending estimators 回降估计量Reducing dimensions 降维Re-expression 重新表达Reference set 标准组Region of acceptance 接受域Regression coefficient 回归系数Regression sum of square 回归平方和Rejection point 拒绝点Relative dispersion 相对离散度Relative number 相对数Reliability 可靠性Reparametrization 重新设置参数Replication 重复Report Summaries 报告摘要Residual sum of square 剩余平方和residual variance (剩余方差)Resistance 耐抗性Resistant line 耐抗线Resistant technique 耐抗技术R-estimator of location 位置R 估计量R-estimator of scale 尺度R 估计量Retrospective study 回顾性调查Ridge trace 岭迹Ridit analysis Ridit 分析Rotation 旋转Rounding 舍入Row 行Row effects 行效应Row factor 行因素RXC table RXC 表SSample 样本Sample regression coefficient 样本回归系数Sample size 样本量Sample standard deviation 样本标准差Sampling error 抽样误差SAS(Statistical analysis system ) SAS 统计软件包Scale 尺度/量表Scatter diagram 散点图Schematic plot 示意图/简图Score test 计分检验Screening 筛检SEASON 季节分析Second derivative 二阶导数Second principal component 第二主成分SEM (Structural equation modeling) 结构化方程模型Semi-logarithmic graph 半对数图Semi-logarithmic paper 半对数格纸Sensitivity curve 敏感度曲线Sequential analysis 贯序分析Sequence 普通序列图Sequential data set 顺序数据集Sequential design 贯序设计Sequential method 贯序法Sequential test 贯序检验法Serial tests 系列试验Short-cut method 简捷法Sigmoid curve S 形曲线Sign function 正负号函数Sign test 符号检验Signed rank 符号秩Significant Level 显著水平Significance test 显著性检验Significant figure 有效数字Simple cluster sampling 简单整群抽样Simple correlation 简单相关Simple random sampling 简单随机抽样Simple regression 简单回归simple table 简单表Sine estimator 正弦估计量Single-valued estimate 单值估计Singular matrix 奇异矩阵Skewed distribution 偏斜分布Skewness 偏度Slash distribution 斜线分布Slope 斜率Smirnov test 斯米尔诺夫检验Source of variation 变异来源Spearman rank correlation 斯皮尔曼等级相关Specific factor 特殊因子Specific factor variance 特殊因子方差Spectra 频谱Spherical distribution 球型正态分布Spread 展布SPSS(Statistical package for the social science) SPSS 统计软件包Spurious correlation 假性相关Square root transformation 平方根变换Stabilizing variance 稳定方差Standard deviation 标准差Standard error 标准误Standard error of difference 差别的标准误Standard error of estimate 标准估计误差Standard error of rate 率的标准误Standard normal distribution 标准正态分布Standardization 标准化Starting value 起始值Statistic 统计量Statistical control 统计控制Statistical graph 统计图Statistical inference 统计推断Statistical table 统计表Steepest descent 最速下降法Stem and leaf display 茎叶图Step factor 步长因子Stepwise regression 逐步回归Storage 存Strata 层(复数)Stratified sampling 分层抽样Stratified sampling 分层抽样Strength 强度Stringency 严密性Structural relationship 结构关系Studentized residual 学生化残差/t 化残差Sub-class numbers 次级组含量Subdividing 分割Sufficient statistic 充分统计量Sum of products 积和Sum of squares 离差平方和Sum of squares about regression 回归平方和Sum of squares between groups 组间平方和Sum of squares of partial regression 偏回归平方和Sure event 必然事件Survey 调查Survival 生存分析Survival rate 生存率Suspended root gram 悬吊根图Symmetry 对称Systematic error 系统误差Systematic sampling 系统抽样TTags 标签Tail area 尾部面积Tail length 尾长Tail weight 尾重Tangent line 切线Target distribution 目标分布Taylor series 泰勒级数Test(检验)Test of linearity 线性检验Tendency of dispersion 离散趋势Testing of hypotheses 假设检验Theoretical frequency 理论频数Time series 时间序列Tolerance interval 容忍区间Tolerance lower limit 容忍下限Tolerance upper limit 容忍上限Torsion 扰率Total sum of square 总平方和Total variation 总变异Transformation 转换Treatment 处理Trend 趋势Trend of percentage 百分比趋势Trial 试验Trial and error method 试错法Tuning constant 细调常数Two sided test 双向检验Two-stage least squares 二阶最小平方Two-stage sampling 二阶段抽样Two-tailed test 双侧检验Two-way analysis of variance 双因素方差分析Two-way table 双向表Type I error 一类错误/α错误Type II error 二类错误/β错误UUMVU 方差一致最小无偏估计简称Unbiased estimate 无偏估计Unconstrained nonlinear regression 无约束非线性回归Unequal subclass number 不等次级组含量Ungrouped data 不分组资料Uniform coordinate 均匀坐标Uniform distribution 均匀分布Uniformly minimum variance unbiased estimate 方差一致最小无偏估计Unit 单元Unordered categories 无序分类Unweighted least squares 未加权最小平方法Upper limit 上限Upward rank 升秩VVague concept 模糊概念Validity 有效性V ARCOMP (Variance component estimation) 方差元素估计Variability 变异性Variable 变量Variance 方差Variation 变异Varimax orthogonal rotation 方差最大正交旋转V olume of distribution 容积WW test W 检验Weibull distribution 威布尔分布Weight 权数Weighted Chi-square test 加权卡方检验/Cochran 检验Weighted linear regression method 加权直线回归Weighted mean 加权平均数Weighted mean square 加权平均方差Weighted sum of square 加权平方和Weighting coefficient 权重系数Weighting method 加权法W-estimation W 估计量W-estimation of location 位置W 估计量Width 宽度Wilcoxon paired test 威斯康星配对法/配对符号秩和检验Wild point 野点/狂点Wild value 野值/狂值Winsorized mean 缩尾均值Withdraw 失访X此组的词汇还没找到YYouden's index 尤登指数ZZ test Z 检验Zero correlation 零相关Z-transformation Z 变换。
众包中关于DS模型及其扩展设定总结
众包中关于DS模型及其扩展设定总结2019-01-25最近对众包领域的⽂章有了新的认识,之前写的太乱了,下⾯来重新整理⼀下。
Error Rate Bounds and Iterative Weighted Majority Voting for Crowdsourcing(Arxiv14)这篇⽂章对众包中的 Dawid-Skene model 有着⾮常好的总结和概括。
我个⼈认为这篇⽂章挂在 Arxiv 上,最终没发表出来的原因,在于其提出的加权投票法中的两种权重设置(w=2p−1, w=log(p1−p) ),已经被前⼈研究出来过,并且它们都有更加简单和浅显的证明和分析,在这篇⽂章中⽤更加复杂的理论重新发明了“轮⼦“,有些可惜。
下⾯来注记⼀下其提供的 DS model 的总结:General DS model:最初的DS model 是针对的 “多分类问题”,设有 L 个类别,每个⼯⼈有⼀个⼤⼩为L×L的 confusion matrix。
每个⼯⼈由L2个参数决定。
其有两种特殊情形:1. class-conditional DS model: 这⾥假定⼯⼈错误选择任何不正确的类别标记的概率都相同。
即假定 confusion matrix 同⼀⾏的⾮对⾓元都相等。
每个⼯⼈(每个矩阵)只需其对⾓线的 L 个参数刻画。
2. Homogenous DS model(one coin model):不仅假定confusion matrix 的同⼀⾏的对⾓元相等,还假定矩阵的对⾓元相同。
每个⼯⼈(每个矩阵)只需⼀个参数刻画当类别数 L = 2 时, General DS model 与 Class-conditional DS model 是相同的,通常称为 two-coin model。
(每个⼯⼈只需两个参数刻画)在信号处理中,one-coin model 通常也被称为 random classification noise model.另外众包中 DS model 还有两种模式的扩展:TrueLabel + confusions: A spectrum of probabilistic models in analyzing multiple ratings (ICML12)主要内容: This paper generalizes the well-known D-S model to a spectrum of probabilistic models under the same " TrueLabel + Confusion " paradigm.The original D-S model has a large number of parameters---each worker has her own confusion matrix, which may lead to overfitting. So it proposes a model called SingleConfusion --- all workers share the same confusion matrix. But SingleConfusion is too rigid for real-world data and it may result to underfitting. As a tradeoff of the two model, the paper further proposes a hierarchical Bayesian model called HybridConfusion whith allows each worker to have her own confusion matrix, but at the same time regularizes these matrices through Bayesian shrinkage.注:这是⼀篇⾮常有意思的⼯作! 作者claim 原始的 D-S model 中混淆矩阵参数过多,导致模型过于复杂,易于过拟合,作者在这篇⽂章中考虑了减少混淆矩阵中的参数个数: 多个⼯⼈在某种程度上共⽤⼀个混淆矩阵。
统计英语词汇
统计英语词汇COX模型COX modelCP 统计量CP statisticCPD分析CPD analysisF F distributionF检验 F testlogistic回归分析logistic regressionlogit变换logit transformationR×C 表R×C tableRidit 分析Ridit analysisSAS软件包SAS software packaget t distributiont检验t testWilks' lambda统计量Wilks'lambda statistic W检验W test6.2希腊字母开头Ⅰ型离差平和typeⅠSSⅠ型错误typeⅠerrorⅡ型离差平和typeⅡSSⅡ型错误typeⅡerrorⅢ型离差平和typeⅢSSⅢ型错误typeⅢerrorⅣ型离差平和typeⅣSSⅣ型错误typeⅣerrorχ2chi-square distributionχ2检验chi-square test6.3阿拉伯数字开头2×2表2×2table2×7析因设计2×7factorial design6.4汉字开头一画一元检验one variable test一致性检验consistency test二画二项binomial distribution几何geometric distribution几何均数geometric mean三画小样本small sample小概率事件small probability event大样本large sample四画不完全拉丁方设计incomplete latin square design比数比odds ratio比例危险模型proportional hazard model队列研究cohort study反正弦变换inverse sine transformation方差variance方差分析analysis of variance(ANOVA)方差不齐heteroscedasticity方差齐性homogeneity of variance方差澎涨因子variance inflation factor枫stratification分位数quantile分割设计split-plot design计量资料measurement data计数资料enumeration data区组设计block design区组因素block factor双侧检验two-sided test无偏估计unbiased estimation中位数median五画半对数线图semilogarithmic linear chart半参数回归模型semiparameter regression model 对应分析correspondence analysis对数正态log-normal distribution对数线性模型log-linear model对照组control group对数线性模型logarithm line model半数有效量median effective dose (ED50)对数变换logarithmic transformation半数致死量median lethal dose (LD50)加权直线回归weighted linear regression平均指标average index平均数average生存分析survival analysis生存时间survival time生存函数survival function生存资料survival data四格表fourflod table四分位数间距interquartile distance平衡不完全区组设计balanced incomplete block design 正交多项式orthogonal polynomial正交表orthogonal table正态normal distribution正态性检验normality test正相关positive correlation正偏态positive skewness正常值范围range of normal value主因子法principal factor method主成分分析principal component analysis六画来源:(/s/blog_4b700c4c0100b6bb.html) - 统计英语词汇_Geoinformatics_新浪博客百分比percentage百分位数percentile多元方差分析multivariate analysis of covariance多元线性回归multivariate linear regression多元统计分析multivariate statistical analysis多重比较multiple comparison多重共线性multiple collinearity多项式回归polynormial regression负偏态negative skewness合成资料composite data后退法backward method回归分析regression analysis回归诊断regression diagnosis回归系数regression coefficient交叉设计cross-over design交互作用interaction决定系数determinate coefficient列联表contingency table名义资料nominal data权重weight曲线拟合curve fitting设计矩阵design matrix设计类型design type似然比likelihood ratio协方差分析analysis of covariance协变量concomitant尧敦方设计Youden square design因变量dependent variable因子分析factor analysis有序资料ordinal data自由度degree of freedom自身对照self control自变量independent variable众数mode七画估计值estimator宏macro宏变量macro-variable剂量反应曲线dose response curve极差range均方mean square均数mean均匀设计uniform design两两比较pairwise comparison连续性校正correction for continuity拟合优度goodness of fit删失数据censored data完全随机设计completely random design系统误差systematic error系统分组设计hierarchical classification design希腊拉丁方设计Greco-Latin square design条件数condition number条图bar chart八画备择假设alternative hypothesis抽样误差sampling error变异variation变异指标variation index变异系数coefficient of variation(CV)变换transformation变量筛选variable screen参数检验parameter test参数模型parameter model单侧检验one-sideed test单组设计single group design单因素K水平设计single factor with k-level design典型相关分析canonical correlation定性资料qualitative data定量资料quantitative data非参数统计nonparametric statistics非线性回归nonlinear regression构成比constituent ratio经验logistic变换empirical logistic transformation具有重复测量的设计designs with repeated measurements 空白对照blank control拉丁方设计Latin square design试验设计experimental design试验误差experimental error试验单位experimental unit析因设计factorial design线性回归linear regression线性趋势检验linear trend test直方图histogram直线化rectification直线回归lienar regression直线相关linear correlation九画标准差standard deviation标准正态standard normal distribution标准误差standard error残差分析residual analysis重复试验repeated trials重复测量repeated measurements独立性检验independent test复相关系数multiple correlation coefficient矩阵matrix临界值critical value相对数relative number相关系数correlation coefficient相对危险度relative risk相关分析correlation analysis前进法forward method显著性水平level of significance显著性检验significance test显示管理系统display manage system统计学statistics统计量statistic统计描述statistical description统计分析statistical analysis误差类型error pattern误差均方mean square of error图尔weibull distribution总体population指数exponential distribution十画病例对照研究cass-control study高维列联表multidimensional contingency table 校正数corrected value离散程度degree of dispersion离差平和sum of squares of deviation配对设计paired design配伍组设计randomized block design缺失数据missing data容许区间tolerance interval随机变量random variable特征值eigenvalue特征向量eigenvector调和均数harmonic mean样本大小sample size圆图pie chart十一画基本定理basic theorem假设检验hypothesis testing捷径shortcut假阳性false positive假阴性false negative基本有效量basic efficient dose理论频数theoretical frequency率rate偏态skewness偏离线性回归departure from linear regression 属性attribution随机化randomness随机数字random digit随机误差random error随机抽样random sampling斜率slope秩和检验rank sum test十二画等级相关rank correlation裂区设计split-plot design普通线图general line chart普阿松Poisson distribution散布图scatter diagram最小二乘法least square method最小显著差数least significant difference最大似然法maximum likelihood method最优配方案optimum allocation plan十三画概率probability概率probability distribution概率单位probit频数表frequency distribution数据集data set置信区间confidence interval十四画截距intercept精确分割exact cutting精确概率exact probability聚类分析cluster analysis 算术均数arithmetic mean。
sound quality(声品质)
The outer ear is a directional filter which weights the sound pressure in a range of +15/-30 dB, depending on frequency and direction of sound
Two Tones: Different Perceptions
两种音调: 两种音调:不同感觉
Parameters of Roughness
粗糙度的参数
special kind of roughness
特殊种类的粗糙度
psychoacoustic roughness calculation fails
测量” 为“Round-About-测量”所设 测量 置的旋转台
Anechoic Chamber
全消声室
Use of Binaural Technology in Acoustic Engineering is “State of the Art”
在工程声学领域运用双耳模拟技术是目前最先进的方法
Sound Quality requires consideration of human hearing’s characteristics
质量性, 功能性, 危险性, 环境, 质量性 功能性 危险性 环境 …
Noise implies a certain image 噪声意味着某种特性 luxury, sportive, cheap, …
豪华型, 豪华型 运动型, 便宜型, 运动型 便宜型 …
Noise may identify 噪声是可以被识别的 similar to optical impression
硕士论文_无线传感器网络定位算法的研究
硕士学位论文MASTER’S DISSERTATION论文题目无线传感器网络定位算法的研究A Dissertation in Computer Application TechnologySTUDY ON LOCALIZATION ALGORITHM OF WIRELESS SENSOR NETWORKby Hu YulanSupervisor: Professor Wang XinshengYanshan University2011.12燕山大学硕士学位论文原创性声明本人郑重声明:此处所提交的硕士学位论文《无线传感器网络定位算法的研究》,是本人在导师指导下,在燕山大学攻读硕士学位期间独立进行研究工作所取得的成果。
据本人所知,论文中除已注明部分外不包含他人已发表或撰写过的研究成果。
对本文的研究工作做出重要贡献的个人和集体,均已在文中以明确方式注明。
本声明的法律结果将完全由本人承担。
作者签字日期:年月日燕山大学硕士学位论文使用授权书《无线传感器网络定位算法的研究》系本人在燕山大学攻读硕士学位期间在导师指导下完成的硕士学位论文。
本论文的研究成果归燕山大学所有,本人如需发表将署名燕山大学为第一完成单位及相关人员。
本人完全了解燕山大学关于保存、使用学位论文的规定,同意学校保留并向有关部门送交论文的复印件和电子版本,允许论文被查阅和借阅。
本人授权燕山大学,可以采用影印、缩印或其他复制手段保存论文,可以公布论文的全部或部分内容。
保密□,在年解密后适用本授权书。
本学位论文属于不保密□。
(请在以上相应方框内打“√”)作者签名:日期:年月日导师签名:日期:年月日摘要摘要传感器节点的位置信息在无线传感器网络的监测活动等应用中起着至关重要的作用。
而取得节点位置信息较简便、快捷、精确的方法是通过手动设定或携带GPS 定位设备等手段,但通过这种方式获取的成本很高。
因此,较好的方法是采用定位算法进行估计。
本文将主要研究基于多维标度的无线传感器网络定位算法。
融合多维度卷积神经网络的肺结节分类方法
吴保荣,强彦,王三虎,等 . 融合多维度卷积神经网络的肺结节分类方法 . 计算机工程与应用,2019,55(24):171-177. WU Baorong, QIANG Yan, WANG Sanhu, et al. Fusing multi-dimensional convolution neural network for lung nodules classification. Computer Engineering and Applications, 2019, 55(24):171-177.
Computer Engineering and Applications 计算机工程与应用
2019,55(24) 171
融合多维度卷积神经网络的肺结节分类方法
吴保希靖 4 1. 太原理工大学 信息与计算机学院,山西 晋中 030600 2. 吕梁学院 计算机科学与技术系,山西 吕梁 033000 3. 山西省人民医院 PET/CT 中心,太原 030024 4. 山西农业大学 软件学院,山西 晋中 030600
常用的功能性状及功能多样性相关术语概念
常用植物性状
叶片干物质含量:反映叶片组织的密度 比叶面积:反映植物获取资源的能力。低比叶面积的植物能更好地适 应资源贫瘠和干旱环境,高比叶面积的植物保持体内营养的能力较强,比 叶面积和叶片干物质含量通常是负相关关系,速生物种的叶片干物质含量 小,比叶面积大 叶片营养含量:叶片氮、磷含量表现叶片的光合能力和植物的营养状 况,氮磷比例可以作为判定植物营养是否受限的一个指标
以功能性状为坐标轴的多维空间,物种根据其功能性状而处于相应位 置
功能特化
Functional specialization: the mean distance of a species from the rest of the species pool in functional space
功能空间中,一个物种与其他物种的平均距离
在给定环境中,非生物变量决定一个物种是否具有定殖、建立和维持 的必要性状的过程
——参考资料《A functional approach reveals community responses to disturbances》 《生态学文献分享》
常用的功能性状及功能多样性指标定义
呆笨朝夕
植物性状
Trait: any morphological, physiological, or phenological feature usually measurable at the individual level.
性状是指在个体水平上(从细胞到整个有机体)可测量的,强烈影响有 机体表现的任何形态、生理或物候特征
汽车技术性能综合评价方法及应用
第51卷第3期2020年3月中南大学学报(自然科学版)Journal of Central South University(Science and Technology)V ol.51No.3Mar.2020汽车技术性能综合评价方法及应用欧阳鸿武1,肖叶萌1,胡仕成1,唐昕1,雷刚1,BLUMENFELD Raphael2(1.中南大学高性能复杂制造国家重点实验室,湖南长沙,410083;2.剑桥大学卡文迪许实验室,英国,CB21TN)摘要:基于汽车等速100km油耗、最高车速和0~100km/h制动距离等基本技术性能指标,以及发动机排量、整车质量和售价等参数构建技术性能指标H、综合参数W和性价比N,形成多维综合评价方法,并提出一种以W为特征参数的汽车标识方式。
在此基础上,对我国汽车市场主要品牌车型的技术性能、性价比等参数与销量之间的相关性进行研究。
研究结果表明:不同品牌及车型的技术性能存在明显差异,合资品牌汽车技术性能比国产品牌的优,但性价比却显著比国产品牌的低;消费者对轿车、SUV和MPV的选择标准也存在差异,消费者选购轿车时更看重产品的技术性能和品牌;选购SUV时,消费者更关注产品的综合性能,而选购MPV时,消费者则更注重产品的实用性和性价比;高性能小排量发动机、高容量电池和电机系统、汽车轻量化与智能化及驱动技术(油电混合、增程式,尤其是四驱技术,驱动与制动系统一体化)的重大突破有望促成我国汽车产业跨越式发展。
关键词:汽车产业;性能评价指标;汽车标识;四驱;新能源;主成分分析中图分类号:U469.76;U472文献标志码:A文章编号:1672-7207(2020)03-0650-11Establishment and application of comprehensive evaluationmethod for automobile technical performanceOUYANG Hongwu1,XIAO Yemeng1,HU Shicheng1,TANG Xin1,LEI Gang1,BLUMENFELD Raphael2(1.State Key Laboratory of High Performance Complex Manufacturing,Central South University,Changsha410083,China;2.Cavendish Laboratory,University of Cambridge,Cambridge,CB21TN,UK)Abstract:A multidimensional evaluation scheme was constructed consisting of a technical performance indicator H,a mass-weighted measure of the effect of the technical parameters W and a measure of the price efficiency N.These indexes were functions of primary performance indicators,which included constant speed fuel consumption, braking distance in the maximum speed0−100km/h,engine volume,mass and price.Vehicle indetified method was proposed taking W as the most useful indicator for comparing different vehicles and models.The correlations between the technical performance,price and sales of several major car models in Chinese market were studied. DOI:10.11817/j.issn.1672-7207.2020.03.009收稿日期:2019−08−01;修回日期:2019−11−04基金项目(Foundation item):国家自然科学基金资助项目(51475475)(Project(51475475)supported by the National Natural Science Foundation of China)通信作者:欧阳鸿武,博士,教授,从事高性能制动/传动系统、汽车轻量化技术研究;E-mail:*************第3期欧阳鸿武,等:汽车技术性能综合评价方法及应用The results show that different car models have significantly different performance indices with joint-venture generally outperforming domestic ones on technical performance,but underperforming on price.There are distinct differences in consumers'selection criteria for cars,SUVs and MPVs.Consumers care more about the technical performance and brand of products for cars,while they care more about the comprehensive ability for SUVs, practicality and cost-effectiveness for MPVs.Breakthrough in high performance and small engines,high capacity battery and motor system,light weight and intelligent vehicles and driving technology(oil-electric vehicles, extended-range vehicles,especially all-wheel drive and integration of driving and braking system)can boost the Chinese vehicle industry development.Key words:automotive industry;performance evaluation indicators;vehicle indicator characteristic;four-wheel drive;new energy;principal component analysis汽车这个被人们称为“改变世界的机器”自诞生100多年以来一直在改变世界,其自身也不断得到进化和完善[1]。
芍药甘草汤对急性肺损伤大鼠肠道菌群的影响
·药学研究·芍药甘草汤对急性肺损伤大鼠肠道菌群的影响Δ张甘纯 1*,刘文 2 #,宋信莉 1,刘兴德 1,舒万芬 1,秦琴 1,王洪鑫 1(1.贵州中医药大学药学院,贵阳 550025; 2.贵州医科大学药学院,贵阳 550025)中图分类号 R 965;R 285 文献标志码 A 文章编号 1001-0408(2023)17-2063-06DOI 10.6039/j.issn.1001-0408.2023.17.03摘要 目的 研究芍药甘草汤(SGD )对急性肺损伤(ALI )大鼠的改善作用及对肠道菌群的影响。
方法 将60只大鼠按随机数字表法分为正常组(CON 组,生理盐水)、模型组(MOD 组,生理盐水)、阳性对照组(DEX 组,5 mg/kg 地塞米松)和芍药甘草汤低、中、高剂量组(SGD-L 、SGD-M 、SGD-H 组,给药剂量以生药量计分别为5.8、11.6、23.2 g/kg ),每组10只。
各组大鼠每天灌胃1次,灌胃体积均为10 mL/kg ,连续7 d 。
末次灌胃30 min 后,CON 组大鼠气道滴注等体积生理盐水,其余各组大鼠气道滴注脂多糖(5 mg/kg )建立ALI 模型。
造模12 h 后,计算大鼠肺组织湿/干重比,检测大鼠肺泡灌洗液(BALF )中白细胞介素1β(IL-1β)、IL-6和肿瘤坏死因子α(TNF-α)含量,以苏木素-伊红染色后观察肺组织病理形态学变化。
采用16S rRNA 测序技术分析大鼠粪便中菌群,并分析差异菌属与炎症因子的相关性。
结果 与MOD 组比较,SGD 各剂量组大鼠肺组织炎症细胞浸润均减少,肺泡隔增厚和肺泡水肿情况均有所改善;肺组织湿/干重比及BALF 中IL-1β、IL-6、TNF-α水平均显著降低(P <0.05或P <0.01)。
SGD (中剂量)可以改善ALI 大鼠肠道菌群紊乱,恢复肠道菌群的多样性与丰富度,调节菌群结构,降低乳杆菌属、链球菌属和大肠埃氏菌属-志贺氏菌属的相对丰度,并增加厚壁菌属、毛螺菌属、瘤胃球菌属、梭状芽孢杆菌属、杜氏杆菌属和阿克曼菌属的相对丰度。
多个体网络分布式随机投影无梯度优化算法
多个体网络分布式随机投影无梯度优化算法李德权;陈平【期刊名称】《计算机科学与探索》【年(卷),期】2016(010)011【摘要】研究了有向多个体网络的无梯度优化问题,提出了一种分布式随机投影无梯度优化算法。
假定网络的优化目标函数可分解成所有个体的目标函数之和,每个个体仅知其自身的目标函数及其自身的状态约束集。
运用无梯度方法解决了因个体目标函数可能非凸而引起的次梯度无法计算问题,并结合随机投影算法解决了约束集未知或约束集投影运算受限的问题。
在该算法作用下,所有个体状态几乎必然收敛到优化集内,并且网络目标函数得到最优。
%This paper proposes a distributed random projection gradient-free optimization algorithm for multi-agent net-works. It is assumed that the objective function of the network is the sum of the objective functions of all individuals, and each individual only knows its own objective function and its own state constrai nt set. Due to each agent’s objec-tive function maybe nonconvex, the problem that the subgradient of each agent’s objective function hard to be calcu-lated can be solved by using the gradient method. Then applying the random projection algorithm at each iteration, the problem of the constrained set maybe unknown or the projection of the constrained set hard to be computed can also be solved. It is proved that, under the proposed algorithm, all agents’states converge to theoptimization set almost surely and the objective function of the network also achieves optimization.【总页数】7页(P1565-1571)【作者】李德权;陈平【作者单位】安徽理工大学理学院,安徽淮南 232001;安徽理工大学理学院,安徽淮南 232001【正文语种】中文【中图分类】TP301.6【相关文献】1.具有通信时延的多个体分布式次梯度优化算法 [J], 刘军;李德权2.基于概率量化的分布式无梯度优化算法研究 [J], 李德权;陈平3.多个体切换网络分布式量化次梯度优化算法 [J], 李甲地;马驰;李德权;王俊雅4.时延情形下的分布式随机无梯度优化算法 [J], 任芳芳;李德权5.多个体切换网络中带有时延通信的分布式次梯度优化算法 [J], 王俊雅;李甲地;李德权因版权原因,仅展示原文概要,查看原文内容请购买。
集成粗糙集和阴影集的簇特征加权模糊聚类算法
集成粗糙集和阴影集的簇特征加权模糊聚类算法王丽娜;王建东;李涛;叶枫【期刊名称】《系统工程与电子技术》【年(卷),期】2013(035)008【摘要】特征加权是聚类算法中的常用方法,决定权值对产生一个有效划分非常关键.基于模糊集、粗糙集和阴影集的粒计算框架,本文提出计算不同簇特征权重的聚类新方法,特征权值随着每次迭代自动地计算.每个簇采用不同的特征权重可以更有效地实现聚类目标,并使用聚类有效性指标包括戴维斯-Bouldin指标(Davies-Bouldin,DB)、邓恩指标(Dunn,Dunn)和Xie-Beni指标(Xie-Beni,XB)分析基于划分的聚类有效性.真实数据集上的实验表明这些算法总是收敛的,而且对交叠的簇划分更有效,同时在噪声和异常数据存在时具有鲁棒性.%Associating feature with weights for each cluster is a common approach in clustering algorithms and determining the weight values is crucial in generating valid partition.This paper introduces a novel method in the framework of granular computing that incorporates fuzzy sets,rough sets,and shadowed sets,and calculates feature weights at each iteration automatically.The method of feature weighting can realize the clustering objective more effectively,and the clustering validity indices of DB,Dunn and XB are applied to analyze the validity of partition-based parative experiments results reported for real data sets illustrate that the proposed algorithms are always convergent and more effective in handingoverlapping among clusters and more robust in the presence of noisy data and outlier.【总页数】8页(P1769-1776)【作者】王丽娜;王建东;李涛;叶枫【作者单位】南京信息工程大学江苏省气象探测与信息处理重点实验室,江苏南京210044;南京信息工程大学电子与信息工程学院,江苏南京210044;南京航空航天大学计算机科学与技术学院,江苏南京210016;南京航空航天大学计算机科学与技术学院,江苏南京210016;南京信息工程大学江苏省气象探测与信息处理重点实验室,江苏南京210044;南京信息工程大学电子与信息工程学院,江苏南京210044;南京航空航天大学计算机科学与技术学院,江苏南京210016;河海大学计算机与信息学院,江苏南京211100【正文语种】中文【中图分类】TP391【相关文献】1.基于样本-特征加权的可能性模糊核聚类算法 [J], 黄卫春;刘建林;熊李艳2.基于特征加权模糊聚类算法的第三方物流企业运营模式分类研究 [J], 王海燕;闫博;于艳玲;李毅3.特征加权的模糊C有序均值聚类算法 [J], 刘永利;王恒达;刘静;杨立身4.特征加权和模糊聚类算法的植物叶片识别研究 [J], 舒蕾; 李龙龙; 磨莉5.特征加权和优化划分的模糊C均值聚类算法 [J], 肖林云;陈秀宏;林喜兰因版权原因,仅展示原文概要,查看原文内容请购买。
新的分布交互式多模型广义概率数据关联算法
新的分布交互式多模型广义概率数据关联算法张维华;孙启臣;张丽静【期刊名称】《计算机工程与应用》【年(卷),期】2018(054)004【摘要】To effectively solve the problems of distributed multi-sensor multi-maneuvering target tracking under the dense clutter scenario,a new distributed interacting multiple model multi-sensor generalized probabilistic data association algorithm based on improved D-S combination rule of evidence(DIMM-MSGPDA-IDS)is proposed.Firstly,a single sen-sor IMM-GPDA algorithm is used to track multiple maneuvering targets on each local node, and the filtering results of each model, such as the state estimate, covariance estimate, model probability, combination of residuals and the corre-sponding covariance matrices, are sent to the fusion center. Secondly, after obtaining the result of track correlation, the state estimate and the covariance matrix about the same target of different sensors are fused according to the likelihood function of each model in the fusion center,and the model probabilities of the same target from different sensors are fused by using the new improved D-S combination rule of evidence which fuses the 3-dimensional(3-D)evidence together. Then the probability is used to update the target state estimate and the result is returned back to the local node.Therefore, more accurate state prediction of target is obtained. Finally, through simulations, the newalgorithm is compared and analyzed with DIMM-MSJPDA-DS algorithm.Theoretical analysis and simulation results show that the new algorithm does well in tracking the strong maneuveringtarget.What's more,through the whole algorithm,only a small amount of computation is involved.So it can be concluded that the new algorithm is an effective distributed interactive multi-model multi-sensor multi-maneuvering target tracking algorithm.%为有效解决密集杂波环境下分布式多传感器多机动目标跟踪问题,提出了一种基于改进D-S证据组合规则的分布交互式多模型多传感器广义概率数据关联(DIMM-MSGPDA-IDS)算法.该算法首先对各局部节点均应用单传感器的IMM-GPDA算法跟踪多机动目标,并将其各模型的状态估计、协方差估计、模型概率、组合新息及其协方差矩阵等滤波结果送至融合中心;在航迹关联判决结束后,融合中心根据各模型对应似然函数的大小融合不同传感器关于同一目标的模型状态估计及其协方差矩阵,并提出利用三维(3-D)证据进行直接融合的改进D-S算法对来源于同一目标的不同传感器的各模型概率进行有效融合,然后依此概率来更新各目标的状态估计并反馈至各局部节点,使之获得更为精确的状态预测;最后,将该算法与基于D-S证据组合规则的分布交互式多模型多传感器联合概率数据关联(DIMM-MSJPDA-DS)算法进行仿真对比分析.理论分析和仿真结果表明,该算法能够很好地对强机动目标进行跟踪,且其计算量相对较小,是一种有效的分布交互式多模型多传感器多机动目标跟踪算法.【总页数】6页(P44-49)【作者】张维华;孙启臣;张丽静【作者单位】鲁东大学信息与电气工程学院,山东烟台264025;鲁东大学资产处,山东烟台264025;鲁东大学信息与电气工程学院,山东烟台264025;鲁东大学信息与电气工程学院,山东烟台264025【正文语种】中文【中图分类】TP273【相关文献】1.一种改进的基于"当前"统计模型的联合概率数据关联算法 [J], 魏祥;李颖;骆荣剑2.联合交互式多模型概率数据关联算法 [J], 潘泉;刘刚3.广义概率数据关联算法 [J], 潘泉;叶西宁;张洪才4.一种改进的联合交互式多模型概率数据关联算法 [J], 杨雄;张顺生;陈明燕5.多传感器广义概率数据关联算法研究 [J], 许阳;杨峰;潘泉;梁彦因版权原因,仅展示原文概要,查看原文内容请购买。
基于迭代加权(l)q范数最小化的稀疏阵列综合方法
基于迭代加权(l)q范数最小化的稀疏阵列综合方法曹华松;陈金立;李家强;葛俊祥【摘要】针对非均匀稀疏阵列综合问题,提出一种利用迭代加权(l)q(0<q<1)范数最小化的阵列综合方法.该方法利用稀疏阵列天线的稀疏物理特性,将稀疏阵列综合问题转化为一系列迭代加权(l)q(0<q<1)范数最小化的稀疏重构问题,并在每次迭代中求解出用于下次迭代的阵列加权向量闭式解,由满足迭代终止条件时的阵列加权向量的非零值来确定阵列的阵元位置及其激励幅度.仿真结果表明,与基于迭代加权(l)1范数的阵列综合方法相比,该方法在满足辐射特性前提下能以更少的迭代次数来综合出稀疏程度更高的稀疏阵列.【期刊名称】《科学技术与工程》【年(卷),期】2015(015)026【总页数】5页(P66-69,75)【关键词】稀疏阵列;阵列综合;(l)q范数最小化;迭代加权【作者】曹华松;陈金立;李家强;葛俊祥【作者单位】南京信息工程大学江苏省气象探测与信息处理重点实验室,南京210044;南京信息工程大学气象灾害预报预警与评估协同创新中心,南京210044;南京信息工程大学电子与信息工程学院,南京210044【正文语种】中文【中图分类】TN957为了使天线波束具有强方向性、低副瓣以及易扫描等性能指标,在雷达、通信、声呐和超声成像领域中已经广泛应用了天线阵列,因此天线阵列的综合已成为现代电子系统设计中一个十分重要的环节[1]。
在天线阵列的早期研究中,均匀间隔阵列由于设计简单、数学处理方便以及便于实现等特点而得到了广泛的应用。
但是它存在以下缺点[2]:① 为了避免波束栅瓣的出现,其阵元间距往往不大于波长的一半,因此密集阵元排布易导致阵元间互耦严重;②若要提高均匀间隔阵列的角度分辨率,则需要更多的阵元来进行均匀布阵以增大阵列孔径,这会显著增加系统的成本和造价。
为了克服上述缺点,一般采用阵元非均匀排布的稀疏阵列。
将天线阵列以较少的阵元数进行稀疏布置,能够有效减弱阵元间的互耦效应,增大阵列的孔径从而提高角度分辨率以及减少系统成本和降低软硬件复杂度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
For a network of thousands or even millions of sensors, the large scale precludes centralized location estimation. Sending pair-wise range measurements from each sensor to a single point and then sending back estimated device coordinates would overwhelm the capacity of low-bandwidth sensor networks and waste energy. Decentralized algorithms are vital for limiting communication costs (which are usually much higher than computation costs) as well as for balancing the communication and computational load evenly across the sensors in the network. Furthermore, when a sensor moves, the ability to recalculate location locally rather than globally will result in energy savings which, over time, may dramatically extend the lifetime of the sensor network. Sensor energy is also conserved by limiting transmission power. For a given channel between a pair of wireless sensors, the SNR of the received signal can be improved by increasing the transmit power. Range measurement accuracy improves at higher SNR [Caffery Jr. and Stuber 1998; Kim et al. 2002], thus imposing a tradeoff between energy cost and accuracy. There is also a tradeoff between device cost and range accuracy: using ultrawideband (UWB) [Fleming and Kushner 1995; Correal et al. 2003] or hybrid ultrasound/RF techniques [Girod et al. 2002] can achieve accuracies on the order of centimeters, but at the expense of high device and energy costs. Alternatively, very inexpensive wireless devices can measure RF RSS just by listening to network packet traffic, but range estimates from RSS incur significant errors due to channel fading. All range measurements tend to degrade in
Distributed Weighted-Multidimensional Scaling for Node Localization in Sensor Networks
JOSE A. COSTA, NEAL PATWARI and ALFRED O. HERO III University of Michigan, Ann Arbor
This research was partially supported by the National Science Foundation under ITR grant CCR0325571. Author’s addresses: Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122; emails: jcosta@; {npatwari, hero}@. Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee. c 2005 ACM 0000-0000/2005/0000-0001 $5.00
ACM Journal Name, Vol. V, No. N, June 2005, Pages 1–26.
2
·
Jose Costa et al.
require a system administrator to manually enter all device coordinates. In this paper, we consider the location estimation problem for which only a small fraction of sensors have a priori coordinate knowledge, and range measurements between many pairs of neighboring sensors permit the estimation of all sensor coordinates. While angle measurements have also been used for sensor localization, in this paper, we limit the discussion to localization based on range measurements. Two major difficulties hinder accurate sensor location estimation: first, accurate range measurements are expensive; and second, centralized estimation becomes impossible as the scale of the network increases. This paper proposes a distributed localization algorithm, based on a weighted version of multidimensional scaling (MDS), which naturally incorporates local communication constraints within the sensor network. Its key features are: (1) A weighted cost function that allows range measurements that are believed to be more accurate to be weighted more heavily. (2) An adaptive neighbor selection method that avoids the biasing effects of selecting neighbors based on noisy range measurements. (3) A majorization method which has the property that each iteration is guaranteed to improve the value of the cost function. Simulation results and experimental channel measurements show that even when using only a small number of range measurements between neighbors and relying on fading-prone received signal-strength (RSS), the proposed algorithm can be nearly unbiased with performance close to the Cram´ er-Rao lower bound. 1.1 Sensor Localization Requirements
Accurate, distributed localization algorithms are needed for a wide variety of wireless sensor network applications. This paper introduces a scalable, distributed weighted-multidimensional scaling (dwMDS) algorithm that adaptively emphasizes the most accurate range measurements and naturally accounts for communication constraints within the sensor network. Each node adaptively chooses a neighborhood of sensors, updates its position estimate by minimizing a local cost function and then passes this update to neighboring sensors. Derived bounds on communication requirements provide insight on the energy efficiency of the proposed distributed method versus a centralized approach. For received signal-strength (RSS) based range measurements, we demonstrate via simulation that location estimates are nearly unbiased with variance close to the Cram´ er-Rao lower bound. Further, RSS and time-of-arrival (TOA) channel measurements are used to demonstrate performance as good as the centralized maximum-likelihood estimator (MLE) in a real-world sensor network. Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems—Distributed applications; I.5.4 [Pattern Recognition]: Applications—Signal processing General Terms: Algorithms, Performance Additional Key Words and Phrases: Distributed optimization, multidimensional scaling, node localization, position estimation, sensor networks