最新人教版高中数学必修4第三章二倍角的正弦、余弦、正切公式
人教版高中数学必修4-3.1《二倍角的正弦、余弦、正切公式》参考课件
结论
(1) 2
2
(2) 4 2 2
例6 化简:
(1) sin400 (tan 100 3) (2)
解: (1) 原式
sin400
(
sin100 cos 100
例4
sin2 sin2
1 cos 2 1 cos 2
(
)
A tan B cot C sin
1 2sin2
D sin2
解:
原式
s in 2 s in 2
1 (1 2sin2 ) 1 (2cos 2 1)
s in 2 s in 2
(sin5 cos5)2 | sin5 cos5 | (sin5 cos5)
sin2 2sin cos
cos 2 cos2 sin2
2cos 2 1 1 2sin2
tan
2
1
2 tan tan2
例5 用二倍角公式化简: (0 )
13
13
A 第一象限角
B 第二象限角
C 第三象限角
D 第四象限角
解
:
sin
12 13
, cos
5 13
,
sin2 2sin cos 2 12 ( 5 ) 120 0
13 13 169
cos 2 cos2 sin2 ( 5 )2 (12)2
(1 sin2 ) sin2 1 sin2 sin2 1 2sin2 cos 2 1 2sin2
sin2 2sin cos cos 2 cos2 sin2 2cos2 1
人教版高中数学必修四教材用书第三章 三角恒等变换 3.1.3 二倍角的正弦、余弦、正切公式 Word版含答案
.二倍角的正弦、余弦、正切公式[提出问题]问题:在公式(α+β),(α+β)和(α+β)中,若α=β,公式还成立吗?提示:成立.问题:在上述公式中,若α=β,你能得到什么结论?提示:α=α-α,α=αα,α=α-α).[导入新知]二倍角公式[化解疑难]细解“倍角公式”()要注意公式运用的前提是所含各三角函数有意义.()倍角公式中的“倍角”是相对的,对于两个角的比值等于的情况都成立,如α是α的倍,α是的倍.这里蕴含着换元思想.这就是说,“倍”是相对而言的,是描述两个数量之间的关系的.()注意倍角公式的灵活运用,要会正用、逆用、变形用.[例]();()-°;()°-°);()°)-°);() ° ° °.[解]()原式===.()原式=(×°)=°=(×°+°)=°=.()原式=(×°)=°=(°-°)=-°=-.()原式=°-() ° ° °)=°-(()) °)) ° °)=° °-)=° °)=.()原式=°· °· °· ° °)=°· °· ° °)=°· ° °)=° °)=.[类题通法]化简求值的四个方向三角函数的化简有四个方向,即分别从“角”“函数名”“幂”“形”着手分析,消除差异.[活学活用]化简:()θ)-θ);().答案:() θ()[例] ()已知=,≤()已知α∈,且α=,求α.[解] ()∵≤α<,∴≤α+<.∵>,∴<α+<.∴=-=-=-.∴α=α+=α+α+=×-×=-,α=-=-=-×=.∴=α-α=×=-.()∵α=-=-,=-=-=-,∴原方程可化为-α+=-α+,解得=或=-.。
人教A版数学必修4课件:3.1.3二倍角的正弦、余弦、正切公式
=3sina-4sin3a
2.cos3a=cos(2a+a)
=cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-cos2a)cosa
=4cos3a-3cosa
公式识记 口答下列各式的值:
1、升幂公式: 1 sin 2 sin2 cos2 2sin cos
=(sin cos)2
1 cos 2 2cos2 升幂缩角
1 cos 2 2sin2
2、降幂公式:
cos2 1 cos 2
2
sin2 1 cos 2
2
降幂扩角
例4.化简
变式:如何化简 2 sin2 2 cos4呢?
(1)求 f(x)的最小正周期;
(2)求对称轴,对称中心 (3)求该函数的单调区间
[解] (1)f(x)= 22cos2x+π4+sin2 x = 22cos 2x cos π4-sin 2x sin π4+1-c2os 2x =12-12sin 2x, 故 f(x)的最小正周期为 π.
asin x+bcos x= a2+b2sin(x+φ)的应用
∴tan x=13, ∴cos2x1-+ssiinn2xxcos x=co2ss2ixn-2xs+incxocso2xs x=21t-ant2axn+x1=161.
(2)由题知 F(x)=cos2x-sin2x+1+2sin xcos x, ∴F(x)=cos 2x+sin 2x+1, 即 F(x)= 2sin2x+π4+1. 当 sin2x+π4=1 时,[F(x)]max= 2+1. 由-π2+2kπ≤2x+π4≤π2+2kπ(k∈Z)得-38π +kπ≤x≤π8+kπ(k∈Z),故所求函数 F(x) 的单调递增区间为-38π+kπ,π8+kπ(k∈Z).
高中数学 第三章 三角恒等变换 3-1-3二倍角的正弦、余弦、正切公式 新人教A版必修4
π 2
(k∈Z),且
α≠kπ+4π(k≠Z).当α=kπ+π2时,求tan2α应使用诱导公式.请
读者自己寻求tan2α=2tanα的条件.
3.使用二倍角公式应注意的问题
(1)对“二倍角”应该有广义上的理解,不仅局限于2α是α
的2倍.只要公式中等号左边的角是右边角的2倍,就可以使用
二倍角公式,如3α与
自 (1)2sinαcosα S2α 我 (2)cos2α-sin2α 2cos2α-1 1-2sin2α C2α
校
2tanα
对 (3)1-tan2α T2α
思考探究 上述公式如何推导得到? 提示 在两角和的正弦、余弦、正切公式中,令β=α即可 得到.
名师点拨 1.对“倍角”的理解 (1)本节所说的“倍角”专指“二倍角”,遇到“三倍 角”等名词时,“三”字不能省略. (2)“倍”是描述两个数量关系的,2α是α的二倍,4α是2α 的二倍,α2是α4的二倍,这里蕴含着换元思想.
变式训练2 求下列各式的值:(1)cos215°-sin215°; (2)cos1π2cos152π;(3)sin150°+cos530°.
解
(1)原式=cos(2×15°)=cos30°=
3 2.
(2)原式=cos1π2sin1π2=12sin6π=14.
(3)原式=coss5in05°+0°co3ss5i0n°50°
第三章 三角恒等变换
§3.1 两角和与差的正弦、余弦和正切公式
3.1.3 二倍角的正弦、余弦、正切公式
课前预习目标
课堂互动探究
课前预习目标
梳理知识 夯实基础
学习目标 1.理解并掌握二倍角的正弦、余弦、正切公式. 2.正确运用二倍角的正弦、余弦、正切公式进行化简、 求值、证明.
最新人教版高中数学必修4第三章《二倍角的正弦、余弦、正切公式》
3.1.3 二倍角的正弦、余弦、正切公式1.会推导二倍角的正弦、余弦、正切公式.2.灵活应用二倍角的正弦、余弦、正切公式解决有关的求值、化简、证明等问题.对倍角公式的理解:(1)成立的条件:在公式S 2α,C 2α中,角α可以为任意角,T 2α则只有当α≠k π2+π4(k ∈Z )时才成立.(2)倍角公式不仅限于2α是α的二倍形式,其他如4α是2α的二倍、α是α2的二倍、3α是3α2的二倍等等都是适用的. 【做一做1-1】 已知sin α=35,cos α=45,则sin 2α等于( )A.75B.125C.1225D.2425【做一做1-2】 已知cos α=13,则cos 2α等于( )A.13B.23 C .-79 D.79 【做一做1-3】 已知tan α=3,则tan 2α等于( )A .6B .-34C .-38 D.98答案:2sin αcos α 2cos 2α-1 1-2sin 2α 2tan α1-tan 2α【做一做1-1】 D sin 2α=2sin αcos α=2425.【做一做1-2】 C cos 2α=2cos 2α-1=29-1=-79.【做一做1-3】 B tan 2α=2tan α1-tan 2α=2×31-32=-34.倍角公式的变形公式 剖析:(1)公式的逆用:2sin αcos α=sin 2α;sin αcos α=12sin 2α;cos α=sin 2α2sin α;cos 2α-sin 2α=cos 2α; 2tan α1-tan 2α=tan 2α.(2)公式的有关变形: 1±sin 2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2;1+cos 2α=2cos 2α;1-cos 2α=2sin 2α;cos 2α=1+cos 2α2;sin 2α=1-cos 2α2.(3)升幂和降幂公式升幂公式:1+sin α=⎝⎛⎭⎫sin α2+cos α22; 1-sin α=⎝⎛⎭⎫sin α2-cos α22; 1+cos α=2cos 2α2;1-cos α=2sin 2α2.降幂公式:cos 2α=1+cos 2α2;sin 2α=1-cos 2α2.题型一 利用二倍角公式求值 【例1】 求下列各式的值:(1)cos π5cos 2π5;(2)12-cos 2π8; (3)tan π12-1tan π12.分析:第(1)题可根据2π5是π5的2倍构造二倍角的公式求值;第(2)(3)题需将所求的式子变形,逆用二倍角公式化简求值.反思:解决此类题目时,应善于观察三角函数式的特点,变形后正用或逆用公式来解决.本题中,若要求出cos π5,cos 2π5,cos π8,tan π12的值,则会使问题复杂化.题型二 知值求值【例2】 已知sin α=513,α∈⎝⎛⎭⎫π2,π,求sin 2α,cos 2α,tan 2α的值. 分析:利用同角三角函数的基本关系求出cos α的值,然后利用二倍角公式求出sin 2α,cos 2α,进而求出tan 2α的值.反思:已知α的某个三角函数值,求sin 2α,cos 2α,tan 2α值的步骤:(1)利用同角三角函数基本关系式求出α的其他三角函数值;(2)代入S 2α,C 2α,T 2α计算即可.题型三 二倍角公式在三角形中的应用【例3】 在△ABC 中,cos B =35,tan C =12,求tan(B +2C )的值.分析:求出tan B 和tan 2C 的值,再用和角的正切公式求值.反思:在三角形中讨论三角函数问题时,要注意各内角的范围是(0,π).本题若忽视这一点,则易错得sin B =±45.题型四 易错辨析【例4】 化简2-2+2+2cos α(3π<α<4π). 错解:原式=2-2+4cos 2α2=2-2+2cos α2=2-4cos 2α4=2-2cos α4=4sin 2α8=2sin α8.错因分析:上述错解在运用倍角公式从里到外去掉根号时,没有顾及角的范围而选择正、负号,只是机械地套用公式.反思:利用二倍角公式化简1±cos α时,由于1+cos α=2cos 2α2,1-cos α=2sin 2α2,则1+cos α=2⎪⎪⎪cos α2,1-cos α=2⎪⎪⎪sin α2,要根据α2所在象限确定sin α2,cos α2的符号,从而去掉绝对值符号.答案:【例1】 解:(1)原式=2sin π5cos π5cos 2π52sin π5=sin 2π5cos2π52sinπ5=sin4π54sin π5=sin π54sinπ5=14.(2)原式=1-2cos 2π82=-2cos 2π8-12=-12cos π4=-24.(3)原式=tan 2π12-1tan π12=-2×1-tan 2π122tan π12=-2×1tanπ6=-233=-2 3.【例2】 解:∵sin α=513,α∈⎝⎛⎭⎫π2,π, ∴cos α=-1-sin 2α=-1-⎝⎛⎭⎫5132=-1213. ∴sin 2α=2sin αcos α=2×513×⎝⎛⎭⎫-1213=-120169, cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫5132=119169,tan 2α=sin 2αcos 2α=-120169×169119=-120119.【例3】 解:∵0<B <π,∴sin B =1-cos 2B =45.∴tan B =sin B cos B =43.又tan 2C =2tan C1-tan 2C=2×121-14=43, ∴tan(B +2C )=tan B +tan 2C1-tan B tan 2C=43+431-43×43=-247.【例4】 正解:因为3π<α<4π,所以3π2<α2<2π,3π4<α4<π,3π8<α8<π2,则cos α2>0,cos α4<0,cos α8>0. 所以原式=2-2+4cos 2α2=2-2+2cos α2=2-4cos 2α4=2+2cos α4=4cos 2α8=2cos α8.1.12-sin215°的值是( )2.已知α为第二象限角,且sin α=13,则sin 2α=__________. 3.2πtan8π1tan 8-=__________.4.在△ABC 中,cos A =513,则sin 2A =__________. 5.已知cos α=1213-,α∈3ππ,2⎛⎫⎪⎝⎭,求sin 2α,cos 2α,tan 2α的值.答案:1.D原式=12-1cos(215)2-⨯︒=cos302︒=4.2.9-由于α为第二象限角,则cos α=3-,则sin 2α=2sinαcos α=9 -.3.12原式=12×2π2tan8π1tan8-=1πtan228⎛⎫⨯⎪⎝⎭=1πtan24=12.4.120169∵0<A<π,∴sin A1213.∴sin 2A=2sin A cos A=120 169.5.解:∵cos α=1213-,α∈3ππ,2⎛⎫⎪⎝⎭,∴sin α==513-.∴sin 2α=2sin αcos α=2×513⎛⎫- ⎪⎝⎭×1213⎛⎫- ⎪⎝⎭=120169,cos 2α=1-2sin2α=1-2×2513⎛⎫- ⎪⎝⎭=119169,tan 2α=sin2cos2αα=120119.。
人教版高中数学必修4学案 3.1.3二倍角的正弦、余弦、正切公式
第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.1.3 二倍角的正弦、余弦、正切公式1.理解并掌握二倍角的正弦、余弦、正切公式及其推导过程.2.灵活运用二倍角公式及其不同变形,能正用、逆用公式,进一步学习化归思想方法.基础梳理一、二倍角的正弦、余弦、正切公式α+β=sin αcos β+cos αsin β中,令β=α,在公式sin()得到sin 2α=2sin_αcos_α,这就是二倍角的正弦公式;α+β=cos αcos β-sin αsin β中,令β=α,在公式cos()得到cos 2α=cos2α-sin2α,这就是二倍角的余弦公式,其变形形式有:cos 2α=2cos 2α-1=1-2sin 2α; 在公式tan ()α+β=tan α+tan β1-tan αtan β中,令β=α,得到tan 2α=2tan α1-tan α,这就是二倍角的正切公式.练习1:2sin 15°cos 15°=12.练习2:cos 2α2-sin 2α2=cos_α.练习3:2tan 2α1-tan 22α=tan_4α. 思考应用1. 二倍角的正弦、余弦、正切公式中的角是否为任意角?解析:注意 tan 2α=2tan α1-tan 2α这个公式,因为要使tan 2α,tan α有意义,即2α≠π2+k π且α≠π2+k π(k ∈Z)还有1-tan 2α≠0即tan α≠±1从而推出α≠π4+k π(k ∈Z)综上所述α≠π4+k π2且α≠π2+k π(k ∈Z)而公式S 2α、C 2α中,角α可以是任意角.二、二倍角公式中应注意的问题(1)对“二倍角”公式应该有广泛的理解.如8α是4α的二倍角,α是α2的二倍角,α3是α6的二倍角等等.又如α=2×α2,α2=2×α4,…,α2n =2×α2n +1等等.(2)当α=k π+π2()k ∈Z 时,tan α的值不存在,这时求tan 2α的值可用诱导公式求得.(3)一般情况下,sin 2α≠2sin α,例如sin π3≠2sin π6.(4)公式的逆用变形. 升幂公式: 1+cos α=2cos 2α2,1-cos α=2sin2α2,1±sin 2α=()sin α±cos α2.降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.思考应用2.试应用二倍角的正弦、余弦公式化简并讨论函数y =2cos 2⎝⎛⎭⎪⎫x -π4-1的奇偶性与周期性.解析:∵y =2cos 2⎝ ⎛⎭⎪⎪⎫x -π4-1=cos ⎝⎛⎭⎪⎪⎫2x -π2 =cos ⎝⎛⎭⎪⎪⎫π2-2x =sin 2x ,∴函数y =2cos 2⎝⎛⎭⎪⎪⎫x -π4-1为奇函数, 且其最小正周期T =2π2=π.自测自评1.若sin α2=45,cos α2=-35,则角α是(C )A .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角 解析:∵sin α=2sin α2cos α2=2×45×⎝ ⎛⎭⎪⎫-35=-2425<0,cos α=cos 2α2-sin 2α2=⎝ ⎛⎭⎪⎫-352-⎝ ⎛⎭⎪⎫452=-725<0,∴角α是第三象限角.故选C.2.设sin 2α=-sin α,α∈⎝⎛⎭⎪⎪⎫π2,π,则tan 2α分析:由sin 2α=2sin αcos α及sin 2α=-sin α,α∈⎝⎛⎭⎪⎪⎫π2,π解出α,进而求得tan 2α的值.解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.∵α∈⎝⎛⎭⎪⎪⎫π2,π,sin α≠0,∴cos α=-12,∴α=23π, ∴tan 2α=tan 43π=tan ⎝⎛⎭⎪⎪⎫π+π3=tan π3= 3.3.sin 20°cos 20°cos 2155°-sin 2155°的值是(A ) A.12 B .-12 C.32 D .-32解析:原式=12sin 40°cos 310°=sin 40°2cos ⎝⎛⎭⎫270°+40° =sin 40°2sin 40°=12.故选A. 4.已知x ∈⎝⎛⎭⎪⎪⎫-π2,0,cos x =45,则tan 2x =-247. 解析:∵x ∈⎝⎛⎭⎪⎪⎫-π2,0,cos x =45, ∴sin x =-35,tan x =-34,∴tan 2x =2tan x 1-tan 2 x=-247.基础提升1.函数y =cos 2x -sin 2x 的最小正周期是(A ) A .π B.π2 C.π4D .2π解析:∵y =cos 2x ,∴函数的最小正周期T =π.故选A. 2.化简2sin 2α1+cos 2α·cos 2αcos 2α的结果是(B )A .tan αB .tan 2αC .1 D.12解析:原式=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α.故选B. 3.化简sin ⎝ ⎛⎭⎪⎫π4+x sin ⎝ ⎛⎭⎪⎫π4-x 的结果是(B ) A.12sin 2x B.12cos 2x C .-12cos 2x D .-12sin 2x解析:原式=⎝ ⎛⎭⎪⎪⎫sin π4cos x +cos π4sin x ⎝ ⎛⎭⎪⎪⎫sin π4cos x -cos π4sin x =⎝ ⎛⎭⎪⎫22cos x +22sin x ⎝ ⎛⎭⎪⎫22cos x -22sin x=12(cos 2x -sin 2x )=12cos 2x .故选B. 4.已知cos α=-35,且π<α<3π2,则cos α2= (B )A.55 B .-55 C.255 D .-255解析:∵cos α=2cos2α2-1,∴cos2α2=1+cos α2=15. ∵π<α<3π2,∴π2<α2<3π4,∴cos α2=-15=-55.故选B. 5.当3π<α<4π时,化简1+cos α2- 1-cos α2(A ) A.2sin ⎝ ⎛⎭⎪⎫α2+π4 B .-2sin ⎝ ⎛⎭⎪⎫α2+π4C.2sin ⎝ ⎛⎭⎪⎫α2-π4 D .-2sin ⎝ ⎛⎭⎪⎫α2-π4解析:1+cos α2-1-cos α2=cos2α2-sin 2α2=⎪⎪⎪⎪⎪⎪⎪⎪cos α2-⎪⎪⎪⎪⎪⎪⎪⎪sin α2,∵3π<α<4π, ∴3π2<α2<2π, ∴sin α2<0,cos α2>0.∴原式=sin α2+cos α2=2sin ⎝ ⎛⎭⎪⎪⎫α2+π4.故选A. 巩固提高6.已知三角形的一个内角α满足sin α+cos α=34,则三角形的形状是(B )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形 解析:∵sin α+cos α=34,且sin 2α+cos 2α=1, ∴1+sin 2α=916,∴sin 2α=-716<0,又α是三角形的一个内角,故α是钝角. 故选B.7.已知cos ⎝ ⎛⎭⎪⎫α+π4=35,π2≤α<3π2,求cos ⎝⎛⎭⎪⎫2α+π4的值.解析:∵π2≤α<3π2,∴3π4≤α+π4<7π4, 又cos ⎝⎛⎭⎪⎪⎫α+π4=35 ∴sin ⎝⎛⎭⎪⎪⎫α+π4=-1-cos 2⎝⎛⎭⎪⎪⎫α+π4=-1-⎝ ⎛⎭⎪⎫352=-45.∴cos 2α=sin ⎝ ⎛⎭⎪⎪⎫2α+π2=2sin ⎝⎛⎭⎪⎪⎫α+π4cos ⎝ ⎛⎭⎪⎪⎫α+π4=2⎝ ⎛⎭⎪⎫-45×35=-2425.又由cos ⎝ ⎛⎭⎪⎪⎫α+π4=35,得2cos 2⎝⎛⎭⎪⎪⎫α+π4-1=-725,即cos 2⎝⎛⎭⎪⎪⎫α+π4=-725,∴sin 2α=725. ∴cos ⎝⎛⎭⎪⎪⎫2α+π4=cos 2αcos π4-sin 2αsin π4=-2425×22-725×22=-31250. 8.已知sin α+cos α=33(0<α<π),求cos 2α的值.解析:∵sin α+cos α=33,∴(sin α+cos α)2=13, 2sin αcos α=-23,又0<α<π,∴sin α>0,cos α<0.∵(sin α-cos α)2=1-2sin αcos α=53,∴sin α-cos α=153.∴cos 2α=(cos α+sin α)(cos α-sin α)=-153×33=-53. 9.已知函数y =12cos 2x +32sin x cos x +1()x ∈R .(1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图象可由y =sin x ()x ∈R 的图象经过怎样的平移和伸缩变换得到?解析:(1)y =12cos 2x +32sin x cos x +1=14⎝⎛⎭⎫2cos 2x -1+14+34·()2sin x cos x +1 =14cos 2x +34sin 2x +54 =12⎝ ⎛⎭⎪⎪⎫cos 2x sin π6+sin 2x cos π6+54 =12sin ⎝⎛⎭⎪⎪⎫2x +π6+54. 所以y 取最大值时,只需2x +π6=π2+2k π⎝⎛⎭⎫k ∈Z , 即x =π6+k π⎝⎛⎭⎫k ∈Z . 所以当函数y 取最大值时,自变量x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x =π6+k π,k ∈Z.(2)将函数y =sin x 依次进行如下变换:①把函数y =sin x 的图象向左平移π6个单位长度,得到函数y =sin ⎝⎛⎭⎪⎪⎫x +π6的图象; ②把得到的图象上各点横坐标缩短到原来的12倍(纵坐标不变),得到函数y =sin ⎝⎛⎭⎪⎪⎫2x +π6的图象; ③把得到的图象上各点纵坐标缩短到原来的12倍(横坐标不变),得到函数y =12sin ⎝ ⎛⎭⎪⎪⎫2x +π6的图象; ④把得到的图象向上平移54个单位长度,得到函数 y =12sin ⎝ ⎛⎭⎪⎪⎫2x +π6+54的图象. 综上得到y =12cos 2x +32sin x cos x +1⎝⎛⎭⎫x ∈R 的图象.1.利用同角三角函数基本关系式求值常有两类题:一类是已知角α的某个三角函数值,求其他三角函数值.解法是直接利用三角函数基本关系式求解.另一类是已知tan α的值,求关于sin α,cos α的齐次分式的值的问题,比如求sin α+cos αsin α-cos α的值,因为cos α≠0,所以用cos α除之,将待求式化为关于tan α的表达式,可整体代入tan α=m 的值,从而完成待求式的求值.2.关于化简与证明:(1)sin 2α+cos 2α=1及()sin α+cos α2=1+2sin αcos α是常用的技巧;同时应注意正切化两弦.(2)利用同角三角函数关系式证明时,要熟悉公式,方法有从左至右或从右至左或从两侧同时证明.。
必修四二倍角的正弦、余弦、正切公式(附答案)
二倍角的正弦、余弦、正切公式[学习目标] 1.会从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式.2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变形运用.知识点一 二倍角公式的推导(1)S 2α:sin 2α=2sin αcos α,sin α2cos α2=12sin α; (2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(3)T 2α:tan 2α=2tan α1-tan 2α. 思考1 二倍角的正弦、余弦、正切公式就是用α的三角函数表示2α的三角函数的公式.根据前面学过的两角和与差的正弦、余弦、正切公式.你能推导出二倍角的正弦、余弦、正切公式吗?答案 sin 2α=sin(α+α)=sin αcos α+cos αsin α=2sin αcos α;cos 2α=cos(α+α)=cos αcos α-sin αsin α=cos 2α-sin 2α;tan 2α=tan(α+α)=2tan α1-tan 2α. 思考2 根据同角三角函数的基本关系式sin 2α+cos 2α=1,你能否只用sin α或cos α表示cos 2α?答案 ∵cos 2α=cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1;或cos 2α=cos 2α-sin 2α=(1-sin 2α)-sin 2α=1-2sin 2α.知识点二 二倍角公式的常用变形(1)sin 2α2sin α=cos α,sin 2α2cos α=sin α; (2)(sin α±cos α)2=1±sin 2α;(3)sin 2α=1-cos 2α2,cos 2α=1+cos 2α2; (4)1-cos α=2sin 2α2,1+cos α=2cos 2α2. 二倍角的余弦公式cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α变形较多,应用灵活.其中sin 2α=1-cos 2α2,cos 2α=1+cos 2α2也称作降幂公式,1-cos α2=sin 2α2,1+cos α2=cos 2α2也称作升幂公式.这些公式在统一角或函数名时非常有用.思考 函数f (x )=3sin x cos x +cos 2x -12的最小正周期是 . 答案 π解析 ∵f (x )=32sin 2x +12(2cos 2x -1) =32sin 2x +12cos 2x =sin ⎝⎛⎭⎫2x +π6, ∴T =2π2=π.题型一 利用倍角公式化简求值例1 求下列各式的值. (1)cos π12cos 512π; (2)13-23cos 215°. 解 (1)原式=cos π12·sin π12=12sin π6=14. (2)原式=-13(2cos 215°-1)=-13cos 30° =-36. 跟踪训练1 求下列各式的值.(1)cos 72°cos 36°;(2)1sin 50°+3cos 50°. 解 (1)cos 72°cos 36°=2sin 36°cos 36°cos 72°2sin 36°=2sin 72°cos 72°4sin 36°=sin 144°4sin 36°=14. (2)原式=cos 50°+3sin 50°sin 50°cos 50°=2(12cos 50°+32sin 50°)12×2sin 50°cos 50°=2sin 80°12sin 100°=2sin 80°12sin 80°=4. 题型二 三角函数式的化简或证明例2 求证:3-4cos 2A +cos 4A 3+4cos 2A +cos 4A=tan 4 A . 证明 ∵左边=3-4cos 2A +2cos 22A -13+4cos 2A +2cos 22A -1=⎝ ⎛⎭⎪⎫1-cos 2A 1+cos 2A 2=⎝⎛⎭⎫2sin 2A 2cos 2A 2=(tan 2A )2 =tan 4 A =右边,∴3-4cos 2A +cos 4A 3+4cos 2A +cos 4A=tan 4 A .跟踪训练2 化简:1+sin 2θ-cos 2θ1+sin 2θ+cos 2θ. 解 方法一 原式=(1-cos 2θ)+sin 2θ(1+cos 2θ)+sin 2θ=2sin 2θ+2sin θcos θ2cos 2θ+2sin θcos θ=2sin θ(sin θ+cos θ)2cos θ(cos θ+sin θ)=tan θ.方法二 原式=(sin θ+cos θ)2-(cos 2θ-sin 2θ)(sin θ+cos θ)2+(cos 2θ-sin 2θ)=(sin θ+cos θ)[(sin θ+cos θ)-(cos θ-sin θ)](sin θ+cos θ)[(sin θ+cos θ)+(cos θ-sin θ)]=2sin θ2cos θ=tan θ. 题型三 利用二倍角公式给值求值例3 已知sin(π4+α)sin(π4-α)=16,且α∈(π2,π),求sin 4α的值. 解 ∵(π4+α)+(π4-α)=π2, ∴sin(π4-α)=cos(π4+α). ∵sin(π4+α)sin(π4-α)=16, ∴2sin(π4+α)cos(π4+α)=13, ∴sin(π2+2α)=13,∴cos 2α=13. 又∵α∈(π2,π),∴2α∈(π,2π). ∴sin 2α=-1-cos 22α=-223, ∴sin 4α=2sin 2αcos 2α=-429. 跟踪训练3 已知sin ⎝⎛⎭⎫π4-x =513,0<x <π4,求cos 2x cos ⎝⎛⎭⎫π4+x 的值.解 原式=sin ⎝⎛⎭⎫π2+2x cos ⎝⎛⎭⎫π4+x =2sin ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x =2sin ⎝⎛⎭⎫π4+x . ∵sin ⎝⎛⎭⎫π4-x =cos ⎝⎛⎭⎫π4+x =513,且0<x <π4, ∴π4+x ∈⎝⎛⎭⎫π4,π2, ∴sin ⎝⎛⎭⎫π4+x = 1-cos 2⎝⎛⎭⎫π4+x =1213, ∴原式=2×1213=2413.合理配凑、巧用倍角公式求解例4 求cos π11cos 2π11cos 3π11cos 4π11cos 5π11的值. 分析 添加“sin π11”及系数2,创造条件,注意重复使用倍角公式. 解 原式=-cos π11cos 2π11cos 4π11cos 8π11cos 5π11 =-24sin π11cos π11cos 2π11cos 4π11cos 8π11cos 5π1124sin π11 =-sin 16π11cos 5π1124sin π11=sin 5π11cos 5π1124sin π11=12·sin 10π1124sin π11=sinπ1125sin π11=132.1.12sin π12cos π12的值等于( ) A.14 B.18 C.116D.122.sin 4π12-cos 4π12等于( ) A .-12 B .-32 C.12 D.323.2sin 2α1+cos 2α·cos 2αcos 2α等于( ) A .tan 2α B .tan α C .1 D.124.已知cos ⎝⎛⎭⎫x -π4=210,则sin 2x = . 5.求值:sin 50°(1+3tan 10°)-cos 20°cos 80°1-cos 20°.一、选择题 1.已知x ∈(-π2,0),cos x =45,则tan 2x 等于( ) A.724 B .-724 C.247 D .-2472.已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4等于( ) A.16 B.13 C.12 D.233.若sin(π6-α)=13,则cos(2π3+2α)的值为( ) A .-13 B .-79 C.13 D.794.若1-tan θ2+tan θ=1,则cos 2θ1+sin 2θ的值为( ) A .3 B .-3 C .-2 D .-125.已知等腰三角形底角的正弦值为53,则顶角的正弦值是( ) A.459 B.259 C .-459 D .-2596.如果|cos θ|=15,5π2<θ<3π,则sin θ2的值是( ) A .-105 B.105 C .-155 D.155二、填空题7.2sin 222.5°-1= .8.sin 6°sin 42°sin 66°sin 78°= .9.已知tan θ2=3,则1-cos θ+sin θ1+cos θ+sin θ= . 10.函数f (x )=cos x -sin 2x -cos 2x +74的最大值是 . 三、解答题11.已知角α在第一象限且cos α=35,求1+2cos (2α-π4)sin (α+π2)的值.12.已知sin 22α+sin 2αcos α-cos 2α=1,α∈(0,π2),求α.13.求值:sin 2α+sin 2⎝⎛⎭⎫π3+α+sin 2⎝⎛⎭⎫π3-α.当堂检测答案1.答案 B解析 原式=14sin π6=18. 2.答案 B解析 原式=⎝⎛⎭⎫sin 2π12+cos 2π12·⎝⎛⎭⎫sin 2π12-cos 2π12=-⎝⎛⎭⎫cos 2π12-sin 2π12=-cos π6=-32. 3.答案 A解析 原式=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α. 4.答案 -2425解析 sin 2x =cos ⎝⎛⎭⎫π2-2x =cos ⎝⎛⎭⎫2x -π2 =cos 2[(x -π4)]=2cos 2⎝⎛⎭⎫x -π4-1 =2×⎝⎛⎭⎫2102-1=-2425. 5.解 ∵sin 50°(1+3tan 10°)=sin 50°·cos 10°+3sin 10°cos 10°=sin 50°·2sin 40°cos 10°=1, cos 80°1-cos 20°=sin 10°2sin 210°=2sin 210°, ∴sin 50°(1+3tan 10°)-cos 20°cos 80°1-cos 20°=1-cos 20°2sin 210°= 2.课时精练答案一、选择题1.答案 D解析 cos x =45,x ∈(-π2,0),得sin x =-35, 所以tan x =-34,所以tan 2x =2tan x 1-tan 2x =2×(-34)1-(-34)2=-247,故选D. 2.答案 A解析 因为cos 2⎝⎛⎭⎫α+π4=1+cos[2⎝⎛⎭⎫α+π4]2=1+cos ⎝⎛⎭⎫2α+π22=1-sin 2α2, 所以cos 2⎝⎛⎭⎫α+π4=1-sin 2α2=1-232=16,选A. 3.答案 B解析 cos(2π3+2α)=-cos(π3-2α)=-cos[2(π6-α)] =-[1-2sin 2(π6-α)]=2sin 2(π6-α)-1=-79. 4.答案 A解析 ∵1-tan θ2+tan θ=1,∴tan θ=-12. ∴cos 2θ1+sin 2θ=cos 2θ-sin 2θ(sin θ+cos θ)2=cos θ-sin θcos θ+sin θ=1-tan θ1+tan θ=1-⎝⎛⎭⎫-121+⎝⎛⎭⎫-12=3.5.答案 A解析 设底角为θ,则θ∈⎝⎛⎭⎫0,π2,顶角为π-2θ. ∵sin θ=53,∴cos θ=1-sin 2θ=23. ∴sin(π-2θ)=sin 2θ=2sin θcos θ=2×53×23=459.6.答案 C解析 ∵5π2<θ<3π,|cos θ|=15, ∴cos θ<0,cos θ=-15. ∵5π4<θ2<32π,∴sin θ2<0. ∵sin 2θ2=1-cos θ2=35, ∴sin θ2=-155. 二、填空题7.答案 -22解析 原式=-cos 45°=-22. 8.答案 116解析 原式=sin 6°cos 48°cos 24°cos 12° =sin 6°cos 6°cos 12°cos 24°cos 48°cos 6°=sin 96°16cos 6°=cos 6°16cos 6°=116. 9.答案 3解析 1-cos θ+sin θ1+cos θ+sin θ=2sin 2θ2+2sin θ2cos θ22cos 2θ2+2sin θ2cos θ2=2sin θ2⎝⎛⎭⎫sin θ2+cos θ22cos θ2⎝⎛⎭⎫cos θ2+sin θ2 =tan θ2=3. 10.答案 2解析 ∵f (x )=cos x -(1-cos 2x )-(2cos 2x -1)+74=-cos 2x +cos x +74=-⎝⎛⎭⎫cos x -122+2. ∴当cos x =12时,f (x )max =2. 三、解答题11.解 ∵cos α=35且α在第一象限,∴sin α=45. ∴cos 2α=cos 2α-sin 2α=-725, sin 2α=2sin αcos α=2425, 原式=1+2(cos 2αcos π4+sin 2αsin π4)cos α=1+cos 2α+sin 2αcos α=145. 12.解 ∵sin 22α+sin 2αcos α-(cos 2α+1)=0, ∴4sin 2αcos 2α+2sin αcos 2α-2cos 2α=0.∵α∈(0,π2),∴2cos 2α>0. ∴2sin 2α+sin α-1=0.∴sin α=12(sin α=-1舍).∴α=π6. 13.解 原式=1-cos 2α2+1-cos ⎝⎛⎭⎫23π+2α2+ 1-cos ⎝⎛⎭⎫23π-2α2=32-12cos 2α-12⎣⎡⎦⎤cos ⎝⎛⎭⎫23π+2α+cos ⎝⎛⎭⎫23π-2α =32-12cos 2α-cos 2π3·cos 2α =32-12cos 2α+12cos 2α=32.。
人教版高一数学必修四第三章二倍角的正弦、余弦、正切公式
3.1.3二倍角的正弦、余弦、正切公式考点学习目标核心素养二倍角的正弦、余弦、正切公式会推导二倍角的正弦、余弦、正切公式逻辑推理二倍角的正弦、余弦、正切公式的应用能够灵活运用二倍角公式解决求值、化简和证明等问题数学运算、逻辑推理问题导学预习教材P132-P134,并思考下列问题:1.在公式C(α+β),S(α+β)和T(α+β)中,若α=β,公式还成立吗?2.在上述公式中,若α=β,能得出什么结论?二倍角的正弦、余弦、正切公式名称公式推导记法正弦sin 2α=2sin__αcos__αS(α+β)――→令β=αS2αS2α余弦cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2αC(α+β)――→令β=αC2α利用sin2α+cos2α=1消去sin2α或cos2αC2α正切tan 2α=2tan α1-tan2αT(α+β)――→令β=αT2αT2α正确理解二倍角公式(1)要注意公式应用的前提是所含各三角函数有意义.(2)倍角公式中的“倍角”是相对的,对于两个角的比值等于2的情况都成立,如6α是3α的2倍,3α是3α2的2倍.这里蕴含着换元思想.这就是说,“倍”是相对而言的,是描述两个数量之间的关系的.判断(正确的打“√”,错误的打“×”) (1)10α是5α的倍角,5α是5α2的倍角.( ) (2)二倍角的正弦、余弦、正切公式的适用范围是任意角.( ) (3)存在角α,使得sin 2α=2sin α成立.( ) (4)对于任意角α,总有tan 2α=2tan α1-tan 2α.( )答案:(1)√ (2)× (3)√ (4)×已知sin α=35,cos α=45,则sin 2α等于( )A.75 B.125 C.1225 D.2425答案:D计算1-2sin 222.5°的结果等于( ) A.12 B.22 C.33D.32 答案:B已知tan α=43,则tan 2α=________.答案:-247给角求值求下列各式的值. (1)sin π8cos π8;(2)cos 2π6-sin 2π6;(3)2tan 150°1-tan 2150°; (4)cos π5cos 2π5.【解】 (1)sin π8cos π8=12×2sin π8cos π8=12×sin π4=12×22=24.(2)cos2π6-sin2π6=cos⎝⎛⎭⎫2×π6=cosπ3=12.(3)原式=tan(2×150°)=tan 300°=tan(360°-60°)=-tan 60°=- 3.(4)原式=2sinπ5cosπ5cos2π52sinπ5=sin2π5cos2π52sinπ5=sin4π54sinπ5=sinπ54sinπ5=14.给角求值问题的两类解法(1)直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本关系对已知式进行转化,一般可以化为特殊角.(2)若形式为几个非特殊角的三角函数式相乘,则一般逆用二倍角的正弦公式,在求解过程中,需利用互余关系配凑出应用二倍角公式的条件,使得问题出现可以连用二倍角的正弦公式的形式.1.cos4π12-sin4π12等于()A.-12B.-32C.12 D.32解析:选D.原式=⎝⎛⎭⎫cos2π12-sin2π12⎝⎛⎭⎫cos2π12+sin2π12=cos π6=32.2.求下列各式的值.(1)tan 30°1-tan2 30°;(2)1sin 10°-3cos 10°.解:(1)tan 30°1-tan230°=12×2tan 30°1-tan230°=12tan 60°=32.(2)原式=cos 10°-3sin 10°sin 10°cos 10°=2⎝⎛⎭⎫12cos 10°-32sin 10°sin 10°cos 10°=4(sin 30°cos 10°-cos 30°sin 10°)2sin 10°cos 10°=4sin (30°-10°)sin (2×10°)=4sin 20°sin 20°=4.给值求值已知cos ⎝⎛⎭⎫α+π4=35,π2≤α<3π2,求cos(2α+π4)的值. 【解】 因为π2≤α<3π2,所以3π4≤α+π4<7π4.因为cos ⎝⎛⎭⎫α+π4>0,所以3π2<α+π4<7π4. 所以sin ⎝⎛⎭⎫α+π4=-1-cos 2⎝⎛⎭⎫α+π4 =-1-⎝⎛⎭⎫352=-45. 所以cos 2α=sin ⎝⎛⎭⎫2α+π2 =2sin ⎝⎛⎭⎫α+π4cos ⎝⎛⎭⎫α+π4 =2×⎝⎛⎭⎫-45×35=-2425, sin 2α=-cos ⎝⎛⎭⎫2α+π2=1-2cos 2⎝⎛⎭⎫α+π4 =1-2×⎝⎛⎭⎫352=725.所以cos ⎝⎛⎭⎫2α+π4=22cos 2α-22sin 2α =22×⎝⎛⎭⎫-2425-725=-31250.三角函数求值问题的一般思路(1)一是对题设条件变形,将题设条件中的角、函数名向结论中的角、函数名靠拢;另一种是对结论变形,将结论中的角、函数名向题设条件中的角、函数名靠拢,以便将题设条件代入结论.(2)注意几种公式的灵活应用,如: ①sin 2x =cos ⎝⎛⎭⎫π2-2x =cos ⎣⎡⎦⎤2⎝⎛⎭⎫π4-x =2cos 2⎝⎛⎭⎫π4-x -1=1-2sin 2⎝⎛⎭⎫π4-x ; ②cos 2x =sin ⎝⎛⎭⎫π2-2x =sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4-x =2sin ⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x .1.已知x ∈⎝⎛⎭⎫-π2,0,cos x =45,则tan 2x =( ) A.724 B .-724 C.247D .-247解析:选D.由cos x =45,x ∈⎝⎛⎭⎫-π2,0, 得sin x =-35,所以tan x =-34,所以tan 2x =2tan x1-tan 2x =2×⎝⎛⎭⎫-341-⎝⎛⎭⎫-342=-247,故选D.2.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( )A.118 B .-118 C.1718D .-1718解析:选 D.cos 2α=sin ⎝⎛⎭⎫π2-2α=sin 2⎝⎛⎭⎫π4-α=2sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α,代入原式,得6sin ⎝⎛⎭⎫π4-α·cos ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4-α.因为α∈⎝⎛⎭⎫π2,π,所以cos ⎝⎛⎭⎫π4-α=16,所以sin 2α=cos ⎝⎛⎭⎫π2-2α=2cos 2⎝⎛⎭⎫π4-α-1=-1718.化简与证明(1)化简2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α;(2)证明tan ⎝⎛⎭⎫π4+α-tan ⎝⎛⎭⎫π4-α=2tan 2α. 【解】 (1)原式=cos 2α2tan ⎝⎛⎭⎫π4-αcos 2⎝⎛⎭⎫π2-π4-α=cos 2α2tan ⎝⎛⎭⎫π4-αcos 2⎝⎛⎭⎫π4-α=cos 2α2sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α =cos 2αsin ⎝⎛⎭⎫2×π4-2α =cos 2αcos 2α=1. (2)证明:法一:左边=sin ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+α-sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-α-sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4+α-π4+αcos ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4+α=sin 2α12sin ⎝⎛⎭⎫π2+2α=2sin 2αcos 2α=2tan 2α=右边.所以等式成立.法二:左边=1+tan α1-tan α-1-tan α1+tan α=4tan α1-tan 2α=2tan 2α=右边.故原式成立.三角函数式的化简与证明(1)化简的方法①弦切互化,异名化同名,异角化同角;②降幂或升幂;③一个重要结论:(sin θ±cos θ)2=1±sin 2θ.(2)证明三角恒等式的方法①从复杂的一边入手,证明一边等于另一边;②比较法,左边-右边=0,左边右边=1;③分析法,从要证明的等式出发,一步步寻找等式成立的条件.1.若α为第三象限角,则1+cos 2αcos α-1-cos 2αsin α=________.解析:因为α为第三象限角,所以cos α<0,sin α<0, 所以1+cos 2αcos α-1-cos 2αsin α=2cos 2αcos α-2sin 2αsin α=-2cos αcos α--2sin αsin α=0.答案:02.求证:4sin αcos α1+cos 2α·cos 2αcos 2α-sin 2α=tan 2α.证明:左边=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α=右边.1.已知sin α=3cos α,那么tan 2α的值为( ) A .2 B .-2 C.34D .-34解析:选D.因为sin α=3cos α,所以tan α=3, 所以tan 2α=2tan α1-tan 2α=2×31-32=-34.2.已知sin θ2+cos θ2=233,那么sin θ=________,cos 2θ=________.解析:因为sin θ2+cos θ2=233,所以⎝⎛⎭⎫sin θ2+cos θ22=43, 即1+2sin θ2cos θ2=43,所以sin θ=13,所以cos 2θ=1-2sin 2θ=1-2×⎝⎛⎭⎫132=79. 答案:13 793.已知α∈⎝⎛⎭⎫π2,π,sin α=55. (1)求sin 2α,cos 2α的值; (2)求cos ⎝⎛⎭⎫5π6-2α的值. 解:(1)因为α∈⎝⎛⎭⎫π2,π,sin α=55, 所以cos α=-1-sin 2α=-255.sin 2α=2sin αcos α=2×55×⎝⎛⎭⎫-255=-45, cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫552=35. (2)由(1)知cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α =⎝⎛⎭⎫-32×35+12×⎝⎛⎭⎫-45 =-4+3310.[A 基础达标]1.已知sin ⎝⎛⎭⎫π4-x =35,则cos ⎝⎛⎭⎫π2-2x 的值为( )A.1925 B.1625 C.1425D.725解析:选D.因为sin ⎝ ⎛⎭⎪⎫π4-x =35,所以cos ⎝ ⎛⎭⎪⎫π2-2x =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-x=1-2sin 2⎝ ⎛⎭⎪⎫π4-x =725.2.已知sin α=55,则cos 4α-sin 4α的值为( ) A .-35B .-15C.15D.35解析:选D.cos 4α-sin 4α=(cos 2α+sin 2α)(cos 2α-sin 2α)=cos 2α=1-2sin 2α=1-25=35.3.设-3π<α<-5π2,化简1-cos (α-π)2的结果是( )A .sin α2B .cos α2C .-cos α2D .-sin α2解析:选C.因为-3π<α<-5π2,-3π2<α2<-5π4,所以1-cos (α-π)2=1+cos α2=⎪⎪⎪⎪⎪⎪cos α2=-cos α2.4.已知cos ⎝⎛⎭⎫α-π4=-13,则sin(-3π+2α)=( )A.79 B .-79C.35D .-35解析:选A.易得cos ⎝ ⎛⎭⎪⎫2α-π2=2cos 2⎝ ⎛⎭⎪⎫α-π4-1=2×⎝⎛⎭⎫-132-1=-79.又cos ⎝⎛⎭⎪⎫2α-π2=cos ⎝ ⎛⎭⎪⎫π2-2α=sin 2α,所以sin(-3π+2α)=sin(π+2α)=-sin 2α=-⎝⎛⎭⎫-79=79.故选A. 5.化简tan 14°1-tan 214°·cos 28°的结果为( )A.sin 28°2B .sin 28°C .2sin 28°D .sin 14°cos 28°解析:选A.tan 14°1-tan 214°·cos 28°=12×2tan 14°1-tan 214°·cos 28°=12tan 28°·cos 28°=sin 28°2,故选A.6.已知sin α-2cos α=0,则tan 2α=________. 解析:由sin α-2cos α=0,得tan α=sin αcos α=2,tan 2α=2tan α1-tan 2α=2×21-22=-43. 答案:-437.已知tan α=-13,则sin 2α-cos 2α1+cos 2α=________.解析:sin 2α-cos 2α1+cos 2α=2sin αcos α-cos 2α1+2cos 2α-1=2sin αcos α-cos 2α2cos 2α=tan α-12=-56.答案:-568.1-2sin 20°cos 20°2cos 210°-1-cos 2160°-1=________.解析:1-2sin 20°cos 20°2cos 210°-1-cos 2160°-1=(cos 20°-sin 20°)2cos 20°-sin 20°=cos 20°-sin 20°cos 20°-sin 20°=1.答案:19.已知sin 2α=513,π4<α<π2,求sin 4α,cos 4α的值.解:由π4<α<π2,得π2<2α<π. 因为sin 2α=513,所以cos 2α=-1-sin 22α=-1-⎝⎛⎭⎫5132=-1213. 于是sin 4α=2sin 2αcos 2α=2×513×⎝⎛⎭⎫-1213=-120169; cos 4α=1-2sin 22α=1-2×⎝⎛⎭⎫5132=119169. 10.已知π2<α<π,sin α=45. (1)求tan 2α的值;(2)求cos ⎝⎛⎭⎫2α-π4的值. 解:(1)由题意得cos α=-35, 所以tan α=-43, 所以tan 2α=2tan α1-tan 2α=-831-169=247. (2)因为sin α=45,所以cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫452=-725, sin 2α=2sin α·cos α=2×45×⎝⎛⎭⎫-35=-2425. 所以cos ⎝⎛⎭⎪⎫2α-π4=cos 2α·cos π4+sin 2α·sin π4=⎝⎛⎭⎫-725×22+⎝⎛⎭⎫-2425×22=-31250. [B 能力提升]11.已知tan x =2,则tan ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4等于( ) A.43B .-43 C.34 D .-34解析:选C.tan ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4 =tan ⎝ ⎛⎭⎪⎫2x -π2=sin ⎝ ⎛⎭⎪⎫2x -π2cos ⎝ ⎛⎭⎪⎫2x -π2=-cos 2x sin 2x =-1tan 2x=-1-tan 2x 2tan x =4-12×2=34. 12.已知θ∈⎝⎛⎭⎫π2,π,1sin θ+1cos θ=22,则sin ⎝⎛⎭⎫2θ+π3=________. 解析:1sin θ+1cos θ=22⇒sin θ+cos θsin θcos θ=22 ⇒sin θ+cos θ=22sin θcos θ⇒1+sin 2θ=2sin 22θ,因为θ∈⎝ ⎛⎭⎪⎫π2,π,所以2θ∈(π,2π), 所以sin 2θ=-12,所以sin θ+cos θ<0, 所以θ∈⎝ ⎛⎭⎪⎫3π4,π,所以2θ∈⎝ ⎛⎭⎪⎫3π2,2π, 所以cos 2θ=32,所以sin ⎝⎛⎭⎪⎫2θ+π3=sin 2θ·cos π3+sin π3cos 2θ=12. 答案:1213.已知sin ⎝⎛⎭⎫π4-x =513,0<x <π4,求cos 2x cos ⎝⎛⎭⎫π4+x 的值. 解:因为0<x <π4,所以0<π4-x <π4. 又因为sin ⎝ ⎛⎭⎪⎫π4-x =513, 所以cos ⎝ ⎛⎭⎪⎫π4-x =1213. 因为cos 2x =sin ⎝ ⎛⎭⎪⎫π2-2x =2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x =2sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4-x=2cos ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4-x , 所以cos 2x cos ⎝ ⎛⎭⎪⎫π4+x =2cos ⎝ ⎛⎭⎪⎫π4-x =2413. 14.(选做题)已知sin x 2-2cos x 2=0. (1)求tan x 的值;(2)求cos 2xcos ⎝⎛⎭⎫5π4+x sin (π+x )的值.解:(1)由sin x 2-2cos x 2=0, 知cos x 2≠0,所以tan x 2=2, 所以tan x =2tan x 21-tan 2 x 2=2×21-22=-43. (2)由(1)知tan x =-43, 所以cos 2x cos ⎝ ⎛⎭⎪⎫5π4+x sin (π+x ) =cos 2x-cos ⎝ ⎛⎭⎪⎫π4+x (-sin x ) =cos 2x -sin 2x ⎝⎛⎭⎫22cos x -22sin x sin x =(cos x -sin x )(cos x +sin x )22(cos x -sin x )sin x =2×cos x +sin x sin x=2×1+tan x tan x =24.。
高中数学第三章三角恒等变换3.1.3二倍角的正弦余弦正切公式课件新人教版必修4
上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一 遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。
ππ π 解 (1)原式=2sin122cos12=sin26 =14. (2)原式=cos(2×750°)=cos 1 500° =cos(4×360°+60°)=cos 60°=12. (3)原式=tan(2×150°)=tan 300° =tan(360°-60°)=-tan 60°=- 3.
所以
cos2α+π4
=
22-2245-275=-3150
2 .
类型三 给值求角问题 【例 3】 已知 tan α =13,tan β =-17,且 α,β ∈(0,π ),
求 2α-β 的值. 解 ∵tan α =13>0,
∴α ∈0,π2 ,2α ∈(0,π ), ∴tan 2α =12-tatnanα2α =1-2×13132=34>0,
系.特别要注意利用这些条件来确定某些三角函数值的符
号.
【训练 2】已知 cosα
+π4 =35,π2 ≤α
3π <2
,求 cos2α
+π4
的值.
解
∵π2
≤α
3π <2
,∴3π4
≤α
+π4
7π <4
,于是可由 cosα
+π4
=35得到 sinα +π4 =-45.即 22cos α - 22sin α =35,
最新人教版高中数学必修4第三章二倍角的正弦、余弦、正切公式1
3 5
4 5
)
B.
12 5 24 25
C.
12 25
D.
24 25
解析:sin 2α=2sin αcos α= . 答案:D 【做一做 2】 已知 cos α= ,则 cos 2α 等于( A.
1 3 1 3
) D.
7 9
B.
2 3 2 9 7 9
C.-
7 9
解析:cos 2α=2cos2α-1= -1=- . 答案:C
2������������������ α 1-������������ ������ 2 α
简记 S(α+β) C(α+β) T(α+β) S2α C2α T2α
-3-
1.1
DNA重组技术的基本工具
自主预习 首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIANS 随练习-8-1.1
DNA重组技术的基本工具
首 页
S 随堂练习 典型考题 J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
UITANG LIANXI
题型一
题型二
题型一
利用二倍角公式求值
【例 1】 求下列各式的值: (1)cos cos ; (2) -cos2 ; (3)tan
-9-
1.1
DNA重组技术的基本工具
首 页
S 随堂练习 典型考题 J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
UITANG LIANXI
题型一
题型二
解决此类题目时,应善于观察三角函数式的特点,变形后正用或逆用 公式来解决.
新人教版高中数学必修四3.1.3《二倍角的正弦、余弦、正切公式》课件(新人教A版必修4)
注意:
切化弦
四、课堂练习
1 1、若 sin cos 2, tan 的值 2 1 tan
5 ( ,), 例2、已知 sin , 13 2 求 sin 2 , cos 2 , tan 2 的值。 解: sin 5 , ( ,), 13 2 12 cos 13 5 12 120
sin 2 2 sin cos 2
cos2 cos sin (C2 )
2 2
2 tan tan 2 1 tan 2
cos2 1 2 sin 2 cos2 2 cos 1 1 cos 2 2 sin 2 2 2 cos sin 1
2
(T2 )
返回
六、作业
P144 、练习A 2、3、4
练习B 2、3
原式 sin
2 2 2 5 7 cos sin 4 2 4 2 2
cos
cos
sin
2
返回
五、归纳总结
1、二倍角公式是和角公式的特例,体现将 一般化归为特殊的基本数学思想方法。 2、二倍角公式与和角、差角公式一样,反 映的都是如何用单角的三角函数值表示 复角(和、差、倍)的三角函数值,结 合前面学习到的同角三角函数关系式和 诱导公式可以解决三角函数中有关的求 值、化简和证明问题。
新课标人教版课件系列
《高中数学》
最新人教版高中数学必修4第三章《二倍角的正弦、余弦、正切公式》课堂探究
课堂探究知能点一:给角求值“给角求值”:一般所给出的角都是非特殊角,从表面来看是很难的,但仔细观察非特殊角与特殊角总有一定的关系.解题时,要利用观察得到的关系,结合三角公式转化为特殊角并且消除非特殊角的三角函数而得解.【例1】求下列各式的值:(1)ππsin cos1212;(2)1-2sin2750°;(3)22tan1501tan150-;(4)1sin10cos10-;(5)cos 20°cos 40°cos 80°.灵活地运用二倍角公式及公式变形求解.解:(1)原式=πππsin2sin cos161212224==.(2)原式=cos(2×750°)=cos 1 500°=cos(4×360°+60°)=cos 60°=12.(3)原式=tan(2×150°)=tan 300°=tan(360°-60°)=-tan 60°=(4)12(cos10)22sin10cos10-=4(sin30cos10cos30sin10)4sin2042sin10cos10sin20-===. (5)原式=2sin20cos20cos40cos802sin202sin40cos40cos804sin20=2sin80cos80sin16018sin 208sin 208===.此类题型(1)(2)(3)小题直接利用公式或逆用公式较为简单,而(4)小题分式一般先通分,再考虑结合三角函数公式的逆用从而使问题得解.而(5)小题通过观察角度的关系,发现其特征(二倍角形式),逆用正弦二倍角公式,使得问题中可连用正弦二倍角公式,所以在解题过程中要注意观察式子的结构特点及角之间是否存在特殊的倍数关系,灵活运用公式及其变形,从而使问题迎刃而解.知能点二:给值化简求值(或求角)从角的关系寻找突破口.这类三角函数求值问题常有两种解题途径:一是对题设条件变形,将题设条件中的角、函数名向结论中的角、函数名靠拢;另一种是对结论变形,将结论中的角、函数名向题设条件中的角、函数名靠拢,以便将题设条件代入结论.【例2】 已知π5sin()413x -=,π04x <<, 求cos2πcos()4x x +的值.找到所求式子中的角与已知角之间的联系,灵活地运用二倍角公式化简求值.解:∵π(0,)4x ∈,∴ππ(0,)44x -∈, 又∵π5sin()413x -=,∴π12cos()413x -=. 又πππcos2sin(2)2sin()cos()244x x x x =-=-- 51212021313169=⨯⨯=, ππππ5cos()sin ()sin()424413x x x ⎡⎤+=-+=-=⎢⎥⎣⎦, ∴原式=1202416951313=.当遇到π4±x 这样的角时可利用互余角的关系和诱导公式,将条件与结论沟通.cos 2x =sin ⎝⎛⎭⎫π2-2x =2sin ⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x .类似这样的变换还有: cos 2x =sin ⎝⎛⎭⎫π2+2x =2sin ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x , sin 2x =cos ⎝⎛⎭⎫π2-2x =2cos 2⎝⎛⎭⎫π4-x -1, sin 2x =-cos ⎝⎛⎭⎫π2+2x =1-2cos 2⎝⎛⎭⎫π4+x 等等. 知能点三:有关三角式的证明问题证明的本质问题实际上就是化简.其原则有以下几点:(1)观察式子两端的结构形式,一般是从复杂到简单,如果两端都比较复杂,那就将两端都化简,即采用“两头凑”的思想.(2)证明的一般步骤是:先观察,找出角、函数名称、式子结构等方面的差异,然后本着“复角化单角”、“异名化同名”、变换式子结构“变量集中”等原则,设法消除差异,达到证明的目的.【例3】 求证:21sin 4cos41sin 4cos42tan 1tan θθθθθθ+-++=-.利用切化弦、降幂、扩角等策略进行证明.证明:原式变形为1+sin 4θ-cos 4θ=tan 2θ(1+sin 4θ+cos 4θ),①而①式右边=tan 2θ(1+cos 4θ+sin 4θ) =sin 2cos 2θθ(2cos 22θ+2sin 2θcos 2θ) =sin 2cos 2θθ[2cos 2θ(cos 2θ+sin 2θ)] =2sin 2θ(cos 2θ+sin 2θ)=2sin 2θcos 2θ+2sin 22θ=sin 4θ+1-cos 4θ=左边,∴①式成立,即原式得证.证明三角恒等式的实质是消除等式两边的差异,有目的地化繁为简、左右归一或变更论证.。
第3课时 二倍角的正弦、余弦、正切公式(高中数学)
=
2tan
=tan
1-tan2
2θ.
课堂篇
探究学习
探究一
探究二
探究三
思维辨析
随堂演练
忽视角的范围致误
典例 化简: 2 + 2 + 2cos(2π<α<3π).
错解 2 + 2 + 2cos =
2 + 2cos 2=2cos4.
错解错在什么地方?你能发现吗?怎样避免这类错误?
π
12
π
π 2
+ cos
=
8
8
(1)2cos2 =
(2) sin
;
解析:(1)原式=1+cos 2 ×
π
4
2
2
2
(2)1+ 2
(2)原式=1+sin =1+ .
3
答案:(1)1+ 2
.
π
12
=1+cos
π
3
=1+ 2 .
6
课堂篇
探究学习
探究一
探究二
探究三
思维辨析
随堂演练
利用二倍角公式解决给角求值问题
1
θsin θ=1+2(cos
1
2θcos 30°-sin 2θsin 30°-cos 2θcos 30°-sin 2θsin 30°)+2sin
1
2
(1-cos2)+sin2
2sin2 +sin2
(2)证明左边=
=
(1+cos2)+sin2
2cos2 +sin2
2sin2 +2sincos
[最新]人教版数学必修四3.1.3二倍角的正弦、余弦和正切公式(教、学案)
) sin( 4
1 ),
6
( , ), 求 sin 4 的值。 2
1
1
7、已知 tan(
) , tan(
)
,求 tan(
22
23
) 的值。
最新精品资料
§ 3.1.3 二倍角的正弦、余弦和正切公式
课前预习学案 一、预习目标 复习回顾两角和正弦、 余弦和正切公式, 为推到 二倍角的正弦、 余弦和正切公式做好铺 垫。 二、预习内容 请大家首先回顾一下两角和的正弦、余弦和正切公式:
; ;
。 三、提出疑惑
我们由此能否得到 sin 2 ,cos 2 , tan 2 的公式呢? (学生自己动手, 把上述公式中
例2、已知 tan 2
1 , 求 tan 的值. 3
三、课堂练习 1. sin22 30’ cos2320’ =__________________;
2. 2 cos2
1 _________________;
8
3. sin 2
cos2
____________________;
8
8
4. 8 sin cos cos cos __________________. 48 48 24 12
6tan
10
120 169 119
169
120
.
119
解得 tan
2 5 或 tan
2 5.
(四)课堂练习: 详见学案 (五)小结: 本节我们学习了二倍角的正弦、余弦和正切公式,我们要熟记公式,在解 题过程中要善于发现规律,学会灵活运用 . (六)作业:
P150 .T3 T4
w.w.w.k.s.5.u.c.o.m
cos2 cos
人教A版高中数学必修四3 二倍角的正弦、余弦、正切公式牛老师
2cos2 -1
2cos2 -1 cos2
=
=
=
= 1.
π
π
cos2
cos2
2sin - ·cos -
4
4
题型一
题型二
题型三
题型四
反思化简三角函数式与证明三角等式的实质是一样的,那就是化
繁为简,在解答这类问题时可从三个方面考虑:一是角,二是函数名,
三是结构式,从而消除差异,达到化简的目的.
顾及角的范围而选择正、负号,只是机械地套用公式.
题型一
题型二
题型三
题型四
3π
正解:因为 3π<α<4π,所以
2
则cos > 0, cos < 0, cos > 0.
2
4
8
所以原式 =
=
2-
<
2- 2 + 4cos2
4cos2
2
2
<
=
3π
2π,
4
<
4
<
3π
π,
8
2- 2 + 2cos
<
2π
sin 5 cos 5
1-tan2 12
π
2tan12
=
4π
5
π
4sin
5
sin
=
π
5
π
4sin
5
sin
1
= .
4
题型一
题型二
题型三
题型四
反思解决此类题目时,应善于观察三角函数式的特点,变形后正
π
5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 例2:在ΔABC中,cos A = ,tan B = 2, 5 求tan(2 A + 2 B)的值.
变式训练:你会求tan2C的值吗? 注意:在三角形的背景下研究问题, 要注意隐含条件的运用.如 0<A<π,A+B+C=π等.
小结
本节我们学习了二倍角的正弦、余弦 和正切公式,我们要熟记公式,在解题过 程中要善于发现规律,学会灵活运用.
一、教学目标 以两角和正弦、余弦和正切公式为基础, 推导二倍角正弦、余弦和正切公式,理解推导 过程,掌握其应用. 二、教学重、难点 教学重点: 以两角和的正弦、余弦和正切公式为基 础,推导二倍角正弦、余弦和正切公式; 教学难点: 二倍角的理解及其灵活运用.
一.复习和角与差角公式:cos(α-β)=cosαcosβ+sinαsinβ cos(α+β)=cosαcosβ-sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ- cosαsinβ tan tan tan( ) 1 tan tan tan tan tan( ) 1 tan tan
倍 角 公 式
2 tan tan 2 2 1 tan
(T2α)
说明:这里的“倍角”专指“二倍角”,遇 到“三倍角”等名词时,“三”字等不可省去.
5 π π 例1:已知sin2α= , <α< , 13 4 2 求sin4α,cos4α,tan4α的值.
说明:要对“倍”的相对性有一定的 认识.“倍”是描述两个数量之间关系的,2α 是α的二倍,4α是2α的二倍,α是α/2的二 倍,α/2是α/4的二倍等等,这里蕴含着换元 思想.
(C(α-β)) (C(α+β)) (s(α+β)) (s(α-β))
(T(α+β))
(T(α-β))
我们由此能否得到sin2α,cos2α,tan2α的公 式呢?
二.二倍角的正弦、余弦、正切公式: sin2α=2sinαcosα (S2α) cos2α=cos2α- sin2α =2cos2α- 1 =1- 2sin2α (C2α)