永登县第二中学高二数学月考试题

合集下载

永登县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

永登县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

永登县第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.2. 若双曲线C :x 2﹣=1(b >0)的顶点到渐近线的距离为,则双曲线的离心率e=( )A .2B .C .3D .3. 已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )A .B .或36+C .36﹣D .或36﹣4. 下列函数在(0,+∞)上是增函数的是( )A .B .y=﹣2x+5C .y=lnxD .y=5. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 6. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A.2013B.2014C.2015D.20161111]7.已知α是三角形的一个内角,且,则这个三角形是()A.钝角三角形B.锐角三角形C.不等腰的直角三角形D.等腰直角三角形8.函数y=a x+1(a>0且a≠1)图象恒过定点()A.(0,1)B.(2,1)C.(2,0)D.(0,2)9.某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S的值为()A.9.6 B.7.68 C.6.144 D.4.915210.已知全集为R,集合A={x|()x≤1},B={x|x2﹣6x+8≤0},则A∩(∁R B)=()A.{x|x≤0} B.{x|2≤x≤4} C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4}11.已知平面向量=(1,2),=(﹣2,m),且∥,则=()A.(﹣5,﹣10)B.(﹣4,﹣8) C.(﹣3,﹣6) D.(﹣2,﹣4)12.已知命题p:存在x0>0,使2<1,则¬p是()A.对任意x>0,都有2x≥1 B.对任意x≤0,都有2x<1C.存在x0>0,使2≥1 D.存在x0≤0,使2<1二、填空题13.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为 .14.已知||2=a ,||1=b ,2-a 与13b 的夹角为3π,则|2|+=a b .15.在(x 2﹣)9的二项展开式中,常数项的值为 . 16.已知含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则 =+20042003b a .17.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0ektP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了 消除27.1%的污染物,则需要___________小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用.18.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.三、解答题19.【南师附中2017届高三模拟一】已知,a b 是正实数,设函数()()ln ,ln f x x x g x a x b ==-+. (1)设()()()h x f x g x =- ,求 ()h x 的单调区间; (2)若存在0x ,使03,45a b a b x ++⎡⎤∈⎢⎥⎣⎦且()()00f x g x ≤成立,求b a 的取值范围.20.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈(1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)21.已知函数f (x )=lnx+ax 2+b (a ,b ∈R ).(Ⅰ)若曲线y=f (x )在x=1处的切线为y=﹣1,求函数f (x )的单调区间;(Ⅱ)求证:对任意给定的正数m ,总存在实数a ,使函数f (x )在区间(m ,+∞)上不单调;(Ⅲ)若点A (x 1,y 1),B (x 2,y 2)(x 2>x 1>0)是曲线f (x )上的两点,试探究:当a <0时,是否存在实数x 0∈(x 1,x 2),使直线AB 的斜率等于f'(x 0)?若存在,给予证明;若不存在,说明理由.22.(本小题满分12分)已知点()()(),0,0,4,4A a B b a b >>,直线AB 与圆22:4430M x y x y +--+=相交于,C D 两点, 且2CD =,求.(1)()()44a b --的值; (2)线段AB 中点P 的轨迹方程; (3)ADP ∆的面积的最小值.23.本小题满分10分选修45-:不等式选讲 已知函数2()log (12)f x x x m =++--. Ⅰ当7=m 时,求函数)(x f 的定义域;Ⅱ若关于x 的不等式2)(≥x f 的解集是R ,求m 的取值范围.24.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x 元(7≤x ≤9)时,一年的销售量为(x ﹣10)2万件.(Ⅰ)求该连锁分店一年的利润L (万元)与每件纪念品的售价x 的函数关系式L (x );(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L 最大,并求出L 的最大值.永登县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C2.【答案】B【解析】解:双曲线C:x2﹣=1(b>0)的顶点为(±1,0),渐近线方程为y=±bx,由题意可得=,解得b=1,c==,即有离心率e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用点到直线的距离公式,考查运算能力,属于基础题.3.【答案】D【解析】【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D4.【答案】C【解析】解:对于A,函数y=在(﹣∞,+∞)上是减函数,∴不满足题意;对于B,函数y=﹣2x+5在(﹣∞,+∞)上是减函数,∴不满足题意;对于C ,函数y=lnx 在(0,+∞)上是增函数,∴满足题意;对于D ,函数y=在(0,+∞)上是减函数,∴不满足题意.故选:C .【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目.5. 【答案】B 【解析】试题分析:因为p 假真时,p q ∨真,此时p ⌝为真,所以,“p q ∨ 真”不能得“p ⌝为假”,而“p ⌝为假”时p 为真,必有“p q ∨ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用. 6. 【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()311533212f x x x x =-+-的对称中心后再利用对称性和的.第Ⅱ卷(非选择题共90分)7. 【答案】A【解析】解:∵(sinα+cosα)2=,∴2sinαcosα=﹣,∵α是三角形的一个内角,则sinα>0,∴cosα<0,∴α为钝角,∴这个三角形为钝角三角形.故选A.【点评】把和的形式转化为乘积的形式,易于判断三角函数的符号,进而判断出角的范围,最后得出三角形的形状.8.【答案】D【解析】解:令x=0,则函数f(0)=a0+3=1+1=2.∴函数f(x)=a x+1的图象必过定点(0,2).故选:D.【点评】本题考查了指数函数的性质和a0=1(a>0且a≠1),属于基础题.9.【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(1﹣20%)x,结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C.10.【答案】C【解析】解:∵≤1=,∴x≥0,∴A={x|x≥0};又x2﹣6x+8≤0⇔(x﹣2)(x﹣4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴∁R B={x|x<2或x>4},∴A∩∁R B={x|0≤x<2或x>4},故选C.11.【答案】B【解析】解:排除法:横坐标为2+(﹣6)=﹣4,故选B .12.【答案】A【解析】解:∵命题p :存在x 0>0,使2<1为特称命题,∴¬p 为全称命题,即对任意x >0,都有2x≥1.故选:A二、填空题13.【答案】.【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P 1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P 2再求“第一次摸到红球且第二次也摸到红球”的概率为P==,根据条件概率公式,得:P 2==,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题.看准确事件之间的联系,正确运用公式,是解决本题的关键.14.【答案】2【解析】解析:本题考查向量夹角与向量数量积的应用.a 与b 的夹角为23π,1⋅=-a b ,∴|2|+=a b 2=.15.【答案】 84 .【解析】解:(x 2﹣)9的二项展开式的通项公式为 T r+1=•(﹣1)r •x 18﹣3r ,令18﹣3r=0,求得r=6,可得常数项的值为T 7===84,故答案为:84.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.16.【答案】-1 【解析】试题分析:由于{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,所以只能0b =,1a =-,所以()20032003200411a b +=-=-。

高二数学月考卷1

高二数学月考卷1

高二数学月考卷1一、选择题(每题1分,共5分)1. 函数f(x) = (x² 1)/(x 1)的定义域是()A. RB. {x | x ≠ 1}C. {x | x ≠ 0}D. {x | x ≠ 1}2. 若向量a = (2, 3),向量b = (1, 2),则2a 3b = ()A. (8, 1)B. (8, 1)C. (8, 1)D. (8, 1)3. 二项式展开式(x + y)⁵中x²y³的系数是()A. 5B. 10C. 20D. 304. 已知等差数列{an}中,a1 = 3,a3 = 9,则公差d为()A. 2B. 3C. 4D. 65. 若复数z满足|z 1| = |z + 1|,则z在复平面上的对应点位于()A. 实轴上B. 虚轴上C. y = x上D. y = x上二、判断题(每题1分,共5分)1. 任何两个实数的和都是实数。

()2. 若矩阵A的行列式为0,则A不可逆。

()3. 两条平行线上的任意一对对应线段比例相等。

()4. 双曲线的渐近线一定经过原点。

()5. 若函数f(x)在区间[a, b]上单调递增,则f'(x) > 0。

()三、填空题(每题1分,共5分)1. 若log₂x = 3,则x = ______。

2. 若等差数列{an}中,a4 = 8,a7 = 19,则a10 = ______。

3. 圆的标准方程(x h)² + (y k)² = r²中,(h, k)表示圆的______。

4. 若sinθ = 1/2,且θ是第二象限的角,则cosθ = ______。

5. 矩阵A = [[1, 2], [3, 4]]的行列式|A| = ______。

四、简答题(每题2分,共10分)1. 简述矩阵乘法的定义。

2. 请解释什么是反函数。

3. 简述等差数列的通项公式。

4. 请说明直线的斜率的意义。

5. 简述三角函数的周期性。

高二数学上册第二次月考测试题

高二数学上册第二次月考测试题

高二数学上册第二次月考测试题大家把实际知识温习好的同时,也应该要多做题,从题中找到自己的缺乏,及时学懂,下面是查字典数学网小编为大家整理的高二数学上册第二次月考测试题,希望对大家有协助。

一:选择题:本大题共12小题,每题5分,共60分. 在每题给出的四个选项中,只要一项为哪一项契合标题要求的.选项填涂在答题卡上。

1.假定 ,那么等于( )A. B. C. D.2. 假定函数的图象的顶点在第四象限,那么函数的图象是( )3.命题:,,那么A. :,B. :,C. :,D. :,4、是方程表示椭圆或双曲线的( )A、充沛不用要条件B、必要不充沛条件C、充要条件D、既不充沛也不用要条件5、设是函数的导函数,的图象如下图,那么的图象最有能够的是( ).6、过抛物线的焦点的直线交抛物线于两点,假定的纵坐标之积为,那么实数 ( )A、 B、或 C、 D、7、使2x2-5x-30成立的一个必要不充沛条件是()A.-8、设双曲线 (a0)的渐近线与抛物线y=x2 +1相切,那么该双曲线的离心率等于( ) A. B.2 C. D.9、双曲线的左、右焦点区分是、,其一条渐近线方程为,点在双曲线上.那么 =( )A. -12B. -2C. 0D. 410、是恣意实数,那么方程的曲线不能够是 ( )A.椭圆B.双曲线C.抛物线D.圆11、以下命题中是真命题的是( )①假定x2+y20,那么x,y不全为零的否命题②正多边形都相似的逆命题③假定m0,那么x2+x-m=0有实根的逆否命题④假定x- 是有理数,那么x是在理数的逆否命题A、①②③④B、①③④C、②③④D、①④12、椭圆的焦点,是椭圆上的一个动点,假设延伸到,使得,那么动点的轨迹是( )A、圆B、椭圆C、双曲线的一支D、抛物线二、填空题(本大题共4小题,每题5分,共20分)13. 假定 .14.抛物线在点(1,4)处的切线方程是 .15、函数的单调增区间为 .16、以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60 ,那么双曲线C的离心率为 .三、解答题:(共6个题,17题10分,其他每题12分,共70分)17、命题函数的定义域为,命题:函数(其中 ),是上的减函数。

永登县二中2018-2019学年高二上学期第二次月考试卷数学

永登县二中2018-2019学年高二上学期第二次月考试卷数学

永登县二中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知函数x x x f 2sin )(-=,且)2(),31(log ),23(ln 3.02f c f b f a ===,则( ) A .c a b >> B .a c b >> C .a b c >> D .b a c >>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力.2. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( )A .2B .3C .4D .53. 设集合 A={ x|﹣3≤2x ﹣1≤3},集合 B 为函数 y=lg ( x ﹣1)的定义域,则 A ∩B=( ) A .(1,2) B .[1,2]C .[1,2)D .(1,2] 4. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >>5. 若某程序框图如图所示,则该程序运行后输出的值是( )A.7B.8C. 9D. 10【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.6.如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为()A.30 B.50 C.75 D.1507.已知数列{a n}是等比数列前n项和是S n,若a2=2,a3=﹣4,则S5等于()A.8 B.﹣8 C.11 D.﹣118.函数f(x)=cos2x﹣cos4x的最大值和最小正周期分别为()A.,πB.,C.,πD.,9. 在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱 柱各个顶点都在一个球面上,则球的体积为( )A .323πB .16π C.253π D .312π10.已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是( )A .5B .3C .2D .11.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .25012.设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。

高二第二次月考数学.doc

高二第二次月考数学.doc

高二下学期第二次月考数学(理科)一、选择题:木大题共12小题,每小题5分,每小题给出的四个选项中,只有一项 是符合题目要求的。

(1) 已知集合 A= {-1, 0, 1), B= {X | X 2<1},贝ij AAB=()(A) 0 (B) {0} (C) {-1,1} (D) {-1,0,1}已知椭圆召+务]上的-点P 到椭圆-个焦点的距离为7,则P 到另-焦点(8) RAND (0,1)表示生成一个在(0,1)内的随机数(实数),若"RAND (0,1),y=RAND (0,1),则x 2+y 2<l 的概率为() (A) -(B) 1—-(C) -(D) 1—-(2)的距离为()(A) 2 (B) 3 (C) 5(D) 7(3) 已知向量。

=(1, -1), b= (x,2),且d 丄方则I a + h I 的值为((A) V2(B) V7(C) 2^2(D) V10(4) 命题“X/XG R, X 2—X +1 >(F 的否定是()(A) V XG R,x 2一x+] <0 (B) V XG R, x 2一x+l<0 (C) 3X 0G R, X O 2—X O + l<0(D) 3X 0G R, X O 2—X O + KO(5) 已知等数列{a n }中,ai=ll,a5=-l,则{ a* }的前n 项和的最大值是()(A) 15 (B) 20 (C) 26 (D) 30(6) 若执行如图所示的程序框图,则输出的结果K=()(A) 2(B) 3(C) 4(D) 5(7) 已知等比数列{a n )满足 ai= — , a3a5=4 (a 4-l),则 a2=()4(A) 2(B) 1(C)-2 (D)4 4 8 8(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某空间几何体的三视图,则该儿何体的体积为()(A)—(龙+ 1)3Q(B)| (2兀 + 1)(C)8(2^ + 1)(D)16(龙 + 1)(10)已知函数f (x) =lg ( >/1+4X2-2X) +1,则f (3) +f (-3)=( )(A) -1 (B) 0 (C) 1 (D) 2(11)已知函数f (x) =sin (2x+ -),将其图像向右平移<p ((p>0)个单位后得到的函数为奇函数,则(P的最小值为()(A) —(B) - (C) - (D)-12 6 3 2(12)设M {a, b, c} = ® 坎c 的中位数,(山)(b-c)(c-d)H0[a, b, c 的众数,(a-b)(b-c)(c-a) = 0若f (x) =M {2V, x2, 4一7.5x} (x>0),则f (x)的最小值是( )(A) -(B)-(C) 1(D)-424第II卷二、填空题:本大题共4小题,每小题5分。

永登县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

永登县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

永登县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A .B .C .D .2. 执行如图所示的程序框图,如果输入的t =10,则输出的i =( )A .4B .5C .6D .73. 已知圆C :x 2+y 2﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( ) A .一定相离 B .一定相切C .相交且一定不过圆心D .相交且可能过圆心4. 1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆ )C. 1D. 1【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.5. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如下:由2()()()()()n ad bc K a b c d a c b d -=++++算得22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯ 附表:参照附表,则下列结论正确的是( )①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④ 6. 已知等比数列{a n }的前n 项和为S n ,若=4,则=( )A .3B .4C .D .137. 已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( ) A .相离 B .相切 C .相交 D .不能确定8. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.9. 已知圆M 过定点)1,0(且圆心M 在抛物线y x 22=上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.10.已知函数f (x )=x 4cosx+mx 2+x (m ∈R ),若导函数f ′(x )在区间[﹣2,2]上有最大值10,则导函数f ′(x )在区间[﹣2,2]上的最小值为( )3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥A .﹣12B .﹣10C .﹣8D .﹣611.已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( )A .B .C .2D .﹣212.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( ) A .f (x )为奇函数 B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数二、填空题13.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 .14.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= .15.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .16.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想. 17.已知函数f (x )=,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范围是 .18.若函数f (x )=3sinx ﹣4cosx ,则f ′()= .三、解答题19.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,且60oABC ∠=,侧面PDC 为等边三角形,且与底面ABCD 垂直,M 为PB 的中点. (Ⅰ)求证:PA ⊥DM ;(Ⅱ)求直线PC 与平面DCM 所成角的正弦值.20.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sinA ﹣sinC (cosB+sinB )=0.(1)求角C 的大小; (2)若c=2,且△ABC 的面积为,求a ,b 的值.21.已知不等式的解集为或(1)求,的值(2)解不等式.22.已知函数f(x)=ax3+2x﹣a,(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若a=n且n∈N*,设x n是函数f n(x)=nx3+2x﹣n的零点.(i)证明:n≥2时存在唯一x n且;(i i)若b n=(1﹣x n)(1﹣x n+1),记S n=b1+b2+…+b n,证明:S n<1.23.设极坐标与直角坐标系xOy有相同的长度单位,原点O为极点,x轴坐标轴为极轴,曲线C1的极坐标方程为ρ2cos2θ+3=0,曲线C2的参数方程为(t是参数,m是常数).(Ⅰ)求C1的直角坐标方程和C2的普通方程;(Ⅱ)若C1与C2有两个不同的公共点,求m的取值范围.24.(本小题满分12分)已知圆C :022=++++F Ey Dx y x 的圆心在第二象限,半径为2,且圆C 与直线043=+y x 及y 轴都相切.(1)求F E D 、、;(2)若直线022=+-y x 与圆C 交于B A 、两点,求||AB .永登县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=.故选:A .【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.2. 【答案】【解析】解析:选B.程序运行次序为 第一次t =5,i =2; 第二次t =16,i =3; 第三次t =8,i =4;第四次t =4,i =5,故输出的i =5. 3. 【答案】C【解析】【分析】将圆C 方程化为标准方程,找出圆心C 坐标与半径r ,利用点到直线的距离公式表示出圆心到直线的距离d ,与r 比较大小即可得到结果.【解答】解:圆C 方程化为标准方程得:(x ﹣1)2+y 2=2, ∴圆心C (1,0),半径r=,∵≥>1, ∴圆心到直线l 的距离d=<=r ,且圆心(1,0)不在直线l 上,∴直线l 与圆相交且一定不过圆心. 故选C4. 【答案】D【解析】∵120PF PF ⋅=,∴12PF PF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,12||2PF PF a -=,则222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-, 2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =.c =,整理,得2()4ca=+1e =,故选D. 5. 【答案】D【解析】解析:本题考查独立性检验与统计抽样调查方法.由于9.967 6.635>,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D . 6. 【答案】D【解析】解:∵S n 为等比数列{a n }的前n 项和,=4,∴S 4,S 8﹣S 4,S 12﹣S 8也成等比数列,且S 8=4S 4,∴(S 8﹣S 4)2=S 4×(S 12﹣S 8),即9S 42=S 4×(S 12﹣4S 4), 解得=13.故选:D .【点评】熟练掌握等比数列的性质是解题的关键.是基础的计算题.7. 【答案】C【解析】解:由点P (x 0,y 0)在圆C :x 2+y 2=4外,可得x 02+y 02>4,求得圆心C (0,0)到直线l :x 0x+y 0y=4的距离d=<=2,故直线和圆C 相交, 故选:C .【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.8. 【答案】D【解析】{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A B ∴=,故选D.9. 【答案】A【解析】过M 作MN 垂直于x 轴于N ,设),(00y x M ,则)0,(0x N ,在MNQ Rt ∆中,0||y MN =,MQ 为圆的半径,NQ 为PQ 的一半,因此2222222200000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+又点M 在抛物线上,∴0202y x =,∴2200||4(21)4PQ x y =-+=,∴2||=PQ .10.【答案】C【解析】解:由已知得f ′(x )=4x 3cosx ﹣x 4sinx+2mx+1, 令g (x )=4x 3cosx ﹣x 4sinx+2mx 是奇函数,由f ′(x )的最大值为10知:g (x )的最大值为9,最小值为﹣9, 从而f ′(x )的最小值为﹣9+1=﹣8. 故选C .【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.11.【答案】B【解析】解:向量,向量与平行,可得2m=﹣1.解得m=﹣. 故选:B .12.【答案】C【解析】解:∵对任意x 1,x 2∈R 有 f (x 1+x 2)=f (x 1)+f (x 2)+1, ∴令x 1=x 2=0,得f (0)=﹣1∴令x 1=x ,x 2=﹣x ,得f (0)=f (x )+f (﹣x )+1, ∴f (x )+1=﹣f (﹣x )﹣1=﹣[f (﹣x )+1], ∴f (x )+1为奇函数. 故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.二、填空题13.【答案】.【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(﹣,),故AB的斜率为﹣,故直线AB的方程为y﹣=﹣(x﹣3),即x+3y﹣12=0,所以O点到直线AB的距离是=,故答案为:.【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.14.【答案】{2,3,4}.【解析】解:∵全集U={0,1,2,3,4},集合A={0,1,2},∴C U A={3,4},又B={2,3},∴(C U A)∪B={2,3,4},故答案为:{2,3,4}15.【答案】9.【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22,所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18,所以平均气温不低于25.5℃的城市个数为50×0.18=9.故答案为:916.【答案】1【解析】17.【答案】(0,1).【解析】解:画出函数f(x)的图象,如图示:令y=k,由图象可以读出:0<k<1时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为(0,1).【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题.18.【答案】4.【解析】解:∵f′(x)=3cosx+4sinx,∴f′()=3cos+4sin=4.故答案为:4.【点评】本题考查了导数的运算法则,掌握求导公式是关键,属于基础题.三、解答题19.【答案】【解析】由底面ABCD为菱形且60o∆是等边三角形,∠=,∴ABCABC∆,ADC取DC 中点O ,有,OA DC OP DC ⊥⊥,∴POA ∠为二面角P CD A --的平面角, ∴90oPOA ∠=.分别以,,OA OC OP 所在直线为,,x y z 轴,建立空间直角坐标系如图,则(0,1,0),(0,1,0)A P D B C -. …… 3分(Ⅰ)由M 为PB 中点,M ∴3(DM =(3,0,3),PA =-0),0,DC PA DM PA DC =∴== ∴ PA ⊥DM …… 6分(Ⅱ)由(0,2,0)DC =,0PA DC ⋅=,∴PA ⊥DC , ∴ 平面DCM 的法向量可取(3,0,PA = …… (0,1,PC =, 设直线PC 与平面DCM 所成角为θ则sin |cos ,|||||||6PC PA PC PA PC PA θ⋅=<>===.即直线PC 与平面DCM .…… 12分 20.【答案】【解析】(本题满分为12分)解:(1)∵由题意得,sinA=sin (B+C ), ∴sinBcosC+sinCcosB ﹣sinCcosB ﹣sinBsinC=0,…(2分)即sinB (cosC ﹣sinC )=0,∵sinB ≠0, ∴tanC=,故C=.…(6分) (2)∵ab ×=, ∴ab=4,①又c=2,…(8分)∴a 2+b 2﹣2ab ×=4,∴a 2+b 2=8.②∴由①②,解得a=2,b=2.…(12分)【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.21.【答案】【解析】解:(1)因为不等式的解集为或所以,是方程的两个解所以,解得(2)由(1)知原不等式为,即,当时,不等式解集为当时,不等式解集为;当时,不等式解集为;22.【答案】【解析】解:(Ⅰ)f'(x)=3ax2+2,若a≥0,则f'(x)>0,函数f(x)在R上单调递增;若a<0,令f'(x)>0,∴或,函数f(x)的单调递增区间为和;(Ⅱ)(i)由(Ⅰ)得,f n(x)=nx3+2x﹣n在R上单调递增,又f n(1)=n+2﹣n=2>0,f n()====﹣当n≥2时,g(n)=n2﹣n﹣1>0,,n≥2时存在唯一x n且(i i)当n≥2时,,∴(零点的区间判定)∴,(数列裂项求和)∴,又f1(x)=x3+2x﹣1,,(函数法定界),又,∴,∴,(不等式放缩技巧)命题得证.【点评】本题主要考查了导数的求单调区间的方法和利用数列的裂项求和和不等式的放缩求和技巧解题,属于难题.23.【答案】【解析】解:(I )曲线C 1的极坐标方程为ρ2cos2θ+3=0,即ρ2(cos 2θ﹣sin 2θ)+3=0,可得直角坐标方程:x 2﹣y 2+3=0.曲线C 2的参数方程为(t 是参数,m 是常数),消去参数t 可得普通方程:x ﹣2y ﹣m=0.(II )把x=2y+m 代入双曲线方程可得:3y 2+4my+m 2+3=0,由于C 1与C 2有两个不同的公共点, ∴△=16m 2﹣12(m 2+3)>0,解得m <﹣3或m >3,∴m <﹣3或m >3.【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与双曲线的位置关系,考查了推理能力与计算能力,属于中档题.24.【答案】(1) 22=D ,24-=E ,8=F ;(2)2=AB . 【解析】试题解析:(1)由题意,圆C 方程为2)()(22=-+-b y a x ,且0,0><b a ,∵圆C 与直线043=+y x 及y 轴都相切,∴2-=a ,25|43|=+b a ,∴22=b , ∴圆C 方程为2)22()2(22=-++y x , 化为一般方程为08242222=+-++y x y x , ∴22=D ,24-=E ,8=F .(2)圆心)22,2(-C 到直线022=+-y x 的距离为12|22222|=+--=d ,∴21222||22=-=-=d r AB . 考点:圆的方程;2.直线与圆的位置关系.1。

月考卷1

月考卷1

永登二中2013—2014学年度第二学期月考一试题高二级 数学命题人:胡建新 审题人:一、选择题:(每小题5分,共计60分)1.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真2. 有四个关于三角函数的命题:p 1:∃x ∈R ,sin 2x 2+cos 2x 2=12p 2:∃x ,y ∈R ,sin(x -y )=sin x -sin yp 3:∀x ∈, 1-cos2x 2=sin x p 4:sin x =cos y ⇒x +y =π2其中的假命题是 ( )A.p 1,p 4B.p 2,p 4C.p 1,p 3D.p 2,p 33.设p 、q 是简单命题,则“p 且q 为假”是“p 或q 为假”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件4. 直线y=x +1被椭圆x 2+2y 2=4截得的弦的中点坐标是( )A. (32,-31) B. (31,-32) C. (-32,31) D. (-31,32) 5. 设F 1、F 2是椭圆1162522=+y x 的两个焦点,P 是椭圆上不与长轴两个端点重合的一点, 则( )A.△PF 1F 2的面积是定值B.∠F 1PF 2是定角C.△PF 1F 2的周长是定值D.△PF 1F 2中边F 1F 2的中线长为定值6. 设常数m >0,椭圆x 2+m 2y 2=m 2的长轴是短轴的两倍,则m 的值是 ( )A. 2或21B. 2 C .21 D .2 7.下列各对曲线中,既有相同的离心率又有相同渐近线的是 ( )A. 23x -y 2=1和29y -23x =1 B. 23x -y 2=1和y 2-23x =1 C . y 2-23x =1和x 2-y 23=1 D . 23x -y 2=1和92x -32y =1 8. 双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30 的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )A.CD9. 椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是 ( ) A.3 B. 11 C .22 D .1010. 设P 为椭圆1162522=+y x 上的点,F 1、F 2为椭圆的焦点,∠F 1PF 2=6π,则△PF 1F 2的面积等于 ( )A. 3316 B. 32(16+) C .32(16-) D .1611. 若双曲线22221(0,0)x y a b a b-=>>的一个焦点到一条渐近线的距离等于焦距的14,则该双曲线的渐近线方程是( )A. 20x y ±=B. 20x y ±= C.0x = D0y ±=12. 设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( ) A.1342222=-y x B. 15132222=-y x C .1432222=-y x D .112132222=-y x二、填空题(每小题5分,满分20分)13. 若命题“∃x ∈R ,使得x 2+(a -1)x +1<0”是真命题,则实数a 的取值范围是_____________.14. 过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠= ,则椭圆的离心率为_____________. 15. 过点)2,2(-且与双曲线1222=-y x 有公共渐近线的双曲线方程是_____________. 16. 方程22142x y t t +=--所表示的曲线为C ,有下列命题: ①若曲线C 为椭圆,则24t <<;②若曲线C 为双曲线,则4t >或2t <;③曲线C 不可能为圆;④若曲线C 表示焦点在y 上的双曲线,则4t >.以上命题正确的是 .(填上所有正确命题的序号)三、解答题(70分)17. 已知命题),0(012:,64:22>≥-+-≤-a a x x q x p 若非p 是q 的充分不必要条件,求a 的取值范围18. 已知椭圆C的左、右焦点坐标分别是(,,离心率是,求椭圆C 的方程。

永登县高中2018-2019学年高二下学期第一次月考试卷数学

永登县高中2018-2019学年高二下学期第一次月考试卷数学

永登县高中2018-2019学年高二下学期第一次月考试卷数学一、选择题1. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <02. 不等式的解集为( )A .或B .C .或D .3. 已知圆M 过定点)1,0(且圆心M 在抛物线y x 22上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.4. 某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过2个小时,这种细菌由1个可繁殖成( )A .512个B .256个C .128个D .64个 5. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A .3B.C.D.6. 设f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f ′(x )的图象可能是( )A. B. C.D.7.双曲线的渐近线方程是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .8. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )A .B . C. D .1111]9. 复数z 为纯虚数,若(3﹣i )•z=a+i (i 为虚数单位),则实数a 的值为( )A .﹣B .3C .﹣3D .10.设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则,类比这个结论可知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V ,则r=( )A .B .C .D .11.函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3y x π=+B .22sin(2)3y x π=+C .2sin()23x y π=-D .2sin(2)3y x π=-12.以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.二、填空题13.过点(0,1)的直线与x 2+y 2=4相交于A 、B 两点,则|AB|的最小值为 .14.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .15.把函数y=sin2x 的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为 .16.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆,则该双曲线的离心率为______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.17.定义某种运算⊗,S=a ⊗b 的运算原理如图;则式子5⊗3+2⊗4= .18.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.三、解答题19.解不等式|3x ﹣1|<x+2.20.已知直角梯形ABCD中,AB∥CD,,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.(1)求证:FG∥面BCD;(2)设四棱锥D﹣ABCE的体积为V,其外接球体积为V′,求V:V′的值.21.有一批同规格的钢条,每根钢条有两种切割方式,第一种方式可截成长度为a的钢条2根,长度为b的钢条1根;第二种方式可截成长度为a的钢条1根,长度为b的钢条3根.现长度为a的钢条至少需要15根,长度为b 的钢条至少需要27根.问:如何切割可使钢条用量最省?22.已知函数f(x)的导函数f′(x)=x2+2ax+b(ab≠0),且f(0)=0.设曲线y=f(x)在原点处的切线l1的斜率为k1,过原点的另一条切线l2的斜率为k2.(1)若k1:k2=4:5,求函数f(x)的单调区间;(2)若k2=tk1时,函数f(x)无极值,且存在实数t使f(b)<f(1﹣2t)成立,求实数a的取值范围.23.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x(1(2)若用解析式y=cx2+d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ωi=x2i,有下列数据处理信息:ω=11,y=38,(ωi-ω)(y i-y)=-811,(ωi-ω)2=374,对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)24.在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos()=1,M,N分别为C与x轴,y轴的交点.(1)写出C的直角坐标方程,并求M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程.25.(1)求z=2x+y的最大值,使式中的x、y满足约束条件(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1.26.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.永登县高中2018-2019学年高二下学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:∵函数y=a x﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限, ∴根据图象的性质可得:a >1,a 0﹣b ﹣1<0,即a >1,b >0, 故选:B2. 【答案】A 【解析】 令得,;其对应二次函数开口向上,所以解集为或,故选A答案:A3. 【答案】A【解析】过M 作MN 垂直于x 轴于N ,设),(00y x M ,则)0,(0x N ,在MNQ Rt ∆中,0||y MN =,MQ 为圆的半径,NQ 为PQ 的一半,因此2222222200000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+又点M 在抛物线上,∴0202y x =,∴2200||4(21)4PQ x y =-+=,∴2||=PQ .4. 【答案】D【解析】解:经过2个小时,总共分裂了=6次, 则经过2小时,这种细菌能由1个繁殖到26=64个.故选:D .【点评】本题考查数列的应用,考查了等比数列的通项公式,是基础的计算题.5. 【答案】B 【解析】解:依题设P 在抛物线准线的投影为P ′,抛物线的焦点为F ,则F (,0),依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,则点P到点M(0,2)的距离与P到该抛物线准线的距离之和,d=|PF|+|PM|≥|MF|==.即有当M,P,F三点共线时,取得最小值,为.故选:B.【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.6.【答案】D【解析】解:根据函数与导数的关系:可知,当f′(x)≥0时,函数f(x)单调递增;当f′(x)<0时,函数f(x)单调递减结合函数y=f(x)的图象可知,当x<0时,函数f(x)单调递减,则f′(x)<0,排除选项A,C当x>0时,函数f(x)先单调递增,则f′(x)≥0,排除选项B故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题7.【答案】B【解析】解:∵双曲线标准方程为,其渐近线方程是=0,整理得y=±x.故选:B.【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题.8.【答案】A【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.9. 【答案】D【解析】解:∵(3﹣i )•z=a+i ,∴,又z 为纯虚数,∴,解得:a=.故选:D .【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.【答案】 C【解析】解:设四面体的内切球的球心为O , 则球心O 到四个面的距离都是R , 所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为∴R= 故选C .【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).11.【答案】B 【解析】考点:三角函数()sin()f x A x ωϕ=+的图象与性质.12.【答案】D二、填空题13.【答案】2【解析】解:∵x2+y2=4的圆心O(0,0),半径r=2,∴点(0,1)到圆心O(0,0)的距离d=1,∴点(0,1)在圆内.如图,|AB|最小时,弦心距最大为1,∴|AB|min=2=2.故答案为:2.14.【答案】63【解析】解:解方程x2﹣5x+4=0,得x1=1,x2=4.因为数列{a n}是递增数列,且a1,a3是方程x2﹣5x+4=0的两个根,所以a1=1,a3=4.设等比数列{a n}的公比为q,则,所以q=2.则.故答案为63.【点评】本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.15.【答案】y=cosx.【解析】解:把函数y=sin2x的图象向左平移个单位长度,得,即y=cos2x的图象,把y=cos2x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx的图象;故答案为:y=cosx.16.1 【解析】17.【答案】 14 .【解析】解:有框图知S=a ⊗b=∴5⊗3+2⊗4=5×(3﹣1)+4×(2﹣1)=14 故答案为14【点评】新定义题是近几年常考的题型,要重视.解决新定义题关键是理解题中给的新定义.18.【答案】2300 【解析】111]试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥14020y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.1111]考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值.三、解答题19.【答案】【解析】解:∵|3x ﹣1|<x+2,∴,解得﹣.∴原不等式的解集为{x|﹣<x <}.20.【答案】【解析】解:(1)证明:取AB 中点H ,连接GH ,FH , ∴GH ∥BD ,FH ∥BC , ∴GH ∥面BCD ,FH ∥面BCD ∴面FHG ∥面BCD , ∴GF ∥面BCD(2)V=又外接球半径R=∴V′=π∴V:V′=【点评】本题考查的知识点是直线与平面平等的判定及棱锥和球的体积,其中根据E点三条棱互相垂直,故棱锥的外接球半径与以AE,CD,DE为棱长的长方体的外接球半径相等,求出外接球半径是解答本题的关键点.21.【答案】【解析】解:设按第一种切割方式需钢条x根,按第二种切割方式需钢条y根,根据题意得约束条件是,目标函数是z=x+y,画出不等式组表示的平面区域如下图阴影部分.由,解得,此时z=11.4,但x,y,z都应当为正整数,∴点(3.6,7.8)不是最优解.经过可行域内的整点且使z最小的直线是y=﹣x+12,即z=12,满足该约束条件的(x,y)有两个:(4,8)或(3,9),它们都是最优解.即满足条件的切割方式有两种,按第一种方式切割钢条4根,按第二种方式切割钢条8根;或按第一种方式切割钢条3根,按第二种方式切割钢条9根,可满足要求.【点评】本题考查简单的线性规划,考查了简单的数学建模思想方法,是中档题.22.【答案】【解析】解:(1)由已知,k1=f'(0)=b,设l2与曲线y=f(x)的切点为(x0,y0)(x0≠0)则所以,即,则.又4k 2=5k 1,所以﹣3a 2+4b=5b ,即b=﹣3a 2因此f'(x )=x 2+2ax ﹣3a 2=(x+3a )(x ﹣a )①当a >0时,f (x )的增区间为(﹣∞,﹣3a )和(a ,+∞),减区间为(﹣3a ,a ). ②当a <0时,f (x )的增区间为(﹣∞,a )和(﹣3a ,+∞),减区间为(a ,﹣3a ).…(2)由(1)若k 2=tk 1,则,∵ab ≠0,∴t ≠1,于是,所以,由f (x )无极值可知,,即,所以由f (b )<f (1﹣2t )知,b <1﹣2t ,即,就是3a 2<4(1﹣t )(1﹣2t ),而,故,所以,又a ≠0,因此.…【点评】本题考查函数的导数的应用,函数的极值以及函数的单调性考查分类讨论以及转化思想的应用,考查计算能力.23.【答案】 【解析】解:(1)根据散点图可知,x 与y 是负相关. (2)根据提供的数据,先求数据(ω1,y 1),(ω2,y 2),(ω3,y 3),(ω4,y 4),(ω5,y 5)的回归直线方程,y =cω+d ,=-811374≈-2.17, a ^=y -c ^ω=38-(-2.17)×11=61.87.∴数据(ωi ,y i )(i =1,2,3,4,5)的回归直线方程为y =-2.17ω+61.87,又ωi=x2i,∴y关于x的回归方程为y=-2.17x2+61.87.(3)当y=0时,x=61.872.17=6187217≈5.3.估计最多用5.3千克水.24.【答案】【解析】解:(Ⅰ)由从而C的直角坐标方程为即θ=0时,ρ=2,所以M(2,0)(Ⅱ)M点的直角坐标为(2,0)N点的直角坐标为所以P点的直角坐标为,则P点的极坐标为,所以直线OP的极坐标方程为,ρ∈(﹣∞,+∞)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.25.【答案】【解析】解:(1)由题意作出可行域如下,,结合图象可知,当过点A(2,﹣1)时有最大值,故Z max=2×2﹣1=3;(2)由题意作图象如下,,根据距离公式,原点O到直线2x+y﹣z=0的距离d=,故当d有最大值时,|z|有最大值,即z有最值;结合图象可知,当直线2x+y﹣z=0与椭圆+=1相切时最大,联立方程化简可得,116x2﹣100zx+25z2﹣400=0,故△=10000z2﹣4×116×(25z2﹣400)=0,故z2=116,故z=2x+y的最大值为.【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用.26.【答案】【解析】解:(1)设事件A为“两手所取的球不同色”,则P(A)=1﹣.(2)依题意,X的可能取值为0,1,2,左手所取的两球颜色相同的概率为=,右手所取的两球颜色相同的概率为=.P(X=0)=(1﹣)(1﹣)==;P(X=1)==;P(X=2)==.∴X的分布列为:EX=0×+1×+2×=.【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型.解题时要认真审题,仔细解答,注意概率知识的灵活运用.。

永登县二中2018-2019学年上学期高二数学12月月考试题含解析

永登县二中2018-2019学年上学期高二数学12月月考试题含解析

永登县二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题. 2. 5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )A .35B .C .D .533. 如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A .B .C .D .4. 已知双曲线﹣=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的渐近线方程为y=±x ,则该双曲线的方程为( )A .﹣=1B .﹣y 2=1 C .x 2﹣=1 D .﹣=15. 设复数z 满足z (1+i )=2(i 为虚数单位),则z=( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i6. 函数f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x+1,则函数f (x )在(1,2)上的解析式为( )A .f (x )=3﹣xB .f (x )=x ﹣3C .f (x )=1﹣xD .f (x )=x+17. 设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8. 用反证法证明命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”则假设的内容是( ) A .a ,b 都能被5整除 B .a ,b 都不能被5整除 C .a ,b 不能被5整除 D .a ,b 有1个不能被5整除9.△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,则=()A.B.C.D.±10.对于复数,若集合具有性质“对任意,必有”,则当时,等于( )A1B-1C0D11.已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()A.(﹣7,﹣4)B.(7,4)C.(﹣1,4)D.(1,4)12.已知函数f(x)=xe x﹣mx+m,若f(x)<0的解集为(a,b),其中b<0;不等式在(a,b)中有且只有一个整数解,则实数m的取值范围是()A.B. C.D.二、填空题13.如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为cm3.14.已知某几何体的三视图如图所示,则该几何体的体积为.15.已知偶函数f (x )的图象关于直线x=3对称,且f (5)=1,则f (﹣1)= . 16.【常熟中学2018届高三10月阶段性抽测(一)】函数()21ln 2f x x x =-的单调递减区间为__________. 17.下列命题:①函数y=sinx 和y=tanx 在第一象限都是增函数;②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点; ③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5; ④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强. 其中正确命题的序号是 (把所有正确命题的序号都写上).18.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .三、解答题19.(本题满分13分)已知函数x x ax x f ln 221)(2-+=. (1)当0=a 时,求)(x f 的极值;(2)若)(x f 在区间]2,31[上是增函数,求实数a 的取值范围.【命题意图】本题考查利用导数知识求函数的极值及利用导数来研究函数单调性问题,本题渗透了分类讨论思想,化归思想的考查,对运算能力、函数的构建能力要求高,难度大.20.设点P 的坐标为(x ﹣3,y ﹣2).(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x 、y ,求点P 在第二象限的概率;(2)若利用计算机随机在区间上先后取两个数分别记为x 、y ,求点P 在第三象限的概率.21.已知集合A={x|2≤x ≤6},集合B={x|x ≥3}. (1)求C R (A ∩B );(2)若C={x|x ≤a},且A ⊆C ,求实数a 的取值范围.22.【无锡市2018届高三上期中基础性检测】在一块杂草地上有一条小路AB,现在小路的一边围出一个三角形(如图)区域,在三角形ABC 内种植花卉.已知AB 长为1千米,设角,C θ=AC 边长为BC 边长的()1a a >倍,三角形ABC 的面积为S (千米2). 试用θ和a 表示S ;(2)若恰好当60θ=时,S 取得最大值,求a 的值.23.如图所示,在四棱锥P ABCD -中,底面ABCD 为菱形,E 为AC 与BD 的交点,PA ⊥平 面ABCD ,M 为PA 中点,N 为BC 中点. (1)证明:直线//MN 平面ABCD ;(2)若点Q 为PC 中点,120BAD ∠=︒,PA =1AB =,求三棱锥A QCD -的体积.24.己知函数f (x )=lnx ﹣ax+1(a >0). (1)试探究函数f (x )的零点个数;(2)若f (x )的图象与x 轴交于A (x 1,0)B (x 2,0)(x 1<x 2)两点,AB 中点为C (x 0,0),设函数f (x )的导函数为f ′(x ),求证:f ′(x 0)<0.永登县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】根据分层抽样的要求可知在C 社区抽取户数为2492108180270360180108=⨯=++⨯.2. 【答案】D【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是 53,故选:D .【点评】本题主要考查分步计数原理的应用,属于基础题.3. 【答案】D【解析】古典概型及其概率计算公式. 【专题】计算题;概率与统计.【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.【解答】解:从9个数中任取3个数共有C 93=84种取法,三个数分别位于三行或三列的情况有6种;∴所求的概率为=故选D .【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单. 4. 【答案】B【解析】解:已知抛物线y 2=4x 的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=±x ,则有a 2+b 2=c 2=10和=,解得a=3,b=1.所以双曲线的方程为:﹣y 2=1.故选B.【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.5.【答案】A【解析】解:∵z(1+i)=2,∴z===1﹣i.故选:A.【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.6.【答案】A【解析】解:∵x∈(0,1)时,f(x)=x+1,f(x)是以2为周期的偶函数,∴x∈(1,2),(x﹣2)∈(﹣1,0),f(x)=f(x﹣2)=f(2﹣x)=2﹣x+1=3﹣x,故选A.7.【答案】B【解析】解:∵z=cosθ+isinθ对应的点坐标为(cosθ,sinθ),且点(cosθ,sinθ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B.【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.8.【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.故应选B.【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.9.【答案】D【解析】解:△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,∴A与B为双曲线的两焦点,根据双曲线的定义得:|AC﹣BC|=2a=8,|AB|=2c=10,则==±=±.故选:D.【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.10.【答案】B【解析】由题意,可取,所以11.【答案】A【解析】解:由已知点A(0,1),B(3,2),得到=(3,1),向量=(﹣4,﹣3),则向量==(﹣7,﹣4);故答案为:A.【点评】本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒.12.【答案】C【解析】解:设g(x)=xe x,y=mx﹣m,由题设原不等式有唯一整数解,即g(x)=xe x在直线y=mx﹣m下方,g′(x)=(x+1)e x,g(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,故g(x)min=g(﹣1)=﹣,y=mx﹣m恒过定点P(1,0),结合函数图象得K PA≤m<K PB,即≤m<,,故选:C .【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题.二、填空题13.【答案】 6【解析】解:过A 作AO ⊥BD 于O ,AO 是棱锥的高,所以AO==,所以四棱锥A ﹣BB 1D 1D 的体积为V==6.故答案为:6.14.【答案】 .【解析】解:由三视图可知几何体为四棱锥,其中底面是边长为1的正方形,有一侧棱垂直与底面,高为2.∴棱锥的体积V==.故答案为.15.【答案】 1 .【解析】解:f (x )的图象关于直线x=3对称,且f (5)=1,则f (1)=f (5)=1, f (x )是偶函数,所以f (﹣1)=f (1)=1. 故答案为:1.16.【答案】()0,1【解析】17.【答案】②③④⑤【解析】解:①函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,,但是,,因此不是单调递增函数;②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点,正确;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,∴=5(a6+a5)>0,=11a6<0,∴a5+a6>0,a6<0,∴a5>0.因此S n最大值为S5,正确;④在△ABC中,cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B)=2sin(A+B)sin(B﹣A)<0⇔A>B,因此正确;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.其中正确命题的序号是②③④⑤.【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.18.【答案】x﹣y﹣2=0.【解析】解:直线AB的斜率k AB=﹣1,所以线段AB的中垂线得斜率k=1,又线段AB的中点为(3,1),所以线段AB 的中垂线得方程为y ﹣1=x ﹣3即x ﹣y ﹣2=0,故答案为x ﹣y ﹣2=0.【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程.三、解答题19.【答案】【解析】(1)函数的定义域为),0(+∞,因为x x ax x f ln 221)(2-+=,当0=a 时,x x x f ln 2)(-=,则xx f 12)('-=.令012)('=-=x x f ,得21=x .…………2分所以的变化情况如下表:所以当2=x 时,)(x f 的极小值为2ln 1)21(+=f ,函数无极大值.………………5分20.【答案】【解析】解:(1)由已知得,基本事件(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣1,﹣1),(﹣1,0),(﹣1,1),(0,﹣1),(0,0)(0,1)共9种…4(分)设“点P在第二象限”为事件A,事件A有(﹣2,1),(﹣1,1)共2种则P(A)=…6(分)(2)设“点P在第三象限”为事件B,则事件B满足…8(分)∴,作出不等式组对应的平面区域如图:则P(B)==…12(分)21.【答案】【解析】解:(1)由题意:集合A={x|2≤x ≤6},集合B={x|x ≥3}. 那么:A ∩B={x|6≥x ≥3}. ∴C R (A ∩B )={x|x <3或x >6}. (2)C={x|x ≤a}, ∵A ⊆C , ∴a ≥6∴故得实数a 的取值范围是[6,+∞).【点评】本题主要考查集合的基本运算,比较基础.22.【答案】(1)21sin 212cos a S a a θθ=⋅+- (2)2a =+【解析】试题解析:(1)设边BC x =,则AC ax =, 在三角形ABC 中,由余弦定理得:22212cos x ax ax θ=+-,所以22112cos x a a θ=+-, 所以211sin 2212cos a S ax x sin a a θθθ=⋅⋅=⋅+-,(2)因为()()222cos 12cos 2sin sin 1212cos a a a a a S a a θθθθθ+--⋅=+-'⋅, ()()2222cos 121212cos a a aa a θθ+-=⋅+-, 令0S '=,得022cos ,1aa θ=+ 且当0θθ<时,022cos 1aa θ>+,0S '>, 当0θθ>时,022cos 1aa θ<+,0S '<,所以当0θθ=时,面积S 最大,此时0060θ=,所以22112a a =+,解得2a =± 因为1a >,则2a =+点睛:解三角形的实际应用,首先转化为几何思想,将图形对应到三角形,找到已知条件,本题中对应知道一个角,一条边,及其余两边的比例关系,利用余弦定理得到函数方程;面积最值的处理过程中,若函数比较复杂,则借助导数去求解最值。

数学高二月考试卷

数学高二月考试卷

数学高二月考试卷一、选择题(每题5分,共60分)1. 椭圆frac{x^2}{25}+frac{y^2}{16}=1的长轴长为()A. 5B. 4C. 10D. 8.2. 双曲线x^2-frac{y^2}{3}=1的渐近线方程为()A. y = ±√(3)xB. y=±(√(3))/(3)xC. y = ± 3xD. y=±(1)/(3)x3. 抛物线y^2=2px(p>0)的焦点坐标为()A. ((p)/(2),0)B. (-(p)/(2),0)C. (0,(p)/(2))D. (0,-(p)/(2))4. 已知向量→a=(1,2),→b=(x,1),若→a⊥→b,则x=()A. - 2B. 2C. -(1)/(2)D. (1)/(2)5. 若直线y = kx + 1与圆x^2+y^2=1相切,则k=()A. ±√(3)B. ±1C. ±2D. ±√(2)6. 在空间直角坐标系中,点P(1,2,3)关于xOy平面的对称点为()A. (1,2,- 3)B. (-1,2,3)C. (1,-2,3)D. (-1,-2,-3)7. 设等差数列{a_n}的首项a_1=2,公差d = 3,则a_5=()A. 14B. 17C. 20D. 23.8. 等比数列{b_n}中,b_1=1,公比q = 2,则b_4=()A. 8B. 16C. 32D. 64.9. 函数y=sin(2x+(π)/(3))的最小正周期为()A. πB. 2πC. (π)/(2)D. (2π)/(3)10. 已知函数f(x)=x^3-3x^2+1,则函数f(x)的单调递增区间为()A. (-∞,0)∪(2,+∞)B. (0,2)C. (-∞,1)∪(3,+∞)D. (1,3)11. 若∫_0^a(2x + 1)dx=6,则a=()A. 2B. 3C. 4D. 5.12. 从5名男生和3名女生中任选3人参加志愿者活动,则所选3人中至少有1名女生的选法共有()A. 46种B. 56种C. 70种D. 80种。

永登县高中2018-2019学年上学期高二数学12月月考试题含解析

永登县高中2018-2019学年上学期高二数学12月月考试题含解析

(Ⅰ)记甲先回答问题 再回答问题 得分为随机变量 ,求 的分布列和数学期望; (Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.
第 5 页,共 16 页
第 6 页,共 16 页
永登县高中 2018-2019 学年上学期高二数学 12 月月考试题含解析(参考答案) 一、选择题
1. 【答案】D 【解析】 【分析】由于长为 2 的线段 MN 的一个端点 M 在棱 OA 上运动,另一个端点 N 在△BCO 内运动(含边界), 有空间想象能力可知 MN 的中点 P 的轨迹为以 O 为球心,以 1 为半径的球体,故 MN 的中点 P 的轨迹与三棱 锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可. 【解答】 解 : 因为长为 2 的线段 MN 的一个端点 M 在棱 OA 上运动, 另一个端点 N 在△BCO 内运动 (含边界) , 有空间想象能力可知 MN 的中点 P 的轨迹为以 O 为球心,以 1 为半径的球体,则 MN 的中点 P 的轨迹与 三棱锥的面所围成的几何体可能为该球体的 或该三棱锥减去此球体的 ,即: . 故选 D 2. 【答案】B 【解析】 试题分析:因为 a (1, 2) , b (1, 0) ,所以 ( a b) 1 , 2 ,又因为 ( a b) / / c ,所以 或
5. 已知 a, b, c 为 ABC 的三个角 A, B, C 所对的边,若 3b cos C c(1 3cos B ) ,则 sin C : sin A A.2︰3
【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力. 6. 函数 f(x﹣ )=x2+ A.8 7. 已知 A.0 B.2 C.4 B.9 C.11 ,则 f(3)=( D.10 ,则 f{f[f(﹣2)]}的值为( D.8 ) )

永登县第二中学2018-2019学年高二上学期第二次月考试卷数学

永登县第二中学2018-2019学年高二上学期第二次月考试卷数学

永登县第二中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1﹣B .﹣C .D .2. 已知a=21.2,b=(﹣)﹣0.8,c=2log 52,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a3. 设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中两个点的函数的个数是A4B6C8D104. 已知抛物线28y x =与双曲线2221x y a -=的一个交点为M ,F 为抛物线的焦点,若5MF =,则该双曲线的渐近线方程为A 、530x y ±=B 、350x y ±=C 、450x y ±=D 、540x y ±=5. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( )A .36πB .48πC .60πD .72π6. 已知集合M={0,1,2},则下列关系式正确的是( )A .{0}∈MB .{0}∉MC .0∈MD .0⊆M7. 已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则 实数的取值范围是( )111]A .)22,0( B .)33,0( C .)55,0( D .)66,0( 8. 已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若,f(x-1)≤f(x),则实数a 的取值范围为A[] B[] C[]D[] 9. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣110.已知x ,y 满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( )A .1B .C .D .11.已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,412.若复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,则a=( ) A .3B .6C .9D .12二、填空题13.函数y=1﹣(x ∈R )的最大值与最小值的和为 2 .14.利用计算机产生1到6之间取整数值的随机数a 和b ,在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是 .15.过抛物线y 2=4x 的焦点作一条直线交抛物线于A ,B 两点,若线段AB 的中点M 的横坐标为2,则|AB|等于 .16.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ . 17.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 . 18.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xx x e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____.三、解答题19.已知椭圆E 的中心在坐标原点,左、右焦点F 1、F 2分别在x轴上,离心率为,在其上有一动点A ,A 到点F 1距离的最小值是1,过A 、F 1作一个平行四边形,顶点A 、B 、C 、D 都在椭圆E 上,如图所示. (Ⅰ)求椭圆E 的方程;(Ⅱ)判断▱ABCD 能否为菱形,并说明理由.(Ⅲ)当▱ABCD 的面积取到最大值时,判断▱ABCD 的形状,并求出其最大值.20.甲、乙两人参加普法知识竞赛,共有5道不同的题目,其中选择题3道,判断题2道,甲、乙两人各抽一道(不重复).(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙二人中至少有一人抽到选择题的概率是多少?21.本小题满分12分已知椭圆C 2. Ⅰ求椭圆C 的长轴长;Ⅱ过椭圆C 中心O 的直线与椭圆C 交于A 、B 两点A 、B 不是椭圆C 的顶点,点M 在长轴所在直线上,且22OM OA OM =⋅,直线BM 与椭圆交于点D ,求证:AD ⊥AB 。

永登县第二中学20182019学年上学期高二数学月考试题含解析

永登县第二中学20182019学年上学期高二数学月考试题含解析

优选高中模拟试卷永登县第二中学 2018-2019学年上学期高二数学 12月月考试题含分析班级__________ 姓名__________分数__________一、选择题 1.已知函数f(x)3x 2 2ax a 2,此中a(0,3],f(x)0对随意的x1,1都建立,在 1和两数间插入 2015个数,使之与1,组成等比数列,设插入的这2015个数的成绩为 T ,则T ( )A .22015B .32015C .32.若实数x ,y 知足 ,则(x ﹣3)2+y 2的最小值是()201520152D .22A .B .8C .20D .23A{1i,(1 ) ,i ,1 i}(此中为虚数单位),B {xx21} ,则 AB().已知会合i 2311 i22A .{ 1}B .{1}C .{1,2}D .{2} 4.函数f (x )=ax 2+2(a ﹣1)x+222在区间(﹣∞,4]上为减函数,则a 的取值范围为()A .0<a ≤B .0≤a ≤C .0<a <D .a >5.对“a ,b ,c 是不全相等的正数 ”,给出两个判断:①(a ﹣b )2+(b ﹣c )2+(c ﹣a )2≠0;②a ≠b ,b ≠c ,c ≠a 不可以同时建立, 以下说法正确的选项是( )A .①对②错B .①错②对C .①对②对D .①错②错 6.设会合 ( )A .B .C .D .7.已知三次函数32=( )f (x )=ax +bx+cx+d 的图象以下图,则A .﹣1B .2C .﹣5D .﹣3第1页,共19页8.以下图为某几何体的正视图和侧视图,则该几何体体积的全部可能取值的会合是()A.{,}B.{,,}C.{V|≤V≤}D.{V|0<V≤}9.以椭圆+=1的极点为焦点,焦点为极点的双曲线C,其左、右焦点分别是F1,F2,已知点 M坐标为(2,1),双曲线C上点P(x0,y0)(x0>0,y0>0)知足=,则﹣S()A.2B.4C.1D.﹣1y x,10.设m1,在拘束条件y mx,下,目标函数z x my的最大值小于2,则m的取值范围为()x y 1.A.(1,12)B.(12,) C.(1,3)D.(3,) 11.设方程|x2+3x﹣3|=a的解的个数为m,则m不行能等于()A.1B.2C.3D.412.一个空间几何体的三视图以下图,此中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为()A.64B.326432C.D.33第2页,共19页二、填空题13.若数列{a n}知足:存在正整数T,对于随意的正整数n,都有a n+T=a n建立,则称数列 {a n}为周期为T的周期数列.已知数列{a n}知足:a1>=m(m>a),a n+1=,现给出以下三个命题:①若m=,则a=2;5②若a3=3,则m能够取3个不一样的值;③若m=,则数列{a n}是周期为5的周期数列.此中正确命题的序号是.14.在等差数列{a n}中,a1S10S82,则S2016的值等于. 2016,其前n项和为S n,若810【命题企图】本题考察等差数列的通项公式、前n项和公式,平等差数列性质也有较高要求,属于中等难度. 15.已知变量x,y,知足,则z=log4(2x+y+4)的最大值为.16.过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为.17.以下图2×2方格,在每一个方格中填入一个数字,数字能够是1、2、3中的任何一个,同意重复.若填入A方格的数字大于B方格的数字,则不一样的填法共有种(用数字作答).BCD第3页,共19页优选高中模拟试卷18.若函数f(x),g(x)知足:?x∈(0,+∞),均有f(x)>x,g(x)<x建立,则称“f(x)与g(x)对于y=x”fx=a x gx=log a(x a>0,且a≠1)对于y=x分别,则a的取值范围是.分别.已知函数()与()三、解答题19.19.已知函数f(x)=ln.20.某企业春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形同样号码分别为1,2,3,,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其他状况无奖金.1)职工甲抽奖一次所得奖金的散布列与希望;2)职工乙好运地先后获取四次抽奖时机,他得奖次数的方差是多少?(21.已知f(x)=x2﹣3ax+2a2.(1)若实数a=1时,求不等式f(x)≤0的解集;2)求不等式f(x)<0的解集.第4页,共19页22.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;(Ⅱ)求证:;(Ⅲ)若,判断直线与平面能否垂直?并说明原因.23.设函数f(x)=lnx+,k∈R.(Ⅰ)若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,求k值;(Ⅱ)若对随意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒建立,求k的取值范围;(Ⅲ)已知函数fx)在x=e处获得极小值,不等式f(x P M={x|e≤x≤3},且M∩P≠()<的解集为,若?,求实数m的取值范围.第5页,共19页24.(本题满分15分)如图,已知长方形ABCD中,AB2,AD 1,M为DC的中点,将ADM沿AM折起,使得平面ADM平面ABCM.(1)求证:AD BM;(2)若DE DB(01),当二面角E AM D大小为时,求的值.3【命题企图】本题考察空间点、线、面地点关系,二面角等基础知识,意在考察空间想象能力和运算求解能力.第6页,共19页优选高中模拟试卷永登县第二中学2018-2019学年上学期高二数学12月月考试题含分析(参照答案)一、选择题1.【答案】C【分析】试题剖析:因为函数f(x)3x22axa2,f(x)0对随意的x1,1f10都建立,因此1,解得f0a3或a1,又因为a(0,3],因此a3,在和两数间插入a1,a2...a2015共2015个数,使之与,组成等比数列,T,a2015a2...a1,两式相乘,依据等比数列的性质得T2aa2015132015,a1a2...a2015T12015201532,应选C.考点:1、不等式恒建立问题;2、等比数列的性质及倒序相乘的应用. 2.【答案】A【分析】解:画出知足条件的平面地区,如图示:,由图象得P(3,0)到平面地区的最短距离d min=,22的最小值是:.∴(x﹣3)+y应选:A.【评论】本题考察了简单的线性规划问题,考察数形联合思想,是一道基础题.3.【答案】D【分析】第7页,共19页优选高中模拟试卷考点:1.复数的有关观点; 2.会合的运算4.【答案】B【分析】解:当a=0时,f(x)=﹣2x+2,切合题意当a≠0时,要使函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数∴?0<a≤综上所述0≤a≤应选B【评论】本题主要考察了已知函数再某区间上的单一性求参数a的范围的问题,以及分类议论的数学思想,属于基础题.5.【答案】A【分析】解:由:“a,b,c是不全相等的正数”得:①(a﹣b)2+(b﹣c)2+(c﹣a)2中起码有一个不为0,其他两个式子大于0,故①正确;可是:若a=1,b=2,c=3,则②中a≠b,b≠c,c≠a能同时建立,故②错.应选A.【评论】本小题主要考察不等关系与不等式等基础知识,考察运算求解能力,考察逻辑思想能力.属于基础题.6.【答案】B【分析】解:会合A中的不等式,当x>0时,解得:x>;当x<0时,解得:x<,会合B中的解集为x>,则A∩B=(,+∞).应选B【评论】本题考察了交集及其运算,娴熟掌握交集的定义是解本题的重点.第8页,共19页7.【答案】C【分析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,即2,﹣1是f′(x)=0的两个根,f(x)=ax3+bx2+cx+d,∴f′(x)=3ax2+2bx+c,由f′(x)=3ax2+2bx+c=0,得2+(﹣1)==1,1×2==﹣2,即c=﹣6a,2b=﹣3a,即f′(x)=3ax2+2bx+c=3ax2﹣3ax﹣6a=3a(x﹣2)(x+1),则===﹣5,应选:C【评论】本题主要考察函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考察学生的计算能力.8.【答案】D【分析】解:依据几何体的正视图和侧视图,得;当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×12×2=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;因此,该几何体体积的全部可能取值会合是{V|0<V≤}.应选:D.【评论】本题考察了空间几何体的三视图的应用问题,解题的重点是依据三视图得出几何体的构造特色是什么,是基础题目.9.【答案】A【分析】解:∵椭圆方程为+=1,∴其极点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),∴双曲线方程为,设点P(x,y),记F1(﹣3,0),F2(3,0),第9页,共19页∵=,∴=,整理得:=5,化简得:5x=12y﹣15,又∵,2=20,∴5﹣4y解得:y=或y=(舍),P(3,),直线PF1方程为:5x﹣12y+15=0,∴点M到直线PF1的距离d==1,易知点M到x轴、直线PF2的距离都为1,联合平面几何知识可知点M(2,1)就是△F1PF2的心里.故﹣===2,应选:A.【评论】本题考察椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的累积,属于中档题.10.【答案】A第10页,共19页优选高中模拟试卷【分析】考点:线性规划 . 【方法点晴】本题是一道对于线性规划求最值的题目, 采纳线性规划的知识进行求解; 重点是弄清楚的几何意义直线zxmy 截距为z ,作 L:xmy0, , , , 进而可适当直线直线向可行域内平移越向上则的值越大 mx 0 y 01A,z2,mzxmy过点A 时取最大值,y 0mx 0可求得点 的坐标可求的最大值解不等式可求而后由的范围.第11页,共19页优选高中模拟试卷11.【答案】A【分析】解:方程|x2+3x﹣3|=a的解的个数可化为函数y=|x2+3x﹣3|与y=a的图象的交点的个数,作函数y=|x2+3x﹣3|与y=a的图象以下,,联合图象可知,m的可能值有2,3,4;应选A.12.【答案】B【分析】试题剖析:由题意可知三视图还原的几何体是一个放倒的三棱柱,三棱柱的底面是直角边长为的等腰直角三角144432,应选B.形,高为的三棱柱,因此几何体的体积为:2考点:1、几何体的三视图;2、棱柱的体积公式.【方法点睛】本题主要考察利几何体的三视图、棱柱的体积公式,属于难题.三视图问题是考察学生空间想象能力及抽象思想能力的最常有题型,也是高考热门.察看三视图并将其“翻译”成直观图是解题的重点,解题时不只要注意三视图的三因素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及同样图形的不一样位置对几何体直观图的影响.二、填空题13.【答案】①②.第12页,共19页优选高中模拟试卷【分析】解:对于①由a n+1=1,且a=m=<1,因此,>1,,,∴a5=2故①正确;对于②由a3=3,若a3=a2﹣1=3,则a2=4,若a1﹣1=4,则a1=5=m.若,则.若>1a=,若0<a≤1则a=3,不合题意.a1111因此,a3=2时,m即a1的不一样取值由3个.故②正确;若a1=m=>1,则a2=,所a3=>1,a4=故在a1=时,数列{a n}是周期为3的周期数列,③错;故答案为:①②【评论】本题主要考察新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目14.【答案】201615.【答案】【分析】解:作的可行域如图:易知可行域为一个三角形,考证知在点A(1,2)时,z1=2x+y+4获得最大值8,∴z=log4(2x+y+4)最大是,故答案为:.第13页,共19页【评论】本题主要考察了简单的线性规划,以及利用几何意义求最值,属于基础题.16.【答案】.【分析】解:由题意知点P的坐标为(﹣ c,)或(﹣c,﹣),∵∠F1PF2=60°,∴=,即2ac=b2=(a2﹣c2).e2+2e﹣=0,∴e=或e=﹣(舍去).故答案为:.【评论】本题主要考察了椭圆的简单性质,考察了考生综合运用椭圆的基础知识和剖析推理的能力,属基础题.17.【答案】27【分析】解:若A方格填3,则排法有232=18种,×若A方格填2,则排法有1×32=9种,依据分类计数原理,因此不一样的填法有18+9=27种.故答案为:27.【评论】本题考察了分类计数原理,怎样分类是重点,属于基础题.18.【答案】(,+∞).第14页,共19页【分析】解:由题意,a>1.x故问题等价于a>x(a>1)在区间(0,+∞)上恒建立.由f′(x)=0,得x=log a(log a e),x>log a(log a e)时,f′(x)>0,f(x)递加;0<x<log a(log a e),f′(x)<0,f(x)递减.则x=log a(log a e)时,函数f(x)取到最小值,故有﹣log a(log a e)>0,解得a>.故答案为:(,+∞).【评论】本题考察恒建立问题重点是将问题等价转变,进而利用导数求函数的最值求出参数的范围.三、解答题19.【答案】【分析】解:(1)∵f(x)是奇函数,∴设x>0,则﹣x<0,22∴f(﹣x)=(﹣x)﹣mx=﹣f(x)=﹣(﹣x+2x)进而m=2.(2)由f(x)的图象知,若函数f(x)在区间[﹣1,a﹣2]上单一递加,则﹣1≤a﹣2≤11≤a≤3【评论】本题主要考察函数奇偶性的应用以及函数单一性的判断,利用数形联合是解决本题的重点.20.【答案】【分析】解:(1)由题意知甲抽一次奖,基本领件总数是C103=120,奖金的可能取值是0,30,60,240,∴一等奖的概率P(ξ=240)=,第15页,共19页优选高中模拟试卷P(ξ=60)=P(ξ=30)=,P(ξ=0)=1﹣∴变量的散布列是ξξ03060240P∴Eξ==20(2)由(1)可得乙一次抽奖中奖的概率是1﹣四次抽奖是互相独立的∴中奖次数η~B(4,)∴Dη=4×【评论】本题考察失散型随机变量的散布列和希望,考察二项散布的方差公式,解本题的重点是看清题目中所给的变量的特色,看出切合的规律,选择应用的公式.21.【答案】【分析】解:(1)当a=1时,依题意得x2﹣3x+2≤0因式分解为:(x﹣2)(x﹣1)≤0,解得:x≥1或x≤2.∴1≤x≤2.不等式的解集为{x|1≤x≤2}.2)依题意得x2﹣3ax+2a2<0∴(x﹣a)(x﹣2a)<0对应方程(x﹣a)(x﹣2a)=0得x1=a,x2=2a当a=0时,x∈?.当a>0时,a<2a,∴a<x<2a;当a<0时,a>2a,∴2a<x<a;综上所述,当a=0时,原不等式的解集为?;当a>0时,原不等式的解集为{x|a<x<2a};当a<0时,原不等式的解集为{x|2a<x<a};第16页,共19页优选高中模拟试卷22.【答案】【分析】【知识点】垂直平行【试题分析】(Ⅰ)证明:因为,平面,平面,因此平面.因为,平面,平面,因此平面.又因为,因此平面平面.又因为平面,因此平面.(Ⅱ)证明:因为底面,底面,因此.又因为,,因此平面.又因为底面,因此.(Ⅲ)结论:直线与平面不垂直.证明:假定平面,由平面,得.由棱柱中,底面,可得,,又因为,因此平面,因此.又因为,因此平面,因此.这与四边形为矩形,且矛盾,故直线与平面不垂直.第17页,共19页优选高中模拟试卷23.【答案】【分析】解:(Ⅰ)由条件得f′(x)=﹣(x>0),∵曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,∴此切线的斜率为0,即f′(e)=0,有﹣=0,得k=e;(Ⅱ)条件等价于对随意x1>x2>0,f(x1)﹣x1<f(x2)﹣x2恒建立(*)设h(x)=f(x)﹣x=lnx+﹣x(x>0),∴(*)等价于h(x)在(0,+∞)上单一递减.由h′(x)=﹣﹣1≤00在(0,+∞)上恒建立,得k≥﹣x2+x=(﹣x﹣)2+(x>0)恒建立,∴k≥(对k=,h′(x)=0仅在x=时建立),故k的取值范围是[,+∞);(Ⅲ)由题可得k=e,因为M∩P≠?,因此f(x)<在[e,3]上有解,即?x∈[e,3],使f(x)<建立,即?x∈[e,3],使m>xlnx+e建立,因此m>(xlnx+e)min,令g(x)=xlnx+e,g′(x)=1+lnx>0,因此g(x)在[e,3]上单一递加,g(x)min=g(e)=2e,因此m>2e.【评论】本题考察导数的运用:求切线的斜率和单一区间,主要考察函数的单一性的运用,考察不等式存在性和恒建立问题的解决方法,考察运算能力,属于中档题.第18页,共19页优选高中模拟试卷24.【答案】(1)分析;(2)233.【分析】(1)因为AB2,AM BM2,BM AM,又∵平面ADM平面ABCM,平面ADM平面ABCM=AM,BM平面ABCM,∴BM平面ADM,⋯⋯⋯⋯3分又∵AD平面ADM,∴有AD BM;⋯⋯⋯⋯⋯6分第19页,共19页。

高二数学第二次月测试题

高二数学第二次月测试题

高二数学第二次月测试题高中是重要的一年,大家一定要好好掌握高中,查字典数学网小编为大家整理了高二数学第二次月测试题,希望大家喜欢。

一、选择题(本大题共12小题,每题5分,总分值60分.每题4个选项中,只要1个选项契合标题要求,多项选择不给分.)1. 集合,那么 =( )A. B. C. D.2. 如图放置的几何体的仰望图为( )A.B. C. D.3. 以下各式:其中正确的有( )A.1个B.2个C.3个D.4个4. 执行顺序框图如图,假定输入的值为2,那么输入的值应是( )A. B.3C. 或2D. 或35. ,且角的终边在第二象限,那么 ( )A. B. C. D.6. 假定且,那么以下不等式一定成立的是( )A. B. C. D.7. 正方体上的点P、Q、R、S是其所在棱的中点,那么直线PQ与直线RS异面的图形是( )A. B. C.D.8. 平面向量与垂直,那么的值是( )A.-2B.2C.-3D.39. 不等式组所表示的平面区域为( )A. B. C. D.10. 某学校共有老、中、青职工200人,其中有老年职工60人,中年职工人数与青年职工人数相等.现采用分层抽样的方法抽取局部职工停止调查,抽取的老年职工有12人,那么抽取的青年职工应有( )A.12人B.14人C.16人D.20人11. ,那么的值为( )A. B. C. D.12如图,P是△ABC所在的平面内一点,且满足,那么( ) A. B.C. D. .第二卷(非选择题共90分)二、填空题(本大题共4小题,每题4分,总分值16分,把答案填在题中的横线上.)13.设函数是定义域上的奇函数,那么 = .14. 直线,,假定∥ ,那么 =______________.14.求方程的近似根,要先将它近似地放在某两个延续整数之间,那么应当在区间上.16. 如图,在离空中高200m的热气球上,观测到山顶C处的仰角为15、山脚A处的俯角为45,BAC=60,那么山的高度BC为_______ m.三、解答题(本大题共6小题,总分值74分.解答题应写出文字说明及演算步骤.)17.(本小题总分值12分)集合18.(本小题总分值12分)一个单位的职工有500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的某项目的,要从中抽取100名职任务为样本,职工年龄与这项目的有关,应该怎样抽取?19.(本小题总分值12分)画出方程的根的流程图.20.(本小题总分值12分):A、B、C是△ABC的内角,a,b,c区分是其对边长,向量m=( ,cosA+1),n=(sinA,-1),mn. (Ⅰ)求角A的值;(Ⅱ)假定a=2,cosB= ,求b的值.21.(本小题总分值12分){ }是公比为q的等比数列,且成等差数列.(Ⅰ)求q的值;(Ⅱ)设{ }是以2为首项,q为公差的等差数列,其前n项和为Sn,当n2时,比拟Sn与bn的大小,并说明理由.在高中温习阶段,大家一定要多练习题,掌握考题的规律,掌握常考的知识,这样有助于提矮小家的分数。

永登县高中2019-2020学年高二上学期第一次月考试卷数学

永登县高中2019-2020学年高二上学期第一次月考试卷数学

永登县高中2019-2020学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设曲线y=ax 2在点(1,a )处的切线与直线2x ﹣y ﹣6=0平行,则a=( )A .1B .C .D .﹣12. 若函数f (x )的定义域为R ,则“函数f (x )是奇函数”是“f (0)=0”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. (+)2n (n ∈N *)展开式中只有第6项系数最大,则其常数项为( )A .120B .210C .252D .454. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A .{, }B .{,, }C .{V|≤V ≤}D .{V|0<V ≤}5. 设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的 取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭1111] 6. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )A .1B .C .D .27. 若复数z 满足iz=2+4i ,则在复平面内,z 对应的点的坐标是( )A .(2,4)B .(2,﹣4)C .(4,﹣2)D .(4,2)8. 满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( ) A .1 B .2C .3D .49. 圆心为(1,1)且过原点的圆的方程是( )A .2=1B .2=1C .2=2D .2=210.函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么( )A .F ′(x 0)=0,x=x 0是F (x )的极大值点B .F ′(x 0)=0,x=x 0是F (x )的极小值点C .F ′(x 0)≠0,x=x 0不是F (x )极值点D .F ′(x 0)≠0,x=x 0是F (x )极值点11.在ABC ∆中,60A =,1b =,则sin sin sin a b cA B C++++等于( )A .BC .3D12.函数f (x )=kx +bx +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .4二、填空题13.已知函数f (x )=sinx ﹣cosx ,则= .14.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .15.若6()mx y +展开式中33x y 的系数为160-,则m =__________.【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.16.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = .17.设函数,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同的实数根,则实数a 的取值范围是 .18.满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 的个数是 .三、解答题19.(本小题满分12分)已知函数f (x )=12x 2+x +a ,g (x )=e x .(1)记曲线y =g (x )关于直线y =x 对称的曲线为y =h (x ),且曲线y =h (x )的一条切线方程为mx -y -1=0,求m 的值;(2)讨论函数φ(x )=f (x )-g (x )的零点个数,若零点在区间(0,1)上,求a 的取值范围.20.在平面直角坐标系xOy 中,经过点且斜率为k 的直线l 与椭圆有两个不同的交点P 和Q .(Ⅰ)求k 的取值范围;(Ⅱ)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量与共线?如果存在,求k 值;如果不存在,请说明理由.21.(本小题满分10分)选修4-1:几何证明选讲.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于E ,过E 的切线与AC 交于D .(1)求证:CD =DA ;(2)若CE =1,AB =2,求DE 的长.22.函数f (x )是R 上的奇函数,且当x >0时,函数的解析式为f (x )=﹣1. (1)用定义证明f (x )在(0,+∞)上是减函数; (2)求函数f (x )的解析式.23.【海安县2018届高三上学期第一次学业质量测试】已知函数()()2x f x x ax a e =++,其中a R ∈,e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在0x =处的切线方程; (2)求函数()f x 的单调减区间;(3)若()4f x ≤在[]4,0-恒成立,求a 的取值范围.24.记函数f (x )=log 2(2x ﹣3)的定义域为集合M ,函数g (x )=的定义域为集合N .求:(Ⅰ)集合M ,N ;(Ⅱ)集合M ∩N ,∁R (M ∪N ).永登县高中2019-2020学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:y'=2ax,于是切线的斜率k=y'|x=1=2a,∵切线与直线2x﹣y﹣6=0平行∴有2a=2∴a=1故选:A【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.2.【答案】A【解析】解:由奇函数的定义可知:若f(x)为奇函数,则任意x都有f(﹣x)=﹣f(x),取x=0,可得f(0)=0;而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,显然满足f(0)=0,但f(x)为偶函数.由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0””的充分不必要条件.故选:A.3.【答案】B【解析】【专题】二项式定理.【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项.【解答】解:由已知(+)2n(n∈N*)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5﹣=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项.4. 【答案】D【解析】解:根据几何体的正视图和侧视图,得;当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×12×2=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;所以,该几何体体积的所有可能取值集合是{V|0<V ≤}. 故选:D .【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目.5. 【答案】D 【解析】考点:函数导数与不等式.1 【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令()0f x =将函数变为两个函数()()()21,xg x e x h x ax a =-=-,将题意中的“存在唯一整数,使得()g t 在直线()h x 的下方”,转化为存在唯一的整数,使得()g t 在直线()h x ax a =-的下方.利用导数可求得函数的极值,由此可求得m 的取值范围.6. 【答案】A【解析】解:极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点, 可知两条曲线是同心圆,如图,|PQ|的最小值为:1. 故选:A .【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.7.【答案】C【解析】解:复数z满足iz=2+4i,则有z===4﹣2i,故在复平面内,z对应的点的坐标是(4,﹣2),故选C.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.8.【答案】B【解析】解:∵M∩{1,2,4}={1,4},∴1,4是M中的元素,2不是M中的元素.∵M⊆{1,2,3,4},∴M={1,4}或M={1,3,4}.故选:B.9.【答案】D【解析】解:由题意知圆半径r=,∴圆的方程为2=2.故选:D.【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.10.【答案】B【解析】解:∵F (x )=f (x )﹣g (x )=f (x )﹣f ′(x 0)(x ﹣x 0)﹣f (x 0), ∴F'(x )=f'(x )﹣f ′(x 0) ∴F'(x 0)=0, 又由a <x 0<b ,得出当a <x <x 0时,f'(x )<f ′(x 0),F'(x )<0, 当x 0<x <b 时,f'(x )<f ′(x 0),F'(x )>0, ∴x=x 0是F (x )的极小值点 故选B .【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值.11.【答案】B 【解析】试题分析:由题意得,三角形的面积011sin sin 6022S bc A bc ====,所以4bc =,又1b =,所以4c =,又由余弦定理,可得2222202cos 14214cos6013a b c bc A =+-=+-⨯⨯=,所以a =sin sin sin sin a b c a A B C A ++===++,故选B . 考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理和余弦定理、三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用比例式的性质,得到sin sin sin sin a b c aA B C A++=++是解答的关键,属于中档试题. 12.【答案】【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),则⎩⎪⎨⎪⎧n =km +b m +14-n =k (-2-m )+b-1-m,恒成立.由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,∴b =1,故选B.二、填空题13.【答案】 .【解析】解:∵函数f (x )=sinx ﹣cosx=sin (x ﹣),则=sin (﹣)=﹣=﹣,故答案为:﹣.【点评】本题主要考查两角差的正弦公式,属于基础题.14.【答案】 cm 2 .【解析】解:如图所示,是正六棱台的一部分, 侧面ABB 1A 1为等腰梯形,OO 1为高且OO 1=1cm ,AB=1cm ,A 1B 1=2cm .取AB 和A 1B 1的中点C ,C 1,连接OC ,CC 1,O 1C 1, 则C 1C 为正六棱台的斜高,且四边形OO 1C 1C 为直角梯形.根据正六棱台的性质得OC=,O1C 1==,∴CC 1==.又知上、下底面周长分别为c=6AB=6cm ,c ′=6A 1B 1=12cm .∴正六棱台的侧面积:S=.==(cm 2).故答案为: cm 2.【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养.15.【答案】2-【解析】由题意,得336160C m=-,即38m=-,所以2m=-.16.【答案】.【解析】解:∵数列{S n}是首项和公比都是3的等比数列,∴S n =3n.故a1=s1=3,n≥2时,a n=S n ﹣s n﹣1=3n﹣3n﹣1=2•3n﹣1,故a n=.【点评】本题主要考查等比数列的通项公式,等比数列的前n项和公式,数列的前n项的和Sn与第n项an 的关系,属于中档题.17.【答案】(﹣1,﹣]∪[,).【解析】解:当﹣2≤x<﹣1时,[x]=﹣2,此时f(x)=x﹣[x]=x+2.当﹣1≤x<0时,[x]=﹣1,此时f(x)=x﹣[x]=x+1.当0≤x<1时,﹣1≤x﹣1<0,此时f(x)=f(x﹣1)=x﹣1+1=x.当1≤x<2时,0≤x﹣1<1,此时f(x)=f(x﹣1)=x﹣1.当2≤x<3时,1≤x﹣1<2,此时f(x)=f(x﹣1)=x﹣1﹣1=x﹣2.当3≤x <4时,2≤x ﹣1<3,此时f (x )=f (x ﹣1)=x ﹣1﹣2=x ﹣3. 设g (x )=ax ,则g (x )过定点(0,0),坐标系中作出函数y=f (x )和g (x )的图象如图:当g (x )经过点A (﹣2,1),D (4,1)时有3个不同的交点,当经过点B (﹣1,1),C (3,1)时,有2个不同的交点,则OA 的斜率k=,OB 的斜率k=﹣1,OC 的斜率k=,OD 的斜率k=,故满足条件的斜率k 的取值范围是或,故答案为:(﹣1,﹣]∪[,)【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想.18.【答案】 4 .【解析】解:由题意知,满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 有: {2,3},{2,3,1},{2,3,4},{2,3,1,4}, 故共有4个, 故答案为:4.三、解答题19.【答案】【解析】解:(1)y =g (x )=e x 关于直线y =x 对称的曲线h (x )=ln x , 设曲线y =h (x )与切线mx -y -1=0的切点为(x 0,ln x 0), 由h (x )=ln x 得h ′(x )=1x,(x >0),则有⎩⎪⎨⎪⎧1x 0=m mx 0-ln x 0-1=0,解得x 0=m =1. ∴m 的值为1.(2)φ(x )=12x 2+x +a -e x ,φ′(x )=x +1-e x , 令t (x )=x +1-e x , ∴t ′(x )=1-e x ,当x <0时,t ′(x )>0,x >0时,t ′(x )<0, x =0时,t ′(x )=0.∴φ′(x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,∴φ′(x )max =φ′(0)=0, 即φ′(x )≤0在(-∞,+∞)恒成立, 即φ(x )在(-∞,+∞)单调递减, 且当a =1有φ(0)=0.∴不论a 为何值时,φ(x )=f (x )-g (x )有唯一零点x 0, 当x 0∈(0,1)时,则φ(0)φ(1)<0, 即(a -1)(a -2e -32)<0,∴1<a <2e -32,即a 的取值范围为(1,2e -32).20.【答案】【解析】解:(Ⅰ)由已知条件,直线l 的方程为,代入椭圆方程得.整理得①直线l 与椭圆有两个不同的交点P 和Q ,等价于①的判别式△=,解得或.即k 的取值范围为.(Ⅱ)设P (x 1,y 1),Q (x 2,y 2),则,由方程①,.②又.③而.所以与共线等价于,将②③代入上式,解得.由(Ⅰ)知或,故没有符合题意的常数k.【点评】本题主要考查直线和椭圆相交的性质,2个向量共线的条件,体现了转化的数学而思想,属于中档题.21.【答案】【解析】解:(1)证明:如图,连接AE,∵AB是⊙O的直径,AC,DE均为⊙O的切线,∴∠AEC=∠AEB=90°,∠DAE=∠DEA=∠B,∴DA=DE.∠C=90°-∠B=90°-∠DEA=∠DEC,∴DC=DE,∴CD=DA.(2)∵CA是⊙O的切线,AB是直径,∴∠CAB=90°,由勾股定理得CA2=CB2-AB2,又CA2=CE×CB,CE=1,AB=2,∴1·CB=CB2-2,即CB2-CB-2=0,解得CB=2,∴CA2=1×2=2,∴CA= 2.由(1)知DE =12CA =22,所以DE 的长为22.22.【答案】【解析】(1)证明:设x 2>x 1>0,∵f (x 1)﹣f (x 2)=(﹣1)﹣(﹣1)=,由题设可得x 2﹣x 1>0,且x 2•x 1>0,∴f (x 1)﹣f (x 2)>0,即f (x 1)>f (x 2), 故f (x )在(0,+∞)上是减函数.(2)当x <0时,﹣x >0,f (﹣x )=﹣1=﹣f (x ),∴f (x )=+1.又f (0)=0,故函数f (x )的解析式为f (x )=.23.【答案】(1)210x y -+=(2)当2a =时,()f x 无单调减区间;当2a <时,()f x 的单调减区间是()2,a --;当2a >时,()f x 的单调减区间是(),2a --.(3)244,4e ⎡⎤-⎣⎦【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式()4f x ≤进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极值与最值,进而分析推证不等式的成立求出参数的取值范围。

【实用型】第一学期高二数学月考试卷.doc

【实用型】第一学期高二数学月考试卷.doc

A B l 1 C D7.已知点A(-1,3),B(3,1),点C 在坐标轴上,090=∠ACB ,则满足条件的C 有( )A .1个B .2个C .3个D .4个8.直线06)5()12(2)12()3(=-+++-=-+-y a x a y a x a 和互相垂直,则a =( )A .31-B .71C .51D .21 9.点)5,3(-A 关于直线0443=+-y x 的对称点是( )A .)3,3(-B .)3,5(--C .)3,3(-D .)3,5(-10.满足4≤+y x 的整点),(y x (横、纵坐标均为整数的点)的个数是( )A .16B .17C .40D .4111.点),0,1(),0,1(B A -,动点M 满足2=-MB MA ,其轨迹方程是( )A .)11(0≤≤-=x yB .)1(0≥=x yC .)1(0-≤=x yD .)1(0≥=x y12.直线m x y +=与曲线21x y -=有两个公共点,则m 的取值范围是( )A .)2,2(-B .)1,1(-C .)2,1[ D .以上都不对 二.填空题:(每题4分,共16分)13.过点)5,3(--且在两坐标轴上的截距相等的直线方程是___________________________14.直线0235:023:21=-+=+-y x l y mx l 与的夹角为 45o ,则m=____________15.到直线01234=+-y x 和x 轴距离相等的点的轨迹方程是________________________16.已知集合{}{}m B A m x y x y y x B y x y x A 则,,0))((),(,1),(⋂=≤+-=≤+=的面积是_______________________________三.解答题:(共74分)17.已知相交,且与线段过点直线、AB P l B A )1,1(),2,3()3,2(---求l 斜率k 及倾斜角α的取值范围.(12分)18.已知直线01:=-+y x l ,(1) 若,//1l l 且.,211的方程求之间的距离是与l l l(2).,072222的方程求的交点且与直线过若l l l y x l l ⊥=+-(12分)19.画出满足线性约束条件⎪⎩⎪⎨⎧≤-++≤≥-+0522012y x x y y x 表示的平面区域并求目标函数y x z -=的最大值和最小值.(12分)20.一束光线经过点A(0,13+),以1200的倾斜角入射到直线02:=-+y x l 上,被直线l 反射,求反射光线所在的直线的方程.(12分)21.过直线03082=++=++y x y x 和直线的交点P 作一条直线l ,直线l 夹在两平行 直线50205之间的线段长为和=--=--y x y x ,求直线l 的方程.(12分)22.某承包户承包了两块鱼塘,一块准备放养鲫鱼,另一块准备放养鲢鱼,现知放养这两位承包户只有鱼饲料A 、B 、C 分别为120g 、50g 、144g,问如何放养这两种鱼苗,才能使 得成鱼的重量最重?(14分)参考答案:一.选择题DBDCA DCBAD BC二.填空题:13.美文欣赏1、走过春的田野,趟过夏的激流,来到秋天就是安静祥和的世界。

甘肃高二高中数学月考试卷带答案解析

甘肃高二高中数学月考试卷带答案解析

甘肃高二高中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.若集合M={x||x|≤2},N={x|x2-3x=0},则M∩N等于()A.{3}B.{0}C.{0,2}D.{0,3}2.使成立的一个必要不充分条件是 ( )A.B.C.D.3.方程(t为参数)表示的曲线是().A.一条直线B.两条射线C.一条线段D.抛物线的一部分4.使有意义的x的条件是()A.-3≤x<B.<x≤3C.-3≤x< -或D.-3≤x≤35.在同一坐标系中,将曲线变为曲线的伸缩变换是()6.设满足则()A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值7.设点对应的复数为,以原点为极点,实轴正半轴为极轴建立极坐标系,则点的极坐标为()A. (,)B. (,)C. (3,)D. (-3,)8.在符合互化条件的直角坐标系和极坐标系中,直线l:与曲线C:相交,则k的取值范围是().A.B.C.D.但9.不等式|x-1|+|x+2|的解集为( )A.B.C.D.10.若圆的方程为(为参数),直线的方程为(t为参数),则直线与圆的位置关系是().A.相交过圆心B.相交而不过圆心C.相切D.相离11.设a、b、c是互不相等的正数,则下列不等式中不恒成立的是()A.B.C.D.12..已知a,b,c是正实数,且a+b+c=1,则的最小值为( )A.3B.6C.9D.12二、填空题1.在极坐标系中,以为圆心,为半径的圆的极坐标方程是 .2.如图所示,AC为⊙O的直径,BD⊥AC于P,PC=2,PA=8,则CD的长为,cos∠ACB= .3.直线被双曲线截得的弦长为__________4.(1)≥2成立当且仅当a,b均为正数.(2)的最小值是(3)的最大值是(4)|a+|≥2成立当且仅当a≠0.以上命题是真命题的是三、解答题1.(10分)把下列参数方程化为普通方程,并说明它们各表示什么曲线:⑴(为参数);(5分)⑵(为参数)(5分)2.(12分)和的极坐标方程分别为.(Ⅰ)把和的极坐标方程化为直角坐标方程;(Ⅱ)求经过,交点的直线的直角坐标方程.3.(12分)从⊙O外一点P引圆的两条切线PA,PB及一条割线PCD,A,B为切点.求证:=.4.(12分)已知、满足,求的最值.5.(12分)已知:如图所示,在△ABC中,D是BC的中点,F是BA延长线上的点,FD与AC交于点E.求证:AE·FB=EC·FA.6.(12分)设函数f(x)=∣2x+1∣-∣x-4∣(1)解不等式f(x)>2.(2)求函数y=f(x)的最小值.甘肃高二高中数学月考试卷答案及解析一、选择题1.若集合M={x||x|≤2},N={x|x2-3x=0},则M∩N等于()A.{3}B.{0}C.{0,2}D.{0,3}【答案】B【解析】2.使成立的一个必要不充分条件是 ( )A.B.C.D.【答案】A【解析】即.由得或.故选A3.方程(t为参数)表示的曲线是().A.一条直线B.两条射线C.一条线段D.抛物线的一部分【答案】B【解析】因为所以方程表示的是两条射线.4.使有意义的x的条件是()A.-3≤x<B.<x≤3C.-3≤x< -或D.-3≤x≤3【答案】C【解析】有意义,即解得或.5.在同一坐标系中,将曲线变为曲线的伸缩变换是()【答案】B【解析】变换过程是横坐标伸长为原来的三倍,纵坐标缩短为原来的二分之一.故选B6.设满足则()A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值【答案】B【解析】画出满足的可行域,可得最小值在点(2,0)处取得为2.无最大值.7.设点对应的复数为,以原点为极点,实轴正半轴为极轴建立极坐标系,则点的极坐标为()A. (,)B. (,)C. (3,)D. (-3,)【答案】A【解析】因为,所以点的极坐标为(,).8.在符合互化条件的直角坐标系和极坐标系中,直线l:与曲线C:相交,则k的取值范围是().A.B.C.D.但【答案】A【解析】曲线C:化为直角坐标系下的方程为,圆心(1,0)到直线的距离要小于半径1,即.9.不等式|x-1|+|x+2|的解集为( )A.B.C.D.【答案】D【解析】当原不等式等价于解得;当原不等式等价于解得;当原不等式等价于,无解.所以原不等式的解集为.10.若圆的方程为(为参数),直线的方程为(t为参数),则直线与圆的位置关系是().A.相交过圆心B.相交而不过圆心C.相切D.相离【答案】B【解析】圆的方程为(为参数),化为一般方程是;直线的方程为(t为参数),化为一般方程是不过圆心(-1,3);圆心(-1,3)到直线的距离,所以直线与圆相交且不过圆心.11.设a、b、c是互不相等的正数,则下列不等式中不恒成立的是()A.B.C.D.【答案】D【解析】对于,当时不成立.其他都恒成立.12..已知a,b,c是正实数,且a+b+c=1,则的最小值为( )A.3B.6C.9D.12【答案】C【解析】当且仅当时等号成立.二、填空题1.在极坐标系中,以为圆心,为半径的圆的极坐标方程是 .【答案】【解析】以为圆心,为半径的圆的标准方程是即.所以极坐标方程是.2.如图所示,AC为⊙O的直径,BD⊥AC于P,PC=2,PA=8,则CD的长为,cos∠ACB= .【答案】【解析】在中,,把PC=2,PA=8,代入得;3.直线被双曲线截得的弦长为__________【答案】【解析】直线化为一般式是,与双曲线方程联立消去得,设两交点.则4.(1)≥2成立当且仅当a,b均为正数.(2)的最小值是(3)的最大值是(4)|a+|≥2成立当且仅当a≠0.以上命题是真命题的是【答案】(3)、(4)【解析】≥2成立当且仅当a,b均为正数且时等号成立.故(1)错;当时等号成立.故(2)错;当时等号成立.故(3)对;当时等号成立.故(4)对.三、解答题1.(10分)把下列参数方程化为普通方程,并说明它们各表示什么曲线:⑴(为参数);(5分)⑵(为参数)(5分)【答案】⑴∴曲线是长轴在x轴上且为10,短轴为8,中心在原点的椭圆.⑵,它表示过(0,)和(1, 0)的一条直线.【解析】本题主要是考查参数方程化为普通方程,(1)对两个式子中右边的系数挪到左边,利用三角函数的平方关系式消去整理即得到;(2)可以代入消元或加减消元消去得普通方程.解:⑴.∵∴两边平方相加,得即∴曲线是长轴在x轴上且为10,短轴为8,中心在原点的椭圆.⑵.∵∴由代入,得∴∴它表示过(0,)和(1, 0)的一条直线.2.(12分)和的极坐标方程分别为.(Ⅰ)把和的极坐标方程化为直角坐标方程;(Ⅱ)求经过,交点的直线的直角坐标方程.【答案】以极点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(Ⅰ)即为的直角坐标方程.同理为的直角坐标方程.(Ⅱ),交于点和.过交点的直线的直角坐标方程为.【解析】(1)先建立平面直角坐标系,可得到,.对两边平方就得到直角坐标方程;(2)可以两圆的方程联立,求出交点,写出直线方程.也可以两圆的方程直接相减得直线方程. 以极点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(Ⅰ),,由得.所以.即为的直角坐标方程.同理为的直角坐标方程.(Ⅱ)由解得.即,交于点和.过交点的直线的直角坐标方程为.3.(12分)从⊙O外一点P引圆的两条切线PA,PB及一条割线PCD,A,B为切点.求证:=.【答案】见解析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

永登二中2013—2014学年度第二学期第二次月考试卷
高二级 数学(理科)
命题人:高二备课组 审题人:
一 选择题(共12小题,,每小题5分)
1.命题“若α=

,则tan α=1”的逆否命题是 A.若α≠4π,则tan α≠1 B. 若α=4
π
,则tan α≠1
C. 若tan α≠1,则α≠4π
D. 若tan α≠1,则α=4
π
2.下列命题中,真命题是( )
A .0,00≤∈∃x e R x
B .22,x R x x >∈∀
C .0=+b a 的充要条件是1-=b
a
D .1,1>>b a 是1>ab 的充分条件
3.下列有关命题的说法正确的是 ( ) A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. B .“1x =-”是“2560x x --=”的必要不充分条件.
C .命题“∃,R x ∈使得210x x ++<”的否定是:“对∀,R x ∈ 均有
210x x ++<”.
D.命题:“若x=y 则sinx=siny ”的逆否命题为真命题.
4.椭圆的中心在原点,焦距为4 ,一条准线为x=-4 ,则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24y =1 D 212x +24y =1
5.已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2=
(A)14 (B )35 (C)34 (D)45
6.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于
A,B 两点,AB =C 的实轴长为( )
()
A ()
B ()
C 4 ()
D 8
7.已知曲线23ln 4
x y x =-的一条切线的斜率为1
2,则切点的横坐标为( )
A .3
B .2
C .1
D .
1
2
8.设函数()f x 在R 上可导,其导函数为,()f x ,且函数)(')1(x f x y -=的图像如题(8)图所示,则下列结论中一定成立的是
(A )函数()f x 有极大值(2)f 和极小值(1)f
(B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f - (D )函数()f x 有极大值(2)f -和极小值(2)f
9.若f(x)为可导函数,且满足12)
1()1(lim
-=--→x
x f f x ,则过曲线y=f(x)上的点(1,f(1))处的切线方程的斜率为( ) A -2 B -1 C 1 D 2 10.设()sin cos f x x x =-,则()f x 在4x π
=
处的导数'4f π⎛⎫
= ⎪⎝⎭
( )
11.22
(1cos )x dx π
π-+⎰等于( )
A .π B. 2 C. π-2 D. π+2
12.已知函数f(x)=x 3+ax 2
+bx+c ,下列结论中错误的是 (A )∃x α∈R,f(x α)=0
(B )函数y=f(x)的图像是中心对称图形
(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减
(D )若x 0是f (x )的极值点,则()0'0f x =
二 填空题(每小题5分,共20分)
13.曲线21y x =+与直线0,1x x ==及x 轴所围成的图形的面积是 . 14.若209,T
x dx T =⎰则常数的值为
15.函数233x x y -=在x 等于 处取得极小值.
16.已知函数()cos ,0
1,
0x x f x x ≥⎧=⎨<⎩,则()22d f x x π
-⎰的值等于 .
永登二中2011—2012学年度第一学期第一次月考试卷
高二级数学(理科)
一选择题(每小题5分,共12分)
二填空题(每小题5分,共20分)
13 . 14 .
15 . 16 .
三解答题(共70分)
17(本题满分10分)已知函数y=xlnx+1.
(1)求这个函数的导数;
(2)求这个函数的图象在点x=1处的切线方程.
18. (本小题满分12分)已知函数()()2
2l n 0a f x a x x a x =++>.若曲线
()y f x =在点(1,(1))f 处的切线与直线20x y -=垂直,
(1)求实数a 的值;
(2)求函数()f x 的单调区间;
19.(本小题满分12)设双曲线C :122
22=-b
y a x (a >0,b >0)的一个焦点坐标为
(3,0),离心率e = A 、B 是双曲线上的两点,AB 的中点M (1,2). (1)求双曲线C 的方程; (2)求直线AB 方程;
20(本小题满分12)如图所示,已知椭圆C 1和抛物线C 2有公共焦点)0,1(F ,C 1的中心和C 2的顶点都在坐标原点,过点M (4,0)的直线l 与抛物线C 2分别相交于A 、B 两点.
(Ⅰ)写出抛物线C 2的标准方程; (Ⅱ)求证:以AB 为直径的圆过原点; (Ⅲ)若坐标原点O 关于直线l 的对称点P 在抛物线C 2上,直线l 与椭圆C 1有公共点,求椭圆C 1的长轴长的最小值.
21. (本小题满分12分)已知函数 2
1()2ln (2)2
f x x a x a x =
-+-,a ∈R . (1)当 1a = 时,求函数 ()f x 的最小值;
(2)当1a =- 时,求证:无论c
取何值,直线y c =-+均不可能与函数()f x 相切;
(3)是否存在实数a ,对任意的 ()12,0,x x ∈+∞,且12x x ≠,有
2121
()()
f x f x a
x x ->-恒成立,若存在求出a 的取值范围,若不存在,说明理由。

22.(本小题满分12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2 (Ⅰ)求a,b,c,d的值
(Ⅱ)若x≥-2时,f(x)≤kgf(x),求k的取值范围。

相关文档
最新文档