4.全等判定

合集下载

三角形全等的判定+性质+辅助线技巧

三角形全等的判定+性质+辅助线技巧

三角形全等的判定+性质+辅助线技巧都在这里了,请收好!在初中三角形问题集中体现在“全等”和“相似”2大问题上,非常考验大家的解题能力、思维能力、耐性与定力。

有时证不出来,急不可耐、恨它恨的牙痒痒。

王老师这次整理了全等三角形判定、性质,最重要的是后面附上了所有证明全等三角形,包括添加各种辅助线的方法,认真看完这篇文章,保证关于三角形全等所有的题型你都会做!一、三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。

2.有两边及其夹角对应相等的两个三角形全等(SAS)。

3.有两角及其夹边对应相等的两个三角形全等(ASA)。

4.有两角及一角的对边对应相等的两个三角形全等(AAS)。

5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。

二、全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。

②全等三角形的周长、面积相等。

③全等三角形的对应边上的高对应相等。

④全等三角形的对应角的角平分线相等。

⑤全等三角形的对应边上的中线相等。

三、找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

三角形全等的证明中包含两个要素:边和角。

缺个角的条件:在初中三角形问题集中体现在“全等”和“相似”2大问题上,非常考验大家的解题能力、思维能力、耐性与定力。

有时证不出来,急不可耐、恨它恨的牙痒痒。

王老师这次整理了全等三角形判定、性质,最重要的是后面附上了所有证明全等三角形,包括添加各种辅助线的方法,认真看完这篇文章,保证关于三角形全等所有的题型你都会做!一、三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。

2.有两边及其夹角对应相等的两个三角形全等(SAS)。

三角形知识总结与尺规作图知识点

三角形知识总结与尺规作图知识点

第一部分三角形考点一、三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。

5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形 锐角三角形(三个角都是锐角的三角形) 斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用: ①判断三条已知线段能否组成三角形 ②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

全等三角形的判定

全等三角形的判定

全等三角形的判定【要点梳理】【高清课堂:379110 全等三角形判定二,知识点讲解】要点一、全等三角形判定1——“角边角”全等三角形判定1——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠,AB =,∠B =∠,则△ABC ≌△.要点二、全等三角形判定2——“边角边”1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ,∠A =∠,AC = ,则△ABC ≌△.注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.要点一、全等三角形判定3——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果=AB ,=AC ,=BC ,则△ABC≌△.'A ''A B 'B '''A BC ''A B 'A ''A C '''A BC ''A B ''A C ''B C '''A B C要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.一、选择题1.(2015•宁波)如图,口ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DFB.BF=DEC.AE=CFD.∠1=∠22.如图,是的中线,、分别是和延长线上的点,且,连接、,下列说法:①;② 和的面积相等;③;④ ≌,其中正确的有( ).A.1个B.2个C.3个D.4个3. AD 为△ABC 中BC 边上的中线, 若AB =2, AC =4, 则AD 的范围是( )A .AD <6 B. AD >2 C. 2<AD <6 D. 1<AD <34.如图,AB =DC ,AD =BC ,E 、F 是DB 上两点,且BF =DE ,若∠AEB=120°,∠ADB=30°,则∠BCF=( ).A.150°B.40°C.80°D.90°5. 根据下列条件能唯一画出△ABC 的是( )A.AB =3,BC =4,AC =8B.AB =4,BC =3,∠A =30°C.AB =5,AC =6,∠A =45°D. ∠A =30°,∠B =60°,∠C =90°6. 如图,在△ABC 中,∠A =50°,∠B =∠C ,点D ,E ,F 分别在AB ,BC ,AC 上,并且BD=CE ,BE =CF ,则∠DEF 等于( )A.50°B.60°C. 65°D. 70°AD ABC ∆E F AD AD DE DF =BF CE CE BF =ABD ∆ACD ∆//BF CE BDF ∆CDE∆二、填空题7.(2015•齐齐哈尔)如图,点B 、A 、D 、E 在同一直线上,BD=AE ,BC ∥EF ,要使△ABC ≌△DEF ,则只需添加一个适当的条件是 .(只填一个即可)8.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD=BC,再定出BF 的垂线DE ,使A ,C ,E 在同一条直线上,如图8,可以得到,所以ED=AB ,因此测得ED 的长就是AB 的长,判定的理由是 .9. 如图,已知AE =AF ,AB =AC ,若用“SAS ”证明△AEC ≌AFB ,还需要条件 .10. 如图,在四边形ABCD 中,对角线AC 、BD 互相平分,则图中全等三角形共有_____对.EDC ABC ≅EDC ABC≅11. 如图所示,BE⊥AC 于点D ,且AD =CD ,BD =ED ,若∠ABC=54°,则∠E= °.12. 把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB =5厘米,则槽宽为 厘米.三、解答题13.(2014•房山区二模)如图,已知AB=AD ,AC=AE ,∠1=∠2,求证:△ABC ≌△ADE .14. 如图, ∠B =∠C ,BD =CE ,CD =BF.求证: ∠EDF = 90︒ -∠A15. 已知:如图,BE 、CF 是△ABC 的高,且BP =AC ,CQ =AB ,求证:AP ⊥AQ.一、选择题','AABB 121.如图,∠A=∠D,∠B=∠E,BF=CE,下列结论错误的是()A.△ABC≌△DEFB. BF=ECC.AC∥DED.AC=DF2.如图,AB∥EF,DE∥AC,BD=CF,则图中不是全等三角形的是()A.△BAC≌FEDB. △BDA≌FCEC. △DEC≌CADD. △BAC≌FCE3.如图,AB=BD,∠1=∠2,要用AAS判定△ABC≌△DBE,则添加的条件是() A.AE=EC B.∠D=∠A C.BE=BC D.∠DEB=∠C4.下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5.(2015•滕州市校级模拟)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC6.如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于()A.DC B.BC C.AB D.AE+AC二、填空题7.(2014春•鹤岗校级期末)如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件________________时,就可得到△ABC≌△FED.(只需填写一个即可)8.如图,点D在AB上,点E在AC上,且∠B=∠C,在条件①AB=AC,②AD=AE,③BE=CD,④∠AEB=∠ADC中,不能使△ABE≌△ACD的是_______.(填序号)9.已知,如图,AB∥CD,AF∥DE,AF=DE,且BE=2,BC=10,则EF=________.10.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有______对.11.如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是1和2,则EF的长是___________.12.在△ABC 和△DEF 中(1)AB =DE ;(2)BC =EF ;(3)AC =DF ;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F 从这六个条件中选取三个条件可判定△ABC 与△DEF 全等的方法共有________种.三、解答题13.(2014秋•景洪市校级期中)如图,O 为码头,A ,B 两个灯塔与码头的距离相等,OA ,OB 为海岸线,一轮船离开码头,计划沿∠AOB 的平分线航行,在航行途中,测得轮船与灯塔A 和灯塔B 的距离相等,试问轮船航行时是否偏离预定航线,请说明理由.14.已知:如图,中,,于,于,与相交于点.求证:.15. 如图,DC∥AB,∠BAD 和∠ADC 的角平分线相交于E ,过E 的直线分别交DC 、AB 于C 、B 两点.求证:AD =AB +DC.ABC △45ABC ∠=°CD AB ⊥D BE AC ⊥E BE CD F BF AC=。

全等三角形经典讲义

全等三角形经典讲义

全等三角形状元笔记【知识要点】1.全等三角形能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质全等三角形的对应边相等,全等三角形的对应角相等.3.三角形全等的判定方法(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).(3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).(4)两个角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”).4.直角三角形全等的判定方法斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).【温馨提示】1.两个三角形全等的条件中必须有一条边分别相等,只有角分别相等不能证明两个三角形全等.2.有两边和其中一边的对角分别相等的两个三角形不一定全等.3.“HL”定理指的是斜边和一条直角边分别相等,而不是斜边和直角分别相等.【方法技巧】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角;(2)对应顶点所对应的边是对应边;(3)公共边(角)是对应边(角);(4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△ABC≌△DEF,说明A与D,B与E, C与F是对应点,则∠ABC与∠DEF是对应角,边AC与边DF是对应边.2.判定两个三角形全等的解题思路:专题一 三角形全等的判定1.如图,BD 是平行四边形ABCD 的对角线,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F .求证:△ABE≌△CDF .2.如图,在△ABC 中,D 是BC 边上的点(不与B ,C 重合),F ,E 分别是AD 及其延长线上的点,CF ∥BE . 请你添加一个条件,使△BDE ≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:__________; (2)证明:SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎩找夹角——已知两边找另一边——边为角的对边——找任一角——找夹角的另一边——已知一边一角边为角的邻边找夹边的另一角——找边的对角——找夹边——已知两角找任一边——3.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE;②AE=CD;③∠BAC=∠BCA;④∠ADB=∠CEB;请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB的还有哪些?直接在题后横线上写出满足题意的条件序号.__________________.专题二 全等三角形的判定与性质4.如图,已知△ABC 中,∠ABC =45°,AC =4,H 是高AD 和BE 的交点,则线段BH 的长度为( )AB .4C .D .55.【2013·襄阳】如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,将△ADC 绕点A 顺时针旋转,使AC 与AB 重合,点D 落在点E 处,AE 的延长线交CB 的延长线于点M ,EB 的延长线交AD 的延长线于点N .求证:AM =AN .6.【2012·泸州】如图,△ABC 是等边三角形,D 是AB 边上一点,以CD 为边作等边三角形CDE ,使点E 、A 在直线DC 的同侧,连接AE .求证:AE ∥BC .NME D B CA专题三全等三角形的应用7.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60° B.90° C.120° D.150°8.有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B两端的距离,你能说说其中的道理吗?9.已知如图,要测量水池的宽AB ,可过点A 作直线AC ⊥AB ,再由点C 观测,在BA 延长线上找一点B′,使∠ACB′=∠ACB ,这时只要量出AB′的长,就知道AB 的长,对吗?为什么?10.如图,点D 、B 分别在∠A 的两边上,C 是∠A 内一点,AB = AD ,BC = CD ,CE ⊥AD 于E ,CF ⊥AF于F .求证:CE = CF11.已知:如图,在△ABC 中,∠A =90°,AB = AC ,BD 平分∠ABC .求证:BC = AB + ADFA BECD12.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB13.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B14.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.DBACPEDCBA D CBA15.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):16.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .OEDCBAFEA17.已知:在△ABC中,∠BAC=90,AB=AC,AE是过点A的一条直线,且BD⊥AE于D,CE⊥AE于E.(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;(3)归纳(1)、(2),请用简洁的语言表达BD、DE、CE之间的关系.18、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E,,在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);图1图2DCAB(2)证明:DC BE⊥.19.如图-1,ABC△的边BC在直线l上,AC BC⊥,且AC BC=;EFP△的边FP也在直线l上,边EF与边AC重合,且EF FP=.(1)在图-1中,请你通过观察、测量,猜想并写出AB与AP关系;(2)将EFP△沿直线l向左平移到图-2的位置时,EP交AC于点Q,连结AP,BQ.猜想并写出BQ与AP的关系,请证明你的猜想;(3)将EFP△沿直线l向左平移到图-3的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ.你认为(2)中所猜想的BQ与AP的关系还成立吗?若成立,给出证明;若不成立,请说明理由.A (E)B C (F)Pl l l图-1 图-2图-3全等三角形——角的平分线的性质状元笔记【知识要点】1.角的平分线的性质角的平分线上的点到角的两边的距离相等.2.角的平分线的判定角的内部到角的两边的距离相等的点在角的平分线上.【温馨提示】1.到三角形三边距离相等的点是三角形三条角平分线的交点,不是其他线段的交点.2.到三角形三边距离相等的点不仅有内角的平分线的交点,还有相邻两外角的平分线的交点,这样的点共有4个.【方法技巧】1.利用角的平分线的性质解决问题的关键是:挖掘角的平分线上的一点到角两边的垂线段.若已知条件存在两条垂线段——直接考虑垂线段相等,若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段.2.利用角平分线的判定解决问题的策略是:挖掘已知图形中一点到角两边的垂线段.若已知条件存在两条垂线段——先证明两条垂线段相等,然后说明角平分线或角的关系;若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,再证明两条垂线段相等;若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段后,证明两条垂线段相等.专题一利用角的平分线的性质解题1.如图,在△ABC中,AC=AB,D在BC上,若DF⊥AB,垂足为F,DG⊥AC,垂足为G,且DF=DG.求证:AD⊥BC.2.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.3.如图,在Rt △ABC 中,∠C=90°,,AD 是∠BAC 的角平分线,DE ⊥AB 于点E ,AC =3 cm ,求BE 的长.专题二 角平分线的性质的应用 4.如图,三条公路把A 、B 、C 三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A .在AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处C .在∠A 、∠B 两内角平分线的交点处D .在AC 、BC 两边垂直平分线的交点处5.如图,要在河流的南边,公路的左侧M 区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A 处的距离为1cm (指图上距离),则图中工厂的位置应在__________,理由是__________.21BAC B ∶∶∠∠6. 如图, ∠ B= ∠ C=90 °, M 是 BC 中点, DM 平分 ∠ ADC ,求证: AM 平分 ∠ DAB .7. 如图,已知 △ ABC 的周长是 22 , OB 、 OC 分别平分 ∠ ABC 和 ∠ ACB , OD ⊥ BC 于 D ,且 OD=3 , △ ABC 的面积是多少?8.如图,已知 ∠ 1= ∠ 2 , P 为 BN 上的一点, PF ⊥ BC 于 F , PA=PC ,求证: ∠ PCB+ ∠ BAP=180 º9.如图,△ ABC 中, P 是角平分线 AD , BE 的交点. 求证:点 P 在∠ C 的平分线上.10. 如图,在 △ ABC 中, BD 为 ∠ ABC 的平分线, DE ⊥ AB 于点 E ,且 DE=2cm , AB=9cm , BC=6cm ,求 △ ABC 的面积.21NP F C BA11.如图, D 、 E 、 F 分别是△ ABC 的三条边上的点, CE=BF ,△ DCE 和△ DBF 的面积相等.求证: AD 平分∠ BAC .。

全等三角形证明判定方法分类归纳

全等三角形证明判定方法分类归纳

全等三角形(一)SSS【知识要点】1.全等图形定义:两个能够重合的图形称为全等图形. 2.全等图形的性质:(1)全等图形的形状和大小都相同,对应边相等,对应角相等 (2)全等图形的面积相等3.全等三角形:两个能够完全重合的三角形称为全等三角形(1)表示方法:两个三角形全等用符号“≌”来表示,读作“全等于” 如DEF ABC ∆∆与全等,记作ABC ∆≌DEF ∆(2)符号“≌”的含义:“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同,大小也相等,这就是全等.(3)两个全等三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.(4)证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS ”. 【典型例题】例1.如图,ABC ∆≌ADC ∆,点B 与点D 是对应点︒=∠26BAC ,且︒=∠20B ,1=∆ABC S ,求ACD D CAD ∠∠∠,,的度数及ACD ∆的面积.例2.如图,ABC ∆≌DEF ∆,cm CE cm BC A 5,9,50==︒=∠,求EDF∠的度数及CF 的长.例3.如图,已知:AB=AD ,AC=AE ,BC=DE ,求证:CAD BAE ∠=∠例4.如图AB=DE ,BC=EF ,AD=CF ,求证:(1)ABC ∆≌DEF ∆ (2)AB//DE ,BC//EF例5.如图,在,90︒=∠∆C ABC 中D 、E 分别为AC 、AB 上的点,且BE=BC ,DE=DC ,求证:(1)AB DE ⊥;(2)BD 平分ABC ∠【巩固练习】1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形;④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )A 、①④B 、①②C 、②③D 、③④ 2.如图,ABD ∆≌CDB ∆,且AB 和CD 是对应边,下面四个结论中 不正确的是( )A 、CDB ABD ∆∆和的面积相等B 、CDB ABD ∆∆和的周长相等C 、CBD C ABD A ∠+∠=∠+∠ D 、AD//BC 且AD=BC3.如图,ABC ∆≌BAD ∆,A 和B 以及C 和D 分别是对应点,如果︒=∠︒=∠35,60ABD C ,则BAD ∠的度数为( )A 、︒85B 、︒35C 、︒60D 、︒804.如图,ABC ∆≌DEF ∆,AD=8,BE=2,则AE 等于( ) A 、6 B 、5 C 、4 D 、3D第3题图第4题图第5题图B第6题图5.如图,要使ACD ∆≌BCE ∆,则下列条件能满足的是( ) A 、AC=BC ,AD=CE ,BD=BE B 、AD=BD ,AC=CE ,BE=BD C 、DC=EC ,AC=BC ,BE=AD D 、AD=BE ,AC=DC ,BC=EC 6.如图,ABE ∆≌DCF ∆,点A 和点D 、点E 和点F 分别是对应点,则AB= ,=∠A ,AE= ,CE= ,AB// ,若BC AE ⊥,则DF 与BC 的关系是 . 7.如图,ABC ∆≌AED ∆,若=∠︒=∠︒=∠︒=∠BAC C EAB B 则,45,30,40 ,=∠D ,8.如图,若AB=AC,BE=CD,AE=AD ,则ABE ∆ ACD ∆,所以=∠AEB,=∠BAE ,=∠BAD .9.如图,ABC ∆≌DEF ∆,︒=∠90C ,则下列说法错误的是( ) A 、互余与F C ∠∠ B 、互补与F C ∠∠C 、互余与E A ∠∠D 互余与D B ∠∠10.如图,ACF ∆≌DBE ∆,cm CD cm AD ACF E 5.2,9,110,30==︒=∠︒=∠,求D ∠的度数及BC 的长.11.如图,在ABD ABC ∆∆与中,AC=BD ,AD=BC ,求证:ABC ∆≌ABD ∆D第7题图第8题图第9题题图全等三角形(一)作业1.如图,ABC ∆≌CDA ∆,AC=7cm ,AB=5cm.,则AD 的长是( ) A 、7cm B 、5cm C 、8cm D 、无法确定2.如图,ABC ∆≌DCE ∆,︒=∠︒=∠62,48E A ,点B 、C 、E 在同一直线上,则ACD ∠的度数为( )A 、︒48B 、︒38C 、︒110D 、︒623.如图,ABC ∆≌DEF ∆,AF=2cm,CF=5cm ,则AD= .4.如图,ABE ∆≌ACD ∆,︒=∠︒=∠25,100B A ,求BDC ∠的度数.5.如图,已知,AB=DE ,BC=EF ,AF=CD ,求证:AB//CD6.如图,已知AB=EF ,BC=DE ,AD=CF ,求证:①ABC ∆≌FED ∆②AB//EFAB D EACDFACEFD7.如图,已知AB=AD ,AC=AE ,BC=DE ,求证:CAE BAD ∠=∠E全等三角形(二)【知识要点】 定义:SAS两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS ”,几何表示如图,在ABC ∆和DEF ∆中,ABC EF BC E B DE AB ∆∴⎪⎩⎪⎨⎧=∠=∠=≌)(SAS DEF ∆【典型例题】【例1】 已知:如图,AB=AC ,AD=AE ,求证:BE=CD.【例2】 如图,已知:点D 、E 在BC 上,且BD=CE ,AD=AE ,∠1=∠2,由此你能得出哪些结论?给出证明.【例3】 如图已知:AE=AF ,AB=AC ,∠A=60°,∠B=24°,求∠BOE 的度数.CADBE C【例4】如图,B,C,D在同一条直线上,△ABC,△ADE是等边三角形,求证:①CE=AC+DC;②∠ECD=60°.【例5】如图,已知△ABC、△BDE均为等边三角形。

全等三角形的判定方法

全等三角形的判定方法

全等三角形的判定方法【考点精讲】1. 一般三角形全等的判定(1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等,简记为(SSS );(2)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等,简记为(SAS );(3)如果两个三角形的两角及其夹边分别对应相等,那么这两个三角形全等,简记为(ASA );(4)如果三角形的两角及其中一角的对边分别对应相等,那么这两个三角形全等,简记为(AAS )。

2. 直角三角形全等的判定斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”)3. 证明三角形全等的思路(1)已知两边⎩⎪⎨⎪⎧ 找夹角找直角找另一边(2)已知一边一角(3)已知两角找任意一边注:1. 判定三角形全等必须有一组对应边相等;2. 判定三角形全等时不能错用“SSA ”“AAA ”来判定。

【典例精析】例题1 如图所示,90E F ∠=∠=︒,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△。

其中正确的有( )A. 1个B. 2个C. 3个D. 4个思路导航:因为90E F ∠=∠=,B C ∠=∠,所以∠EAB =∠FAC ,又因为AE AF =,所以△AEB ≌△AFC ,所以AC =AB 。

在△ACN 和△ABM 中,因为B C ∠=∠,AB =AC ,∠CAB =∠CAB ,所以△ACN ≌△ABM ,④正确;因为∠EAB =∠FAC ,所以∠EAB -∠CAB =∠FAC -∠CAB ,即∠EAM =∠FAN ,③正确;在△EAM 和△FAN 中,∠EAM =∠FAN ,AE AF =,90E F ∠=∠=︒,所以△EAM ≌△FAN ,所以EM FN =,①正确;由已知条件不能判断出CD DN =,故正确的个数是3个。

答案:C点评:此类问题一般从结论出发,一一进行判断,找出相应的一对三角形,看看是否能根据已知信息,寻求到三角形全等的条件。

全等三角形判定知识讲解

全等三角形判定知识讲解

全等三角形判定一(SSS,ASA ,AAS )(基础)【要点梳理】要点一、全等三角形判定1——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“角边角”全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点三、全等三角形判定3——“角角边”1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”) 要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1——“边边边”1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .举一反三:【变式】(2015•武汉模拟)如图,在△ABC和△DCB中,AB=DC,AC=DB,求证:△ABC≌△DCB.类型二、全等三角形的判定2——“角边角”2、如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是.(1)小明添加的条件是:AP=BP.你认同吗?(2)你添加的条件是,请用你添加的条件完成证明.举一反三:【变式】如图,AB∥CD,AF∥DE,BE=CF.求证:AB=CD.类型三、全等三角形的判定3——“角角边”3、已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.举一反三:【变式】如图,AD是△ABC的中线,过C、B分别作AD及AD的延长线的垂线CF、BE.求证:BE=CF.4、已知:如图,AC与BD交于O点,AB∥DC,AB=DC.(1)求证:AC与BD互相平分;(2)若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.【巩固练习】一、选择题1. 能确定△ABC≌△DEF的条件是()A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E2.(2015•杭州模拟)用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A. SSS B. SAS C.ASA D. AAS3.AD是△ABC的角平分线,作DE⊥AB于E,DF⊥AC于F,下列结论错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF 4.(2016•黔西南州)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A .AB=DEB .AC=DFC .∠A=∠D D .BF=EC5. 某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( )A.带①去B.带②去C.带③去D.①②③都带去6.如图,∠1=∠2,∠3=∠4,下面结论中错误的是( )A .△ADC ≌△BCDB .△ABD ≌△BAC C .△ABO ≌△CDOD .△AOD ≌△BOC二、填空题7.(2014秋•石林县校级月考)如图,AC=AD ,BC=BD ,则△ABC≌△ ;应用的判定方法是(简写) .8. 在△ABC 和△'''A B C 中,∠A =44°,∠B =67°,∠'C =69°,∠'B =44°,且AC = ''B C ,则这两个三角形_________全等.(填“一定”或“不一定”)9. 已知,如图,AB ∥CD ,AF ∥DE ,AF =DE ,且BE =2,BC =10,则EF =________.10. 如图,AB∥CD,AD∥BC,OE =OF ,图中全等三角形共有______对.11.(2016•通州区一模)在学习“用直尺和圆规作射线OC ,使它平分∠AOB”时,教科书介绍如下:*作法:(1)以O 为圆心,任意长为半径作弧,交OA 于D ,交OB 于E ;(2)分别以D ,E 为圆心,以大于DE 的同样长为半径作弧,两弧交于点C ;(3)作射线OC .则OC 就是所求作的射线.小明同学想知道为什么这样做,所得到射线OC 就是∠AOB 的平分线.小华的思路是连接DC 、EC ,可证△ODC ≌△OEC ,就能得到∠AOC=∠BOC .其中证明△ODC ≌△OEC 的理由是 .12. 已知:如图,∠B =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,(1)若以“ASA ”为依据,还缺条件(2)若以“AAS ”为依据,还缺条件三、解答题13.阅读下题及一位同学的解答过程:如图,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COB AOD OB OA C A∴ △AOD ≌△COB (ASA ).问:这位同学的回答及证明过程正确吗?为什么?14. 已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF ,求证:AC 与BD 互相平分.15. 已知:如图, AB ∥CD, OA = OD, BC 过O 点, 点E 、F 在直线AOD 上, 且∠E =∠F. 求证:EB=CF.全等三角形判定二(SAS )(基础)要点一、全等三角形判定4——“边角边”1. 全等三角形判定4——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.要点二、判定方法的选择已知条件可选择的判定方法一边一角对应相等SAS AAS ASA两角对应相等ASA AAS两边对应相等SAS SSS要点三、如何选择三角形证全等1.可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;2.可以从已知出发,看已知条件确定证哪两个三角形全等;3.由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;4.如果以上方法都行不通,就添加辅助线,构造全等三角形.要点四、全等三角形证明方法1.证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2.证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.类型一、全等三角形的判定4——“边角边”1、在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:△EBC≌△FCB.2、如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.举一反三:【变式】(2014•雁塔区校级模拟)如图,由∠1=∠2,BC=DC、AC=EC,最后推出△ABC≌△EDC 的根据是()A.SAS B. ASA C. AAS D. SSS类型二、全等三角形的性质和判定综合3、(2014•如东县模拟)如图1,已知△ABC的六个元素,则图2甲、乙、丙三个三角形中和图1△ABC全等的图形是()A.甲乙B.丙C.乙丙D.乙举一反三:【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【巩固练习】一、选择题1.在△ABC 中,∠B=∠C,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A. ∠AB. ∠BC. ∠CD. ∠B 或∠C2.(2015•莆田)如图,AE ∥DF ,AE=DF ,要使△EAC ≌△FDB ,需要添加下列选项中的( )A .AB=CDB . EC=BFC . ∠A=∠D D . AB=BC3.(2016•东城区一模)如图,有一池塘,要测池塘两端A ,B 间的距离,可先在平地上取一个不经过池塘可以直接到达点A 和B 的点C ,连接AC 并延长至D ,使CD=CA ,连接BC 并延长至E ,使CE=CB ,连接ED .若量出DE=58米,则A ,B 间的距离为( )A .29米B .58米C .60米D .116米4.如图,AB 、CD 、EF 相交于O ,且被O 点平分,DF =CE ,BF =AE ,则图中全等三角形的对数共有( )A. 1对B. 2对C. 3对D. 4对5.如图,将两根钢条'AA ,'BB 的中点O 连在一起,使'AA ,'BB 可以绕着点O 自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△OAB≌△''OA B 的理由是( )A.边角边B.角边角C.边边边D.角角边6.如图,已知AB⊥BD 于B ,ED⊥BD 于D ,AB =CD ,BC =ED ,以下结论不正确的是( )A.EC⊥ACB.EC=ACC.ED +AB =DBD.DC =CB二、填空题7.如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.8.(2016春•灵石县期末)如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带第块去配,其依据是根据定理(可以用字母简写)9.(2015•齐齐哈尔)如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是.(只填一个即可)10.如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11.如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=_______.12.已知,如图,AB=CD,AC=BD,则△ABC≌,△ADC≌ .三、解答题13.(2015•重庆校级三模)如图已知,AB∥DC,AB=DC,AE=CF.求证:△ABF≌△CDE.14.(2016•曲靖)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【课后作业】1.(2020•徐州)若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm2.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°3.(2020•永州)如图,已知AB=DC,∠ABC=∠DCB,能直接判断△ABC≌△DCB的方法是()A.SAS B.AAS C.SSS D.ASA4.(2020秋•滦南县期末)如图,已知AC=DB,下列四个条件:①∠A=∠D;②∠ABD=∠DCA;③∠ACB=∠DBC;④∠ABC=∠DCB.其中能使△ABC≌△DCB的有()A.1个B.2个C.3个D.4个5.(2020秋•天河区期末)如图,AE∥DF,AE=DF.添加下列的一个选项后.仍然不能证明△ACE≌△DBF的是()A.AB=CD B.EC=BF C.∠E=∠F D.EC∥BF6.(2020•齐齐哈尔)如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)7.(2020秋•花都区期末)如图,D、C、F、B四点在同一条直线上,BC=DF,AC⊥BD于点C,EF⊥BD于点F,如果要添加一个条件,使△ABC≌△EDF,你添加的条件是(注:只需写出一个条件即可).8.(2020•无锡)如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.9.(2020•温州)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE,求证:△ABC≌△DCE.。

4种全等判定的复习(重要!)

4种全等判定的复习(重要!)
M
C A
例2: 已知:如图, A’ △ABC≌△A′B′C′, AD、A′D′分别是 △ABC和△A′B′C′ 的高. B’ D’ 问:AD = A′D′吗? A′ 为什么?
B′ D′
C’
C′
全等三角形对应边上的高相等
例3:如图,等腰直角△ABC的直角顶点C在 直线m上,AD⊥m,BE⊥m,垂足分别为D、E. 你能在图中找出一对全等三角形吗?并说 明全等的理由. 试探索AD、BE、 DE的大小关系
通过这道题,你知道什么是全等三角形吗?全 等三角形有那些性质呢?有那些判定方法呢?
基础训练
1、判断下面各组的两个三角形是否全等: △ABC≌△DEF F C (1 )
2 A 150 ° 3 2 B D
(SAS)
150° 3
E
(2)已知:AB=CD, (3)已知:AC=AD,BC=BD ∠A=∠D A A △ABC≌△ABD B O △AOB≌△DOC
B
4、如图:已知AB=CD, AD=BC 则图中有( )组三角形全等。
A B
c
O C
D
A 、2
B 、3
C 、4
D 、5
△ABD≌ △CDB △AOB≌ △COD
△ADC≌△CBA △AOD≌△COB
例1、在△ABC中,AB=AC,
证明:∠B=∠C
法一:作∠BAC的平分线AM 利用“SAS”证全等 法二:作BC边上的中线AM 利用“SSS”证全等 B 结论:等腰三角形的两个底角相等
E 解:∵∠ACB=90° ∴BC⊥AC O ∵AO平分∠BAC 又DE⊥AB BC⊥AC ∴ OE=OC (角平分线上 A D C 的点到角两边的距离相等 (2)图中共有多少对相等线段,一一把它们找出来, 并说明理由

全等三角形考点汇总

全等三角形考点汇总

全等三角形全等三角形的概念:经过翻转、平移、旋转后,能够完全重合的两个三角形叫做全等三角形 全等三角形的性质:1. 对应边和对应角完全相等2. 能完全重合的顶点叫做对应顶点3. 全等三角形的周长和面积相等(反之不成立)4. 对应边上的高对应相等,对应边上的中线相等,对应角的角平分线相等 三角形全等判定定理1. 三边对应相等的三角形是全等三角形(SSS 边边边)2. 两边及其夹角对应相等的三角形是全等三角形(SAS 边角边)3. 两角及其夹边对应相等的三角形是全等三角形(ASA 角边角)4. 两角及其一角的对边对应相等的三角形是全等三角形(AAS 角角边)5. 在一对直角三角形中,斜边及一条直角边对应相等是全等三角形(HL) 备注:1)判定三角形全等必须有一组对应边相等2)三角形全等中,两边对应相等,一角,必须是夹角才全等 全等三角形的证明思路SAS HL SSS AAS SAS ASAAAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边专题一考点一 全等图形识别略定义:经过翻转 平移可以完全重合的图形才是全等图形考点二 利用全等图形求正方形网格中角度之和例题1:(2021·全国·八年级专题练习)如图为6个边长相等的正方形的组合图形,则∠1+∠3-∠2=( )A.30°B.45°C.60°D.135°+= 2.(2022·山东·济南市槐荫区教育教学研究中心二模)如图,在44⨯的正方形网格中,求αβ______度.3.(2020·江苏省灌云高级中学城西分校八年级阶段练习)如图,由4个相同的小正方形组成的格点图中,∠1+∠2+∠3=________度.考点三全等三角形的概念略考点四全等三角形的性质1.(2022·四川省南充市白塔中学八年级阶段练习)如图,在平面直角坐标系中,点A坐标为(-12,5),过点A作AB∠x轴于B,C是x轴负半轴上一动点,D是y轴正半轴上一动点,若始终保持CD=OA,且使∠ABO与∠OCD全等,则点D坐标为__________________.2.(2022·云南昭通·八年级期末)如图,把∠ABC沿线段DE折叠,使点B落在点F处;若∥,∠A=70°,AB=AC,则∠CEF的度数为()AC DEA.55°B.60°C.65°D.70°3.(2022·广西·西林县民族初中八年级期末)如图,△ABC∠∠ADE,若∠BAE=135°,∠DAC=55°,那么∠CFE的度数是_________.4.(2022·辽宁·东北育才学校七年级期中)如图,△ABC中,∠ACB=90°,AC=12,BC=16.点P从A点出发沿A—C—B路径向终点运动,终点为B点;点Q从B点出发沿B—C—A路径向终点运动,终点为A点.点P和Q分别以2和6的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE∠l于E,QF∠l于F.若要△PEC 与△QFC全等,则点P的运动时间为_______.专题二 全等三角形的判定(证明) 考点一 用SAS 证明三角形全等1.(2022·四川省南充市白塔中学八年级阶段练习)如图,点B 、C 、E 、F 共线,AB =DC ,∠B =∠C ,BF =CE .求证:∠ABE ∠∠DCF .考点二 用ASA 证明三角形全等1.(2022·广西百色·二模)如图,在△ABC 和△DCB 中,∠A =∠D ,AC 和DB 相交于点O ,OA =OD .(1)AB =DC ; (2)△ABC ∠∠DCB .2.(2022·贵州遵义·八年级期末)如图,已知AB DE ∥,ACB D ∠=∠,AC DE =.(1)求证:ABC EAD ≅.(2)若60BCE ∠=︒,求BAD ∠的度数.考点三 用AAS 证明三角形全等1.(2022·福建省福州第一中学模拟预测)如图,已知A ,F ,E ,C 在同一直线上,AB ∠CD ,∠ABE =∠CDF ,AF =CE .求证:AB =CD .考点四 用SSS 证明三角形全等1.(2021·河南省实验中学七年级期中)如图,在线段BC 上有两点E ,F ,在线段CB 的异侧有两点A ,D ,且满足AB CD =,AE DF =,CE BF =,连接AF ;(1)B 与C ∠相等吗?请说明理由.(2)若40B ∠=︒,20∠=DFC °,AF 平分BAE ∠时,求BAF ∠的度数.2.(2022·山东济宁·八年级期末)如图,在四边形ABCD 中,CB AB ⊥于点B ,CD AD ⊥于点D ,点E ,F 分别在AB ,AD 上,AE AF =,CE CF =.(1)若8AE =,6CD =,求四边形AECF 的面积;(2)猜想∠DAB ,∠ECF ,∠DFC 三者之间的数量关系,并证明你的猜想.考点五 用HL 证明三角形全等1.(2022·四川省南充市白塔中学八年级阶段练习)如图,AB =CD ,AE ∠BC 于E ,DF ∠BC 于F ,且BF =CE .(1)求证AE=DF;(2)判定AB和CD的位置关系,并说明理由.2.(2022·安徽安庆·八年级期末)如图,AD,BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:∠ACB∠∠BDA;(2)若∠CAB=54°,求∠CAO的度数.2.(2022·江西·永丰县恩江中学八年级阶段练习)如图,在∠ABC中,BC=AB,∠ABC=90°,F 为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt∠ABE∠Rt∠CBF;(2)若∠CAE=30°,求∠ACF的度数.全等三角形综合和常见全等模型汇总1.全等三角形中的平移模型几种常见全等三角形基本图形(平移)1.如图所示,AB∥DE,AC∥DF,BE=CF,求证AB=DE.2.如图,点O是线段AB的中点,OD∥BC且OD=BC,已知∠ADO=34°,∠B=67°,求∠A的度数.2.全等三角形中的轴对称模型1.如图,过等边△ABC的顶点A作线段AD,若∠DAB=20°,则∠COD的度数是()A,100°B,80°C,60°D,40°2.在等边△ABC,点E是AB上的动点,点E与点A,B不重合,点D在CB的延长线上,且EC=ED。

三角形全等的判定

三角形全等的判定

1. 全等三角形判定1:三边对应相等的两个三角形全等。

2. 全等三角形判定2:两边和它们的夹角对应相等的两个三角形全等。

3. 全等三角形判定3:两角和它们的夹边对应相等的两个三角形全等。

4. 全等三角形判定4:两个角和其中一个角的对边对应相等的两个三角形全等。

5. 全等三角形判定5:斜边和一条直角边对应相等的两个直角三角形全等。

典型例题知识点一:全等三角形判定1例1:如图,在△AFD和△EBC中,点A,E,F,C 在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)DF=BE;(4)AD∥BC。

请将其中三个论断作为条件,余下的一个作为结论,编一道证明题,并写出证明过程。

解答过程:已知:如图,在△AFD和△EBC中,点A,E,F,C在同一直线上,AD=CB,AE=CF,DF=BE。

求证:AD∥BC。

知识点二:全等三角形判定2(2)由(1)知△OAB≌△OCD∴AB=CD例3:已知:如图,AB∥CD,AB=CD,求证:AD∥BC,AD=BC综上:AD∥BC,AD=BC例4:(1)在图1中,△ABC和△DEF满足AB=DE,AC=DF,∠A=∠D,这两个三角形全等吗?(2)在图2中,△ABC和△ABD满足AB=AB,AC=AD,∠B =∠B,这两个三角形全等吗?。

解答过程:(1)全等;(2)不全等。

解题后的思考:有两边和一角相等的两个三角形不一定全等,要根据所给的边与角的位置进行判断:(1)当两个三角形满足两边及夹角对应相等即“SAS”时,这两个三角形全等;(2)当两个三角形满足两边及其中一边的对角对应相等即“SSA”时,这两个三角形不一定全等。

在证明题中尤其要注意这一点。

知识点三:全等三角形判定3 例5:如图,BE⊥AE,CF⊥AE,ME=MF。

求证:AM是△ABC的中线。

解答过程:∵BE⊥AE,CF ⊥AE∴∠BEM=∠CFM=90°在△BME和△CMF中,解题后的思考:要证明AM是△ABC的中线,需要证明M是BC的中点,因此,转化为证明BM=CM,结合已知条件,应考虑证明与这两条相等线段有关的可能全等的两个三角形,结合题目中已有的条件和能够求出的相等关系,选择正确的判定方法来解决相关问题。

人教版初二数学上册:直角三角形全等判定(基础)知识讲解

人教版初二数学上册:直角三角形全等判定(基础)知识讲解

直角三角形全等判定(基础)【学习目标】1.理解和掌握判定直角三角形全等的一种特殊方法——“斜边,直角边”(即“HL ”). 2.能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法判定两个直角三角形全等. 【要点梳理】【高清课堂:379111 直角三角形全等的判定,知识点讲解】 要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS ”,“ASA ”或“SAS ”判定定理. 要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”. 【典型例题】类型一、直角三角形全等的判定——“HL”1、 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =CD :(2)AD ∥BC .【思路点拨】先由“HL ”证Rt △ABD ≌Rt △CDB ,再由内错角相等证两直线平行. 【答案与解析】证明:(1)∵AB ⊥BD ,CD ⊥BD , ∴∠ABD =∠CDB =90° 在Rt △ABD 和Rt △CDB 中,AD BC BD DB ⎧⎨=⎩=∴Rt △ABD ≌Rt △CDB (HL ) ∴AB =CD (全等三角形对应边相等) (2)由∠ADB =∠CBD ∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法. 举一反三:【高清课堂:379111 直角三角形全等的判定,例3】 【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB , ∴∠DAE =∠CBA =90° 在Rt △DAE 与Rt △CBA 中, ED ACAE AB ⎧⎨⎩==,∴Rt △DAE ≌Rt △CBA (HL ) ∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E +∠EAF =90°,即∠AFE =90° 即ED ⊥AC .2、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( ) (2)一个锐角和斜边对应相等; ( ) (3)两直角边对应相等; ( ) (4)一条直角边和斜边对应相等. ( )【答案】(1)全等,“AAS ”;(2)全等,“AAS ”;(3)全等,“SAS ”;(4)全等,“HL ”. 【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS 、ASA 、AAS 、SSS 、HL. 举一反三:【变式】下列说法正确的有( )(1)一个锐角及斜边对应相等的两个直角三角形全等;(2)一个锐角及一条直角边对应相等的两个直角三角形全等; (3)两个锐角对应等的两个直角三角形全等; (4)有两条边相等的两个直角三角形全等;(5)有斜边和一条直角边对应相等的两个直角三角形全等. A.2个 B.3个 C.4个 D.5个 【答案】C . 解:(1)一个锐角及斜边对应相等的两个直角三角形全等,根据AAS 可判定两个直角三角形全等;(2)一个锐角及一条直角边对应相等的两个直角三角形全等,根据AAS 或ASA 可判定两个直角三角形全等;(3)两个锐角对应等的两个直角三角形全等,缺少“边”这个条件,故不可判定两个直角三角形全等;(4)有两条边相等的两个直角三角形全等,根据SAS 或HL 可判定两个直角三角形全等;(5)有斜边和一条直角边对应相等的两个直角三角形全等,根据HL 可判定两个直角三角形全等.所以说法正确的有4个.故选C .3、(2016春•深圳校级月考)如图,AB ⊥AC 于A ,BD ⊥CD 于D ,若AC=DB ,则下列结论中不正确的是( )OB CDAA .∠A=∠DB .∠ABC=∠DCBC .OB=OD D .OA=OD【思路点拨】根据已知及全等三角形的判定方法进行分析,从而得到答案.做题时要结合已知条件与全等的判定方法逐一验证. 【答案与解析】解:∵AB ⊥AC 于A ,BD ⊥CD 于D ∴∠A=∠D=90°(A 正确) 又∵AC=DB ,BC=BC ∴△ABC ≌△DCB(HL)∴∠ABC=∠DCB (B 正确) ∴AB=CD又∵∠AOB=∠C∴△AOB ≌△DOC(AAS) ∴OA=OD (D 正确)C 中OD 、OB 不是对应边,不相等. 故选C .【总结升华】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、已知:如图1,在Rt△ABC 和Rt△A′B′C′中,AB=A′B′,AC=A′C′,C=∠C′=90° 求证:Rt△ABC 和Rt△A′B′C′全等.(1)请你用“如果…,那么…”的形式叙述上述命题;(2)将△ABC 和△A′B′C′拼在一起,请你画出两种拼接图形;例如图2:(即使点A 与点A′重合,点C 与点C′重合.)(3)请你选择你拼成的其中一种图形,证明该命题.【答案与解析】解:(1)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等.(2)如图:图②使点A与点A′重合,点B与点B′重合图③使点A与B′重合,B与点A′重合.(3)在图②中,∵A和A′重合,B和B′重合,连接CC′.∵∠ACB=∠A′C′B′=90°,∠ACB﹣∠ACC′=∠A′C′B′﹣∠AC′C,即∠BCC′=∠BCC′,∴BC=B′C′.在直角△ABC和直角△A′B′C′中,,∴△ABC≌△A′B′C′(SSS).【总结升华】本题考查了直角三角形的全等中HL定理的证明,正确利用等腰三角形的性质是关键.附录资料:《三角形》全章复习与巩固(基础)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力. 【知识网络】【要点梳理】要点一、三角形的有关概念和性质 1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围. 2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外. (2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决; (2)内角和定理的应用:①已知多边形的边数,求其内角和; ②已知多边形内角和,求其边数.2.多边形外角和:n 边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数; ②已知正多边形边数,求外角度数. (2)多边形的边数与内角和、外角和的关系:①n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同. 要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边. (2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用. 【典型例题】类型一、三角形的三边关系1. (2016•丰润区二模)若三角形的两条边长分别为6cm 和10cm ,则它的第三边长不可能为( )A .5cmB .8cmC .10cmD .17cm【思路点拨】直接利用三角形三边关系得出第三边的取值范围,进而得出答案. 【答案与解析】解:∵三角形的两条边长分别为6cm 和10cm , ∴第三边长的取值范围是:4<x <16, ∴它的第三边长不可能为:17cm . 故选:D .【总结升华】此题主要考查了三角形三边关系,正确得出第三边的取值范围是解题关键. 【高清课堂:与三角形有关的线段 例1】举一反三【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8. 【答案】(1)能; (2)不能; (3)能.2.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7,即 5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b.举一反三【变式】(浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可)【答案】5,注:答案不唯一,填写大于4,小于12的数都对.类型二、三角形中重要线段3. (江苏连云港)小华在电话中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积?”小明提示:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) .【答案】C【解析】三角形的高就是从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.解答本题首先应找到最长边,再找到最长边所对的顶点.然后过这个顶点作最长边的垂线即得到三角形的高.【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部.举一反三【变式】如图所示,已知△ABC,试画出△ABC各边上的高.【答案】解:所画三角形的高如图所示.4.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC =8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD=BD,②△BCD的周长比△ACD的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm , 故有:BC+CD+BD-(AC+CD+AD)=3. 又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC-AC =3. 又∵ BC =8,∴ AC =5. 答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法. 举一反三【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1类型三、与三角形有关的角5、(2014春•新泰市期末)已知:如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 平分线,∠B=50°,∠DAE=10°, (1)求∠BAE 的度数; (2)求∠C 的度数.【思路点拨】(1)根据AD 是BC 边上的高和∠DAE=10°,求得∠AED 的度数;再进一步根据三角形的外角等于和它不相邻的两个内角的和求解;(2)根据(1)的结论和角平分线的定义求得∠BAC 的度数,再根据三角形的内角和定理就可求得∠C 的度数. 【答案与解析】 解:(1)∵AD 是BC 边上的高,∴∠ADE=90°.∵∠ADE+∠AED+∠DAE=180°,∴∠AED=180°﹣∠ADE﹣∠DAE=180°﹣90°﹣10°=80°. ∵∠B+∠BAE=∠AED,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°. (2)∵AE 是∠BAC 平分线,∴∠BAC=2∠BAE=2×30°=60°.∵∠B+∠BAC+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【总结升华】本题主要考查了三角形的内角和定理、角平分线的定义以及三角形的外角性质.【高清课堂:与三角形有关的角例1、】举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.类型五、多边形内角和及外角和公式7.一个多边形的内角和等于它的外角和的5倍,它是几边形?【思路点拨】本题实际告诉了这个多边形的内角和是.【答案与解析】设这个多边形是边形,则它的内角和是,∴,解得.∴这个多边形是十二边形.【总结升华】本题是多边形的内角和定理和外角和定理的综合运用. 只要设出边数,根据条件列出关于的方程,求出的值即可,这是一种常用的解题思路.举一反三【变式】(2015•徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是.【答案】9.解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,边数:360°÷40°=9.类型六、多边形对角线公式的运用8.一个十二边形有几条对角线.【思路点拨】根据多边形对角线条数公式,把边数代入计算即可.【答案与解析】解:∵过十二边形的任意一个顶点可以画9条对角线,∴十二个顶点可以画12×9条对角线,但每条对角线在每个顶点都数了一次,∴实际对角线的条数应该为12×9÷2=54(条)∴十二边形的对角线共有54条.【总结升华】对于一个n边形的对角线的条数,我们可以总结出规律条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢.举一反三【变式】一个多边形共有20条对角线,则多边形的边数是().A.6 B.7 C.8 D.9【答案】C;类型七、镶嵌问题9.分别用形状、大小完全相同的①三角形木板;②四边形木板;③正五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是( )A、①B、②C、③D、④【答案】C【总结升华】用多边形组合成平面图形,实质上是相关多边形“交接处各角之和能否拼成一个周角”的问题.。

全等三角形的判定-2021-2022学年八年级数学上学期期中期末考试满分全攻略(人教版)解析版

全等三角形的判定-2021-2022学年八年级数学上学期期中期末考试满分全攻略(人教版)解析版

第05讲 全等三角形的判定考点定位精讲讲练一.全等三角形的判定三角形全等判定方法1:文字:在两个三角形中,如果有两条边及它们的夹角对应相等,那么这两个三角形全等; 图形:符号:在ABC ∆与'''A B C ∆中,''''''(..)''AB A B A A ABC A B C S A S AC A C =⎧⎪∠=∠∴∆∆⎨⎪=⎩≌三角形全等判定方法2:文字:在两个三角形中,如果有两个角及它们的夹边对应相等,那么这两个三角形全等; 图形:C'B'A'C B A符号:在ABC ∆与'''A B C ∆中,''''''(..)'A A AB A B ABC A B C A S A B B ∠=∠⎧⎪=∴∆∆⎨⎪∠=∠⎩≌三角形全等判定方法3:文字:在两个三角形中,如果有两个角及其中一个角的对边对应相等,那么这两个三角形全等;图形:符号:在ABC ∆与'''A B C ∆中,'''''(..)''A A B B ABC A B C A A S BC B C ∠=∠⎧⎪∠=∠∴∆∆⎨⎪=⎩≌三角形全等判定方法4:文字:在两个三角形中,如果有三条边对应相等,那么这两个三角形全等.图形:符号:在ABC ∆与'''A B C ∆中,'''''''(..)''AB A B AC A C ABC A B C S S S BC B C =⎧⎪=∴∆∆⎨⎪=⎩≌ 直角三角形全等的判定: 图形 定理 符号C'B'A'C B A C'B'A'C B A C'B'A'C B A如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记:H.L)在'''Rt ABC Rt A B C ∆∆与中,'',''AC A C AB A B ==,'''(.)Rt ABC Rt A B C H L ∴∆∆≌ 二、证题的思路(难点)考点一:利用SAS 判断两个三角形全等典例1(2020惠州市期末)如图,点E 、F 分别是矩形ABCD 的边 AB 、CD 上的一点,且DF =BE .求证:AF=CE .【答案】证明见解析【分析】由SAS 证明△ADF ≌△CBE ,即可得出AF =CE .【详解】C'B'A'C B A证明:∵四边形ABCD 是矩形,∴∠D =∠B =90°,AD =BC ,在△ADF 和△CBE 中,AD BC D B DF BE ⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△CBE (SAS ),∴AF =CE .变式1-1(2018·丹江口市期末)如图,点E,F 在AB 上,,,AD BC A B AE BF =∠=∠=. 求证:ADF BCE ∆≅∆.【分析】先将转化为AF =BE ,再利用证明两个三角形全等.【详解】证明:因为AE =BF ,所以,AE +EF =BF +EF ,即AF =BE ,在△ADF 和△BCE 中,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩所以,ADF BCE ∆≅∆变式1-2(2019·武汉市期中)已知:如图,点C 为AB 中点,CD=BE ,CD ∥BE.求证:△ACD ≌△CBE.【答案】证明见解析.【解析】证明:∵CD ∥BE ,∴∠ACD=∠ B..∵点C 为AB 中点,∴AC=CB.又∵CD=BE ,∴△ACD ≌△CBE (SAS )变式1-3(2019·兰州市期末)如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.【答案】(1)证明见解析;(2)75.【分析】(1)根据等边对等角可得∠B=∠ACF ,然后利用SAS 证明△ABE ≌△ACF 即可;(2)根据△ABE ≌△ACF ,可得∠CAF=∠BAE=30°,再根据AD=AC ,利用等腰三角形的性质即可求得∠ADC 的度数.【详解】(1)∵AB=AC ,∴∠B=∠ACF ,在△ABE 和△ACF 中,AB AC B ACF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE=30°,∴∠CAF=∠BAE=30°,∵AD=AC ,∴∠ADC=∠ACD ,∴∠ADC=280013︒-︒=75°, 故答案为75.考点二 :利用ASA 判断两个三角形全等典例2(2019·玉林市期中)如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O .求证:△AEC ≌△BED ;【分析】根据全等三角形的判定即可判断△AEC ≌△BED ;【详解】∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中,∠A=∠B ,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC=∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ∠∠⎧⎪⎨⎪∠∠⎩===∴△AEC ≌△BED (ASA ).变式2-1(2018·楚雄州期末)如图,完成下列推理过程:如图所示,点E 在△ABC 外部,点D 在BC 边上,DE 交AC 于F ,若∠1=∠3,∠E=∠C ,AE =AC ,求证:△ABC ≌△ADE.证明:∵∠E=∠C (已知),∠AFE=∠DFC(),∴∠2=∠3(),又∵∠1=∠3(),∴∠1=∠2(等量代换),∴__________+∠DAC=__________+∠DAC(), 即∠BAC=∠DAE,在△ABC和△ADE 中∵()()()E CAE ACBAC DAE∠=∠⎧⎪=⎨⎪∠=∠⎩已知已知已证∴△ABC≌△ADE().【答案】对顶角相等;三角形内角和定理;已知;∠1;∠2;等式的性质;ASA 【详解】解:∵∠E=∠C (已知),∠AFE=∠DFC (对顶角相等),∴∠2=∠3(三角形内角和定理).又∵∠1=∠3(已知),∴∠1=∠2(等量代换),∴∠1+∠DAC=∠2+∠DAC (等式的性质),即∠BAC=∠DAE .在△ABC和△ADE 中,∵E CAE ACBAC DAE∠=∠⎧⎪=⎨⎪∠=∠⎩(已知)(已知)(已证),∴△ABC≌△ADE(ASA ).变式2-2(2019·德州市期末)如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:BD=CE.【答案】见解析.【分析】先求出∠CAE=∠BAD再利用ASA证明△ABD≌△ACE,即可解答【详解】∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAE=90°,∠BAE+∠BAD=90°,∴∠CAE=∠BAD.又AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE(ASA).∴BD=CE.考点三:利用AAS判断两个三角形全等典例3(2019·黄石市期中)如图,在ABCD中,经过A,C两点分别作AE⊥BD,CF⊥BD,E,F为垂足.(1)求证:△AED≌△CFB;(2)求证:四边形AFCE是平行四边形.【分析】(1)根据平行四边形的性质可得AD=BC,∠CBF=∠ADE,再根据垂线的性质可得∠CFB=∠AED=90°,再根据全等三角形的判定(角角边)来证明即可;(2)根据全等三角形的性质可得AE=CF,再由AE⊥BD,CF⊥BD可得AE∥CF,根据一组对边平行且相等的四边形为平行四边形即可证明.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠CBF=∠ADE,∵AE⊥BD,CF⊥BD,∴∠CFB=∠AED=90°,∴△AED≌△CFB(AAS).(2)证明:∵△AED≌△CFB,∴AE=CF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∴四边形AFCE是平行四边形.变式3-1(2019·兴义市期末)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.【答案】(1)证明见解析;(2)112.5°.【分析】()1根据同角的余角相等可得到24=,可证∠=∠,再加上BC CE∠=∠,结合条件BAC D得结论;()2根据90D∠=∠=︒,根据等腰三角形的性质得到,,得到145∠=︒=ACD AC CDDEC∠=︒-∠=︒.∠=∠=︒,由平角的定义得到1805112.53567.5【详解】()1证明:90BCE ACD ∠=∠=︒, 2334,∴∠+∠=∠+∠ 24∴∠=∠, 在△ABC 和△DEC 中,24BAC D BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEC (AAS ),AC CD ∴=;(2)∵∠ACD =90°,AC =CD ,∴∠1=∠D =45°,∵AE =AC ,∴∠3=∠5=67.5°,∴∠DEC =180°-∠5=112.5°.变式3-2(2019·温州市期中)如图,已知A ,F ,E ,C 在同一直线上,//AB CD ,ABE CDF ∠=∠,AF CE =.试说明:ABE CDF ∆≅∆.【答案】见解析; 【分析】由AB ∥CD 可得∠BAC =∠DCA ,由AF =CE 可得AE =CF ,由AAS 可得△ABE ≌△CDF . 【详解】证明∵AB CD ∕∕,∴BAC ACD ∠=∠∵AF CE =,∴AF EF CE EF +=+,即AE FC =.在ABE ∆和CDF ∆中,BAC ACD ABE CDF AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABE CDF ∆∆≌(AAS )考点四: 利用SSS 判断两个三角形全等典例4(2019·德州市期中)已知:如图,AB =AC ,BD =CD ,DE ⊥AB ,垂足为E ,DF ⊥AC ,垂足为F .求证:DE =DF .【分析】连接AD ,利用“边边边”证明△ABD 和△ACD 全等,再根据全等三角形对应边上的高相等证明.【详解】证明:如图,连接AD ,在△ABD 和△ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD (SSS ),∵DE ⊥AB ,DF ⊥AC ,∴DE =DF (全等三角形对应边上的高相等).变式4-1(2019·阳泉市期末)如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上,求证:∠1=∠ 2.【答案】证明见详解【分析】由AB=AC,AD=AD,BD=CD,可证得△ABD ≌△ACD,得到∠BAE=∠CAE,再证明△ABE ≌△ACE,即可得到结论.【详解】证明:∵AB=AC,AD=AD,BD=CD,在△ABD 和△ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD, ∠BAE=∠CAE,在△ABE 和△ACE 中, ,AB AC BAE CAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ACE∴∠1=∠ 2.变式4-2(2019·鄂州市期中)如图,点A 、D 、C 、F 在同一条直线上,AD=CF ,AB=DE ,BC=EF.(1)求证:ΔABC ≌△DEF ;(2)若∠A=55°,∠B=88°,求∠F 的度数.【答案】(1)证明见解析;(2)37° 【解析】(1)∵AC=AD+DC , DF=DC+CF ,且AD=CF∴AC=DF在△ABC 和△DEF 中,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS )(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°-(∠A+∠B )=180°-(55°+88°)=37°∴∠F=∠ACB=37°变式4-3(2020·石家庄市期末)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB=DE ,AC=DF ,BF=EC .(1)求证:△ABC ≌△DEF ;(2)指出图中所有平行的线段,并说明理由.【答案】(1)详见解析;(2)∠ABC=∠DEF ,∠ACB=∠DFE,理由见解析. 【解析】(1)证明:∵BF=EC ,∴BF+CF=CF+CE ,∴BC="EF"∵AB=DE ,AC="DF"∴△ABC ≌△DEF (SSS )(2)AB ∥DE,AC ∥DF,理由如下,∵△ABC ≌△DEF ,∴∠ABC=∠DEF ,∠ACB=∠DFE,∴AB ∥DE,AC ∥DF.考点五 :利用HL 判断两个直角三角形全等典例5(2019·云龙县期中)已知:如图,AC=BD ,AD ⊥AC ,BC ⊥BD .求证:AD=BC【分析】连接CD ,利用HL 定理得出Rt △ADC ≌Rt △BCD 进而得出答案.【详解】证明:如图,连接CD ,∵AD ⊥AC ,BC ⊥BD ,∴∠A=∠B=90°,在Rt △ADC 和Rt △BCD 中CD CD AC BD =⎧⎨=⎩, ∴Rt △ADC ≌Rt △BCD (HL ),∴AD=BC .变式5-1(2019·开封市期中)已知:如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =. 求证:(1)AF CE =;(2)AB CD ∥.【分析】(1)根据垂直的定义得到∠DEC=∠BFA=90°,推出Rt △DCE ≌Rt △BFA (HL ),由全等三角形的性质即可得到结论.(2)根据全等三角形的性质得到∠C=∠A ,根据平行线的判定即可得到AB ∥CD.【详解】证明: ∵ DE ⊥ AC , BF ⊥ AC∴ ∠DEC=∠BFA=90°在Rt △ DEC 和Rt △ BFA 中AB=CD DE=BF∴ Rt △ DCE ≌Rt △ BFA (HL )∴ AF=CE∴ ∠C=∠A∴ AB ∥ CD变式5-2(2018·开封市期末)如图,D 、C 、F 、B 四点在一条直线上,AB DE =,AC BD ⊥,EF BD ⊥,垂足分别为点C 、点F ,CD BF =.求证:(1)ABC EDF ∆≅∆;(2)//AB DE .【分析】(1)由垂直的定义,结合题目已知条件可利用HL 证得结论;(2)由(1)中结论可得到∠D =∠B ,则可证得结论. 【详解】证明:(1)∵AC BD ⊥,EF BD ⊥,∴ABC ∆和EDF ∆为直角三角形,∵CD BF =,∴CF BF CF CD +=+,即BC DF =,在Rt ABC ∆和Rt EDF ∆中,AB DE BC DF=⎧⎨=⎩, ∴()Rt ABC Rt EDF HL ∆≅∆;(2)由(1)可知ABC EDF ∆≅∆,∴B D ∠∠=,∴//AB DE .考点六: 三角形全等判定的综合典例6(2019·保定市期末)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙【答案】B【解析】乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.变式6-1(2019·武汉市期中)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D【答案】C试题分析:根据全等三角形的判定方法分别进行判定:A、已知AB=DE,加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意.故选C.变式6-2(2020·杭州市期末)如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC【答案】C【解析】解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、符合SSA,不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.所以根据全等三角形的判定方C、满足SSA不能判断两个三角形全等.故选C.变式6-3(2018·虹桥区期中)如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC【答案】D【分析】两个三角形有公共边AD,可利用SSS,SAS,ASA,AAS的方法判断全等三角形.解答:【详解】分析:∵AD=AD,A 、当BD=DC ,AB=AC 时,利用SSS 证明△ABD ≌△ACD ,正确;B 、当∠ADB=∠ADC ,BD=DC 时,利用SAS 证明△ABD ≌△ACD ,正确;C 、当∠B=∠C ,∠BAD=∠CAD 时,利用AAS 证明△ABD ≌△ACD ,正确;D 、当∠B=∠C ,BD=DC 时,符合SSA 的位置关系,不能证明△ABD ≌△ACD ,错误. 故选D .一、单选题1.(2021·全国八年级课时练习)如图,点B 在AE 上,CAB DAB ∠=∠,要通过“ASA ”判定ABC ABD △≌△,可补充的一个条件是( )A .CBA DBA ∠=∠B .ACB ADB ∠=∠C .AC AD = D .BC BD =【答案】 A 【分析】根据“ASA ”的判定方法添加条件即可.【详解】解:在△ABC 与△ABD 中,CAB DAB AB ABCBA DBA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△ABD (ASA ),故选:A . 【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.2.(2021·全国八年级课时练习)下列一定能使△ABC ≌△DEF 成立的是( )A .两边对应相等B .面积相等C .三边对应相等D .周长相等【答案】 C 【分析】根据全等三角形的判定方法,分析、判断即可.【详解】解:A 、两边对应相等,不能使△ABC ≌△DEF 成立,该选项不符合题意;B 、面积相等,不能使△ABC ≌△DEF 成立,该选项不符合题意;C 、三边对应相等,根据SSS 即可证明△ABC ≌△DEF ,该选项符合题意;D 、周长相等,不能使△ABC ≌△DEF 成立,该选项不符合题意;故选:C .【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等.3.(2021·福建八年级期中)如图,D 、E 分别是AB 、AC 上的点,CD 、BE 相交于点O ,已知CD BE =.现在添加以下一个条件能判断ABE ACD △≌△的是( )A .AB AC =B .AE AD =C .B C ∠=∠D .BD CE =【答案】C 【分析】由已知条件CD BE =、∠A =∠A ,结合各选项条件分别依据“AAS 、ASA 、SSA 、SAS ”,逐一作出判断即可得,其中SSA 不能任意判定三角形全等.【详解】解:A .由CD =BE 、∠A =∠A 、AB =AC 不能判定△ABE ≌△ACD ,此选项不符合题意; B .由CD =BE 、∠A =∠A 、AE AD =不能判定△ABE ≌△ACD ,此选项不符合题意; C .由CD =BE 、∠A =∠A 、B C ∠=∠可依据“AAS ”△ABE ≌△ACD ,此选项符合题意; D .由CD =BE 、∠A =∠A 、BD CE =不能判定△ABE ≌△ACD ,此选项不符合题意; 故选:C .【点睛】本题主要考查全等三角形的判定,解题的关键是掌握全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.4.(2021·香河县第九中学八年级期中)如图,已知:12∠=∠,要证明ABC AED ≌△△,还需补充的条件是( )A .,AB AE BC DE ==B .,AB AE AC AD == C .,AC AE BC DE==D .以上都不对 【答案】B 【分析】首先证明∠BAC =∠1+∠DAC =∠ADC +∠2=∠EAD ,然后根据全等三角形的判定条件进行判断即可.【详解】解:∵∠1=∠2,∴∠BAC =∠1+∠DAC =∠ADC +∠2=∠EAD ,当AB =AE ,BC =DE 时,“SSA ”不能判定△ABC ≌△AED ,故A 选项不符合题意;当AB =AE ,AC =AD 时,可以用“SAS ”判定△ABC ≌△AED ,故B 选项符合题意;当AC =AE ,BC =DE 时,“SSA ”不能判定△ABC ≌△AED ,故C 选项不符合题意;故选B .【点睛】本题主要考查了全等三角形的判定,解题的关键在于能够熟练掌握全等三角形的判定条件.5.(2021·江苏苏州市·苏州草桥中学八年级开学考试)工人师傅常用角尺平分一个任意角.做法如下:如图所示,在AOB ∠的两边OA ,OB 上分别取OM ON =,移动角尺,使角尺两边相同的刻度分与M ,N 重合,过角尺顶点C 的射线OC 即是AOB ∠的平分线.画法中用到三角形全等的判定方法是( ).A .SSSB .SASC .ASAD .HL【答案】 A 【分析】由三边相等得COM CON ≅,即由SSS 判定三角全等.做题时要根据已知条件结合判定方法逐个验证.【详解】解:由图可知,CM CN =,又OM ON =,在MCO 和NCO 中,MO NO CO CO NC MC =⎧⎪=⎨⎪=⎩, ()COM CON SSS ∴≅,AOC BOC ∠=∠∴,即OC 是AOB ∠的平分线.故选 A.【点睛】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.6.(2021·龙口市教学研究室八年级期中)如图,经过平行四边形ABCD 的对角线AC 中点的直线分别交边CB ,AD 的延长线于E ,F ,则图中全等三角形的对数是( )A .3对B .4对C .5对D .6对【答案】 C 【分析】根据已知条件及全等三角形的判定方法进行分析,从而得到答案. 【详解】:四边形ABCD 为平行四边形,EF 经过AC 的中点,AB CD ∴=,AD BC =,AO CO =,AOE COF ∠=∠,F E ∠=∠,又AOF COE ∠=∠,AOE COF ∠=∠,BAF DCE ∠=∠,()∴∆≅∆AOH COG ASA ,()∆≅∆AOF COE ASA ,()FDG EBH ASA ∆≅∆,()ABC CDA SSS ∆≅∆,()∆≅∆AFH CEG ASA .故图中的全等三角形共有5对.故选:C【点睛】此题主要考查全等三角形的判定方法,常用的判定方法有AAS ,SAS ,SSS ,ASA 等.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.7.(2021·兰州市第五十五中学八年级月考)如图,在△ABC 中,AB =AC ,AE 是经过点A 的一条直线,且B 、C 在AE 的两侧,BD ⊥AE 于D ,CE ⊥AE 于E ,AD =CE ,则∠BAC 的度数是 ( )A .45°B .60°C .90°D .120°【答案】C 【分析】首先证明△BAD ≌△CAE ,可得∠BAD =∠ACE ,由∠ACE +∠CAE =90°,可得∠BAD +∠CAE =90°即可解答.【详解】解:∵BD ⊥AE 于D ,CE ⊥AE 于E ,∴∠ADB =∠E =90,在Rt △BAD 和Rt △ACE 中,AB =AC 、 AD =EC∴△BAD ≌△CAE (HL ),∴∠BAD =∠ACE ,∵∠ACE +∠CAE =90°,∴∠BAC =∠BAD +∠CAE =90°.故选C .【点睛】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法和性质是解答本题的关键. 二、填空题8.(2021·全国八年级课时练习)如图,已知AB CB =,要使ABD CBD ≌△△()SSS ,还需添加一个条件,你添加的条件是__________.【答案】AD CD =【分析】要利用SSS 判定ABD CBD ≌△△,已知AB CB =,公共边BD BD =,只需要再添加一组对边相等即可.【详解】解:∵AB CB =,BD BD =,∴要利用SSS 判定ABD CBD ≌△△,只需要在添加一组对边相等即可.∴AD CD =,故答案为:AD CD =.【点睛】本题考查用三边对应相等判定三角形全等,根据图形找到相关的条件是解题关键.9.(2021·全国八年级课时练习)如图,已知,,AF BE A B AC BD =∠=∠=,经分析__________≌__________,依据是__________.【答案】ADF BCE SAS【分析】利用SAS 得出全等三角形.【详解】证明:∵AC =BD ,∴AD =BC ,在△ADF 和△BCE 中∵AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△BCE (SAS ).故答案为:①ADF ,②BCE ,③SAS . 【点睛】此题主要考查了全等三角形的判定,熟练掌握判定方法是解题的关键10.(2021·青岛大学附属中学八年级期中)数学课上,同学们探讨利用不同画图工具画角的平分线的方法.小旭说:我用两块含30的直角三角板就可以画角平分线.如图,取OM ON =,把直角三角板按如图所示的位置放置,两直角边交于点P ,则射线OP 是AOB ∠的平分线.小旭这样画的理论依据是______.【答案】HL【分析】由“HL ”可证Rt △OMP ≌Rt △ONP ,可得∠MOP =∠NOP ,可证OP 是∠AOB 的平分线.【详解】解:∵∠OMP =∠ONP =90°,且OM =ON ,OP =OP ,∴Rt △OMP ≌Rt △ONP (HL ),∴∠MOP =∠NOP ,∴OP 是∠AOB 的平分线.故答案为:HL .【点睛】本题主要考查了全等三角形的判定和性质,证明Rt △OMP ≌Rt △ONP 是本题的关键.11.(2021·全国八年级课时练习)已知线段a ,b ,c ,求作ABC ,使,,BC a AC b AB c ===. ①以点B 为圆心,c 的长为半径画弧;②连接,AB AC ;③作BC a =;④以点C为圆心,b的长为半径画弧,两弧交于点A.作法的合理顺序是__________.【答案】③①④②【分析】根据作三角形的步骤:第一步先作一条线段等于三角形的一边,第二步以已作的线段的两个端点为圆心,以对应的长为半径画弧确定交点位置,最后顺次连接即可,由此进行判断即可.=,再以点B为圆心,c的长为半径画弧;接着以点C为圆心,b的长【详解】解:先作BC aAB AC,则ABC即为所求.为半径画弧,两弧交于点A,然后连接,故答案为:③①④②.【点睛】本题主要考查了用尺规作图—作三角形的步骤,解题的关键在于能够熟练掌握相关知识进行求解.12.(2021·全国八年级课时练习)如图,AD=BC,若利用“SSS”来证明△ABD≌△CDB,则需要添加的一个条件是__________.=【答案】AB CD【分析】根据“SSS”判断△ABD≌△CDB时,可添加AB=CD.【详解】解:∵AD=BC,BD=DB,∴当添加AB=CD时,可根据“SSS”判断△ABD≌△CDB.故答案为:AB=CD.【点睛】本题考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(2021·全国八年级课时练习)如图,AC=BD,AF=DE,BF=CE,∠E=30°,∠A=45°,则∠ACE=__________.【答案】75︒【分析】利用“SSS ”证明△ABF ≌△DCE ,即可求解.【详解】解:∵AC =BD ,∴AC −BC =BD −BC ,∴AB =DC ,又∵AF =DE ,BF =CE ,∴△ABF ≌△DCE (SSS ),∴∠D =∠A =45°,∴∠ACE =∠D +∠E =45°+30°=75°.故答案为:75°.【点睛】本题考查了全等三角形的判定和性质,关键是掌握判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .14.(2021·全国八年级课时练习)如图,已知CAB DAE ∠=∠,要使()ABD ACE SAS △≌△,需加的两个条件是__________.【答案】AB AC AD AE ==,【分析】根据CAB DAE ∠=∠得到CAE BAD ∠=∠,根据SAS 添加条件即可;【详解】∵CAB DAE ∠=∠,∴CAE BAD ∠=∠,当AB AC AD AE ==,时,得到()ABD ACE SAS △≌△;故答案是:AB AC AD AE ==,.【点睛】本题主要考查了探索全等三角形全等的条件,准确分析判断是解题的关键.15.(2021·全国八年级课时练习)两个大小不同的等腰直角三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连接DC .一只蜗牛在爬行速度不变的情况下,从C 爬到D 所用的最短时间与它爬行线段__________所用的时间相同.(不要使用图形中未标注的字母)【答案】BE【分析】根据全等三角形的判定及性质证明CD =BE 即可得到结论.【详解】∵ABC 和ADE 是等腰直角三角形,∴,,90AB AC AE AD BAC EAD ==∠=∠=︒,∴BAC EAC DAE EAC ∠+∠=∠+∠,∴BAE CAD ∠=∠,在ABE △和ACD △中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE △≌ACD △(SAS ),∴BE CD =.故答案为:BE .【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题的关键. 三、解答题16.(2021·全国八年级课时练习)如图,已知在ABC 中,,12AB AC =∠=∠求证:AD BC ⊥.【分析】利用SAS 证明ABD ACD △≌△,得到34∠=∠,即可求解.【详解】证明:在ABD △和ACD △中,,12,,AB AC AD AD =⎧⎪∠=∠⎨⎪=⎩∴()ABD ACD SAS △△≌.∴34∠=∠.又∵34180∠+∠=︒,即23180∠=︒,∴390∠=︒,∴AD BC ⊥.【点睛】此题考查了全等三角形的证明与性质,熟练掌握全等三角形的判定方法与性质是解题的关键.17.(2021·全国八年级课时练习)已知:如图,//AB CD ,E 是AB 的中点,,EC ED ECD EDC =∠=∠,求证:(1)AEC BED ∠=∠;(2)AC BD =.【分析】(1)根据∠ECD =∠EDC ,再利用平行线的性质进行证明即可;(2)根据SAS 证明△AEC 与△BED 全等,再利用全等三角形的性质证明即可.【详解】证明:(1)∵//AB CD ,∴,AEC ECD BED EDC ∠=∠∠=∠,∵ECD EDC ∠=∠,∴AEC BED ∠=∠;(2)∵E 是AB 的中点,∴AE BE =,在AEC 和BED 中,AE BE AEC BED EC ED =⎧⎪∠=∠⎨⎪=⎩∴()AEC BED SAS ≌,∴AC BD =.【点睛】本题主要考查了全等三角形的判定以及全等三角形的性质,平行线的性质等知识,解题的关键是灵活运用准确寻找全等三角形解决问题,属于中考常考题型.18.(2021·全国八年级课时练习)如图,在ABC 中,A ∠是锐角,AF AE =,BF CE 、是高,你能说明BF CE =吗?【分析】根据AAS 易证△AEC ≌△AFB ,再利用全等三角形的性质即可求证结论.【详解】解:∵BF 、CE 是高,∴90AFB AEC ∠=∠=︒,在AFB △和AEC 中,,,,A A AF AE AFB AEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEC ≌△AFB (AAS ),∴BF CE =.【点睛】本题考查全等三角形的判定及其性质,解题的关键是熟练掌握全等三角形的判定方法“AAS ”证得△AEC ≌△AFB .19.(2021·全国八年级课时练习)如图,//,,//AC DF AD BE BC EF =.求证:ABC DEF △≌△.【分析】利用直线平行得出A EDF ∠=∠以及ABC E ∠=∠,再根据题意求得AD BE =,最后利用ASA 定理来证明即可.【详解】证明:∵//AC DF ,∴A EDF ∠=∠,∵//BC EF ,∴ABC E ∠=∠,∵AD BE =,∴AD BD BE BD +=+,即AB DE =,在ABC 和DEF 中,ABC E AB DE A EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, ∴()ABC DEF ASA ≌. 【点睛】本题考查了全等三角形的判定与性质,熟练掌握是解决问题的关键.20.(2021·全国八年级课时练习)如图,已知,,,CE AB DF AB AC BD CE DF ⊥⊥==.求证://AC BD .【分析】利用()HL Rt ACE Rt BDF ≌全等,来求得A B ∠=∠,利用内错角相等求得//AC BD .【详解】证明:∵,CE AB DF AB ⊥⊥,∴90CEA DFB ∠=∠=︒,又∵,AC BD CE DF ==,∴()HL Rt ACE Rt BDF ≌,∴A B ∠=∠,∴//AC BD .【点睛】本题考查了直角三角形全等的判定与应用,以及两直线平行的判定,熟练掌握是关键.21.(2021·河南省淮滨县第一中学八年级期末)如图1,已知ABC 中,90BAC ∠=,AB AC =,DE 是过A 的一条直线,且B ,C 在D ,E 的同侧,BD AE ⊥于D ,CE AE ⊥于()E BD CE <.(1)证明:ABD CAE ≅;(2)试说明:BD DE CE =-;(3)若直线DE 绕A 点旋转到图2位置(此时B ,C 在D ,E 的异侧)时,其余条件不变,问BD 与DE ,CE 的关系如何?请证明;(4)若直线DE 绕A 点旋转到图3位置(此时B ,C 在D ,E 的同侧)时()BD CE >其余条件不变,问BD 与DE ,CE 的关系如何?请直接写出结果,不需说明理由.【答案】(1)见解析;(2)见解析;(3) BD=DE+CE ;证明见解析;(4)BD=DE −CE【分析】(1)根据题意可得ABD EAC ∠=∠,结合BDA AEC ∠=∠,AB AC =直接用AAS 证明三角形全等即可;(2)根据(1)的结论ABD CAE ≌,进而可得BD DE CE =-;(3)方法同(1)证明ABD CAE ≌,进而可得BD DE CE =+(4)方法同(1)结论同(2)证明ABD CAE ≌,进而可得BD DE CE =-.【详解】(1)证明:∵90BAC ∠=,∴90BAD EAC ∠+∠=.又∵BD AE ⊥ ,CE AE ⊥,∴90BDA AEC ∠=∠=,90BAD ABD ∠+∠=,∴ABD EAC ∠=∠.又∵AB AC =,∴()ABD CAE AAS ≌.(2) 解:∵ABD CAE ≌,∴BD AE =,AD CE =.又∵ED AD AE =+,∴BD DE CE =-.(3) 解:∵90BAC ∠=,∴90BAD EAC ∠+∠=.又∵BD AE ⊥ ,CE AE ⊥,∴90BDA AEC ∠=∠=,90BAD ABD ∠+∠=,∴ABD EAC ∠=∠.又∵AB AC =,∴ABD CAE ≌.∴BD AE =,AD CE =,AE AD DE =+,∴BD DE CE =+.(4) 解:BD DE CE =-.理由如下:∵90BAC ∠=,∴90BAD EAC ∠+∠=.又∵BD AE ⊥ ,CE AE ⊥,∴90BDA AEC ∠=∠=,90BAD ABD ∠+∠=,∴ABD CAE ∠=∠.又∵AB AC =,∴ABD CAE ≌,∴BD AE =,AD CE =.又∵ED AD AE =+,∴BD DE CE =-.【点睛】本题考查了三角形全等的性质与判定,等腰直角三角形的性质,掌握三角形全等的性质与判定是解题的关键.22.(2021·四川省成都市七中育才学校)如图1,已知Rt ABC △中,90BAC ∠=︒,点D 是AB 上一点,且8AC =.45DCA ∠=︒,AE BC ⊥于点E ,交CD 于点F .(1)如图1,若2AB AC =,求AE 的长;(2)如图2,若30B ∠=︒,求CEF △的面积;(3)如图3,点P 是BA 延长线上一点,且AP BD =,连接PF ,求证:PF AF BC +=.【答案】(1)1655AE =;(2)8(23)ECF S ∆=-;(3)证明见解析部分 【分析】(1)利用勾股定理求出BC ,再利用面积法求出AE 即可.(2)如图2中,在CE 上取一点J ,使得FJ CJ =,连接FJ .设EF m =,想办法构建方程求出m 即可解决问题.(3)如图3中,过A 点作AM CD ⊥于点M ,与BC 交于点N ,连接DN ,证明()AMF DMN ASA ∆≅∆,推出AF DN CN ==,再证明()APF DBN SAS ∆≅∆,可得结论.【详解】(1)解:如图1中,2AB AC =,8AC =,16AB ∴=,90BAC ∠=︒,222281685BC AC AB ∴=+=+=,AE BC ⊥,1122ABC S BC AE AC AB ∆∴=⋅⋅=⋅⋅, 816165585AE ⨯∴==. (2)解:如图2中,在CE 上取一点J ,使得FJ CJ =,连接FJ .90BAC ∠=︒,30B ∠=︒,903060ACE ∴∠=︒-︒=︒,AE BC ⊥,8AC =,cos604CE AC ∴=⋅︒=,45DCA ∠=︒,15FCE ACE ACD ∴∠=∠-∠=︒,JF JC =,15JFC JCF ∴∠=∠=︒,30EJF JFC JCF ∴∠=∠+∠=︒,设EF m =,则2FJ JC m ==,3EJ m =, ∴324m m +=,4(23)m ∴=-,4(23)EF ∴=-,144(23)8(23)2ECF S ∆∴=⨯⨯-=-. (3)证明:如图3中,过A 点作AM CD ⊥于点M ,与BC 交于点N ,连接DN .90BAC ∠=︒,AC AD =,AM CD ∴⊥,AM DM CM ==,45DAM CAM ADM ACD ∠=∠=∠=∠=︒,DN CN ∴=,NDM NCM ∴∠=∠,AE BC ⊥,90ECF EFC MAF AFM ∴∠+∠=∠+∠=︒,AFM EFC ∠=∠,MAF ECF ∴∠=∠,MAF MDN∴∠=∠,∠=∠,AMF AMN∴∆≅∆,()AMF DMN ASA∴==,AF DN CN∠=︒,AC AD90BAC=,DAM CAM ADM ACD∴∠=∠=∠=∠=︒,45∴∠=∠=︒,NAP CDB135∠=∠,MAF MDN∴∠=∠,PAF BDN=,AP DB∴∆≅∆,()APF DBN SAS∴=,PF BN=,AF CN∴+=+,PF AF CN BN+=.即PF AF BC【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

第十三讲 三角形全等的判定定理4(HL)(含解析) (人教版)

第十三讲 三角形全等的判定定理4(HL)(含解析) (人教版)

第十三讲三角形全等的判定定理4(“HL”)【学习目标】1.探索并理解直角三角形全等的判定方法“HL”.2.会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.【新课讲解】知识点1:直角三角形全等的判定(“斜边、直角边”定理)1.文字语言:斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL”).2.几何语言:在Rt△ABC和Rt△A′B′C′中,∴Rt△ABC ≌ Rt△A′B′C′ (HL).方法总结:证明线段相等可通过证明三角形全等解决,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.在直角三角形中,只须找除直角外的两个条件即可(两个条件中至少有一个条件是一对对应边相等)【例题】如图,AC⊥BC, BD⊥AD, AC﹦BD,求证:BC﹦AD.【答案】见解析。

【解析】证明:∵ AC⊥BC, BD⊥AD,∴∠C与∠D都是直角.在Rt△ABC 和Rt△BAD 中,∴ Rt△ABC≌Rt△BAD (HL).∴ BC﹦AD.三角形全等的判定定理4问题新课程过关检测满分100分,答题时间60分钟一、选择题(本大题有5小题,每小题4分,共20分)1.下列判定直角三角形全等的方法,不正确的是()A. 两条直角边对应相等B. 斜边和一锐角对应相等C. 斜边和一直角边对应相等D. 两个直角三角形的面积相等【答案】D【解析】如果在两个直角三角形中,两条直角边对应相等,那么根据SAS即可判断两三角形全等,故选项A正确;如果如果在两个直角三角形中,斜边和一锐角对应相等,那么根据AAS可判断两三角形全等,故选项B正确;如果如果在两个直角三角形中,斜边和一直角边对应相等,那么根据HL可判断两三角形全等,故选项C正确;如果两个直角三角形的面积相等,那么无法判定两个直角三角形全等,故D错误;故选:D.2.要判定两个直角三角形全等,下列说法正确的有( )①有两条直角边对应相等; ②有两个锐角对应相等; ③有斜边和一条直角边对应相等; ④有一条直角边和一个锐角相等; ⑤有斜边和一个锐角对应相等; ⑥有两条边相等.A.6个B.5个C.4个D.3个【答案】C【解析】根据全等三角形的判定,逐个分析即可.①有两条直角边对应相等;根据SAS,可判定两个直角三角形全等;②有两个锐角对应相等; 没有边,不能判定两个直角三角形全等;③有斜边和一条直角边对应相等; 根据HL,可判定两个直角三角形全等;④有一条直角边和一个锐角相等; 根据AAS,可判定两个直角三角形全等;⑤有斜边和一个锐角对应相等; 根据AAS,可判定两个直角三角形全等;⑥有两条边相等.边位置不确定,不能判定两个直角三角形全等.故选C3.如图,在∠AOB 的两边上,分别取OM=ON ,再分别过点M 、N 作OA 、OB 的垂线,交点为P ,画射线OP ,则OP 平分∠AOB 的依据是( )A .HLB .SASC .AASD .SSS【答案】A 【解析】利用判定方法“HL ”证明Rt △OMP 和Rt △ONP 全等,进而得出答案.在Rt △OMP 和Rt △ONP 中,OM ON OP OP =⎧⎨=⎩, ∴Rt △OMP ≌Rt △ONP (HL ),∴∠MOP=∠NOP ,∴OP 是∠AOB 的平分线.故选择:A.4.如图,∠ACB=90°,AC=BC .AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .B .2C .2D .【答案】B .【解析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB ≌△ADC ,就可以得出BE=DC ,就可以求出DE 的值.∵BE ⊥CE ,AD ⊥CE ,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=25.如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点 E ,AD、CE交于点H,已知EH=EB=3,AE=4,则 CH 的长为()A.1 B.2 C.3 D.4【答案】A【解析】△AEH≌△CEB,EH=BE=3CE=AE=4CH=CE-HE=4-3=1二、填空题(每空4分,共28分)6.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.【答案】AC=BC.【解析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC 可利用AAS判定△ADC≌△BEC.添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS)7.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC ≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).【答案】AB=ED.【解析】根据等式的性质可得BC=EF,根据平行线的性质可得∠B=∠E,再添加AB=ED可利用SAS判定△ABC ≌△DEF.添加AB=ED,∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB∥DE,∴∠B=∠E,在△ABC和△DEF中,∴△ABC≌△DEF(SAS)8.如图,,,点A,D在直线MN上,点B,C在直线PQ上,点E在AB上,,,,则________.【答案】7解析:,,,,在和中,≌,,,.故答案为7.9.如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠B和∠F的关系是_______。

全等三角形判定四种方法学习总结

全等三角形判定四种方法学习总结

三角形全等一.理解和掌握全等三角形判定方法1——“边边边”(SSS )图2-1 图2-2 图2-3 1.已知:如图2-1,△RPQ 中,RP =RQ ,M 为PQ 的中点. 求证:RM 平分∠PRQ .分析:要证RM 平分∠PRQ ,即∠PRM =______, 只要证______≌______证明:∵ M 为PQ 的中点(已知), ∴______=______在△______和△______中,⎪⎩⎪⎨⎧===),______(____________,),(PM RQ RP 已知∴______≌______( ). ∴ ∠PRM =______(______). 即RM .2.已知:如图2-2,AB =DE ,AC =DF ,BE =CF . 求证:∠A =∠D .分析:要证∠A =∠D ,只要证______≌______. 证明:∵BE =CF ( ), ∴BC =______.在△ABC 和△DEF 中,⎪⎩⎪⎨⎧===______,______,______,AC BC AB ∴______≌______( ). ∴ ∠A =∠D (______).3.如图2-3,CE =DE ,EA =EB ,CA =DB , 求证:△ABC ≌△BAD .证明:∵CE =DE ,EA =EB ,∴______+______=______+______, 即______=______. 在△ABC 和△BAD 中, =______(已知),⎪⎩⎪⎨⎧===),______(______),______(______),______(______已证已知 ∴△ABC ≌△BAD ( ).练习4.已知:如图2-4,AD =BC .AC =BD .试证明:∠CAD =∠DBC .如图2-45.“三月三,放风筝”.图2-5是小明制作的风筝,他根据DE =DF ,EH =FH ,不用度量,就知道∠DEH =∠DFH .请你用所学的知识证明.图2-5二.理解和掌握全等三角形判定方法2——“边角边”(SAS)图3-1 图3-21.已知:如图3-1,AB 、CD 相交于O 点,AO =CO ,OD =OB . 求证:∠D =∠B .分析:要证∠D =∠B ,只要证______≌______ 证明:在△AOD 与△COB 中,⎪⎩⎪⎨⎧=∠=∠=),______(),______(______),(OD CO AO∴ △AOD ≌△______ ( ). ∴ ∠D =∠B (______).2.已知:如图3-2,AB ∥CD ,AB =CD .求证:AD ∥BC . 分析:要证AD ∥BC ,只要证∠______=∠______, 又需证______≌______. 证明:∵ AB ∥CD ( ), ∴ ∠______=∠______ ( ), 在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ). ∴ ∠______=∠______ ( ). ∴ ______∥______( ).练习4.已知:如图3-3,AB =AC ,∠BAD =∠CAD . 求证:∠B =∠C .图3-35.已知:如图3-4,AB=AC,BE=CD.求证:∠B=∠C.图3-46.已知:如图3-5,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.图3-57.如图3-6,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.图3-6三.理解和掌握全等三角形判定方法3——“角边角”(ASA),判定方法4——“角角边”(AAS)图4-12.已知:如图4-1,PM =PN ,∠M =∠N .求证:AM =BN . 分析:∵PM =PN ,∴ 要证AM =BN ,只要证P A =______, 只要证______≌______.证明:在△______与△______中,⎪⎩⎪⎨⎧∠=∠=∠=∠),______(______),______(______),______(______∴ △______≌△______ ( ). ∴P A =______ ( ). ∵PM =PN ( ),∴PM -______=PN -______,即AM =______.3.已知:如图4-2,AC BD .求证:OA =OB ,OC =OD . 分析:要证OA =OB ,OC =OD ,只要证______≌______. 证明:∵ AC ∥BD ,∴ ∠C =______. 在△______与△______中,⎪⎩⎪⎨⎧==∠∠=∠),______(______),______(),______(C AOC∴______≌______ ( ). ∴ OA =OB ,OC =OD ( ).图4-2练习4.能确定△ABC ≌△DEF 的条件是 ( ) A .AB =DE ,BC =EF ,∠A =∠E B .AB =DE ,BC =EF ,∠C =∠E C .∠A =∠E ,AB =EF ,∠B =∠D D .∠A =∠D ,AB =DE ,∠B =∠E5.如图4-3,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC 全等的图形是 ( )图4-3A .甲和乙B .乙和丙C .只有乙D .只有丙6.AD 是△ABC 的角平分线,作DE ⊥AB 于E ,DF ⊥AC 于F ,下列结论错误的是( ) A .DE =DF B .AE =AF C .BD =CD D .∠ADE =∠ADF 7.阅读下题及一位同学的解答过程:如图4-4,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,图4-4⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COB AOD OB OA C A∴ △AOD ≌△COB (ASA ).问:这位同学的回答及证明过程正确吗?为什么?8.已知:如图4-5,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.图4-59.已知:如图4-6,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.图4-610.已知:AM是ΔABC的一条中线,BE⊥AM的延长线于E,CF⊥AM于F,BC=10,BE =4.求BM、CF的长.11.填空题(1)已知:如图4-7,AB=AC,BD⊥AC于D,CE⊥AB于E.欲证明BD=CE,需证明Δ______≌△______,理由为______.(2)已知:如图4-8,AE=DF,∠A=∠D,欲证ΔACE≌ΔDBF,需要添加条件______,证明全等的理由是______;或添加条件______,证明全等的理由是______;也可以添加条件______,证明全等的理由是______.图4-7 图4-812.如图4-9,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?图4-913.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.图4-10(2)如图4-11,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.图4-11。

专题16 全等三角形判定和性质问题(解析版)2021年中考数学必考34个考点高分三部曲

专题16 全等三角形判定和性质问题(解析版)2021年中考数学必考34个考点高分三部曲

专题16 全等三角形判定和性质问题1.全等三角形:能够完全重合的两个图形叫做全等形。

能够完全重合的两个三角形叫做全等三角形。

2.全等三角形的表示全等用符号“≌”表示,读作“全等于”。

如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。

注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。

3.全等三角形的性质:全等三角形的对应角相等、对应边相等。

4.三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

5.直角三角形全等的判定:HL定理:有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)【例题1】(2020•贵州省安顺市)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC【解答】选项A、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加AB=DE可用AAS进行判定,故本选项错误;专题知识回顾专题典型题考法及解析选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:A.【例题2】(2020•黑龙江省齐齐哈尔市)如图,已知在△ABC和△DEF中,△B=△E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC△△DEF,则还需添加的一个条件是_________(只填一个即可).【答案】AB=DE.【解析】添加AB=DE;△BF=CE,△BC=EF,在△ABC和△DEF中,,△△ABC△△DEF(SAS)【例题3】(2020•铜仁)如图,AB=AC,AB△AC,AD△AE,且△ABD=△ACE.求证:BD=CE.【答案】见解析。

中考数学点对点-全等三角形判定与性质定理(解析版)

中考数学点对点-全等三角形判定与性质定理(解析版)
【答案】见解析。
【解析】求出AC=DF,根据SSS推出△ABC≌△DEF.由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.
证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF
∴AC=DF
在△ABC和△DEF中,
∴△ABC≌△DEF(SSS)
(2)由(1)可知,∠F=∠ACB
作OG⊥AM于G,OH⊥DM于H,如图所示,
则∠OGA=∠OHB=90°,
在△OGA和△OHB中,
∵ ,
∴△OGA≌△OHB(AAS),
∴OG=OH,
∴OM平分∠AMD,故④正确;
假设OM平分∠AOD,则∠DOM=∠AOM,
在△AMO与△DMO中,

∴△AMO≌△OMD(ASA),
∴AO=OD,
∵OC=OD,
(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)
(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)
(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
(4)角角边定理:两角和其中一个角的对边对应相等的两个三角形全等(简写成AAS).
D.AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误。
【例题2】(2020•北京)如图,在△ABC中,AB=AC,点D在BC上(不与点B,C重合).只需添加一个条件即可证明△ABD≌△ACD,这个条件可以是(写出一个即可).
【答案】BD=CD.
【解析】由题意可得∠ABC=∠ACD,AB=AC,即添加一组边对应相等,可证△ABD与△ACD全等.

全等三角形证明判定方法分类总结

全等三角形证明判定方法分类总结

全等三角形一SSS知识要点1.全等图形定义:两个能够重合的图形称为全等图形. 2.全等图形的性质:1全等图形的形状和大小都相同;对应边相等;对应角相等 2全等图形的面积相等3.全等三角形:两个能够完全重合的三角形称为全等三角形1表示方法:两个三角形全等用符号“≌”来表示;读作“全等于” 如DEF ABC ∆∆与全等;记作ABC ∆≌DEF ∆2符号“≌”的含义:“∽”表示形状相同;“=”表示大小相等;合起来就是形状相同;大小也相等;这就是全等.3两个全等三角形重合时;互相重合的顶点叫做对应顶点;互相重合的边叫做对应边;互相重合的角叫做对应角.4证两个三角形全等时;通常把表示对应顶点的字母写在对应的位置上.4.全等三角形的判定一:三边对应相等的两个三角形全等;简与成“边边边”或“SSS ”. 典型例题例1.如图;ABC ∆≌ADC ∆;点B 与点D 是对应点;=∠BAC 且︒=∠20B ;1=∆ABC S ;求ACD D CAD ∠∠∠,,的度数ACD ∆的面积.例2.如图;ABC ∆≌DEF ∆;cm CE cm BC A 5,9,50==︒=∠;求EDF∠的度数及CF 的长.例3.如图;已知:AB=AD;AC=AE;BC=DE;求证:CAD BAE ∠=∠例4.如图AB=DE;BC=EF;AD=CF;求证:1ABC ∆≌DEF ∆2AB//DE;BC//EF例5.如图;在,90︒=∠∆C ABC 中D 、E 分别为AC 、AB 上的点;且BE=BC;DE=DC;求证:1AB DE ⊥;2BD 平分ABC ∠巩固练习1.下面给出四个结论:①若两个图形是全等图形;则它们形状一定相同;②若两个图形的形状相同;则它们一定是全等图形;③若两个图形的面积相等;则它们一定是全等图形;④若两个图形是全等图形;则它们的大小一定相同;其中正确的是A 、①④B 、①②C 、②③D 、③④ 2.如图;ABD ∆≌CDB ∆;且AB 和CD 是对应边;下面四个结论中 不正确的是A 、CDB ABD ∆∆和的面积相等 B 、CDB ABD ∆∆和的周长相等C 、CBD C ABD A ∠+∠=∠+∠ D 、AD//BC 且AD=BC3.如图;ABC ∆≌BAD ∆;A 和 B 以及C 和D 分别是对应点;如果︒=∠︒=∠35,60ABD C ;则BAD ∠的度数为A 、︒85B 、︒35C 、︒60D 、︒80 4.如图;ABC ∆≌DEF ∆;AD=8;BE=2;则AE 等于 A 、6 B 、5 C 、4 D 、35.如图;要使ACD ∆≌BCE ∆;则下列条件能满足的是 A 、AC=BC;AD=CE;BD=BE B 、AD=BD;AC=CE;BE=BD C 、DC=EC;AC=BC;BE=AD D 、AD=BE;AC=DC;BC=EC6.如图;ABE ∆≌DCF ∆;点A 和点D 、点E 和点F分别是对应点;则AB= ;=∠A ;AE= ;CE= ;AB// ;若BC AE ⊥;则DF与BC的关系是 . 7.如图;ABC ∆≌AED ∆;若=∠︒=∠︒=∠︒=∠BAC C EAB B 则,45,30,40 ;=∠D ;=∠DAC.8.如图;若AB=AC;BE=CD;AE=AD;则ABE ∆ ACD ∆;所以=∠AEB ;=∠BAE ;=∠BAD .9.如图;ABC ∆≌DEF ∆;︒=∠90C ;则下列说法错误的是互余与F C ∠∠互补与F C ∠∠互余与E A ∠∠互余与D B ∠∠D第4题图第5题图B第6题图第7题图 第8题图第9题题图10.如图;ACF ∆≌DBE ∆;cm CD cm AD ACF E 5.2,9,110,30==︒=∠︒=∠;求D ∠的度数及BC 的长.11.如图;在ABD ABC ∆∆与中;AC=BD;AD=BC;求证:ABC ∆≌ABD ∆全等三角形一作业1.如图;ABC ∆≌CDA ∆;AC=7cm;AB=5cm.;则AD 的长是 A 、7cm B 、5cm C 、8cm D 、无法确定2.如图;ABC ∆≌DCE ∆;︒=∠︒=∠62,48E A ;点B 、C 、E 在同一直线上;则ACD ∠的度数为A 、︒48B 、︒38C 、︒110D 、︒623.如图;ABC ∆≌DEF ∆;AF=2cm;CF=5cm;则AD= .4.如图;ABE ∆≌ACD ∆;︒=∠︒=∠25,100B A ;求BDC ∠的度数.5.如图;已知;AB=DE;BC=EF;AF=CD;求证:AB//CD6.如图;已知AB=EF;BC=DE;AD=CF;求证:①ABC ∆≌FED ∆②AB//EF7.如图;已知AB=AD;AC=AE;BC=DE;求证:CAE BAD ∠=∠AB CEAD CAB CDEACDFA C E FDE全等三角形二知识要点定义:SAS两边和它们的夹角对应相等的两个三角形全等;简写成“边角边”或“SAS ”;几何表示如图;在ABC ∆和DEF ∆中;ABC EF BC E B DE AB ∆∴⎪⎩⎪⎨⎧=∠=∠=≌)(SAS DEF ∆典型例题例1 已知:如图;AB=AC;AD=AE;求证:BE=CD.例2 如图;已知:点D 、E 在BC 上;且BD=CE;AD=AE;∠1=∠2;由此你能得出哪些结论 给出证明.例 3 如图已知:AE=AF;AB=AC;∠A=60°;∠B=24°;求∠BOE 的度数.例4 如图;B;C;D 在同一条直线上;△ABC;△ADE 是等边三角形; 求证:①CE=AC+DC ; ②∠ECD=60°.例5如图;已知△ABC 、△BDE 均为等边三角形..求证:BD +CD=AD..C ADBECABC E巩固练习1.在△ABC 和△C B A '''中;若AB=B A '';AC=C A '';还要加一个角的条件;使△ABC ≌△C B A ''';那么你加的条件是A .∠A=∠A ' B.∠B=∠B ' C.∠C=∠C ' D.∠A=∠B ' 2.下列各组条件中;能判断△ABC ≌△DEF 的是 A .AB=DE;BC=EF ;CA=CD B.CA=CD ;∠C=∠F ;AC=EFC .CA=CD ;∠B=∠E D.AB=DE ;BC=EF;两个三角形周长相等 3.阅读理解题:如图:已知AC;BD 相交于O;OA=OB;OC=OD.那么△AOD 与△BOC 全等吗 请说明理由.△ABC 与△BAD 全等吗 请说明理由. 小明的解答:21∠=∠ AOD ≌△BOC而△BAD=△AOD+△ADB △ABC=△BOC+△ 所以△ABC ≌△BAD1你认为小明的解答有无错误;2如有错误给出正确解答;4.如图;点C 是AB 中点;CD ∥BE;且CD=BE;试探究AD 与CE 的关系..5.如图;AE 是,BAC 的平分线∠AB=AC1若D 是AE 上任意一点;则△ABD ≌△ACD;说明理由.2若D 是AE 反向延长线上一点;结论还成立吗 请说明理由. 6.如图;已知AB=AC;EB=EC;请说明BD=CD 的理由DOA=OB OD=OC全等三角形二作业1.如图;已知AB=AC;AD=AE;BF=CF;求证:BDF ∆≌CEF ∆..2.如图;△ABC;△BDF 为等腰直角三角形..求证:1CF=AD ;2CE ⊥AD..3.如图;AB=AC;AD=AE;BE 和CD 相交于点O;AO 的延长线交BC 于点F.. 求证:BF=FC..4.已知:如图1;AD ∥BC;AE=CF;AD=BC;E 、F 在直线AC 上;求证:DE ∥BF..5. 如图;已知AB ⊥AC;AD ⊥AE;AB=AC;AD=AE; 求证:1BE=DC;2BE ⊥DC.6、已知;如图A 、F 、C 、D 四点在一直线上;AF=CD;AB//DE;且AB=DE;求证:1△ABC ≌△DEF 2∠CBF=∠FECAB CE D FA C BDE FAD E CBFO 1 2 DC ABE FD ABQCPE7、已知:如图;AB=AC;AD=AE;∠BAC=∠DAE.求证:BD=CE8、如图;正方形ABCD的边CD在正方形ECGF的边CE上;连接BE、DG;1观察猜想BE与DG之间的大小关系;并证明你的结论..2图中是否存在通过旋转能够互相重合的两个三角形若存在;请说出旋转过程;若不存在;说明理由..9、已知:如图;AD是BC上的中线 ;且DF=DE.求证:BE∥CF.10、已知C为AB上一点;△ACN和△BCM是正三角形.求证:1AM=BN2求∠AFN大小..11、已知如图;F在正方形ABCD的边BC边上;E在AB的延长线上;FB=EB;AF交CE于G;求∠AGC的度数.12、如图;△ABC是等腰直角三角形;其中CA=CB;四边形CDEF是正方形;连接AF、BD.1观察图形;猜想AF与BD之间有怎样的关系;并证明你的猜想;2若将正方形CDEF绕点C按顺时针方向旋转;使正方形CDEF的一边落在△ABC的内部;请你画出一个变换后的图形;并对照已知图形标记字母;题1中猜想的结论是否仍然成立若成立;直接写出结论;不必证明;若不成立;请说明理由.CNMBAEDFFDACE BFDACGEB全等三角形三ASA知识要点ASA如图;在ABC ∆与DEF ∆中EB DE AB D A ∠=∠=∠=∠ ∴)(ASA DEF ABC ∆≅∆ASA 公理推论AAS 公理:有两角和其中一角的对边对应相等的两个三角形全等.典型例题例1下列条件不可推得ABC ∆和'''C B A ∆全等的条件是 A 、 AB=A 'B ';'A A ∠=∠;'C C ∠=∠B 、 AB= A 'B ';AC=A 'C ';BC='B C 'C 、 AB= A 'B ';AC=A 'C ';'B B ∠=∠ D 、AB= A 'B ';'A A ∠=∠;'B B ∠=∠例2已知如图;DE AB DE AB D A //,,=∠=∠;求证:BC=EF例3如图;AB=AC;C B ∠=∠;求证:AD=AE例4已知如图;43,21∠=∠∠=∠;点P 在AB 上;可以得出PC=PD 吗 试证明之.例5如图;321∠=∠=∠;AC=AE;求证:DE=BCADAB例6如图;21,∠=∠∠=∠D A ;AC;BD 相交于O; 求证:①AB=CD ②OA=OD巩固练习1.如图;AB//CD;AF//DE;BE=CF;求证:AB=CD2.如图;AD//BC;O 为AC 中点;过点O 的直线分别交AD;BC 于点M;N;求证:AM=CN3.求证:两个全等三角形ABC 与A 'B 'C '的角平分线AD 、A 'D '相等4.如图;AB;CD 相交于O;E;F 分别在AD;BC 上;若FOB EOD ∆≅∆;求证:COF AOE ∆≅∆5.如图;AB//CD;AD//BC;求证:AB=CD6.已知;如图AB=DB;21,∠=∠∠=∠E C ;求证:AC=DEAD 'B D 'C 'BA BD全等三角形三作业1.已知;如图;CD AF D A =∠=∠∠=∠,21,;求证:AB=DE2.如图;已知CAD BAE ADE AED ∠=∠∠=∠,;求证:BE=CD3.已知如图;AB=AD;CAE BAD D B ∠=∠∠=∠,;求证:AC=AE4.已知如图;在ABC ∆中;AD 平分BC AD BAC ⊥∠,;求证:ABD ACD ∆≅∆5.已知如图;cm AC ABD DCA DBC ACB 10,,=∠=∠∠=∠;求BD 的长要求写出完整的过程6、如图ABC △中;∠B =∠C;D;E;F 分别在AB;BC;AC 上;且BD=CE;∠DEF=∠B 求证:ED=EFECEA D ECBF7、 1如图1;以的边、为边分别向外作正方形和正方形;连结;试判断△ABC 与△AEG 面积之间的关系;并说明理由.2园林小路;曲径通幽;如图2所示;小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米;内圈的所有三角形的面积之和是b 平方米;这条小路一共占地多少平方米8、已知:如图 ; AD 为CE 的垂直平分线 ; EF ∥BC.求证:△EDN ≌△CDN ≌△EMN .9、 已知:如图 ; AB=AC ; AD=AE ; 求证:△OBD ≌△OCE10、已知:如图 ; AB=CD ; AD=BC ;O 为BD 中点 ; 过O 作直线分别与DA 、BC 的延长线交于E 、F .求证:OE=OF11、如图在△ABC 和△DBC 中 ; ∠1=∠2 ; ∠3=∠4 ; P 是BC 上任意一点.求证:PA=PD.12、已知 :如图 ; 四边形 ABCD 中 ; AD ∥BC ; F 是AB 的中点 ; DF 交CB 延长线 于E ; CE=CD . 求证:∠ADE=∠EDC .13、已知:如图 ; OA=OE ; OB=OF ; 直线FA 与BE 交于C ; AB 和EF 交于O ;求证:∠1=∠2.AG FC BD E 图1全等三角形四 强化训练1、如图;△ABC 是等边三角形;点D 、E 、F 分别是线段AB 、BC 、CA 上的点; 1若AD BE CF ==;问△DEF 是等边三角形吗 试证明你的结论; 2若△DEF 是等边三角形;问AD BE CF ==成立吗 试证明你的结论.2、如图所示;已知∠1=∠2;EF ⊥AD 于P;交BC 延长线于M;求证:2∠M=∠ACB-∠B3、△ABC 中;∠A=90°;AB=AC;D 为BC 中点;E 、F 分别在AC 、AB 上;且DE ⊥DF;试判断DE 、DF 的数量关系;并说明理由.4、已知:如图;ABC△中;45ABC ∠=°;CD AB ⊥于D ;BE 平分ABC ∠;且BE AC ⊥于E ;与CD 相交于点F H ,是BC 边的中点;连结DH 与BE 相交于点G . 1求证:BF AC =;2求证:12CE BF =;5、 如图;点O 是等边ABC △内一点;110AOB BOC α∠=∠=,.将BOC △绕点C 按顺时针方向旋转60得ADC △;连接OD . 1求证:COD △是等边三角形;2当150α=时;试判断AOD △的形状;并说明理由;3探究:当α为多少度时;AOD △是等腰三角形BD A A BCDO110 α7、过等腰直角三角形直角顶点A 作直线AM 平行于斜边BC;在AM 上取点D;使BD=BC;且DB 与AC 所在直线交于E;求证:CD=CE..过A 作AF ⊥BC 于F;过D 作DG ⊥BC 于G;则DG=AF=1/2BC=1/2BD; 在Rt △BDG 中;DG=1/2BD =>∠DBC=30° =>∠BDC=∠BCD=1/2180°-30°=75°;即∠EDC=75° ∠DEC=∠DBC+∠BCA=30°+45°=75° ∴∠EDC=∠DEC =>CD=CE8、Rt △ABC;AB=AC;BM 是中线;AD ⊥BM 交BC 于D;求证:∠AMB=∠CMD..9、如图;已知△ABC 是等边三角形;∠BDC =120º;说明AD=BD+CD 的理由..10、已知:如图;点D 在△ABC 的边CA 的延长线上;点E 在BA 的延长线上;CF 、EF分别是∠ACB 、∠AED 的平分线;且∠B=30°;∠D=40°;求∠F 的度数..11、等边三角形ABC 和等边三角形DEC;D 在AC 边上..延长BD 交CE 延长线于N;延长AE 交BC 延长线于M..求证:CM=CN 易证△BCD ≌△ACE 所以∠DBC=∠EAC再证△BCN ≌△ACM ASA∴ CM=CNE CABM D AB MA BCE MND12、操作:如图①;△ABC是正三角形;△BDC是顶角∠BDC=120°的等腰三角形;以D为顶点作一个60°角;角的两边分别交AB、AC边于M、N两点;连接MN.探究:线段BM、MN、NC之间的关系;并加以证明.13、如图等边△ABC和等边△CDE;点P为射线BC一动点;角APK=60°;PK交直线CD 于K..(1)试探索AP、PK之间的数量关系;KD(2)当点P运动到BC延长线上时;上题结论是否依然成立为什么.. 14、涉及相似三角形若P为ABC△所在平面上一点;且120APB BPC CPA∠=∠=∠=°;则点P叫做ABC△的费马点. 如图;在锐角ABC△外侧作等边ACB△′连结BB′..求证:BB′过ABC△的费马点P;且BB′=PA PB PC++.15、如图;ABC∆是等腰直角三角形;∠C=900;点M;N分别是边AC和BC的中点;点D在射线BM上;且BD=2BM; 点E在射线NA上;且NE=2NA.求证:BD⊥DE.ACBB'K ADMNEDCBA第五章 全等三角形 拓展延伸分析:三角形全等的证明及其运用关键点在于“把相等的边角放入正确的三角形中”;去说明“相等的边角所在的三角形全等”;利用三角形全等来说明两个角相等两条边相等是初中里面一个非常常见而又重要的方法..例1:已知AE 既是∠BAC 的平分线;也是∠BDC 的平分线;试说明AB=AC思路:AB 在△ABD 中;AC 在△ACD 中;要说明AB=AC;尝试说明△ABD 与△ACD 全等..1. 观察图形发现两个三角形存在公共边AD2. 题目所给条件可以得到两组角相等;3. 再根据三个条件的位置;利用ASA;可得三角形全等 4. 再利用全等三角形的对应边相等;得到AB=AC例2:在△ABC 中;∠BAC=90°;AB=AC;AE 是过点A 的直线;BD ⊥AE;CE ⊥AE;如果CE=5;BD=11;请你求出DE 的长度..思路:抓住题目中所给的一组相等线段AB=AC 进行分析;对它们的位置进行分析;发现AB 、AC 分别位于一个Rt △中;所以尝试着去找条件;去说明它们所在的两个Rt △全等..那么:已经存在了两组等量关系:AB=AC;直角=直角.可以求证△ABD ≌△ACE..D CEAB练习1. 小明说:“三角形一边的两个端点到这边上的中线所在直线的距离相等..”你认为小明的话有道理吗为什么分析:如图;题目的意思是要你说明哪两条线段相等呢_______=_______∴我们只需要说明 ________≌________解:练习2.在△ABC中;∠ACB= 900;AC=BC;直线MN经过点C;且AD⊥MN于D;BE⊥MN于E..1当直线MN绕点C旋转到图1的位置时;△ADC≌△CEB;且DE=AD+BE..你能说出其中的道理吗2当直线MN绕点C旋转到图2的位置时; DE =AD-BE..说说你的理由..3当直线MN绕点C旋转到图3的位置时;试问DE;AD;BE 具有怎样的等量关系请写出这个等量关系..BA图1图3。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
342
1D C
B
A
八年级(上)数学导学案
12.2全等三角形的判定ASA 、AAS (3)
导学目标:1、掌握全等三角形的判定3“角边角”和判定4“角角边”,会用“角边角”、
“角角边”定理判定两个三角形全等;
2、理解满足两角一边对应相等的两个三角形全等;
3、利用全等证明角相等、线段相等与平行,熟练掌握证明三角形全等时的书写格式。

导学重点:“角边角”“角角边”定理 导学难点:“角边角”“角角边”定理的应用 导学过程:
一、创设情境,引入新知
创设问题情境:①判定两个三角形全等的方法有哪些?②两边及一对角对应相等时,两个三角形一定全等吗?③如果满足两角和一边对应相等,能判断两个三角形全等吗? 二、自主学习,探究新知 探究活动1 动手画一画:
1、先任意画一个△ABC ,再画一个△DEF ,使AB=DE, ∠B=∠E, ∠A=∠D ,把画好的△DEF 剪下,放到△ABC 上,你发现了什么?
2、接着再画一个△D’E’F’,使AB=D’E’, ∠B=∠E’, ∠C=∠F’,把画好的△D’E’F’剪下,放到△ABC 上,你又发现了什么?
探究活动2 自学课本P37—P38的内容,动手填一填
归纳总结: 对应相等的两个三角形全等(简称“角边角”或“ASA ”)
全等. (简称“角角边”或“AAS ”)
如上图,几何语言表述为:
∴C B A ABC '''∆≅∆ (ASA ) ∴C B A ABC '''∆≅∆(AAS ) 探究活动3 动手做一做
例3 如图,点D 在AC 上,点E 在AB 上,AB=AC, ∠B=∠C.
求证:AD=AE
例4 在△ABC 和△DEF 中,∠A=∠D, ∠B= 三、合作交流,感悟新知
探究活动4 小组合作交流解题思路,小组活动后,小组代表展示活动成果 如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ=NQ ,求证:HN=PM
四、反思构建,融汇新知 五、检测展示,反馈新知
1、如图,已知∠1=∠2,∠3=∠4,AB 与CD 相等吗?请你说明理由.
2、如图,已知AC 平分∠BAD ,∠1=∠2,求证:AB=AD
六、拓展延伸,深化新知 在△ABC 中,︒=∠90ACB ,BC AC =,直 线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥ 于E .(1)当直线MN 绕点C 旋转到图1的位置时, 求证: ①ADC ∆≌CEB ∆;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)
中的结论还成立吗?若成立,请给出证明;若不成立, 说明理由.
角—边—角 角—角—边 A D B 1 2。

相关文档
最新文档