浙江省温州市2019-2020学年第二学期七年级期末考试数学试卷 解析版
2019-2020学年浙江省杭州市西湖区七年级(下)期末数学试卷(含答案解析)
2019-2020学年浙江省杭州市西湖区七年级(下)期末数学试卷 选择题(本大题共10小题,共30.0分) 计算:(计+1 = ()AT已知某新型感冒病毒的直径约为0.000 000 823米,将0.000 000 823用科学记数法表示为()A. 82.3 × 10^6B. 8.23 × 10^7C. 8.23 × 10~6D. 0.823 × IO 7把/ — 0+1)2分解因式,结果正确的是() A. (% + y + I)(X - y - 1)B. (% + y - I)(X 一 y — 1)C. (χ + y - I)(X + y+ 1)D ・(χ-y+ I)(X + y+ 1) 下列调查中适宜采用抽样方式的是()A. 了解某班每个学生家庭用电数量B. 调査你所在学校数学教师的年龄状况C. 调査神舟飞船各零件的质量D. 调査一批显像管的使用寿命如图,AB∕∕CD. AE 交 CD 于点 C, DE 丄 AE 于点 E,若ZJl = 42°,则 ZD = ()A. 42°B. 58°C. 52°D. 48° 化简分式二:+二的结果是()如图,将边长为5cm 的等边△力3C 沿边BC 向右平移4cm 得到△ DEF, 则四边形ABFD 的周长为()A. 22CmB. 23CmC. 24CmD. 25Cm讣算1052 -952的结果为()A. 1000B. 1980 如图,直线力B∕∕CD ∙ ∆BAE = 28°. A. 68°B. 78°1. 2.3. 4. 5. 6. 7. 8.9.10. B.- A. a + b B. a — b现定义一种新运算:庞b= b 2- Ub 9 A. —9 B. —6 C — D — • a-b ∙ α+b如:102 = 22-1x2 = 2,贝∣J(-102)O3等于() C. 6 D.9 C. 2(X)0 乙ECD = 50。
浙江省杭州市西湖区2019-2020学年第二学期七年级下期末考试数学试卷 (解析版)
2019-2020学年浙江省杭州市西湖区七年级第二学期期末数学试卷一、选择题1.计算2﹣2的结果是()A.2B.﹣2C.﹣4D.2.某种感冒病毒的直径是0.00000012米,数0.00000012用科学记数法表示为()A.1.2×10﹣6B.1.2×10﹣7C.1.2×10﹣8D.12×10﹣83.将a2﹣1分解因式,结果正确的是()A.a(a﹣1)B.a(a+1)C.(a+1)(a﹣1)D.(a﹣1)24.下列调查:①日光灯管厂要检测一批灯管的使用寿命;②了解居民对废电池的处理情况;③了解初中生的主要娱乐方式;④某公司对退休职工进行健康检查,应作抽样调查的是()A.①②③B.①②④C.①③④D.②③④5.如图,直线l1∥l2,线段AB交l1,l2于D,B两点,过点A作AC⊥AB,交直线l1于点C,若∠1=15°,则∠2=()A.95°B.105°C.115°D.125°6.已知分式A=,B=+,其中x≠±2,则A与B的关系是()A.A=B B.A=﹣B C.A>B D.A<B7.定义新运算:a*b=ab+a2﹣b2,则(x+y)*(x﹣y)=()A.x2﹣y2B.x2﹣y2﹣2xy C.x2﹣y2﹣4xy D.x2﹣y2+4xy8.如图,将边长为5cm的等边三角形ABC沿边BC向右平移3cm,得到△DEF,则四边形ADFB的周长为()cm.A.20B.21C.22D.239.已知2n+212+1(n<0)是一个有理数的平方,则n的值为()A.﹣16B.﹣14C.﹣12D.﹣1010.如图,直线AB∥CD,点F在直线AB上,点N在直线CD上,∠EFA=25°,∠FGH =90°,∠HMN=25°,∠CNP=30°,则∠GHM=()A.45°B.50°C.55°D.60°二、填空题:本大题有6个小题,每小题4分,共24分.11.若2x﹣y=12,用含有x的代数式表示y,则y=.12.如图,有下列3个结论:①能与∠DEF构成内错角的角的个数是2;②能与∠EFB构成同位角的角的个数是1;③能与∠C构成同旁内角的角的个数是4,以上结论正确的是.13.已知a x=2,a y=3,则a x+y=;a3x﹣2y=.14.甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为x米/秒,乙的速度为y米/秒,可列方程组.15.已知x﹣2=,则代数式(x+1)2﹣6(x+1)+9的值为.16.一列数a1,a2,a3,…,a n,其中a1=﹣1,a2=,a3=,…,a n=,则a2=;a1+a2+a3+…+a2020=;a1×a2×a3×…×a2020=.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.计算或化简(1)(14a3﹣7a2)÷(7a);(2)(a+b)(a2﹣ab+b2).18.解方程或解方程组(1);(2)﹣2=.19.为了了解学生最喜欢的趣味运动项目类型:A:跳长绳,B:踢毽子,C:打篮球,D:拔河,共四类,随机抽查了部分学生,并将统计结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)在图①中,求D部分所占扇形的圆心角的度数.(2)将图②补充完整.(3)若全校共有学生1200名,估计该校最喜欢踢毽子的学生有多少.20.已知a2﹣3a+1=0.(1)判断a=0是否成立?请说明理由.(2)求6a﹣2a2的值.(3)求a+的值.21.玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元.玲玲的爸爸妈妈商量后决定只选一个公司单独完成.(1)如果从节约时间的角度考虑应选哪家公司?(2)如果从节约开支的角度考虑呢?请说明理由.22.已知m=a2b,n=3a2﹣2ab(a≠0,a≠b).(1)当a=3,b=﹣2时,分别求m,n的值.(2)比较n+与2a2的大小.(3)当m=12,n=18时,求﹣的值.23.将一副三角板中的两块直角三角尺的直角顶点C按照如图①的方式叠放在一起(∠A =30°,∠ABC=60°,∠E=∠EDC=45°),且三角板ACB的位置保持不动.(1)将三角板DCE绕点C按顺时针方向旋转至图②,若∠ACE=60°,求∠DCB的度数.(2)将三角板DCE绕点C按顺时针方向旋转,当旋转到ED∥AB时,求∠BCE的度数(请先在备用图上补全相应的图形).(3)当0°<∠BCE<180°且点E在直线BC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠BCE所有可能的值;若不存在,请说明理由.参考答案一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有-项是符合题目要求的.1.计算2﹣2的结果是()A.2B.﹣2C.﹣4D.【分析】直接利用负整数指数幂的性质化简得出答案.解:2﹣2=.故选:D.2.某种感冒病毒的直径是0.00000012米,数0.00000012用科学记数法表示为()A.1.2×10﹣6B.1.2×10﹣7C.1.2×10﹣8D.12×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.00000012=1.2×10﹣7.故选:B.3.将a2﹣1分解因式,结果正确的是()A.a(a﹣1)B.a(a+1)C.(a+1)(a﹣1)D.(a﹣1)2【分析】利用平方差公式进行分解即可.解:a2﹣1=(a+1)(a﹣1),故选:C.4.下列调查:①日光灯管厂要检测一批灯管的使用寿命;②了解居民对废电池的处理情况;③了解初中生的主要娱乐方式;④某公司对退休职工进行健康检查,应作抽样调查的是()A.①②③B.①②④C.①③④D.②③④【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:①日光灯管厂要检测一批灯管的使用寿命,调查有破坏性,应采用抽样调查;②了解居民对废电池的处理情况,人数众多,应采用抽样调查;③了解初中生的主要娱乐方式,人数众多,应采用抽样调查;④某公司对退休职工进行健康检查,人数不多,应采用全面调查;应作抽样调查的是①②③,故选:A.5.如图,直线l1∥l2,线段AB交l1,l2于D,B两点,过点A作AC⊥AB,交直线l1于点C,若∠1=15°,则∠2=()A.95°B.105°C.115°D.125°【分析】利用垂直定义和三角形内角和定理计算出∠ADC的度数,再利用平行线的性质可得∠3的度数,再根据邻补角的性质可得答案.解:∵AC⊥AB,∴∠A=90°,∵∠1=15°,∴∠ADC=180°﹣90°﹣15°=75°,∵l1∥l2,∴∠3=∠ADC=75°,∴∠2=180°﹣75°=105°,故选:B.6.已知分式A=,B=+,其中x≠±2,则A与B的关系是()A.A=B B.A=﹣B C.A>B D.A<B【分析】先把B式进行化简,再判断出A和B的关系即可.解:∵B==,∴A和B互为相反数,即A=﹣B.故选:B.7.定义新运算:a*b=ab+a2﹣b2,则(x+y)*(x﹣y)=()A.x2﹣y2B.x2﹣y2﹣2xy C.x2﹣y2﹣4xy D.x2﹣y2+4xy【分析】原式利用题中的新定义化简,计算即可得到结果.解:根据题中的新定义得:原式=(x+y)(x﹣y)+(x+y)2﹣(x﹣y)2=x2﹣y2+(x+y+x﹣y)(x+y﹣x+y)=x2﹣y2+4xy.故选:D.8.如图,将边长为5cm的等边三角形ABC沿边BC向右平移3cm,得到△DEF,则四边形ADFB的周长为()cm.A.20B.21C.22D.23【分析】根据平移的性质可得DF=AC=5cm,AD=CF=3cm,然后求出四边形ADFB 的周长=AB+BC+CF+DF+AD,最后代入数据计算即可得解.解:∵△ABC沿边BC向右平移3cm得到△DEF,∴DF=AC=5cm,AD=CF=3cm,∴四边形ADFB的周长=AB+BC+CF+DF+AD,=5+5+3+5+3,=21(cm),故选:B.9.已知2n+212+1(n<0)是一个有理数的平方,则n的值为()A.﹣16B.﹣14C.﹣12D.﹣10【分析】分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n的值,然后选择答案即可.解:2n是乘积二倍项时,2n+212+1=212+2•26+1=(26+1)2,此时n=6+1=7,212是乘积二倍项时,2n+212+1=2n+2•211+1=(211+1)2,此时n=2×11=22,1是乘积二倍项时,2n+212+1=(26)2+2•26•2﹣7+(2﹣7)2=(26+2﹣7)2,此时n=﹣14,综上所述,n可以取到的数是7、22、﹣14.故选:B.10.如图,直线AB∥CD,点F在直线AB上,点N在直线CD上,∠EFA=25°,∠FGH =90°,∠HMN=25°,∠CNP=30°,则∠GHM=()A.45°B.50°C.55°D.60°【分析】延长HG交直线AB于点K,延长PM交直线AB于点S.利用平行线的性质求出∠KSM,利用邻补角求出∠SMH,利用三角形的外角与内角的关系,求出∠SKG,再利用四边形的内角和求出∠GHM.解:延长HG交直线AB于点K,延长PM交直线AB于点S.∵AB∥CD,∴∠KSM=∠CNP=30°.∵∠EFA=∠KFG=25°,∠KGF=180°﹣∠FGH=90°,∠SMH=180°﹣∠HMN=155°,∴∠SKH=∠KFG+∠KGF=25°+90°=115°.∵∠SKH+∠GHM+∠SMH+∠KSM=360°,∴∠GHM=360°﹣115°﹣155°﹣30°故选:D.二、填空题:本大题有6个小题,每小题4分,共24分.11.若2x﹣y=12,用含有x的代数式表示y,则y=2x﹣12.【分析】将x看做已知数求出y即可.解:∵2x﹣y=12,∴y=2x﹣12,故答案为:2x﹣12.12.如图,有下列3个结论:①能与∠DEF构成内错角的角的个数是2;②能与∠EFB构成同位角的角的个数是1;③能与∠C构成同旁内角的角的个数是4,以上结论正确的是①②.【分析】根据同位角、内错角、同旁内角的定义判断.解:①能与∠DEF构成内错角的角的个数有2个,即∠EFA和∠EDC,故正确;②能与∠EFB构成同位角的角的个数只有1个:即∠FAE,故正确;③能与∠C构成同旁内角的角的个数有5个:即∠CDE,∠B,∠CED,∠CEF,∠A,故错误;所以结论正确的是①②.故答案为:①②.13.已知a x=2,a y=3,则a x+y=6;a3x﹣2y=.【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则以及同底数幂的除法法则计解:∵a x=2,a y=3,∴a x+y=a x•a y=2×3=6;a3x﹣2y=.故答案为:6;.14.甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为x米/秒,乙的速度为y米/秒,可列方程组.【分析】根据题意,得出等量关系:①乙先跑10米,则甲跑5秒就可以追上乙;②乙先跑2秒,则甲跑4秒就可追上乙,得出方程组即可.解:根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x=5y+10;根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x=4y+2y.可得方程组.故答案为:.15.已知x﹣2=,则代数式(x+1)2﹣6(x+1)+9的值为2.【分析】利用完全平方公式得到原式=(x﹣2)2,然后利用整体代入的方法计算.解:(x+1)2﹣6(x+1)+9=[(x+1)﹣3]2=(x﹣2)2,因为x﹣2=,所以原式=()2=2.故答案为2.16.一列数a1,a2,a3,…,a n,其中a1=﹣1,a2=,a3=,…,a n=,则a2=;a1+a2+a3+…+a2020=;a1×a2×a3×…×a2020=1.【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.解:由题意可得,当a1=﹣1时,a2===,a3===2,a4=﹣1,…,∵2020÷3=673…1,∴a1+a2+a3+…+a2020=(﹣1++2)×673+(﹣1)=×673+(﹣1)=﹣=,a1×a2×a3×…×a2020=[(﹣1)××2]673×(﹣1)=(﹣1)673×(﹣1)=(﹣1)×(﹣1)=1,故答案为:,,1.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.计算或化简(1)(14a3﹣7a2)÷(7a);(2)(a+b)(a2﹣ab+b2).【分析】(1)多项式除以一个单项式,等于用这个多项式的每一项分别除以这个单项式,结果能合并的再合并,据此可解;(2)多项式乘以多项式,等于用一个多项式的每一项分别乘以另一个多项式的每一项,并将结合合并即可.解:(1)(14a3﹣7a2)÷(7a)=14a3÷7a﹣7a2÷7a=2a2﹣a;(2)(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+ba2﹣ab2+b3=a3+b3.18.解方程或解方程组(1);(2)﹣2=.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:(1),①+②得:6x=18,解得:x=3,①﹣②得:4y=8,解得:y=2,则方程组的解为;(2)分式方程整理得:﹣2=,去分母得:x﹣2(x﹣3)=3,去括号得:x﹣2x+6=3,移项合并得:﹣x=﹣3,解得:x=3,检验:把x=3代入得:x﹣3=0,∴x=3是增根,则分式方程无解.19.为了了解学生最喜欢的趣味运动项目类型:A:跳长绳,B:踢毽子,C:打篮球,D:拔河,共四类,随机抽查了部分学生,并将统计结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)在图①中,求D部分所占扇形的圆心角的度数.(2)将图②补充完整.(3)若全校共有学生1200名,估计该校最喜欢踢毽子的学生有多少.【分析】(1)从统计图可知,“B踢毽子”的有14人,占调查人数的35%,可求出调查人数,进而求出“D拔河”的人数和所占的百分比,进而求出相应的圆心角的度数;(2)补全条形统计图;(3)样本估计总体,样本中“B踢毽子”占35%,因此根估计总体1200人的35%是喜欢“B踢毽子”的.解:(1)调查人数:14÷35%=40(人),D组的人数:40﹣12﹣14﹣8=6(人),D组所占的圆心角为:360°×=54°,答:D部分所占扇形的圆心角的度数为54°;(2)补全条形统计图如图所示:(3)1200×35%=420(人),答:全校1200名学生中最喜欢踢毽子的有420人.20.已知a2﹣3a+1=0.(1)判断a=0是否成立?请说明理由.(2)求6a﹣2a2的值.(3)求a+的值.【分析】(1)将a=0代入方程即可求出答案.(2)将a2﹣3a=﹣1整体代入原式即可求出答案.(3)将等式两边同时除以a即可求出答案.解:(1)将a=0代入a2﹣3a+1=0,∴左边=1≠0=右边,故a=0不成立.(2)∵a2﹣3a=﹣1,∴原式=﹣2(a2﹣3a)=2.(3)∵a2﹣3a=﹣1,a≠0,∴a+=3.21.玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元.玲玲的爸爸妈妈商量后决定只选一个公司单独完成.(1)如果从节约时间的角度考虑应选哪家公司?(2)如果从节约开支的角度考虑呢?请说明理由.【分析】如果从节约时间角度来考虑,我们可以列出方程组求出甲乙单独做所用的时间即可,如果从节约经费考虑,求出他们各自单独做的周费用,再乘以他们所需时间即可.解:(1)设工作总量为1,设甲公司单独做需x周,乙公司单独做需y周,可列出方程组,解得,经检验,它们是原方程的根;∵10<15,可见甲公司用时少,所以从时间上考虑选择甲公司.(2)设甲公司每周费用为a万元,乙公司每周费用为b万元,可列出方程组,解之得;∴可以得到用甲公司共需×10==6万元,乙公司共需×15=4万元,4万元<6万元,∴从节约开支上考虑选择乙公司.22.已知m=a2b,n=3a2﹣2ab(a≠0,a≠b).(1)当a=3,b=﹣2时,分别求m,n的值.(2)比较n+与2a2的大小.(3)当m=12,n=18时,求﹣的值.【分析】(1)将a、b的代入m、n中,即可得到m、n的值;(2)两式作差,然后和0比较大小,即可判断n+与2a2的大小;(3)先对所求式子变形,再根据m、n的值即可解答本题.解:(1)∵m=a2b,n=3a2﹣2ab,a=3,b=﹣2,∴m=32×(﹣2)=﹣18,n=3×32﹣2×3×(﹣2)=39,即m、n的值分别为﹣18,39;(2)∵m=a2b,n=3a2﹣2ab(a≠0,a≠b),∴n+﹣2a2=3a2﹣2ab+﹣2a2=3a2﹣2ab+b2﹣2a2=a2﹣2ab+b2=(a﹣b)2>0,即n+>2a2;(3)﹣==,∵m=a2b,n=3a2﹣2ab,m=12,n=18,∴原式==.23.将一副三角板中的两块直角三角尺的直角顶点C按照如图①的方式叠放在一起(∠A =30°,∠ABC=60°,∠E=∠EDC=45°),且三角板ACB的位置保持不动.(1)将三角板DCE绕点C按顺时针方向旋转至图②,若∠ACE=60°,求∠DCB的度数.(2)将三角板DCE绕点C按顺时针方向旋转,当旋转到ED∥AB时,求∠BCE的度数(请先在备用图上补全相应的图形).(3)当0°<∠BCE<180°且点E在直线BC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠BCE所有可能的值;若不存在,请说明理由.【分析】(1)首先证明∠BCE=∠ACD=25°,∠BCD=∠BCE+∠ECD=115°;(2)有两种情形,画出图形即可解决问题;(3)有四种情形,画出图形即可解决问题.解:(1)如图2中,∵∠ACB=∠ECD=90°,∴∠ECB=∠ACD,∵∠ACE=65°,∴∠BCE=∠ACD=25°,∴∠BCD=∠BCE+∠ECD=25°+90°=115°,故答案为115°;(2)如图2中,当DE∥AB时,延长BC交DE于M,∴∠B=∠DMC=60°,∵∠DMC=∠E+∠MCE,∴∠ECM=15°,∴∠BCE=165°,当D′E′∥AB时,∠E′CB=∠ECM=15°,∴当ED∥AB时,∠BCE的度数为165°或15°;(3)存在.如图,①CD∥AB时,∠BCE=30°,②DE∥BC时,∠BCE=45°,③CE∥AB时,∠BCE=120°,④DE∥AB时,∠BCE=165°,⑤当AC∥DE时,∠BCE=135°综上所述,当∠BCE<180°且点E在直线BC的上方时,这两块三角尺存在一组边互相平行,∠BCE的值为30°或45°或120°或165°或135°.。
2019-2020学年浙江省温州市苍南县灵溪学区七年级(上)期中数学试卷(解析版)
2019-2020学年浙江省温州市苍南县灵溪学区七年级(上)期中数学试卷一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.的倒数是()A.B.﹣C.D.﹣2.下列实数中是无理数的是()A.B.C.D.3.143.64的立方根是()A.8B.±8C.4D.±44.盛世中华,国之大典,今年10月1日,20余万军民以盛大的阅兵仪式和群众游行欢庆新中国70华诞,全球瞩目,精彩不断.数据20万用科学记数法可表示为()A.20×104B.2×104C.2×105D.0.2×1065.下列选项中的计算,不正确的是()A.B.C.D.6.用代数式表示“x与y的2倍的和”,正确的是()A.2x+y B.x+2y C.2(x+y)D.2xy7.估算的值是在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间8.若|a|=7,b的相反数是﹣1,则a+b的值是()A.6B.8C.6或﹣8D.﹣6或89.某粮店出售的两种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.5kg B.0.4kg C.0.3kg D.0.2kg10.如图,在2019个“口”中依次填入一列数字m1,m2,m3;…….m2019,使得其中任意四个相邻的“□”中所填的数字之和都等于﹣10.已知m4=0,m6=﹣7,则m1+m2019的值为()A.0B.﹣3C.﹣10D.﹣14二、填空题(本题共8小题,每小题3分,共24分)11.2019年女排世界杯共12支队伍参赛.东道主日本11场比赛中6胜5负若记为+6,﹣5,那么夺得本届世界杯冠军的中国女排11战全胜可记为.12.式子(﹣2)2的计算结果是.13.比较大小:﹣1﹣8(填“>”“<“或“=”).14.0.6348≈.(精确到0.01)15.写出一个含x的代数式,当x=﹣1时值为5,这个代数式是.16.绝对值小于3.5的所有整数的和是.17.若代数式x2+2x的值为5,则代数式2x2+4x﹣1的值是.18.七巧板被西方人称为“东方魔术”.下面的两幅图是由同一副七巧板拼成的.已知七巧板拼成的正方形(如图1)边长为a(cm).若图2的“小狐狸“图案中的阴影部分面积为3cm2,那么a=cm.三、解答题(本题有6小题,共46分.解答需写出必要的文字说明、演算步骤或说理过程)19.在数轴上表示下列各数,并用“<“把它们连接起来,0,,﹣2,|﹣3|,∴<<<.20.计算:(1)3﹣(﹣7)+(﹣2)(2)(3)21.小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题.(1)从中取出2张卡片,使这两张卡片上数字的乘积最大,乘积的最大值为.(2)从中取出2张卡片,使这两张卡片上数字相除的商最小,商的最小值为22.如图为4×4的网格(每个小正方形的边长均为1),请画两个正方形(要求:其中一个边长是有理数,另一个是无理数),并写出其边长,∴边长为.∴边长为.23.某宝一家网店在即将到来的2019年“双11”全球狂欢节中,将原来“按标价打9折”的促销活动调整为“按标价打6折“,再享受以下优惠:每满300元减30元,上不封顶(即300﹣30,600﹣60,900﹣90,..),(1)一款运动鞋标价为1200元,则该款鞋子非“双11”期问购买需元,“双11”期间购买需元(2)张算盘同学打算在“双11“期间购买一双标价在1500到1800之间的运动鞋,会比平时购买节省多少钱?(设运动鞋的标价为a元,结果用含a的代数式表示)24.如图1,在一条可以折叠的数轴上,点A,B分别表示数﹣9和4.(1)A,B两点之间的距离为.(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A.B两点相距4个单位长度?2019-2020学年浙江省温州市苍南县灵溪学区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.的倒数是()A.B.﹣C.D.﹣【解答】解:的倒数是.故选:C.2.下列实数中是无理数的是()A.B.C.D.3.14【解答】解:A.是无理数,故本选项符合题意;B.,是整数,属于有理数,故本选项不合题意;C.是分数,属于有理数,故本选项不合题意;D.3.14是有限小数,属于有理数,故本选项不合题意.故选:A.3.64的立方根是()A.8B.±8C.4D.±4【解答】解:∵4的立方等于64,∴64的立方根等于4.故选:C.4.盛世中华,国之大典,今年10月1日,20余万军民以盛大的阅兵仪式和群众游行欢庆新中国70华诞,全球瞩目,精彩不断.数据20万用科学记数法可表示为()A.20×104B.2×104C.2×105D.0.2×106【解答】解:数据20万用科学记数法可表示为20×104=2×105.故选:C.5.下列选项中的计算,不正确的是()A.B.C.D.【解答】解:A、=2,原计算错误,故符合题意;B、=﹣2,原计算正确,故不符合题意;C、±=±3,原计算正确,故不符合题意;D、=4,原计算正确,故不符合题意.故选:A.6.用代数式表示“x与y的2倍的和”,正确的是()A.2x+y B.x+2y C.2(x+y)D.2xy【解答】解:∵y的2倍为2y,∴x与y的2倍的和为x+2y,故选:B.7.估算的值是在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间【解答】解:∵<<,∴2<<3,∴在2到3之间,故选:B.8.若|a|=7,b的相反数是﹣1,则a+b的值是()A.6B.8C.6或﹣8D.﹣6或8【解答】解:因为|a|=7,b的相反数是﹣1,所以a=±7,b=1当a=7,b=1时,a+b=7+1=8;当a=﹣7,b=1时,a+b=﹣7+1=﹣6.故选:D.9.某粮店出售的两种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.5kg B.0.4kg C.0.3kg D.0.2kg【解答】解:根据题意从中找出两袋质量波动最大的(25±0.2)kg,则相差0.2﹣(﹣0.2)=0.4kg.故选:B.10.如图,在2019个“口”中依次填入一列数字m1,m2,m3;…….m2019,使得其中任意四个相邻的“□”中所填的数字之和都等于﹣10.已知m4=0,m6=﹣7,则m1+m2019的值为()A.0B.﹣3C.﹣10D.﹣14【解答】解:∵任意四个相邻“O”中,所填数字之和都等于﹣10,∴m1+m2+m3+m4=m2+m3+m4+m5,m2+m3+m4+m5=m3+m4+m5+m6,m3+m4+m5+m6=m4+m5+m6+m7,m4+m5+m6+m7=m5+m6+m7+m8,∴m1=m5,m2=m6,m3=m7,m4=m8,同理可得:m1=m5=m9=…,m2=m6=m10=…,m3=m7=m11=…,m4=m8=m12=…,∵2019÷4=504…3,∴m2019=m3,∵m4=0,m6=﹣7,∴m2=﹣7,∴m1+m3=﹣10﹣m2﹣m4=﹣10﹣(﹣7)﹣0=﹣3,∴m1+m2019=﹣3,故选:B.二、填空题(本题共8小题,每小题3分,共24分)11.2019年女排世界杯共12支队伍参赛.东道主日本11场比赛中6胜5负若记为+6,﹣5,那么夺得本届世界杯冠军的中国女排11战全胜可记为+11.【解答】解:∵6胜5负若记为+6,﹣5,∴11战全胜可记为+11,故答案为:11.12.式子(﹣2)2的计算结果是4.【解答】解:(﹣2)2=4.故答案为:4.13.比较大小:﹣1>﹣8(填“>”“<“或“=”).【解答】解:|﹣1|=1,|﹣8|=8,∵1<8,∴﹣1>﹣8,故答案为:>.14.0.6348≈0.63.(精确到0.01)【解答】解:0.6348≈0.63(精确到0.01).故答案为0.63.15.写出一个含x的代数式,当x=﹣1时值为5,这个代数式是x+6(不唯一).【解答】解:当x=﹣1时,代数式的值为5,故代数式可以为:x+6,故答案为:x+6(不唯一).16.绝对值小于3.5的所有整数的和是0.【解答】解:绝对值小于3.5的所有整数为:﹣3,﹣2,﹣1,0,1,2,3,所以绝对值小于3.5的所有整数的和是0,故答案为:0.17.若代数式x2+2x的值为5,则代数式2x2+4x﹣1的值是9.【解答】解:∵数式x2+2x的值为5,∴2x2+4x﹣1=2(x2+2x)﹣1=2×5﹣1=9.故答案为:9.18.七巧板被西方人称为“东方魔术”.下面的两幅图是由同一副七巧板拼成的.已知七巧板拼成的正方形(如图1)边长为a(cm).若图2的“小狐狸“图案中的阴影部分面积为3cm2,那么a=2cm.【解答】解:设阴影小正方形的边长为xcm,由题意得:(2a+4a)×a=3,解得:a=1,∴小正方形的边长为1cm,则大正方形的对角线为4cm,∴a=×4=2(cm);故答案为:2.三、解答题(本题有6小题,共46分.解答需写出必要的文字说明、演算步骤或说理过程)19.在数轴上表示下列各数,并用“<“把它们连接起来,0,,﹣2,|﹣3|,∴﹣2<0<1<|﹣3|.【解答】解:﹣2<0<1<|﹣3|,故答案为:﹣2,0,1,|﹣3|.20.计算:(1)3﹣(﹣7)+(﹣2)(2)(3)【解答】解:(1)3﹣(﹣7)+(﹣2)=3+7﹣2=10﹣2=8;(2)原式=﹣1﹣2+9=6;(3)原式=﹣9×﹣2=﹣6﹣2=﹣8.21.小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题.(1)从中取出2张卡片,使这两张卡片上数字的乘积最大,乘积的最大值为40.(2)从中取出2张卡片,使这两张卡片上数字相除的商最小,商的最小值为﹣2【解答】解:(1)根据题意得:(﹣5)×(﹣8)=40;(2)根据题意得:(﹣8)÷4=﹣2,故答案为:(1)40;(2)﹣222.如图为4×4的网格(每个小正方形的边长均为1),请画两个正方形(要求:其中一个边长是有理数,另一个是无理数),并写出其边长,∴边长为2.∴边长为.【解答】解:如图所示:边长为2,边长为,故答案为:2;23.某宝一家网店在即将到来的2019年“双11”全球狂欢节中,将原来“按标价打9折”的促销活动调整为“按标价打6折“,再享受以下优惠:每满300元减30元,上不封顶(即300﹣30,600﹣60,900﹣90,..),(1)一款运动鞋标价为1200元,则该款鞋子非“双11”期问购买需1080元,“双11”期间购买需660元(2)张算盘同学打算在“双11“期间购买一双标价在1500到1800之间的运动鞋,会比平时购买节省多少钱?(设运动鞋的标价为a元,结果用含a的代数式表示)【解答】解:(1)由题意可得,一款运动鞋标价为1200元,则该款鞋子非“双11”期问购买需1200×0.9=1080(元),∵1200×0.6=720,600<720<900,“双11”期间购买需:1200×0.6﹣600÷300×30=660(元),故答案为:1080,660;(2)平时购买这双运动鞋需要0.9a元,∵1500×0.6=900,1800×0.6=1080,900<1080<1200,“双11“期间购买这双运动鞋需要:0.6a﹣900÷300×30=(0.6a﹣90)元,∵0.9a﹣(0.6a﹣90)=0.9a﹣0.6a+90=(0.3a+90)元,即张算盘同学打算在“双11“期间购买一双标价在1500到1800之间的运动鞋,会比平时购买节省(0.3a+90)元.24.如图1,在一条可以折叠的数轴上,点A,B分别表示数﹣9和4.(1)A,B两点之间的距离为13.(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是﹣2(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A.B两点相距4个单位长度?【解答】解:(1)4﹣(﹣9)=13.故答案为:13.(2)设点C表示的数为x,则AC=x﹣(﹣9),BC=4﹣x,依题意,得:x﹣(﹣9)=4﹣x+1,解得:x=﹣2.故答案为:﹣2.(3)当运动时间为t秒时,点A表示的数为3t﹣9,点B表示的数为2t+4.∵AB=4,∴3t﹣9﹣(2t+4)=4或2t+4﹣(3t﹣9)=4,解得:t=9或t=17.答:经过9秒或17秒时,A.B两点相距4个单位长度.。
浙江省温州市2020-2021学年高一上学期期末教学质量统一检测数学试题(B卷) (解析版)
2020-2021学年浙江省温州市高一(上)期末数学试卷(B卷)一、选择题(共8小题).1.已知集合A={1,2,3},B={2,4},则A∪B=()A.{2}B.{2,3}C.{1,2,3}D.{1,2,3,4}2.下列函数既不是奇函数也不是偶函数的是()A.y=x3B.y=x2C.y=x D.3.已知函数,则f(x2)的定义域为()A.(﹣∞,﹣1)∪(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣1,1)D.(0,1)4.在平面直角坐标系中,角α的顶点与原点重合,终边与单位圆的交点为,则sin(π-α)=( ) A.B.C.D.5.已知a=e0.3,b=ln0.3,c=0.3e,则()A.a>b>c B.a>c>b C.c>b>a D.b>c>a6.已知a,b,c是实数,且a≠0,则“∀x∈R,ax2+bx+c<0”是“b2﹣4ac<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.已知a>0,b>0,a+b=1,则下列等式可能成立的是()A.a2+b2=1B.ab=1C.a2+b2=D.a2﹣b2=8.某工厂有如图1所示的三种钢板,其中长方形钢板共有100张,正方形钢板共有60张,正三角形钢板共有80张.用这些钢板制作如图2所示的甲、乙两种模型的产品,要求正方形钢板全部用完,则制成的甲模型的个数最少有()A.10个B.15个C.20个D.25个二、多项选择题(共4小题).9.已知函数y=x2﹣2x+2的值域是[1,2],则其定义域可能是()A.[0,1]B.[1,2]C.[]D.[﹣1,1]10.已知,且tanθ=m,则下列正确的有()A.B.tan(π﹣θ)=m C.D.11.已知函数f(x)=2sin(ωx+φ)(ω>0)的图象过两点,则ω的可能取值为()A.1B.2C.3D.412.在同一直角坐标系中,函数f(x)=log a(x﹣b),g(x)=b x﹣a的图象可能是()A B C D三、填空题:本题共4小题,每小题5分,共20分。
2020年浙江省温州市中考数学试卷解析版
【解析】解:根据主视图就是从正面看物体所得到的图形可知:选项 A 所表示的图形符合
题意,故选 A。
数学是打开科学大门的钥匙1 Nhomakorabea中考数学工作室—中考真题
4:(2020 年浙江省温州市中考)中考数学工作室
4. 一个不透明的布袋里装有 7 个只有颜色不同的球,其中 4 个白球,2 个红球,1 个黄球。
从布袋里任意摸出 1 个球,是红球的概率为( )
)
D. 2
【考点】有理数大小比较
【解析】解: 2 2 0 1 ,所以最大的是 1, 3
故选 A。
2:(2020 年浙江省温州市中考)中考数学工作室 2. 原子钟是以原子的规则振动为基础的各种守时装置的统称,其中氢脉泽钟的精度达到了 1700000 年误差不超过 1 秒。数据 1700000 用科学记数法表示为( )
A. 17 105
B. 1.7 106
C. 0.17 107
D. 1.7 107
【考点】科学记数法—表示较大的数
【解析】解:1700000 1.7 106 ,
故选 B。
3:(2020 年浙江省温州市中考)中考数学工作室 3. 某物体如图所示,它的主视图是( )
A.
B.
C.
D.
【考点】简单组合体的三视图
A. 40°
B. 50°
C. 60°
D. 70°
【考点】等腰三角形的性质;平行四边形的性质。
【解析】解:∵在△ABC 中,∠A=40°,AB=AC,∴ C (180 40) 2 70 ,
∵四边形 BCDE 是平行四边形,∴∠E=70°, 故选 D。
6:(2020 年浙江省温州市中考)中考数学工作室
B.
人教版2019-2020学年第一学期七年级数学期末模拟试题(B卷)(解析版)
人教版2019-2020学年第一学期七年级期末模拟试题(B卷)数学试卷考试时间:100分钟满分:120分姓名:__________ 班级:__________考号:__________注意事项:1、填写试题的答案请用黑色签字笔填写;2、班级、姓名、考号字迹务必填写工整.一、选择题(共10题;共30分)1.下列各数中,绝对值最小的数是()A.0B.1C.-3D.2.下列各图形中,不是正方体表面展开图的是( )A. B. C. D.3.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是()A.a+b>0B.ab >0C.a-b>0D.<4.下列说法正确的是()A.不是单项式B.单项式的系数是1C.﹣7ad的次数是2D.3x﹣2y不是多项式5.方程的解是().A. B. C. D.6.将方程去分母,下面变形正确的是( )A. B. C. D.7.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为()A.0.7a元B.0.3a元C.元D.元8.如图,点B在点A的方位是()A.南偏东B.北偏西C.西偏北D.东偏南9.多项式合并同类项后不含xy项,则k的值是()A. B. C. D.010.分数, , , , , , , , ,…将这列数排成如图形式,那么第8行第7个数是()A. B. C. D.二、填空题(共8题;共32分)11.如图,是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,摆第5个图形时,需要的火柴棍为___________根.12.p在数轴上的位置如图所示,化简:=___________.13.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是__________℃.14.计算:=___________.15.已知关于x的一元一次方程a(x-3)=2x-3a的解是x=3,则a=___________.16.若2x|m|-1 =5是一元一次方程,则m的值为____________.17.多项式是___________次__________项式.18.单项式的次数是_________________.三、解答题(一)(共3题;共20分)19.(8分)解方程:(1)(2)20.(6分)有理数a、b、c在数轴上的位置如图,化简:|a+b|-|b-1|-|a-c|-|1-c|.21.(6分)已知如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,求∠AOD的度数.22.(6分)如图A在数轴上所对应的数为-2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到-6所在的点处时,求A,B两点间距离.23.(7分)老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.24.(7分)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=×100%)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?25.(9分)如图,在平面内有A、B、C三点,(1)画直线AC,线段BC,射线AB;(2)在(1)的条件下,在线段BC上任取一点D(不同于B、C),连接线段AD;(3)在(1)(2)的条件下,数数看,此时图中线段共有________条。
2019--2020第二学期期末考试七年级数学试题(附答案)
54 678 !"!,4 $$%($%!))
!!p@q# %!$*%#"$!0#! Ó×p§VØYÙb!
七年级数学试卷 98 第(页共-页
54 678 !#!,4
!!rs;<. k&()* )* ÚzxY1¨./-() L/ Û(* L0'(4(*+'.4 )!+Ü'(*. D#!
货 物种类
货厢型号 装货量
甲 乙
A
35x 吨 15x 吨
B
25(50-x)吨 35(50-x)吨
解:设用 A 型货厢 x 节,则用 B 型货厢(50-x)节,由题意,得 35x 25(50 x) 1530 15x 35(50 x) 1150
解得 28≤x≤30. 因为 x 为整数,所以 x 只能取 28,29,30.
所以∠CED=∠AEF=55°,
七年级数学参考答案,第 1页,共 3 页
所以∠ACD=180°-∠CED-∠D =180°-55°-42=83°.
22. (7 分)∠3 两直线平行,同位角相等 已知 等量代换 DG 内错角相等,两直线平行。 两直线平行,同旁内角互补。
23.(9 分)
分组 600≤ x <800 800≤ x <1000 1000≤ x <1200 1200≤ x <1400 1400≤ x <1600 1600≤ x <1800
七年级数学试卷 98 第,页共-页
54 678 !+!##4
!!>WXµ±®FYZ[#*("\GYZ[##*"\]^1?ZUÝ_Z[X`ab ?ZUic() \YÑCDZd*"e!;<FYZ[(*\#GYZ[#*\ifg1 e( hZdFYZ[!*\#GYZ[(*\ifg1e) hZdij²Ü]^ () \Y ZdDe®klYXmO: lßàCËn.O:
北师大版2019-2020学年七年级(下)期末数学试卷(含解析) (15)
北师大版2019-2020学年第二学期七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.2.(3分)下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.a9÷a3=a3D.(﹣2a)2•a3=4a53.(3分)小颖有两根长度为6cm和9cm的木条,桌上有下列长度的几根木条,从中选出一根,使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm4.(3分)学习整式的乘法时,小明从图1边长为a的大正方形中剪掉一个边长为b的小正方形,将图1中阴影部分拼成图2的长方形,比较两个图中阴影部分的面积,能够验证的一个等式为(A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab5.(3分)如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°6.(3分)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”7.(3分)如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE =AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12B.20C.30D.408.(3分)等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°9.(3分)轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()A.12cm2B.24cm2C.36cm2D.48 cm210.(3分)如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证,新现的脉冲星自转周期为0.00519秒,将0.00519用科学记数法表示应为.12.(3分)如图,在4×4正方形网格中,已有4个小正方形被涂黑,现任意选取一个白色的小正方形并涂黑,使整个黑色部分构成一个轴对称图形的概率是.13.(3分)学习了平行线的相关知识后,学霸君轩轩利用如图所示的方法,可以折出“过已知直线外一点和已知直线平行”的直线.由操作过程可知他折平行线的依据可以是.(把所有正确结论的序号都填在横线上)①平行于同一条直线的两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.14.(3分)学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”.这个数字a=.15.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC的中点,E为边AB上一动点(不与A、B点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条直角边DN与边AC交于点F(不与A、C点重合),分别连接AD、EF,下列结论中正结论是.(把所有正确结论的序号都填在横线上)①BE=AF;②△DEF是等腰直角三角形;③无论点E、F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E、F的位置不同发生变化.三、解答题(共55分)16.(6分)如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程:因为DE∥BC(已知),所以∠3=∠EHC().因为∠3=∠B(已知),所以∠B=∠EHC().所以AB∥EH().所以∠2+=180°().因为∠1=∠4(),所以∠1+∠2=180°(等量代换).17.(6分)先化简,再求值.[(x+y)2+(x+y)(x﹣y)]÷(2x),其中x=﹣1,y=.18.(8分)如图所示,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A、B 间的距离,写出具体的方案,并解释其中的道理.19.(8分)暑假将至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动.活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止).大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表奖次特等奖一等奖二等奖三等奖不获奖圆心角10°30°80°120°促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:特等奖:山地越野自行车一辆等奖:双肩背包一个二等奖:洗衣液一桶三等奖:抽纸一盒根据以上信息,解答下列问题:(1)求不获奖的扇形区域圆心角度数是多少?(2)求获得双肩背包的概率是多少?(3)甲顾客购物520元,求他获奖的概率是多少?20.(8分)周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间x(分)和离家的距离y(千米)之间的示意图,请根据图象解答下列问题:(1)在上述变化过程中,自变量是,因变量是;(2)早餐店到小颖家的距离是千米,她早餐花了分钟;(3)出发后37分到55分之间小颖在干什么?(4)小颖从图书大厦回家的过程中,她的平均速度是多少?21.(9分)如图,在正方形网格上有一个三角形ABC(三个顶点均在格点上).(1)画出△ABC关于直线DE对称的△A1B1C1(其中点A与点A1对应,点B与点B1对应,点C与点C1对应);(2)若每个小正方形的边长都是1,计算△A1B1C1的面积.22.(10分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图1,当点D在BC的延长线上移动时,请说明:△ABD≌△ACE;(2)①当点D在BC的延长线上移动时,α与β之间有什么数量关系?请直接写出你的结论;②当点D在直线BC上(不与B,C点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论,并在备用图上画出相应图形.2018-2019学年河南省郑州市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A、是轴对称图形,故选项正确;B、不是轴对称图形,是中心对称图形,故选项错误;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:A.【点评】本题主要考查了轴对称图形的定义,正确理解定义是解题关键.2.(3分)下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.a9÷a3=a3D.(﹣2a)2•a3=4a5【分析】根据单项式乘单项式的法则,合并同类项的法则,同底数幂的除法的法则,积的乘方和幂的乘方的法则计算即可.【解答】解:A、a2+a2=2a2,不符合题意;B、(2a)3=9a3,不符合题意;C、a9÷a3=a6,不符合题意;D、(﹣2a)2•a3=4a5,符合题意;故选:D.【点评】本题考查了单项式乘单项式,合并同类项,同底数幂的除法,积的乘方和幂的乘方,熟练掌握计算法则是解题的关键.3.(3分)小颖有两根长度为6cm和9cm的木条,桌上有下列长度的几根木条,从中选出一根,使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm【分析】设木条的长度为xcm,再由三角形的三边关系即可得出结论.【解答】解:设木条的长度为xcm,则9﹣6<x<9+6,即3<x<15,故她应该选择长度为12cm的木条.故选:C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4.(3分)学习整式的乘法时,小明从图1边长为a的大正方形中剪掉一个边长为b的小正方形,将图1中阴影部分拼成图2的长方形,比较两个图中阴影部分的面积,能够验证的一个等式为(A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab【分析】分别根据面积公式进行计算,根据图1的面积=图2的面积列式,即可得到平方差公式.【解答】解:图1阴影面积=a2﹣b2,图2拼剪后的阴影面积=(a+b)(a﹣b),∴得到的公式为:a2﹣b2=(a+b)(a﹣b),即(a+b)(a﹣b)=a2﹣b2,故选:B.【点评】本题考查了平方差公式的几何背景,利用图形的面积和作为相等关系列出等式即可验证平方差公式.5.(3分)如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°【分析】利用平行线的性质求出∠EDF,再利用三角形内角和定理求出∠DEF即可.【解答】解:∵∠CBD=90°,∴∠ABD=90°﹣∠ABC=70°,∵EF∥AB,∴∠DFE=∠ABD=70°,∴∠DEF=180°﹣∠D﹣∠DFE=50°,∴∠1=∠DEF=50°,故选:C.【点评】本题考查平行线的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3分)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”【分析】利用折线统计图可得出试验的频率在0.5左右,进而得出答案.【解答】解:A、掷一枚质地均匀的硬币,硬币落下后朝上的是正面的概率为;符合题意;B、一副去掉大小王的普通扑克牌洗匀后,从中任意抽出一张的花色是红桃的概率为,不符合题意;C、不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球的概率为,不符合题意;D、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为,不符合题意;故选:A.【点评】此题主要考查了利用频率估计概率,正确求出各试验的概率是解题关键.7.(3分)如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE =AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12B.20C.30D.40【分析】根据角平分线的性质得到GM=CG=4,根据三角形的面积公式计算即可.【解答】解:如图,作GM⊥AB于M,由基本尺规作图可知,AG是△ABC的角平分线,∵∠C=90°,GM⊥AB,∴GM=CG=4,∴△ABG的面积=×AB×GM=20,故选:B.【点评】本题考查的是三角形的面积,角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.(3分)等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角三角形时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角三角形时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.9.(3分)轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()A.12cm2B.24cm2C.36cm2D.48 cm2【分析】由七巧板的制作过程可知,这只小猫的头部是用正方形的四分之一拼成的,所以面积是正方形面积的四分之一.【解答】解:如图:小猫的头部的图形是abc,在右图中三角形h的一半与b全等,而由图中a+c+h的一半正好是正方形的四分之一,即阴影部分的面积是×12×12cm2=36cm2,故选:C.【点评】本题考查了正方形的性质,也考查了列代数式的内容,难度较大,还考查了学生的观察图形的能力.10.(3分)如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.【分析】分别判断点P在各条线段上面积的变化情形即可判断.【解答】解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.【点评】本题考查动点问题函数图象,解题的关键是理解题意灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每小题3分,共15分)11.(3分)被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证,新现的脉冲星自转周期为0.00519秒,将0.00519用科学记数法表示应为 5.19×10﹣3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00519用科学记数法表示应为5.19×10﹣3.故答案为:5.19×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)如图,在4×4正方形网格中,已有4个小正方形被涂黑,现任意选取一个白色的小正方形并涂黑,使整个黑色部分构成一个轴对称图形的概率是.【分析】直接利用轴对称图形的性质得出符合题意的位置,进而得出答案.【解答】解:如图所示:选取白色的小正方形中1,2,3的位置3个涂黑,能使整个黑色部分构成一个轴对称图形,故使整个黑色部分构成一个轴对称图形的概率是:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.13.(3分)学习了平行线的相关知识后,学霸君轩轩利用如图所示的方法,可以折出“过已知直线外一点和已知直线平行”的直线.由操作过程可知他折平行线的依据可以是②③④.(把所有正确结论的序号都填在横线上)①平行于同一条直线的两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.【分析】先根据折叠的性质得到折痕都垂直于过点P的直线,根据根据平行线的判定方法求解.【解答】解:如图,由题图(2)的操作可知PE⊥CD,所以∠PEC=∠PED=90°.由题图(3)的操作可知AB⊥PE,所以∠APE=∠BPE=90°,所以∠PEC=∠PED=∠APE=∠BPE=90°,所以可依据结论②,③或④判定AB∥CD,故答案为②③④.【点评】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;如果两条直线同时垂直于同一条直线,那么这两条直线平行.14.(3分)学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”.这个数字a=153.【分析】根据数字的变化规律取符合条件的数按规律计算即可求出一个固定数字.【解答】解:例如:33=27,23+73=351,33+53+13=153.故答案为153.【点评】本题考查了数字的变化类、有理数的混合运算,解决本题的关键是理解题意进行计算.15.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC的中点,E为边AB上一动点(不与A、B点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条直角边DN与边AC交于点F(不与A、C点重合),分别连接AD、EF,下列结论中正结论是①②④.(把所有正确结论的序号都填在横线上)①BE=AF;②△DEF是等腰直角三角形;③无论点E、F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E、F的位置不同发生变化.【分析】由“SAS ”可证△BDE ≌△ADF ,可得BE =AF ,DE =DF ,S △BDE =S △ADF ,即可求解.【解答】解:∵∠BAC =90°,AB =AC .点D 为BC 的中点,∴AD =BD =CD ,∠∠BAD =∠CAD =∠B =∠C =45°,AD ⊥BC ,∵∠MDN =90°=∠ADB ,∴∠BDE =∠ADF ,且BD =AD ,∠B =∠DAF =45°,∴△BDE ≌△ADF (SAS )∴BE =AF ,DE =DF ,S △BDE =S △ADF ,∴S △BDE +S △ADE =S △ADF +S △ADE ,∴四边形AEDF 的面积=S △ABD =S △ABC ,故①④符合题意,∵DE =DF ,∠EDF =90°,∴△DEF 是等腰直角三角形,故②符合题意,当点F 在AC 中点时,可得EF =BC =AD ,DF +CF =AC ,∵AD ≠AC ,故③不合题意,故答案为①②④.【点评】本题考查了全等三角形的判定和性质,证明△BDE ≌△ADF 是本题的关键.三、解答题(共55分)16.(6分)如图,已知DE ∥BC ,∠3=∠B ,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程:因为DE ∥BC (已知),所以∠3=∠EHC ( 两直线平行,内错角相等 ).因为∠3=∠B(已知),所以∠B=∠EHC(等量代换).所以AB∥EH(同位角相等,两直线平行).所以∠2+∠4=180°(两直线平行,同旁内角互补).因为∠1=∠4(对顶角相等),所以∠1+∠2=180°(等量代换).【分析】根据平行线的性质得出∠3=∠EHC,求出∠B=∠EHC,根据平行线的判定得出AB∥EH,根据平行线的性质得出∠2+∠4=180°,即可得出答案.【解答】解:∵DE∥BC(已知),∴∠3=∠EHC(两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠EHC(等量代换),∴AB∥EH(同位角相等,两直线平行),∴∠2+∠4=180°(两直线平行,同旁内角互补),∵∠1=∠4(对顶角相等),∴∠1+∠2=180°(等量代换),故答案为:两直线平行,内错角相等,等量代换,同位角相等,两直线平行,∠4,两直线平行,同旁内角互补,对顶角相等.【点评】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.17.(6分)先化简,再求值.[(x+y)2+(x+y)(x﹣y)]÷(2x),其中x=﹣1,y=.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:原式=[x2+2xy+y2+x2﹣y2]÷2x=[2x2+2xy]÷2x=x+y,当x=﹣1,y=时,原式=﹣1+=﹣.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.18.(8分)如图所示,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A、B 间的距离,写出具体的方案,并解释其中的道理.【分析】由题意知AC=DC,BC=EC,根据∠ACB=∠DCE即可证明△ABC≌△DEC,即可得AB=DE,即可解题.【解答】解:如图,先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE 的长度就是A、B间的距离.证明:由题意知AC=DC,BC=EC,且∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴DE=AB.∴量出DE的长,就是A、B两点间的距离.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形对应边相等的性质,本题中求证△ABC≌△DEC是解题的关键.19.(8分)暑假将至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动.活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止).大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表奖次特等奖一等奖二等奖三等奖不获奖圆心角10°30°80°120°促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:特等奖:山地越野自行车一辆等奖:双肩背包一个二等奖:洗衣液一桶三等奖:抽纸一盒根据以上信息,解答下列问题:(1)求不获奖的扇形区域圆心角度数是多少?(2)求获得双肩背包的概率是多少?(3)甲顾客购物520元,求他获奖的概率是多少?【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:(1)360°﹣10°﹣30°﹣80°﹣120°=120°,答:不获奖的扇形区域圆心角度数是120°;=,(2)P(获得双肩背包)答:获得双肩背包的概率是;=,(3)P(获奖)答:他获奖的概率是.【点评】本题考查了概率,正确运用概率公式是解题的关键.20.(8分)周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间x(分)和离家的距离y(千米)之间的示意图,请根据图象解答下列问题:(1)在上述变化过程中,自变量是所用的时间,因变量是离家的距离;(2)早餐店到小颖家的距离是 1.1千米,她早餐花了10分钟;(3)出发后37分到55分之间小颖在干什么?(4)小颖从图书大厦回家的过程中,她的平均速度是多少?【分析】根据函数图象的横坐标,可得时间的变化,根据函数图象的纵坐标,可得距离的变化.【解答】解:(1)在上述变化过程中,自变量是小颖所用的时间x,因变量是离家的距离;故答案为:所用的时间;离家的距离;(2)早餐店到小颖家的距离是1.1千米,她早餐花了10分钟;(3)出发后37分到55分之间小颖在选书和买书;(4)小颖从图书大厦回家的过程中,她的平均速度是2÷(80﹣55)=0.08(千米/分钟)=80米/分钟.【点评】此题主要考查了函数图象与实际问题,根据已知图象获取正确信息是解题关键.解题时注意:速度=距离÷时间.21.(9分)如图,在正方形网格上有一个三角形ABC(三个顶点均在格点上).(1)画出△ABC关于直线DE对称的△A1B1C1(其中点A与点A1对应,点B与点B1对应,点C与点C1对应);(2)若每个小正方形的边长都是1,计算△A1B1C1的面积.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)利用分割法求三角形的面积即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)=4×7﹣×2×7﹣×2×5﹣×4×2=28﹣7﹣5﹣4=12.【点评】本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(10分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图1,当点D在BC的延长线上移动时,请说明:△ABD≌△ACE;(2)①当点D在BC的延长线上移动时,α与β之间有什么数量关系?请直接写出你的结论;②当点D在直线BC上(不与B,C点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论,并在备用图上画出相应图形.【分析】(1)由“SAS”可证△ABD≌△ACE;(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可②α+β=180°或α=β,根据三角形外角性质求出即可.【解答】解:(1)∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,∴△ABD≌△ACE(SAS);(2)①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;②如图2,当D在线段BC上时,同理可证:△BAD≌△CAE,∴∠ADB=∠AEC,∵∠ABD+∠ADC=180°,∴∠ADC+∠AEC=180°,∴∠DCE+∠DAE=180°,∴α+β=180°;如图1或3,当点D在线段BC延长线或反向延长线上时,α=β.【点评】本题是三角形综合题,考查了全等三角形的性质和判定,三角形的外角性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。
2019-2020学年浙江省绍兴市柯桥区七年级下学期期末数学试卷 (解析版)
2019-2020学年浙江绍兴市柯桥区七年级第二学期期末数学试卷一、选择题(共10小题).1.下面调查中,适合抽样调查的是()A.对全班同学的身高情况的调查B.登机前对旅客的安全检查C.对我县食品合格情况的调查D.学校组织学生进行体格检查2.若分式有意义,则x应满足的条件是()A.x≠4B.x≠0C.x>4D.x=43.下列数组中,是二元一次方程x+y=7的解的是()A.B.C.D.4.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124B.0.0124C.﹣0.00124D.0.001245.下列运算正确的是()A.a5﹣a2=a3B.a10÷a2=a5C.(a+3)2=a2+9D.(a2)3=a66.已知:如图,直线a,b被直线c所截,且a∥b,若∠1=70°,则∠2的度数是()A.130°B.110°C.80°D.70°7.已知,那么下列式子中一定成立的是()A.x+y=5B.2x=3y C.D.8.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2﹣(a﹣b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)(a+2b)=a2+ab﹣b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b29.校运动会期间,甲、乙、丙、丁四位班长一起到学校小卖部购买相同单价的棒冰和相同单价的矿泉水,四位班长购买的数量及总价如表所示,若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝)18272415矿泉水(瓶)30454025总价(元)396585528330A.甲B.乙C.丙D.丁10.如图1,现有8枚棋子呈一直线摆放,依次编号为①~⑧.小明进行隔子跳,想把它跳成4叠,每2枚棋子一叠,隔子跳规则为:只能靠跳跃,每一步跳跃只能是把一枚棋子跳过两枚棋子与另一枚棋子相叠,如图2中的(1)或(2)(可随意选择跳跃方向)一枚棋子最多只能跳一次.若小明只通过4步便跳跃成功,那么他的第一步跳跃可以为()A.①叠到④上面B.②叠到⑤上面C.④叠到⑦上面D.⑤叠到⑧上面二、填空题(共10小题).11.因式分解:x2﹣4x=.12.某校为了解学生喜爱的体育活动项目,随机抽查了100名学生,让每人选一项自己喜欢的项目,并制成如图所示的扇形统计图.如果该校有1000名学生,则喜爱跳绳的学生约有人.13.若是方程组的解,则a﹣b=.14.如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=度.15.如图,∠C=90°,将直角三角形ABC沿着射线BC方向平移6cm,得三角形A′B′C′,已知BC=3cm,AC=4cm,则阴影部分的面积为cm2.16.已知a+b=8,ab=15,则a2+b2=.17.若关于x的分式方程=2﹣有增根,则常数a的值是.18.学生问老师:“您今年多大了”老师风趣地说:“我像你这么大时,你刚1岁;你到我这么大时,我已37岁了”.那么老师现在的年龄是岁.19.下列算式①(22×32)3;②(2×62)×(3×63);③63+63;④(22)3×(33)2中,结果等于66的有.20.若实数a,b满足方程组,则a2b﹣ab2=.三、解答题(本大题共有8小题,共50分)21.(1)计算:|﹣3|﹣(﹣2)0+()﹣2.(2)化简:(x+6)2+(3+x)(3﹣x).22.(1)解方程组(2)解分式方程:=﹣123.分解因式(1)2x2﹣8(2)3x2y﹣6xy2+3y3.24.如图,在四边形ABCD中,AC⊥CD于点C,BD平分∠ADC交AC于点E,∠1=∠2.(1)请完成下面的说理过程.∵BD平分∠ADC(已知)∴(角平分线的定义).∵∠1=∠2(已知),∴.∴AD∥BC().(2)若∠BCE=20°,求∠1的度数.25.先化简,再求值:(x+2y)2﹣2(x﹣y)(x+y)+2y(x﹣3y),其中x=﹣2,y=.26.为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了名中学生,其中课外阅读时长“2~4小时”的有人;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为°;(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.27.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.(1)观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为.(2)若图中阴影部分的面积为242平方厘米,大长方形纸板的周长为78厘米,求图中空白部分的面积.28.新冠肺炎疫情爆发后,国内口罩需求激增,某地甲、乙两个工厂同时接到200万个一次性医用外科口罩的订单,已知甲厂每天比乙厂多生产2万个口罩,且甲厂生产50万个口罩所用的时间与乙厂生产40万个口罩所用的时间相同.(1)求甲、两厂每天各生产多少万个一次性医用外科口罩.(2)已知甲、乙两个工厂每天生产这种口罩的原料成本分别是4万元和3万元,若两个工厂一起生产这400万个口罩,生产一段时间后,乙停产休整,剩下订单由甲单独完成若本次生产过程中,原料总成本不超过156万元,那么两厂至少一起生产了多少天?参考答案一、选择题(共10小题).1.下面调查中,适合抽样调查的是()A.对全班同学的身高情况的调查B.登机前对旅客的安全检查C.对我县食品合格情况的调查D.学校组织学生进行体格检查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A、对全班同学的身高情况的调查,适合普查,故A不符合题意;B、登机前对旅客的安全检查,适合普查,故B不符合题意;C、对我县食品合格情况的调查,调查范围广适合抽样调查,故D符合题意;D、学校组织学生进行体格检查,适合普查,故B不符合题意;故选:C.2.若分式有意义,则x应满足的条件是()A.x≠4B.x≠0C.x>4D.x=4【分析】先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:∵分式有意义,∴x﹣4≠0,解得x≠4.故选A.3.下列数组中,是二元一次方程x+y=7的解的是()A.B.C.D.【分析】二元一次方程x+y=7的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解.解:A、把x=﹣2,y=5代入方程,左边=﹣2+5≠右边,所以不是方程的解;故本选项错误;B、把x=3,y=4代入方程,左边=右边=7,所以是方程的解;故本选项正确;C、把x=﹣1,y=7代入方程,左边=6≠右边,所以不是方程的解;故本选项错误;D、把x=﹣2,y=﹣5代入方程,左边=﹣7≠右边,所以不是方程的解.故本选项错误.故选:B.4.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124B.0.0124C.﹣0.00124D.0.00124【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.5.下列运算正确的是()A.a5﹣a2=a3B.a10÷a2=a5C.(a+3)2=a2+9D.(a2)3=a6【分析】分别根据合并同类项法则,同底数幂的除法法则,完全平方公式以及幂的乘方运算法则逐一判断即可.解:A.a5与﹣a2不是同类项,所以不能合并,故本选项不合题意;B.a10÷a2=a8,故本选项不合题意;C.(a+3)2=a2+6a+9,故本选项不合题意;D.(a2)3=a6,故本选项符合题意.故选:D.6.已知:如图,直线a,b被直线c所截,且a∥b,若∠1=70°,则∠2的度数是()A.130°B.110°C.80°D.70°【分析】由a∥b,根据两直线平行,同位角相等,即可求得∠3的度数,又由邻补角的定义即可求得∠2的度数.解:∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°.故选:B.7.已知,那么下列式子中一定成立的是()A.x+y=5B.2x=3y C.D.【分析】根据比例的性质,可得答案.解:A、x+y不一定等于5,故A错误;B、2y=3x,故B错误;C、=,故C错误;D、=,故D正确;故选:D.8.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2﹣(a﹣b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)(a+2b)=a2+ab﹣b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b2【分析】根据空白部分的面积等于大正方形的面积减去两个长方形的面积再加上右上角小正方形的面积列式整理即可得解.解:空白部分的面积:(a﹣b)2,还可以表示为:a2﹣2ab+b2,所以,此等式是(a﹣b)2=a2﹣2ab+b2.故选:C.9.校运动会期间,甲、乙、丙、丁四位班长一起到学校小卖部购买相同单价的棒冰和相同单价的矿泉水,四位班长购买的数量及总价如表所示,若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝)18272415矿泉水(瓶)30454025总价(元)396585528330A.甲B.乙C.丙D.丁【分析】设红豆棒冰的单价为x元,矿泉水的单价为y元,根据总价=单价×数量结合甲的购买情况,即可得出关于x,y的二元一次方程,化简后可得出3x+5y=66,由此验证另外三人的总价即可得出结论.解:设红豆棒冰的单价为x元,矿泉水的单价为y元,依题意,得:18x+30y=396,∴3x+5y=66,∴27x+45y=9(3x+5y)=594,24x+40y=8(3x+5y)=528,15x+25y=5(3x+5y)=330,∴乙的总价算错了.故选:B.10.如图1,现有8枚棋子呈一直线摆放,依次编号为①~⑧.小明进行隔子跳,想把它跳成4叠,每2枚棋子一叠,隔子跳规则为:只能靠跳跃,每一步跳跃只能是把一枚棋子跳过两枚棋子与另一枚棋子相叠,如图2中的(1)或(2)(可随意选择跳跃方向)一枚棋子最多只能跳一次.若小明只通过4步便跳跃成功,那么他的第一步跳跃可以为()A.①叠到④上面B.②叠到⑤上面C.④叠到⑦上面D.⑤叠到⑧上面【分析】根据题目中所给的隔子跳规则,进行推理分析即可求解.解:A、①叠到④上面,③只能叠到⑤上面,②不能按规则跳,故选项错误;B、②叠到⑤上面,④只能叠到⑥上面,③不能按规则跳,故选项错误;C、④叠到⑦上面,⑥能叠到②上面,①能叠到③上面,⑤能叠到⑧上面,故选项正确;D、⑤叠到⑧上面,⑦只能叠到③上面,⑥不能按规则跳,故选项错误.故选:C.二、填空题(每小题3分,共30分)11.因式分解:x2﹣4x=x(x﹣4).【分析】直接提取公因式x,进而分解因式得出即可.解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).12.某校为了解学生喜爱的体育活动项目,随机抽查了100名学生,让每人选一项自己喜欢的项目,并制成如图所示的扇形统计图.如果该校有1000名学生,则喜爱跳绳的学生约有300人.【分析】样本中“跳绳人数”占整体的1﹣15%﹣45%﹣10%=30%,因此估计总体100人的30%是“跳绳”的人数.解:1000×(1﹣15%﹣45%﹣10%)=1000×30%=300(人),故答案为:300.13.若是方程组的解,则a﹣b=6.【分析】将方程组的解代入方程组得到关于a、b的方程组解:将代入得:,解得:a=3,b=﹣3.所以a﹣b=3﹣(﹣3)=6.故答案为6.14.如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=25度.【分析】建立已知角和未知角之间的联系是关键.作平行线的截线,根据平行线的性质建立它们之间的联系.解:延长DC交直线m于E.∵l∥m,∴∠CEB=65°.在Rt△BCE中,∠BCE=90°,∠CEB=65°,∴∠α=90°﹣∠CEB=90°﹣65°=25°.15.如图,∠C=90°,将直角三角形ABC沿着射线BC方向平移6cm,得三角形A′B′C′,已知BC=3cm,AC=4cm,则阴影部分的面积为18cm2.【分析】根据S阴=S平行四边形ABB′A′﹣S△ABC求解即可.解:由题意平行四边形ABB′A′的面积=6×4=24(cm2),S△ABC=×3×4=6(cm2),∴S阴=S平行四边形ABB′A′﹣S△ABC=24﹣6=18(cm2),故答案为18.16.已知a+b=8,ab=15,则a2+b2=34.【分析】将a+b=8两边平方,利用完全平方公式展开,将ab的值代入,即可求出a2+b2的值.解:∵a+b=8,ab=15,∴(a+b)2=a2+2ab+b2=a2+30+b2=64,则a2+b2=34.故答案为:3417.若关于x的分式方程=2﹣有增根,则常数a的值是5.【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.解:去分母得:x+1=2x﹣8+a,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:a=5.故答案为:518.学生问老师:“您今年多大了”老师风趣地说:“我像你这么大时,你刚1岁;你到我这么大时,我已37岁了”.那么老师现在的年龄是25岁.【分析】本题中明显的等量关系有两个:学生现在的年龄﹣年龄差=1;老师现在的年龄+年龄差=37,据此可以现设学生和老师现在的年龄为x、y,再列方程组求解.【解答】解;设老师现在x岁,学生现在y岁,则解得答:老师现在25岁.故填25.19.下列算式①(22×32)3;②(2×62)×(3×63);③63+63;④(22)3×(33)2中,结果等于66的有①②④.【分析】根据同类项、同底数幂的乘法、积的乘方、幂的乘方、单项式的乘法法则,对各项计算后利用排除法求解.解:①(22×32)3=(62)3=66;②(2×62)×(3×63)=6×65=66;③63+63=2×63;④(22)3×(33)2=26×36=66.所以结果等于66的有①②④.故答案为:①②④.20.若实数a,b满足方程组,则a2b﹣ab2=15.【分析】直接利用整体思想得出ab,a+b的值,进而分解因式得出答案.解:∵,∴,∴a2b﹣ab2=ab(a﹣b)=3×5=15.故答案为:15.三、解答题(本大题共有8小题,共50分)21.(1)计算:|﹣3|﹣(﹣2)0+()﹣2.(2)化简:(x+6)2+(3+x)(3﹣x).【分析】(1)利用绝对值、零指数幂、负整数指数幂进行计算;(2)运用完全平方公式与平方差公式进行计算.解:(1)原式=3﹣1+4=6;(2)原式=x2 +12x+36+9﹣x2=12x+45.22.(1)解方程组(2)解分式方程:=﹣1【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:(1),①×2﹣②得:3x=12,解得:x=4,把x=4代入②得:y=﹣1,则方程组的解为;(2)去分母得:2=﹣x﹣x+1,解得:x=﹣,经检验x=﹣是分式方程的解.23.分解因式(1)2x2﹣8(2)3x2y﹣6xy2+3y3.【分析】(1)首先提取公因式2,进而利用平方差公式分解因式得出答案;(2)首先提取公因式3y,进而利用完全平方公式分解因式得出答案.解:(1)2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2);(2)3x2y﹣6xy2+3y3=3y(x2﹣2xy+y2)=3y(x﹣y)2.24.如图,在四边形ABCD中,AC⊥CD于点C,BD平分∠ADC交AC于点E,∠1=∠2.(1)请完成下面的说理过程.∵BD平分∠ADC(已知)∴∠2=∠3(角平分线的定义).∵∠1=∠2(已知),∴∠1=∠3.∴AD∥BC(内错角相等,两直线平行).(2)若∠BCE=20°,求∠1的度数.【分析】(1)根据角平分线的定义和平行线的判定定理即可得到结论;(2)根据垂直的定义和平行线的性质即可得到结论.解:(1)∵BD平分∠ADC(已知)∴∠2=∠3,(角平分线的定义).∵∠1=∠2(已知),∴∠1=∠3,∴AD∥BC(内错角相等,两直线平行);故答案为:∠2=∠3,∠1=∠3,内错角相等,两直线平行;(2)∵AC⊥CD,∴∠ACD=90°,∵∠BCE=20°,∴∠BCD=20°+90°=110°,∵AD∥BC,∴∠ADC+∠BCD=180°,∴∠ADC=180°﹣110°=70°,∴∠1=∠2=∠3=.25.先化简,再求值:(x+2y)2﹣2(x﹣y)(x+y)+2y(x﹣3y),其中x=﹣2,y=.【分析】先利用整式的乘法公式展开,再合并同类项,然后把x=﹣2,y=代入计算即可.解:原式=x2+4xy+4y2﹣2(x2﹣y2)+2xy﹣6y2=x2+4xy+4y2﹣2x2+2y2+2xy﹣6y2=﹣x2+6xy,当x=﹣2,y=时,原式=﹣(﹣2)2+6×(﹣2)×=﹣4﹣6=﹣10.26.为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了200名中学生,其中课外阅读时长“2~4小时”的有40人;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为144°;(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.【分析】(1)根据统计图中的数据可以求得本次调查的学生数和课外阅读时长“2~4小时”的人数;(2)根据统计图中的数据可以求得扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数;(3)根据统计图的数据可以计算出该地区中学生一周课外阅读时长不少于4小时的人数.解:(1)本次调查共随机抽取了:50÷25%=200(名)中学生,其中课外阅读时长“2~4小时”的有:200×20%=40(人),故答案为:200,40;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1﹣﹣20%﹣25%)=144°,故答案为:144;(3)20000×(1﹣﹣20%)=13000(人),答:该地区中学生一周课外阅读时长不少于4小时的有13000人.27.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.(1)观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为(a+2b)(2a+b).(2)若图中阴影部分的面积为242平方厘米,大长方形纸板的周长为78厘米,求图中空白部分的面积.【分析】(1)根据两种方法计算纸板面积即可;(2)根据图中阴影部分的面积为242平方厘米,大长方形纸板的周长为78厘米,得到,可求ab=24,进一步可求图中空白部分的面积.解:(1)观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为(a+2b)(2a+b);故答案为:(a+2b)(2a+b);(2)由已知得:,化简得∴(a+b)2﹣2ab=121,∴ab=24,5ab=120.∴空白部分的面积为120平分厘米.28.新冠肺炎疫情爆发后,国内口罩需求激增,某地甲、乙两个工厂同时接到200万个一次性医用外科口罩的订单,已知甲厂每天比乙厂多生产2万个口罩,且甲厂生产50万个口罩所用的时间与乙厂生产40万个口罩所用的时间相同.(1)求甲、两厂每天各生产多少万个一次性医用外科口罩.(2)已知甲、乙两个工厂每天生产这种口罩的原料成本分别是4万元和3万元,若两个工厂一起生产这400万个口罩,生产一段时间后,乙停产休整,剩下订单由甲单独完成若本次生产过程中,原料总成本不超过156万元,那么两厂至少一起生产了多少天?【分析】(1)设乙厂每天生产x万个口罩,则甲厂每天生产(x+2)万个,根据甲厂生产50万个口罩所用的时间与乙厂生产40万个口罩所用的时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设两厂一起生产了a天,甲一共生产b天,根据原料总成本不超过156万元,即可得出关于a的一元一次不等式,解之取其最小值即可得出结论.解:(1)设乙厂每天生产x万个口罩,则甲厂每天生产(x+2)万个,由题意可得:=,解得:x=8,经检验得:x=8是原方程的根,故x+2=10(万个),答:乙厂每天生产8万个口罩,甲厂每天生产10万个;(2)设两厂一起生产了a天,甲一共生产b天,由题意可得:,由①得:b=40﹣0.8a,代入②得:a≥20,答:两厂至少一起生产了20天.。
2019-2020学年浙江省台州市椒江区七年级第二学期期末考试数学试卷(含解析)
2019-2020学年浙江省台州市椒江区七年级第二学期期末数学试卷班级姓名座号温馨提示:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B铅笔填涂相应位置。
2.选择题用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
3.解答题用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
一、选择题1.如图,直线a,b相交于点O,∠1=60°,则∠2=()A.120°B.60°C.30°D.15°2.下列实数中是无理数的是()A.B.0.212121 C.D.﹣3.下列调查方式中,你认为最合适的是()A.肺炎疫情期间,对学生体温测量采用抽样调查B.驰援武汉医疗队胜利归来时,为了确定医疗队成员的健康情况,可采用抽样调查C.检查一批口罩的防护效果时,采用全面调查D.肺炎疫情期间到校上课,了解学生健康码情况时,采用全面调查4.下列命题中,是假命题的为()A.两直线平行,同旁内角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.同旁内角互补,两直线平行5.如图,数轴上点A表示的数可能是()A.﹣B.﹣C.﹣D.﹣6.如图形中,周长最长的是()A.B.C.D.7.一副三角尺按如图方式叠放,含30°角三角形尺的直角边AD在含45°角三角形尺的直角边AC上,则∠BFE的度数是()A.60°B.70°C.75°D.80°8.某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x分钟,以下所列不等式正确的是()A.90×3+2x≥480 B.90×3+2x≤480C.90×3+2x<480 D.90×3+2x≥4809.如图,用大小形状完全相同的长方形纸片在直角坐标系中摆成如图图案,已知A(﹣2,6),则点B的坐标为()A.(﹣6,4)B.(,)C.(﹣6,5)D.(,4)10.在平面直角坐标系中,点M(1+m,2m﹣3)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(本题有6小题,每小题3分18分)11.小红在画一组数据的直方图时,统计了这组数据中的最大值是75,最小值是4,她准备把这组数据分成8组,则组距可设为.(填一整数)12.如图,∠1=∠2,∠D=75°,则∠BCD=.13.若≈1.732,则300的平方根约为.14.若=0,则x+y的值为.15.已知a+b=4,若﹣2≤b≤﹣1,则a的取值范围是.16.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P 的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得点A1,A2,A3…,A n,…若点A1的坐标为(3,1),则点A2019的坐标为.三、解答题(本题有8小题,第17~20题每题5分,第21题6分,第22,23题每题8,第24题10分,共52分)17.计算:.18.解不等式组,并把它的解集在数轴上表示出来.19.如图,在三角形ABC中,AB∥DE,∠BDE=2∠A,求证∠A=∠C.证明:作∠BDE的角平分线交AB于点F.∵DF平分∠BDE,∴∠1=∠2.∵∠BDE=2∠A,∴∠1=∠2=,∵AB∥DE,∴∠A=∠3 (),∴∠3=∠A=,∴AC∥DF (),∴∠2=,∴∠A=∠C=∠2.20.某校为了提高学生的实践能力,开展了手工制作比赛.已知参赛作品分数记为x分(60≤x≤100),校方在参赛作品中随机抽取了50件作品进行质量评估,分数情况统计表和统计图如图所示:手工制作比赛作品分数情况频数分布表手工制作比赛作品分数情况频数分布直方图根据以上信息解答下列问题:手工制作比赛作品分数情况频数分布表分数段频数频率60≤x<70 15 0.370≤x<80 22 c80≤x<90 a 0.290≤x≤100 b 0.06合计50 1(1)频数分布表中c的值为;(2)补全频数分布直方图;(3)本次比赛校方共收到参赛作品800件,若80分以上(含80分)的作品将被展出,试估计全校将展出的作品数量.21.如图,AB∥CD,AB∥GE,∠B=110°,∠C=100°.∠BFC等于多少度?为什么?22.肺炎疫情期间,口罩成了家家户户必备的防疫物品.在某超市购买2只普通医用口罩和3只N95口罩的费用是22元;购买5只普通医用口罩和2只N95口罩的费用也是22元.(1)求该超市普通医用口罩和N95口罩的单价;(2)若准备在该超市购买两种口罩共50只,且N95口罩不少于总数的40%,试通过计算说明,在预算不超过190元的情况下有哪些购买方案.23.规定min(m,n)表示m,n中较小的数(m,n均为实数,且mn),例如:min{3,﹣1}=﹣1,、min据此解决下列问题:(1)min=;(2)若min=2,求x的取值范围;(3)若min{2x﹣5,x+3}=﹣2,求x的值.24.在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得△MPQ(△表示三角形)面积等于1(即S△MPQ=1),则称点M为线段PQ的“单位面积点”.解答下列问题:如图,在平面直角坐标系xOy中,点P的坐标为(2,0).(1)在点A(﹣1,1),B(﹣1,2),C(2,﹣4)中,线段OP的“单位面积点”是;(2)已知点D(0,3),E(0,4),将线段OP沿y轴方向向上平移t(t>0)个单位长度,使得线段DE上存在线段OP的“单位面积点”,求t的取值范围;(3)已知点F(2,2),点M在第一象限且M的纵坐标是3,点M,N是线段PF的两个“单位面积点”,若S△OMN=3S△PFN,且MN∥PF,直接写出点N的坐标.参考答案一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.如图,直线a,b相交于点O,∠1=60°,则∠2=()A.120°B.60°C.30°D.15°【分析】根据对顶角相等即可求解.解:如图,直线a,b相交于点O,∠1=60°,则∠2=60°.故选:B.2.下列实数中是无理数的是()A.B.0.212121 C.D.﹣【分析】分别根据无理数、有理数的定义即可判定选择项.解:,﹣,0.212121是有理数,是无理数,故选:C.3.下列调查方式中,你认为最合适的是()A.肺炎疫情期间,对学生体温测量采用抽样调查B.驰援武汉医疗队胜利归来时,为了确定医疗队成员的健康情况,可采用抽样调查C.检查一批口罩的防护效果时,采用全面调查D.肺炎疫情期间到校上课,了解学生健康码情况时,采用全面调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A.肺炎疫情期间,对学生体温测量应该采用全面调查,不合题意;B.驰援武汉医疗队胜利归来时,为了确定医疗队成员的健康情况,可采用全面调查,不合题意;C.检查一批口罩的防护效果时,应该采用抽样调查,不合题意;D.肺炎疫情期间到校上课,了解学生健康码情况时,采用全面调查,符合题意;故选:D.4.下列命题中,是假命题的为()A.两直线平行,同旁内角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.同旁内角互补,两直线平行【分析】根据平行线的性质对A、B进行判断;根据平行线的判定方法对C、D进行判断.解:A、两直线平行,同旁内角互补,所以A选项为假命题;B、两直线平行,内错角相等,所以B选项为真命题;C、同位角相等,两直线平行,所以C选项为真命题;D、同旁内角互补,两直线平行,所以D选项为真命题.故选:A.5.如图,数轴上点A表示的数可能是()A.﹣B.﹣C.﹣D.﹣【分析】首先判定出﹣4<﹣<﹣3,由此即可解决问题.解:因为﹣4<﹣<﹣3,所以数轴上点A表示的数可能是﹣.故选:B.6.如图形中,周长最长的是()A.B.C.D.【分析】直接利用平移的性质进而分析得出答案.解:A、由图形可得其周长大于12cm,B、由图形可得其周长为:12cm,C、由图形可得其周长为:12cm,D、由图形可得其周长为:12cm,故最长的是A.故选:A.7.一副三角尺按如图方式叠放,含30°角三角形尺的直角边AD在含45°角三角形尺的直角边AC上,则∠BFE的度数是()A.60°B.70°C.75°D.80°【分析】利用三角形的外角的性质,求出∠FAB即可解决问题.解:∵∠BAC=90°,∠DAE=60°,∴∠FAB=90°﹣60°=30°,∵∠B=45°,∴∠EFB=∠FAB+∠B=30°+45°=75°.故选:C.8.某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x分钟,以下所列不等式正确的是()A.90×3+2x≥480 B.90×3+2x≤480C.90×3+2x<480 D.90×3+2x≥480【分析】根据前3天听课的总时间+后2天听课的总时间≥480可得不等式.解:设张飞后2天平均听课时长为x分钟,根据题意,得:3×90+2x≥480,故选:A.9.如图,用大小形状完全相同的长方形纸片在直角坐标系中摆成如图图案,已知A(﹣2,6),则点B的坐标为()A.(﹣6,4)B.(,)C.(﹣6,5)D.(,4)【分析】设长方形纸片的长为x,宽为y,根据点A的坐标,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,再观察坐标系,可求出点B的坐标.解:设长方形纸片的长为x,宽为y,根据题意得:,解得:,∴﹣2x=﹣,x+y=,∴点B的坐标为(﹣,).故选:B.10.在平面直角坐标系中,点M(1+m,2m﹣3)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标符号特点列出关于m的不等式组,解之求出m的范围,从而得出答案.解:A.由知m>,此时点M在第一象限;B.由知m无解,即点M不可能在第二象限;C.由知m<﹣1,此时点M在第三象限;D.由知﹣1<m<,此时点M在第四象限;故选:B.二、填空题(本题有6小题,每小题3分18分)11.小红在画一组数据的直方图时,统计了这组数据中的最大值是75,最小值是4,她准备把这组数据分成8组,则组距可设为9 .(填一整数)【分析】根据频数分布直方图的组数的确定方法,用极差除以组距,然后根据组数比商的整数部分大1确定组数,据此求解可得.解:∵极差为75﹣4=71,分成8组,∴71÷8≈9,则组距可设为9,故答案为:9.12.如图,∠1=∠2,∠D=75°,则∠BCD=105°.【分析】根据内错角相等,两直线平行可得AD∥BC,再根据两直线平行,同旁内角互补可得∠D+∠BCD=180°,可求∠BCD=90°.解:∵∠1=∠2,∴AD∥BC,∵∠D=75°,∴∠BCD=180°﹣75°=105°.故答案为:105°.13.若≈1.732,则300的平方根约为±17.32 .【分析】根据题目中的数据和平方根的求法可以解答本题.解:∵≈1.732,∴300的平方根为±=±10≈±10×1.732≈±17.32,故答案为:±17.32.14.若=0,则x+y的值为 2 .【分析】先根据非负数的性质列出关于x、y的二元一次方程组,两个方程相加可解答.解:∵=0,∴,①+②得:3x+3y﹣6=0,∴x+y=2,故答案为:2.15.已知a+b=4,若﹣2≤b≤﹣1,则a的取值范围是5≤a≤6 .【分析】根据已知条件可以求得b=4﹣a,然后将b的值代入不等式﹣2≤b≤﹣1,通过解该不等式即可求得a的取值范围.解:由a+b=4得b=4﹣a,∵﹣2≤b≤﹣1,∴﹣2≤4﹣a≤﹣1,∴5≤a≤6.故答案为:5≤a≤6.16.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P 的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得点A1,A2,A3…,A n,…若点A1的坐标为(3,1),则点A2019的坐标为(﹣3,1).【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A2019的坐标即可.解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A2019的坐标与A3的坐标相同,为(﹣3,1).故答案为:(﹣3,1).三、解答题(本题有8小题,第17~20题每题5分,第21题6分,第22,23题每题8,第24题10分,共52分)17.计算:.【分析】利用二次根式的性质和立方根的性质进行计算即可.解:原式=10﹣2=8.18.解不等式组,并把它的解集在数轴上表示出来.【分析】首先分别解出两个不等式的解集,再根据解集的规律确定不等式组的解集.解:,由①得:x≥﹣2,由②得:x<3,不等式组的解集为:﹣2≤x<3,在数轴上表示:.19.如图,在三角形ABC中,AB∥DE,∠BDE=2∠A,求证∠A=∠C.证明:作∠BDE的角平分线交AB于点F.∵DF平分∠BDE,∴∠1=∠2.∵∠BDE=2∠A,∴∠1=∠2=∠A ,∵AB∥DE,∴∠A=∠3 (两直线平行,同位角相等),∴∠3=∠A=∠1 ,∴AC∥DF (内错角相等,两直线平行),∴∠2=∠C ,∴∠A=∠C=∠2.【分析】作∠BDE的角平分线交AB于点F.证明DF∥AC可得结论.【解答】证明:作∠BDE的角平分线交AB于点F.∵DF平分∠BDE,∴∠1=∠2.∵∠BDE=2∠A,∴∠1=∠2=∠A,∵AB∥DE,∴∠A=∠3 (两直线平行,同位角相等),∴∠3=∠A=∠1,∴AC∥DF (内错角相等,两直线平行),∴∠2=∠C,∴∠A=∠C=∠2.故答案为:∠A,两直线平行,同位角相等,∠1,内错角相等,两直线平行,∠C.20.某校为了提高学生的实践能力,开展了手工制作比赛.已知参赛作品分数记为x分(60≤x≤100),校方在参赛作品中随机抽取了50件作品进行质量评估,分数情况统计表和统计图如图所示:手工制作比赛作品分数情况频数分布表手工制作比赛作品分数情况频数分布直方图根据以上信息解答下列问题:手工制作比赛作品分数情况频数分布表分数段频数频率60≤x<70 15 0.370≤x<80 22 c80≤x<90 a 0.290≤x≤100 b 0.06合计50 1(1)频数分布表中c的值为0.44 ;(2)补全频数分布直方图;(3)本次比赛校方共收到参赛作品800件,若80分以上(含80分)的作品将被展出,试估计全校将展出的作品数量.【分析】(1)根据直方图中的数据,可以计算出c的值;(2)根据题意,可以计算出a、b的值,从而可以补全频数分布直方图;(3)根据频数分布表中的数据,可以计算出全校将展出的作品数量.解:(1)c=22÷50=0.44,故答案为:0.44;(2)a=50×0.2=10,b=50×0.06=3,补全的频数分布直方图如右图所示;(3)800×(0.2+0.06)=208(件),即全校将展出的作品有208件.21.如图,AB∥CD,AB∥GE,∠B=110°,∠C=100°.∠BFC等于多少度?为什么?【分析】由AB∥CD,AB∥GE得CD∥GE,根据两直线平行,同旁内角互补得到∠B+∠BFG =180°,∠C+∠CFE=180°,而∠B=110°,∠C=100°,可以求出∠BFG和∠CFE,最后可以求出∠BFC.解:∠BFC等于30度,理由如下:∵AB∥GE,∴∠B+∠BFG=180°,∵∠B=110°,∴∠BFG=180°﹣110°=70°,∵AB∥CD,AB∥GE,∴CD∥GE,∴∠C+∠CFE=180°,∵∠C=100°.∴∠CFE=180°﹣100°=80°,∴∠BFC=180°﹣∠BFG﹣∠CFE=180°﹣70°﹣80°=30°.22.肺炎疫情期间,口罩成了家家户户必备的防疫物品.在某超市购买2只普通医用口罩和3只N95口罩的费用是22元;购买5只普通医用口罩和2只N95口罩的费用也是22元.(1)求该超市普通医用口罩和N95口罩的单价;(2)若准备在该超市购买两种口罩共50只,且N95口罩不少于总数的40%,试通过计算说明,在预算不超过190元的情况下有哪些购买方案.【分析】(1)设普通医用口罩的单价为x元,N95口罩单价为y元,根据题意列方程组解答即可;(2)设购买普通医用口罩z个,则购买N95口罩(50﹣z)个,根据N95口罩不少于总数的40%;预算不超过190元;列出不等式组解答即可.解:(1)设普通医用口罩的单价为x元,N95口罩单价为y元,依题意有,解得.故普通医用口罩的单价为2元,N95口罩单价为6元;(2)设购买普通医用口罩z个,则购买N95口罩(50﹣z)个,依题意有,解得27.5≤z≤30.购买方案:①购买普通医用口罩28个,购买N95口罩22个;②购买普通医用口罩29个,购买N95口罩21个;③购买普通医用口罩30个,购买N95口罩20个.23.规定min(m,n)表示m,n中较小的数(m,n均为实数,且mn),例如:min{3,﹣1}=﹣1,、min据此解决下列问题:(1)min=﹣;(2)若min=2,求x的取值范围;(3)若min{2x﹣5,x+3}=﹣2,求x的值.【分析】(1)利用题中的新定义确定出所求即可;(2)利用题中的新定义得出≥2,计算即可求出x的取值;(3)利用题中的新定义分类讨论计算即可求出x的值.解:(1)根据题中的新定义得:min=﹣;故答案为:﹣;(2)由题意≥2,解得:x≥3.5;(3)若2x﹣5=﹣2,解得:x=1.5,此时x+3=4.5>﹣2,满足题意;若x+3=﹣2,解得:x=﹣5,此时2x﹣5=﹣15<﹣2,不符合题意,综上,x=1.5.24.在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得△MPQ(△表示三角形)面积等于1(即S△MPQ=1),则称点M为线段PQ的“单位面积点”.解答下列问题:如图,在平面直角坐标系xOy中,点P的坐标为(2,0).(1)在点A(﹣1,1),B(﹣1,2),C(2,﹣4)中,线段OP的“单位面积点”是 A ;(2)已知点D(0,3),E(0,4),将线段OP沿y轴方向向上平移t(t>0)个单位长度,使得线段DE上存在线段OP的“单位面积点”,求t的取值范围;(3)已知点F(2,2),点M在第一象限且M的纵坐标是3,点M,N是线段PF的两个“单位面积点”,若S△OMN=3S△PFN,且MN∥PF,直接写出点N的坐标.【分析】(1)根据点M为线段PQ的“单位面积点”的定义判断即可.(2)当点D为线段O′P′的“单位面积点”时,|3﹣t|=1.当点E为线段O′P′的“单位面积点”时,|4﹣t|=1,解方程即可解决问题.(3)由点M是线段PF的“单位面积点”,且点M的纵坐标为3,推出M(1,3)或(3,3),分两种情形,分别构建方程求解即可.解:(1)如图1中,∵A(﹣1,1),B(﹣1,2),C(2,﹣4),P(2,0),∴S△AOP=×2×1=1,S△OPB=×2×2=2,S△OPC=×2×4=4,∴点A是线段OP的“单位面积点”,故答案为A.(2)如图2中,当点D为线段O′P′的“单位面积点”时,|3﹣t|=1,解得:t=2或t=4,当点E为线段O′P′的“单位面积点”时,|4﹣t|=1,解得:t=3或t=5,∴线段EF上存在线段O′P′的“单位面积点”,t的取值范围为2≤t≤3或4≤t≤5.(3)如图3中,∵P(2,0),F(2,2),∴PF=2,PF∥y轴,∵点M是线段PF的“单位面积点”,且点M的纵坐标为3,∴M(1,3)或(3,3),当M(1,3)时,设N(1,t),由题意,×1×|3﹣t|=3,解得t=﹣3或9,∴N(1,﹣3)或(1,9),当M(3,3)时,设N(3,n),由题意,×3×|3﹣n|=3,解得n=1和5,∴N(3,1)或(3,5),综上所述,满足条件的点N的坐标为(1,﹣3)或(1,9)或(3,1)或(3,5).。
2019-2020学年七年级上学期期末考试数学试卷(附解析)
2019-2020学年七年级上学期期末考试数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.﹣7的倒数是()A.B.7C.D.﹣72.下列说法不正确的是()A.近似数1.8与1.80表示的意义不同B.0.0200精确到万分位C.2.0万精确到万位D.1.0×104精确到千位3.下列各图中,可以是一个正方体的平面展开图的是()A.B.C.D.4.绝对值大于2且小于5的所有的整数的和是()A.7B.﹣7C.0D.55.已知x=0是关于x的方程5x﹣4m=8的解,则m的值是()A.B.﹣C.2D.﹣26.用一副三角板拼成的图形如图所示,其中B、C、D三点在同一条直线上.则图中∠ACE的大小为()A.45°B.60°C.75°D.105°7.如图,已知点C是线段AD的中点,AB=10cm,BD=4cm,则BC的长为()A.5cm B.6cm C.7cm D.8cm8.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元9.如果有4个不同的正整数a、b、c、d满足(2019﹣a)(2019﹣b)(2019﹣c)(2019﹣d)=9,那么a+b+c+d的值为()A.0B.9C.8048D.807610.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑦中星星的颗数是()A.24B.32C.41D.51二、填空题(每题3分,共24分)11.一天早晨的气温是﹣7℃,中午的气温3℃,则中午的气温比早晨的气温高℃.12.单项式﹣的次数是.13.如图,点A位于点O的方向上.14.一个角的余角是54°38′,则这个角的补角是.15.若方程:(m﹣1)x|m|﹣2=0是一元一次方程,则m的值为.16.长方形的长是3a,它的周长是10a﹣2b,则宽是.17.在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,问应调往乙处人.18.按下面的程序计算:若输入x=100,则输出结果是501;若输入x=25,则输出结果是631;若开始输入的数x为正整数,最后输出结果为781,则开始输入的数x的所有可能的值为.三、解答题(共66分)19.(10分)计算(1)(2).20.(10分)解方程:(1)2x﹣9=5x+3(2).21.(6分)先化简,再求值:2xy2﹣[6x﹣4(2x﹣1)﹣2xy2]+9,其中(x﹣3)2+|y+|=0 22.(6分)从甲地到乙地,公共汽车原需行驶7个小时,开通高速公路后,车速平均每小时增加了20千米,只需5个小时即可到达,求甲、乙两地的路程.23.(10分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.24.(12分)如图①,∠AOB=90°,∠AOC为∠AOB外的一个角,且∠AOC=30°,射线OM 平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)如果(1)中∠AOB=α,∠AOC=β.(α,β为锐角),其它条件不变,求出∠MON的度数;(3)其实线段的计算与角的计算存在着紧密的联系,如图②线段AB=m,延长线段AB到C,使得BC=n,点M,N分别为AC,BC的中点,求MN的长(直接写出结果).25.(12分)某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.【分析】此题根据倒数的含义解答,乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).【解答】解:﹣7的倒数为:1÷(﹣7)=﹣.故选:C.【点评】此题考查的知识点是倒数.解答此题的关键是要知道乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).2.【分析】分别分析各数的有效数字与精确数位,再作答.一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.精确到了某一位,即应看这个数字最后一位实际在哪一位.【解答】解:根据近似数有效数字的确定方法和意义可知A、B、D正确,而近似数2.0万精确到千位,故C错误.故选:C.【点评】本题考查了有效数字和近似数的确定.精确到哪一位,即对下一位的数字进行四舍五入.从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.3.【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【解答】解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.【点评】考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.4.【分析】绝对值大于2且小于5的整数绝对值有3,4.因为±3的绝对值是3,±4的绝对值是4,又因为互为相反数的两个数的和是0,所以,绝对值大于2而小于5的整数的和是0.【解答】解:因为绝对值大于2而小于5的整数为±3,±4,故其和为﹣3+3+(﹣4)+4=0.故选:C.【点评】考查了有理数的加法和绝对值,注意掌握互为相反数的两个数的绝对值相等,互为相反数的两个数的和是0.5.【分析】已知x=0是方程5x﹣4m=8的解,代入可求出m的值.【解答】解:把x=0代入5x﹣4m=8得,0﹣4m=8,解得:m=﹣2.故选:D.【点评】本题是知道一个字母的值求另一个字母的值,解决此题常用代入的方法.6.【分析】利用平角的定义计算∠ACE的度数.【解答】解:∵B、C、D三点在同一条直线上.∴∠ACE=180°﹣60°﹣45°=75°.故选:C.【点评】本题考查了角的计算:利用互余或互补计算角的度数.7.【分析】先求出AD,然后可得出CD,继而根据BC=BD+CD即可得出答案.【解答】解:∵AB=10cm,BD=4cm,∴AD=AB﹣BD=10﹣4=6(cm),∵点C是AD中点,∴CD=AD=3cm,则BC=CD+BD=7cm,故选:C.【点评】本题考查了两点之间的距离,关键是掌握中点的性质.8.【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.9.【分析】根据a、b、c、d是四个不同的正整数可知四个括号内的值分别是:±1,±3,据此可得出结论.【解答】解:∵a、b、c、d是四个不同的正整数,∴四个括号内的值分别是:±1,±3,∴2019+1=2020,2019﹣1=2018,2019+3=2022,2019﹣3=2016,∴a+b+c+d=2020+2018+2022+2016=8076.故选:D.【点评】本题考查的是有理数的混合运算,根据题意得出四个括号中的数是解答此题的关键.10.【分析】设图形n中星星的颗数是a n(n为正整数),列出部分图形中星星的个数,根据数据的变化找出变化规律“+n﹣1”,依此规律即可得出结论.【解答】解:设图形n中星星的颗数是a n(n为正整数),∵a1=2=1+1,a2=6=(1+2)+3,a3=11=(1+2+3)+5,a4=17=(1+2+3+4)+7,∴a n=1+2+…+n+(2n﹣1)=+(2n﹣1)=+n﹣1,∴a7=×72+×7﹣1=41.故选:C.【点评】本题考查了规律型中的图形的变化类,根据图形中数的变化找出变化规律是解题的关键.二、填空题(每题3分,共24分)11.【分析】根据有理数减法的运算方法,用这天中午的气温减去早晨的气温,求出中午的气温比早晨的气温高多少即可.【解答】解:3﹣(﹣7)=10(℃)∴中午的气温比早晨的气温高10℃.故答案为:10.【点评】此题主要考查了有理数的减法,要熟练掌握.12.【分析】直接利用一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣的次数是:3+2+1=6.故答案为:6.【点评】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.13.【分析】根据方位角的概念直接解答即可.【解答】解:点A位于点O的北偏西30°方向上.【点评】规律总结:方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.14.【分析】根据余角是两个角的和为90°,这两个角互为余角,两个角的和为180°,这两个角互为补角,可得答案.【解答】解:∵一个角的余角是54°38′∴这个角为:90°﹣54°38′=35°22′,∴这个角的补角为:180°﹣35°22′=144°38′.故答案为:144°38′.【点评】本题考查余角和补角,通过它们的定义来解答即可.15.【分析】根据一元二次方程的定义解答即可.【解答】解:∵(m﹣1)x|m|﹣2=0是一元一次方程,∴,∴m=﹣1;故答案为:﹣1.【点评】本题考查了一元一次方程的概念,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.16.【分析】根据长方形的周长=2(长+宽),表示出宽即可.【解答】解:根据题意得:(10a﹣2b)﹣3a=5a﹣b﹣3a=2a﹣b,故答案为:2a﹣b【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.17.【分析】设调往甲处的人数为x,则调往乙处的人数为(20﹣x),根据甲处的人数是在乙处人数的2倍列方程求解.【解答】解:设应调往甲处x人,依题意得:27+x=2(19+20﹣x),解得:x=17,∴20﹣x=3,答:应调往甲处17人,调往乙处3人.故答案是:3.【点评】考查了一元一次方程的应用.根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.【分析】根据输出的结果确定出x的所有可能值即可.【解答】解:若5x+1=781,解得:x=156;若5x+1=156,解得:x=31;若5x+1=31,解得:x=6;若5x+1=6,解得:x=1,故答案为:1或6或31或156【点评】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.三、解答题(共66分)19.【分析】(1)先把除法运算转化为乘法运算,然后利用乘法的分配律进行计算;(2)先算乘方和乘法运算,然后加减运算.【解答】解:(1)原式=(﹣+)×(﹣36)=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣8+9﹣2=1﹣2=﹣1;(2)原式=﹣1+6+2+1=8.【点评】本题考查了有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.20.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程移项合并得:﹣3x=12,解得:x=﹣4;(2)去分母得:2(x﹣1)﹣3(3﹣x)=6,去括号得:2x﹣2﹣9+3x=6,移项合并得:5x=17,解得:x=3.4.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=2xy2﹣6x+4(2x﹣1)+2xy2+9=2xy2﹣6x+8x﹣4+2xy2+9=4xy2+2x+5,∵(x﹣3)2+|y+|=0,∴x=3,y=﹣,则原式=4×3×(﹣)2+2×3+5=3+6+5=14.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.【分析】设甲乙两地的路程是x千米,则公共汽车原来的车速是km/h,开通高速公路后的车速是(+20)km/h,根据两地的路程这个相等关系列方程得(+20)×5=x,借这个方程即可求出甲乙两地的路程.【解答】解:设:甲乙两地的路程是x千米.根据题意列方程得:(+20)×5=x,解得:x=350.答:甲乙两地的路程是350千米.【点评】本题主要考查了列一元一次方程解应用题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.【分析】先根据角平分线定义求出∠COB的度数,再求出∠BOD的度数,求出∠BOE的度数,即可得出答案.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.【点评】本题考查了角平分线定义和角的有关计算,能求出∠DOE的度数是解此题的关键.24.【分析】(1)根据角的平分线的特点,可以得知所分两角相等,等于原角的一半,根据角与角之间的数量关系即可得出结论;(2)根据角的平分线的特点,可以得知所分两角相等,等于原角的一半,根据角与角之间的数量关系即可得出结论;(3)根据(2)的原理,可直接得出结论.【解答】解:(1)∵∠BOC=∠AOB+∠AOC=90°+30°=120°,射线OM平分∠BOC,∴∠COM=∠BOC=×120°=60°,∵ON平分∠AOC,∴∠CON=∠AOC=×30°=15°,∴∠MON=∠COM﹣∠CON=60°﹣15°=45°.(2)∵∠BOC=∠AOB+∠AOC=α+β,∵射线OM平分∠BOC,∴∠COM=∠BOC=(α+β),∵ON平分∠AOC,∴∠CON=∠AOC=β,∴∠MON=∠COM﹣∠CON=(α+β)﹣β=α.(3)MN=m.【点评】本题考查的是角的计算,解题的关键是明白角平分线的特点,根据此特点结合角与角间的数量关系即可得出结论.25.【分析】(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据单价×数量=总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单件利润×销售数量,列式计算即可求出结论;(3)设第二次乙种商品是按原价打y折销售,根据总利润=单件利润×销售数量,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据总利润=单件利润×销售数量列式计算;(3)找准等量关系,正确列出一元一次方程.。
浙江省温州市2019-2020学年第二学期七年级期末考试数学试卷 解析版
2019-2020学年浙江省温州市七年级(下)期末数学试卷一.选择题(共10小题)1.如图,下列选项中与∠A互为同旁内角的是()A.∠1B.∠2C.∠3D.∠42.世界上最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,质量只有0.000005克,数0.000005用科学记数法表示为()A.﹣5×106B.5×10﹣5C.5×10﹣6D.5×10﹣73.计算y2•(﹣2xy)的结果是()A.﹣2xy3B.2x2y3C.﹣2x2y3D.2xy34.已知是方程2x+y=5的一个解,则a的值为()A.a=﹣1B.a=1C.a=D.a=5.温州6月8日~14日的气温折线统计图如图所示,其中实线表示当日最高气温,虚线表示当日最低气温,由图可知,这一周中温差最大的是()A.6月9日B.6月11日C.6月12日D.6月14日6.下列运算正确的是()A.2a(a﹣1)=2a2﹣a B.a(a+3b)=a2+3abC.﹣3(a+b)=﹣3a+3b D.a(﹣a+2b)=﹣a2﹣2ab7.把一块直角三角板的直角顶点放在直尺的一边上(如图所示),则下列关于∠1与∠2的等式中一定成立的是()A.∠1+∠2=180°B.2∠1=∠2C.∠2﹣∠1=45°D.∠2﹣∠1=90°8.若多项式x2+mx﹣8因式分解的结果为(x+4)(x﹣2),则常数m的值为()A.﹣2B.2C.﹣6D.69.如图所示,以长方形ABCD的各边为直径向外作半圆,若四个半圆的周长之和为14π,面积之和为29π,则长方形ABCD的面积为()A.10B.20C.40D.8010.已知甲、乙两人分别从A,B两地同时匀速出发,若相向而行,则经过a分钟后两人相遇;若同向而行,则经过b分钟后甲追上乙.若甲、乙的速度比为10:3,则的值为()A.B.C.D.二.填空题(共6小题)11.计算:(2+x)(2﹣x)=.12.因式分解:m2﹣mn=.13.要使分式的值为0,则x的值为.14.小明对某班级同学参加课外活动内容进行问卷调查后(每人必选且只选一种),绘制成如图所示的统计图,已知参加踢毽子的人数比参加打篮球的人数少6人,则参加“其他”活动的人数为人.15.定义一种新运算:a⊗b=a b,则5⊗(﹣2)的值为.16.如图是用三角尺和直尺画平行线的示意图,将三角尺ABC沿着直尺PQ平移到三角尺A′B′C′的位置,就可以画出AB的平行线A′B′.若AC′=9cm,A′C=2cm,则直线AB平移的距离为cm.17.已知关于x,y的方程组的解互为相反数,则常数a的值为.18.如图1是小圆设计的班徽,其中“Z”字型部分按以下作图方式得到:如图2,在正方形ABCD边AB,CD上分别取点E,F,再在CB和AD的延长线上分别取点G,H,使得BE=BG=DF=DH,连结AG,EG,AF,CE,FH和CH.记△AEG与△CFH的面积之和为S1,四边形AECF的而积为S2,若=,S1+S2=20,则正方形ABCD面积为.三.解答题19.化简或计算:(1)(a+1)2﹣a2;(2)(8x2y﹣4x3)÷(2x).20.解方程(组):(1);(2)+1=.21.先化简,再求值:(1﹣)•,请在﹣1,0,1,2中选一个数代入求值.22.某厂随机抽取一批电灯泡并对其使用寿命进行检测,得到如图的频数直方图(每组含前一个边界值,不含后一个边界值),请根据这个直方图回答下列问题.(1)被检测的电灯泡共只.(2)被检测电灯泡的最少使用寿命至少为时.(3)厂家规定使用寿命在1300小时以上(含1300小时)的电灯泡为合格,如果生产了40000只电灯泡,请估计合格的电灯泡有多少只?23.如图,长方形ABCD中,AD∥BC,E为边BC上一点,将长方形沿AE折叠(AE为折痕),使点B与点F重合,EG平分∠CEF交CD于G,过点G作HG⊥EG交AD于点H.(1)求证:HG∥AE.(2)若∠CEG=20°,求∠DHG的度数.24.目前,新型冠状病毒在我国虽可控可防,但不可松懈.某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液若干瓶,已知购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元.(1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10ml的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费5000元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将9.6L的免洗手消毒液全部装入最大容量分别为300ml和500ml的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗20ml,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.2019-2020学年浙江省温州市七年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.如图,下列选项中与∠A互为同旁内角的是()A.∠1B.∠2C.∠3D.∠4【分析】根据同位角、内错角、同旁内角、对顶角的定义进行判断即可.【解答】解:A、∠1和∠A是同旁内角,故本选项符合题意;B、∠2和∠A是同位角,不是同旁内角,故本选项不符合题意;C、∠3和∠A不是同旁内角,故本选项不符合题意;D、∠4和∠A是内错角,不是同旁内角,故本选项不符合题意.故选:A.2.世界上最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,质量只有0.000005克,数0.000005用科学记数法表示为()A.﹣5×106B.5×10﹣5C.5×10﹣6D.5×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000005=5×10﹣6,故选:C.3.计算y2•(﹣2xy)的结果是()A.﹣2xy3B.2x2y3C.﹣2x2y3D.2xy3【分析】运用单项式乘单项式的运算法则计算即可.【解答】解:y2•(﹣2xy)=﹣2x•(y2•y)=﹣2xy3.故选:A.4.已知是方程2x+y=5的一个解,则a的值为()A.a=﹣1B.a=1C.a=D.a=【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把代入方程得:4+a=5,解得:a=1,故选:B.5.温州6月8日~14日的气温折线统计图如图所示,其中实线表示当日最高气温,虚线表示当日最低气温,由图可知,这一周中温差最大的是()A.6月9日B.6月11日C.6月12日D.6月14日【分析】通过图形直观可以得出温差最大的日期,即同一天的最高气温与最低气温的差最大.【解答】解:由图形直观可以得出6月14日温差最大,是35﹣25=10(°C),故选:D.6.下列运算正确的是()A.2a(a﹣1)=2a2﹣a B.a(a+3b)=a2+3abC.﹣3(a+b)=﹣3a+3b D.a(﹣a+2b)=﹣a2﹣2ab【分析】分别根据单项式乘单项式与去括号的法则逐一判断即可.【解答】解:A.2a(a﹣1)=2a2﹣2a,故本选项不合题意;B.a(a+3b)=a2+3ab,故本选项符合题意;C.﹣3(a+b)=﹣3a﹣3b,故本选项不合题意;D.a(﹣a+2b)=﹣a2+2ab,故本选项不合题意.故选:B.7.把一块直角三角板的直角顶点放在直尺的一边上(如图所示),则下列关于∠1与∠2的等式中一定成立的是()A.∠1+∠2=180°B.2∠1=∠2C.∠2﹣∠1=45°D.∠2﹣∠1=90°【分析】根据两条直线平行,同旁内角互补,即可得∠1与∠2的关系.【解答】解:如图,∵直角三角板的直角顶点放在直尺的一边上,∴∠2=∠3,∠1+∠4=90°,∵直尺的两边平行,∴∠3+∠4=180°,∴∠2+90°﹣∠1=180°,∴∠2﹣∠1=90°.故选:D.8.若多项式x2+mx﹣8因式分解的结果为(x+4)(x﹣2),则常数m的值为()A.﹣2B.2C.﹣6D.6【分析】利用十字相乘法的结果特征判断即可求出m的值.【解答】解:∵多项式x2+mx﹣8因式分解的结果为(x+4)(x﹣2),而(x+4)(x﹣2)=x2+2x﹣8,∴m=2,故选:B.9.如图所示,以长方形ABCD的各边为直径向外作半圆,若四个半圆的周长之和为14π,面积之和为29π,则长方形ABCD的面积为()A.10B.20C.40D.80【分析】设长方形的长为a,宽为b,根据四个半圆的周长之和为14π,可得a+b=14,根据面积之和为29π,可得a2+b2=116,进而求出ab的值即可.【解答】解:设长方形的长为a,宽为b,由题意得,πa+πb=14π,即:a+b=14,π×()2﹣π×()2=29π,即:a2+b2=116,∴ab=[(a+b)2﹣(a2+b2)]=(196﹣116)=40,故选:C.10.已知甲、乙两人分别从A,B两地同时匀速出发,若相向而行,则经过a分钟后两人相遇;若同向而行,则经过b分钟后甲追上乙.若甲、乙的速度比为10:3,则的值为()A.B.C.D.【分析】设甲的速度为10x,则乙的速度为3x,设A,B两地相距s,相向而行,等量关系为:甲路程+乙路程=s;同向而行,等量关系为:甲路程﹣乙路程=s,则10xa+3xa =s,10xb﹣3xb=s,联立即可求得的值.【解答】解:设甲的速度为10x,则乙的速度为3x,设A,B两地相距s,依题意有10xa+3xa=s①,10xb﹣3xb=s②,①﹣②得10xa+3xa﹣(10xb﹣3xb)=0,13a﹣7b=0,=,故选:B.二.填空题(共6小题)11.计算:(2+x)(2﹣x)=4﹣x2.【分析】利用平方差公式计算即可得到结果.【解答】解:(2+x)(2﹣x)=22﹣x2=4﹣x2.故答案为:4﹣x2.12.因式分解:m2﹣mn=m(m﹣n).【分析】提取公因式m,即可将此多项式因式分解.【解答】解:m2﹣mn=m(m﹣n).故答案为:m(m﹣n).13.要使分式的值为0,则x的值为1.【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:∵分式的值为0,∴1﹣x=0且x﹣2≠0,解得x=1,故答案为:1.14.小明对某班级同学参加课外活动内容进行问卷调查后(每人必选且只选一种),绘制成如图所示的统计图,已知参加踢毽子的人数比参加打篮球的人数少6人,则参加“其他”活动的人数为10人.【分析】先由扇形统计图得出参加踢毽子与打篮球的人数所占的百分比,结合参加踢毽子的人数比参加打篮球的人数少6人,求出参加课外活动一共的人数,进一步可求参加“其他”活动的人数.【解答】解:6÷(30%﹣15%)=40(人),40×25%=10(人).答:参加“其他”活动的人数为10人.故答案为:10.15.定义一种新运算:a⊗b=a b,则5⊗(﹣2)的值为.【分析】根据运算的定义即可直接求解【解答】解:5⊗(﹣2)=5﹣2=.故答案为:.16.如图是用三角尺和直尺画平行线的示意图,将三角尺ABC沿着直尺PQ平移到三角尺A′B′C′的位置,就可以画出AB的平行线A′B′.若AC′=9cm,A′C=2cm,则直线AB平移的距离为 5.5cm.【分析】根据线段的和差关系可求AC+A′C′的长度,除以2可求A′C′的长度,再根据线段的和差关系可求CC′的长度,即为直线AB平移的距离.【解答】解:AC+A′C′=AC′﹣A′C=9﹣2=7(cm),A′C′=7÷2=3.5(cm),CC′=A′C+A′C′=2+3.5=5.5(cm).故直线AB平移的距离为5.5cm.故答案为:5.5.17.已知关于x,y的方程组的解互为相反数,则常数a的值为15.【考点】97:二元一次方程组的解.【专题】521:一次方程(组)及应用;66:运算能力.【分析】②﹣①求出2x+2y=a﹣15,根据已知得出a﹣15=0,求出即可.【解答】解:∵②﹣①得:2x+2y=a﹣15,∵关于x,y的方程组的解互为相反数,∴x+y=0,即2x+2y=0,∴a﹣15=0,∴a=15,故答案为15.18.如图1是小圆设计的班徽,其中“Z”字型部分按以下作图方式得到:如图2,在正方形ABCD边AB,CD上分别取点E,F,再在CB和AD的延长线上分别取点G,H,使得BE=BG=DF=DH,连结AG,EG,AF,CE,FH和CH.记△AEG与△CFH的面积之和为S1,四边形AECF的而积为S2,若=,S1+S2=20,则正方形ABCD面积为.【考点】KD:全等三角形的判定与性质;LE:正方形的性质;N4:作图—应用与设计作图.【专题】13:作图题;69:应用意识.【分析】设BE=BG=DF=DH=x,AE=CF=y.想办法构建方程组求出x,y即可解决问题.【解答】解:设BE=BG=DF=DH=x,AE=CF=y.∵四边形ABCD是正方形,∴AB=BC=CD=AD=x+y,∠ABC=∠ABG=90°,∠ADF=∠CDH=90°,∵BE=BG=DF=DH,∴△BGE≌△DFH(SAS),∠BEG=∠DFH=45°,∴EG=FH,∠AEG=∠CFH=135°,∵EA=FC,∴△AEG≌△CFH(SAS),∴S△AEG=S△CFH,∴xy+y(x+y)=20 ①,=②,由①②可得,∴正方形的面积=(2+)2=.故答案为.三.解答题19.化简或计算:(1)(a+1)2﹣a2;(2)(8x2y﹣4x3)÷(2x).【考点】4C:完全平方公式;4H:整式的除法.【专题】512:整式;66:运算能力.【分析】(1)根据完全平方公式展开后,再合并同类项即可;(2)根据大学生除以单项式的运算法则计算即可.【解答】解:(1)原式=a2+2a+1﹣a2=2a+1;(2)原式=(8x2y)÷(2x)﹣(4x3)÷(2x)=4xy﹣2x2.20.解方程(组):(1);(2)+1=.【考点】98:解二元一次方程组;B3:解分式方程.【专题】524:一元一次不等式(组)及应用;66:运算能力.【分析】(1)利用加减消元法解方程组;(2)去分母得到整式方程﹣2x+x﹣1=1,然后解整式方程后进行检验确定原方程的解.【解答】解:(1),①+②×2得3x+2x=9+16,解得x=5,把x=5代入②得5﹣y=8,解得y=﹣3,所以方程组的解为;(2)去分母得﹣2x+x﹣1=1,解得x=2,经检验,原方程的解为x=﹣2.21.先化简,再求值:(1﹣)•,请在﹣1,0,1,2中选一个数代入求值.【考点】6D:分式的化简求值.【专题】513:分式;66:运算能力.【分析】先按照分式的混合运算法则进行化简,再代入使原式有意义的值进行计算.【解答】解:原式==,∵m=±1或0时,原式无意义,∴取m=2时,原式=.22.某厂随机抽取一批电灯泡并对其使用寿命进行检测,得到如图的频数直方图(每组含前一个边界值,不含后一个边界值),请根据这个直方图回答下列问题.(1)被检测的电灯泡共200只.(2)被检测电灯泡的最少使用寿命至少为1100时.(3)厂家规定使用寿命在1300小时以上(含1300小时)的电灯泡为合格,如果生产了40000只电灯泡,请估计合格的电灯泡有多少只?【考点】V5:用样本估计总体;V8:频数(率)分布直方图.【专题】54:统计与概率;65:数据分析观念.【分析】(1)根据直方图中的数据,可以得到被检测的灯泡一共多少只;(2)根据直方图中的数据,可以得到被检测电灯泡的最少使用寿命至少为多少时;(3)根据统计图中的数据,可以计算出合格的电灯泡有多少只.【解答】解:(1)被检测的电灯泡共10+80+70+40=200(只),故答案为:200;(2)被检测电灯泡的最少使用寿命至少为1100时,故答案为:1100;(3)40000×=38000(只),即合格的电灯泡有38000只.23.如图,长方形ABCD中,AD∥BC,E为边BC上一点,将长方形沿AE折叠(AE为折痕),使点B与点F重合,EG平分∠CEF交CD于G,过点G作HG⊥EG交AD于点H.(1)求证:HG∥AE.(2)若∠CEG=20°,求∠DHG的度数.【考点】JB:平行线的判定与性质.【专题】551:线段、角、相交线与平行线;556:矩形菱形正方形;558:平移、旋转与对称;67:推理能力.【分析】(1)由折叠的性质得出∠AEB=∠AEF,证出AE⊥EG,进而得出结论;(2)求出∠AEB=70°,由平行线的性质进而得出答案.【解答】(1)证明:由折叠知∠AEB=∠AEF,∵EG平分∠CEF,∴∠FEG=∠CEG,∵∠AEB+∠AEF+∠FEG+∠CEG=180°,∴∠AEG=∠AEF+∠FEG=90°,∴AE⊥EG,∵HG⊥EG,∴HG∥AE;(2)解:∵∠CEG=20°,∠AEG=90°,∴∠AEB=70°,∵四边形ABCD是长方形,∴AD∥BC,∴∠AEB=∠DAE=70°,∵HG∥AE,∴∠DHG=∠DAE=70°.24.目前,新型冠状病毒在我国虽可控可防,但不可松懈.某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液若干瓶,已知购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元.(1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10ml的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费5000元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将9.6L的免洗手消毒液全部装入最大容量分别为300ml和500ml的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗20ml,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.【考点】95:二元一次方程的应用;9A:二元一次方程组的应用.【专题】521:一次方程(组)及应用;69:应用意识.【分析】(1)设甲种免洗手消毒液的单价为x元,乙种免洗手消毒液的单价为y元,根据“购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲种免洗手消毒液a瓶,乙种免洗手消毒液b瓶,根据总价=单价×数量,即可得出关于a,b的二元一次方程,再结合可使用时间=免洗手消毒液总体积÷每天需消耗的体积,即可求出结论;(3)设分装300ml的免洗手消毒液m瓶,500ml的免洗手消毒液n瓶,根据需将9.6L 的免洗手消毒液进行分装且分装时平均每瓶需损耗20ml,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可得出各分装方案,选择(m+n)最小的方案即可得出结论.【解答】解:(1)设甲种免洗手消毒液的单价为x元,乙种免洗手消毒液的单价为y元,依题意,得:,解得:.答:甲种免洗手消毒液的单价为15元,乙种免洗手消毒液的单价为25元.(2)设购进甲种免洗手消毒液a瓶,乙种免洗手消毒液b瓶,依题意,得:15a+25b=5000,∴===10.答:这批消毒液可使用10天.(3)设分装300ml的免洗手消毒液m瓶,500ml的免洗手消毒液n瓶,依题意,得:300m+500n+20(m+n)=9600,∴m=30﹣n.∵m,n均为正整数,∴和.∵要使分装时总损耗20(m+n)最小,∴,即分装时需300ml的空瓶4瓶,500ml的空瓶16瓶,才能使总损耗最小.。
2019—2020学年度第二学期期末考试七年级数学试题及答案
七年级数学试题 第1页 共4页2019—2020学年度第二学期期末考试七年级数学试题注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷. 2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3. 答题前,务必将自己的学校、班级、姓名、准考证号填写在答题纸上相应位置. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上) 1.四边形的内角和为A .180°B .360°C .540°D .720°2.下列图形中,可以由其中一个图形通过平移得到的是A. B .CD .3.下列由左到右的变形中,因式分解正确的是A .21(1)(1)x x x -=+-B .22(1)21x x x +=++C .221(2)1x x x x -+=-+D .2(1)(1)1x x x +-=-4.满足不等式10x +>的最小整数解是A .1-B .0C .1D .25.已知24x x k ++是一个完全平方式,则常数k 为A .2B .-2C .4D .-46.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒.现有18张白铁皮,设用x 张制作盒身、y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是A .181016x y x y +=⎧⎨=⎩B .1821016x y x y +=⎧⎨⨯=⎩C .1810216x y x y +=⎧⎨=⨯⎩D .181610x y x y +=⎧⎨=⎩7.已知01()2a =-,22b -=-,2(2)c -=-,则a 、b 、c 的大小关系为A .c b a <<B .a b c <<C .b a c <<D .b c a <<七年级数学试题 第2页 共4页8. 对于有理数x ,我们规定{}x 表示不小于x 的最小整数,如{}2.23=,{}22=,{}2.52-=-,若4310x +⎧⎫=⎨⎬⎩⎭,则x 的取值可以是A .10B .20C .30D .40二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9. 如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2= ▲ °.10.命题“若a b =,则a b -=-”的逆命题是 ▲ . 11.太阳的半径约为700 000 000米,数据700 000 000用科学记数法表示为 ▲ . 12.计算:23()b b ÷= ▲ .13.如图,△ABC 中,∠1=∠2,∠BAC =60°,则∠APB = ▲ °.14.已知方程组123a b b c c a +=-⎧⎪+=⎨⎪+=⎩,则a b c ++= ▲ .15.计算:100920181(9)()3-⨯= ▲ .16.计算:2416(21)(21)(21)(21)1+++⋅⋅⋅++= ▲ .三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分)分解因式:(1)23x x -;(2)2242a a -+. 18.(本题满分6分)解方程组:2351x y x y +=⎧⎨=-⎩19.(本题满分6分)化简并求值:2(2)(21)2n n n +--,其中13n =.20.(本题满分6分)利用数轴确定不等式组2413122x x ≥-⎧⎪⎨+<⎪⎩的解集.第9题图a b1c2第13题图ABP12七年级数学试题 第3页 共4页21.(本题满分6分)如图,在方格纸上,以格点为顶点的三角形叫做格点三角形,请按要求完成下列操作: (1)将△ABC 先向右平移2个单位,再向上平移4个单位,画出平移后的△A 1B 1C 1; (2)连接AA 1、BB 1,则线段AA 1、BB 1的位置关系为 ▲ 、数量关系为 ▲ ; (3)画出△ABC 的AB 边上的中线CD 以及BC 边上的高AE .22.(本题满分6分)已知:如图,是一个形如“5”字的图形,AC ∥DE ,AB ∥CD ,∠D +∠E =180°.求证:∠A =∠E . 证明:∵ ▲( 已知 ) ∴∠A +∠C =180° ( ▲ ) ∵AC ∥DE( ▲ )∴∠ ▲ =∠D ( ▲ ) 又∠D +∠E =180° ( 已知 ) ∴∠A =∠E( ▲ )23.(本题满分8分)已知关于x 、y 的二元一次方程组23,2 6.x y m x y -=⎧⎨-=⎩(1)若方程组的解满足4x y -=,求m 的值; (2)若方程组的解满足0x y +<,求m 的取值范围.24.(本题满分8分)一家公司加工蔬菜,有粗加工和精加工两种方式.如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨.该公司从市场上收购蔬菜150吨,并用14天加工完这批蔬菜.请问粗加工蔬菜和精加工蔬菜各多少吨?ABC AB C EDF七年级数学试题 第4页 共4页25.(本题满分8分)小军、小华、小峰三人身上各有一些1元和5角的硬币.小军:我有1元和5角的硬币共13枚,总币值为9元. 小华:我有1元和5角的硬币共13枚,总币值小于8.5元. 小峰:我有1元和5角的硬币若干,这些硬币的总币值为4元. 这三人身上哪一个的5角硬币最多呢?请写出解答过程.26.(本题满分12分)三角形内角和定理告诉我们:三角形三个内角的和等于180°.如何证明这个定理呢?我们知道,平角是180°,要证明这个定理就是把三角形的三个内角转移到一个平角中去.请根据如下条件,证明定理. 【定理证明】已知:△ABC (如图①). 求证:∠A +∠B +∠C =180°. 【定理推论】如图②,在△ABC 中,有∠A +∠B +∠ACB =180°,点D 是BC 延长线上一点,由平角的定义可得∠ACD +∠ACB =180°,所以∠ACD = ▲ .从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和.【初步运用】如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点. (1)若∠A =80°,∠DBC =150°,则∠ACB = ▲ °; (2)若∠A =80°,则∠DBC +∠ECB = ▲ °. 【拓展延伸】如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =80°,∠P =150°,则∠DBP +∠ECP = ▲ °;(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =50°,则∠A 和∠P的数量关系为 ▲ ; (3)分别作∠DBP 和∠ECP 的平分线BM 、CN ,如图⑥,若∠A =∠P ,求证:BM ∥CN .图④B ACDE P 图⑤B ACDE P O图⑥B ACD EP MN B A C D 图② 图③B A CD EA C 图①七年级数学试题 第5页 共4页七年级数学参考答案与评分细则一、选择题(每小题3分,共24分)1.B 2.C 3.A 4.B 5.C6.B7.D8.B二、填空题(每小题3分,共24分)9. 7010.若a b -=-,则a b = 11.8710⨯12.5b 13.120 14.2 15.1-16.322三、解答题 17.解:(1)23x x -=(3)x x -······································································ 3分(2)2242a a -+=22(1a -) ······························································ 6分18.解:23x y =-⎧⎨=⎩······················································································· 6分(x 、y 的值作对一个得3分)19.解:原式=32n - ················································································· 4分当13n =时,原式=1- ··········································································· 6分20.解: 2413122x x ≥-⎧⎪⎨+<⎪⎩①② 由①得2x ≥- ················································································ 1分 由②得1x < ·················································································· 2分 在数轴上表示不等式①、②的解集·························4分所以,不等式组的解集是21x -≤< ··············6分21.解:(1)如图 ·················································2分(2)AA 1∥BB 1、AA 1=BB 1·········································· 4分 (3)如图·················································6分ABC A 1B 1C 1D┐E七年级数学试题 第6页 共4页22.解: AB ∥CD ················································································································· 1分(两直线平行,同旁内角互补) ········································ 2分 (已知) ······································································ 3分∠C (两直线平行,内错角相等) ··········································· 5分(等角的补角相等) ······················································· 6分23.解:2326x y m x y -=⎧⎨-=⎩①②(1)方法一:由题得4x y -=③③-②得 2y =- ··········································································· 1分 把2y =-代人②得 2x = ·································································· 2分把22x y =⎧⎨=-⎩代入①解得 2m = ··············································································· 4分方法二:①+②得 3336x y m -=+即2x y m -=+ ··············································································· 2分 由③得 24m +=解得 2m = ··············································································································· 4分 (2)①-②得 36x y m +=- ··································································· 6分又0x y +< 所以360m -<解得2m < ···················································································· 8分24.解:设粗加工蔬菜为x 吨,精加工蔬菜为y 吨 ············································ 1分得15014155x y x y +=⎧⎪⎨+=⎪⎩ ············································································· 4分解得12030x y =⎧⎨=⎩················································································ 7分答:粗加工蔬菜为120吨,精加工蔬菜为30吨 ···································· 8分25.解:设小军身上有1元硬币x 枚,5角硬币y 枚得 130.59x y x y +=⎧⎨+=⎩解得 58x y =⎧⎨=⎩·················································································· 2分所以,小军身上有5角硬币8枚设小华身上有5角硬币m 枚七年级数学试题 第7页 共4页得 130.58.5m m -+<, 解得 9m >所以,小军身上有5角硬币至少10枚 ················································· 4分 设小峰身上有1元硬币a 枚,5角硬币b 枚 得 0.54a b +=82b a =- 所以,小峰身上有5角硬币不超过8枚(写出不超过6或不超过8的正整数解也可以) ··································· 6分 综上所述,可得小华身上5角硬币最多 ··············································· 8分26.【定理证明】证明:方法一:过点A 作直线MN ∥BC ,如图所示∴∠MAB =∠B ,∠NAC =∠C ∵∠MAB +∠BAC +∠NAC =180°∴∠BAC +∠B +∠C =180° ······························································ 3分 方法二:延长BC 到点D ,过点C 作CE ∥AB ,如图所示 ∴∠A =∠ACE ,∠B =∠ECD ∵∠ACB +∠ACE +∠ECD =180° ∴∠A +∠B +∠ACB =180° ······························································ 3分【定理推论】∠A +∠B ·················································································································· 4分 【初步运用】(1)70° ························································································ 5分 (2)260° ······················································································ 6分 【拓展延伸】(1)230° ······················································································ 7分 (2)∠P =∠A +100° ······································································· 9分 (3)证明:延长BP 交CN 于点Q ∵BM 平分∠DBP ,CN 平分∠ECP ∴2DBP MBP ∠=∠2ECP NCP ∠=∠∵DBP ECP A BPC ∠+∠=∠+∠A BPC ∠=∠∴222MBP NCP A BPC BPC ∠+∠=∠+∠=∠ ∴BPC MBP NCP ∠=∠+∠ ∵BPC PQC NCP ∠=∠+∠ ∴MBP PQC ∠=∠∴BM ∥CN ············································································································· 12分BACMNA CDEB AC DE PMNQ。
2018-2019学年第二学期人教版七年级数学期末测试卷(解析版)
人教版七年级下册数学期末测试卷考试时间:90分钟;满分:100分班级:___________姓名:___________学号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.(3分)的算术平方根是()A.2B.±2C.D.±2.(3分)点P(m+3,m﹣1)在x轴上,则点P的坐标为()A.(0,﹣2)B.(2,0)C.(4,0)D.(0,﹣4)3.(3分)如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE4.(3分)已知a,b满足方程组,则a+b的值为()A.﹣4B.4C.﹣2D.25.(3分)若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.>D.m2>n26.(3分)下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件7.(3分)方程2x﹣=0,3x+y=0,2x+xy=1,3x+y﹣2x=0,x2﹣x+1=0中,二元一次方程的个数是()A.5个B.4个C.3个D.2个8.(3分)下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.在同一平面内,若直线a∥b,a∥c,则b∥cD.若两条线段不相交,则它们互相平行9.(3分)实数a,b在数轴上对应的点的位置如图所示,计算|a﹣b|的结果为()A.a+b B.a﹣b C.b﹣a D.﹣a﹣b10.(3分)如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点A(3,1),B(2,2),则“宝藏”点C的位置是()A.(1,0)B.(1,2)C.(2,1)D.(1,1)二.填空题(共6小题,满分24分,每小题4分)11.(4分)有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是.12.(4分)如图所示,AB∥EF,∠B=35°,∠E=25°,则∠C+∠D的值为.13.(4分)定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=.14.(4分)关于x的不等式组的整数解共有3个,则a的取值范围是.15.(4分)一个正数的平方根分别是x+1和x﹣5,则x=.16.(4分)如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是人.三.解答题(共8小题,满分46分)17.(5分)计算:(﹣2)2+|﹣1|﹣.18.(6分)正数x的两个平方根分别为3﹣a和2a+7.(1)求a的值;(2)求44﹣x这个数的立方根.19.(5分)已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.20.(5分)如图是某个海岛的平面示意图,如果哨所1的坐标是(1,3),哨所2的坐标是(﹣2,0),请你先建立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的位置.21.(6分)解方程组(1)(2)22.(5分)解不等式组,并把解集在数轴上表示出来.23.(8分)某校为了了解八年级学生对S(科学)、T(技术)、E(工程)、A(艺术)、M(数学)中哪一个领域最感兴趣的情况,该校对八年级学生进行了抽样调查,根据调查结果绘制成如下的条形图和扇形图,请根据图中提供的信息,解答下列问题:(1)这次抽样调查共调查了多少名学生?(2)补全条形统计图;(3)求扇形统计图中M(数学)所对应的圆心角度数;(4)若该校八年级学生共有400人,请根据样本数据估计该校八年级学生中对S(科学)最感兴趣的学生大约有多少人?24.(6分)某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?人教版七年级下册数学期末测试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)的算术平方根是()A.2B.±2C.D.±【分析】先求得的值,再继续求所求数的算术平方根即可.【解答】解:∵=2,而2的算术平方根是,∴的算术平方根是,故选:C.2.(3分)点P(m+3,m﹣1)在x轴上,则点P的坐标为()A.(0,﹣2)B.(2,0)C.(4,0)D.(0,﹣4)【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求出横坐标即可得解.【解答】解:∵点P(m+3,m﹣1)在x轴上,∴m﹣1=0,解得m=1,∴m+3=1+3=4,∴点P的坐标为(4,0).故选:C.3.(3分)如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE 【分析】根据平行线的判定定理即可直接判断.【解答】解:A、两个角不是同位角、也不是内错角,故选项错误;B、两个角不是同位角、也不是内错角,故选项错误;C、不是EC和AB形成的同位角、也不是内错角,故选项错误;D、正确.故选:D.4.(3分)已知a,b满足方程组,则a+b的值为()A.﹣4B.4C.﹣2D.2【分析】求出方程组的解得到a与b的值,即可确定出a+b的值.【解答】解:法1:,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,则a+b=4,法2:①+②得:4a+4b=16,则a+b=4,故选:B.5.(3分)若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.>D.m2>n2【分析】根据不等式的性质1,可判断A;根据不等式的性质2,可判断B、C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选:D.6.(3分)下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选:D.7.(3分)方程2x﹣=0,3x+y=0,2x+xy=1,3x+y﹣2x=0,x2﹣x+1=0中,二元一次方程的个数是()A.5个B.4个C.3个D.2个【分析】含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.【解答】解:2x﹣=0是分式方程,不是二元一次方程;3x+y=0是二元次方程;2x+xy=1不是二元一次方程;3x+y﹣2x=0是二元一次方程;x2﹣x+1=0不是二元一次方程.故选:D.8.(3分)下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.在同一平面内,若直线a∥b,a∥c,则b∥cD.若两条线段不相交,则它们互相平行【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【解答】解:A、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;B、过直线外一点,有且只有一条直线与已知直线平行.故错误;C、在同一平面内,平行于同一直线的两条直线平行.故正确;D、根据平行线的定义知是错误的.故选:C.9.(3分)实数a,b在数轴上对应的点的位置如图所示,计算|a﹣b|的结果为()A.a+b B.a﹣b C.b﹣a D.﹣a﹣b【分析】根据绝对值的意义:非负数的绝对值是它本身,负数的绝对值是它的相反数.同时注意数轴上右边的数总大于左边的数,即可解答.【解答】解:由数轴可得:a<0<b,|a|>|b|,∴a﹣b<0,∴|a﹣b|=﹣(a﹣b)=b﹣a,故选:C.10.(3分)如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点A(3,1),B(2,2),则“宝藏”点C的位置是()A.(1,0)B.(1,2)C.(2,1)D.(1,1)【分析】根据题意首先确定原点的位置,进而得出“宝藏”的位置.【解答】解:根据两个标志点A(3,1),B(2,2)可建立如下所示的坐标系:由平面直角坐标系知,“宝藏”点C的位置是(1,1),故选:D.二.填空题(共6小题,满分24分,每小题4分)11.(4分)有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是6.【分析】首先根据频率=频数÷数据总数求得第5组的频数,然后根据6个组的频数和等于数据总数即可求得第6组的频数.【解答】解:∵有50个数据,共分成6组,第5组的频率是0.16,∴第5组的频数为50×0.16=8;又∵第1~4组的频数分别为10,8,7,11,∴第6组的频数为50﹣(10+8+7+11+8)=6.故答案为:6.12.(4分)如图所示,AB∥EF,∠B=35°,∠E=25°,则∠C+∠D的值为240°.【分析】过C作CG∥AB,过D作DH∥EF,依据AB∥EF,可得AB∥EF∥CG∥DH,进而得出∠1=∠B =35°,∠2=∠E=25°,∠GCD+∠HDC=180°,可得∠BCD+∠CDE=35°+180°+25°=240°.【解答】解:如图所示,过C作CG∥AB,过D作DH∥EF,∵AB∥EF,∴AB∥EF∥CG∥DH,∴∠1=∠B=35°,∠2=∠E=25°,∠GCD+∠HDC=180°,∴∠BCD+∠CDE=35°+180°+25°=240°,故答案为:240°.13.(4分)定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=10.【分析】已知等式利用新定义化简,求出a与b的值,即可求出所求式子的值.【解答】解:根据题中的新定义化简已知等式得:,解得:a=1,b=2,则2*3=4a+3b=4+6=10,故答案为:10.14.(4分)关于x的不等式组的整数解共有3个,则a的取值范围是﹣3≤a<﹣2.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:由不等式①得x>a,由不等式②得x<1,所以不等式组的解集是a<x<1,∵关于x的不等式组的整数解共有3个,∴3个整数解为0,﹣1,﹣2,∴a的取值范围是﹣3≤a<﹣2.15.(4分)一个正数的平方根分别是x+1和x﹣5,则x=2.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.16.(4分)如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是10人.【分析】根据喜爱新闻类电视节目的人数和所占的百分比,即可求出总人数;根据总人数和喜爱动画类电视节目所占的百分比,求出喜爱动画类电视节目的人数,进一步利用减法可求喜爱“体育”节目的人数.【解答】解:5÷10%=50(人),50×30%=15(人),50﹣5﹣15﹣20=10(人).答:喜爱“体育”节目的人数是10人.故答案为:10.三.解答题(共8小题,满分46分)17.(5分)计算:(﹣2)2+|﹣1|﹣.【分析】原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用立方根定义计算即可得到结果.【解答】解:原式=4+﹣1﹣3=.18.(6分)正数x的两个平方根分别为3﹣a和2a+7.(1)求a的值;(2)求44﹣x这个数的立方根.【分析】(1)根据一个正数有两个平方根,它们互为相反数,求出a的值;(2)根据a的值得出这个正数的两个平方根,即可得出这个正数,计算出44﹣x的值,再根据立方根的定义即可解答.【解答】解:(1)∵正数x的两个平方根是3﹣a和2a+7,∴3﹣a+(2a+7)=0,解得:a=﹣10(2)∵a=﹣10,∴3﹣a=13,2a+7=﹣13.∴这个正数的两个平方根是±13,∴这个正数是169.44﹣x=44﹣169=﹣125,﹣125的立方根是﹣5.19.(5分)已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.【分析】由于AD∥BE可以得到∠A=∠3,又∠1=∠2可以得到DE∥AC,由此可以证明∠E=∠3,等量代换即可证明题目结论.【解答】证明:∵AD∥BE,∴∠A=∠3,∵∠1=∠2,∴DE∥AC,∴∠E=∠3,∴∠A=∠EBC=∠E.20.(5分)如图是某个海岛的平面示意图,如果哨所1的坐标是(1,3),哨所2的坐标是(﹣2,0),请你先建立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的位置.【分析】建立直角坐标系的关键是确定原点,x轴和y轴,确定单位长度即可得出答案.【解答】解:建立如图所示的平面直角坐标系:小广场(0,0)、雷达(4,0)、营房(2,﹣3)、码头(﹣1,﹣2).21.(6分)解方程组(1)(2)【分析】根据解二元一次方程组的方法解方程组即可.【解答】解:(1)原方程组可化为:,②﹣①×3得,19y=18,∴y=,把y=代入②得,3x﹣2×=0,∴x=,∴原方程组的解为;(2)原方程组可化为:,①×2﹣②得,19n=﹣19,∴n=﹣1,把n=﹣1代入①得,m=4,∴原方程组的解为.22.(5分)解不等式组,并把解集在数轴上表示出来.【分析】分别解两个不等式得到x>1和x>3,然后根据同大取大确定不等式组的解集.【解答】解:,解①得x>1,解②得x>3,所以不等式组的解集为x>3,用数轴表示为:.23.(8分)某校为了了解八年级学生对S(科学)、T(技术)、E(工程)、A(艺术)、M(数学)中哪一个领域最感兴趣的情况,该校对八年级学生进行了抽样调查,根据调查结果绘制成如下的条形图和扇形图,请根据图中提供的信息,解答下列问题:(1)这次抽样调查共调查了多少名学生?(2)补全条形统计图;(3)求扇形统计图中M(数学)所对应的圆心角度数;(4)若该校八年级学生共有400人,请根据样本数据估计该校八年级学生中对S(科学)最感兴趣的学生大约有多少人?【分析】(1)根据S(科学),的人数已经百分比,计算即可;(2)求出A组人数,画出条形图即可;(3)根据圆心角=360°×百分比计算即可;(4)利用样本估计总体的思想解决问题即可;【解答】解:(1)18÷36%=50(人),答:这次抽样调查共调查了50名学生.(2)A组人数=50﹣18﹣4﹣3﹣10=15,条形图如图所示:(3)10÷50×100%=20%,360°×20%=72°,答:扇形统计图中M(数学)所对应的圆心角度数为72°.(4)400×36%=144(人),答:根据样本数据估计该校八年级学生中对S(科学)最感兴趣的学生大约有144人.24.(6分)某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?【分析】先设中型车有x辆,小型车有y辆,再根据题中两个等量关系,列出二元一次方程组进行求解.【解答】解:设中型车有x辆,小型车有y辆,根据题意,得解得答:中型车有20辆,小型车有30辆.。
2019年浙江温州中考数学试题(解析版)
{来源}2019年浙江温州中考数学试卷{适用范围:3.九年级}{标题}2019年浙江省温州市中考数学试卷考试时间:120分钟满分:150分卷Ⅰ{题型:1-选择题}一、选择题:本大题共10小题,每小题4分,合计40分.{题目}1.(2019年温州)计算:(-3)×5的结果是A.-15 B.15 C.-2 D.2{答案}A{解析}本题考查了根据有理数乘法法则,∵(-3)×5=-15,因此本题选A.{分值}4{章节:[1-1-4-1]有理数的乘法}{考点:有理数的乘法法则}{考点:两个有理数相乘}{类别:常考题}{难度:1-最简单}{题目}2.(2019年温州)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为A.0.25×1018B.2.5×1017C.25×1016D.2.5×1016{答案}B{解析}本题考查了用科学记数法表示较大的数,:250 000 000 000 000 000=2.5×1017,因此本题选B.{分值}4{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}3.(2019年温州)某露天舞台如图所示,它的俯视图...是C.{答案}B{解析}因此本题选B.{分值}4{章节:[1-29-2]三视图}{考点:简单组合体的三视图}{类别:常考题}{难度:1-最简单}{题目}4.(2019年温州)在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为(第3题)A .16B .13C .12D .23{答案}A{解析}本题考查了概率公式,由2张“方块”,3张“梅花”,1张“红桃”中任意抽取1张,是“红桃”的概率为16,因此本题选A . {分值}4{章节:[1-25-2]用列举法求概率} {考点:一步事件的概率} {类别:常考题} {难度:1-最简单}{题目}5.(2019年温州)对温州某社区居民最爱吃的鱼类进行问卷调查后(没任选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有 A .20人 B .40人 C .60人 D .80人{答案}D{解析}本题考查了扇形统计图,根据喜欢吃鲳鱼的人数及其百分比求得总人数,再乘以喜欢吃黄鱼的人数所占百分比即可.(40÷20%)×40%=80,因此本题选D . {分值}4{章节:[1-10-1]统计调查} {考点:扇形统计图} {类别:常考题} {难度:1-最简单}{题目}6.(2019年温州)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应A .y =xB .y =100C .y =xD .y =400{答案}A{解析}本题考查了根据实际问题列反比例函数关系式,根据表格数据可得近视眼镜的度数y 与镜片的焦距x 成反比例,设y 关于x 的函数关系式是y =k x ,∵y =400,x =0.25,∴400=0.25k ,解得:k =100,∴y 关于x 的函数关系式是y =100x.因此本题选A . {分值}4{章节:[1-26-2]实际问题与反比例函数} {考点:生活中的反比例函数的应用} {考点:反比例函数的解析式} {类别:易错题}温州某社区居民最爱吃的 鱼类情况统计图(第5题){难度:2-简单}{题目}7.(2019年温州)若扇形的圆心角为90°,半径为6,则该扇形的弧长为A .32πB .2πC .3πD .6π{答案}C{解析}本题考查了弧长计算,直接利用弧长公式计算即可,该扇形的弧长=906180π⋅⋅=3π.因此本题选C . {分值}4{章节:[1-24-4]弧长和扇形面积} {考点:弧长的计算} {类别:常考题} {难度:2-简单}{题目}8.(2019年温州)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为A .95sin αB .95cos αC .59sin αD .59cos α{答案}B{解析}本题考查了轴对称图形和解直角三角形的应用,依题意BC =3+0.3×2=3.6m ,因此cos α=12BC AB ,所以AB =13.62cos α⨯=95cos α,因此本题选B . {分值}4{章节:[1-28-1-2]解直角三角形} {考点:解直角三角形} {考点:轴对称的性质} {类别:常考题} {难度:2-简单}{题目}9.(2019年温州)已知二次函数y =x 2-4x +2,关于该函数在-1≤x ≤3的取值范围内,下列说法正确的是 A .有最大值-1,有最小值-2 B .有最大值0,有最小值-1 C .有最大值7,有最小值-1 D .有最大值7,有最小值-2 {答案}D{解析}本题考查了二次函数的最值,由于二次函数的解析式可化为y =(x -2)2-2,因此抛物线的对称轴为x =2,a =1>0,所以x =2是y min =-2,当x =-1时,y max =1+4+2=7,因此本题选D . {分值}4{章节:[1-22-1-4]二次函数y =ax 2+bx +c 的图象和性质} {考点:二次函数y =ax 2+bx +c 的性质} {考点:二次函数的三种形式}{考点:二次函数的系数与图象的关系}(第8题){类别:易错题} {难度:2-简单}{题目}10.(2019年温州)如图,在矩形ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H .在边BE 上取点M 使BM =BC ,作MN ∥BG 交CD 于点L ,交FG 于点N .欧几里得在《几何原本》中利用该图解释了(a +b )(a -b )=a 2-b 2.现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连接EP ,记△EPH 的面积为S 1,图中阴影部分的面积为S 2.若点A ,L ,G 在同一直线上,则12S S 的值为A.2B.3C.4D.6{答案}C{解析}本题考查了相似三角形的判定与性质,垂径定理,勾股定理,正方形面积、三角形面积的计算等内容,依题意PH所以S 1=12PH HE ⋅⋅=1(2a b -又S 2=a 2-b 2,所以12S S,当A ,L ,G 三点在一条直线上时,我们有a b b a b a b -=+-,即a =3b ,所以12S SC . {分值}4{章节:[1-27-1-3]相似三角形应用举例} {考点:由平行判定相似} {考点:垂径定理} {考点:勾股定理} {考点:三角形的面积} {考点:平方差公式} {类别:数学文化} {难度:3-中等难度}卷 Ⅱ{题型:2-填空题}二、填空题:本大题共 6小题,每小题5分,合计30分.{题目}11.(2019年温州)分解因式:m 2+4m +4= .{答案}(m +2)2{解析}本题考查了用公式法分解因式,m 2+4m +4=m 2+2×2m +22=(2m +2)2,因此本题应填(m +2)2. {分值}5{章节:[1-14-3]因式分解}{考点:因式分解-完全平方式} {类别:常考题}DAGN(第10题){难度:1-最简单}{题目}12.(2019年温州)不等式组23142x x +>⎧⎪⎨-≤⎪⎩的解为 .{答案}1<x ≤9{解析}本题考查了一元一次不等式的解法,由x +2>3得:x >1,由142x -≤得:x ≤9,所以不等式组23142x x +>⎧⎪⎨-≤⎪⎩的解集为:1<x ≤9,因此本题应填1<x ≤9.{分值}5{章节:[1-9-3]一元一次不等式组} {考点:解一元一次不等式组} {类别:常考题} {难度:2-简单}{题目}13.(2019年温州)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示.其中成绩为“优良”(80分以上)的学生有 人.{答案}90{解析}本题考查了频数分布直方图,利用频数分布直方图可得各分数段的人数,然后把后两组的人数相加即可.因为60+30=90,因此本题应填90. {分值}5{章节:[1-10-2]直方图}{考点:频数(率)分布直方图} {类别:常考题} {难度:2-简单}{题目}14.(2019年温州)如图,⊙O 分别切∠BAC 的两边AB ,AC 于点E ,F ,点P 在优弧(EDF )上,若∠BAC =66°,则∠EPF 等于 度.{答案}57{解析}本题考查了切线的性质,四边形的内角和,以及圆心角和圆周角的关系,连接OF ,OE (如(第13题)15103560 30A(第14题)BA14题答图答图),则OF ⊥AC ,OE ⊥AB ,所以∠AFO =∠AEO =90°,又∠BAC =66°,在四边形AFOE 中,∠EOF =360°-90°-90°-66°=114°,所以∠EPF =12∠EOF =57°,因此本题应填57. {分值}5{章节:[1-24-2-2]直线和圆的位置关系} {考点:切线的性质} {考点:圆周角定理} {考点:多边形的内角和} {类别:常考题} {难度:2-简单}{题目}15.(2019年温州)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB =∠AOE =90°,菱形的较短对角线长2cm ,若点C 落在AH 的延长线上,则△ABE 的周长为 cm .{答案}12+{解析}本题考查了相似三角形的判定与性质,勾股定理以技术进行周长的计算,依题意AH 的延长线过点C ,交BO 于点M ,连接IC 交BO 于点N (如答图),则△INO ∽△MOA ,△CNM ∽△AOM ,所以ON IN AO MO =,MN CN MO AO =,即12ON ON MO =,1MN MO AO =,所以MO =2,MN =2AO ,所以ON =(2+2AO ),又AO =2ON ,所以AO =2(2+2AO),解得AO =2+,所以AB =AE=4+BE =2AO =4+ABE 的周长=(4+4+)+(4+12+12+. {分值}5{章节:[1-27-1-3]相似三角形应用举例} {考点:相似三角形的判定(两角相等)} {考点:相似三角形的性质} {考点:分式方程的解} {类别:高度原创} {难度:3-中等难度}{题目}16.(2019年温州)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后的示意图如图2所示,两支脚OC =OD =10分米,展开角∠COD =60°,晾衣臂OA =OB =10分米,晾衣臂支架HG =FE =6分米,且HO =FO =4分米.当∠AOC =90°时,点A 离地面的距离AM 为 分米,当OB 从水平状态旋转到OB ′(在OC 的延长线上)时,点E 绕点F 随之旋转至OB ′上的点E ′处,则B ′E ′-BE 为 分米.B(第15题)B15题答图{答案}5+;4{解析}本题考查了解直角三角形和等腰三角形的性质,过O 点分别做OK ⊥AM ,ON ⊥CD (如答图),则ON =MKAM =AK +KM ,因为OC =OD =10分米,∠COD =60°,ON ⊥CD ,所以ON =OC ·cos30°=AOK +∠KOC =∠KOC +∠CON =90°。
浙江省温州市2019-2020学年高一上学期期末教学质量统一检测物理(A卷)(解析版)
机密★考试结束前2020年1月温州市高一期末教学质量统一检测物理试题卷(A)考生须知:1本试卷分选择题和非选择题两部分,共6页,满分100分,考试时问90分钟2考生答题前,务必将自己的姓名准考证号用黑色字迹的签字笔或钢笔填写在答题卡上3选择题的答案须用2B铅笔将答题卷上对应题目的答案标号涂卡可能用到的相关参数:重力加速度g均取10m/s 2。
选择题部分一、选择题(本题共12小题,每小题3分,共36分。
每小题列出的四个选项中只有一个是符合题目要求的,不选多选、错选均不得分)1.下列物理量中属于标量的是()A. 时间B. 位移C. 速度D. 加速度2.下列物理量属于基本量且单位属于国际单位制中基本单位的是()A. 质量/千克B. 长度/千米C. 时间/分钟D. 力/牛顿3.2019年10月28日,我国自主研制的新能源电动飞机-RX4E锐翔在沈阳试飞成功,时速达到260公里,航程达到300公里,标志着我国航空产业和技术创新“大小齐飞、油电并进”的全面发展。
则下列说法正确的是()A. “时速260公里”指的是平均速度B. “航程300公里”指的是位移C. 电动飞机在空中调整姿态时不可以看成质点D. 当电动飞机加速上升时,其惯性增大4.夏天雨后的早晨,一只蜗牛趴在一片倾斜的树叶上一动不动,如图所示。
下列说法中正确的是()A. 蜗牛对树叶的压力是由树叶的形变产生的B. 树叶对蜗牛的摩擦力沿树叶斜向下C. 树叶受到的压力与蜗牛受到的重力是一对作用力与反作用力D. 树叶对蜗牛的作用力与蜗牛的重力是一对平衡力5.近几年各学校流行跑操。
跑操队伍在通过圆形弯道时,每一列的连线沿着跑道;每一排的连线是一条直线,且必须与跑道垂直;在跑操过程中,每位同学之间的间距保持不变。
如图为某班学生队伍以整齐的步伐通过圆形弯道时的情形,此时刻()A. 同一列学生的线速度相同B. 同一排学生的线速度相同C. 全班同学的角速度相同D. 同一列学生的向心力相同6.如图所示,白胖同学在电梯内的体重计上称体重。
2019-2020学年浙江省温州市瑞安市八年级下学期期中数学试卷 (解析版)
2019-2020学年浙江省温州市瑞安市八年级第二学期期中数学试卷一、选择题1.下面这几个车标中,是中心对称图形而不是轴对称图形的共有()A.1B.2C.3D.42.下列化简结果正确的是()A.==B.+=C.==x D.3﹣2=13.一元二次方程3x2﹣2x+1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实根数C.只有一个实数根D.没有实数根4.在平行四边形ABCD中,下列结论一定成立的是()A.AC⊥BD B.AB=AD C.∠A≠∠C D.∠A+∠B=180°5.下列选项,可以用来证明命题“若a2>b2,则a>b”是假命题的反例是()A.a=3,b=﹣2B.a=2,b=1C.a=﹣3,b=2D.a=﹣2,b=3 6.若一个关于x的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是()A.x2﹣7x+12=0B.x2+7x+12=0C.x2﹣9x+20=0D.x2+9x+20=0 7.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=1828.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是矩形9.平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为()cm.A.14B.16C.12或14D.14或1610.如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,F是对角线AC上的一个动点,则FE+FB的最小值是()A.1B.C.2D.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.要使二次根式有意义,那么x的取值范围是.12.若一个正多边形的每一个外角都是30°,则这个正多边形的边数为.13.已知菱形ABCD的两条对角线的长分别是x2﹣6x+8=0的两个根,则菱形ABCD的面积是.14.若一组数据2、3、x、4、5的平均数是4,则这组数据的方差为.15.如图,某小区规划在一个长30m、宽20m的矩形ABCD上,修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成m.16.如图,在矩形ABCD中,AD=2,AB=4,点E是线段AD的中点,点F是线段AB内一点.连结EF,把△AEF沿EF折叠,当点A的对应点A′落在矩形ABCD 的对角线上时,AF的长为.三、解答题:共52分.解答应写出文字说明、证明过程或演算步骤.17.计算:(1)+×﹣;(2)﹣(2+)(2﹣).18.用适当的方法解下列方程:(1)x2﹣10x+16=0;(2)2x(x﹣1)=x﹣1.19.如图,在5×5的正方形网格中,每个小正方形的边长都是1,点A,B,C,D,E是五个格点,请在所给的网格中按下列要求画出图形.(1)从所给的五个格点中选出其中四个作为顶点做一个平行四边形.(2)过剩余一个点做一条直线l,使得直线l平分(1)小题中所做的平行四边形的面积.20.某校需要选出一名同学去参加温州市“生活中的数学说题”比赛,现有5名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知5名候选人模拟说题比赛成绩情况如表所示.某校5名候选人模拟说题比赛成绩情况候选人A B C D E 模拟说题比赛成8375908590绩(1)5名候选人模拟说题比赛成绩的中位数是;(2)由于C、E两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按2:3:5的比例最后确定成绩,最终谁将参加说题比赛.已知C、E两名候选人平时成绩、任课老师打分情况如表所示.C E平时成绩9585任课老师打分809021.如图,在▱ABCD中,点E,F分别在边BC和边AD上,且AF=CE,EF与对角线BD相交于点O.连接EF,BD.(1)求证:EF和BD互相平分.(2)若EF⊥BD,△ABF的周长为10,则▱ABCD的周长为多少?22.2019年12月以来,发现一种急性呼吸道病.感染者的临床表现为:以发热、乏力、干咳为主要表现.约半数患者多在一周后出现呼吸困难,严重者快速进展为急性呼吸窘迫综合征、脓毒症休克、难以纠正的代谢性酸中毒和出凝血功能障碍.(1)在初期,有1人感染了,经过两轮传染后共有144人感染了(这两轮感染因为人们不了解病毒而均未被发现未被隔离),则每轮传染中平均一个人传染了几个人?(2)后来举国上下众志成城,全都隔离在家.小玲的爷爷因为种的水果香梨遇到销滞难题而发愁,于是小玲想到了在微信朋友圈里帮爷爷销售香梨.香梨每斤成本为4元/斤,她发现当售价为6元/斤时,每天可以卖80斤.在销售过程中,她还发现一斤香梨每降价0.5元时,则每天可以多卖出10斤.为了最大幅度地增加销售量,而且每天要达到100元的利润,问小玲应该将售价定为多少元?23.如图,在平面直角坐标系中,把矩形OBCD沿对角线OC所在直线折叠,点B落在点B′处,OB′与CD相交于点E,BC=4,对角线OC所在直线的函数表达式为y=2x.(1)求证:△ODE≌△CB′E;(2)请写出CE的长和B′的坐标;(3)F是直线OC上一个动点,点G是矩形OBCD边上一点(包括顶点).是否存在点G使得G,F,B′,C所组成的四边形是平行四边形?如果不存在,请说明理由;如果存在,直接请求出F的坐标.参考答案一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面这几个车标中,是中心对称图形而不是轴对称图形的共有()A.1B.2C.3D.4【分析】结合车标图案,根据轴对称图形与中心对称图形的概念求解.解:第一个图形,既是中心对称图形,又是轴对称图形,故选项错误;第二个图形,是轴对称图形,不是中心对称图形,故选项错误;第三个图形,是轴对称图形,不是中心对称图形,故选项错误;第四、五个是中心对称图形而不是轴对称图形,故选项正确.故选:B.2.下列化简结果正确的是()A.==B.+=C.==x D.3﹣2=1【分析】直接利用二次根式的加减运算法则以及二次根式的性质分别化简得出答案.解:A、==,故此选项正确;B、+,不是同类二次根式,无法计算,故此选项错误;C、==,故此选项错误;D、3﹣2,不是同类二次根式,无法计算,故此选项错误.故选:A.3.一元二次方程3x2﹣2x+1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实根数C.只有一个实数根D.没有实数根【分析】计算出判别式△=b2﹣4ac的值即可作出判断.解:∵a=3,b=﹣2,c=1,∴△=(﹣2)2﹣4×3×1=﹣4<0,∴方程没有实数根,故选:D.4.在平行四边形ABCD中,下列结论一定成立的是()A.AC⊥BD B.AB=AD C.∠A≠∠C D.∠A+∠B=180°【分析】由四边形ABCD是平行四边形,根据平行四边形的性质,可得对角相等,邻角互补,继而求得答案.解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,AD∥BC,∠A=∠C,∴∠A+∠B=180°.故一定正确的是D.故选:D.5.下列选项,可以用来证明命题“若a2>b2,则a>b”是假命题的反例是()A.a=3,b=﹣2B.a=2,b=1C.a=﹣3,b=2D.a=﹣2,b=3【分析】直接利用选项中数据代入求出答案.解:当a=3,b=﹣2时,a2>b2,则a>b,故原命题是真命题;当a=2,b=1时,a2>b2,则a>b,故原命题是真命题;当a=﹣3,b=2时,a2>b2,则a<b,故原命题是假命题,符合题意;当a=﹣2,b=3时,a2<b2,则a<b,故原命题是真命题.故选:C.6.若一个关于x的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是()A.x2﹣7x+12=0B.x2+7x+12=0C.x2﹣9x+20=0D.x2+9x+20=0【分析】将已知数据从小到大顺序排列:2,3,4,4,5,5,5;根据众数和中位数的定义求出众数和中位数,再根据根与系数的关系造出方程即可.共7解:将已知数据从小到大顺序排列,得:2,3,4,4,5,5,5;共7个数据,处于中间的数据是第4个数据4,出现最多的数据是5,因此,这组数据的中位数是4,众数是5,以4,5为根的一元二次方程是x2﹣9x+20=0,故选:C.7.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=182【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选:B.8.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是矩形【分析】根据正确的命题是真命题,错误的命题是假命题进行分析即可.解:A、对角线相等的四边形是矩形,是假命题,故此选项不合题意;B、对角线互相垂直的四边形是菱形,是假命题,故此选项不合题意;C、对角线互相平分的四边形是平行四边形,是真命题,故此选项符合题意;D、对角线互相垂直平分的四边形是矩形,是假命题,故此选项不合题意;故选:C.9.平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为()cm.A.14B.16C.12或14D.14或16【分析】根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE 为等腰三角形,然后分别讨论BE=2cm,CE=3cm或BE=3cm,CE=2cm,继而求得答案.解:如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当AB=BE=2cm,CE=3cm时,BC=BE+CE=5cm,则平行四边形的周长=2(2+5)=14(cm);②当AB=BE=3cm时,CE=2cm,BC=BE+CE=5cm,则平行四边形的周长=2(3+5)=16(cm);故选:D.10.如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,F是对角线AC上的一个动点,则FE+FB的最小值是()A.1B.C.2D.【分析】连接BD,则AC垂直平分BD,FD=FB,当D,F,E在同一直线上时,FE+FB 的最小值等于DE的长,再根据△ABD是等边三角形,即可得到AE的长,进而得到FE+FB的最小值是.解:如图所示,连接BD,则AC垂直平分BD,FD=FB,∴FE+FB=FE+FD,∴当D,F,E在同一直线上时,FE+FD的最小值等于DE的长,∵AD=AB,∠BAD=60°,∴△ABD是等边三角形,又∵E是AB的中点,∴DE⊥AB,AE=1,∴Rt△ADE中,DE===,∴FE+FB的最小值是,故选:D.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.要使二次根式有意义,那么x的取值范围是x<2.【分析】根据使二次根式有意义的条件可得2﹣x≥0,使分式有意义的条件可得2﹣x≠0,故2﹣x>0,再解不等式即可.解:根据题意可得:2﹣x>0,解得:x<2,故答案为:x<2.12.若一个正多边形的每一个外角都是30°,则这个正多边形的边数为12.【分析】根据正多边形的每一个外角都相等,多边形的边数=360°÷30°,计算即可求解.解:这个正多边形的边数:360°÷30°=12,故答案为:12.13.已知菱形ABCD的两条对角线的长分别是x2﹣6x+8=0的两个根,则菱形ABCD的面积是4.【分析】根据菱形的面积公式以及跟与系数的关系即可求出答案.解:设菱形的两条对角线长度为a、b,∴S菱形ABCD=ab,由根与系数的关系可知:ab=8,∴S菱形ABCD=4,故答案为:4.14.若一组数据2、3、x、4、5的平均数是4,则这组数据的方差为2.【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.解:∵数据2、3、x、4、5的平均数是4,∴(2+3+x+4+5)÷5=4,∴x=6,∴这组数据的方差=[(2﹣4)2+(3﹣4)2+(6﹣4)2+(4﹣4)2+(5﹣4)2]=2;故答案为:2.15.如图,某小区规划在一个长30m、宽20m的矩形ABCD上,修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成2m.【分析】设道路的宽为xm,将6块草地平移为一个长方形,长为(30﹣2x)m,宽为(20﹣x)m.根据长方形面积公式即可列方程(30﹣2x)(20﹣x)=6×78.解:设道路的宽为xm,由题意得:(30﹣2x)(20﹣x)=6×78,解得x=2或x=﹣33(舍去).答:通道应设计成2米.故答案为:2.16.如图,在矩形ABCD中,AD=2,AB=4,点E是线段AD的中点,点F是线段AB内一点.连结EF,把△AEF沿EF折叠,当点A的对应点A′落在矩形ABCD的对角线上时,AF的长为或.【分析】分点A′落在对角线BD上和点A′落在对角线AC上两种情况分别进行讨论,由折叠的性质即可得出AF的长.解:分两种情况:①当点A′落在对角线BD上时,连接AA′,如图1所示:∵将矩形沿EF折叠,点A的对应点为点A′,且点A'恰好落在矩形的对角线上,∴AA′⊥EF,∵点E为线段AD的中点,∴AE=ED=EA′,∴∠AA′D=90°,即AA′⊥BD,∴EF∥BD,∴点F是AB的中点,∵AB=4,∴AF=2.②当点A′落在对角线AC上时,如图2所示,同理可知AA'⊥EF,∴∠AHE=90°,∴∠AEH+∠EAH=90°,∵∠EAH+∠ACD=90°,∴∠AEH=∠ACD,∴tan∠AEF==tan∠ACD=,∴,∴AF=.∴综合以上可得AF的长为2或.故答案为:2或.三、解答题:共52分.解答应写出文字说明、证明过程或演算步骤.17.计算:(1)+×﹣;(2)﹣(2+)(2﹣).【分析】(1)先利用二次根式的乘法法则运算,然后化简后合并即可;(2)利用二次根式的性质和平方差公式计算.解:(1)原式=3+﹣=3+﹣=3;(2)原式=3﹣(4﹣3)=3﹣1=2.18.用适当的方法解下列方程:(1)x2﹣10x+16=0;(2)2x(x﹣1)=x﹣1.【分析】(1)根据因式分解法节即可求出答案.(2)根据因式分解法即可求出答案.解:(1)∵x2﹣10x+16=0,∴(x﹣2)(x﹣8)=0,∴x=2或x=8.(2)∵2x(x﹣1)=x﹣1,∴(x﹣1)(2x﹣1)=0,∴x=1或x=.19.如图,在5×5的正方形网格中,每个小正方形的边长都是1,点A,B,C,D,E是五个格点,请在所给的网格中按下列要求画出图形.(1)从所给的五个格点中选出其中四个作为顶点做一个平行四边形.(2)过剩余一个点做一条直线l,使得直线l平分(1)小题中所做的平行四边形的面积.【分析】(1)直接利用平行四边形性质得出顶点位置;(2)直接利用平行四边形对角线平分面积进而得出答案.解:(1)如图所示:四边形ABDE即为所求;(2)如图所示:直线l即为所求.20.某校需要选出一名同学去参加温州市“生活中的数学说题”比赛,现有5名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知5名候选人模拟说题比赛成绩情况如表所示.某校5名候选人模拟说题比赛成绩情况候选人A B C D E 模拟说题比赛成8375908590绩(1)5名候选人模拟说题比赛成绩的中位数是85;(2)由于C、E两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按2:3:5的比例最后确定成绩,最终谁将参加说题比赛.已知C、E两名候选人平时成绩、任课老师打分情况如表所示.C E平时成绩9585任课老师打分8090【分析】(1)根据中位数的定义直接进行解答即可;(2)根据算术平均数的计算公式先求出C、E两名候选人的平均成绩,再进行比较,即可得出答案.解:(1)把这些数从小到大排列为:75,83,85,90,90,则名候选人模拟说题比赛成绩的中位数是85分;故答案为:85;(2)∵C的平均成绩是:=88(分),又∵E的平均成绩是:=89(分),∴88<89,∴最终候选人E将参加说题比赛.21.如图,在▱ABCD中,点E,F分别在边BC和边AD上,且AF=CE,EF与对角线BD相交于点O.连接EF,BD.(1)求证:EF和BD互相平分.(2)若EF⊥BD,△ABF的周长为10,则▱ABCD的周长为多少?【分析】(1)根据平行四边形的性质得到AD=BC,AD∥BC,求得DF=BE,DF∥BE,根据平行四边形的性质得到结论;(2)根据菱形的判定定理得到四边形FBED是菱形,求得BF=DF,于是得到结论.解:(1)在▱ABCD中,AD=BC,AD∥BC,∵AF=CE,∴AD﹣AF=BC﹣CE,∴DF=BE,DF∥BE,∴四边形FBED是平行四边形,∴EF和BD互相平分;(2)在▱FBED中,∵EF⊥BD,∴四边形FBED是菱形,∴BF=DF,∵△ABF的周长为10,∴AB+AF+BF=10,∴AB+AF+DF=10,即AB+AD=10,∴▱ABCD的周长为10×2=20.22.2019年12月以来,发现一种急性呼吸道病.感染者的临床表现为:以发热、乏力、干咳为主要表现.约半数患者多在一周后出现呼吸困难,严重者快速进展为急性呼吸窘迫综合征、脓毒症休克、难以纠正的代谢性酸中毒和出凝血功能障碍.(1)在初期,有1人感染了,经过两轮传染后共有144人感染了(这两轮感染因为人们不了解病毒而均未被发现未被隔离),则每轮传染中平均一个人传染了几个人?(2)后来举国上下众志成城,全都隔离在家.小玲的爷爷因为种的水果香梨遇到销滞难题而发愁,于是小玲想到了在微信朋友圈里帮爷爷销售香梨.香梨每斤成本为4元/斤,她发现当售价为6元/斤时,每天可以卖80斤.在销售过程中,她还发现一斤香梨每降价0.5元时,则每天可以多卖出10斤.为了最大幅度地增加销售量,而且每天要达到100元的利润,问小玲应该将售价定为多少元?【分析】(1)设每轮传染中平均一个人传染了x人,根据1人感染经过两轮传染后共有144人感染,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设小玲应该将售价定为y元,则每天可以卖出(80+10×)斤,根据总利润=每斤的利润×销售数量,即可得出关于y的一元二次方程,解之取其较小值即可得出结论.解:(1)设每轮传染中平均一个人传染了x人,依题意,得:1+x+x(1+x)=144,解得:x1=11,x2=﹣13(不合题意,舍去).答:每轮传染中平均一个人传染了11人.(2)设小玲应该将售价定为y元,则每天可以卖出(80+10×)斤,依题意,得:(y﹣4)(80+10×)=100,整理,得:y2﹣14y+45=0,解得:y1=5,y2=9(不合题意,舍去).答:小玲应该将售价定为5元.23.如图,在平面直角坐标系中,把矩形OBCD沿对角线OC所在直线折叠,点B落在点B′处,OB′与CD相交于点E,BC=4,对角线OC所在直线的函数表达式为y=2x.(1)求证:△ODE≌△CB′E;(2)请写出CE的长和B′的坐标;(3)F是直线OC上一个动点,点G是矩形OBCD边上一点(包括顶点).是否存在点G使得G,F,B′,C所组成的四边形是平行四边形?如果不存在,请说明理由;如果存在,直接请求出F的坐标.【分析】(1)得出BC=B'C;∠B=∠B'=90°,OD=B'C,根据AAS可证明结论;(2)设CE=x,可得OE=x,则DE=8﹣x;得出42+(8﹣x)2=x2,解方程得x=5,即求出CE,过点B'作B'H⊥CE,可求出B'H=2.4,HE=1.8,则答案可求出;(3)连接B'D,证明OC∥B'D,分三种情况画出图形:①如图2,若以CG为对角线,点G与点D重合,②如图3,若以CF为对角线,点G与点B重合,③如图4,若以CB'为对角线,点G与点D重合,由平移规律及平行四边形的性质分别求出点F的坐标即可.解:(1)∵四边形OBCD是矩形,∴BC=OD;∠B=∠D=90°,∵把矩形OBCD沿对角线OC所在直线折叠,点B落在点B′处,∴BC=B'C;∠B=∠B'=90°,∴OD=B'C,又∵∠OED=∠B'EC,∴△ODE≌△CB'E(AAS);(2)∵BC=4,对角线OC所在直线的函数表达式为y=2x.∴x=4,y=8,∴OD=BC=4,CD=OB=8,∵△ODE≌△CB'E,∴CE=OE,设CE=x,可得OE=x,则DE=8﹣x;∵∠ODE=90°,∴OD2+DE2=OE2,∴42+(8﹣x)2=x2,解得x=5,∴CE=5,∴DO=B'C=4,DE=B'E=3,过点B'作B'H⊥CE,∵S△CB'E=CE×B'H=CB'×B'E,∴B'H×5=3×4,∴B'H=2.4,HE=1.8,∴B'的坐标为(6.4,4.8).(3)连接B'D,∵CE=OE,B'E=DE,∴∠OCE=∠COE,∠EDB'=∠EB'D,又∵∠OEC=∠EDB',∴∠OCE=∠EDB',∴OC∥B'D,分三种情况画出图形:①如图2,若以CG为对角线,点G与点D重合,∵B'(6.4,4.8),C(4,8),D(4,0),∴F(4﹣2.4,0+3.2),即F(1.6,3.2).②如图3,若以CF为对角线,点G与点B重合,∵C(4,8),B'(6.4,4.8),B(0,8),∴F(0+2.4,8﹣3.2),即F(2.4,4.8).③如图4,若以CB'为对角线,点G与点D重合,∵D(4,0),B'(6.4,4.8),C(4,8),∴F(4+2.4,8+4.8),即F(6.4,12.8).。
相交线平行线类型题举例-简单数学之2020-2021学年七年级下册同步讲练(解析版)(北师大版)
第二章重点突破训练:相交线平行线类型题举例典例体系(本专题62题51页)考点1:相交线所成的角典例:(2021·江苏扬州市·七年级期末)如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥CD,垂足为O,若∠BOF=38°.(1)求∠AOC的度数;(2)过点O作射线OG,使∠GOE=∠BOF,求∠FOG的度数.【答案】(1)52°;(2)图见解析,26°或102°【详解】(1)∵OF⊥CD,∠BOF=38°,∴∠BOD=90°−38°=52°,∴∠AOC=52°;(2)由(1)知:∠BOD=52°,∵OE平分∠BOD,∴∠BOE=26°,此时∠GOE=∠BOF=38°,分两种情况:如图:此时∠FOG=∠BOF+∠BOE-∠GOE=38°+26°-38°=26°;如图:此时∠FOG=∠BOF+∠BOE+∠GOE=38°+26°+38°=102°;综上:∠FOG的度数为26°或102°.方法或规律点拨本题考查了对顶角,角平分线定义,角的有关定义的应用,主要考查学生的计算能力,并注意数形结合.巩固练习1.(2021·山东济南市·七年级期末)如图,直线m和n相交于点O,若∠1=40°,则∠2的度数是( )A.40°B.50°C.140°D.150°【答案】C【详解】解:直线m和n相交于点O,若∠1=40°,则∠2的度数为180°-∠1= 140°,故选:C.Ð,如果2.(2021·湖北随州市·七年级期末)如图,直线AB,CD交于点O,射线OM平分AOCÐ等于()Ð=°,那么MOC104AODA .38°B .37°C .36°D .52°【答案】A 【详解】解:∵104AOD Ð=°∴∠AOC =180°−104°=76°∵OM 平分∠AOC∴∠MOC=12AOC Ð1762=´°=38°故选:A3.(2021·广西桂林市·七年级期末)按语句画图:点P 在直线a 上,也在直线b 上,但不在直线c 上,直线a ,b ,c 两两相交正确的是( )A .B .C .D .【答案】A【详解】解:A .符合条件,B .不符合点P 不在直线c 上;C .不符合点P 在直线a 上;D .不符合直线a 、b 、c 两两相交;故选:A .4.(2021·浙江温州市·七年级期末)如图,直线AB ,CD 相交于点O ,AO 平分COE Ð,且50EOD Ð=°,则DOB Ð的度数是________.【答案】65°【详解】∵180COE EOD Ð+Ð=°,50EOD Ð=°,∴130COE Ð=°,∵AO 平分COE Ð,∴65AOC Ð=°,∴∠DOB=65AOC Ð=°,故答案为:65°.5.(2021·浙江温州市·七年级期末)如图,直线AB 与直线CD 相交于点O ,射线OE 在AOD Ð内部,OA 平分EOC Ð.(1)当OE CD ⊥时,写出图中所有与BOD Ð互补的角.(2)当:2:3EOC EOD ÐÐ=时,求BOD Ð的度数.【答案】(1)AOD Ð、BOC Ð、ÐBOE ;(2)36°.【详解】解:(1)∵OE CD ⊥,∴90COE EOD Ð=Ð=°,∵OA 平分EOC Ð,∴190452AOC AOE Ð=Ð=´°=°,∴45BOD Ð=°,∴18045135AOD BOC BOE Ð=Ð=Ð=°-°=°,∴与BOD Ð互补的角有AOD Ð、BOC Ð、ÐBOE ;(2)根据题意,∵:2:3EOC EOD ÐÐ=,又∵180EOC EOD Ð+Ð=°,∴21807223EOC Ð=´°=°+,∵OA 平分EOC Ð,∴172362AOC AOE Ð=Ð=´°=°,∴36BOD AOC Ð=Ð=°;6.(2021·浙江湖州市·七年级期末)如图,已知直线AB 与CD 相交于点40O OE CD AOC OF °⊥Ð=,,,为AOD Ð的角平分线.(1)求EOB Ð的度数;(2)求EOF Ð的度数.【答案】(1)50EOB Ð=°;(2)160EOF Ð=°【详解】解:(1)OE CD ⊥Q ,∴90EOD Ð=°,∵40BOD AOC Ð=Ð=°,50EOB EOD BOD \Ð=Ð-Ð=°;(2)∵直线AB 与CD 相交于点O ,40AOC BOD \Ð=Ð=°,∴180140AOD BOD =°-=°∠∠,OF Q 为AOD Ð的角平分线,70AOF FOD \Ð=Ð=°,160EOF EOD FOD \Ð=Ð+Ð=°.7.(2021·浙江宁波市·七年级期末)如图,已知直线AB ,CD 相交于点O ,OE 平分BOD Ð,OF 平分COE Ð.若100AOD Ð=°,求:(1)EOD Ð的度数;(2)AOF Ð的度数.【答案】(1)40°;(2)150°【详解】(1)∵直线AB ,CD 相交于点O ,∴180AOD BOD Ð+Ð=°,∵100AOD Ð=°,∴18080BOD AOD Ð=-Ð=°°,∵OE 平分BOD Ð,∴1402DOE BOD Ð=Ð=°.(2)∵180COE DOE Ð+Ð=°,∴180140COE DOE Ð=-Ð=°°,∵OF 平分COE Ð,∴1702COF COE Ð=Ð=°,∵80AOC BOD Ð=Ð=°,∴150AOF AOC COF Ð=Ð+Ð=°.7.(2021·重庆长寿区·七年级期末)如图,直线AB 、CD 相交于点O ,OE 平分BOD Ð,OF 平分COE Ð,2AOD BOD =∠∠.(1)求DOE Ð的度数;(2)求BOF Ð的度数.【答案】(1)30°,(2)45°.【详解】解:(1)∵2AOD BOD =∠∠,∠AOD +∠BOD =180°,∴∠BOD =13×180°=60°,∵OE 平分∠BOD ,∴∠DOE =∠BOE=12∠BOD =12×60°=30°;(2)∠COE =∠COD ﹣∠DOE =180°﹣30°=150°,∵OF 平分∠COE ,∴∠EOF =12∠COE =12×150°=75°,由(1)得,∠BOE =30°,∴∠BOF =∠EOF -∠BOE =75°-30°=45°.8.(2021·四川宜宾市·七年级期末)如图,点O 是直线AB 上的一点,:1:2BOC AOC ÐÐ=,OD 平分BOC Ð,OE OD ⊥于点O .(1)求BOC Ð的度数;(2)试说明OE 平分AOC Ð.【答案】(1)60°;(2)见解析【详解】(1)解:∵:1:2BOC AOC ÐÐ=,∴2AOC BOC Ð=Ð,∵180BOC AOC Ð+Ð=°,∴2180BOC BOC Ð+Ð=°,∴60BOC Ð=°;(2)证明:∵180BOC AOC Ð+Ð=°,60BOC Ð=°,∴120AOC Ð=°,∵60BOC Ð=°,OD 平分BOC Ð,∴1302DOC BOC Ð=Ð=°,∵OE OD ⊥,∴90DOE Ð=°,∴903060COE DOE DOC Ð=Ð-Ð=°-°=°,∵120AOC Ð=°,∴12COE AOC Ð=Ð,∴OE 平分AOC Ð.9.(2021·湖北鄂州市·七年级期末)如图,点O 在直线AB 上,AOC Ð与COD Ð互补,OE 平分AOC Ð.(1)若50BOC Ð=°,则DOE Ð的度数为 ;(2)若33DOE Ð=°,求BOD Ð的度数.【答案】(1)15°;(2)76°【详解】解:(1)Q 点O 在直线AB 上,50BOC Ð=°,130AOC \Ð=°,AOC ÐQ 与COD Ð互补,50COD \Ð=°,OE Q 平分AOC Ð,65EOC \Ð=°,15DOE \Ð=°;故答案为:15°;(2)Q 点O 在直线AB 上,AOC \Ð与BOC Ð互补,AOC ÐQ 与COD Ð互补,BOC COD \Ð=Ð,OE Q 平分AOC Ð,AOE EOC \Ð=Ð,设BOC Ð为x ,可得:()233180x x °++=°,解得:38x =°,276BOD BOC \Ð=Ð=°.10.(2021·江苏泰州市·七年级期末)如图,已知直线AB ,CD 相交于点O ,AOE Ð与AOC Ð互余.(1)若32BOD Ð=°,求AOE Ð的度数;(2)若:05:1AOD A C ÐÐ=,求ÐBOE 的度数.【答案】(1)58°;(2)120°【详解】解(1)因为AOC Ð与BOD Ð是对顶角,所以32AOC BOD Ð=Ð=°,因为AOE Ð与AOC Ð互余,所以90AOE AOC Ð+Ð=°,所以90AOE AOCÐ=°-Ð9032=°-°58=°;(2)因为:5:1AOD AOC ÐÐ=,所以5AOD AOC Ð=Ð,因为180AOC AOD Ð+Ð=°,所以6180AOC Ð=°,30AOC Ð=°,又30BOD AOC Ð=Ð=°,90COE DOE Ð=Ð=°,所以BOE DOE BODÐ=Ð+Ð9030=°+°120=°.11.(2021·广东东莞市·七年级期末)如图O 为直线AB 上一点,50AOC Ð=°,OD 平分AOC Ð,90DOE Ð=°.(1)求BOD Ð的度数;(2)试判断OE 是否平分BOC Ð,并说明理由;(3)ÐBOE 的余角是 .【答案】(1)155°;(2)平分,理由见解析;(3)DOC Ð和DOA Ð【详解】解:(1)因为50AOC Ð=°,OD 平分AOC Ð,所以1252DOA DOC AOC Ð=Ð=Ð=°,所以180155BOD DOA Ð=а-Ð=°.(2)OE 平分BOC Ð.理由如下:因为90DOE Ð=°,25DOC Ð=°,所以902565COE DOE DOC Ð=Ð-Ð=°-°=°,由(1)得∠BOD=155°,所以1559065BOE BOD DOE Ð=Ð-Ð=°-°=°,所以COE BOE Ð=Ð,所以OE 平分BOC Ð.(3)因为COE BOE Ð=Ð,∠COD=∠AOD ,∠COE+∠COD=90°,所以∠BOE+∠COD=90°,∠BOE+∠AOD=90°,所以ÐBOE 的余角是DOC Ð和DOA Ð.考点2:在生活中应用平行线性质和判定典例:(2020·江苏泰兴市实验初级中学七年级月考)某段铁路两旁安置了两座可旋转探照灯,主道路是平行,即PQ ∥MN . 如图所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度. 若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动_________秒,两灯的光束互相平行.【答案】30或110【详解】解:设灯转动t 秒,两灯的光束互相平行,即AC ∥BD ,①当0<t≤90时,如图1所示:∵PQ ∥MN ,则∠PBD =∠BDA ,∵AC ∥BD ,则∠CAM =∠BDA ,∴∠PBD =∠CAM有题意可知:2t =30+t解得:t =30,②当90<t<150时,如图2所示:∵PQ∥MN,则∠PBD+∠BDA=180°,∵AC∥BD,则∠CAN=∠BDA,∴∠PBD+∠CAN=180°,∴30+t+(2t-180)=180解得:t=110综上所述,当t=30秒或t=110秒时,两灯的光束互相平行.故答案为:30或110方法或规律点拨本题主要考查补角、角的运算、平行线的性质的应用,解题的关键是熟练掌握平行线的性质,注意分两种情况谈论.巩固练习1.(2021·山西朔州市·七年级期末)一艘船停留在海面上,如果从船上看灯塔位于北偏东30°,那么从灯塔看船上位于灯塔的()A.北偏东30°B.北偏东60°C.南偏西30°D.南偏西60°【答案】C【详解】解:设此船位于海面上的C处,灯塔位于D处,射线CA、DB的方向分别为正北方向与正南方向,如图所示.∵从船上看灯塔位于北偏东30°,∴∠ACD=30°.又∵AC∥BD,∴∠CDB=∠ACD=30°.即从灯塔看船位于灯塔的南偏西30°.故选:C.2.(2021·甘肃白银市·七年级期末)一条船停留在海面上,从船上看灯塔位于北偏东60°方向,那么从灯塔看船位于灯塔的方向( )A.南偏西60°B.西偏南60°C.南偏西30°D.北偏西30°【答案】A【详解】解:设此船位于海面上的C处,灯塔位于D处,射线CA、DB的方向分别为正北方向与正南方向,如图所示:∵从船上看灯塔位于北偏东60°,∴∠ACD=60°.又∵AC∥BD,∴∠CDB=∠ACD=60°.即从灯塔看船位于灯塔的南偏西60°.故选:A.3.(2020·重庆璧山区·八年级期中)如图a是长方形纸带,26Ð=°,将纸带沿EF折叠成图b,再沿BFDEFÐ的度数是()折叠成图c,则图c中的CFEA.102°B.112°C.120°D.128°【答案】A【详解】解:∵AD∥BC,∠DEF=26°,∴∠BFE=∠DEF=26°,∴∠EFC=154°(图a),∴∠BFC=154°-26°=128°(图b ),∴∠CFE=128°-26°=102°(图c ).故选:A .4.(2019·山西九年级专题练习)某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知//AB CD ,87BAE Ð=°,121DCE Ð=°,则E Ð的度数是( )A .28°B .34°C .46°D .56°【答案】B【详解】解:如图,延长DC 交AE 于F ,//AB CD Q ,87BAE Ð=°,87CFE \Ð=°,又121DCE Ð=°Q ,1218734E DCE CFE \Ð=Ð-Ð=°-°=°,故选B .5.(2020·河南省实验中学)如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A =120°,第二次拐的角∠B =160°,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是( )A .120°B .130°C .140°D .150°【答案】C 【详解】根据平行线的性质可得()()180180160120140C B A =°--=°-°-°=°∠∠∠故答案为:C .6.(2019·山西七年级月考)小林乘车进入车库时仔细观察了车库门口的“曲臂直杆道闸”,并抽象出如图所示的模型,已知AB 垂直于水平地面AE .当车牌被自动识别后,曲臂直杆道闸的BC 段绕点B 缓慢向上旋转,CD 段则一直保持水平状态上升(即CD 与AE 始终平行),在该过程中ABC BCD Ð+Ð始终等于( )A .360°B .180°C .250°D .270°【答案】D 【详解】解:过点B 作BG ∥CD由题意可知:CD ∥AE ,∠BAE=90°∴BG ∥CD ∥AE∴∠ABG=180°-∠BAE=90°,CBG BCD Ð+Ð=180°∴ABC BCD Ð+Ð=∠ABG +CBG BCD Ð+Ð=270°故选D .7.(2021·陕西西安市·八年级期末)一大门的栏杆如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,则∠ABC +∠BCD =_____.【答案】270°【详解】过B 作BF ∥AE ,∵CD ∥ AE ,则CD ∥BF ∥AE ,∴∠BCD+∠1=180°,又∵AB ⊥AE ,∴AB ⊥BF ,∴∠ABF=90°,∴∠ABC+∠BCD=90°+180°=270°.故答案为:270.8.(2021·山东潍坊市·八年级期末)光线在不同介质中传播速度不同,从一种介质斜射进入另一种介质时会发生折射.如图,水面AB 与水杯下沿CD 平行,光线EF 从水中射向空气时发生折射,光线变成FH ,点G 在射线EF 上,已知20,45HFB FED Ð=°Ð=°,则GFH Ð的度数是_______.【答案】25°【详解】解:∵AB ∥CD ,∴∠GFB=∠FED=45°.∵∠HFB=20°,∴∠GFH=∠GFB-∠HFB=45°-20°=25°.故答案为:25°9.(2021·全国七年级)如图,在甲,乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东55°,若同时开工,则在乙地公路按南偏西___度的走向施工,才能使公路准确接通.【答案】55【详解】解:如图:Q,//AD OC\Ð=Ð=°,55COD ADO即在乙地公路应按南偏西55度的走向施工,才能使公路准确接通.故答案为:55.10.(2018·太原师范学院附属中学七年级月考)如图,要修建一条公路,从A村沿北偏东75°方向到B村,Ð的度数为______.从B村沿北偏西25°方向到C村.若要保持公路CE与AB的方向一致,则ECB【答案】80°【详解】由题意可得:AN∥FB,EC∥BD,故∠NAB=∠FBD=75°,∵∠CBF=25°,∴∠CBD=100°,则∠ECB=180°-100°=80°.故答案为:80°.11.(2014·陕西九年级专题练习)如图,∠AOB的两边OA、OB均为平面反光镜,∠AOB=40°,在射线OB 上有一点P ,从点P 点射出的一束光线经OA 上的Q 点反射后,反射光线QR 恰好与OB 平行,则∠QPB 的度数是___________【答案】80°【解析】已知反射光线QR 恰好与OB 平行,根据平行线的性质可得∠AOB =∠AQR =40°,根据平角的定义可得∠PQR =100°,再由两直线平行,同旁内角互补互补可得∠QPB=80°.12.(2021·全国七年级)如图,在A 、B 两处之间要修一条笔直的公路,从A 地测得公路走向是北偏东46°,公司要求A 、B 两地同时开工,并保证若干天后公路准确接通.(1)B 地修公路的走向应该是 ;(2)若公路AB 长12千米,另一条公路BC 长6千米,且BC 的走向是北偏西44°,试求A 到公路BC 的距离?【答案】(1)B 地所修公路的走向是南偏西46°;(2)12km【详解】(1)由两地南北方向平行,根据内错角相等,可知B 地所修公路的走向是南偏西46°.故答案为:南偏西46°.(2)180180464490ABC ABG EBC Ð=°-Ð-Ð=°-°-°=°Q ,AB BC \⊥,A \地到公路BC 的距离是12AB =千米.13.(2020·山东临沂市·七年级期末)如图,点P 是AOB Ð内部一点,//PM OA 交OB 于点C .请你画出射线PN ,并且PN //OB ,PN 或PN 的反向延长线交OA 于点D .(1)补全图形;(2)判断AOB Ð与MPN Ð的数量关系,并证明.【答案】(1)见解析;(2)∠AOB 与∠MPN 相等或互补;证明见解析.【详解】解:(1)(2)∠AOB 与∠MPN 相等或互补.证明:如图1,∵PM ∥OA ,∴∠AOB =∠PCB ,∵PN ∥OB ,∴∠MPN =∠PCB ,∴∠AOB =∠MPN ;如图2,∵PM ∥OA ,∴∠AOB =∠PCB ,∵PN ∥OB ,∴∠MPN+∠PCB =180°,∴∠AOB+∠MPN =180°.综上所述,∠AOB 与∠MPN 相等或互补.14.(2020·银川九中英才学校七年级期中)如图是种躺椅及其简化结构示意图,扶手AB 与底座CD 都平行于地面,靠背D M 与支架OE 平行,前支架OE 与后支架OF 分别与CD 交于点G 和点,D AB 与D M 交于点N ,当90,30EOF ODC Ð=°Ð=°时,人躺着最舒服,求此时扶手AB 与支架OE 的夹角AOE Ð和扶手AB 与靠背D M 的夹角ANM Ð的度数.【答案】∠AOE=60°,∠ANM=120°【详解】∵扶手AB 与底座CD 都平行于地面,∴AB ∥CD ,∴∠ODC=∠BOD=30°,又∵∠EOF=90°,∴∠AOE=60°,∵DM ∥OE ,∴∠AND=∠AOE=60°,∴∠ANM=180°-∠AND=120°.考点3:平行线中的折点问题典例:(2020·宁波市惠贞书院七年级期中)如图,//AB EF ,设90C Ð=°,那么x ,y ,z 的关系式______.【答案】90x y z +-=°【详解】如图,过C 作//CN AB ,过D 作//DM AB ,∴//////AB CN DM EF ,∴1x =Ð,23ÐÐ=,4z Ð=,∵90BCD Ð=°,∴1290Ð+Ð=°,∴390x +Ð=°,∴3490x z +Ð+Ð=°+,∴90x y z +=°+,∴90x y z +-=°.故答案为:90x y z +-=°.方法或规律点拨本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;1.(2021·渝中区·重庆巴蜀中学七年级期末)如图,//AB CD ,120BAE Ð=°,40DCE Ð=°,则AEC Ð=( )A .70°B .80°C .90°D .100°【答案】D【详解】如图,过点E 作//EF AB ,120BAE Ð=°Q ,18060AEF BAE \Ð=°-Ð=°,又//AB CD Q ,//EF CD \,40DCE CEF \=Ð=а,6040100AEC AEF CEF \Ð=Ð+Ð=°+°=°,故选:D .2.(2020·四川攀枝花市·七年级期末)如图,某地域的江水经过B 、C 、D 三点处拐弯后,水流的方向与原来相同,若∠ABC =125°,∠BCD =75°,则∠CDE 的度数为( )A .20°B .25°C .35°D .50°【答案】A 【详解】解:由题意得,AB ∥DE ,如图,过点C 作CF ∥AB ,则CF ∥DE ,∴∠BCF+∠ABC=180°,∴∠BCF=180°-125°=55°,∴∠DCF=75°-55°=20°,∴∠CDE=∠DCF=20°.故选:A .3.(2020·浙江杭州市·七年级其他模拟)如图://AB DE ,50B Ð=°,110D Ð=°,BCD Ð的度数为( )A .160°B .115°C .110°D .120°【答案】D 【详解】如图,过点C 作//CF AB ,//AB DE Q ,////AB DE CF \,,180BCF B DCF D \Ð=ÐÐ+Ð=°,50,110B D Ð=°Ð=°Q ,50,18070BCF DCF D \Ð=°Ð=°-Ð=°,120BCD BCF DCF \Ð=Ð+Ð=°,故选:D .4.(2020·重庆市万州第二高级中学九年级期中)如图,直线//40AB CD C E °Ð=Ð,,为直角,则1Ð等于( )A .140°B .130°C .135°D .120°【答案】B 【详解】解:过E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF .∴∠C =∠FEC ,∠BAE =∠FEA .∵∠C =40°,∠AEC 为直角,∴∠FEC =40°,∠BAE =∠AEF =90°−40°=50°.∴∠1=180°−∠BAE =180°−50°=130°.故选:B .5.(2021·全国七年级)如图,已知//a b ,14=70Ð+а,23=20Ð-а,则1Ð=____________【答案】45°【详解】解:作直线m ∥a ,n ∥b ,如图所示:∵//a b,∴//////a b m n,∴∠1=∠5,∠6=∠7,∠8=∠4,∴∠2-∠5=∠6,∠3-∠8=∠7,∴21=34Ð-ÐÐ-Ð,14=23=20\Ð-ÐÐ-а,则有14201470Ð-Ð=°ìíÐ+Ð=°î,1=45\а;故答案为45°.6.(2020·上海市民办立达中学七年级月考)如图,AB//CD,则图中132Ð+Ð-Ð=_______________°;【答案】180【详解】如图:过点E作EF//CD.∴∠3=∠FEC∵∠AEF+∠2=∠FEC,∴∠2+∠AEF=∠3,∴AEF32Ð=Ð-Ð,∵AB//CD,EF//CD,∴EF//AB,∴∠1+∠AEF=180°∴132180Ð+Ð-Ð=°.故答案为:180°7.(2021·全国九年级)如图,AEFC 是折线,AB//CD ,那么∠1,∠2,∠3,∠4的大小所满足的关系式为_______________;【答案】2314180Ð+Ð=Ð+Ð+°或2314180Ð+Ð-Ð-Ð=°【详解】解:过点E 作//EM AB ,过点F 作//FN CD ,//AB CD Q ,//////AB EM FN CD \,1AEM \Ð=Ð,180MEF NFE Ð+Ð=°,4NFC Ð=Ð,2MEF AEM Ð=Ð-ÐQ ,3NFE NFC Ð=Ð-Ð,2314180\Ð+Ð=Ð+Ð+°或2314180Ð+Ð-Ð-Ð=°.故答案为:2314180Ð+Ð=Ð+Ð+°或2314180Ð+Ð-Ð-Ð=°.考点4:平行线性质与判定的综合问题典例:(2020·重庆沙坪坝区·七年级期末)如图1,AB ∥CD ,直线AE 分别交AB 、CD 于点A 、E .点F 是直线AE 上一点,连结BF ,BP 平分∠ABF ,EP 平分∠AEC ,BP 与EP 交于点P .(1)若点F 是线段AE 上一点,且BF ⊥AE ,求∠P 的度数;(2)若点F 是直线AE 上一动点(点F 与点A 不重合),请直接写出∠P 与∠AFB 之间的数量关系.【答案】(1)45°;(2)当E 点在A 点上方时,∠BPE =12∠AFB ,当E 点在A 点下方时,∠BPE =90°﹣12∠AFB【详解】解:(1)过点P 作PQ ∥AB ,过点F 作FH ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥PQ ∥FH ,∴∠ABP =∠BPQ ,∠CEP =∠EPQ ,∠ABF =∠BFH ,∠CEF =∠EFH ,∴∠ABP +∠CEP =∠BPQ +∠EPQ =∠BPE ,∠ABF +∠CEF =∠BFH +∠EFH =∠BFE ,∵BF ⊥AE ,∴∠ABF +∠CEF =∠BFE =90°,∵BP 平分∠ABF ,EP 平分∠AEC ,∴∠ABP +∠CEP =12(∠ABF +∠CEF )=45°,∴∠BPE =45°;(2)①当点F 在EA 的延长线上时,∠BPE =12∠AFB ,理由如下:如备用图1,过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,∠ABF=∠BFH,∠CEF=∠EFH,∴∠CEP﹣∠ABP=∠EPQ﹣∠BPQ=∠BPE,∠CEF﹣∠ABF=∠EFH﹣∠BFH=∠BFE,∵BP平分∠ABF,EP平分∠AEC,∴∠CEP﹣∠ABP=12(∠CEF﹣∠ABF)=12∠BFE=∠AFB,∴∠BPE=12∠AFB;②当点F在线段AE上(不与A点重合)时,∠BPE=90°﹣12∠AFB;理由如下:如备用图2,过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,∠ABF=∠BFH,∠CEF=∠EFH,∴∠ABP+∠CEP=∠BPQ+∠EPQ=∠BPE,∠ABF+∠CEF=∠BFH+∠EFH=∠BFE,∵BP平分∠ABF,EP平分∠AEC,∴∠ABP+∠CEP=12(∠ABF+∠CEF),∴∠BPE=12∠BFE∴∠BFE =180°﹣∠AFB ,∴∠BPE =90°﹣12∠AFB ;③当点F 在AE 的延长线上时,∠BPE =90°﹣12∠AFB ,理由如下:如备用图3,过点P 作PQ ∥AB ,过点F 作FH ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥PQ ∥FH ,∴∠ABP =∠BPQ ,∠CEP =∠EPQ ,180°﹣∠ABF =∠BFH ,∠AEC =∠EFH ,∴∠CEP +∠ABP =∠EPQ +∠BPQ =∠BPE ,∠BFH ﹣∠EFH =180°﹣∠ABF ﹣∠AEC =∠AFB ,∵BP 平分∠ABF ,EP 平分∠AEC ,∴∠CEP +∠ABP =12(∠AEC +∠ABF )=12(180°﹣∠AFB ),∴∠BPE =90°﹣12∠AFB ;综上,当E 点在A 点上方时,∠BPE =12∠AFB ,当E 点在A 点下方时,∠BPE =90°﹣12∠AFB .方法或规律点拨此题考查平行线的性质:两直线平行内错角相等,两直线平行同位角相等,两直线平行同旁内角互补,以及角平分线的性质,在相交线问题中通常作平行线利用平行线的性质解答,将角度转化由此求出答案.解题中运用分类思想解答问题.巩固练习1.(2020·黑龙江哈尔滨市·七年级期末)已知:直线GH 分别与直线AB ,CD 交于点E ,F .EM 平分BEF Ð,FN 平分CFE Ð,并且//EM FN .(1)如图1,求证://AB CD ;(2)如图2,2AEF CFN Ð=Ð,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135°.【答案】(1)见解析;(2)AEM Ð,GEM Ð,DFN Ð,HFNÐ【详解】(1)证明:∵//EM FN ,∴EFN FEM Ð=Ð.∵EM 平分BEF Ð,FN 平分CFE Ð,∴2CFE EFN Ð=Ð,2BEF FEM Ð=Ð.∴CFE BEF Ð=Ð.∴//AB CD .(2)由(1)知AB //CD ,∴∠AEF+∠CFE=180°,∵∠AEF=2∠CFN=∠CFE ,∴∠AEF=∠CFE=90°,∴∠CFN=∠EFN=∠FEM=∠BEM=45°,∠BEG=∠CFH=∠DFE=90°,∴∠AEM=∠GEM=∠HFN=∠DFN=90°+45°=135°,∴度数为135°的角有:AEM Ð、 GEM Ð、 DFN Ð、 HFN Ð.2.(2020·福建福州市·七年级期末)已知两条直线l 1,l 2,l 1∥l 2,点A ,B 在直线l 1上,点A 在点B 的左边,点C ,D 在直线l 2上,且满足115ADC ABC Ð=Ð=o .(1)如图①,求证:AD ∥BC ;(2)点M ,N 在线段CD 上,点M 在点N 的左边且满足MAC BAC Ð=Ð,且AN 平分∠CAD ;(Ⅰ)如图②,当30ACD Ð=o 时,求∠DAM 的度数;(Ⅱ)如图③,当8CAD MAN Ð=Ð时,求∠ACD 的度数.【答案】(1)证明见解析;(2)(Ⅰ)5DAM Ð=°;(Ⅱ)25ACD Ð=°.【详解】(1)12//,115l l ADC Ð=°Q ,18065BAD ADC \Ð=°-Ð=°,又115ABC Ð=°Q ,180BAD ABC \Ð+Ð=°,//AD BC \;(2)(Ⅰ)12//,30l l ACD Ð=°Q ,30BAC ACD \Ð=Ð=°,MAC BAC Ð=ÐQ ,30MAC \Ð=°,由(1)已得:65BAD Ð=°,35DAC BAD BAC \Ð=Ð-Ð=°,35305DAM DAC MAC \Ð=Ð-Ð=°-°=°;(Ⅱ)设MAN x Ð=,则8CAD x Ð=,AN Q 平分CAD Ð,142CAN CAD x \Ð=Ð=,5MAC CAN MAN x \Ð=Ð+Ð=,MAC BAC Ð=ÐQ ,5BAC x \Ð=,由(1)已得:65BAD Ð=°,65CAD BAC BAD \Ð+Ð=Ð=°,即8565x x +=°,解得5x =°,525BAC x \Ð==°,又12//l l Q ,25ACD BAC \Ð=Ð=°.3.(2021·全国七年级)(探究)如图①,//AB CD ,点E 在直线AB ,CD 之间.求证:AEC BAE ECD Ð=Ð+Ð.(应用)如图②,//AB CD ,点E 在直线AB ,CD 之间.若//CE FG ,90AEC Ð=°,40BAE Ð=°,AH 平分BAE Ð,FH 平分DFG Ð,则AHF Ð的大小为_________.【答案】探究:见解析;应用:45°【详解】探究:过点E 作//EM AB∴BAE AEM Ð=Ð,∵//AB CD ,∴//EM CD .∴MEC ECD Ð=Ð,∵AEC AEM CEM Ð=Ð+Ð,∴AEC AEM CEM BAE ECD Ð=Ð+Ð=Ð+Ð.∴AEC BAE ECD Ð=Ð+Ð.应用:45°,作HP ∥AB ,∠BAH=∠AHP ,∵//AB CD ,∴HP//CD .∴∠PHF=∠HFD ,∵AH 平分BAE Ð,FH 平分DFG Ð,∴∠BAH=12∠BAE ,∠HFD=12∠GFD ,∵GF ∥CE ,∴∠ECD=∠GFD ,由(1)知∠BAE+∠ECD=∠AEC=90º,∴∠BAE+∠GFD=90º,∴∠AHF=∠AHP+∠PHF=∠BAH+∠HFD=12∠BAE+12∠GFD=()1=1290=452BAE GFD Ð+д°°,∠AHF= =45°.故答案为:45º.4.(2020·山东省青岛第五十九中学八年级期末)已知,//BC OA ,108B A Ð=Ð=°,试解答下列问题:(1)如图①,则O Ð=__________,则OB 与AC 的位置关系为__________(2)如图②,若点E 、F 在线段BC 上,且始终保持FOC AOC Ð=Ð,BOE FOE Ð=Ð.则EOC Ð的度数等于__________;(3)在第(2)题的条件下,若平行移动AC 到图③所示①在AC 移动的过程中,OCB Ð与OFB Ð的数量关系是否发生改变,若不改变,求出它们之间的数量关系;若改变,请说明理由.②当OCA OEB Ð=Ð时,求OCA Ð的度数.【答案】(1)72°,平行;(2)36°;(3)①∠OCB=12∠OFB ;②∠OCA=54°.【详解】解:(1)∵BC ∥OA ,∴∠B+∠O=180°,∵∠B=108°,∴∠O=72°,∵∠A=108°,∴∠O+∠A=180°,∴OB ∥AC ,故答案为:72°,平行;(2)∵∠FOC=∠AOC , BOE FOE Ð=Ð,∠BOA=72°,∴11136222EOC EOF FOC BOF FOA BOA °Ð=Ð+Ð=Ð+Ð=Ð=,故答案为:36°;(3)①不变,∵BC ∥OA ,∴∠OCB=∠AOC ,又∵∠FOC=∠AOC ,∴∠FOC=∠OCB ,又∵BC ∥OA ,∴∠OFB=∠FOA=2∠FOC ,∴∠OFB=2∠OCB ,即∠OCB :∠OFB=1:2.即∠OCB=12∠OFB ;②由(1)知:OB ∥AC ,∴∠OCA=∠BOC ,由(2)可以设:∠BOE=∠EOF=α,∠FOC=∠COA=β,∴∠OCA=∠BOC=2α+β由(1)知:BC ∥OA ,∴∠OEB=∠EOA=α+β+β=α+2β∵∠OEB=∠OCA∴2α+β=α+2β∴α=β∵∠AOB=72°,∴α=β=18°∴∠OCA=2α+β=36°+18°=54°.5.(2020·浙江杭州市·七年级其他模拟)已知:ABC V 和同一平面内的点D .(1)如图1,点D 在BC 边上,过D 作//DE BA 交AC 于E ,//DF CA 交AB 于F .根据题意,在图1中补全图形,请写出EDF Ð与BAC Ð的数量关系,并说明理由;(2)如图2,点D 在BC 的延长线上,//DF CA ,EDF BAC Ð=Ð.请判断DE 与BA 的位置关系,并说明理由.(3)如图3,点D 是ABC V 外部的一个动点.过D 作//DE BA 交直线AC 于E ,//DF CA 交直线AB 于F ,直接写出EDF Ð与BAC Ð的数量关系,并在图3中补全图形.【答案】(1)图见解析,EDF BAC Ð=Ð,理由见解析;(2)//DE BA ,理由见解析;(3)图见解析,EDF BAC Ð=Ð或180EDF BAC Ð+Ð=°.【详解】(1)由题意,补全图形如下:EDF BAC Ð=Ð,理由如下://DE BA Q ,EDF BFD \Ð=Ð,//DF CA Q ,BA BFD C \Ð=Ð,EDF BAC \Ð=Ð;(2)//DE BA ,理由如下:如图,延长BA 交DF 于点O ,//DF CA Q ,BAC BOD \Ð=Ð,EDF BAC Ð=ÐQ ,EDF BOD \Ð=Ð,//DE BA \;(3)由题意,有以下两种情况:①如图3-1,EDF BAC Ð=Ð,理由如下://DE BA Q ,180E EAF \Ð+Ð=°,//DF CA Q ,180E EDF \Ð+Ð=°,EAF EDF \Ð=Ð,由对顶角相等得:BAC EAF Ð=Ð,EDF BAC \Ð=Ð;②如图3-2,180EDF BAC Ð+Ð=°,理由如下://DE BA Q ,180EDF F \Ð+Ð=°,//DF CA Q ,BAC F \Ð=Ð,180EDF BAC \Ð+Ð=°.6.(2020·惠州市江南学校八年级期中)已知△ABC 中,点D 是AC 延长线上的一点,过点D 作DE ∥BC ,DG 平分∠ADE ,BG 平分∠ABC ,DG 与BG 交于点G .(1)如图1,若∠ACB =90°,∠A =50°,直接求出∠G 的度数;(2)如图2,若∠ACB≠90°,试判断∠G 与∠A 的数量关系,并证明你的结论;【答案】(1) 25º,(2)结论是:∠G=12∠A ,证明见详解.【详解】如图,在△ABC 中,∠ACB =90°,∠A =50°,∴∠A+∠ABC=90º,∴∠ABC=90º-∠A=40º,∵BG平分∠ADE,∴∠GBC=∠ABG=12∠ABC=20º,由作法DE∥BC,∠CDE+∠DCF=180º,∠DCF=∠ACB=90°,∴∠CDE=90º,∵DG平分∠ADE,∴∠CDF=∠EDF=45º,由DE∥BC,∴∠BFD=∠EDF=45º,由外角性质∠BFD=∠G+∠GBF,∴∠G=∠BFD-∠GBF=45º-20º=25º,(2)如图,结论是:∠G=12∠A,∵DE∥BC,∴∠CFD=∠FDE,过点C作CH∥DG交BG于H,∠BHC=∠G,∵DG平分∠ADE,∴∠CDF=∠FDE=12∠ADE,∴∠ACH=∠CDG,∠HCF=∠CFD=∠FDE,∴∠ACH=∠HCF=12∠ACF,∵BG平分∠ABC,∴∠ABG=∠GBF=12∠ABC,由外角性质∠ACF=∠A+∠ABC,2∠HCF=∠A+2∠HBC①,∠HCF=∠HBC+∠BHC ②由②×2-①得,∠BHC=12∠A ,∠G=12∠A .7.(2019·河北保定市·八年级月考)如图1所示的是北斗七星的位置图,图2将北斗七星分别标为A ,B ,C ,D ,E ,F ,G ,并顺次首尾连接,若AF 恰好经过点G ,且//AF DE ,105D E Ð=Ð=°.(1)求F Ð的度数.(2)连接AD ,当ADE Ð与CGF Ð满足怎样的数量关系时,//BC AD ,并说明理由.【答案】(1)75°;(2)当∠ADE+∠CGF=180°时,BC ∥AD .【详解】解:(1)∵AF ∥DE ,∴∠F+∠E=180°,∵105E Ð=°∴∠F=180°-105°=75°;(2)如图,当∠ADE+∠CGF=180°时,BC ∥AD ,∵AF ∥DE ,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180°,∴∠GAD=∠CGF ,∴BC ∥AD .8.(2018·上海七年级零模)已知:AB ∥DE .(1)如图1,点C 是夹在AB 和DE 之间的一点,当AC ⊥CD 时,垂足为点C ,你知道∠A+∠D 是多少吗?这一题的解决方法有很多,例如(i )过点C 作AB 的平行线;(ii )过点C 作DE 的平行线;(iii )联结AD ;(iv )延长AC 、DE 相交于一点.请你选择一种方法(可以不选上述四种),并说明理由.(2)如图2,点C1、C2是夹在AB 和DE 之间的两点,请想一想:∠A+∠C1+∠C2++∠D= 度,并说明理由.(3)如图3,随着AB 与CD 之间点增加,那么∠A+∠C1+∠C2++…+∠Cn+1+∠D=度.(不必说明理由)【答案】(1)270°;(2)540,理由见解析;(3)180n【详解】(1)如图1,过点C 作AB 的平行线CF ,∵//AB DE ,∴//CF DE ,∴180A ACF Ð+Ð=°,180D C F D Ð+Ð=°,∴1802360A ACD D Ð+Ð+Ð=°´=°,又∵AC CD ⊥,∴36090270A D Ð+Ð=°-°=°.(2)如图2,过1C 作1//C F AB ,过2C 作2//C G DE ,则∵//AB DE ,∴12//////C F AB C G DE ,∴1180A AC F Ð+Ð=°,1212180FC C C C G Ð+Ð=°,2180GC D D Ð+Ð=°,∴12121803540A AC C C C D D ´Ð+Ð+Ð+Ð=°=°,故答案为:540;(3)如图3,由(1)(2)可得:121180(180)n A C C C D n n +Ð+Ð+Ð++Ð+Ð=°´=°L ,故答案为:180n .9.(2019·河北唐山市·七年级期中)根据所给图形及已知条件,回答下列问题:(1)①如图1所示,已知直线//AB CD ,68ABC Ð=°,那么根据_________可得BCD Ð=________°;②如图2,在①的条件下,如果CM 平分BCD Ð,则BCM Ð=________°;③如图3,在①、②的条件下,如果CN CM ⊥,则BCN Ð=________°.(2)尝试解决下列问题:如图4,已知//AB CD ,42ABC Ð=°,CN 是BCE Ð的平分线,CN CM ⊥,求BCM Ð的度数.【答案】(1)①两直线平行,内错角相等;68 ②34 ③56;(2)21°【详解】解:(1)①两直线平行,内错角相等;BCD Ð=∠ABC =68°,故填:68;②∵CM 平分BCD Ð,∴BCM Ð=12BCD Ð=34°,故填:34 ;③∵CN CM ⊥,∴ ∠NCM =90°,∴BCN Ð=90°-BCM Ð=56°,故填:56;(2)∵AB ∥CD ,∴∠ABC +∠BCE =180°,∵∠ABC =42°,∴∠BCE =180°-∠ABC =180°-42°=138°,∵CN 平分∠BCE ,∴∠BCN=12∠BCE=69°,∵CN⊥CM,∴∠MCN=90°,∴∠BCM=∠MCN-∠BCN=90°-69°=21°.10.(2020·洛阳市第二外国语学校七年级期中)如图1,D是△ABC延长线上的一点,CE//AB.(1)求证:∠ACD=∠A+∠B;(2)如图2,过点A作BC的平行线交CE于点H,CF平分∠ECD,FA平分∠HAD,若∠BAD=70°,求∠F的度数.(3)如图3,AH//BD,G为CD上一点,Q为AC上一点,GR平分∠QGD交AH于R,QN平分∠AQG 交AH于N,QM//GR,猜想∠MQN与∠ACB的关系,说明理由.【答案】(1)证明见解析;(2)∠F=55°;(3)∠MQN=12∠ACB;理由见解析.【详解】解:(1)∵CE//AB,∴∠ACE=∠A,∠ECD=∠B,∵∠ACD=∠ACE+∠ECD,∴∠ACD=∠A+∠B;(2)∵CF平分∠ECD,FA平分∠HAD,∴∠FCD=12∠ECD,∠HAF=12∠HAD,∴∠F=12∠HAD+12∠ECD=12(∠HAD+∠ECD),∵CH//AB,∴∠ECD=∠B,∵AH//BC,∴∠B+∠HAB=180°,∵∠BAD=70°,110B HAD\Ð+Ð=°,∴∠F=12(∠B+∠HAD)=55°;(3)∠MQN =12∠ACB ,理由如下:GR Q 平分QGD Ð,12QGR QGD \Ð=Ð. GN Q 平分AQG Ð,12NQG AQG \Ð=Ð.//QM GR Q ,180MQG QGR \Ð+Ð=° .∴∠MQN =∠MQG ﹣∠NQG=180°﹣∠QGR ﹣∠NQG=180°﹣12(∠AQG+∠QGD )=180°﹣12(180°﹣∠CQG+180°﹣∠QGC )=12(∠CQG+∠QGC )=12∠ACB .考点5:与平行线、交线有关的作图问题典例:(2021·江苏泰州市·七年级期末)如图是由相同边长的小正方形组成的网格图形,小正方形的边长为1个单位长度,每个小正方形的顶点都叫做格点,ABC V 的三个顶点都在格点上,利用网格画图.(注:所画格点、线条用黑色水笔描黑)(1)过点A 画BC 的垂线,并标出垂线所过格点P ;(2)过点A 画BC 的平行线,并标出平行线所过格点Q ;(3)画出ABC V 向右平移8个单位长度后A B C ¢¢¢V 的位置;(4)A B C ¢¢¢V 的面积为______.【答案】(1)见解析;(2)见解析;(3)见解析;(4)9.5【详解】解:(1)如图所示,AP 是BC 的垂线;P 为所求格点;(2)如图所示,1//AQ BC ,1Q 、2Q 为所求格点;(3)如图所示,A B C ¢¢¢V 为所求;(4)A B C ¢¢¢V 的面积11119544151432222=´-´´-´´-´´=,故答案为:192.方法或规律点拨此题主要考查了应用设计与作图,正确掌握相关性质以及结合网格画出对应点是解题关键.巩固练习1.(2021·江苏南京市·七年级期末)如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.(1)过点A 画线段BC 的垂线,垂足为E ;(2)过点A 画线段AB 的垂线,交线段CB 的延长线于点F ;(3)线段BE 的长度是点 到直线 的距离;(4)线段AE 、BF 、AF 的大小关系是.(用“<”连接)【答案】(1)见解析;(2)见解析;(3)B ,AE ;(4)AE <AF <BF【详解】(1)如图所示;(2)如图所示;。
2024温州市七年级(下)月考数学试卷(3月份)(解析版)
2024学年温州市七年级(下)(3月份)月考数学试卷测试范围:第1-2章;满分100分一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项最符合题目要求。
1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是( ) A.杯 B.立 C. 比 D.曲【答案】C【分析】根据图形平移的性质解答即可.本题考查的是利用平移设计图案,熟知图形平移不变性的性质是解答此题的关键.【详解】解:由图可知A 不是平移得到,B 不是平移得到,D 不是平移得到,C 是利用图形的平移得到.故选:C.2.风筝是中国古代劳动人民发明于东周春秋时期的产物,其材质在不断改进之后,坊间开始用纸做风筝,称为“纸鸢”.如图所示的纸骨架中,与1∠构成同位角的是( )A.2∠B.3∠ C.4∠ D.5∠【答案】A 【分析】本题考查的是同位角的定义,关键是知道哪两条直线被第三条直线所截.根据同位角的定义解答即可【详解】解:如图可知,1∠和2∠是同位角,故选:A .3.下列方程组中,是二元一次方程组的是()【答案】B【分析】本题主要考查了二元一次方程解的定义,根据二元一次方程的解是使方程左右两边相等的未知数的值把23x y =⎧⎨=⎩代入原方程中求出a 的值即可. 【详解】解:∵23x y =⎧⎨=⎩是关于x y 、的二元一次方程33ax y −=的解, ∴2333a −⨯=,解得6a =,故选:B.5.如图所示,点E 在AD 的延长线上,下列条件中能判断AB CD 的是( )A.3=4∠∠B.12∠=∠ C.C CDE ∠=∠D.180C ADC ∠+∠=︒【答案】B 【分析】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.根据平行线的判定分别进行分析可得答案.【详解】解:A、3=4∠∠,根据内错角相等,BC AD ∥,故此选项不符合题意;B、12∠=∠,根据内错角相等,两直线平行可得:AB CD ,故此选项符合题意;C、C CDE ∠=∠,根据内错角相等,两直线平行可得:BC AD ∥,故此选项不符合题意;D、180C ADC ∠+∠=︒,根据同旁内角互补,两直线平行可得:BC AD ∥,故此选项不符合题意.故选:B.6.若关于x ,y 的方程组32mx y n x ny m −=⎧⎨+=⎩的解为11x y =⎧⎨=⎩则2()m n −等于( ) A.1B.4 C.9 D.25【答案】B【分析】此题考查了二元一次方程组的解和解二元一次方程组,代数式求值.解决本题的关键是310x y改写成含(13)y−B.y=【详解】解:2310x y,A.299929x y yx y+=−⎧⎨−=−⎩B.929299x yx y+=−⎧⎨−=+⎩C.()29999x yx y⎧+=−⎨−=+⎩D.()92999x yx y⎧+=−⎨−=+⎩【答案】D【分析】根据“如果乙给甲9只羊,那么甲的羊数为乙的2倍;如果甲给乙9只羊,那么两人的羊数相同”,列出二元一次方程组,即可求解,本题考查了二元一次方程组的实际应用,解题的关键是:正确理解题意,列出等量关系.【详解】解:由“如果乙给甲9只羊,那么甲的羊数为乙的2倍,”可列式:()929x y +=−, 由“如果甲给乙9只羊,那么两人的羊数相同,”可列式:99x y −=+,根据题意可列二元一次方程组:()92999x y x y ⎧+=−⎨−=+⎩, 故选:D .9.一块含30︒角的直角三角板,按如图所示方式放置,顶点A ,C 分别落在直线a ,b 上,若直线a b ,135∠=︒,则2∠的度数是( )A.45︒B.35︒ C.30︒ D.25︒【答案】D 【分析】本题考查了平行线的性质与判定,熟练掌握平行线的判定与性质是解题的关键. 过点B 作BD a ∥,则BD b ∥,根据平行线的性质得出23,14∠=∠∠=∠,进而可得出3412ABC ∠=∠+∠=∠+∠,最后代入数据计算即可.【详解】解:如图:过点B 作BD a ∥,∵a b ,∴BD b ∥,∴23,14∠=∠∠=∠,∴3412ABC ∠=∠+∠=∠+∠,∴21603525ABC ︒︒︒∠=∠−∠=−=.故选:D.10.如图,已知12l l ∥,那么下列式子中不正确的是( ).A.12A BC A BC S S =△△B.1212BA A CA A S S =△△ C.12A BO A CO S S =△△D.12A OA BOC S S =△△【答案】D 【分析】首先根据12l l ∥得出1l 和2l 之间的距离处处相等,进而根据同底等高的两个三角形面积相等,判断A 和B,然后根据12A BC AOB A BC AOB S S S S −=−△△△△,判断C;最后根据12A A O △和BOC 是否为等底等高,判断D.【详解】解:∵12l l ∥,∴1l 和2l 之间的距离处处相等,∵1A BC 和2A BC 是同底等高,∴12A BC A BC S S =△△,故A 正确;同理1212BA A CA A S S =△△,故B 正确;∴12A BC AOB A BC AOB S S S S −=−△△△△,∴12A BO A CO S S =△△,故C 正确;∵12A A O △和BOC 既不是等底也不是等高,∴12A OA S △和BOC S不一定相等,故D 不正确;故选:D. 二、填空题:本大题有8个小题,每小题3分,共24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年浙江省温州市七年级(下)期末数学试卷一.选择题(共10小题)1.如图,下列选项中与∠A互为同旁内角的是()A.∠1B.∠2C.∠3D.∠42.世界上最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,质量只有0.000005克,数0.000005用科学记数法表示为()A.﹣5×106B.5×10﹣5C.5×10﹣6D.5×10﹣73.计算y2•(﹣2xy)的结果是()A.﹣2xy3B.2x2y3C.﹣2x2y3D.2xy34.已知是方程2x+y=5的一个解,则a的值为()A.a=﹣1B.a=1C.a=D.a=5.温州6月8日~14日的气温折线统计图如图所示,其中实线表示当日最高气温,虚线表示当日最低气温,由图可知,这一周中温差最大的是()A.6月9日B.6月11日C.6月12日D.6月14日6.下列运算正确的是()A.2a(a﹣1)=2a2﹣a B.a(a+3b)=a2+3abC.﹣3(a+b)=﹣3a+3b D.a(﹣a+2b)=﹣a2﹣2ab7.把一块直角三角板的直角顶点放在直尺的一边上(如图所示),则下列关于∠1与∠2的等式中一定成立的是()A.∠1+∠2=180°B.2∠1=∠2C.∠2﹣∠1=45°D.∠2﹣∠1=90°8.若多项式x2+mx﹣8因式分解的结果为(x+4)(x﹣2),则常数m的值为()A.﹣2B.2C.﹣6D.69.如图所示,以长方形ABCD的各边为直径向外作半圆,若四个半圆的周长之和为14π,面积之和为29π,则长方形ABCD的面积为()A.10B.20C.40D.8010.已知甲、乙两人分别从A,B两地同时匀速出发,若相向而行,则经过a分钟后两人相遇;若同向而行,则经过b分钟后甲追上乙.若甲、乙的速度比为10:3,则的值为()A.B.C.D.二.填空题(共6小题)11.计算:(2+x)(2﹣x)=.12.因式分解:m2﹣mn=.13.要使分式的值为0,则x的值为.14.小明对某班级同学参加课外活动内容进行问卷调查后(每人必选且只选一种),绘制成如图所示的统计图,已知参加踢毽子的人数比参加打篮球的人数少6人,则参加“其他”活动的人数为人.15.定义一种新运算:a⊗b=a b,则5⊗(﹣2)的值为.16.如图是用三角尺和直尺画平行线的示意图,将三角尺ABC沿着直尺PQ平移到三角尺A′B′C′的位置,就可以画出AB的平行线A′B′.若AC′=9cm,A′C=2cm,则直线AB平移的距离为cm.17.已知关于x,y的方程组的解互为相反数,则常数a的值为.18.如图1是小圆设计的班徽,其中“Z”字型部分按以下作图方式得到:如图2,在正方形ABCD边AB,CD上分别取点E,F,再在CB和AD的延长线上分别取点G,H,使得BE=BG=DF=DH,连结AG,EG,AF,CE,FH和CH.记△AEG与△CFH的面积之和为S1,四边形AECF的而积为S2,若=,S1+S2=20,则正方形ABCD面积为.三.解答题19.化简或计算:(1)(a+1)2﹣a2;(2)(8x2y﹣4x3)÷(2x).20.解方程(组):(1);(2)+1=.21.先化简,再求值:(1﹣)•,请在﹣1,0,1,2中选一个数代入求值.22.某厂随机抽取一批电灯泡并对其使用寿命进行检测,得到如图的频数直方图(每组含前一个边界值,不含后一个边界值),请根据这个直方图回答下列问题.(1)被检测的电灯泡共只.(2)被检测电灯泡的最少使用寿命至少为时.(3)厂家规定使用寿命在1300小时以上(含1300小时)的电灯泡为合格,如果生产了40000只电灯泡,请估计合格的电灯泡有多少只?23.如图,长方形ABCD中,AD∥BC,E为边BC上一点,将长方形沿AE折叠(AE为折痕),使点B与点F重合,EG平分∠CEF交CD于G,过点G作HG⊥EG交AD于点H.(1)求证:HG∥AE.(2)若∠CEG=20°,求∠DHG的度数.24.目前,新型冠状病毒在我国虽可控可防,但不可松懈.某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液若干瓶,已知购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元.(1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10ml的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费5000元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将9.6L的免洗手消毒液全部装入最大容量分别为300ml和500ml的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗20ml,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.2019-2020学年浙江省温州市七年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.如图,下列选项中与∠A互为同旁内角的是()A.∠1B.∠2C.∠3D.∠4【分析】根据同位角、内错角、同旁内角、对顶角的定义进行判断即可.【解答】解:A、∠1和∠A是同旁内角,故本选项符合题意;B、∠2和∠A是同位角,不是同旁内角,故本选项不符合题意;C、∠3和∠A不是同旁内角,故本选项不符合题意;D、∠4和∠A是内错角,不是同旁内角,故本选项不符合题意.故选:A.2.世界上最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,质量只有0.000005克,数0.000005用科学记数法表示为()A.﹣5×106B.5×10﹣5C.5×10﹣6D.5×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000005=5×10﹣6,故选:C.3.计算y2•(﹣2xy)的结果是()A.﹣2xy3B.2x2y3C.﹣2x2y3D.2xy3【分析】运用单项式乘单项式的运算法则计算即可.【解答】解:y2•(﹣2xy)=﹣2x•(y2•y)=﹣2xy3.故选:A.4.已知是方程2x+y=5的一个解,则a的值为()A.a=﹣1B.a=1C.a=D.a=【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把代入方程得:4+a=5,解得:a=1,故选:B.5.温州6月8日~14日的气温折线统计图如图所示,其中实线表示当日最高气温,虚线表示当日最低气温,由图可知,这一周中温差最大的是()A.6月9日B.6月11日C.6月12日D.6月14日【分析】通过图形直观可以得出温差最大的日期,即同一天的最高气温与最低气温的差最大.【解答】解:由图形直观可以得出6月14日温差最大,是35﹣25=10(°C),故选:D.6.下列运算正确的是()A.2a(a﹣1)=2a2﹣a B.a(a+3b)=a2+3abC.﹣3(a+b)=﹣3a+3b D.a(﹣a+2b)=﹣a2﹣2ab【分析】分别根据单项式乘单项式与去括号的法则逐一判断即可.【解答】解:A.2a(a﹣1)=2a2﹣2a,故本选项不合题意;B.a(a+3b)=a2+3ab,故本选项符合题意;C.﹣3(a+b)=﹣3a﹣3b,故本选项不合题意;D.a(﹣a+2b)=﹣a2+2ab,故本选项不合题意.故选:B.7.把一块直角三角板的直角顶点放在直尺的一边上(如图所示),则下列关于∠1与∠2的等式中一定成立的是()A.∠1+∠2=180°B.2∠1=∠2C.∠2﹣∠1=45°D.∠2﹣∠1=90°【分析】根据两条直线平行,同旁内角互补,即可得∠1与∠2的关系.【解答】解:如图,∵直角三角板的直角顶点放在直尺的一边上,∴∠2=∠3,∠1+∠4=90°,∵直尺的两边平行,∴∠3+∠4=180°,∴∠2+90°﹣∠1=180°,∴∠2﹣∠1=90°.故选:D.8.若多项式x2+mx﹣8因式分解的结果为(x+4)(x﹣2),则常数m的值为()A.﹣2B.2C.﹣6D.6【分析】利用十字相乘法的结果特征判断即可求出m的值.【解答】解:∵多项式x2+mx﹣8因式分解的结果为(x+4)(x﹣2),而(x+4)(x﹣2)=x2+2x﹣8,∴m=2,故选:B.9.如图所示,以长方形ABCD的各边为直径向外作半圆,若四个半圆的周长之和为14π,面积之和为29π,则长方形ABCD的面积为()A.10B.20C.40D.80【分析】设长方形的长为a,宽为b,根据四个半圆的周长之和为14π,可得a+b=14,根据面积之和为29π,可得a2+b2=116,进而求出ab的值即可.【解答】解:设长方形的长为a,宽为b,由题意得,πa+πb=14π,即:a+b=14,π×()2﹣π×()2=29π,即:a2+b2=116,∴ab=[(a+b)2﹣(a2+b2)]=(196﹣116)=40,故选:C.10.已知甲、乙两人分别从A,B两地同时匀速出发,若相向而行,则经过a分钟后两人相遇;若同向而行,则经过b分钟后甲追上乙.若甲、乙的速度比为10:3,则的值为()A.B.C.D.【分析】设甲的速度为10x,则乙的速度为3x,设A,B两地相距s,相向而行,等量关系为:甲路程+乙路程=s;同向而行,等量关系为:甲路程﹣乙路程=s,则10xa+3xa =s,10xb﹣3xb=s,联立即可求得的值.【解答】解:设甲的速度为10x,则乙的速度为3x,设A,B两地相距s,依题意有10xa+3xa=s①,10xb﹣3xb=s②,①﹣②得10xa+3xa﹣(10xb﹣3xb)=0,13a﹣7b=0,=,故选:B.二.填空题(共6小题)11.计算:(2+x)(2﹣x)=4﹣x2.【分析】利用平方差公式计算即可得到结果.【解答】解:(2+x)(2﹣x)=22﹣x2=4﹣x2.故答案为:4﹣x2.12.因式分解:m2﹣mn=m(m﹣n).【分析】提取公因式m,即可将此多项式因式分解.【解答】解:m2﹣mn=m(m﹣n).故答案为:m(m﹣n).13.要使分式的值为0,则x的值为1.【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:∵分式的值为0,∴1﹣x=0且x﹣2≠0,解得x=1,故答案为:1.14.小明对某班级同学参加课外活动内容进行问卷调查后(每人必选且只选一种),绘制成如图所示的统计图,已知参加踢毽子的人数比参加打篮球的人数少6人,则参加“其他”活动的人数为10人.【分析】先由扇形统计图得出参加踢毽子与打篮球的人数所占的百分比,结合参加踢毽子的人数比参加打篮球的人数少6人,求出参加课外活动一共的人数,进一步可求参加“其他”活动的人数.【解答】解:6÷(30%﹣15%)=40(人),40×25%=10(人).答:参加“其他”活动的人数为10人.故答案为:10.15.定义一种新运算:a⊗b=a b,则5⊗(﹣2)的值为.【分析】根据运算的定义即可直接求解【解答】解:5⊗(﹣2)=5﹣2=.故答案为:.16.如图是用三角尺和直尺画平行线的示意图,将三角尺ABC沿着直尺PQ平移到三角尺A′B′C′的位置,就可以画出AB的平行线A′B′.若AC′=9cm,A′C=2cm,则直线AB平移的距离为 5.5cm.【分析】根据线段的和差关系可求AC+A′C′的长度,除以2可求A′C′的长度,再根据线段的和差关系可求CC′的长度,即为直线AB平移的距离.【解答】解:AC+A′C′=AC′﹣A′C=9﹣2=7(cm),A′C′=7÷2=3.5(cm),CC′=A′C+A′C′=2+3.5=5.5(cm).故直线AB平移的距离为5.5cm.故答案为:5.5.17.已知关于x,y的方程组的解互为相反数,则常数a的值为15.【考点】97:二元一次方程组的解.【专题】521:一次方程(组)及应用;66:运算能力.【分析】②﹣①求出2x+2y=a﹣15,根据已知得出a﹣15=0,求出即可.【解答】解:∵②﹣①得:2x+2y=a﹣15,∵关于x,y的方程组的解互为相反数,∴x+y=0,即2x+2y=0,∴a﹣15=0,∴a=15,故答案为15.18.如图1是小圆设计的班徽,其中“Z”字型部分按以下作图方式得到:如图2,在正方形ABCD边AB,CD上分别取点E,F,再在CB和AD的延长线上分别取点G,H,使得BE=BG=DF=DH,连结AG,EG,AF,CE,FH和CH.记△AEG与△CFH的面积之和为S1,四边形AECF的而积为S2,若=,S1+S2=20,则正方形ABCD面积为.【考点】KD:全等三角形的判定与性质;LE:正方形的性质;N4:作图—应用与设计作图.【专题】13:作图题;69:应用意识.【分析】设BE=BG=DF=DH=x,AE=CF=y.想办法构建方程组求出x,y即可解决问题.【解答】解:设BE=BG=DF=DH=x,AE=CF=y.∵四边形ABCD是正方形,∴AB=BC=CD=AD=x+y,∠ABC=∠ABG=90°,∠ADF=∠CDH=90°,∵BE=BG=DF=DH,∴△BGE≌△DFH(SAS),∠BEG=∠DFH=45°,∴EG=FH,∠AEG=∠CFH=135°,∵EA=FC,∴△AEG≌△CFH(SAS),∴S△AEG=S△CFH,∴xy+y(x+y)=20 ①,=②,由①②可得,∴正方形的面积=(2+)2=.故答案为.三.解答题19.化简或计算:(1)(a+1)2﹣a2;(2)(8x2y﹣4x3)÷(2x).【考点】4C:完全平方公式;4H:整式的除法.【专题】512:整式;66:运算能力.【分析】(1)根据完全平方公式展开后,再合并同类项即可;(2)根据大学生除以单项式的运算法则计算即可.【解答】解:(1)原式=a2+2a+1﹣a2=2a+1;(2)原式=(8x2y)÷(2x)﹣(4x3)÷(2x)=4xy﹣2x2.20.解方程(组):(1);(2)+1=.【考点】98:解二元一次方程组;B3:解分式方程.【专题】524:一元一次不等式(组)及应用;66:运算能力.【分析】(1)利用加减消元法解方程组;(2)去分母得到整式方程﹣2x+x﹣1=1,然后解整式方程后进行检验确定原方程的解.【解答】解:(1),①+②×2得3x+2x=9+16,解得x=5,把x=5代入②得5﹣y=8,解得y=﹣3,所以方程组的解为;(2)去分母得﹣2x+x﹣1=1,解得x=2,经检验,原方程的解为x=﹣2.21.先化简,再求值:(1﹣)•,请在﹣1,0,1,2中选一个数代入求值.【考点】6D:分式的化简求值.【专题】513:分式;66:运算能力.【分析】先按照分式的混合运算法则进行化简,再代入使原式有意义的值进行计算.【解答】解:原式==,∵m=±1或0时,原式无意义,∴取m=2时,原式=.22.某厂随机抽取一批电灯泡并对其使用寿命进行检测,得到如图的频数直方图(每组含前一个边界值,不含后一个边界值),请根据这个直方图回答下列问题.(1)被检测的电灯泡共200只.(2)被检测电灯泡的最少使用寿命至少为1100时.(3)厂家规定使用寿命在1300小时以上(含1300小时)的电灯泡为合格,如果生产了40000只电灯泡,请估计合格的电灯泡有多少只?【考点】V5:用样本估计总体;V8:频数(率)分布直方图.【专题】54:统计与概率;65:数据分析观念.【分析】(1)根据直方图中的数据,可以得到被检测的灯泡一共多少只;(2)根据直方图中的数据,可以得到被检测电灯泡的最少使用寿命至少为多少时;(3)根据统计图中的数据,可以计算出合格的电灯泡有多少只.【解答】解:(1)被检测的电灯泡共10+80+70+40=200(只),故答案为:200;(2)被检测电灯泡的最少使用寿命至少为1100时,故答案为:1100;(3)40000×=38000(只),即合格的电灯泡有38000只.23.如图,长方形ABCD中,AD∥BC,E为边BC上一点,将长方形沿AE折叠(AE为折痕),使点B与点F重合,EG平分∠CEF交CD于G,过点G作HG⊥EG交AD于点H.(1)求证:HG∥AE.(2)若∠CEG=20°,求∠DHG的度数.【考点】JB:平行线的判定与性质.【专题】551:线段、角、相交线与平行线;556:矩形菱形正方形;558:平移、旋转与对称;67:推理能力.【分析】(1)由折叠的性质得出∠AEB=∠AEF,证出AE⊥EG,进而得出结论;(2)求出∠AEB=70°,由平行线的性质进而得出答案.【解答】(1)证明:由折叠知∠AEB=∠AEF,∵EG平分∠CEF,∴∠FEG=∠CEG,∵∠AEB+∠AEF+∠FEG+∠CEG=180°,∴∠AEG=∠AEF+∠FEG=90°,∴AE⊥EG,∵HG⊥EG,∴HG∥AE;(2)解:∵∠CEG=20°,∠AEG=90°,∴∠AEB=70°,∵四边形ABCD是长方形,∴AD∥BC,∴∠AEB=∠DAE=70°,∵HG∥AE,∴∠DHG=∠DAE=70°.24.目前,新型冠状病毒在我国虽可控可防,但不可松懈.某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液若干瓶,已知购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元.(1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10ml的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费5000元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将9.6L的免洗手消毒液全部装入最大容量分别为300ml和500ml的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗20ml,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.【考点】95:二元一次方程的应用;9A:二元一次方程组的应用.【专题】521:一次方程(组)及应用;69:应用意识.【分析】(1)设甲种免洗手消毒液的单价为x元,乙种免洗手消毒液的单价为y元,根据“购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲种免洗手消毒液a瓶,乙种免洗手消毒液b瓶,根据总价=单价×数量,即可得出关于a,b的二元一次方程,再结合可使用时间=免洗手消毒液总体积÷每天需消耗的体积,即可求出结论;(3)设分装300ml的免洗手消毒液m瓶,500ml的免洗手消毒液n瓶,根据需将9.6L 的免洗手消毒液进行分装且分装时平均每瓶需损耗20ml,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可得出各分装方案,选择(m+n)最小的方案即可得出结论.【解答】解:(1)设甲种免洗手消毒液的单价为x元,乙种免洗手消毒液的单价为y元,依题意,得:,解得:.答:甲种免洗手消毒液的单价为15元,乙种免洗手消毒液的单价为25元.(2)设购进甲种免洗手消毒液a瓶,乙种免洗手消毒液b瓶,依题意,得:15a+25b=5000,∴===10.答:这批消毒液可使用10天.(3)设分装300ml的免洗手消毒液m瓶,500ml的免洗手消毒液n瓶,依题意,得:300m+500n+20(m+n)=9600,∴m=30﹣n.∵m,n均为正整数,∴和.∵要使分装时总损耗20(m+n)最小,∴,即分装时需300ml的空瓶4瓶,500ml的空瓶16瓶,才能使总损耗最小.。