秒杀三角函数
三角函数-秒杀技巧-1的妙用
三角函数-秒杀技巧-1的妙用三角函数是高中数学中常见的概念,我们经常接触到的三角函数有正弦函数、余弦函数和正切函数。
三角函数在数学中有着广泛的应用,特别是在解决关于角度和距离的问题时。
而在秒杀题时,掌握三角函数的性质和应用是非常关键的。
本文将介绍三角函数的一种妙用,即使用三角函数的性质推导简单且常见的三角恒等式。
本文将从基本概念、基本性质和推导三角恒等式三个方面进行详细阐述。
一、基本概念首先,我们来回顾一下三角函数的基本概念。
在直角三角形中,我们定义了三个基本三角函数:1. 正弦函数(sin):在直角三角形中,正弦函数定义为对边与斜边之比,即sinθ = a / c。
2. 余弦函数(cos):在直角三角形中,余弦函数定义为邻边与斜边之比,即cosθ = b / c。
3. 正切函数(tan):在直角三角形中,正切函数定义为对边与邻边之比,即tanθ = a / b。
这三个基本三角函数在数学中有着很多的性质,这些性质可以帮助我们更好地理解和应用三角函数。
二、基本性质1. 基本关系式:在直角三角形中,三角函数之间有着重要的关系。
我们可以通过正弦和余弦的关系式sin²θ + cos²θ = 1来推导其他有关的关系式。
2.周期性:三角函数是周期函数,其中正弦函数和余弦函数的周期是2π,而正切函数的周期是π。
3. 奇偶性:正弦函数是奇函数,即sin(-θ) = -sinθ;余弦函数是偶函数,即cos(-θ) = cosθ;正切函数是奇函数,即tan(-θ) = -tanθ。
4. 初等性质:三角函数具有各自的初等性质,例如sin0 = 0,cos0 = 1,tan0 = 0,以及sinπ/2 = 1,cosπ/2 = 0,tanπ/2 = ∞等等。
理解和掌握这些基本性质对于推导和应用三角恒等式非常重要。
现在,我们来看一下如何利用三角函数的性质来推导三角恒等式。
三、推导三角恒等式在数学中,三角恒等式是指能够成立的恒等式,即对于一切满足恒等式中各个角的取值范围,恒等式都是成立的。
三角函数诱导公式 秒杀技巧 解题技巧
三角函数诱导公式秒杀技巧解题技巧三角函数诱导公式、秒杀技巧和解题技巧三角函数是高中数学中非常重要的内容,而三角函数诱导公式则是三角函数中的重点和难点。
掌握好三角函数诱导公式对于提高解题速度和正确率非常重要。
本文将介绍三角函数诱导公式、秒杀技巧和解题技巧,帮助读者更好地掌握三角函数知识。
一、三角函数诱导公式三角函数诱导公式是指通过代数运算和三角函数名的变换,将一个角三角函数值转化为其他角三角函数值的方法。
常见的三角函数诱导公式包括sin(π/2±α)=cosα, cos(π/2±α)=sinα, tan(π/4±α)=±√(1-cosα)/(1+cosα), sec(π/4±α)=±√((1+cos α)/(1-cosα))等。
掌握好三角函数诱导公式对于解决一些复杂的三角函数问题非常重要。
二、秒杀技巧秒杀技巧是指快速解决数学问题的技巧。
在解决三角函数问题时,常用的秒杀技巧包括:1. 特殊值法:通过代入特殊值,快速计算出答案。
2. 奇偶性法:利用三角函数的奇偶性,快速判断答案的正负性。
3. 半角法:利用半角公式,将复杂的问题转化为简单的问题。
4. 整体代换法:通过整体代换,将一个式子转化为另外的形式,从而简化计算。
三、解题技巧1. 熟悉三角函数的定义域和值域:在解决三角函数问题时,需要注意函数的定义域和值域,避免出现负值或超出定义域的情况。
2. 学会化简:将复杂的式子化简为简单的形式,有助于快速计算。
3. 学会选择合适的方法:在解决三角函数问题时,需要根据问题的特点选择合适的方法,如代入法、奇偶性法、半角法等。
三角函数解题技巧和公式(已整理)技巧归纳
浅论关于三角函数的几种解题技巧本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。
下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用:1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如:例1 已知θθθθ33cos sin ,33cos sin -=-求。
分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=-]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--=其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。
解:∵θθθθcos sin 21)cos (sin 2-=- 故:31cos sin 31)33(cos sin 212=⇒==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 3943133]313)33[(332=⨯=⨯+=2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用:由于tg θ+ctg θ=θθθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。
例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。
数学48条秒杀公式
数学48条秒杀公式高考数学48条秒杀公式1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2.函数的周期性问题(记忆三个):(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3.关于对称问题(无数人搞不懂的问题)总结如下:(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4.函数奇偶性:(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5.数列爆强定律:(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q6.数列的终极利器,特征根方程。
(如果看不懂就算了)。
首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。
高中数学秒选择填空公式
高中数学秒选择填空公式以下是高中数学中常用的秒杀选择题和填空题的公式:1. 三角函数:诱导公式:对于任意角度θ,有sin(π + θ) = -sinθ,cos(π + θ) = -cosθ,tan(π + θ) = tanθ等。
二倍角公式:sin2θ = 2sinθcosθ,cos2θ = cos²θ - sin²θ,tan2θ =2tanθ / (1 - tan²θ)。
2. 圆锥曲线:焦半径公式:对于椭圆,长轴端点A、B与任意一点P的连线分别是AP、BP,则AP = a + ex,BP = a - ex;对于双曲线,长轴端点A、B与任意一点P的连线分别是AP、BP,则AP = ex - a,BP = ex + a。
通径公式:对于抛物线,其通径为2p;对于椭圆,其通径为b²/a;对于双曲线,其通径为b²/a。
3. 数列:等差数列中项性质:对于任意n项等差数列,其第1项和第n项的算术平均值等于第n/2项的值,即a1 + an = 2an/2。
等比数列中项性质:对于任意n项等比数列,其第1项和第n项的几何平均值等于第n/2项的值,即a1 an = a(n/2)²。
4. 平面几何:两点间距离公式:d = √[(x2-x1)² + (y2-y1)²]。
点到直线距离公式:d = Ax0 + By0 + C / √(A² + B²)。
直线斜率公式:k = (y2 - y1) / (x2 - x1)。
5. 向量:向量模长公式:a = √(a₁² + a₂² + ... + an²)。
向量点乘公式:a · b = a b cosθ。
向量叉乘公式:a × b = a b sinθ n,其中n为垂直于a和b的单位向量。
6. 概率统计:古典概型概率公式:P = m / n,其中m为基本事件总数中有利于基本事件的总数,n为基本事件总数。
高中数学高考数学50条秒杀型公式与方法
高中数学高考数学50条秒杀型公式与方法高中数学是高考的重要科目之一,其中有许多公式和方法需要掌握。
本文将介绍50条秒杀型公式和方法,供高中生备考高考使用。
一、代数1. 二次函数顶点坐标公式:对于一般式二次函数f(x)=ax^2+bx+c,顶点坐标为(-b/2a, -Δ/4a),其中Δ=b^2-4ac。
2. 一元二次方程求根公式:对于一元二次方程ax^2+bx+c=0,解为x=[-b±(b^2-4ac)^(1/2)]/(2a)。
3. 幂函数指数规律公式:(a^m)^n=a^(mn),(ab)^n=a^n*b^n,(a^n)^m=a^(nm)。
4. 对数换底公式:loga(b)=logc(b)/logc(a),其中a、b、c为正数且a≠15.平均值与方差的性质公式:n个数的平均值为平方和除以n,方差为平方和减去平均值的平方再除以n。
6. 二次差公式:an=a1+(n-1)d+(n-1)(n-2)/2!c,其中a1表示首项,d表示公差,c表示公差的变化量。
7.等比数列求和公式:Sn=a1(1-q^n)/(1-q),其中Sn表示前n项和,a为首项,q为公比。
二、几何1.圆的周长和面积公式:圆的周长为2πr,面积为πr^2,其中r为圆的半径。
2.直角三角形勾股定理:直角三角形任意一条直角边的平方等于另外两条直角边的平方的和。
3. 三角形面积公式:三角形面积为底乘以高的一半,即S=(1/2)bh。
4. 三角形的正弦定理:a/sinA=b/sinB=c/sinC=2R,其中a、b、c为三角形的边长,A、B、C为对应的角度,R为三角形的外接圆半径。
5. 三角形的余弦定理:c^2=a^2+b^2-2abcosC,其中a、b、c为三角形的边长,C为对应的角度。
6.直角三角形的高与斜边的关系公式:直角三角形的高为两直角边乘积除以斜边长。
7.正多边形内角和公式:正n边形的内角和为(n-2)180°。
【高中数学】秒杀秘诀MS02三角函数诱导公式
A.-π 6
B.-π 3
C.π
D.π
6
3
解:因 sin(π+θ)=- 3cos(2π-θ)∴-sin θ=- 3cos θ,∴tan θ= 3.∵|θ|<π,∴θ=π.
2
3
例 3:如果 sin(π+A)=1,那么 cos 3 A 的值是________.
2
2
()
解:∵sin(π+A)=1,∴-sin A=1.∴cos 3 A =-sin A=1.
14.若
,则
的值为( )
A.﹣m B. C. D.m
15.若 sin2α+sinα=1,则 cos4α+cos2α的值为(
)
A.0 B.1 C.2 D.3
16.若函数 f(sinx)=cos2x,则 f(cos15°)的值为( )
A. B.﹣ C.﹣
D.
17.设 f(x)=asin(πx+α)+bcos(πx+β)+4,其中 a、b、α、β均为非零的常数,若 f(﹣2015)=3,则 f(2015)的值为( ) A.1 B.3 C.5 D.﹣3
三角函数诱导公式
一:六组诱导公式
组数
一
二
三
四
五
六
角
2kπ+α(k∈Z)
π+α
-α
π-α
正弦
sin
sin sin sin
余弦
cos
cos
cos
cos
正切
tan
tan
tan tan
π-α 2
cos sin
π+α 2
cos sin
对于角“kπ±α”(k∈Z)的三角函数记忆口诀“奇变偶不变,符号看象限”,意思是说kπ±α,k∈Z 的
【高中数学】秒杀三角函数
6.同角三角函数关系式 sin2α+cos2α=1(平方关系);
关系).
sin =tanα(商数关系); cos
tanαcotα=1(倒数
使用这组公式进行变形时,经常把“切”、“割”用“弦”表示,即化弦法,这是三角 变换非常重要的方法。
几个常用关系式:sinα+cosα,sinα-cosα,sinα·cosα;(三式之间可以互相表示)
y
sin
x
的图象沿
x
轴向左平移
π 4
个单位长度,得
y
sin
x
π 4
的图象;
②将所得图象的横坐标缩小到原来的
1 2
,得
y
sin
2x
π 4
径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现 无论哪种
变形,请切记每一个变换总是对字母 x 而言,即图象变换要看“变量”起多大变化,而不是
“角变化”多少。
途径一:先平移变换再周期变换(伸缩变换)
先将 y=sinx 的图象向左( >0)或向右( <0=平移| |个单位,再将图象上各点的横坐
得
y Asin(x )
y Asin(x ) 的图象 向上平(移k k0个)或单向位下长(k度0) 得
y Asin(x ) k 图象
先伸缩后平移
y
sin
x 的图象
纵坐标伸长( A1)或缩短(0 A1) 为原来的A倍(横坐标不变)
得
y
A sin
x
y A sin x 的图象 横坐到标原伸来长的(01(纵1坐)或标缩不短变() 1) 得 y A sin(x)
2020届秒杀高考数学题型之三角函数性质
.
6
【解析】:①中
x1,
x2 是
f
(x)
的两个零点,即
x1
x2 是
2
的整数倍,错误;②中
f
6
0
,正确;③中
y 4 sin 2x 4 cos 2x cos 2x ,正确;④错误;所以正确命题序号是②③。
3
2
3 6
第 4 页,共 11 页
5.(高考题)函数 y sin(2x ) 图象的对称轴方程可能是 ( 3
题型 7.利用图象直观性求周期。
1.(高考题)设函数 f (x) sin 3x sin 3x , 则 f (x) 为 (
)
A.周期函数,最小正周期为
3
2
B.周期函数,最小正周期为
3
C.周期函数,最小正周期为 2
D.非周期函数
【解析】:画出图象可知周期为 2 ,选 B。 3
秒杀题型二:三角函数的对称轴及对称中心
6
2
39
3.(高考题)函数 y sin(x )(0 ) 是 R 上的偶函数,则 = (
)
A.0
B.
C.
D.
4
2
【解析】:法一: f (x) 转化为 y cos x ,选 C。
秒杀方法: f (x) 关于 y 轴对称,即 f (0) cos 1 , ,选 C。 2
4.(高考题)关于函数
,选 A。
法二:可知
,0 为对称中心, T
2
,
x
5
与对称中心相距 T
=
,选
A。
3
6
42
17.(高考题)下列函数中,最小正周期为 且图象关于原点对称的函数是 (
高中数学48个秒杀公式讲解
高中数学48个秒杀公式讲解高中数学有一些公式被成为“秒杀公式”,它们是高中数学中最重要的公式之一,而且也是学习数学的最基本公式,同学们一定要牢记。
下面是这48个秒杀公式的详细介绍:1. 三角函数的基本公式:sin A=opp/hyp、cos A=adj/hyp、tan A=opp/adj;2.三角函数转换而来的公式:1+tan A=sec A、cot A=1/tan A、1+cot A=csc A;3.根公式:a/b=a√b/b√a;4. 三角形面积公式:1/2×d1×d2×sinC;5.角定理:a/b=c/d;6.量公式:|a+b|=|a|+|b|;7.限规律:sin、cos和tan的正负性规律;8.股定理:a+b=c;9.角三角加法定理:a+b=c;10.角三角加法定理:a/sin A+b/sin B=c/sin C;11. 余弦定理:a=b+c-2bc cos A;12.弦定理:a/sin A=b/sin B=c/sin C;13.角三角关系:tan A=x/y、sin A=x/z、cos A=y/z;14.切定理:tan(A+B)=(tan A+tan B)/(1-tan A tan B);15.似三角形定理:a/b=c/d;16.曲线公式:x/a-y/b=1;17.物线公式:y=2px;18.的标准方程:(x-x0)+(y-y0)=r;19. 位置关系公式:dist(P,Q)=(a2-b2)/2ab cos C;20.圆公式:x/a+y/b=1;21.形面积公式:s=a×b;22.方形面积公式:S=L×W;23.度平衡公式:a/b=c/d;24.积平衡公式:a×b=c×d;25.方公式:a/b=c/d;26.行四边形面积公式:S=ab/2;27.的体积公式:V=4/3πr;28.面积公式:S=4πr;29.锥体积公式:V=πrh/3;30.柱体积公式:V=πrh;31.形面积公式:S=1/2(a+b)×h;32.行四边形内角公式:α=180-β;33.行四边形外角公式:α=360-2β;34.对称性共轭直角公式:tan A/tan B=a/b;35. 余切定理:cot A/cot B=a/b;36. 余弦定理:2sin A×2sin B=a/b;37.弦定理:2cos A×2cos B=a/b;38.角三角公反比定理:a/b=c/d;39.边形内角和公式:α+β+γ+δ=360°;40.周率公式:π=C/d;41.多边形内角和公式:α+β+γ+δ++n=180(n-2);42.何平均数公式:(a1+a2++an)/n=a;43.昀公式:x-y=a-b;44.何均值定理:a+b=2(ab)1/2;45.例公式:a/b=c/d;46.余定理:a/b=c/d;47.形公式:a/b=c/d;48.角三角减法定理:a-b=c;这些是高中数学中48个秒杀火热的公式,但是这些只不过是最基本的数学公式,要想掌握高中数学,还需要学习更多数学知识。
高考数学考点突破69:秒杀三角函数名不同的平移变换
答案与方法总结附后
1解:
,因此把 向左平移 个单位.故选A.
解:
∵ ,∴ ,∴ ,∴
三角函数平移变换秒杀(正余弦互化问题)
正弦变余弦:sinwx= 既不改变x系数正负,又变成余弦(考虑第四象限)
余弦变正弦: 既不改变x系数正负,又变成正弦(考虑第二象限)
原则:变换复杂的解析式,保留简单的解析式,更容易解答问题
高考数学考点突破69:秒杀三角函数名不同的平移变换
本考点有两个典型例题,从类型归纳到解题方法。
(资料考点共有72个,680个典型例题)
例1.为得到函数 的图像,只需将函数 的图象( )
A.向左平移 个长度单位 B.向右平移 个长度单位
C.向左平移 个长度单位
三角函数-秒杀技巧-最值问题
三角函数-秒杀技巧-最值问题三角函数是高中数学中的一个重要章节,也是考试中的一个难点和重要知识点。
在三角函数中,最为常见的就是求解最值问题,即给定一些函数的定义域,要求确定该函数的最大值或最小值。
下面将详细介绍三角函数的求解最值问题的秒杀技巧。
首先,我们先来回顾一下三角函数的基本性质。
三角函数是代数函数的一种,其定义域是实数集,值域是[-1,1]。
在解决三角函数最值问题时,我们还需要利用到单位圆、周期性、奇偶性等特点。
其次,我们要了解最值问题的一般思路。
对于求解最大值问题,一般是先找到函数的极值点,在极值点中找到最大值。
而求解最小值问题,则是先找到函数的不可求之点,然后求取其他点的最小值。
在找到极值点和不可求之点之后,可以通过画函数图像、用导数等方法求解最值。
接下来,我们将详细介绍三角函数最值问题的秒杀技巧。
1. 利用单位圆:单位圆是一个半径为1的圆,它的圆心为原点O(0,0)。
对于三角函数来说,单位圆的图像非常重要。
利用单位圆的图像,我们可以快速判断三角函数的最大值和最小值。
例如对于正弦函数sin(x),它的最大值是1,最小值是-1;对于余弦函数cos(x),它的最大值也是1,最小值也是-1、通过记忆这些最大值和最小值,我们可以快速判断一个三角函数的最值问题。
2. 利用周期性:三角函数都是周期函数,即在定义域内存在一个正整数n,使得f(x + 2πn) = f(x)。
由于周期性的存在,三角函数的最值问题可以转化为在一个周期内求解。
例如对于正弦函数sin(x),它的周期是2π,因此在0到2π之间寻找最值即可;对于余弦函数cos(x),它的周期也是2π。
3. 利用奇偶性:三角函数中的正弦函数和正割函数是奇函数,余弦函数、余割函数和正切函数是偶函数。
利用奇偶性,我们可以快速判断三角函数的最值问题。
例如对于正弦函数sin(x),它的最大值一定在定义域的中点取到;对于余弦函数cos(x),它的最小值一定在定义域的中点取到。
高考数学三角函数公式背诵口诀
【导语】备考是⼀种经历,也是⼀种体验。
每天进步⼀点点,基础扎实⼀点点,通过考试就会更容易⼀点点。
为您提供⾼考数学三⾓函数公式背诵⼝诀,快背下来吧! 同⾓三⾓函数的基本关系式 倒数关系:商的关系:平⽅关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secαsin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆⽅法“对⾓线上两个函数的积为1;阴影三⾓形上两顶点的三⾓函数值的平⽅和等于下顶点的三⾓函数值的平⽅;任意⼀顶点的三⾓函数值等于相邻两个顶点的三⾓函数值的乘积。
”) 诱导公式(⼝诀:奇变偶不变,符号看象限。
) sin(-α)=-sinα cos(-α)=cosαtan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两⾓和与差的三⾓函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) sinα=2tan(α/2)/(1+tan2(α/2)) cosα=(1-tan2(α/2))/(1+tan2(α/2)) tanα=(2tan(α/2))/(1-tan2(α/2)) 半⾓的正弦、余弦和正切公式三⾓函数的降幂公式 ⼆倍⾓的正弦、余弦和正切公式三倍⾓的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α tan2α=2tanα/(1-tan2α) sin3α=3sinα-4sin3α cos3α=4cos3α-3cosα tan3α=(3tanα-tan3α)/(1-3tan2α) 三⾓函数的和差化积公式三⾓函数的积化和差公式 sinα+sinβ=2sin(2/(α+βα-β))·cos(2/(α+βα-β)) sinα-sinβ=2cos(2/(α+βα-β))·sin(2/(α+βα-β)) cosα+cosβ=2cos(2/(α+βα-β))·cos(2/(α+βα-β)) cosα-cosβ=-2sin(2/(α+βα-β))·sin(2/(α+βα-β)) sinα·cosβ=-[sin(α+β)+sin(α-β)]/2 1cosα·sinβ=-[sin(α+β)-sin(α-β)]/2 1cosα·cosβ=-[cos(α+β)+cos(α-β)]/2 1sinα·sinβ=—-[cos(α+β)-cos(α-β)] 2化asinα±bcosα为⼀个⾓的⼀个三⾓函数的形式(辅助⾓的三⾓函数的公式)。
微专题 三角函数的范围与最值(解析版)(1)
微专题三角函数的范围与最值【秒杀总结】一、三角函数f(x)=A sin(ωx+φ)中ω的大小及取值范围1.任意两条对称轴之间的距离为半周期的整数倍,即k T2(k∈Z);2.任意两个对称中心之间的距离为半周期的整数倍,即k T2(k∈Z);3.任意对称轴与对称中心之间的距离为14周期加半周期的整数倍,即T4+k T2(k∈Z);4.f(x)=A sin(ωx+φ)在区间(a,b)内单调⇒b-a≤T2且kπ-π2≤aω+φ≤bω+φ≤kπ+π2(k∈Z)5.f(x)=A sin(ωx+φ)在区间(a,b)内不单调⇒(a,b)内至少有一条对称轴,aω+φ≤kπ+π2≤bω+φ(k∈Z)6.f(x)=A sin(ωx+φ)在区间(a,b)内没有零点⇒b-a≤T2且kπ≤aω+φ≤bω+φ≤(k+1)π(k∈Z)7.f(x)=A sin(ωx+φ)在区间(a,b)内有n个零点⇒(k-1)π≤aω+φ<kπ(k+n-1)π<bω+φ≤(k+n)π(k∈Z) .二、三角形范围与最值问题1.坐标法:把动点转为为轨迹方程2.几何法3.引入角度,将边转化为角的关系4.最值问题的求解,常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法.要根据已知条件灵活选择方法求解.【典型例题】例1.(2023·全国·高三专题练习)在△ABC中,cos A=725,△ABC的内切圆的面积为16π,则边BC长度的最小值为( )A.16B.24C.25D.36【答案】A【解析】因为△ABC的内切圆的面积为16π,所以△ABC的内切圆半径为4.设△ABC内角A,B,C所对的边分别为a,b,c.因为cos A=725,所以sin A=2425,所以tan A=247.因为S△ABC=12bc sin A=12(a+b+c)×4,所以bc=256(a+b+c).设内切圆与边AC切于点D,由tan A=247可求得tan A 2=34=4AD,则AD =163.又因为AD =b +c -a 2,所以b +c =323+a .所以bc =256323+2a =253163+a .又因为b +c ≥2bc ,所以323+a ≥2253163+a ,即323+a 2≥1003163+a ,整理得a 2-12a -64≥0.因为a >0,所以a ≥16,当且仅当b =c =403时,a 取得最小值.故选:A .例2.(2023·全国·高三专题练习)已知函数f (x )=sin (ωx +φ),其中ω>0,|φ|≤π2,-π4为f (x )的零点:且f (x )≤f π4 恒成立,f (x )在-π12,π24区间上有最小值无最大值,则ω的最大值是( )A.11 B.13C.15D.17【答案】C【解析】由题意,x =π4是f (x )的一条对称轴,所以f π4 =±1,即π4ω+φ=k 1π+π2,k 1∈Z ①又f -π4 =0,所以-π4ω+φ=k 2π,k 2∈Z ②由①②,得ω=2k 1-k 2 +1,k 1,k 2∈Z 又f (x )在-π12,π24 区间上有最小值无最大值,所以T ≥π24--π12 =π8即2πω≥π8,解得ω≤16,要求ω最大,结合选项,先检验ω=15当ω=15时,由①得π4×15+φ=k 1π+π2,k 1∈Z ,即φ=k 1π-13π4,k 1∈Z ,又|φ|≤π2所以φ=-π4,此时f (x )=sin 15x -π4 ,当x ∈-π12,π24 时,15x -π4∈-3π2,3π8 ,当15x -π4=-π2即x =-π60时,f (x )取最小值,无最大值,满足题意.故选:C例3.(2023·高一课时练习)如图,直角ΔABC 的斜边BC 长为2,∠C =30°,且点B ,C 分别在x 轴,y 轴正半轴上滑动,点A 在线段BC 的右上方.设OA =xOB +yOC ,(x ,y ∈R ),记M =OA ⋅OC,N =x +y ,分别考查M ,N 的所有运算结果,则A.M 有最小值,N 有最大值B.M 有最大值,N 有最小值C.M 有最大值,N 有最大值D.M 有最小值,N 有最小值【答案】B【解析】依题意∠BCA =30∘,BC =2,∠A =90∘,所以AC =3,AB =1.设∠OCB =α,则∠ABx =α+30∘,0∘<α<90∘,所以A 3sin α+30∘ ,sin α+30∘,B 2sin α,0 ,C 0,2cos α ,所以M =OA ⋅OC =2cos αsin α+30∘ =sin 2α+30∘ +12,当2α+30∘=90∘,α=30∘时,M 取得最大值为1+12=32.OA =xOB +yOC ,所以x =3sin α+30∘ 2sin α,y =sin α+30∘2cos α,所以N =x +y =3sin α+30∘2sin α+sin α+30∘ 2cos α=1+32sin2α,当2α=90∘,α=45∘时,N 有最小值为1+32.故选B .例4.(2023·全国·高三专题练习)已知函数f x =a sin x +b cos x +cx 图象上存在两条互相垂直的切线,且a 2+b 2=1,则a +b +c 的最大值为( )A.23 B.22C.3D.2【答案】D【解析】由a 2+b 2=1,令a =sin θ,b =cos θ,由f x =a sin x +b cos x +cx ,得f x =a cos x -b sin x +c =sin θcos x -cos θsin x +c =sin θ-x +c ,所以c -1≤f x ≤c +1由题意可知,存在x 1,x 2,使得f (x 1)f (x 2)=-1,只需要c -1 c +1 =c 2-1 ≥1,即c 2-1≤-1,所以c 2≤0,c =0,a +b +c =a +b =sin θ+cos θ=2sin θ+π4≤2所以a +b +c 的最大值为2.故选:D .例5.(2023·全国·高三专题练习)已知m >0,函数f (x )=(x -2)ln (x +1),-1<x ≤m ,cos 3x +π4,m <x ≤π,恰有3个零点,则m 的取值范围是( )A.π12,5π12 ∪2,3π4B.π12,5π12 ∪2,3π4C.0,5π12 ∪2,3π4D.0,5π12 ∪2,3π4【答案】A【解析】设g x =(x -2)ln (x +1),h x =cos 3x +π4,求导g x =ln (x +1)+x -2x +1=ln (x +1)+1-3x +1由反比例函数及对数函数性质知g x 在-1,m ,m >0上单调递增,且g 12<0,g 1 >0,故gx 在12,1 内必有唯一零点x 0,当x ∈-1,x 0 时,g (x )<0,g x 单调递减;当x ∈x 0,m 时,g (x )>0,g x 单调递增;令g x =0,解得x =0或2,可作出函数g x 的图像,令h x =0,即3x +π4=π2+k π,k ∈Z ,在0,π 之间解得x =π12或5π12或3π4,作出图像如下图数形结合可得:π12,5π12∪2,3π4,故选:A例6.(2023·全国·高三专题练习)已知函数f x =cos ωx -π3(ω>0)在π6,π4 上单调递增,且当x ∈π4,π3 时,f x ≥0恒成立,则ω的取值范围为( )A.0,52 ∪223,172B.0,43 ∪8,172C.0,43 ∪8,283D.0,52 ∪223,8【答案】B【解析】由已知,函数fx =cos ωx -π3(ω>0)在π6,π4 上单调递增,所以2k 1π-π≤ωx -π3≤2k 1πk 1∈Z ,解得:2k 1πω-2π3ω≤x ≤2k 1πω+π3ωk 1∈Z ,由于π6,π4 ⊆2k 1πω-2π3ω,2k 1πω+π3ω k 1∈Z ,所以π6≥2k 1πω-2π3ωπ4≤2k 1πω+π3ω,解得:12k 1-4≤ω≤8k 1+43k 1∈Z ①又因为函数f x =cos ωx -π3(ω>0)在x ∈π4,π3上f x ≥0恒成立,所以2k 2π-π2≤ωx -π3≤2k 2π+π2k 2∈Z ,解得:2k 2πω-π6ω≤x ≤2k 2πω+5π6ωk 2∈Z ,由于π4,π3 ⊆2k 2πω-π6ω,2k 2πω+5π6ω k 2∈Z ,所以π4≥2k 2πω-π6ωπ3≤2k 2πω+5π6ω,解得:8k 2-23≤ω≤6k 2+52k 2∈Z ②又因为ω>0,当k 1=k 2=0时,由①②可知:ω>0-4≤ω≤43-23≤ω≤52,解得ω∈0,43;当k 1=k 2=1时,由①②可知:ω>08≤ω≤283223≤ω≤172,解得ω∈8,172.所以ω的取值范围为0,43 ∪8,172.故选:B .例7.(2023·全国·高三专题练习)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S ,若sin (A +C )=2S b 2-a2,则tan A +13tan (B -A )的取值范围为( )A.233,+∞ B.233,43C.233,43D.233,43【答案】C【解析】在△ABC 中,sin (A +C )=sin B ,S =12ac sin B ,故题干条件可化为b 2-a 2=ac ,由余弦定理得b 2=a 2+c 2-2ac cos B ,故c =2a cos B +a ,又由正弦定理化简得:sin C =2sin A cos B +sin A =sin A cos B +cos A sin B ,整理得sin (B -A )=sin A ,故B -A =A 或B -A =π-A (舍去),得B =2A △ABC 为锐角三角形,故0<A <π20<2A <π20<π-3A <π2 ,解得π6<A <π4,故33<tan A <1tan A +13tan (B -A )=tan A +13tan A ∈233,43故选:C例8.(2023·上海·高三专题练习)在钝角△ABC 中,a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,点G 是△ABC 的重心,若AG ⊥BG ,则cos C 的取值范围是( )A.0,63B.45,63C.63,1D.45,1【答案】C【解析】延长CG 交AB 于D ,如下图所示:∵G 为△ABC 的重心,∴D 为AB 中点且CD =3DG ,∵AG ⊥BG ,∴DG =12AB ,∴CD =32AB =32c ;在△ADC 中,cos ∠ADC =AD 2+CD 2-AC 22AD ⋅CD=52c 2-b 232c 2=5c 2-2b 23c 2;在△BDC 中,cos ∠BDC =BD 2+CD 2-BC 22BD ⋅CD =52c 2-a 232c 2=5c 2-2a 23c 2;∵∠BDC +∠ADC =π,∴cos ∠BDC =-cos ∠ADC ,即5c 2-2a 23c 2=-5c 2-2b 23c 2,整理可得:a 2+b 2=5c 2>c 2,∴C 为锐角;设A 为钝角,则b 2+c 2<a 2,a 2+c 2>b 2,a >b ,∴a 2>b 2+a 2+b 25b 2<a 2+a 2+b 25,∴b a 2+15+15b a 2<1b a 2<1+15+15b a2,解得:b a 2<23,∵a >b >0,∴0<b a <63,由余弦定理得:cos C =a 2+b 2-c 22ab =25⋅a 2+b 2ab =25a b +b a >25×63+36 =63,又C 为锐角,∴63<cos C <1,即cos C 的取值范围为63,1.故选:C .例9.(2023·全国·高三专题练习)设锐角△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若A =π3,a =3,则b 2+c 2+bc 的取值范围为( )A.(1,9] B.(3,9]C.(5,9]D.(7,9]【答案】D 【解析】因为A =π3,a =3,由正弦定理可得asin A=332=2=b sin B =csin 2π3-B ,则有b =2sin B ,c =2sin 2π3-B ,由△ABC 的内角A ,B ,C 为锐角,可得0<B <π2,0<2π3-B <π2,,∴π6<B <π2⇒π6<2B -π6<5π6⇒12<sin 2B -π6 ≤1⇒2<4sin 2B -π6≤4, 由余弦定理可得a 2=b 2+c 2-2bc cos A ⇒3=b 2+c 2-bc ,因此有b 2+c 2+bc =2bc +3=8sin B sin 2π3-B+3=43sin B cos B +4sin 2B +3=23sin2B -2cos2B +5=5+4sin 2B -π6∈7,9 故选:D .例10.(2023·上海·高三专题练习)某公园有一个湖,如图所示,湖的边界是圆心为O 的圆,已知圆O 的半径为100米.为更好地服务游客,进一步提升公园亲水景观,公园拟搭建亲水木平台与亲水玻璃桥,设计弓形MN ,NP ,PQ ,QM 为亲水木平台区域(四边形MNPQ 是矩形,A ,D 分别为MN ,PQ 的中点,OA =OD =50米),亲水玻璃桥以点A 为一出入口,另两出入口B ,C 分别在平台区域MQ ,NP 边界上(不含端点),且设计成∠BAC =π2,另一段玻璃桥F -D -E 满足FD ⎳AC ,FD =AC ,ED ⎳AB ,ED =AB .(1)若计划在B ,F 间修建一休闲长廊该长廊的长度可否设计为70米?请说明理由;(附:2≈1.414,3≈1.732)(2)设玻璃桥造价为0.3万元/米,求亲水玻璃桥的造价的最小值.(玻璃桥总长为AB +AC +DE +DF ,宽度、连接处忽略不计).【解析】(1)由题意,OA =50,OM =100,则MQ =100,AM =503,∠BAC =π2,设∠MAB =θ,∠NAC =α=π2-θ.若C ,P 重合,tan α=100503=23,tan θ=1tan α=32=MB503,得MB =75,∴75<MB <100,32<tan θ<23,MB =AM ⋅tan θ=503tan θ,NC =AN ⋅tan α=503tan θ,而MF =CP =100-NC =100-503tan θ,∴BF =MB -MF =503tan θ+1tan θ -100≥100(3-1),当tan θ=1(符合题意)时取等号,又100(3-1)>70,∴可以修建70米长廊.(2)AB =AM cos θ=503cos θ,AC =AN cos α=503sin θ,则AB +AC =503cos θ+503sin θ=503(sin θ+cos θ)sin θcos θ.设t =sin θ+cos θ=2sin θ+π4 ,则t 2=1+2sin θcos θ,即sin θcos θ=t 2-12.AB +AC =1003t t 2-1=1003t -1t,由(1)知32<tan θ<23,而33<32<1<23<3,∴∃θ使θ+π4=π2且π4<θ+π4<3π4,即1<t ≤2,0<t -1t ≤22,∴AB +AC =1003t -1t≥1006,当且仅当t =2,θ=π4时取等号.由题意,AB +AC =DE +DF ,则玻璃桥总长的最小值为2006米,∴铺设好亲水玻璃桥,最少需2006×0.3=606万元.例11.(2023·全国·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足b sin A =a sin B +π3(1)设a =3,c =2,过B 作BD 垂直AC 于点D ,点E 为线段BD 的中点,求BE ⋅EA的值;(2)若△ABC 为锐角三角形,c =2,求△ABC 面积的取值范围.【解析】(1)b sin A =a sin B +π3,由正弦定理得:sin B sin A =sin A sin B +π3 =12sin A sin B +32sin A cos B ,所以12sin A sin B -32sin A cos B =0,因为A ∈0,π ,所以sin A ≠0,所以12sin B -32cos B =0,即tan B =3,因为B ∈0,π ,所以B =π3,因为a =3,c =2,由余弦定理得:b 2=a 2+c 2-2ac cos B =9+4-6=7,因为b >0,所以b =7,其中S △ABC =12ac sin B =12×3×2×32=332,所以BD =2S △ABC AC =337=3217,因为点E 为线段BD 的中点,所以BE =32114,由题意得:EA =ED +DA =BE +DA,所以BE ⋅EA =BE ⋅BE +DA =BE 2+0=2728.(2)由(1)知:B =π3,又c =2,由正弦定理得:a sin A =c sin C =2sin A +π3,所以a =2sin A sin A +π3 =2sin A 12sin A +32cos A =41+3tan A,因为△ABC 为锐角三角形,所以A ∈0,π2C =2π3-A ∈0,π2,解得:A ∈π6,π2 ,则tan A ∈33,+∞,3tan A ∈0,3 ,1+3tan A∈1,4 ,故a =41+3tan A∈1,4 ,△ABC 面积为S =12ac sin B =32a ∈32,23 故△ABC 面积的取值范围是32,23.【过关测试】一、单选题1.(2023·全国·高三专题练习)已知a ,b ∈R ,设函数f 1(x )=cos2x ,f 2(x )=a -b cos x ,若当f 1(x )≤f 2(x )对x ∈[m ,n ](m <n )恒成立时,n -m 的最大值为3π2,则( )A.a ≥2-1 B.a ≤2-1C.b ≥2-2D.b ≤2-2【答案】A【解析】设t =cos x ,x ∈[m ,n ],因为n -m 的最大值为3π2>π=T2,所以x ∈[m ,n ]时,t =cos x 必取到最值,当n -m =3π2时,根据余弦函数对称性得cos m +n 2=1⇒m +n2=2k π,k ∈Z ,此时cos m =cos m +n 2-n -m 2=cos 2k π-3π4 =cos 3π4=-22cos n =cos m +n 2+n -m 2 =cos 2k π+3π4 =cos 3π4=-22或者cos m +n 2=-1⇒m +n 2=π+2k π,k ∈Z ,此时cos m =cos m +n 2-n -m2 =cos 2k π+π-3π4 =-cos 3π4=22cos n =cos m +n 2+n -m 2=cos 2k π+π+3π4 =-cos 3π4=22由f 1(x )≤f 2(x )⇒2cos 2x -1≤a -b cos x ⇒2cos 2x +b cos x -1+a ≤0,设t =cos x ,x ∈[m ,n ]时 2t 2+bt -1+a ≤0对应解为t 1≤t ≤t 2,由上分析可知当t 1=-22,t 2≥1或t 1≤-1,t 2=22时,满足n -m 的最大值为3π2,所以t 1t 2≤-22,即-1+a 2≤-22,所以a ≥2-1.-b 2=t 1+t 2≥1-22或-b 2=t 1+t 2≤-1+22,即b ≤2-2或b ≥2-2,故选:A .2.(2023·全国·高三专题练习)△ABC 中,AB =2,∠ACB =π4,O 是△ABC 外接圆圆心,是OC ⋅AB+CA ⋅CB的最大值为( )A.0 B.1C.3D.5【答案】C【解析】过点O 作OD ⊥AC ,OE ⊥BC ,垂足分别为D ,E ,如图,因O 是△ABC 外接圆圆心,则D ,E 分别为AC ,BC 的中点,在△ABC 中,AB =CB -CA ,则|AB |2=|CA |2+|CB|2-2CA ⋅CB ,即CA ⋅CB =|CA |2+|CB|2-22,CO ⋅CA =CO CA cos ∠OCA = CD ⋅ CA =12CA 2,同理CO ⋅CB =12|CB |2,因此,OC ⋅AB +CA ⋅CB =OC ⋅CB -CA+CA ⋅CB =CO ⋅CA -CO ⋅CB +CA ⋅CB=12|CA |2-12|CB |2+|CA |2+|CB |2-22=|CA |2-1,由正弦定理得:|CA |=|AB|sin B sin ∠ACB =2sin B sin π4=2sin B ≤2,当且仅当B =π2时取“=”,所以OC ⋅AB +CA ⋅CB的最大值为3.故选:C3.(2023·全国·高三专题练习)在锐角△ABC 中,若3sin A cos A a +cos Cc=sin B sin C ,且3sin C +cos C =2,则a +b 的取值范围是( )A.23,4 B.2,23C.0,4D.2,4【答案】A【解析】由3sin C +cos C =2sin C +π6 =2,得C +π6=π2+2k π,k ∈Z ,∵C ∈0,π2 ,∴C =π3.由题cos A a +cos C c =sin B sin C 3sin A,由正弦定理有cos A a +cos Cc =b ⋅323a=b 2a ,故cos A sin A +cos C sin C =b 2sin A,即cos A ⋅sin C +sin A ⋅cos C =b sin C 2=3b 4,故sin A +C =sin B =3b 4,即b sin B =433,由正弦定理有a sin A=b sin B =c sin C =433,故a =433sin A ,b =433sin B ,又锐角△ABC ,且C =π3,∴A ∈0,π2 ,B =2π3-A ∈0,π2 ,解得A ∈π6,π2 ,∴a +b =433(sin A +sin B )=433sin A +sin 2π3-A =433sin A +32cos A +12sin A =4sin A +π6,∵A ∈π6,π2,∴A +π6∈π3,2π3 ,sin A +π6 ∈32,1 ,∴a +b 的取值范围为23,4 .故选:A .4.(2023·全国·高三专题练习)设ω∈R ,函数f x =2sin ωx +π6 ,x ≥0,32x 2+4ωx +12,x <0,g x =ωx .若f (x )在-13,π2 上单调递增,且函数f x 与g (x )的图象有三个交点,则ω的取值范围是( )A.14,23B.33,23C.14,33D.-43,0 ∪14,23【答案】B 【解析】当x ∈0,π2 时,ωx +π6∈π6,πω2+π6 ,因为f (x )在-13,π2 上单调递增,所以πω2+π6≤π2-4ω3≤-132sin π6≥12 ,解得14≤ω≤23,又因函数f x 与g (x )的图象有三个交点,所以在x ∈-∞,0 上函数f x 与g (x )的图象有两个交点,即方程32x 2+4ωx +12=ωx 在x ∈-∞,0 上有两个不同的实数根,即方程3x 2+6ωx +1=0在x ∈-∞,0 上有两个不同的实数根,所以Δ=36ω2-12>0-ω<032×02+6ω×0+1>0 ,解得ω>33,当ω∈33,23时,当x ≥0时,令f x -g x =2sin ωx +π6-ωx ,由f x -g x =1>0,当ωx +π6=5π2时,ωx =7π3,此时,f x -g x =2-7π3<0,结合图象,所以x ≥0时,函数f x 与g (x )的图象只有一个交点,综上所述,ω∈33,23.故选:B .5.(2023秋·湖南长沙·高三长郡中学校考阶段练习)已知函数f (x )=sin ωx +π3 (ω>0)在π3,π上恰有3个零点,则ω的取值范围是( )A.83,113 ∪4,143 B.113,4 ∪143,173C.113,143 ∪5,173D.143,5 ∪173,203【答案】C 【解析】x ∈π3,π,ωx +π3∈π3ω+π3,πω+π3 ,其中2πω≤π-π3<4πω,解得:3≤ω<6,则π3ω+π3≥4π3,要想保证函数在π3,π 恰有三个零点,满足①π+2k 1π≤π3ω+π3<2π+2k 1π4π+2k 1π<πω+π3≤5π+2k 1π,k 1∈Z ,令k 1=0,解得:ω∈113,143 ;或要满足②2k 2π≤π3ω+π3<π+2k 2π2k 2π+3π<πω+π3≤2k 2π+4π,k 2∈Z ,令k 2=1,解得:ω∈5,173;经检验,满足题意,其他情况均不满足3≤ω<6条件,综上:ω的取值范围是113,143 ∪5,173.故选:C6.(2023·全国·高三专题练习)已知函数f (x )=sin ωx +π4(ω>0)在区间[0,π]上有且仅有4条对称轴,给出下列四个结论:①f (x )在区间(0,π)上有且仅有3个不同的零点;②f (x )的最小正周期可能是π2;③ω的取值范围是134,174;④f (x )在区间0,π15上单调递增.其中所有正确结论的序号是( )A.①④ B.②③C.②④D.②③④【答案】B【解析】由函数f (x )=sin ωx +π4 (ω>0), 令ωx +π4=π2+k π,k ∈Z ,则x =1+4k π4ω,k ∈Z 函数f (x )在区间[0,π]上有且仅有4条对称轴,即0≤1+4k π4ω≤π有4个整数k 符合,由0≤1+4k π4ω≤π,得0≤1+4k4ω≤1⇒0≤1+4k ≤4ω,则k =0,1,2,3,即1+4×3≤4ω<1+4×4,∴134≤ω<174,故③正确;对于①,∵x ∈(0,π),∴ωx +π4∈π4,ωπ+π4,∴ωπ+π4∈7π2,9π2当ωx +π4∈π4,7π2时,f (x )在区间(0,π)上有且仅有3个不同的零点;当ωx +π4∈π4,9π2时,f (x )在区间(0,π)上有且仅有4个不同的零点;故①错误;对于②,周期T =2πω,由134≤ω<174,则417<1ω≤413,∴8π17<T ≤8π13,又π2∈8π17,8π13,所以f (x )的最小正周期可能是π2,故②正确;对于④,∵x ∈0,π15 ,∴ωx +π4∈π4,ωπ15+π4 ,又ω∈134,174 ,∴ωπ15+π4∈7π15,8π15 又8π15>π2,所以f (x )在区间0,π15 上不一定单调递增,故④错误.故正确结论的序号是:②③故选:B7.(2023·全国·高三专题练习)函数y =sin ωx -π6ω>0 在0,π 有且仅有3个零点,则下列说法正确的是( )A.在0,π 不存在x 1,x 2使得f x 1 -f x 2 =2B.函数f x 在0,π 仅有1个最大值点C.函数f x 在0,π2上单调进增D.实数ω的取值范围是136,196 【答案】D【解析】对于A ,f (x )在0,π 上有且仅有3个零点,则函数的最小正周期T <π ,所以在0,π 上存在x 1,x 2 ,且f (x 1)=1,f (x 2)=-1 ,使得f x 1 -f x 2 =2,故A 错误;由图象可知,函数在0,π 可能有两个最大值,故B 错误;对于选项D ,令ωx -π6=k π,k ∈Z ,则函数的零点为x =1ωk π+π6 ,k ∈Z ,所以函数在y 轴右侧的四个零点分别是:π6ω,7π6ω,13π6ω,19π6ω,函数y =sin ωx -π6ω>0 在0,π 有且仅有3个零点,所以13π6ω≤π19π6ω>π,解得ω∈136,196 ,故D 正确;由对选项D 的分析可知,ω的最小值为136,当0<x <π2 时,ωx -π6∈-π6,11π12 ,但-π6,11π12 不是0,π2的子集,所以函数f x 在0,π2上不是单调进增的,故C 错,故选:D .8.(2023·上海·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin (A +C )cos B b +cos C c =sin A sin C ,B =π3,则a +c 的取值范围是( )A.32,3B.32,3C.32,3 D.32,3【答案】A【解析】由题知sin (A +C )cos B b+cos C c=sin A sin C ,B =π3∴sin B cos B b +cos C c =sin Asin C 即cos B b +cos C c =23sin A3sin C由正弦定理化简得∴c ⋅cos B +b ⋅cos C =23bc sin A 3sin C=23ab3∴sin C cos B +cos C sin B =23b sin A3∴sin (B +C )=sin A =23b sin A3∴b =32∵B =π3∴a sin A =b sin B =c sin C =1∴a +c =sin A +sin C =sin A +sin 2π3-A =32sin A +32cos A =3sin A +π6∵0<A <2π3∴π6<A +π6<5π6∴32<3sin A +π6≤3即32<a +c ≤3故选:A .二、多选题9.(2023秋·山东济南·高三统考期中)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且tan A +B 1-tan A tan B =3ca cos B,则下列结论正确的是( )A.A =π6B.若b -c =33a ,则△ABC 为直角三角形C.若△ABC 面积为1,则三条高乘积平方的最大值为33D.若D 为边BC 上一点,且AD =1,BD :DC =2c :b ,则2b +c 的最小值为977【答案】BCD【解析】对于A ,因为tan A +B 1-tan A tan B =3c a cos B ,所以tan A +tan B =3ca cos B,则由正弦定理得3sin C =sin A cos B tan A +tan B =sin A cos B ⋅sin A cos B +cos A sin Bcos A cos B =sin A ⋅sin A +B cos A =sin A ⋅sin Ccos A ,则3sin C cos A =sin A sin C ,因为0<C <π,所以sin C >0,故tan A =3,又0<A <π,所以A =π3,故A 错误;对于B ,由余弦定理得a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ,因为b -c =33a ,即b =33a +c ,代入上式得a 2=33a +c 2+c 2-33a +c c ,整理得3c 2+3ac -2a 2=0,解得a =3c 或a =-32c (舍去),则b =2c ,所以b 2=a 2+c 2,故B 正确;对于C ,设AB ,AC ,BC 边上的高分别是CE ,BF ,AD ,则由三角形面积公式易得AD =2a ,BF =2b ,CE =2c ,则AD ×BF ×CE 2=8abc2,因为1a +1b +1c ≥331abc ,当且仅当1a =1b=1c ,即a =b =c 时,等号成立,此时S =12bc sin A =34b 2=1,得b 2=433,所以AD ×BF ×CE 2=8abc2≤33,故C 正确;对于D ,因为BD :DC =2c :b ,所以AD =AB +BD =AB+2c b +2c BC =AB +2cb +2c AC -AB=b b +2c AB +2c b +2cAC,可得1=b 2(b +2c )2c 2+4c 2(b +2c )2b 2+22bc (b +2c )2cb cos60°,整理得b +2c 2=7b 2c 2,故1c +2b=7,所以2b +c =2b +c ×171c +2b =172b c +2c b +5 ≥1722b c ⋅2c b+5=977,当且仅当2b c =2c b 且1c +2b=7,即b =c =377时,等号成立,所以2b +c ≥977,即2b +c 的最小值为977,故D 正确.故选:BCD .10.(2023秋·江苏苏州·高三苏州中学校考阶段练习)已知函数f x =sin2x1+2cos 2x,则下列说法中正确的是( )A.f x +π =f xB.f x 的最大值是33C.f x 在-π2,π2上单调递增D.若函数f x 在区间0,a 上恰有2022个极大值点,则a 的取值范围为60643π,60673π【答案】ABD 【解析】f x =sin2x 1+2cos 2x =sin2x 1+21+cos2x 2=sin2x2+cos2x ,A 选项:f x +π =sin 2x +2π 2+cos 2x +2π=sin2x 2+cos2x =f x ,A 选项正确;B 选项:设f x =sin2x2+cos2x=t ,则sin2x -t cos2x =2t =1+t 2sin 2x +φ ≤1+t 2,解得t 2≤13,-33≤t ≤33,即t max =33,即f x 的最大值为33,B 选项正确;C 选项:因为f -π2 =f π2 =0,所以f x 在-π2,π2 上不单调,C 选项错误;D 选项:f x =2cos2x 2+cos2x -sin2x -2sin2x 2+cos2x 2=4cos2x +22+cos2x2,令f x =0,解得cos2x =-12,即x =π3+k π或x =2π3+k π,k ∈Z ,当x ∈π3+k π,2π3+k π ,k ∈Z 时,f x <0,函数单调递减,当当x ∈2π3+k π,4π3+k π ,k ∈Z 时,f x >0,函数单调递增,所以函数f x 的极大值点为π3,4π3,⋯,π3+n-1π,又函数f x 在区间0,a上恰有2022个极大值点,则a∈π3+2021π,π3+2022π,即a∈6064π3,6067π3,D选项正确;故选:ABD.11.(2023·全国·高三专题练习)在△ABC中,角A、B、C的对边分别为a、b、c,面积为S,有以下四个命题中正确的是( )A.Sa2+2bc的最大值为3 12B.当a=2,sin B=2sin C时,△ABC不可能是直角三角形C.当a=2,sin B=2sin C,A=2C时,△ABC的周长为2+23D.当a=2,sin B=2sin C,A=2C时,若O为△ABC的内心,则△AOB的面积为3-13【答案】ACD【解析】对于选项A:Sa2+2bc =12bc sin Ab2+c2-2bc cos A+2bc=12×sin Abc+cb+2-2cos A≤-14×sin Acos A-2(当且仅当b=c时取等号).令sin A=y,cos A=x,故Sa2+2bc≤-14×yx-2,因为x2+y2=1,且y>0,故可得点x,y表示的平面区域是半圆弧上的点,如下图所示:目标函数z=yx-2上,表示圆弧上一点到点A2,0点的斜率,数形结合可知,当且仅当目标函数过点H12,32,即A=60∘时,取得最小值-3 3,故可得z=yx-2∈-33,0,又Sx2+2bc≤-14×yx-2,故可得Sa2+2bc≤-14×-33=312,当且仅当A=60∘,b=c,即三角形为等边三角形时,取得最大值,故选项A正确;对于选项B:因为sin B=2sin C,所以由正弦定理得b=2c,若b是直角三角形的斜边,则有a2+c2= b2,即4+c2=4c2,得c=233,故选项B错误;对于选项C,由A=2C,可得B=π-3C,由sin B=2sin C得b=2c,由正弦定理得,bsin B=csin C,即2csinπ-3C=csin C,所以sin3C=2sin C,化简得sin C cos2C+2cos2C sin C=2sin C,因为sin C≠0,所以化简得cos2C=3 4,因为b=2c,所以B>C,所以cos C=32,则sin C=12,所以sin B=2sin C=1,所以B=π2,C=π6,A=π3,因为a=2,所以c=233,b=433,所以△ABC的周长为2+23,故选项C正确;对于选项D,由C可知,△ABC为直角三角形,且B=π2,C=π6,A=π3,c=233,b=433,所以△ABC的内切圆半径为r=122+233-433=1-33,所以△ABC的面积为12cr=12×233×1-33=3-13所以选项D正确,故选:ACD12.(2023·全国·高三专题练习)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且c-b=2b cos A,则下列结论正确的有( )A.A=2BB.B的取值范围为0,π4C.a b的取值范围为2,2D.1tan B-1tan A+2sin A的取值范围为533,3【答案】AD【解析】在△ABC中,由正弦定理可将式子c-b=2b cos A化为sin C-sin B=2sin B cos A,把sin C=sin A+B=sin A cos B+cos A sin B代入整理得,sin A-B=sin B,解得A-B=B或A-B+B=π,即A=2B或A=π(舍去).所以A=2B.选项A正确.选项B:因为△ABC为锐角三角形,A=2B,所以C=π-3B.由0<B<π2,0<2B<π2,0<π-3B<π2解得B∈π6,π4,故选项B错误.选项C :a b =sin A sin B =sin2Bsin B =2cos B ,因为B ∈π6,π4 ,所以cos B ∈22,32,2cos B ∈2,3 ,即ab的取值范围2,3 .故选项C 错误.选项D :1tan B -1tan A +2sin A =sin A -B sin A sin B +2sin A =1sin A +2sin A .因为B ∈π6,π4,所以A =2B ∈π3,π2 ,sin A ∈32,1.令t =sin A ,t ∈32,1,则f t =2t +1t.由对勾函数的性质知,函数f t =2t +1t 在32,1上单调递增.又f 32 =533,f 1 =3,所以f t ∈533,3 .即1tan B -1tan A+2sin A 的取值范围为533,3 .故选项D 正确.故选:AD .三、填空题13.(2023·全国·高三专题练习)已知函数f (x )=sin ωx +π6,ω>0,若f π4 =f 5π12 且f (x )在区间π4,5π12 上有最小值无最大值,则ω=_______.【答案】4或10【解析】∵f (x )满足f π4 =f 5π12 ,∴x =π4+5π122=π3是f (x )的一条对称轴,∴π3⋅ω+π6=π2+k π,∴ω=1+3k ,k ∈Z ,∵ω>0,∴ω=1,4,7,10,13,⋯.当x ∈π4,5π12时,ωx +π6∈π4ω+π6,5π12ω+π6 ,y =sin x 图像如图:要使f (x )在区间π4,5π12上有最小值无最大值,则:π2≤π4ω+π6<3π23π2<5π12ω+π6≤5π2⇒4≤ω<163 或5π2≤π4ω+π6<7π27π2<5π12ω+π6≤9π2⇒283≤ω<525 ,此时ω=4或10满足条件;区间π4,5π12 的长度为:5π12-π4=5π12-3π12=π6,当ω≥13时,f (x )最小正周期T =2πω≤2π13<π6,则f (x )在π4,5π12 既有最大值也有最小值,故ω≥13不满足条件.综上,ω=4或10.故答案为:4或10.14.(2023·全国·高三专题练习)函数f x =3sin ωx +φ ω>0,φ <π2,已知f π3 =3且对于任意的x ∈R 都有f -π6+x +f -π6-x =0,若f x 在5π36,2π9上单调,则ω的最大值为______.【答案】5【解析】因为函数f x =3sin ωx +φ ω>0,φ <π2 ,f π3=3,所以f π3=33sin ω·π3+φ =3,所以πω3+φ=π2+k π(k ∈Z ),φ=π2-k π3+k 1π(k 1∈Z ),因为于任意的x ∈R 都有f -π6+x +f -π6-x =0,所以f -π6+x =-f -π6-x ,所以sin x -π6 ⋅ω+φ =-sin -ω⋅x +π6 +φ ,所以sin ωx -ωπ6+φ =sin ωx +ωπ6-φ ,所以ωx -ωπ6+φ=ωx +ωπ6-φ+2k 2π(k 2∈Z )或ωx -ωπ6+φ+ωx +ωπ6-φ=k 3π(k 3∈Z ),所以φ=ωπ6+k 2π(k 2∈Z )或2ωx =k 3π(k 3∈Z ),即x =k 3π2ω(k 3∈Z )(舍去),所以φ=ωπ6+k 2π(k 2∈Z ),因为φ=π2-k π3+k 1π(k 1∈Z ),所以π2-k π3+k 1π=ωπ6+k 2π(k 1∈Z ),即ω=1+2(k 1-k 2),令t =k 1-k 2,所以ω=1+2t (t ∈Z ),f x 在5π36,2π9上单调,所以π12≤T 2=πω,所以ω≤12,而ω=1+2t (t ∈Z ),当ω=11,φ=-π6,所以f x =3sin 11x -π6 ,函数在5π36,2π9不单调,舍去;当ω=9,φ=3π2+k π(k ∈Z ),舍去;当ω=7,φ=π6,所以f x =3sin 7x +π6 ,函数在5π36,2π9 不单调,舍去;当ω=5,φ=-π6,所以f x =3sin 5x -π6 ,函数在5π36,2π9 单调,所以ω的最大值为5.故答案为:5.15.(2023·全国·高三专题练习)已知函数f (x )=sin (ωx +φ),其中ω>0,|φ|≤π2,-π4为f (x )的零点,且f (x )≤f π4恒成立,f (x )在区间-π12,π24 上有最小值无最大值,则ω的最大值是_______【答案】15【解析】由题意知函数f x =sin ωx +φ ω>0,φ ≤π2 ,x =π4为y =f (x )图象的对称轴,x =-π4为f (x )的零点,∴2n +14•2πω=π2,n ∈Z ,∴ω=2n +1.∵f (x )在区间-π12,π24 上有最小值无最大值,∴周期T ≥π24+π12 =π8,即2πω≥π8,∴ω≤16.∴要求ω的最大值,结合选项,先检验ω=15,当ω=15时,由题意可得-π4×15+φ=k π,φ=-π4,函数为y =f (x )=sin 15x -π4,在区间-π12,π24 上,15x -π4∈-3π2,3π8 ,此时f (x )在x =-π12时取得最小值,∴ω=15满足题意.则ω的最大值为15.故答案为:15.16.(2023·全国·高三对口高考)在△ABC 中,AB =3cos x ,cos x ,AC =cos x ,sin x ,则△ABC 面积的最大值是____________【答案】34【解析】S △ABC =12AB⋅AC sin AB ,AC =12AB 2⋅AC 21-cos 2AB ,AC =12AB 2⋅AC 2-AB ⋅AC 2=124cos 2x -3cos 2x +sin x cos x 2=123cos x sin x -cos 2x =12sin 2x -π6 -12 ≤34,当sin 2x -π6 =-1时等号成立.此时2x -π6=-π2,即x =-π6时,满足题意.故答案为:34.17.(2023·高一课时练习)用M I 表示函数y =sin x 在闭区间I 上的最大值.若正数a 满足M [0,a ]≥2M [a ,2a ],则a 的最大值为________.【答案】1312π【解析】①当a ∈0,π2时,2a ∈[0,π),M [0,a ]=sin a ,M [a ,2a ]=1,若M [0,a ]≥2M [a ,2a ],则sin a ≥2,此时不成立;②当a ∈π2,π时,2a ∈[π,2π),M [0,a ]=1,M [a ,2a ]=sin a ,若M [0,a ]≥2M [a ,2a ],则1≥2sin a ⇒sin a ≤12,又a ∈π2,π ,解得a ∈5π6,π ;③当a ∈π,3π2时,2a ∈[2π,3π),M [0,a ]=1,M [a ,2a ]=sin2a ,若M [0,a ]≥2M [a ,2a ],则1≥2sin2a ⇒sin2a ≤12,又a ∈π,3π2 ,解得a ∈π,13π12;④当a ∈3π2,+∞时,2a ∈[3π,+∞),M [0,a ]=1,M [a ,2a ]=1,不符合题意.综上所述,a ∈5π6,13π12 ,即a 的最大值为1312π.故答案为:1312π18.(2023·上海·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =2,b cos C -c cos B =4,π4≤C ≤π3,则tan A 的最大值为_______.【答案】12【解析】在△ABC 中,因为a =2,b cos C -c cos B =4,所以b cos C -c cos B =4=2a ,所以sin B cos C -sin C cos B =2sin A 所以sin B cos C -sin C cos B =2sin (B +C ),所以sin B cos C -sin C cos B =2sin B cos C +2cos B sin C ,所以sin B cos C +3cos B sin C =0,所以sin B cos C +cos B sin C +2cos B sin C =0,所以sin (B +C )+2cos B sin C =0,所以sin A +2cos B sin C =0,所以由正弦定理得a +2c cos B =0,所以cos B =-1c<0,所以角B 为钝角,角A 为锐角,所以要tan A 取最大值,则A 取最大值,B ,C 取最小值,从而b ,c 取最小值.又b cos C =c cos B +4=c ×-1c +4=3,∴cos C =3b,由π4≤C ≤π3,得12≤cos C ≤22,∴12≤3b≤22,∴32≤b ≤6,由cos B =a 2+c 2-b 22ac =-1c,∴b 2-c 2=8,∴10≤c ≤27,∴tan A 取最大值时,b =32,c =10,此时由余弦定理可得cos A =b 2+c 2-a 22bc =18+10-42×32×10=255,从而求得tan A =1cos 2A-1=12,即tan A 最大值为12.故答案为:1219.(2023·全国·高三专题练习)在△ABC 中,若∠BAC =120°,点D 为边BC 的中点,AD =1,则AB⋅AC的最小值为______.【答案】-2【解析】AB ⋅AC =AD +DB ⋅AD +DC=AD 2+AD ⋅DC +DB +DB ⋅DC,因为D 为边BC 的中点,AD =1,故AB ⋅AC =1-DB 2,故求DB 的最大值.设DB =DC =x ,AC =a ,AB =c ,则由余弦定理,cos ∠BDA =x 2+12-c 22x ,cos ∠CDA =x 2+12-b 22x,因为∠BDA +∠CDA=180∘,故x 2+12-c 22x +x 2+12-b 22x=0,即2x 2+2=b 2+c 2,又2x 2=b 2+c 2+bc ≥3bc ,故2x 2+2=4x 2-bc ,即2x 2=2+bc ≤2+43x 2,此时x 2≤3,故AB ⋅AC =1-x 2≥-2,当且仅当b =c 时取等号.即AB ⋅AC的最小值为-2故答案为:-220.(2023·全国·高三专题练习)△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________.【答案】3【解析】因为△ABC 的面积为1,所12bc sin A =12b ×2b sin A =b 2sin A =1,可得b 2=1sin A,由BC =AC -AB ,可得|BC |2=|AC |2+|AB |2-2AC ⋅AB =b 2+c 2-2bc cos A =b 2+2b2-2b ×2b cos A =5b 2-4b 2cos A =5sin A -4cos A sin A =5-4cos Asin A,设m =sin A -4cos A +5=-14×sin A cos A -54,其中A ∈(0,π),因为sin A cos A -54=sin A -0cos A -54表示点P 54,0 与点(cos A,sinA )连线的斜率,如图所示,当过点P 的直线与半圆相切时,此时斜率最小,在直角△OAP 中,OA =1,OP =54,可得PA =34,所以斜率的最小值为k PA =-tan ∠APO =-43,所以m 的最大值为-14×-43 =13,所以|BC |2≥3,所以|BC |≥3,即BC 的最小值为3,故答案为:3.21.(2023·全国·高三专题练习)已知θ>0,对任意n ∈N *,总存在实数φ,使得cos (nθ+φ)<32,则θ的最小值是___【答案】2π5【解析】在单位圆中分析,由题意,nθ+φ的终边要落在图中阴影部分区域(其中∠AOx =∠BOx =π6),必存在某个正整数n ,使得nθ+φ终边在OB 的下面,而再加上θ,即跨越空白区域到达下一个周期内的阴影区域内,∴θ>∠AOB =π3,∵对任意n ∈N *要成立,所以必存在某个正整数n ,使得以后的各个角的终边与前面的重复(否则终边有无穷多,必有两个角的终边相差任意给定的角度比如1°,进而对于更大的n ,次差的累积可以达到任意的整度数,便不可能在空白区域中不存在了),故存在正整数m ,使得2m πθ∈N *,即θ=2m πk ,k ∈N *,同时θ>π3,∴θ的最小值为2π5,故答案为:2π5.22.(2023·上海·高三专题练习)已知函数f (x )=sin (ωx +φ),其中ω>0,0<φ<π,f (x )≤f π4恒成立,且y =f (x )在区间0,3π8上恰有3个零点,则ω的取值范围是______________.【答案】6,10【解析】由已知得:f (x )≤f π4恒成立,则f (x )max =f π4 ,π4ω+φ=π2+2k π,k ∈Z ⇒φ=π2-πω4+2k π,k ∈Z ,由x ∈0,3π8 得ωx +φ∈φ,3π8ω+φ ,由于y =f (x )在区间0,3π8上恰有3个零点,故0<φ<π3π<3π8ω+φ≤4π,则0<π2-πω4+2k π<π3π<3πω8+π2-πω4+2k π≤4π,k ∈Z ,则8k -2<ω<8k +220-16k <ω≤28-16k,k ∈Z ,只有当k =1时,不等式组有解,此时6<ω<104<ω≤12 ,故6<ω<10,故答案为:6,1023.(2023·全国·高三专题练习)已知锐角三角形ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且A >B ,若sin C =2cos A sin B +725,则tan B 的取值范围为_______.【答案】34,247【解析】∵sin C =2cos A sin B +725,∴sin A +B =sin A cos B +cos A sin B =2cos A sin B +725,即sin A -B =725,∵又A >B ,且A ,B 都为锐角,故cos A -B =2425,tan A -B =724,因为锐角三角形ABC ,所以tan A >0,tan B >0,tan C >0,所以tan A =tan A -B +B =tan A -B +tan B 1-tan A -B ⋅tan B =724+tan B1-724⋅tan B >0所以1-724⋅tan B>0,所以tan B<247,又因为tan C=-tan A+B=tan A+tan Btan A⋅tan B-1>0所以tan A⋅tan B-1=724+tan B1-724⋅tan B⋅tan B-1>0所以12tan2B+7tan B-12>0,解得tan B>34或tan B<-43(舍去)故34<tan B<247.故答案为:3 4,247.24.(2023·全国·高三专题练习)若函数f x =43x-13sin2x+a cos x在-∞,+∞内单调递增,则实数a的取值范围是___________.【答案】-423,423【解析】因函数f(x)在-∞,+∞内单调递增,则∀x∈R,f (x)=43-23cos2x-a sin x≥0,即a sin x≤43-23cos2x,整理得a sin x≤43sin2x+23,当sin x=0时,则0≤23成立,a∈R,当sin x>0时,a≤43sin x+23sin x,而43sin x+23sin x=232sin x+1sin x≥432,当且仅当2sin x=1sin x,即sin x=22时取“=”,则有a≤423,当sin x<0时,a≥43sin x+23sin x,而43sin x+23sin x=-23(-2sin x)+1-sin x≤-432,当且仅当-2sin x=1-sin x,即sin x=-22时取“=”,则有a≥-423,综上得,-423≤a≤423所以实数a的取值范围是-423,423.故答案为:-423,42325.(2023秋·湖南衡阳·高一衡阳市八中校考期末)设函数f x =2sinωx+φ-1(ω>0),若对于任意实数φ,f x 在区间π4,3π4上至少有2个零点,至多有3个零点,则ω的取值范围是________.【答案】4,16 3【解析】令f x =0,则sinωx+φ=12,令t=ωx+φ,则sin t12,。
三角函数万能公式题目
三角函数万能公式题目三角函数万能公式,这可是高中数学里的一个“硬骨头”!想当年我自己上学的时候,也被它折腾得够呛。
咱们先来说说什么是三角函数万能公式。
它包括三个公式:sinα = [2tan(α/2)] / [1 + tan²(α/2)] ;cosα = [1 - tan²(α/2)] / [1 + tan²(α/2)] ;tanα = [2tan(α/2)] / [1 - tan²(α/2)] 。
看着这一堆式子,是不是有点头疼?别慌,咱们慢慢捋。
我记得有一次给学生们讲这部分内容,有个学生叫小李,平时数学成绩还不错,可就是卡在这万能公式上转不过弯来。
我在黑板上写了一道例题:已知tanα = 3,求sinα 和cosα 的值。
我一步一步地引导大家,先把万能公式写在旁边,然后告诉他们,咱们先从tanα 入手,求出tan(α/2)的值。
我问大家:“同学们,tanα = 3,那咱们怎么求tan(α/2) 呢?”下面一片安静,小李皱着眉头,咬着笔杆。
我笑了笑说:“别着急,咱们来想想啊,假设tan(α/2) = x ,那根据正切的二倍角公式,ta nα = 2x / (1 -x²) ,现在tanα = 3 ,是不是就能列出一个方程啦?”大家开始动笔算,小李眼睛突然一亮,大声说:“老师,我算出来啦,x = 1/2 或者 -2 !”我点点头:“很好,小李,那接下来咱们就可以代入万能公式算sinα 和cosα 啦。
”经过一番计算,大家终于算出了结果。
小李脸上露出了开心的笑容,我也松了一口气。
说回万能公式,要熟练运用它们,就得多多练习。
比如,给一个角度,让你用万能公式求三角函数值;或者反过来,给你三角函数值,让你通过万能公式求角度。
这就像是打怪升级,题目做得多了,经验值就涨上去了,遇到啥怪都不怕。
再比如说,在解决三角形的问题时,有时候已知条件给的不是常见的角度或者边长,这时候万能公式就能派上用场。
高中数学特殊公式秒杀
高中数学特殊公式秒杀数学一直是学生们学习中的一大挑战,尤其是高中数学,更是被认为是各科中最难的一门。
有些数学问题非常复杂,需要长时间的计算和推导,而有些问题则可以通过一些特殊的公式来快速解决。
在高中数学中,有一些特殊的公式被称为“秒杀”公式,因为它们能够帮助学生在短时间内快速解决一些难题。
首先我们来看一下高中数学中常用的特殊公式之一,就是二次函数的求解公式。
二次函数通常可以写成标准形式$y=ax^2+bx+c$,其中$a$、$b$、$c$分别是二次项系数、一次项系数和常数项。
要求解这个二次函数的零点,即求出$x$的取值,可以使用一元二次方程的求根公式:$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$这个公式也被称为“求根公式”,可以帮助学生在不用太多计算的情况下解决二次函数的根的问题。
另外一个常用的“秒杀”公式是三角函数的和差化积公式。
在高中数学中,学生经常碰到需要化简三角函数和差的表达式的问题。
通过使用和差化积公式,可以将这些复杂的三角函数表达式简化成更容易计算的形式。
和差化积公式的表达形式如下:$$\begin{aligned}\sin(a\pm b) &= \sin a \cos b \pm \cos a \sin b \\\cos(a\pm b) &= \cos a \cos b \mp \sin a \sin b \\\tan(a\pm b) &= \frac{\tan a \pm \tan b}{1\mp \tan a \tan b}\end{aligned}$$通过灵活运用这些和差化积公式,学生可以迅速化简复杂的三角函数表达式,提高解题效率。
此外,在概率论中,组合数学公式也是高中数学中的一个重要内容。
组合数学公式广泛应用于概率问题的计算中,例如排列组合、二项分布等。
在计算排列组合时,学生可以使用组合数学公式$C(n,m)=\frac{n!}{m!(n-m)!}$来计算组合数。
【高考数学秒杀系列-三角函数秒杀】专题3 射影定理(原卷及答案)-高考数学二轮复习
第3讲 射影定理知识与方法射影定理初中我们已经学过一个射影定理,在RtABC 中,90,ABC BD ∠=是斜边AC 上的高,则有:2BD AD CD =⋅ 2AB AC AD =⋅ 2BC CD AC =⋅高中阶段,在任意三角形ABC 中,设,,A B C ∠∠∠的对边分别为,,a b c ,则有cos cos a b C c B =+ cos cos b c A a C =+ cos cos c a B b A =+证明:()sin sin sin cos cos sin A B C B C B C =+=+根据正弦定理cos cos a b C c B =+典型例题【例1】在ABC 中,角,,A B C 所对的边是,,a b c ,已知2a =,则cos cos b C c B +等于( )A.1B.2C.4D.2【例2】在ABC 中,三个内角,,A B C 的对边分别为,,a b c ,且cos 3sin a b C c B =+,则(B =)A.23π B.3π C.4π D.6π 【例3】ABC 中角,,A B C 所对边分别为,,a b c ,若cos sin ,2a b C c B b =+=,则ABC 面积的面积的最大值为( )1B.111【例4】在ABC 中,角,,A B C 的对边分别为,,a b c ,若cos a b C =且6,6c A π==,则ABC的面积()A.B.C.D.强化训练1.已知ABC 的内角A B C 、、的对边分别为a b c 、、.若cos sin a b C c B =+,且ABC 的面积为1+则b 的最小值为_____A.2B.32.ABC 内角A B C 、、的对边分别为,,a b c ,已知cos sin a b C c B =+.则( )B =A.30B.45C.60D.1203.(多选)在ABC 中,内角,,A B C 的对边分别为,,a b c ,则下列关系式中,一定成立的有( ) A.sin sin a B b A =B.cos cos a b C c B =+C.2222cos a b c ab C +-=D.sin sin b c A a C =+4.在三角形ABC 中,角,,A B C 的对边分别为,,a b c .若cos cos a b C c A =+,且2,2⋅==,则三角形ABC的面积为_____CA CB c第3讲射影定理知识与方法射影定理初中我们已经学过一个射影定理,在Rt ABC中,∠=是斜边AC上的高,则有:90,ABC BD2=⋅BD AD CD2AB AC AD =⋅ 2BC CD AC =⋅高中阶段,在任意三角形ABC 中,设,,A B C ∠∠∠的对边分别为,,a b c ,则有cos cos a b C c B =+ cos cos b c A a C =+ cos cos c a B b A =+证明:()sin sin sin cos cos sin A B C B C B C =+=+ 根据正弦定理cos cos a b C c B =+典型例题【例1】在ABC 中,角,,A B C 所对的边是,,a b c ,已知2a =,则cos cos b C c B +等于( ) A.1B.2C.4D.2【解析】【解法1】在ABC 中,由正弦定理可得:2sin sin sin a b c R A B C===, 2sin ,2sin ,2sin a R A b R B c R C ∴===.()cos cos 2sin cos 2sin cos 2sin cos sin cos b C c B R B C R C B R B C C B ∴+=+=+ 2sin 2R A a ===【解法2】2:cos cos 2a b C c B =+=, 【答案】D.【例2】在ABC 中,三个内角,,A B C 的对边分别为,,a b c ,且cos 3sin a b C c B =+,则(B =)A.23π B.3π C.4π D.6π 【解析】【解法1】1:cos 3sin a b C c B =+,∴由正弦定理可得sin sin cos 3sin sin A B C C B =+,又()sin sin sin cos sin cos A B C B C C B =+=+,sin cos 3sin sin sin cos sin cos B C C B B C C B ∴+=+,即:3sin sin sin cos C B C B =,C 为三角形内角,sin 0cos C B B ≠=,可得tan 3B =, ()0,6B B ππ∈∴=.【解法2】2:cos cos a b C c B =+,cos ,6B B B π==,【答案】D.【例3】ABC 中角,,A B C 所对边分别为,,a b c ,若cos sin ,2a b C c B b =+=,则ABC 面积的面积的最大值为( )1B.111【解析】【解法1】1:ABC 中,cos sin a b C c B =+,由正弦定理得sin sin cos sin sin A B C C B =+,又()sin sin sin cos cos sin A B C B C B C =+=+,cos sin sin sin B C C B ∴=,又sin 0,sin cos C B B ≠∴=,又()0,180B ∈,45B ∴=;由余弦定理得2222cos b a c ac B =+-,即2242cos45a c ac =+-,整理得224a c =+;又222a cac +(当且仅当a c =取等号),422ac ∴-,即(422,22acABC =+∴-的面积为(122sin45221,244S ac ac ABC ==⨯=∴1. 【解法2】2:cos cos a b C c B =+,所以sin cos ,4B B B π==,剩余过程同上【答案】A.【例4】在ABC 中,角,,A B C 的对边分别为,,a b c ,若cos a b C =且6,6c A π==,则ABC的面积()A. B.C.D.【解析】【解法1】在ABC 中,角,,A B C 的对边分别为,,a b c ,cos a b C =∴由余弦定理可得222cos 2a b c a b C b ab+-==⨯,即222a c b +=, ABC ∴为直角三角形,B 为直角,66A c π==∴可得3C π=,由正弦定理sin sin a c A C =,即6sin sin 63aππ=,解得a =11622ABCSac ∴==⨯⨯=【解法2】2:cos cos a b C c B =+,所以11,6222ABCB Sac π=∴==⨯⨯=【答案】D.强化训练1.已知ABC 的内角A B C 、、的对边分别为a b c 、、.若cos sin a b C c B =+,且ABC 的面积为1则b 的最小值为_____ A.2B.3【解析】由正弦定理得到: sin sin sin sin cos ,A C B B C =+在ABC 中, ()()sin sin sin A B C B C π⎡⎤=-+=+⎣⎦,()sin sin cos cos sin sin sin sin cos B C B C B C C B B C ∴+=+=+,()cos sin sin sin ,0,,sin 0,cos sin B C C B C C B B π∴=∈≠∴=, 即 tan 1,B =()0,Bπ∈1,sin 1442ABCB S ac B ac π∴====+∴=+由余弦定理得到: 2222222cos ,224b a c ac B b a c ac =+-=+-= 当且仅当 a c = 时取 “ = ”, b ∴ 的最小值为 2 .【答案】 A .2.ABC 内角A B C 、、的对边分别为,,a b c ,已知cos sin a b C c B =+.则( )B = A.30B.45C.60D.120【解析】由已知及正弦定理得: sin sin cos sin sin A B C B C =+,()sin sin sin cos cos sin A B C B C B C =+=+,sin cos B B ∴=, 即 tan 1,B B = 为三角形的内角, 4B π∴=;【答案】 B .3.(多选)在ABC 中,内角,,A B C 的对边分别为,,a b c ,则下列关系式中,一定成立的有( ) A.sin sin a B b A =B.cos cos a b C c B =+C.2222cos a b c ab C +-=D.sin sin b c A a C =+【解析】对于 A , 由正弦定理sin sin a bA B=, 可得 sin sin a B b A =, 故成立; 对于 B , 由于 ()sin sin sin cos sin cos A B C B C C B =+=+, 根据正弦定理可得cos cos a b C c B =+, 故成立;对于 C , 由余弦定理可得 2222cos a b c ab C +-=, 故成立;对于 D , 由正弦定理可得 sin sin c A a C =, 可得: sin sin 2sin b c A a C c A =+= 不一定成立.综上可得: 只有 ABC 成立, 【答案】ABC .4.在三角形ABC 中,角,,A B C 的对边分别为,,a b c .若cos cos a b C c A =+,且2,2CA CB c ⋅==,则三角形ABC 的面积为_____【解析】cos cos ,a b C c A =+∴ 由正弦定理可得: sin sin cos sin cos A B C C A =+,()sin sin cos sin cos sin cos sin cos B C B C C B B C C A ∴+=+=+,sin cos sin cos sin 0cos cos ,C B C A C B A A B ∴=≠∴=∴=, 可得 a b =,cos 2CA CB ab C ⋅==, 又 2222cos c a b ab C =+-, 可得 22422a b =+-⨯,228a b ∴+=, 解得 2a b c ===, 可得 3A B C π===,11sin 2222ABCSab C ∴==⨯⨯=【答案】。
第一节 三角函数求塔高和距离的秒杀定理
第一节三角函数求塔高和距离的秒杀定理解直角三角形是初中三角函数中的应用部分,主要考查三角函数定义的运用和构造直角三角形的基本思想,这部分内容总体难度不大,我们在这一专题中介绍破解三角函数应用中的求塔高和距离问题的模型定理,又或者说提供多一些解决问题的方法,多去思考题型中蕴含的公式,多去挖掘背后的命题用意,我们是否会有新的发现和新的体验呢?另外,我们这一专题还会围绕网格中的三角函数去揭开特殊正切值中藏着的秘密.【例1】(2020•郑州校级模拟)某校九年级数学兴趣小组的活动课题是“测量物体高度”.小组成员小明与小红分别采用不同的方案测量同一个底面为圆形的古塔高度,以下是他们研究报告的部分记录内容:(1)写出小红研究报告中“计算古塔高度”的解答过程;(2)数学老师说小红的结果较准确,而小明的结果与古塔的实际高度偏差较大.针对小明的测量方案分析测量发生偏差的原因;(3)利用小明与小红的测量数据,估算该古塔底面圆直径的长度为m.【例2】(2020•深圳模拟)如图,线段AB表示一信号塔,DE表示一斜坡,DC CE⊥.且点B,C,E三点在同一水平线上,点A,B,C,D,E在同一平面内,斜坡DE的坡比为,42DE=米.某人站在坡顶D处测得塔顶A点的仰角为37︒,站在坡底C处测得塔顶A点的仰角为48︒(人的身高忽略不计),求信号塔的高度AB(结果精确到1米).(参考数据:3sin375︒≈,3tan374︒≈,7sin4810︒≈,11tan48)10︒≈【例3】(2020•陕西四模)如图所示,某公园有一座雕塑,晓玲和九年级“智慧之星”数学社团的成员想要用所学过的知识测量雕塑的高度AB.测量方法如下:晓玲先在所选取的C 处地面上水平放置了一个小平面镜,然后沿着BC方向后退,当退到点E时,刚好在小平面镜内看到雕塑的顶端A的像;接着,晓玲在E处测得雕塑顶端A的仰角为58︒;已知0.8CE=米,晓玲眼睛与地面的距离 1.6DE=米,点B、C、E在同一水平直线上,且AB、DE均垂直于BE,求雕塑的高度AB.(小平面镜的大小忽略不计,参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.60)︒≈.【例4】(2020•岳麓区校级二模)如图,热气球的探测器显示,从热气球底部A处看一栋高楼顶部的仰角为30︒,看这栋楼底部的俯角为60︒,热气球A处与高楼的水平距离为120m.(1)求ABC∠的角度;(2)这栋高楼有多高?(结果保留根号)【例5】(2020•成都)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数学兴趣小组在电视塔附近一建筑物楼顶D处测得塔A处的仰角为45︒,塔底部B处的俯角为22︒.已知建筑物的高CD约为61米,请计算观景台的高AB的值.(结果精确到1米;参考数据:sin220.37︒≈︒≈,cos220.93︒≈,tan220.40)【同步训练】1.(2020•驻马店一模)放风筝是大家喜爱的一种运动星期天的上午小明在金明广场上放风筝,如图,他在A 处不小心让风筝挂在了一棵树梢上,风筝固定在了D 处,此时风筝AD 与水平线的夹角为30︒,为了便于观察,小明迅速向前边移动,收线到达了离A 处10米的B 处,此时风筝线BD 与水平线的夹角为50︒,已知点A ,B ,C 在同一条水平直线上,小明搬了一把梯子来取风筝,梯子能达到的最大高度为20米,请问小明能把风筝捡回来吗?(最后结果精确到1米)(风筝线AD ,BD 1.732≈,sin500.766︒≈,cos500.643︒≈,tan50 1.192)︒≈2.(2020•灌阳县一模)目前世界上最高的电视塔是广州新电视塔.如图所示,新电视塔高AB 为610米,远处有一栋大楼,某人在楼底C 处测得塔顶B 的仰角为45︒,在楼顶D 处测得塔顶B 的仰角为39︒,(sin390.63︒≈,cos390.78︒≈,tan390.81)︒≈ (1)求大楼与电视塔之间的距离AC ; (2)求大楼的高度CD (精确到1米)3.(2019•南京模拟)如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是45︒,向前走9m 到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是60︒和30︒. (1)求BPQ ∠的度数;(2)求该电线杆PQ 的高度.(结果保留根号)4.(2020春•辉南县校级月考)如图,已知线段AB 、CD 分别表示甲、乙两栋楼的高,AB BD ⊥,CD BD ⊥,甲楼的高24AB =米.从甲楼顶部A 处测得乙楼顶部C 的仰角30α=︒,测得乙楼底部D 的俯角60β=︒.求乙楼的高CD .5.(2020•莲湖区模拟)西安市某学校的数学探究小组利用无人机在操场上开展测量教学楼高度的活动,如图,此时无人机在离地面30米的点D 处,操控者站在点A 处,无人机测得点A 的俯角为37︒,测得教学楼楼顶点C 处的俯角为45︒,又经过人工测量得到操控者和教学楼BC 的距离为57米,求教学楼BC 的高度.(注:点A ,B ,C ,D 都在同一平面上,无人机大小忽略不计.参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75)︒≈第二节 特殊角之“21”“31”“︒45”网格中的和差角问题在初三的人教版教材上有这么一个网格题,是让判断两个三角形是否相似.细心的同学就可以发现这两个三角形的锐角之和刚好为︒45,那么这两个角的正切值为多少,他们之间又什么关联。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.同角三角函数关系式sin 2α+cos 2α=1(平方关系); ααc o s s i n =tan α(商数关系); tan αcot α=1(倒数关系).使用这组公式进行变形时,经常把“切”、“割”用“弦”表示,即化弦法,这是三角变换非常重要的方法。
几个常用关系式:sin α+cos α,sin α-cos α,sin α·cos α;(三式之间可以互相表示)同理可以由sin α-cos α或sin α·cos α推出其余两式。
7.诱导公式可用十个字概括为“奇变偶不变,符号看象限”。
诱导公式一:sin(2)sin k απα+=,cos(2)cos k απα+=,其中k Z ∈诱导公式二: sin(180)α+=sin α-; c o s (180)α+=-c o s α 诱导公式三: sin()sin αα-=-; cos()cos αα-= 诱导公式四:sin(180)sin αα-=; cos(180)cos αα-=-诱导公式五:sin(360)sin αα-=-; cos(360)cos αα-=(1)要化的角的形式为180k α⋅±(k 为常整数); (2)记忆方法:“奇变偶不变,符号看象限”;(3)sin(k π+α)=(-1)k sin α;cos(k π+α)=(-1)k cos α(k ∈Z); (4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭。
(二)三角函数的图像与性质1.正弦函数、余弦函数、正切函数的图像2.3.三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈; x y tan =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,4.对称轴与对称中心:sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈;cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+;对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系。
5.函数B x A y ++=)sin(ϕω),(其中00>>ωA最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。
6.由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。
途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。
途径二:先周期变换(伸缩变换)再平移变换。
先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。
三角函数图象的平移和伸缩函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+ sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变得sin()y x ωϕ=+ sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变得sin()y A x ωϕ=+sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++图象先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变得sin()y A x ω= sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++图象例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πs i n 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2s i n2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数.解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭.根据题意,有ππ22224x a x --=-,得π8a =-.所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.5.由y =A sin(ωx +ϕ)的图象求其函数式:给出图象确定解析式y =A sin (ωx +ϕ)的题型,有时从寻找“五点”中的第一零点(-ωϕ,0)作为突破口,要从图象的升降情况找准..第一个零点的位置。
8.求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A 、ω的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间;9.求三角函数的周期的常用方法:经过恒等变形化成“sin()y A x ωφ=+、cos()y A x ωφ=+”的形式,在利用周期公式,另外还有图像法和定义法。
10.五点法作y =A sin (ωx +ϕ)的简图:五点取法是设x =ωx +ϕ,由x 取0、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图。
(三)三角恒等变换1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±;βαβαβαsin sin cos cos )cos( =±;tan tan tan()1tan tan αβαβαβ±±=。
2.二倍角公式αααcos sin 22sin =; ααααα2222sin 211cos 2sin cos 2cos -=-=-=; 22tan tan 21tan ααα=-。
3.三角函数式的化简常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。
(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。
(1)降幂公式ααα2sin 21cos sin =;22cos 1sin 2αα-=;22cos 1cos 2αα+=。
(2)辅助角公式()sin cos sin a x b x x ϕ+=+,sin cos ϕϕ==其中4.三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
5.三角等式的证明(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。