新人教版七年级数学上册正数和负数
(完整版)人教版七年级数学上册一至四章知识点归纳
第一章有理数(一)正数和负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
(四)有理数的加减法1.先定符号,再算绝对值。
2.加法运算法则:同号相加,到相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.a-b=a+(-b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab=ba 4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。
2.除以一个不等于0的数,等于乘这个数的倒数。
人教版七年级数学上册:1.1《正数和负数》说课稿
人教版七年级数学上册:1.1《正数和负数》说课稿一. 教材分析《正数和负数》是人教版七年级数学上册第一章的第一节内容。
这一节内容主要介绍了正数和负数的定义,以及它们在数轴上的表示方法。
通过这一节的学习,学生能够理解正数和负数的含义,掌握它们的性质,并能够运用数轴来表示正数和负数。
二. 学情分析七年级的学生已经初步接触过数学,对于一些基本的数学概念有一定的了解。
但是,他们对正数和负数的理解可能还比较模糊,对于数轴的概念可能还没有完全掌握。
因此,在教学过程中,我需要注重引导学生从实际情境中理解正数和负数的含义,通过数轴来直观地表示正数和负数,帮助他们建立起对正数和负数的正确认识。
三. 说教学目标1.知识与技能目标:学生能够理解正数和负数的定义,掌握它们的性质,并能够运用数轴来表示正数和负数。
2.过程与方法目标:通过实际情境和数轴的引入,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极思考、合作探索的学习态度。
四. 说教学重难点1.教学重点:正数和负数的定义,它们的性质,以及数轴上表示正数和负数的方法。
2.教学难点:正数和负数的性质的理解,以及数轴上表示正数和负数的方法的掌握。
五. 说教学方法与手段1.教学方法:采用问题驱动法、情境教学法和合作学习法。
2.教学手段:利用多媒体课件、数轴模型和实物模型进行教学。
六. 说教学过程1.导入:通过实际情境,如温度计的示数、银行卡的余额等,引出正数和负数的概念,激发学生的兴趣。
2.探究:学生分组讨论,思考正数和负数的含义,通过数轴来直观地表示正数和负数。
3.讲解:教师引导学生总结正数和负数的性质,并通过示例来讲解数轴上表示正数和负数的方法。
4.练习:学生独立完成练习题,巩固对正数和负数的理解和运用。
5.小结:教师引导学生总结本节课的主要内容,加深对正数和负数的认识。
七. 说板书设计板书设计要简洁明了,能够突出正数和负数的关键信息。
人教版七年级数学上册第一章1.1正数和负数的概念(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与正数和负数相关的实际问题,如温度、海拔等。
2.实验操作:为了加深理解,我们将进行一个简单的数轴操作实验。这个操作将演示正数和负数在数轴上的表示和它们之间的相对关系。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《正数和负数的概念》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过温度低于0℃或者存款和借款的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索正数和负数的奥秘。
-正数和负数的实际应用:通过生活中的实例,强调正数和负数在解决实际问题中的应用,如温度、收入支出等。
举例:讲解正数和负数的定义时,可以借助数轴,让学生理解0以上为正数,0以下为负数。比较大小的时候,可以通过具体的数字比较,如-3和-5,让学生明白绝对值的概念。
2.教学难点
-负数的概念理解:对于初中一年级的学生来说,负数是一个全新的概念,理解上可能存在困难。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生ห้องสมุดไป่ตู้组讨论(用时10分钟)
1.讨论主题:学生将围绕“正数和负数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“你还能想到哪些使用正数和负数的例子?”
七年级上册1.1正数和负数(共19张PPT)
解:六个国家这一年商品进出口额的增长率 :
美国 -6.4%, 法国 -2.4%, 意大利 +0.2%,
德国思1考.3:%,既没有增加又 没英有国减-少3.的5%情,况下增长率 如中何国表+示7?.5%.
0只表示没有吗?
● 空罐中的金币数量; ● 温度中的0℃; ● 海平面的高度; ● 标准水位; ● 身高比较的基准; ● 正数和负数的界点;
在正数前面加上符号“-”(负)的数叫做负数,例如 -3,-1.2 ,-2.7% … “-”号不可以省略。
你认为0应该放在什么地方? 0既不是正数,也不是负数
探究新知
思考:你认为负数的引入有什么作用? 答:引入负数可以和正数表示具有相反意义的量。
例如:
(1)向东走200米,记为+200米,那么向西走200米,记
……引入正、负数后,0不再简简单单的只表示 没有,它具有丰富的意义,是正负数的基准。
随堂检测
1、如果向东走12米记作+12米,则向西走120米记作 __—__1_2__0_米。
2、如果向东走12米记作—12米,则向西走120米记作 __+_1__2_0__米。
3、如果全班某次数学测试的平均成绩为83分,某同学 考了85分,记作+2分,得90分应记作__—__3__分__,得80 分应记作__+_7__分__ 。
3、观察下列排列的每一列数,研究它的排列有什么规律?并填 出空格上的数.
(1)1,-2,1,-2,1,-2,____,____,____,… (2)-2,4,-6,8,-10, ____, ____, ____,… (3)1,0,-1,1,0,-1,____,____,____,…
课堂小结
• 说一说,通过本节课的学习,你有什么收获?
人教版数学七年级上册(新)课件:1.1正数和负数
水位不升不降时水位变化记作____0___m。
(3) 月球表面的白天平均温度零上126℃,记 作_1_2__6_℃,夜间平均温度零下150 ℃, 记作_—___1_5_0_ ℃。
探索 新知
问题三:在同一问题中,分别用 正数和负数表示的量具有 相反 的反意义的量,我 们可以用正数和负数分别表示它们。
正数
和
负数
温故 知新
思考:我们小学学过哪些数?
自然数 0 整数 分数(小数)
走进生活:
1)北京冬季里某一天的气温为-3℃~3℃。
2)珠穆朗玛峰的海拔高度为8844.43m,吐
鲁番盆地的海拔高度为-155m。
3)某年,我国花生产量比上一年增长1.8%,
油菜籽产量比上一年增长-2.7%。
探索 新知
问题一:我们怎样命名前面带 有“-”号的数呢?
正数:大于0的数叫做正数,可以在正数前面 加“+”正号,如“+3”叫做“正三”。
负数:在正数前加上符号“-”(负)的数叫 做负数,如“-3”叫做“负三”。
探索 新知
我们认识的数
正整数 正分数 零 负整数 负分数
思考:“0”是正数还是负数? 注意:“0”即不是正数也不是负数。
探索 新知
例1: 读下列各数,并指出其中哪些
是正数,哪些是负数。
4
-1,2.5,- ,0,-3.14,120,-1.732
3
问题二:我们该如何使用正数和负数去表示 实际问题中的量呢?
探索 新知
例2:一个月内,小明体重增加2kg, 小华体重减少1kg,小强体重无变化, 写出他们这个月的体重增长值。
解:小明: 2kg 小华:-1kg 小强:0kg
法国:-2.4%, 英国:-3.5%,
新人教版七年级数学上册重要知识点汇总
新人教版七年级数学上册重要知识点汇总第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
〔根据需要,有时在正数前面也加上“+”〕②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
1.2 有理数1、有理数〔1〕整数:正整数、0、负整数统称整数;〔2〕分数;正分数和负分数统称分数;〔3〕有理数:整数和分数统称有理数。
2、数轴〔1〕定义:通常用一条直线上的点表示数,这条直线叫数轴;〔2〕数轴三要素:原点、正方向、单位长度;〔3〕原点:在直线上任取一个点表示数0,这个点叫做原点;〔4〕数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
〔例:2的相反数是-2;0的相反数是0〕〔2〕一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法。
1.4 有理数的乘除法①有理数乘法法那么:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律②有理数除法法那么:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
1.5 有理数的乘方1、求n个一样因数的积的运算,叫乘方,乘方的结果叫幂。
在a的n次方中,a叫做底数,n叫做指数。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何次幂都是0。
2、有理数的混合运算法那么:先乘方,再乘除,最后加减;同级运算,从左到右进展;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进展。
3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a⑵打满14场比赛最高能得17+〔14-8〕×3=35分.⑶由题意知,以后的6场比赛中,只要得分不低于12分即可.∴胜不少于4场,一定能到达预期目的. 而胜了3场,平3场,正好到达预期目的. 所以在以后的比赛中,这个球队至少要胜3场.例10. 国家为了鼓励青少年成才,特别是贫困家庭的孩子能上得起大学,设置了教育储蓄,其优惠在于,目前暂不征收利息税. 为了准备小雷5年后上大学的学费6000元,他的父母如今就参加了教育储蓄,小雷和他父母讨论了以下两种方案:⑴先存一个2年期,2年后将本息和再转存一个3年期;⑵直接存入一个5年期.你认为以上两种方案,哪种开场存入的本金较少?[教育储蓄〔整存整取〕年利率一年:2. 25%;二年:2. 27%;三年:3. 24%;五年:3. 60%. ]解析:理解储蓄的有关知识,掌握利息的计算方法,是解决这类问题的关键,对于此题,我们可以设小雷父母开场存入x元. 然后分别计算两种方案哪种开场存入的本金较少.⑴2年后,本息和为x〔1+2. 70%×2〕=1. 054x;再存3年后,本息和要到达6000元,那么1. 054x〔1+3. 24%×3〕=6000.解得x≈5188.⑵按第二种方案,可得方程x〔1+3. 60%×5〕=6000.解得x≈5085.所以,按他们讨论的第二种方案,开场存入的本金比拟少.例11. 扬子江药业集团消费的某种药品包装盒的侧面展开图如下图. 假如长方体盒子的长比宽多,求这种药品包装盒的体积.分析^p :从展开图上的数据可以看出,展开图中两高与两宽和为350px,所以一个宽与一个高的和为175px,假如设这种药品包装盒的宽为xcm,那么高为〔7-x〕cm,因为长比宽多100px,所以长为〔x+4〕cm,根据展开图可知一个长与两个高的和为325px,由此可列出方程.解:设这种药品包装盒的宽为xcm,那么高为〔7-x〕cm,长为〔x+4〕cm.根据题意,得〔x+4〕+2〔7-x〕=13,解得x=5,所以7-x=2,x+4=9.故长为225px,宽为125px,高为50px.所以这种药品包装盒的体积为:9×5×2=90〔cm3〕.例12. 某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.解:设这个月的石油价格相对上个月的增长率为x. 根据题意得〔1+x〕〔1-5%〕=1+14%解得x=20%答:这个月的石油价格相对上个月的增长率为20%.点评:此题是一道增长率的应用题. 本月的进口石油的费用等于上个月的费用加上增加的费用,也就是本月的石油进口量乘以本月的价格. 设出未知数,分别表示出每一个数量,列出方程进展求解. 列方程解应用题的关键是找对等量关系,然用代数式表示出其中的量,列方程解答.例13. 某市参加省初中数学竞赛的选手平均分数为78分,其中参赛的男选手比女选手多50%,而女选手的平均分比男选手的平均分数高10%,那么女选手的平均分数为____________.解析:总平均分数和参赛选手的人数及其得分有关. 因此,必须增设男选手或女选手的人数为辅助未知数. 不妨设男选手的平均分数为x分,女选手的人数为a 人,那么女选手的平均分数为1. 1x分,男选手的人数为1. 5a人,从而可列出方,解得x=75,所以1. 1x=82. 5. 即女选手的平均分数为82. 5分.第四章几何图形初步4.1 几何图形1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。
人教版七年级上册数学知识点总结归纳(最新最全)
七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
(3)0表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
1.2 有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
七年级上册数学正数和负数知识点
七年级上册数学正数和负数知识点
1. 正数和负数:正数是大于0的数,用正号表示,例如1、2、3等;负数是小于0的数,用负号表示,例如-1、-2、-3等。
2. 数轴:数轴是一个直线上从左到右的有序排列的数的集合。
正数在数轴右侧,负数在数轴左侧,0位于数轴中间。
3. 数的绝对值:数的绝对值是这个数到0的距离,用两个竖线表示,例如|-3|=3,|5|=5。
4. 正数和负数的加减:正数与正数相加减,结果仍为正数;负数与负数相加减,结果仍为负数;正数与负数相加减,结果为两数绝对值较大的那个数的符号。
5. 数的比较:正数之间比较大小,绝对值较大的数较大;负数之间比较大小,绝对值较小的数较大;正数和负数比较大小,正数较大。
6. 数的相反数:两个数互为相反数,它们的绝对值相等,但符号相反,例如3的相反数是-3,-7的相反数是7。
7. 数的倒数:倒数是指数的相反数,其乘积等于1,例如3的
倒数是1/3,-5的倒数是-1/5。
8. 同号数的乘法:两个正数或两个负数相乘,结果为正数;一个正数与一个负数相乘,结果为负数。
9. 异号数的乘法:一个正数与一个负数相乘,结果为负数。
10. 同号数的除法:两个正数或两个负数相除,结果为正数;一个正数除以一个负数,结果为负数。
11. 异号数的除法:一个正数除以一个负数,结果为负数。
12. 数的平方:一个数的平方是这个数乘以它本身,例如3的平方是3x3=9,-4的平方是-4x-4=16。
以上是七年级上册数学正数和负数的主要知识点。
人教版七年级数学上册 1.1 正数和负数 (26张PPT)
从上面的例题中看到增长 -1就是减少1,那 么增长 -6.4%是什么意思呢?什么情况下增 长率是0?减少 -1又是什么意思呢?
归纳:如果一个问题中出现相反意义的量, 我们可以用正数和负数分别表示它们。
在地形图上表示某地的高度时, 需要以海平面为基准(规定海 平面的海拔高度为0),通常用 正数表示高于海平面的某地的 海拔高度,负数表示低于海平面 的某地的海拔高度.例如,珠穆 朗玛峰的海拔高度为8 844.43 m,吐鲁番盆地的海拔高度 为-155 m.记录账目时,通常用正数表示收入款额, 负数表示支出款额.
图中的正数与负数的含义是什么? 答案:“4600”表示高出海平面4600米 “-100”表示低于海平面100米
图中的正数与负数的含义是什么?
“2300.00”表示存入2300元 “-1800.00”表示支出1800元
0只表示没有吗?
0℃是一个确切的温度 海拔0m表示海平面的平均高度 0是正数与负数的分界
根据需要,有时在正数前面也加上“+”号,例如, +3,+2,+0.5,…就是3,2,0.5,….一个数前面的 “+”、“-”号叫做它的符号.
0是正数么?是负数么? 答:0既不是正数,也不是负数.
小试牛刀
1.读下列各数,并指出其中哪些是正数,哪些是负数。(口答)
-1,2.5,+ 4 ,0,-3.14,120,-1.732,- 2
平均温度零下150℃,记作
℃。
6.下列结论中正确的是 ( D). (A)0既是正数,又是负数 (B)0是最小的正数 (C)0是最大的负数 (D)0既不是正数,也不是负数
挑战自我
小明从商场买回几瓶酸奶,因当天喝不完, 想放进冰冷藏起来,酸奶上标明保存温度是 4±2℃。 (1)小明把温度调至10℃,请问可以吗? (2)小明可调控的温度应在什么范围?
人教版七年级数学上册各章知识点总结
3.有理数-3,0,20,-1.25,1 , 1 /4 ,-(-5) 中,正整数是 ___ ,负整数是______,正分数是 ____ ,
非负数是 _____ 。
4. a的倒数是 ____, 的相反数是____, 的绝对值是 ____, 已知|a|=4,那么 a= ____
5.比较大小:(1)-2____+6 (2) 0 __ -1.8
。
a(b c )
ab+ac
倒数:①乘积为1的两个数互为倒数。 ②零没有倒数 ③互为倒数的两个数的符号相同
(2)有理数除法法则:
1、除以一个不等于0的数,等于乘这个数的
.
2、两数相除,同号得 ,异号得 ,并把绝对值相
。
0除以任何一个不等于0的数都得 。
1.5有理数的乘方 求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,其中a叫做底数,n叫做指数。
1.2有理数 任何一个有理数都可以用数轴上的点表示。
(1)有理数的分类
(2)、数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
数轴的三要素
、
、 正方向。
单位长度
(3)相反数:只有符号不同的两个数叫做互为相反数。 如2与-2,-5与5,a与-a等。
①通常用a和-a表示一对相反数 ②若a与b互为相反数,则a+b=0 ③互为相反数的两个数的绝对值相等,即|-a|=|a| ④若|a|=|b|,则a=b,或a=-b(a与b互为相反数)
3、几个数相乘,只要有一个因数为0,积就为0。
乘法运算律: 1交换律:两个数相乘,交换因数的位置,积不变
ab = ; ba
2结合律:三个数相乘,先把前面两个数相乘,或者先把后两个数相乘,积不变。 (ab)c=
七年级上册数学正数和负数知识点
七年级上册数学正数和负数知识点正数和负数是数学中的基本概念,对于七年级的学生来说,理解正数和负数的概念以及它们的运算规则是非常重要的。
本文将介绍七年级上册数学中关于正数和负数的知识点。
一、正数和负数的概念正数是大于零的数,用正号“+”表示,如1、2、3等。
负数是小于零的数,用负号“-”表示,如-1、-2、-3等。
正数和负数统称为有理数。
二、正数和负数的比较正数和负数之间可以进行比较。
对于两个正数来说,数值越大,表示的大小越大;对于两个负数来说,数值越小,表示的大小越大;而正数和负数之间,正数大于负数。
三、正数和负数的加减法1. 正数加正数:两个正数相加,结果仍为正数。
例如:2 + 3 = 5。
2. 负数加负数:两个负数相加,结果仍为负数。
例如:-2 + (-3) = -5。
3. 正数加负数:正数加负数时,先将它们的绝对值相减,然后取绝对值较大的数的符号。
例如:2 + (-3) = -1。
4. 负数加正数:负数加正数时,先将它们的绝对值相加,然后取绝对值较大的数的符号。
例如:-2 + 3 = 1。
四、正数和负数的乘除法1. 正数乘正数:两个正数相乘,结果仍为正数。
例如:2 × 3 = 6。
2. 负数乘负数:两个负数相乘,结果为正数。
例如:-2 × (-3) = 6。
3. 正数乘负数:正数乘负数时,结果为负数。
例如:2 × (-3) = -6。
4. 负数乘正数:负数乘正数时,结果为负数。
例如:-2 × 3 = -6。
5. 正数除以正数:两个正数相除,结果仍为正数。
例如:6 ÷2 = 3。
6. 负数除以负数:两个负数相除,结果为正数。
例如:-6 ÷ (-2) = 3。
7. 正数除以负数:正数除以负数时,结果为负数。
例如:6 ÷ (-2) =-3。
8. 负数除以正数:负数除以正数时,结果为负数。
例如:-6 ÷ 2 = -3。
人教版数学七年级上册知识点汇总
第一章有理数1.1正数和负数1.正数:大于0的数.2.负数:小于0的数.3.0即不是正数,也不是负数.4.正数大于0,负数小于0,正数大于负数.1.2有理数及其大小比较1.整数:正整数、0、负整数,统称整数.2.有理数:可以写成分数形式的数.(1)正有理数:可以写成正分数形式的数.(2)负有理数:可以写成负分数形式的数.3.数轴(1)定义:用直线上的点表示数,这条直线叫做数轴.(在直线上任取一个点表示数0,这个点叫作原点;规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.)(2)数轴的三要素:原点、正方向、单位长度.(3)原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数.4.相反数:只有符号不同的两个数叫做互为相反数.(1)任何数都有相反数,且只有一个;(2)0的相反数是0;(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0.5.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0.6.有理数的大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.第二章有理数的运算2.1有理数的加法与减法1.有理数加法法则(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差,互为相反数的两个数相加得0.(3)一个数与0相加,仍得这个数.2.有理数加法运算律(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).2.2有理数的乘法与除法1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.倒数:乘积为1的两个数互为倒数;但0没有倒数.3.有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.4.有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:0不能做除数)(1)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.(2)0除以任何一个不等于0的数,都得0.2.3有理数的乘方1.乘方:求n个相同乘数的积的运算.(1)乘方的结果叫作幂.(2)在a n中,a叫作底数,n叫作指数.(3)负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.2.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+1.第三章代数式3.1列代数式表示数量关系1.代数式:用运算符号把数或表示数的字母连接起来的式子.(1)单独的一个数或字母也是代数式.(2)列代数式应注意:若式子后面有单位且式子是和或差的形式,式子应用小括号括起来.2.反比例(1)两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.(2)反比例关系可以用xy=k或kyx来表示,其中k叫作比例系数.(k≠0)3.2代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果.2.求代数式的一般步骤(1)代入:用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数值都不能改变;(2)计算:按照代数式指明的运算,根据有理数的运算方法进行计算.第四章整式的加减4.1整式1.整式(1)定义:单项式和多项式的统称.(2)单项式:数与字母的乘积组成的式子叫单项式.单独的一个数或一个字母也是单项式.(3)系数;一个单项式中,数字因数叫做这个单项式的系数.(4)次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(5)多项式:几个单项式的和.(6)项:组成多项式的每个单项式.(7)常数项:不含字母的项.(8)多项式的次数:多项式中,次数最高的项的次数.4.2整式的加法与减法1.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.4.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项.(1)步骤:①列出代数式;②去括号;③合并同类项.(2)去括号的法则①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.第五章一元一次方程5.1方程1.等式:用“=”号连接而成的式子.2.等式的性质(1)等式两边都加上(或减去)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c.(2)等式两边都乘以(或除以)同一个不为零的数,结果仍相等.如果a=b,那么ac=bc;如果a=b,(c≠0),那么a/c=b/c.3.方程:含未知数的等式(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值.5.一元一次方程(1)概念:只含有一个未知数(元)且未知数的指数是1(次)的方程.(2)一般形式:ax+b=0(a≠0)5.2解一元一次方程1.移项:把等式一边的某项变号后移到另一边.2.解一元一次方程的一般步骤化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号(留下靠前)合并同类项——合并后符号系数化为1——除前面5.3实际问题与一元一次方程1.用方程解决问题(1)行程问题:路程=时间×速度(2)利润问题:利润=售价-进价,售价=标价×(1-折扣)(3)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;(4)利息问题:本息和=本金+利息;利息=本金×利率(5)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度第六章几何图形初步6.1几何图形1.几何图形:把从实物中抽象出来的各种图形的统称.2.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形.(棱柱、棱锥、圆柱、圆锥、球等)3.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形.(三角形、四边形、圆、多边形等)4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.5.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.6.2直线、射线、线段1.直线、线段、射线(1)线段:线段有两个端点.(2)射线:将线段向一个方向无限延长就形成了射线.射线只有一个端点.(3)直线:将线段的两端无限延长就形成了直线.直线没有端点.(4)两点确定一条直线:经过两点有一条直线,并且只有一条直线.(5)相交:两条直线有一个公共点时,称这两条直线相交.(6)两条直线相交有一个公共点,这个公共点叫交点.(7)中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.(8)线段的性质:两点的所有连线中,线段最短.(两点之间,线段最短)(9)距离:连接两点间的线段的长度,叫做这两点的距离.2.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图.6.3角1.角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.或:角也可以看成是一条射线绕着它的端点旋转而成的.2.平角和周角(1)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角.(2)周角:终边继续旋转,当它又和始边重合时,所形成的角.3.角的表示(1)用数字表示单独的角,如∠1,∠2,∠3等.(2)用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.(3)用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.(4)用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.4.角的度量单位及换算(60进制)(1)角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.(2)换算1°=60',1'=60”把1°的角60等分,每一份叫做1分的角,1分记作“1'”.把1'的角60等分,每一份叫做1秒的角,1秒记作“1''”.5.角的分类6.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.余角和补角(1)余角:两个角的和等于90度,这两个角互为余角.即其中每一个是另一个角的余角.(2)补角:两个角的和等于180度,这两个角互为补角.即其中一个是另一个角的补角.(3)补角的性质:等角的补角相等.(4)余角的性质:等角的余角相等.。
人教版初中数学七年级上册第一章 正数和负数
C.﹣3m
D.﹣2m
4.如果温度上升10℃记作+10℃,那么温度下降5℃记作
( D )
A.+10℃
B.﹣10℃ C.+5℃
D.﹣5℃
课堂检测
1.1 正数和负数/
能力提升题
某银行一天内接待了四笔大业务,存款40 000元,取款25 000
元,存款30万元,取款7万元.若存款为正,请你用正、负数
表示这四笔款项.
1. 了解正数与负数是从实际需要中产生的.
探究新知
1.1 正数和负数/
知识点 1
正数、负数的定义
观察下列图片,体会数的产生和发展过程.
结绳计数
由表示“没
由分物、测量,
由记数、排序,
有”“空位”,
产生 , …
产生数1,2,3…
产生数0.
?
探究新知
1.1 正数和负数/
【思考】根据实际生活的需要,人们引进了另一种数,你知道
课堂检测
1.1 正数和负数/
2.下列各对关系中,不具有相反意义的量的是( D )
A.运进货物3吨与运出货物2吨
B.升温3℃与降温3℃
C.增加货物100吨与减少货物2000吨
D.胜3局与亏本400元
课堂检测
1.1 正数和负数/
3.如果向东走2m记为+2m,则向西走3m可记为( C )
A.+3m
B.+2m
例2(2)某年下列国家的商品进出口总额比上年的变化情
况是:
美国减少6.4%, 德国增长1.3%,
法国减少2.4%, 英国减少3.5%,
意大利增长0.2%,中国增长7.5%.
【最新】人教版七年级数学上册第一节正数和负数含答案.doc
第一节正数和负数一、教学内容:1、了解正数和负数是怎样产生的,什么是相反意义的量;2、知道什么是正数和负数;3、理解数0表示的量的意义;4、有理数的概念及分类.二. 知识要点:1、负数产生的原因:(1)生活和生产的需要,对实际生活中出现的相反意义的量,如卖出与买入、盈利与亏损、上升与下降、增加与减少、前进与后退等,无法用自然数表示,为了解决这些问题人们引进了负数;(2)数学本身的需要,如对较小的数减去较大的数的问题的解决,需要引进负数.2、像3,2,1.8%这样大于0的数叫做正数;3、像-3,-2,-2.7%这样在正数前面加上负号“-”的数叫做负数.4、数0既不是正数,也不是负数;5、正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数.6、有理数也可以这样:有理数注:掌握分类的标准是关键,不同的标准就有不同的分法.三. 重点难点1、重点:①正数、负数、有理数的概念;②数0表示的量的意义;③有理数的分类.2、难点:体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法.【考点分析】数是数学知识的基础,也是其他学科的工具,在近年来各地的中考试题中经常出现.全国大多数省市中考试题对数的概念单独命题,试题难度为低、中档次,题量约占总量的1%,题型以填空题、选择题居多.【典型例题】例1 用正数和负数表示下列具有相反意义的量.(1)温度上升3℃和下降5℃;(2)盈利5万元和亏损8千元;(3)向东10米和向西6米;(4)运进50箱和运出100箱.分析:本题中的上升和下降,盈利和亏损,向东和向西,运进和运出都是相反意义的量,如果我们规定上升、盈利、向东、运进为正,那么下降、亏损、向西、运出就为负.解:(1)+3℃,-5℃(2)+5万元,-8千元(3)+10米,-6米(4)+50箱,-100箱评析:用正负数表示相反意义的量,并不是固定不变的.我们只是习惯把向东、上升、盈利、增加、收入规定为正,把其相反意义的量规定为负.通过本题同学们要体会数学符号与对应的思想,学会用正、负数表示具有相反意义的量的符号化方法.例2 下列各数哪些是正数,哪些是负数?分析:首先确定我们熟悉的大于0的数,即正数,然后再观察带有“-”号的数,看“-”号后的部分是否大于0,因为“正数的前面加上负号便是负数”.特别注意:0不是正数,也不是负数.解:正数有:负数有:评析:分类要做到“不重复,不遗漏”.例3 给出一对数+2和-3,请赋予它们实际的意义.分析:此题为开放题,考查相反意义的量在实际生活中的作用,解题的关键是给“+”和“-”赋予生活中一组相反的意义,例如:收入和支出,前进和后退等.解:+2表示收入2元,-3表示支出3元+2表示前进2米,-3表示后退3米等.评析:对于两种具有相反意义的量,究竟哪一种意义的量为正的,哪一种意义的量为负的,并不是固定的,而是在实际的生活和生产中人们根据实际情况的要求人为规定的.例4 (2007年武汉)下表是我国几个城市某年一月份的平均气温.城市北京武汉广州哈尔滨平均气温(单位:℃)-4.6 3.8 13.1 -19.4 其中气温最低的城市是()A、北京B、武汉C、广州D、哈尔滨分析:根据生活经验和正、负数的意义我们知道,表示零下的负数温度比正数温度低,负数温度中负号后面的数值越大温度越低.显然,气温最低的城市是哈尔滨.解:D评析:这四个城市平均气温从高到低的顺序是:广州→武汉→北京→哈尔滨,它们对应的温度顺序是:13.1℃>3.8℃>-4.6℃>-19.4℃.通过本题同学们要初步理解这种将实际问题转化为数学问题的方法.思考:从这四个有理数的大小关系中你可以得出哪些结论?例 5 如图所示,某化肥厂生产的颗粒磷肥外包装袋上标有净重:50±0.5kg,请你说说这是什么意思?分析:本题考查正、负数表示量的实际意义,以标准重量为基准:+0.5kg表示多出0.5kg,-0.5kg 表示少0.5kg,这都属于正常范围,因为实际生活中不能做到绝对准确的50kg,只能尽量减小误差.解:50±0.5kg表示这袋化肥的净重可能比50kg多,但不会超过50+0.5=50.5kg,可能比50kg 少,但不会少于50-0.5=49.5kg.评析:在生产中,产品可能与标准规格有差异,也就是会产生误差.但误差不能太大,产品可略有不足或略有超出,即误差应在一个允许的范围内.不足用负数表示,超出用正数表示,这个范围就可以用正负数表示出来了.例6 下列说法正确的是()A、整数、分数和负数统称为有理数B、有理数包括正数和负数C、正整数都是整数、整数都是正整数D、0是整数,也是自然数分析:A分类时有重复,应改为整数和分数统称有理数,B有遗漏,应改为有理数包括:正有理数、0、负有理数.在C中正整数和整数在有理数系中属不同的等级,不是两个相同的概念,应改为:正整数都是整数,但整数不是正整数.只有D是正确的.解:D评析:数的范围扩大到有理数后,注意数的分类方法,特别是0的归属.0既不是正数,也不是负数;整数包括正整数、0、负整数,所以0是整数,当然也是有理数.【方法总结】通过本节的学习我们要掌握整数、分数、正数、负数、有理数的区分方法,体会符号化在数学问题中的重大意义,理解把实际问题转化为数学问题来解决的转化思想.【模拟试题】(答题时间:50分钟)一、选择题1、有五个数为其中正数的个数是()A、1个B、2个C、3个D、4个2、2008年12月某日我国部分城市的平均气温情况如下表(记温度零上为正,单位:℃),则其中当天平均气温最低的城市是()城市温州上海北京哈尔滨广州平均气温6 0-9-15 15A、广州B、哈尔滨C、北京D、上海3、正整数集合和负整数集合合在一起,构成数的集合是()A、整数集合B、有理数集合C、自然数集合D、非零整数集合4、规定正常水位为0m,高于正常水位0.5m时,记作+0.5米,下列说法错误的是()A、高于正常水位 1.5m记作+1.5mB、低于正常水位 1.5m记作-1.5mC、-1m表示比正常水位低1mD、+2m表示比正常水位低2m5、如果收入200元记作+200元,那么支出150元记作()A、+150元B、-150元C、+50元D、-50元6、文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20m处,玩具店位于书店东边100m处,小明从书店沿街向东走了40m,接着又向东走了-60m,此时小明的位置在()A、文具店B、玩具店C、文具店西边20mD、玩具店东边-60m7、下面是关于有理数的叙述:①有理数分为正有理数和负有理数两部分;②有理数分为整数和分数两部分;③有理数分为正数、负数和零三部分;④有理数分为正分数、负分数、正整数、负整数和零五部分;⑤有理数分为正整数、负整数和零三部分.其中正确的有()A、1个B、2个C、3个D、4个8、一天早晨的气温是-7℃,中午的气温比早晨上升了11℃,中午的气温是()A、11℃B、4℃C、18℃D、-11℃二、填空题9、如果把顺时针转60°记作+60°,那么逆时针转30°记作__________.10、在电视上看到的天气预报中,绵阳王朗国家级自然保护区某天的气温为“-5℃”,表示的意思是__________.11、孔子诞生在公元前551年9月28日,则2007年9月28日是孔子诞辰__________周年.(注:不存在公元0年)12、把下列各数分别填入相应的括号:(1)整数集:{…};(2)正整数集:{…};(3)负整数集:{…};(4)分数集:{…};(5)正分数集:{…};(6)负分数集:{…};(7)有理数集:{…};(8)正有理数集:{…};(9)负有理数集:{…};13、工商部门抽查了一些500g包装的白糖,检查的记录如下:10,-15,13,-20,-18,15,-31,24,-25,-5,-14,-9.你估计这里的正、负数表示什么?从这些数据中,你能获得哪些信息?14、用正、负数表示下面各组具有相反意义的量,并指出它们的分界点.(1)零上10℃与零下5℃;(2)高出海平面100m与低于海平面200m;(3)收入8元,支出6元.15、观察下列各数,找出规律后填空:(1)-1,2,-4,8,-16,32,……,第10个数是__________.(2)1,-3,5,-7,…,第15个数是__________.(3)1,-4,7,-10,13,…,第100个数是__________.【试题答案】1、B2、B3、D4、D5、B6、A7、B8、B二、填空题9、-30°10、零下5摄氏度11、255712、(1)整数集:{20,-3,0,-1,+5…};(2)正整数集:{20,+5…};(3)负整数集:{-3,-1…};(4)分数集:(5)正分数集:{4.5,3.14…};(6)负分数集:(7)有理数集:(8)正有理数集:{20,4.5,3.14,+5…};(9)负有理数集:三、解答题13、正数表示包装超过500g,负数表示包装少于500g.一共抽查了12包白糖,其中不足500g的有8包,超过500g的只有4包,不足秤的约占67%,且个别不足秤的达到31g,是严重的短斤少两现象.14、(1)+10℃,-5℃,它们的分界点是0℃(2)+100m,-200m,分界点是海平面,用0表示(3)+8元,-6元,它们的分界点是不收入也不支出,用0表示.15、(1)512(2)29(3)-298。
人教版七年级数学上册正数和负数
落3m时水位变化记作
m,水位不升不降时水位变
化就记作Imagem。
4 、 月 球 表 面 的 白 天 平 均 温 度 零 上 126℃ , 记 作
℃。夜间平均温度为零下150℃,记作
℃。
5.把数学成绩80分记作+10分,那么数学成绩70 分记作————分,若甲的成绩记作-8分,则他的 实际成绩为————
6、某机器零件的长度设计为100mm,加工图
纸标注的尺寸为100 0.5(mm),这里的 0.5代
表什么意思?合格产品的长度范围是多少 ?
中国古代用算筹来表示数
数学小史
中国是世界上最早使用负数的国家,比 欧洲国家早1000多年,在古代商业活动中, 以收入为正,支出为负,盈余为正,亏欠为 负,在古代农业生产活动中,以增长为正, 减产为负。负数产生的另一个重要原因是由 于解方程的需要,在我国古代数学名著《九 章数学》中一书记载,由于解方程常常需要 小数减大数的情况,为了使方程能够解下去, 数学家发明了负数!
像-3、-2、-0.5这样在正数前面加上负号 “-” 的数叫做负数。
0是正数还是负数?
由上面的几个例子可以看出我们常用正数和负数
表示日常生活中具有相反意义量: 如零上为正,那零下就为负;胜为正,那输就为负;大
于为正,那小于就为负…...
例.填空:
1、如果将收入8元计为+8元,则支出6元应计为
元。
……0只是一个基准,它具有丰富的意义,不是 简简单单的只表示没有.
练一练:
1、读下列各数,并指出其中哪些是正数,哪些是负数。
-1,2.5,+ ,0,3.14,120,-1.732,- 5 。
7
2、如果80m表示向东行走80m,那么-60m表示
最新人教版七年级数学上册第一章《正数和负数》基础知识
1.1 正数和负数1.正数和负数(1)正数的概念 小学学过的数除零以外,都是大于0的数,这样的数叫做正数.如:3,0.25,+34,….正数前面加“+”(正)号,有时根据需要“+”可以省略不写.(2)负数的概念在正数的前面加上符号“-”(负)的数叫做负数.如:-5,-0.25,-237,….注意:负数前面的“-”(负)号不能省略.(3)一个数前面的“+”“-”号叫做它的符号.破疑点 对正数和负数的理解 要特别注意:“大于0”是正数的本质,当用字母表示数时,不能只看带不带“+”号,不要误认为“a ”前面是正号就是正数,也不要以为“-a ”前面带有“-”号就是负数,关键是看这个数是不是大于0.【例1】 下面哪些是正数,哪些是负数?-11,4.8,+73,-2.7,16,-34,-8.12,100. 分析:像4.8,+73,16,100等比0大的数是正数. 像-11,-2.7,-34,-8.12等在正数前面带有负号的数是负数. 解:正数是:4.8,+73,16,100; 负数是:-11,-2.7,-34,-8.12. 2.零的性质(1)零既不是正数也不是负数,是介于正数和负数之间的唯一中性数,零是正、负数的分界.(2)零是自然数,是整数,是偶数.(3)0的意义在计数时表示“没有”.(4)零是表示具有相反意义量的基准数.(此时它不能表示没有.)例如:海拔0米的地方表示它与基准的海平面一样高,收支平衡可记作0元.【例2】 判断下列说法是否正确.(1)零是正数;( )(2)零是整数;( )(3)零是非负数;( )(4)零是偶数.( )解析:(1)零既不是正数,也不是负数,故不正确;(2)零是自然数,也是整数,故正确;(3)正数和零称为非负数,故正确;(4)4,2,0,-2,-4,……都是偶数,故正确. 答案:(1)× (2)√ (3)√ (4)√3.相反意义的量(1)含义:生产和生活中某件事情常常存在与其相反或相对的另一面,如:“向左”与“向右”、“增加”与“减少”等,当它们与数字、单位结合在一起时就构成相反意义的量.(2)应用方法:相反意义的量可用正数和负数表示.至于哪一种量为正,可以自由确定,当已知一个量用正数表示时,与其相反意义的量就用负数表示,反之亦然.习惯上把“前进、上升、零上温度、增加”等规定为正,而把“后退、下降、零下温度、减少”等规定为负.【例3-1】 (1)如果零上3 ℃记为+3 ℃,那么-7 ℃表示的意义是__________;(2)如果下降3米记为-3米,那么上升5米应记为__________;(3)如果前进5千米,记为+5千米,那么后退6千米应记为__________;(4)支出10元人民币记账为-10元,那么+20元表示的意义是__________;(5)某仓库运出货物20千克记为-20千克,那么运进35千克货物应记为__________.解析:(1)零上3 ℃规定为+3 ℃,即“+”号表示“零上”,那么与它相反意义的量“零下”就规定为“-”.(2)本小题的“-”号表示“下降”,因此,“上升”应记为“+”,也就是说,具有相反意义的两个量,把其中的一个规定为正时,那么另一个即为负.(3)~(5)小题类似.答案:(1)零下7 ℃;(2)+5米;(3)-6千米;(4)收入20元人民币;(5)+35千克.析规律相反意义的量的规定习惯题中的“零上、上升、前进、收入、运进、增产”表示的量均为正数,与它们意义相反的量则都用负数表示.【例3-2】用正负数表示下列相反意义的量.(1)存入银行100元,从银行取出200元;(2)高出海平面500米,低于海平面200米;(3)超出正常体重5 kg,不足正常体重3 kg;(4)汽车向左行驶20千米,向右行驶300千米.分析:可人为规定相反意义量的一方为正,则另一方为负.如可规定“存入、高出海平面、超出正常体重、汽车向左行驶”为正,则“取出、低于海平面、不足正常体重、向右行驶”即为负.解:(1)存入银行100元记为+100元,则从银行取出200元记为-200元;(2)高出海平面500米,记为+500米,则低于海平面200米可记为-200米;(3)超出正常体重5 kg,记为+5 kg,则不足正常体重3 kg可记为-3 kg;(4)汽车向左行驶20千米,记为+20千米,则向右行驶300千米记为-300千米.4.运用正负数表示相反意义的量在实际生活中,常常把零上的温度、上升的高度、收入、买入物品等规定为正的,而把与它们相反意义的量规定为负,用负数表示.引入负数后,“0”不再仅仅表示没有,而是正数和负数的分界线,具有初始位置的意义.(1)相反意义的量基准明确就是说变化过程方向明确,数量明确,不受其他数的影响,也不用关心起始点,此类问题只要规定好一个方面为正,则另一个方面为负就可以.警误区相反意义的量的理解相反意义的量并不唯一,如:增加5千克与减少10千克和减少3千克都是相反意义的量.(2)相反意义的量基准不明确有些数据型的量,起点不是以0开始,需要把某一个数值视为基准点0,如平均数等.,【例4-1】小王骑车向东走了10千米,又向西走了5千米.怎样用正负数表示?分析:有两种表示方法,分向东或向西为正两种情况.解:若规定向东为正,则小王骑车向东走了10千米,表示为+10千米,向西走了5千米,可表示为-5千米.若规定向西为正,则小王骑车向东走了10千米,表示为-10千米,向西走了5千米,可表示为+5千米.【例4-2】如图,小王骑车从0点向东走了10千米到A点,接着又向西走了5千米到B点,规定向东为正,用正负数表示A,B两点.分析:从0开始,小王向东走了10千米,规定向东为正,则A点表示为+10;小王又向西走了5千米后,与0点的距离为5千米,且在0点东侧,于是B点表示+5.解:A点表示+10,B点表示+5.【例4-3】某项科学研究,以45分钟为一个时间单位,规定9:15记为-1,10:45记为1,则上午7:45应该怎样记?分析:关键是找到10时为基准点0.因为7:45到10时共有3个45分钟,故7:45记为-3.解:7:45应记为-3.5.正、负数的判断在正数的前面加上“+”号,以强调它是正数,如正数3写作+3,通常“+”号省略不写;负数前面的“-”号不能省略,如负数5写作-5.正数和负数是相对而言的,取决于作为基准的量,但一般情况下,人们习惯上这样来规定正数和负数:收入为正,支出为负;零上为正,零下为负;高出海平面为正,低于海平面为负.判断一个数是否是负数,关键是看是否正数前面带有“-”号,而不是看它是否有“-”号.例如:-(-3)就不是负数.警误区 正负数的有关名称 顾名思义,非负数表示不是负数的数,就是0或正数,同样非正数表示不是正数的数,虽然0既不是正数,也不是负数,但属于非负数或非正数.【例5-1】 指出下列各数中,哪些是正数,哪些是负数.-2,+213,0,315,204,-0.02,+3.65,-517. 分析:根据正数和负数的意义来判断.还要特别注意0既不是正数也不是负数.解:+213,315,204,+3.65是正数; -2,-0.02,-517是负数. 解技巧 负数的判定 认为凡是不带“-”号的数都是正数是错误的,“一个数不是正数就是负数”这是初学正负数概念时容易出现错误的地方.只有在正数的前面添上“-”号才是负数.【例5-2】 判断下列说法是否正确.(1)任意一个正数,前面加上“-”号,就是一个负数.(2)大于零的数都是正数.(3)字母a 既是正数,又是负数.分析:(1)负数就是正数前面加上负号的数,故正确;(2)正数都是大于0的数,故正确;(3)字母既可以表示正数也可以表示负数,它是个未知数,故错误.解:(1)对;(2)对;(3)错.6.正负数计算时差的应用在地理学中,经常用正数和负数来计算比较一个城市时间的早和晚.通常是把某一城市定为标准时间0,比它早的为正,比它晚的为负.解技巧 时间转换 时间转换时要注意每昼夜是24小时.【例6】 下面是几个城市与北京的时差,纽约:-13,巴黎:-7,东京:+1.如果北京现在是早上7:00,那么纽约、巴黎、东京分别是几时?分析:关键:负数表示比北京晚的时间数.解:纽约:-13表示比北京晚13小时,当北京是早上7:00时,纽约是前一天的18:00;巴黎比北京晚7小时,现在正好是前一天的24:00.东京比北京早1小时,现在是早上8:00.7.正负数在股票交易中的应用日常生活中水位的变化,股市行情变化,温度升降等都可以用正数和负数表示,不仅能表示出变化的方向,而且还能表示出变化幅度的大小.例如:在股市上,上涨记为“+”,下跌记为“-”,不涨不跌记为“0”.【例7】 王先生上周五买进某种股票3 000股,每股16元,下表为本周五个交易日的涨跌情况(分析:根据股票交易表示法,正数表示上涨,负数表示下跌.解:周一、周二、周五这三天是上涨的,周三、周四是下跌的.8.正负数在产品检测中的应用某一产品质量是否合格,都有一定的指标数值,而实际生产的产品,可能在这一标准上下波动,波动值在规定的范围内称为合格,超出了规定值,则不合格.一般把产品的标准值记为0,在标准值以上的记为正,以下的记为负.解技巧正负数的应用技巧抓住标准数,标准以上记为“+”,标准以下记为“-”,即比标准数量多多少记为“+”的多少,少多少记为“-”的多少.【例8】某品牌奶粉标准质量454克.超出2克的记为+2克,若低于标准质量3克以(2)质量最大的是哪袋?实际质量是多少?(3)质量最小的是哪袋,实际质量是多少?分析:是在基准数基础上的波动,所以在基准数基础上加减.解:(1)有3袋不合格,分别是第4袋、第6袋、第9袋.(2)质量最大的是第7,8袋,实际质量均是454+4=458(克);(3)质量最小的是第6,9袋,实际质量均为454-5=449(克).9.用正负数表示误差范围生产中,虽然对产品的尺寸、质量等都设计了标准规格,但是,一般在实际加工中,每个产品不可能都做得与标准规格完全一样,通常在某个范围内,只要不影响使用,产品比标准规格稍大一点,或稍小一点,都属于合格品,而超出这个范围的产品就是不合格的了.在生产和检验产品时,通常在生产图纸上,对每个产品的合格范围有明确的规定.例如,图纸上注明一个零件的直径是(30±0.03)mm,这样标注表示零件直径的标准尺寸是30 mm,实际产品的直径最大可以是(30+0.03)mm,最小可以是(30-0.02)mm,在这个范围内的产品都是合格的,这里给出了允许误差的大小.允许误差一般用正负数的形式写出.【例9-1】某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1) kg、(25±0.2) kg、(25±0.3) kg的字样,从中任意取出两袋,它们的质量最多相差().A.0.8 kg B.0.6 kg C.0.5 kg D.0.4 kg解析:从条件中可以看出,在三袋面粉中,最多可以超出标准质量0.3 kg,最低可以低于标准质量0.3 kg,所以从中任意取出两袋,它们的质量最多相差0.6 kg.要正确地解答本题,不仅要知道面粉袋上标有质量为(25±m) kg的意义,还要考虑到两袋面粉如何搭配才能使差值最大,显然考虑到最大的可能与最小的可能的差值.答案:B【例9-2】工厂要加工一种轴,直径在299.5 mm到300.2 mm之间的产品都是合格的,生产图纸通常用Φ300+0.2-0.5表示直径的长度,+0.2表示最大可比300 mm多0.2 mm,-0.5表示最小可比300 mm少0.5 mm,加工一根轴,图上标明的加工要求是Φ450+0.03-0.04,则下列零件合格的是().A.448 mm B.449 mmC.450.01 mm D.451.0 mm答案:C10.用正负数探索数列研究数字的排列规律,要从两方面入手,一是要观察符号的排列规律;二是数字本身与序号及其他数字之间的顺序关系.析规律正负数的表示规律解决这类题目要充分考查所给数据,关键在于抓住序号与对应数字之间的规律,找出能准确反映变化规律的关系,由特殊到一般,并注意验证.【例10】观察下列按次序排成的一列数,你能发现它的排列有什么规律?它后面的三个数是什么数?试把它写出来.(1)2,-4,6,-8,10,-12,__________,__________,__________.(2)-2 004,-2 002,-2 000,__________,__________,__________.解析:(1)序号为奇数的数为正数,序号为偶数的数为负数,且它们与序号的关系依次为2×1,2×2,2×3,2×4,…,以此规律,后面的三个数分别为14,-16,18;(2)都为负数,且后面的数都比前面的数大2,以此规律,后面的三个数分别为-1 998,-1 996,-1 994.答案:14-1618-1 998-1 996-1 994。
人教版七年级数学上册:1.1《正数和负数》教案4
人教版七年级数学上册:1.1《正数和负数》教案4一. 教材分析《正数和负数》是人教版七年级数学上册的第一单元,主要介绍正数和负数的概念,以及它们的性质。
这一单元为学生以后学习代数、几何等数学知识打下基础。
在教材中,通过丰富的实例和生活中的问题,引导学生认识正数和负数,理解它们的相对性,以及掌握它们的运算规则。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数的概念有了一定的了解。
但正数和负数作为新的数学概念,对学生来说还比较抽象,需要通过具体的生活实例来帮助他们理解和接受。
此外,学生可能对负数在实际生活中的意义和应用还不够明确,需要在教学中加以引导和拓展。
三. 教学目标1.知识与技能:使学生掌握正数和负数的概念,理解它们的性质和运算规则;2.过程与方法:通过实例和问题,培养学生的观察、分析和解决问题的能力;3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.重点:正数和负数的概念,性质和运算规则;2.难点:负数在实际生活中的意义和应用。
五. 教学方法采用情境教学法、实例教学法和小组合作学习法。
通过生活实例引入正数和负数的概念,引导学生观察、分析和解决问题,培养学生的动手操作能力和合作意识。
六. 教学准备1.教具:黑板、粉笔、多媒体教学设备;2.学具:练习本、铅笔、橡皮;3.教学素材:正数和负数的实例、问题。
七. 教学过程1.导入(5分钟)通过展示生活中的一些实例,如温度、海拔、贷款等,引导学生认识正数和负数。
向学生解释,正数表示一种量,而负数表示与这种量相反的另一种量。
2.呈现(10分钟)向学生介绍正数和负数的概念,以及它们的性质。
举例说明,正数是大于0的数,负数是小于0的数。
引导学生观察和分析正数和负数的性质,如它们的相对性、运算规则等。
3.操练(10分钟)让学生进行一些简单的正数和负数的运算练习,如加减乘除、比较大小的。
在练习过程中,引导学生掌握正数和负数的运算规则,并能够灵活运用。
最新人教版七年级上册数学知识点总结归纳
最新人教版七年级上册数学知识点总结归纳1.正数和负数的概念负数是比0更小的数,正数是比0更大的数。
如果a表示正数,那么-a就是负数;如果a表示负数,那么-a就是正数。
同时,0既不是正数也不是负数,而且无论a是什么,-a仍为0.2.具有相反意义的量如果正数表示某种含义的量,那么负数就可以表示具有相反含义的量。
例如,零上8℃可以表示为+8℃,而零下8℃可以表示为-8℃。
3.0表示的意义0既可以表示“没有”,也可以表示一个确切的量,例如温度的零点。
同时,0也是正数和负数的分界线。
4.有理数的概念有理数指的是可以写成分数形式的数,包括正整数、负整数、正分数、负分数和0.无限不循环小数如π不是有理数,而有限小数和无限循环小数都可以化成分数,因此是有理数。
5.有理数的分类按照有理数的意义可以分为整数和分数,按照正负可以分为正有理数、负有理数和0.其中,正整数和0统称为非负整数,负整数和0统称为非正整数,正有理数和0统称为非负有理数,负有理数和0统称为非正有理数。
6.数轴的概念数轴是一条向两端无限延伸的直线,规定了原点、正方向和单位长度。
7.数轴上的点与有理数的关系所有的有理数都可以用数轴上的点来表示,正有理数表示为原点右边的点,负有理数表示为原点左边的点,0表示为原点。
同时,数轴的三要素包括原点、正方向和单位长度,必须同时存在。
一般地,如果a≥0,那么|a|=a;如果a<0,那么|a|=-a.3.绝对值的性质⑴|a|≥0,且|a|=0的充分必要条件是a=0;⑵|ab|=|a||b|,其中a,b是任意有理数;⑶|a+b|≤|a|+|b|,其中a,b是任意有理数,等号成立的充分必要条件是a,b同号或其中至少一个数为0.4.绝对值的意义绝对值表示一个数到原点的距离,因此绝对值越小,这个数离原点越近;绝对值越大,这个数离原点越远.绝对值还可以表示一个数的大小,而不考虑它的符号.1.绝对值的定义和表示方法一个数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,可以用符号表示:如果a>0,则|a|=a;如果a<0,则|a|=-a;如果a=0,则|a|=0.可以归纳为两个式子:a≥0,等价于|a|=a;a≤0,等价于|a|=-a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 有理数
知识回顾
问题一:我们在小学学过哪些数?你能按 照某一标准将它们分类?
随着社会的发展,小学学过的自然数、分数和小 数已不能满足实际的需要 。
数的产生和发展离不开生活和生产的需要
第一课时
问题背景
1、天气预报2005年3月某天北京的温度为-3~3℃,它 的确切含义是什么?这一天北京的温差是多少?
• 读下列各数,并指出其中哪些是正 数,哪些是负数。
4 -1,2.5,+ ,0,-3.14,120,-1.732, 3
2 - . 7
思考
• “不是正数的数一定是负数,不是负数的 数一定是正数”的说法对吗?
用正负数表示相反 意义的量
1.如果80m表示向东走80m,那么-60m表 示 向西走60m 。 2.如果水位升高3m时水位变化记作+3m,那 么水位下降3m时的水位变化记作 - 3 m。 3.月球表面的白天平均温度是零上126℃, 记作 +126 ℃,夜间平均温度是零下150℃, 记作 - 150 ℃。
0只表示没有吗?
• • • • • • 1.空罐中的金币数量; 2.温度中的0℃; 3.海平面的高度; 4.标准水位; 5.身高比较的基准; 6.正数和负数的界点; ……引入正负数后,0不再简简单单的只表示没有. 它具有丰富的意义,是正负数的基准。
观察下图,试着说明它们的海拔高度.
0
珠穆朗玛峰的海拔高度为8848米,鲁番盆地的 海拔高度为-155米.
-3 ~ 3 ℃
探究一
上海今天的气温是8℃
北京今天最低气温是零下3℃, 最高气温是6℃, 沈阳今天的最高气温是零下6℃,
吉林今天最低气温是零下12℃
探究三
0°C以上的温度用正数表示, 0°C以下的温度用负数表示。
+12°C +8°C +6°C -6°C -8°C -12°C 正数都大于0,负数都小于0。 0既不是正数也不是负数。
探究活动
1、东、西为两个相反方向,如果 - 4米表示一个物体向西运动 4米,那么+2米表示什么?物体原 地不动记为什么? 2、若将28计为0,则可将27计 为-1,试猜想若将27计为0,28 应计为 。
探索
思考
例2:2001年下列国家的商品进出口总额比上一年的变 化情况是:美国减少6.4%, 德国增长1.3%, 法国减少2.4%, 英国减少3.5%, 意大利增长0.2%, 中国增长7.5%. 写出这些国家2001年商品进出口总额的增长率.
解:六个国家2001年商品进出口额的增长率 : 美国 -6.4%, 德国 1.3%, 法国 -2.4%, 英国-3.5%, 意大利 +0.2%, 中国 +7.5%.
“负”与“正”相对 ,增长-1就是减少1 ;增长-6.4%,是 什么意%
没有增加又 没有减少的 情况下增长 率为0
• 观察下列排列的每一列数,研究它的排 列有什么规律?并填出空格上的数. (1)1,-2,1,-2,1,-2, , , ,… (2)-2,4,-6,8,-10, , , ,… (3)1,0,-1,1,0,-1, , , ,…
在同一个问题中,分别用正数与负数表示的量 相反 的意义. 具有_____