河北省鸡泽县一中2017-2018学年高二下学期期中联考数学(理)答案

合集下载

河北省鸡泽县第一中学2017_2018学年高二数学下学期期末考试试题理201806070323

河北省鸡泽县第一中学2017_2018学年高二数学下学期期末考试试题理201806070323

2017~2018年度第二学期期末考试试题高二数学(理)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,{}10A x x =+<,集合{}2|log 1B x x =<,则集合()U A B =I ð( ) A .[1,2]- B .(0,2) C .[1,)-+∞ D .[1,1)-2.2018年1月我市某校高三年级1600名学生参加了2018届全市高三期末联考,已知数学考试成绩()2100,X N σ~(试卷满分150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的34,则此次期末联考中成绩不低于120分的学生人数约为 A. 120 B. 160 C. 200 D. 2403.已知具有线性相关的变量,x y ,设其样本点为()(),1,2,,8i i i A x y i =,回归直线方程为1ˆ2yx a =+,若()1286,2OA OA OA +++=,(O 为原点),则a = ( ) A .18 B .18- C .14 D .14-4.设0a >且1a ≠,则“log 1a b >”是“b a >”的( )A.必要不充分条件B.充要条件C.既不充分也不必要条件D.充分不必要条件5、已知11717a =,16log b =17log c =,则a ,b ,c 的大小关系为( ) A .a b c >> B .a c b >> C .b a c >> D .c b a >> 6.从5种主料中选2种,8种辅料中选3种来烹饪一道菜,烹饪方式有5种,那么最多可以烹饪出不同的菜的种数为A .18B . 200C . 2800D . 336007、已知函数f (x )=x 3-ax -1,若f (x )在(-1,1)上单调递减,则a 的取值范围为( )A .a ≥3B .a >3C .a ≤3D .a <38. 甲乙等4人参加4100⨯米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是( ) A .29 B .49 C .23 D .799.已知()f x 是定义在[2,1]b b -+上的偶函数,且在[2,0]b -上为增函数,则(1)(2)f x f x -≤的解集为( )A .2[1,]3-B .1[1,]3-C .[1,1]-D .1[,1]310.若点P 是曲线232ln 2y x x =-上任意一点,则点P 到直线52y x =-的距离的最小值为( )11、函数y =2x 2–e |x |在[–2,2]的图像大致为( )(A )(B )(C )(D )12、定义在R 上的函数)(x f 的导函数为)('x f ,若对任意实数x ,有)()('x f x f >,且2018)(+x f 为奇函数,则不等式02018)(<+x e x f 的解集为A )0,(-∞B ),0(+∞C )1,(e -∞ D ),1(+∞e二、填空题(本大题共4小题,每小题5分,共20分)13、已知命题:p R x ∀∈,cos 1x >,则p ⌝是14、设()cos sin a x x dx π=-⎰,则二项式6⎛ ⎝的展开式中含2x 项的系数为__________.15、已知函数f (x )是定义在R 上的偶函数,若对于x ≥0,都有f (x+2)=﹣,且当x ∈[0,2]时,f (x )=log 2(x+1),则f (﹣2013)+f (2015)= . 16、函数⎩⎨⎧-∈-+∞∈-=]1,1[|,|1),1(),2(2)(x x x x f x f ,若关于x 的方程)10(0log )()1(≠>=-+且a x f x a 在区间]5,0[内恰有5个不同的根,则实数a 的取值范围是__________.三、解答题(本大题共6小题,共70分,应出写文字说明或演算步骤)17、(满分10分)设命题p :实数x 满足,03422<+-a ax x 其中0>a ;命题q :实数x 满足13≤-x(1)若1=a ,且q p ∧为真,求实数x 的取值范围; (2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围。

2017-2018学年高二下学期期中数学试卷(理科)Word版含解析

2017-2018学年高二下学期期中数学试卷(理科)Word版含解析

2017-2018学年高二下学期期中数学试卷(理科)一、选择题(每小题5分,共60分)1.复数z 1=(m 2﹣2m+3)+(m 2﹣m+2)i (m ∈R ),z 2=6+8i ,则m=3是z 1=z 2的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.用反证法证明命题:“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除3.定积分(x 2+sinx )dx 的值为( )A .+ B .﹣ C .﹣ D .+4.若复数z=(a ∈R ,i 是虚数单位)是纯虚数,则复数z 的共轭复数是( )A . iB .﹣ iC .3iD .﹣3i5.求曲线y 2=4x 与直线y=x 所围成的图形绕x 轴旋转一周所得旋转体的体积( )A .B .π C .π D .24π6.若复数z 满足|z+3+i|=,则|z|的最大值为( )A .3+B .+C .+D .37.已知=( )A . f′(x 0)B .f′(x 0)C .2f′(x 0)D .﹣f′(x 0)8.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如表.例如,用十六进制表示E+D=1B ,则A ×C=( )A.6E B.78 C.5F D.C09.利用数学归纳法证明不等式+++…+>时,由k递推到k+1时,不等式左边应添加的式子是()A.B. +C.﹣D. +﹣10.设函数f(x)=x3+x2+,其中θ∈(﹣,),则导数f′(1)的取值范围是()A.(﹣,1] B.(﹣,1)C.(﹣,) D.(﹣,]11.函数f(x)是定义在R上的偶函数,且 f(2)=0,当x>0时,有xf′(x)﹣f(x)>0恒成立,则不等式f(x)<0的解集为()A.(﹣∞,﹣2)∪(2,+∞) B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(0,2)D.(﹣2,0)∪(2,+∞)12.若函数f(x)的导函数f′(x)=x2﹣3x﹣10,则函数f(1﹣x)的单调递增区间是()A.(,+∞)B.(﹣,+∞)C.(﹣4,3)D.(﹣∞,﹣4)和(3,+∞)二、填空题(每小题5分,共20分)13.计算: +(3+i17)﹣= .14.在Rt△ABC中,两直角边分别为a、b,设h为斜边上的高,则=+,由此类比:三棱锥S﹣ABC中的三条侧棱SA、SB、SC两两垂直,且长度分别为a、b、c,设棱锥底面ABC 上的高为h,则.15.过点(1,0)且与曲线y=相切的直线的方程为.16.已知函数f(x)=x3+ax2+bx,(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为3,则a的值为.三、解答题(17题10分,其它每题12分)17.已知复数z+i,均为实数,且在复平面内,(z+ai)2的对应点在第四象限内,求实数a的取值范围.18.设函数f(x)=﹣x2+6ax+b,其中a,b∈R.(1)若函数f(x)在x=1处取得极值﹣,求a,b的值;(2)求函数f(x)的单调递增区间.19.设数列{an }的前n项和为Sn,且关于x的方程x2﹣anx﹣an=0有一根为Sn﹣1.(1)求出S1,S2,S3;(2)猜想{Sn}的通项公式,并用数学归纳法证明.20.设铁路AB长为100,BC⊥AB,且BC=30,为将货物从A运往C,现在AB上距点B为x的点M处修一公路至C,已知单位距离的铁路运费为2,公路运费为4.(1)将总运费y表示为x的函数;(2)如何选点M才使总运费最小.21.在两个正数a,b之间插入一个数x,可使得a,x,b成等差数列,若插入两个数y,z,可使得a,y,z,b成等比数列,求证:x+1≥.22.设函数f(x)=ax2lnx﹣(x﹣1)(x>0),曲线y=f(x)在点(1,0)处的切线方程为y=0.(1)求证:当x≥1时,f(x)≥(x﹣1)2;(2)若当x≥1时,f(x)≥m(x﹣1)2恒成立,求实数m的取值范围.2017-2018学年高二下学期期中数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分)1.复数z1=(m2﹣2m+3)+(m2﹣m+2)i(m∈R),z2=6+8i,则m=3是z1=z2的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由z1=z2,可得:m2﹣2m+3=6,m2﹣m+2=8,解得m,即可判断出结论.【解答】解:由z1=z2,可得:m2﹣2m+3=6,m2﹣m+2=8,解得m=3.∴m=3是z1=z2的充要条件.故选:C.2.用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()A.a,b都能被3整除B.a,b都不能被3整除C.a,b不都能被3整除D.a不能被3整除【考点】R9:反证法与放缩法.【分析】“a,b中至少有一个能被3整除”的反面是:“a,b都不能被3整除”,故应假设 a,b都不能被3整除.【解答】解:反证法证明命题时,应假设命题的反面成立.“a,b中至少有一个能被3整除”的反面是:“a,b都不能被3整除”,故应假设 a,b都不能被3整除,故选 B.3.定积分(x2+sinx)dx的值为()A. +B.﹣C.﹣D. +【考点】67:定积分.【分析】根据定积分的运算,即可求得答案.【解答】解:(x2+sinx)dx=(x3﹣cosx)=(﹣)﹣(0﹣1)=+,(x2+sinx)dx=+,故选B.4.若复数z=(a∈R,i是虚数单位)是纯虚数,则复数z的共轭复数是()A. i B.﹣ i C.3i D.﹣3i【考点】A5:复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简z=,结合已知条件列出方程组,求解可得a的值,然后代入z=化简求出复数z,则复数z的共轭复数可求.【解答】解:∵z===是纯虚数,∴,解得a=6.∴z==.则复数z的共轭复数是:﹣3i.故选:D.5.求曲线y2=4x与直线y=x所围成的图形绕x轴旋转一周所得旋转体的体积()A.B.πC.πD.24π【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】利用定积分求体积.【解答】解:解方程组得x=4,y=4.∴几何体的体积V=π(4x﹣x2)dx=π•(2x2﹣)|=.故选B.6.若复数z满足|z+3+i|=,则|z|的最大值为()A.3+B. +C. +D.3【考点】A4:复数的代数表示法及其几何意义.【分析】由|z+3+i|=的几何意义,即复平面内的动点Z到定点P(﹣3,﹣1)的距离为画出图形,数形结合得答案.【解答】解:由|z+3+i|=的几何意义,复平面内的动点Z到定点P(﹣3,﹣1)的距离为,可作图象如图:∴|z|的最大值为|OP|+=.故选:B.7.已知=()A.f′(x0)B.f′(x)C.2f′(x)D.﹣f′(x)【考点】6F:极限及其运算.【分析】化简,根据极限的运算,即可求得答案.【解答】解:==+=2f′(x),),∴=2f′(x故选C.8.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如表.例如,用十六进制表示E+D=1B,则A×C=()A.6E B.78 C.5F D.C0【考点】EM:进位制.【分析】本题需先根据十进制求出A与C的乘积,再把结果转化成十六进制即可.【解答】解:∵A×C=10×12=120,∴根据16进制120可表示为78.故选:B.9.利用数学归纳法证明不等式+++…+>时,由k递推到k+1时,不等式左边应添加的式子是()A.B. +C.﹣D. +﹣【考点】RG:数学归纳法.【分析】只须求出当n=k时,左边的代数式,当n=k+1时,左边的代数式,相减可得结果.【解答】解:当n=k时,左边的代数式为,当n=k+1时,左边的代数式为,故用n=k+1时左边的代数式减去n=k时左边的代数式的结果为:,故选:D.10.设函数f(x)=x3+x2+,其中θ∈(﹣,),则导数f′(1)的取值范围是()A.(﹣,1] B.(﹣,1)C.(﹣,) D.(﹣,]【考点】63:导数的运算.【分析】求导,当x=1时,f′(1)=+=sin(θ+),由θ∈(﹣,),即可求得θ+∈(﹣,),根据正弦函数的性质,即可求得导数f′(1)的取值范围.【解答】解:f(x)=x3+x2+,f′(x)=x2+x,f′(1)=+=sin(θ+),由θ∈(﹣,),则θ+∈(﹣,),则sin(θ+)∈(﹣,1],∴导数f′(1)的取值范围(﹣,1],故选A.11.函数f(x)是定义在R上的偶函数,且 f(2)=0,当x>0时,有xf′(x)﹣f(x)>0恒成立,则不等式f(x)<0的解集为()A.(﹣∞,﹣2)∪(2,+∞) B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(0,2)D.(﹣2,0)∪(2,+∞)【考点】6A:函数的单调性与导数的关系.【分析】设g(x)=,根据函数的单调性和函数的奇偶性求出不等式的解集即可.【解答】解:设g(x)=,∴g′(x)=,∵当x>0时,有xf′(x)﹣f(x)>0恒成立,∴当x>0时,g′(x)>0∴g(x)在(0,+∞)递增,∵f(﹣x)=f(x),∴g(﹣x)==﹣g(x),∴g(x)是奇函数,∴g(x)在(﹣∞,0)递增,∵f(2)=0∴g(2)==0,当x>0时,f(x)<0等价于<0,∴g(x)<0=g(2),∴0<x<2,当x<0时,f(x)<0等价于>0,∴g(x)>0=g(﹣2),∴﹣2<x<0,不等式f(x)<0的解集为(﹣2,0)∪(0,2),故选:C.12.若函数f(x)的导函数f′(x)=x2﹣3x﹣10,则函数f(1﹣x)的单调递增区间是()A.(,+∞)B.(﹣,+∞)C.(﹣4,3)D.(﹣∞,﹣4)和(3,+∞)【考点】6B:利用导数研究函数的单调性.【分析】由f′(x)<0求出f(x)的减区间,利用对称性求得f(﹣x)的增区间,再由平移变换可得函数f(1﹣x)的单调递增区间.【解答】解:由f′(x)=x2﹣3x﹣10<0,得﹣2<x<5,∴函数f(x)的减区间为(﹣2,5),则函数y=f(﹣x)的增区间为(﹣5,2),而f(1﹣x)=f[﹣(x﹣1)]是把函数y=f(﹣x)向右平移1个单位得到的,∴函数f(1﹣x)的单调递增区间是(﹣4,3).故选:C.二、填空题(每小题5分,共20分)13.计算: +(3+i 17)﹣= 4+2i .【考点】A7:复数代数形式的混合运算. 【分析】利用复数的运算法则分别计算即可.【解答】解:原式=+(3+i )﹣=+3+i ﹣i 10=i+3+i+1 =4+2i ;故答案为:4+2i .14.在Rt △ABC 中,两直角边分别为a 、b ,设h 为斜边上的高,则=+,由此类比:三棱锥S ﹣ABC 中的三条侧棱SA 、SB 、SC 两两垂直,且长度分别为a 、b 、c ,设棱锥底面ABC上的高为h ,则+.【考点】F3:类比推理.【分析】立体几何中的类比推理主要是基本元素之间的类比:平面⇔空间,点⇔点或直线,直线⇔直线或平面,平面图形⇔平面图形或立体图形,故本题由平面上的直角三角形中的边与高的关系式类比立体中两两垂直的棱的三棱锥中边与高的关系即可. 【解答】解:∵PA 、PB 、PC 两两互相垂直,∴PA ⊥平面PBC . 设PD 在平面PBC 内部,且PD ⊥BC ,由已知有:PD=,h=PO=,∴,即.故答案为:.15.过点(1,0)且与曲线y=相切的直线的方程为 4x+y ﹣4=0 . 【考点】6H :利用导数研究曲线上某点切线方程.【分析】设出切点坐标,利用导数求出过切点的切线方程,再把已知点代入,求出切点横坐标,则切线方程可求.【解答】解:设切点为(),由y=,得y′=,∴,则切线方程为y﹣,把点(1,0)代入,可得,解得.∴切线方程为y﹣2=﹣4(x﹣),即4x+y﹣4=0.故答案为:4x+y﹣4=0.16.已知函数f(x)=x3+ax2+bx,(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为3,则a的值为.【考点】6G:定积分在求面积中的应用.【分析】题目中给出了函数图象与x轴围成的封闭图形的面积,所以我们可以从定积分着手,求出函数以及函数与x轴的交点,建立等式求解参数.【解答】解:由已知对方程求导,得:f′(x)=3x2+2ax+b.由题意直线y=0在原点处与函数图象相切,故f′(0)=0,代入方程可得b=0.故方程可以继续化简为:f(x)=x3+ax2=x2(x+a),令f(x)=0,可得x=0或者x=﹣a,可以得到图象与x轴交点为(0,0),(﹣a,0),由图得知a<0.故对﹣f(x)从0到﹣a求定积分即为所求面积,即:﹣a f(x)dx=3,﹣∫将 f(x)=x3+ax2代入得:﹣a(﹣x3﹣ax2)dx=3,∫求解,得a=﹣.故答案为:﹣.三、解答题(17题10分,其它每题12分)17.已知复数z+i,均为实数,且在复平面内,(z+ai)2的对应点在第四象限内,求实数a的取值范围.【考点】A4:复数的代数表示法及其几何意义;A5:复数代数形式的乘除运算.【分析】复数z+i,均为实数,可设z=x﹣i, =﹣i,可得﹣=0,z=﹣2﹣i.在复平面内,(z+ai)2=4﹣(a﹣1)2﹣4(a﹣1)i的对应点在第四象限内,可得4﹣(a ﹣1)2>0,﹣4(a﹣1)<0,解出即可得出.【解答】解:∵复数z+i,均为实数,设z=x﹣i, ==﹣i,∴﹣ =0,∴x=﹣2.∴z=﹣2﹣i.∵在复平面内,(z+ai)2=[﹣2+(a﹣1)i]2=4﹣(a﹣1)2﹣4(a﹣1)i的对应点在第四象限内,∴4﹣(a﹣1)2>0,﹣4(a﹣1)<0,解得:1<a<3.∴实数a的取值范围是(1,3).18.设函数f(x)=﹣x2+6ax+b,其中a,b∈R.(1)若函数f(x)在x=1处取得极值﹣,求a,b的值;(2)求函数f(x)的单调递增区间.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(1)求出f′(x )=x 2﹣(3a+2)x+6a ,由函数f (x )在x=1处取得极值﹣,列出方程组,能求出a ,b .(2)由f′(x )=x 2﹣3x+2,利用导数性质能求出函数f (x )的单调递增区间.【解答】解:(1)∵f (x )=﹣x 2+6ax+b ,其中a ,b ∈R ,∴f′(x )=x 2﹣(3a+2)x+6a ,∵函数f (x )在x=1处取得极值﹣,∴,解得a=,b=﹣1.(2)由(1)得f (x )=﹣+2x ﹣1,∴f′(x )=x 2﹣3x+2,由f′(x )=x 2﹣3x+2>0,得x >2或x <1,∴函数f (x )的单调递增区间为(﹣∞,1],[2,+∞).19.设数列{a n }的前n 项和为S n ,且关于x 的方程x 2﹣a n x ﹣a n =0有一根为S n ﹣1. (1)求出S 1,S 2,S 3;(2)猜想{S n }的通项公式,并用数学归纳法证明. 【考点】RG :数学归纳法;8E :数列的求和.【分析】(1)由题设求出S 1=,S 2=.S 3=.(2)由此猜想S n =,n=1,2,3,….然后用数学归纳法证明这个结论.【解答】解:(1)当n=1时,x 2﹣a 1x ﹣a 1=0有一根为S 1﹣1=a 1﹣1,于是(a 1﹣1)2﹣a 1(a 1﹣1)﹣a 1=0,解得a 1=.当n=2时,x 2﹣a 2x ﹣a 2=0有一根为S 2﹣1=a 2﹣,于是(a 2﹣)2﹣a 2(a 2﹣)﹣a 2=0,解得a 2=由题设(S n ﹣1)2﹣a n (S n ﹣1)﹣a n =0, S n 2﹣2S n +1﹣a n S n =0. 当n ≥2时,a n =S n ﹣S n ﹣1, 代入上式得S n ﹣1S n ﹣2S n +1=0.①得S 1=a 1=,S 2=a 1+a 2=+=.由①可得S 3=.(2)由(1)猜想S n =,n=1,2,3,….下面用数学归纳法证明这个结论. (i )n=1时已知结论成立.(ii )假设n=k 时结论成立,即S k =,当n=k+1时,由①得S k+1=,可得S k+1=,故n=k+1时结论也成立.综上,由(i )、(ii )可知S n =对所有正整数n 都成立.20.设铁路AB 长为100,BC ⊥AB ,且BC=30,为将货物从A 运往C ,现在AB 上距点B 为x 的点M 处修一公路至C ,已知单位距离的铁路运费为2,公路运费为4. (1)将总运费y 表示为x 的函数; (2)如何选点M 才使总运费最小.【考点】HT :三角形中的几何计算.【分析】(1)由题意,AB=100,BC ⊥AB ,BC=30,BM=x ,则AM=100﹣x .MC=,可得总运费y 表示为x 的函数;(2)根据(1)中的关系式,利用导函数单调性,可得最值.【解答】解:(1)由题意,AB=100,BC ⊥AB ,BC=30,BM=x ,则AM=100﹣x .MC=,∴总运费y=2×+4×MC=200﹣2x+4,.(2)由(1)可得y=200﹣2x+4,.则y′=﹣2+4××令y′=0.可得:2=4x,解得:x=10.当时,y′<0,则y在当单调递减.当时,y′>0,则y在单调递增.∴当x=10时,y取得最大值为200+60.∴选点M距离B点时才使总运费最小.21.在两个正数a,b之间插入一个数x,可使得a,x,b成等差数列,若插入两个数y,z,可使得a,y,z,b成等比数列,求证:x+1≥.【考点】8G:等比数列的性质.【分析】y,z为正数,可得≤,要证明x+1≥.(x>0).只要证明:2x≥y+z即可.根据a,x,b成等差数列,a,y,z,b成等比数列,a,b>0.可得2x=a+b,,z=.令=m>0, =n>0,可得2x≥y+z⇔m3+n3≥m2n+mn2⇔(m﹣n)2≥0,【解答】证明:∵y,z为正数,∴≤,要证明x+1≥.(x>0).只要证明:2x≥y+z即可.∵a,x,b成等差数列,a,y,z,b成等比数列,a,b>0,∴2x=a+b,,z=.令=m>0, =n>0,则2x≥y+z⇔m3+n3≥m2n+mn2.⇔(m﹣n)2≥0,上式显然成立,因此:x+1≥.22.设函数f(x)=ax2lnx﹣(x﹣1)(x>0),曲线y=f(x)在点(1,0)处的切线方程为y=0.(1)求证:当x≥1时,f(x)≥(x﹣1)2;(2)若当x≥1时,f(x)≥m(x﹣1)2恒成立,求实数m的取值范围.【考点】6H:利用导数研究曲线上某点切线方程;6E:利用导数求闭区间上函数的最值.【分析】(1)由题意求得a=1,得到函数解析式,构造函数g(x)=x2lnx+x﹣x2,(x≥1).利用导数可得函数在[1,+∞)上为增函数,可得g(x)≥g(1)=0,即f(x)≥(x﹣1)2;(2)设h(x)=x2lnx﹣x﹣m(x﹣1)2+1,求其导函数,结合(1)放缩可得h′(x)≥3(x ﹣1)﹣2m(x﹣1)=(x﹣1)(3﹣2m).然后对m分类讨论求解.【解答】(1)证明:由f(x)=ax2lnx﹣(x﹣1),得f′(x)=ax2lnx﹣(x﹣1)=2axlnx+ax ﹣1.∵曲线y=f(x)在点(1,0)处的切线方程为y=0,∴a﹣1=0,得a=1.则f(x)=x2lnx﹣x+1.设g(x)=x2lnx+x﹣x2,(x≥1).g′(x)=2xlnx﹣x+1,g″(x)=2lnx+1>0,∴g′(x)在[1,+∞)上为增函数,∴g′(x)≥g′(1)=0,则g(x)在[1,+∞)上为增函数,∴g(x)≥g(1)=0,即f(x)≥(x﹣1)2;(2)解:设h(x)=x2lnx﹣x﹣m(x﹣1)2+1,h′(x)=2xlnx+x﹣2m(x﹣1)﹣1,由(1)知,x2lnx≥(x﹣1)2+x﹣1=x(x﹣1),∴xlnx≥x﹣1,则h′(x)≥3(x﹣1)﹣2m(x﹣1)=(x﹣1)(3﹣2m).①当3﹣2m≥0,即m时,h′(x)≥0,h(x)在[1,+∞)上单调递增,∴h(x)≥h(1)=0成立;②当3﹣2m<0,即m>时,h′(x)=2xlnx+(1﹣2m)(x﹣1),h″(x)=2lnx+3﹣2m.令h″(x)=0,得>1,∴当x∈[1,x)时,h′(x)<h′(1)=0,)上单调递减,则h(x)<h(1)=0,不合题意.∴h(x)在[1,x综上,m.。

2017—2018学年第二学期高二年级期中考试数学(理)试卷解析版

2017—2018学年第二学期高二年级期中考试数学(理)试卷解析版

2017~2018学年第二学期高二年级期中考试数学(理)试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数ii+310对应的点的坐标为( A )A .)3,1(B .)1,3(C .)3,1(-D .)1,3(-2.已知随机变量ξ服从正态分布),(2σμN ,若15.0)6()2(=>=<ξξP P ,则=<≤)42(ξP ( B )A .0.3B .0.35C .0.5D .0.7 3.设)(x f 在定义域内可导,其图象如图所示,则导函数)('x f 的图象可能是( B )4.用反证法证明命题:“若0)1)(1)(1(>---c b a ,则c b a ,,中至少有一个大于1”时,下列假设中正确的是( B )A .假设c b a ,,都大于1B .假设c b a ,,都不大于1C .假设c b a ,,至多有一个大于1D .假设c b a ,,至多有两个大于15.用数学归纳法证明3)12(12)1()1(2122222222+=+++-++-+++n n n n n 时,从)(*N k k n ∈=到1+=k n 时,等式左边应添加的式子是( B )A .222)1(k k +- B .22)1(k k ++ C .2)1(+k D.]1)1(2)[1(312+++k k6.3名志愿者完成4项工作,每人至少1项,每项由1人完成,则不同的安排方式共有( D )A .12种B .18种C .24种D .36种 7.在62)12(xx -的展开式中,含7x 的项的系数是( D ) A .60 B .160 C .180 D .2408.函数xe xf x2)(=的导函数是( C )A .xe xf 2'2)(= B .x e x f x 2'2)(= C .22')12()(x e x x f x -= D .22')1()(x e x x f x -=9.已知函数223)(a bx ax x x f +++=在1=x 处的极值为10,则数对),(b a 为( C )A .)3,3(-B .)4,11(-C .)11,4(-D .)3,3(-或)11,4(-10.若等差数列}{n a 公差为d ,前n 项和为n S ,则数列}{n S n 为等差数列,公差为2d.类似,若各项均为正数的等比数列}{n b 公比为q ,前n 项积为n T ,则等比数列}{n n T 公比为( C )A.2q B .2q C.q D.n q 11.将3颗骰子各掷一次,记事件A 表示“三个点数都不相同”,事件B 表示“至少出现一个3点”,则概率=)|(B A P ( C )A.21691 B.185 C.9160 D.2112.定义在R 上的偶函数)(x f 的导函数为)('x f ,若对任意实数x ,都有2)()(2'<+x xf x f 恒成立,则使1)1()(22-<-x f x f x 成立的实数x 的取值范围为( B )A .}1|{±≠x xB .),1()1,(+∞--∞C .)1,1(-D .)1,0()0,1( - 二、填空题(本大题共4小题,每小题5分,共20分)13.设),(~p n B ξ,若有4)(,12)(==ξξD E ,则=p 2/3 14.若函数32)1(21)(2'+--=x x f x f ,则=-)1('f -1 15.如图所示,阴影部分的面积是 32/316.已知函数)(x f 的定义域为]5,1[-,部分对应值如下表,)(x f 的导函数)('x f y =的图象如图所示,给出关于)(x f 的下列命题:②函数)(x f 在]1,0[是减函数,在]2,1[是增函数; ③当21<<a 时,函数a x f y -=)(有4个零点;④如果当],1[t x -∈时,)(x f 的最大值是2,那么t 的最小值为0. 其中所有正确命题是 ①③④ (写出正确命题的序号).三、解答题(本大题共6小题,共70分) 17.(本小题满分10分)设复数i m m m m z )23()32(22+++--=,试求实数m 的取值,使得 (1)z 是纯虚数; (2)z 对应的点位于复平面的第二象限. 解:(1)复数是一个纯虚数,实部等于零而虚部不等于0分5302303222 =∴⎪⎩⎪⎨⎧≠++=--m m m m m (2)当复数对应的点在第二象限时,分103102303222<<-∴⎪⎩⎪⎨⎧>++<--m m m m m 18.(本小题满分12分) 在数列}{n a 中,已知)(13,2*11N n a a a a n nn ∈+==+(1)计算432,,a a a 的值,并猜想出}{n a 的通项公式; (2)请用数学归纳法证明你的猜想. 解:(1)72123213112=+⨯=+=a a a ,19213,132********=+==+=a a a a a a于是猜想出分5562-=n a n (2)①当1=n 时,显然成立;②假设当)(*N k k n ∈=时,猜想成立,即562-=k a k 则当1+=k n 时,5)1(6216215623562131-+=+=+-⨯-=+=+k k k k a a a k k k , 即当1+=k n 时猜想也成立. 综合①②可知对于一切分12562,*-=∈n a N n n 19.(本小题满分12分)“莞马”活动中的α机器人一度成为新闻热点,为检测其质量,从一生产流水线上抽取20件该产品,其中合格产品有15件,不合格的产品有5件.(1)现从这20件产品中任意抽取2件,记不合格的产品数为X ,求X 的分布列及数学期望; (2)用频率估计概率,现从流水线中任意抽取三个机器人,记ξ为合格机器人与不合格机器人的件数差的绝对值,求ξ的分布列及数学期望. 解:(1)随机变量X 的可能取值为0,1,23821)0(22021505===C C C X P ,3815)1(22011515===C C C X P , 191)2(22001525===C C C X P , 所以随机变量X 的分布列为:分62192381380 =⨯+⨯+⨯=∴EX(2)合格机器人的件数可能是0,1,2,3,相应的不合格机器人的件数为3,2,1,0.所以ξ的可能取值为1,3,有题意知:1122213331319(1)()()()()444416P C C ξ==+=,3333331317(3)()()()()444416P C C ξ==+= 所以随机变量ξ的分布列为:分128163161)( =⨯+⨯=∴ξE 20.(本小题满分12分)编号为5,4,3,2,1的五位学生随意入座编号为5,4,3,2,1的五个座位,每位学生坐一个座位.设与座位编号相同的学生人数是X .(1)试求恰好有3个学生与座位编号相同的概率)3(=X P ; (2)求随机变量X 的分布列及均值.解:(1)恰好有3个学生与座位编号相同,这时另两个学生与座位编号不同,所以分412112010)3(5525 ====A C X P(2)随机变量X 的一切可能值为0,1,2,3,4,5. 且121)3(,00)4(,120112011)5(5555=========X P A X P A X P ; 83120459)1(,61120202)2(55155525========A C X P A C X P301112044)]5()4()3()2()1([1)0(===+=+=+=+=-==X P X P X P X P X P X P 随机变量X 的分布列为故分1211205041236281300)( =⨯+⨯+⨯+⨯+⨯+⨯=X E 21.(本小题满分12分)已知函数)(ln )(R a x ax x f ∈+=(1)若2=a ,求曲线)(x f y =在1=x 处的切线方程; (2)求)(x f 的单调区间;(3)设22)(2+-=x x x g ,若对任意),0(1+∞∈x ,均存在]1,0[2∈x ,使得)()(21x g x f <,求a 的取值范围. 解:(1)2),0(1)('=>+=a x x a x f )0(12)('>+=∴x xx f , 3)1('=∴f , 3=∴k又切点)2,1(,所以切线方程为)1(32-=-x y ,即:013=--y x 故曲线)(x f y =在1=x 处切线的切线方程为分4013 =--y x(2))0(11)('>+=+=x xax x a x f ①当0≥a 时,0)('>x f ,所以)(x f 的单调递增区间为分6),0( +∞②当0<a 时,由0)('=x f ,得ax 1-= 在区间)1,0(a -上0)('>x f ,在区间),1(+∞-a上,0)('<x f . 所以,函数)(x f 的单调递增区间为)1,0(a -,单调递减区间为分8),1( +∞-a(3)由已知,转化为]1,0[,1)1()(,)()(2max max ∈+-=<x x x g x g x f ,2)(max =∴x g 由(2)知,当0≥a 时,)(x f 在),0(+∞上单调递增,值域为R ,故不符合题意. (或者举出反例:存在23)(33>+=ae e f ,故不符合题意.)当0<a 时,)(x f 在)1,0(a -上单调递增,在),1(+∞-a上单调递减, 故)(x f 的极大值即为最大值,)ln(1)1()(max a af x f ---=-=, 所以2)ln(1<---a ,解得31e a -< 综上:分1213 ea -< 22.(本小题满分12分) 已知函数2()ln(1)f x ax x =++ (1)当14a =-时,求函数()f x 的极值; (2)若函数()f x 在区间[1)+∞,上为减函数,求实数a 的取值范围 (3)当[0)x ∈+∞,时,不等式()f x x ≤恒成立,求实数a 的取值范围. 解:(1))1()1(2)1)(2(1121)('->+-+-=++-=x x x x x x x f 令0)('>x f 得11<<-x ,令0)('<x f 得1>x .)(x f ∴在)1,1(-上是增函数,在),1(+∞上是减函数. 2ln 41)1()(+-==∴f x f 极大值,)(x f 无极小值分4(2)因为函数)(x f 在区间[1)+∞,上为减函数, 所以0112)('≤++=x ax x f 对任意的),1[+∞∈x 恒成立, 即)1(21+-≤x x a 对任意的),1[+∞∈x 恒成立,4121)211(2121)21(21)1(2122-=-+-≥-+-=+-x x x分841-≤∴a(3)因为当[0)x ∈+∞,时,不等式()f x x ≤恒成立, 即0)1ln(2≤-++x x ax 恒成立,令)0()1ln()(2≥-++=x x x ax x g , 转化为0)(max ≤x g 即可.1)]12(2[1112)('+-+=-++=x a ax x x ax x g 当0=a 时,1)('+-=x x x g ,0>x ,0)('<∴x g 即)(x g 在),0[+∞上单调递减,故0)0()(=≤g x g 成立. 当0>a 时,令0)('=x g 得,0=x 或121-=ax 若0121≤-a 即21≥a 时,),0(+∞∈x 有0)('>x g , 则)(x g 在),0[+∞上单调递增,0)0()(=≥g x g ,不满足题设; 若0121>-a 即210<<a 时,)121,0(-∈a x 有0)('<x g ,),121(+∞-∈ax 有0)('>x g , 则)(x g 在)121,0(-a 上单调递减,在),121(+∞-a上单调递增,无最大值,不满足题设; 当0<a 时,0>x ,0)('<∴x g即)(x g 在),0[+∞上单调递减,故0)0()(=≤g x g 成立. 综上:实数a 的取值范围为分12]0,( -∞。

2017-2018学年高二下学期期中考试数学(理)试题 word版含答案

2017-2018学年高二下学期期中考试数学(理)试题 word版含答案

2017-2018学年度高二年级期中考试数学(理科)试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设正弦函数y =sinx 在x =0和x =π2附近的瞬时变化率为k1、k2,则k1、k2的大小关系为( )A .k1>k2B .k1<k2C .k1=k2D .不确定2.命题“对任意x R ∈,都有20x ≥”的否定为( )A .对任意x R ∈,使得20x <B .不存在x R ∈,使得20x <C .存在0x R ∈,都有200x ≥D .存在0x R ∈,都有200x <3.设z 是复数,则下列命题中的假命题是( )A .若20z ≥, 则z 是实数B .若20z <, 则z 是虚数C .若z 是虚数, 则20z ≥D .若z 是纯虚数, 则20z <4.一物体以速度v =(3t2+2t)m/s 做直线运动,则它在t =0s 到t =3s 时间段内的位移是( )A .31mB .36mC .38mD .40m5.3.复数31iz i +=-(i 为虚数单位)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.对于命题p 和q ,若p 且q 为真命题,则下列四个命题:①p 或¬q 是真命题;②p 且¬q 是真命题;③¬p 且¬q 是假命题;④¬p 或q 是假命题.其中真命题是( )A .①②B .③④C .①③D .②④7.三次函数f(x)=mx3-x 在(-∞,+∞)上是减函数,则m 的取值范围是( )A .m<0B .m<1C .m≤0D .m≤18.已知抛物线y =-2x2+bx +c 在点(2,-1)处与直线y =x -3相切,则b +c 的值为( )A .20B .9C .-2D .29.设f(x)=cos 2tdt ,则f =( )A.1B.sin 1C.sin 2D.2sin 410.“ a=b ”是“直线与圆22()()2x a y b -++=相切的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件11.设函数f(x)的图象如图,则函数y =f ′(x)的图象可能是下图中的( )12.若关于x 的不等式x3-3x2-9x +2≥m 对任意x ∈[-2,2]恒成立,则m 的取值范围是( )A .(-∞,7]B .(-∞,-20]C .(-∞,0]D .[-12,7]二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上)13.若曲线f(x)=x4-x 在点P 处的切线垂直于直线x -y =0,则点P 的坐标为________14.f(x)=ax3-2x2-3,若f′(1)=2,则a 等于________.15.220(4)x x dx --=⎰_______________.16.已知z C ,且|z|=1,则|z-2i|(i 为虚数单位)的最小值是________三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. (本题满分10分) (1) 求导数22sin(25)y x x =+ (2)求定积分:10(1)x x dx +⎰18. (本题满分12分)设:x2-8x-9≤0,q :,且非p 是非q 的充分不必要条件,求实数m 的取值范围.19.(本题满分12分)已知z 为复数,i z +和i z-2均为实数,其中i 是虚数单位. (Ⅰ)求复数z 和||z ;(Ⅱ)若immzz27111+--+=在第四象限,求m的范围.20.(本题满分12分)已知函数f(x)=-x3+3x2+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.21.(本题满分12分) 设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+4.(1)求y=f(x)的表达式;(2)求直线y=2x+4与y=f(x)所围成的图形的面积.22.(本题满分12分) 设函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,4),且在点P处有相同的切线y=4x+4.(1)求a,b,c,d的值.(2)若存在x≥-2时,f(x)≤k-g(x),求k的取值范围.20[解析] (1)f ′(x)=-3x2+6x.令f ′(x)<0,解得x<0,或x>2,∴函数f(x)的单调递减区间为(-∞,0)和(2,+∞).(2)∵f(-2)=8+12+a=20+a,f(2)=-8+12+a=4+a,∴f(-2)>f(2).∵在(0,2)上f ′(x)>0,∴f(x)在(0,2]上单调递增.又由于f(x)在[-2,0]上单调递减,因此f(0)是f(x)在区间[-2,2]上的最大值,于是有f(0)=a=20∴f(x)=-x3+3x2-20∴f(2)==-16,即函数f(x)在区间[-2,2]上的最小值为-16.21[解析] (1)f ′(x)=-3x2+6x.令f ′(x)<0,解得x<0,或x>2,∴函数f(x)的单调递减区间为(-∞,0)和(2,+∞).(2)∵f(-2)=8+12+a=20+a,f(2)=-8+12+a=4+a,∴f(-2)>f(2).∵在(0,2)上f ′(x)>0,∴f(x)在(0,2]上单调递增.又由于f(x)在[-2,0]上单调递减,因此f(0)是f(x)在区间[-2,2]上的最大值,于是有f(0)=a=20∴f(x)=-x3+3x2-20∴f(2)==-16,即函数f(x)在区间[-2,2]上的最小值为-16.22【解题指南】(1)根据曲线y=f(x)和曲线y=g(x)都过点P(0,2),可将P(0,2)分别代入到y=f(x)和y=g(x)中,再利用在点P处有相同的切线y=4x+2,对曲线y=f(x)和曲线y=g(x)进行求导,列出关于a,b,c,d的方程组求解.(2)构造函数F(x)=kg(x)-f(x),然后求导,判断函数F(x)=kg(x)-f(x)的单调性,通过分类讨论,确定k的取值范围.【解析】(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4.而f′(x)=2x+a,g′(x)=ex(cx+d+c).故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知f(x)=x2+4x+2,g(x)=2ex(x+1).设F(x)=kg(x)-f(x)=2kex(x+1)-x2-4x-2,则F′(x)=2kex(x+2)-2x-4=2(x+2)(kex-1).由题设可得F(0)≥0,即k≥1.令F′(x)=0,即2(x+2)(kex-1)=0,得x1=-lnk,x2=-2.①若1≤k<e2,则-2<x1≤0,从而当x∈(-2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在x∈(-2,x1)上单调递减,在x∈(x1,+∞)上单调递增,故F(x)在[-2,+∞)上有最小值为F(x1).F(x1)=2x1+2--4x1-2=-x1(x1+2)≥0.故当x≥-2时,F(x)≥0恒成立,即f(x)≤kg(x).②若当k=e2,则F′(x)=2e2(x+2)(ex-e-2),当x>-2时,F′(x)>0,即F(x)在(-2,+∞)上单调递增,而F(-2)=0,故当且仅当x≥-2时,F(x)≥0恒成立,即f(x)≤kg(x).③若k>e2,则F(-2)=-2ke-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围为[1,e2].。

2017-2018学年高二下期中七校联考理科数学试题答案高二联考理数答案

2017-2018学年高二下期中七校联考理科数学试题答案高二联考理数答案

2017-2018学年高二下期中七校联考理科数学试题答案13. 4 14.10 15.23π16. 8 三、解答题17. 解: 由题知直线l 的斜率存在,抛物线C 的焦点(0,1)F ,设直线l 的方程为1y kx =+,1122(,),(,)A x y B x y2214404y kx x kx x y=+⎧⇒--=⎨=⎩ 12124,4x x k x x ∴+==-…………………………………………………………………………4分(1)2124(1)8AB x k =-==+=21,1k k ∴==±∴直线l 的方程为1y x =+或1y x =-+.…………………………………………………………8分(2)22221221411444OB x y x x k x x x --=====,11OD k x -= OB OD k k ∴=, ∴B 、O 、D 三点共线.………………………………………………………12分18. 解:(1)易知AB ,AD ,A P 两两垂直.如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设AB =t ,则相关各点的坐标为:A (0,0,0),B (t,0,0),C (t,1,0),D (0,2,0),P (0,0,2),E (t 2,0,1),F (0,1,0).从而EF →=(-t 2,1,-1),AC →=(t,1,0),BD →=(-t,2,0).因为AC ⊥BD ,所以AC →·BD →=-t 2+2+0=0.解得t=2或t =-2(舍去).………………… 3分 于是EF →=(-22,1,-1),AC →=(2,1,0).因为AC →·EF →=-1+1+0=0,所以AC →⊥EF →,即AC ⊥EF . ………………………………………… 5分 (2) 由(1)知,PC →=(2,1,-2),PD →=(0,2,-2).设n =(x ,y ,z )是平面PCD 的一个法向量,则⎩⎨⎧2x +y -2z =02y -2z =0令z =2,则n =(1,2,2).………………………………………………………… 10分 设直线EF 与平面PCD 所成角为θ,则sin θ=|cos <n ,EF →>|=15.即直线EF 与平面PCD 所成角的正弦值为15.……………… 12分19. 解:(1)由频率分布直方图知年龄在[40,70)的频率为(0.0200.0300.025)100.75++⨯=,所以40 名读书者中年龄分布在[40,70)的人数为400.7530⨯=.………………………………2 (2)40 名读书者年龄的平均数为250.05350.1450.2550.3650.25750.154⨯+⨯+⨯+⨯+⨯+⨯=.…………………………4分设中位数为x , 0.050.10.2(50)0.030.5x +++-⨯=,解得55x =.即 40名读书者年龄的中位数为55.………………………………………………………………6分 (3)年龄在[20,30)的读书者有2人,年龄在[30,40)的读书者有4人,所以X 的所有可能取值是0,1,2.22261(0)15C P X C ===,1124268(1)15C C P X C ===,24266(2)15C P X C ===.X 的分布列如下:……………………………………………10分数学期望18640121515153EX =⨯+⨯+⨯=.…………………………………………12分20. 解:(1)2dy c x =+更适宜作烧水时间y 关于开关旋钮旋转的弧度数x 的回归方程类型. ……………………………2分(2)由公式可得:1011021()()16.2200.81()iii ii w w y y d w w ∧==--===-∑∑ ˆ20.6200.785ˆcy dw =-⨯-==, 所以所求回归方程为2205y x=+.………………………………………………………………7分(3)设t kx =,则煤气用量22020(5)520k S yt kx kx k x x ==+=+≥=,当且仅当205kkx x=时取“=”,即2x =时,煤气用量最小.………………………………12分21. 解:(1)依题意可知圆1F的标准方程为(2216x y ++=,因为线段2PF 的垂直平分线交1PF于点E ,所以2EP EF =,动点E始终满足12124EF EF r F F +==>=E 满足椭圆的定义,因此24,2a c ==2,a b c ===∴ 椭圆C 的方程为22142x y +=.……………………………………………………………………3分 (2)()()2,0,2,0A B -),设()00,M x y ,则22000220000*********MA MBx y y y k k x x x x -⋅=⋅===-+---…………………………………………………………6分(3)2NB MA k k =,由(2)中的结论12MA MB k k ⋅=-可知1122NB MB k k ⋅=-,所以1NB MB k k ⋅=- ,即NB MB ⊥,………………………………………………………………7分 当MN 斜率存在时,设MN 的方程为()()1122,,,,y kx b M x y N x y =+,2224y kx b x y =+⎧⎨+=⎩,可得()()222124220k x kbx b +++-=, 则212122242(2),1212kb b x x x x k k --+=⋅=++(*),()()()()()()112212122,2,22BN BM x y x y x x kx b kx b ∴⋅=-⋅-=-⋅-++⋅+()()()2212121240k x x kb x x b =++-⋅+++=,将(*)式代入可得223480b k kb ++=,即()()2230k b k b ++=,亦即20230k b k b +=+=或……………………………………………………………………9分 当2b k =-时,()22y kx k k x =-=-,此时直线MN 恒过定点()2,0(舍); 当23b k =-时,2233y kx k k x ⎛⎫=-=- ⎪⎝⎭,此时直线MN 恒过定点2,03⎛⎫⎪⎝⎭;^……………10分当MN 斜率不存在时,设0000(,),(,)M x y N x y -,则220000002422()132MB x y x x y k x ⎧+=⎪⇒==⎨==-⎪-⎩舍或,2:3MNl x ∴=,也过点2,03⎛⎫⎪⎝⎭.…………11分 综上所述,直线MN 恒过定点2,03⎛⎫ ⎪⎝⎭.……………………………………………………12分 22.解:若p 为真:对∀x ∈[-1,1],4m 2-8m ≤x 2-2x -2恒成立,设f (x )=x 2-2x -2,配方得f (x )=(x -1)2-3, ∴f (x )在[-1,1]上的最小值为-3,∴4m 2-8m ≤-3,解得12≤m ≤32,∴p 为真时:12≤m ≤32;………………………………………………………………………………2分若q 为真, 则(4)(1)041m m m +-<⇔-<<…………………………………………………4分 ∵“p ∨q ”为真,“p ∧q ”为假,∴p 与q 一真一假,…………………………………………5分当p 真q 假时,133122241m m m m ⎧≤≤⎪⇒≤≤⎨⎪≤-≥⎩或……………………………………………………7分 当p 假q 真时,131422241m m m m ⎧<>⎪⇒-<<⎨⎪-<<⎩或…………………………………………………9分综上所述,m 的取值范围是31[1,](4,)22-………………………………………………………10分。

河北省邯郸市鸡泽、曲周、邱县、馆陶四县2017-2018学年高二下学期期末联考数学(理)试题(含精品解析)

河北省邯郸市鸡泽、曲周、邱县、馆陶四县2017-2018学年高二下学期期末联考数学(理)试题(含精品解析)

2017—2018学年第二学期期末高二联考数学理科试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1. 已知集合,,则A. B. C. D.【答案】C【解析】分析:由题意先解出集合A,进而得到结果。

详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。

2. 复数的实部为A. B. C. D.【答案】A【解析】分析:先化简复数z,再求复数z的实部.详解:原式=,所以复数的实部为.故答案为:A.点睛:(1)本题主要考查复数的除法运算和实部虚部概念,意在考查学生对这些知识的掌握水平.(2) 复数的实部是a,虚部为b,不是bi.3. 的展开式中的系数为A. B. C. D.【答案】D【解析】分析:先求出二项式展开式的通项,再令x的指数为4得到r的值,即得的展开式中的系数.详解:由题得二项展开式的通项为,令10-3r=4,所以r=2,所以的展开式中的系数为.故答案为:D.点睛:(1)本题主要考查二项式展开式中某项的系数的求法,意在考查学生对该知识的掌握水平.(2)的展开式中的系数为,不是,要把二项式系数和某一项的系数两个不同的概念区分开.4. 《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为A. B. C. D.【答案】D【解析】分析:由三视图得出该几何体是一个以正视图为底面的三棱柱,结合图中数据求出三棱柱的表面积.详解:由几何体的三视图可得:该几何体是一个以正视图为底面的三棱柱,底面面积为:×2×1=1,底面周长为:2+2×=2+2,故直三棱柱的表面积为S=2×1+2×(2+2)=6+4.故答案为:D.点睛:(1)本题主要考查三视图还原原图和几何体表面积的计算,意在考查学生对这些知识的掌握水平和空间想象能力.(2)由三视图还原原图常用的方法有直接法和模型法,本题利用的是直接法.5. 若实数满足条件,则的最小值为A. B. C. D.【答案】B【解析】分析:作出约束条件的平面区域,易知z=的几何意义是点A(x,y)与点D(﹣1,0)连线的直线的斜率,从而解得.详解:由题意作实数x,y满足条件的平面区域如下,z=的几何意义是点P(x,y)与点D(﹣1,0),连线的直线的斜率,由,解得A(1,1)故当P在A时,z=有最小值,z==.故答案为:B.点睛:(1)本题主要考查线性规划和斜率的应用,意在考查学生对这些知识的掌握水平和数形结合思想方法.(2)表示两点所在直线的斜率.6. 在等比数列中,,公比为,前项和为,若数列也是等比数列,则等于A. B. C. D.【答案】C【解析】由题意,得,因为数列也是等比数列,所以,即,解得;故选C.点睛:本题若直接套用等比数列的求和公式进行求解,一是计算量较大,二是往往忽视“”的特殊情况,而采用数列的前三项进行求解,大大降低了计算量,也节省的时间,这是处理选择题或填空题常用的方法.7. 直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.【答案】B【解析】分析:求出A(﹣3,0),B(0,﹣3),|AB|=,设P(1+,),点P到直线x+y+2=0的距离:d=,∈,由此能求出△ABP面积的取值范围.详解:∵直线x+y+3=0分别与x轴,y轴交于A,B两点,∴令x=0,得y=﹣3,令y=0,得x=﹣3,∴A(﹣3,0),B(0,﹣3),|AB|=,∵点P在圆(x﹣1)2+y2=2上,∴设P(1+,),∴点P到直线x+y+3=0的距离:d=,∵sin∈[﹣1,1],∴d=,∴△ABP面积的最小值为△ABP面积的最大值为故答案为:B.点睛:(1)本题主要考查直线与圆的位置关系和三角形的面积,考查圆的参数方程和三角恒等变换,考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是设点P(1+,),利用圆的参数方程设点大大地提高了解题效率.8. 函数的部分图象可能是A. B.C. D.【答案】B【解析】分析:首先判断出函数为奇函数,再根据零点的个数判断,问题得以解决.详解:∵f(﹣x)=sin(﹣x)•ln(x2+1)=﹣(sinx•ln(x2+1))=﹣f(x),∴函数f(x)为奇函数,图象关于原点对称,∵sinx存在多个零点,∴f(x)存在多个零点,故f(x)的图象应为含有多个零点的奇函数图象.故答案为:B.点睛:(1)本题主要考查函数的奇偶性和零点,意在考查学生对这些知识的掌握水平.(2)根据解析式找图像常用的方法是先找差异再验证.9. 抛物线的焦点为,点,为抛物线上一点,且不在直线上,则周长的最小值为A. B. C. D.【答案】C【解析】分析:求△MAF周长的最小值,即求|MA|+|MF|的最小值.设点M在准线上的射影为D,则根据抛物线的定义,可知|MF|=|MD|,因此问题转化为求|MA|+|MD|的最小值,根据平面几何知识,当D、M、A三点共线时|MA|+|MD|最小,由此即可求出|MA|+|MF|的最小值.详解:求△MAF周长的最小值,即求|MA|+|MF|的最小值,设点M在准线上的射影为D,根据抛物线的定义,可知|MF|=|MD|,因此,|MA|+|MF|的最小值,即|MA|+|MD|的最小值.根据平面几何知识,可得当D,M,A三点共线时|MA|+|MD|最小,因此最小值为x A﹣(﹣1)=5+1=6,∵|AF|==5,∴△MAF周长的最小值为11,故答案为:C.点睛:(1)本题主要考查椭圆的定义、标准方程,以及简单性质的应用,意在考查学生对这些知识的掌握水平和分析转化推理的能力.(2)判断当D,M,A三点共线时|MA|+|MD|最小,是解题的关键.10. 正四棱锥的顶点都在同一球面上,若该棱锥的高和底面边长均为,则该球的体积为A. B. C. D.【答案】A【解析】分析:设球的半径为R,再根据图形找到关于R的方程,解方程即得R的值,再求该球的体积.详解:设球的半径为R,由题得所以球的体积为.故答案为:A.点睛:(1)本题主要考查球的内接几何体问题和球的体积的计算,意在考查学生对这些知识的掌握水平和空间想象能力.(2)解题的关键是从图形中找到方程.11. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】A【解析】分析:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AD1与DB1所成角的余弦值.详解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,∴A(1,0,0),D1(0,0,2),D(0,0,0),B1(1,1,2),=(﹣1,0,2),=(1,1,2),设异面直线AD1与DB1所成角为θ,则cosθ=∴异面直线AD1与DB1所成角的余弦值为.故答案为:A.点睛:(1)本题主要考查异面直线所成的角的向量求法,意在考查学生对该知识的掌握水平和分析转化能力.(2)异面直线所成的角的常见求法有两种,方法一:(几何法)找作(平移法、补形法)证(定义)指求(解三角形);方法二:(向量法),其中是异面直线所成的角,分别是直线的方向向量.12. 已知是定义域为的奇函数,满足.若,则A. B. C. D.【答案】D【解析】分析:先根据已知求出函数的周期为4,再求出的值,最后求的值.详解:由题得所以函数f(x)的周期为4,因为所以,因为2018=4×504+2,所以=f(1)+f(2)=4+0=4.故答案为:D.点睛:(1)本题主要考查函数的奇偶性和周期性,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键在求得函数的周期,..第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.13. 曲线在点处的切线方程为__________.【答案】.【解析】分析:先求导求切线的斜率,再写切线方程.详解:由题得,所以切线方程为故答案为:.点睛:(1)本题主要考查求导和导数的几何意义,考查求切线方程,意在考查学生对这些知识的掌握水平.(2)函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是14. 已知向量,,.若,则__________.【答案】.【解析】分析:先计算出,再利用向量平行的坐标表示求的值.详解:由题得,因为,所以(-1)×(-3)-4=0,所以=.故答案为:.点睛:(1)本题主要考查向量的运算和平行向量的坐标表示,意在考查学生对这些知识的掌握水平.(2)设=,=,则||.15. 学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是或作品获得一等奖”乙说:“作品获得一等奖”丙说:“两项作品未获得一等奖”丁说:“是作品获得一等奖”若这四位同学中只有两位说的话是对的,则获得一等奖的作品是___________.【答案】B.【解析】分析: 根据题意,依次假设参赛的作品为A、B、C、D,判断甲、乙、丙、丁的说法的正确性,即可判断.详解: 根据题意,A,B,C,D作品进行评奖,只评一项一等奖,假设参赛的作品A为一等奖,则甲、乙、丙、丁的说法都错误,不符合题意;假设参赛的作品B为一等奖,则甲、丁的说法都错误,乙、丙的说法正确,符合题意;假设参赛的作品C为一等奖,则乙的说法都错误,甲、丙、丁的说法正确,不符合题意;假设参赛的作品D为一等奖,则乙、丙、丁的说法都错误,甲的说法正确,不符合题意;故获得参赛的作品B为一等奖;故答案为:B.点睛: (1)本题主要考查推理证明,意在考查学生对这些知识的掌握水平和分析推理能力.(2)类似这种题目,一般利用假设验证法.16. 如图在中,,,点是外一点,,则平面四边形面积的最大值是___________.【答案】.【解析】分析:利用余弦定理,设,设AC=BC=m,则.由余弦定理把m表示出来,利用四边形OACB面积为S=.转化为三角形函数问题求解最值.详解:△ABC为等腰直角三角形.∵OA=2OB=4,不妨设AC=BC=m,则.由余弦定理,42+22﹣2m2=16,∴..当时取到最大值.故答案为:.点睛:(1)本题主要考查余弦定理和三角形的面积的求法,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是设,再建立三角函数的模型.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17. 记为等差数列的前项和,已知,.(Ⅰ)求的通项公式;(Ⅱ)求,并求的最小值.【答案】(1).(2);-16.【解析】分析:(Ⅰ)根据已知求出公差d,再写出的通项公式.(Ⅱ)利用等差数列的前n项和公式求,并求的最小值.详解:(I)设的公差为d,由题意得.由得d=2.所以的通项公式为.(II)由(I)得.所以当n=4时,取得最小值,最小值为−16.点睛:本题主要考查等差数列通项的求法和的求法,意在考查学生对这些知识的掌握水平,属于基础题.18. 在如图所示的六面体中,面是边长为的正方形,面是直角梯形,,,.(Ⅰ)求证://平面;(Ⅱ)若二面角为,求直线和平面所成角的正弦值.【答案】(1)证明见解析.(2).【解析】试题分析:(1)连接相交于点,取的中点为,连接,易证四边形是平行四边形,从而可得结论;(2)以为坐标原点,为轴、为轴、为轴建立空间直角坐标系.则,计算法向量,根据公式即可求出.试题解析:(1):连接相交于点,取的中点为,连接.是正方形,是的中点,,又因为,所以且,所以四边形是平行四边形,,又因为平面平面平面(2)是正方形,是直角梯形,,,平面,同理可得平面.又平面,所以平面平面,又因为二面角为60°,所以,由余弦定理得,所以,因为半面,,所以平面,以为坐标原点,为轴、为轴、为轴建立空间直角坐标系.则,所以,设平面的一个法向量为,则即令,则,所以设直线和平面所成角为,则19. 为迎接月日的“全民健身日”,某大学学生会从全体男生中随机抽取名男生参加米中长跑测试,经测试得到每个男生的跑步所用时间的茎叶图(小数点前一位数字为茎,小数点的后一位数字为叶),如图,若跑步时间不高于秒,则称为“好体能”.(Ⅰ)写出这组数据的众数和中位数;(Ⅱ)要从这人中随机选取人,求至少有人是“好体能”的概率;(Ⅲ)以这人的样本数据来估计整个学校男生的总体数据,若从该校男生(人数众多)任取人,记表示抽到“好体能”学生的人数,求的分布列及数学期望.【答案】(1)这组数据的众数和中位数分别是.(2).(3)分布列见解析;.【解析】分析:(Ⅰ)利用众数和中位数的定义写出这组数据的众数和中位数. (Ⅱ)利用古典概型求至少有人是“好体能”的概率. (Ⅲ)利用二项分布求的分布列及数学期望.详解:(I)这组数据的众数和中位数分别是;(II)设求至少有人是“好体能”的事件为A,则事件A包含得基本事件个数为;总的基本事件个数为,(Ⅲ)的可能取值为由于该校男生人数众多,故近似服从二项分布,,,的分布列为故的数学期望点睛:(1)本题主要考查众数和中位数,考查古典概型的计算,考查分布列和期望的计算,意在考查学生对这些知识的掌握水平和计算能力.(2)若~则.20. 设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.(I)求椭圆的方程;(II)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求k的值.【答案】(1).(2).【解析】分析:(I)由题意结合几何关系可求得.则椭圆的方程为.(II)设点P的坐标为,点M的坐标为,由题意可得.易知直线的方程为,由方程组可得.由方程组可得.结合,可得,或.经检验的值为.详解:(I)设椭圆的焦距为2c,由已知得,又由,可得.由,从而.所以,椭圆的方程为.(II)设点P的坐标为,点M的坐标为,由题意,,点的坐标为.由的面积是面积的2倍,可得,从而,即.易知直线的方程为,由方程组消去y,可得.由方程组消去,可得.由,可得,两边平方,整理得,解得,或.当时,,不合题意,舍去;当时,,,符合题意.所以,的值为.点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21. 已知函数.(Ⅰ)求函数的最大值;(Ⅱ)已知,求证.【答案】(1).(2)证明见解析.【解析】分析:(Ⅰ)先求导,再利用导数求函数的单调区间,再求函数的最大值.(Ⅱ)利用分析法证明,先转化成证明再构造函数,再求证函数.详解:(I)因为,所以当时;当时,则在单调递增,在单调递减.所以的最大值为.(II)由得,,则,又因为,有,构造函数则,当时,,可得在单调递增,有,所以有.点睛:(1)本题主要考查利用导数求函数的单调区间和最值,考查利用导数证明不等式,意在考查学生对这些知识的掌握水平和分析推理转化能力.(2)解答本题的关键有两点,其一是先转化成证明其二构造函数,再求证函数.22. 选修4-4:坐标系与参数方程已知直线:(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系.圆的极坐标方程为.(Ⅰ)求圆心的极坐标;(Ⅱ)设点的直角坐标为,直线与圆的交点为,求的值.【答案】(1).(2)1.【解析】分析:(I)先把圆的极坐标方程化成直角坐标方程,再写出圆心的直角坐标,再化成极坐标.(Ⅱ)利用直线参数方程t的几何意义解答.详解:(I)由题意可知圆的直角坐标系方程为,所以圆心坐标为(1,1),所以圆心的极坐标为.(II)因为圆的直角坐标系方程为,直线方程为,得到所以.点睛:(1)本题主要考查极坐标和直角坐标的互化,考查直线参数方程t的几何意义,意在考查学生对这些知识的掌握水平.(2)过定点、倾斜角为的直线的参数方程(为参数).当动点在定点上方时,. 当动点在定点下方时,.23. 选修4-5:不等式选讲已知关于的不等式(Ⅰ)当a=8时,求不等式解集;(Ⅱ)若不等式有解,求a的范围.【答案】(1).(2).【解析】分析:(Ⅰ)利用零点分类讨论法解不等式. (Ⅱ)转化为,再求分段函数的最小值得解.详解:(I)当a=8时,则所以即不等式解集为.(II)令,由题意可知;又因为所以,即.点睛:(1)本题主要考查零点讨论法解不等式,考查不等式的有解问题,意在考查学生对这些知识的掌握水平和分类讨论思想方法. (2)第2问可以转化为,注意是最小值,不是最大值,要理解清楚,这里是有解问题,不是恒成立问题.。

2018年高二下学期期中考试数学(理科)试卷及答案

2018年高二下学期期中考试数学(理科)试卷及答案

高二下学期期中考试数学(理)一、 选择题:(每小题5分,共60分)1. 椭圆2212x y +=上的一点P 到焦点1F 的距离等于1,则点P 到另一个焦点2F 的距离是() A .1 B .3 C 1 D .12. 若方程22125x y k k-=+-表示双曲线,则k 的取值范围是( ) A .(,2)-∞- B .(2,5)- C.[)(,2)5,-∞-+∞ D.(5,)+∞3. 设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率为( ) A .5 B C .2 D .544. 设椭圆22221x y m n +=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )A.2211216x y +=B.2211612x y += C.2214864x y += D.2216448x y += 5. x y =与2x y =围成的封闭图形的面积为( )A. 31B. 41C. 61D. 21 6.函数32()32f x ax x =++,若4)1(=-'f ,则a 的值等于( )A .193B .163C .133D .1037. 曲线123+-=x x y 在点(1,0)处的切线方程为( )A.1-=x yB.1+-=x yC. 22-=x yD. 22+-=x y8.把长度为16的线段分成两段,各围成一个正方形,它们的面积和的最小值为( )A. 2B. 4C. 6D.89. dx x ⎰421等于( )A.2ln 2-B. 2ln 2C. 2ln -D. 2ln 10. 设)(x f '是函数f (x )的导函数,=y )(x f '的图象如左下图所示,则y =f (x )的图象最有可能的是( )(=y )(x f '的图象) A B C D11. 方程0333=--x x 的实数根的个数为( )A. 3B. 2C. 1D.012. 设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若FC FB FA ++=0,则|FA|+|FB|+|FC|=( )A .9 B. 6 C. 4 D. 3 二、填空题(每小题5分,共20分)13. 曲线x x y 43-=在点(1,3)- 处的切线的倾斜角为___________________; . 14. 函数5523--+=x x x y 的单调递增区间是_________________________ 15. 设点P 是双曲线x 2-23y =1上一点,焦点F (2,0),点A (3,2),使|P A |+21|PF |有最小值时,则点P 的坐标是 .16. 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,则直线l 的 方程为______________________ .三、解答题(共70分) 17. 已知函数23)(bx ax x f +=,当1x =时,有极大值3;(1)求,a b 的值;(2)求函数)(x f 的极小值 18. 若双曲线与椭圆1162522=+y x 有相同的焦点,与双曲线1222=-y x 有相同渐近线,求双曲线方程.19. 已知长轴长为22,短轴长为2,焦点在x 轴上的椭圆,过它的左焦点1F 作倾斜角为4π的直线交椭圆于A ,B 两点,求弦AB 的长.20. 已知a 为实数,()()2()4f x x x a =--。

高二第二学期期中数学试卷理科及答案

高二第二学期期中数学试卷理科及答案

2017-2018学年度第二学期期中考试高二数学试题(理)一、选择题(每题5分,共60分)1.设复数z满足11zz-+=2i,则z =A.35-45-B.35-+45i C.35+45i D.3545-i2.已知椭圆+=1上一点P到其中一个焦点的距离为3,则点P到另一个焦点的距离为A.2B.3C.5D.7 3.已知A(2,-5,1),B(2,-2,4),C(1,-4,1),则向量AB→与AC→夹角为()A.30° B.45° C.60° D.90°4.椭圆+=1的焦距是2,则m的值是( )A.5B.3或8C.3或5D.20 5.中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是()A.x281+y272=1 B.x281+y29=1 C.x281+y245=1 D.x281+y236=16.观察式子:1+122<32,1+122+132<53,1+122+132+142<74,…,则可归纳出第n-1个式子为( )A.1+122+132+…+1n2<12n-1B.1+122+132+…+1n2<12n+1C.1+122+132+…+1n2<2n-1n D.1+122+132+…+1n2<2n2n+17.已知函数 的导函数 图象如图所示,则函数 有 A.两个极大值,一个极小值 B.两个极大值,无极小值 C.一个极大值,一个极小值 D.一个极大值,两个极小值 8.设a ≠0,a ∈R,则抛物线y =ax 2的焦点坐标为( ) A.⎝ ⎛⎭⎪⎫a 2,0B.⎝⎛⎭⎪⎫0,12aC.⎝ ⎛⎭⎪⎫a 4,0D.⎝⎛⎭⎪⎫0,14a9.三角形的面积为S=(a+b+c)·r,其中a,b,c为三角形的边长,r为三角形内切圆的半径,利用类比推理可以得出四面体的体积为 ( ) A.V=abcB.V=ShC.V= (S 1+S 2+S 3+S 4)· r(S 1,S 2,S 3,S 4分别为四面体的四个面的面积,r为四面体内切球的半径)D.V=(ab+bc+ac)·h(h为四面体的高)10.函数f (x )=x 3+ax -2在区间(1,+∞)内是增函数,则实数a 的取值范围是( )A .[3,+∞)B .[-3,+∞)C .(-3,+∞)D .(-∞,-3)11.若直线与抛物线 相交于 , 两点,则 等于 A .B .C .D .12.正三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( ) A.30°B.45°C.60°D.90°二、填空题(每题5分,共20分) 13.已知()20d f x x ⎰=8,则()202d f x x x ⎡⎤-⎣⎦⎰=______14.若双曲线11622=-m x y 的离心率2=e ,则=m ______________.15.在平面直角坐标系xOy 中,二元一次方程Ax +By =0(A ,B 不同时为0)表示过原点的直线.类似地,在空间直角坐标系Oxyz 中,三元一次方程Ax +By +Cz =0(A ,B ,C 不同时为0)表示____________________.16.已知函数f (x )=x 3+ax 2+bx +c ,x ∈[-2,2]表示过原点的曲线,且在x =±1处的切线的倾斜角均为34π,有以下命题:①f (x )的解析式为f (x )=x 3-4x ,x ∈[-2,2]. ②f (x )的极值点有且只有一个. ③f (x )的最大值与最小值之和等于零. 其中正确命题的序号为________. 三、解答题(17题10分,18—22每题12分)17.( 本小题满分10分)(1)已知斜率为1的直线l 过椭圆1422=+y x 的右焦点F 交椭圆于A 、B 两点,求弦AB 的长。

最新17—18学年下学期高二期中考试数学试题(附答案)

最新17—18学年下学期高二期中考试数学试题(附答案)

2017学年第二学期高二期中考试数 学考生须知:1. 全卷分试卷和答卷. 试卷2页,答卷 2页,共 4页. 考试时间120分钟,满分150分.2. 本卷的答案必须做在答卷的相应位置上,做在试卷上无效;选择题用答题卡的,把答案用2B 铅笔填涂在答题卡上.3. 请用钢笔或圆珠笔将班级、序号、姓名、座位号分别填写在答卷的相应位置上. 一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设()log (0a f x x a =>且1a ≠),若()12 2f =,则12f ⎛⎫= ⎪⎝⎭( ▲ ) A .2 B .2- C .12-D .122.已知()3sin 5πα+=,α为第三象限角,则tan α=( ▲ ) A .34 B .34- C .43 D .43- 3.已知平面向量()1,2a = ,()//a b b +,则b 可以是( ▲ )A .()2,1-B .()1,2-C .()2,1D .()1,24.下列求导运算正确的是( ▲ ) A .3211)1(xx x -='+B .(2)2ln 2x x '=C .2(sin )2cos x x x x '=D .1(ln 2)2x x'=5.已知集合{}2|430A x x x =++≤,{}2|0B x x ax =-≤.若B A ⊆,则实数a 的取值范围是( ▲ )A .33≤≤-aB .0≥aC .3-≤aD .3-<a6.在R 上的可导函数)(x f 的图象如图所示,则关于x 的不等式0)(<'x f x 的解集是( ▲ )A .)1,0()1,( --∞B .),1()0,1(+∞-C .)2,1()1,2( --D .),2()2,(+∞--∞7.若函数21()f x x ax x =++在区间1,12⎡⎤⎢⎥⎣⎦上是增函数,则实数a 的取值范围是( ▲ ) A .[]1,0- B .[)1,-+∞ C .[]1,3-D .[)3,+∞8.已知三棱台111ABC A B C -的底面是锐角三角形,则存在过点A 的平面( ▲ )A .与直线BC 和直线11AB 都平行 B .与直线BC 和直线11A B 都垂直C .与直线BC 平行且与直线11A B 垂直D .与直线BC 和直线11A B 所成的角相等9.设F 是双曲线:C ()222210,0x y a b a b-=>>的右焦点,过点F 向C 的一条渐近线引垂线,垂足为A ,交另一条渐近线于点B ,若3AF BF =,则C 的离心率是( ▲ )A B CD .210.设函数()()22()2ln 2f x x a x a =-+-,其中0x >,a R ∈,存在()00,x ∈+∞,使得04()5f x ≤成立,则实数a 的值是 ( ▲ ) A .12 B .1 C .15 D .25二、填空题(本题共有7小题,其中第11、12、13、14小题每空3分,第15、16、17小题每空4分,共36分.)11.设集合{}{}|1,|2,S x x T x x =<=≤则S T = ▲ ;R T C S = ▲ .(R 表示实数集)12. 已知函数()f x 为奇函数,且当0x ≤时,()23f x x x a =++,则a = ▲ ;当[]13x ∈,时,()f x 的取值范围是 ▲ .13. 在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若30A =︒,3a =,2c =,则si n C = ▲ ,b = ▲ .14.已知直线20x y +-=与抛物线24y x =相交于A 、B 两点,O 为坐标原点,P 是抛物线的弧AOB 上的动点,当ABP ∆的面积最大时,点P 的坐标是 ▲ ,此时ABP ∆的面积是 ▲ .15.已知函数241,0()3,0x x x x f x x ⎧--+≤⎪=⎨>⎪⎩,则函数()()3f f x =的零点的个数是 ▲ .16. 已知a 、b 是平面内的两个单位向量,若()c a b a b -+≤- ,则c的最大值是▲ .17. 已知函数xxx a x f +-+=11ln 2)(,其中0>a .若()f x 有极值,则它的所有极值之和为 ▲ .三、解答题(本大题共5小题,共74分. 解答应写出文字说明、证明过程或演算步骤.)18.已知函数21()cos sin 2f x x x x ωωω=+-()0ω>的最小正周期是π. (Ⅰ)求ω,并求()f x 的单调递减区间;(Ⅱ)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的值域.19.已知函数1)(23+++=bx ax x x f 在1-=x 处有极值2. (Ⅰ)求)(x f 的解析式;(Ⅱ)当[]t x ,1-∈时,设)(x f 的最小值为)(t g ,求)(t g 的解析式.20.如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AD BC,AB BC ⊥,侧面PAB ⊥底面DABCD .12PA PB AB BC AD ====,G 是PD 的中点. (Ⅰ)求证://CG 平面PAB ;(Ⅱ)求直线CA 与平面PAD 所成角的正弦值.21.已知椭圆22:13x C y +=,点P 是直线3x =上的动点,过点P 作椭圆的切线PA ,切点为A ,O 为坐标原点.(Ⅰ)若切线PA 的斜率为1,求点A 的坐标;(Ⅱ)求AOP ∆的面积的最小值,并求出此时PA 的斜率.22.已知函数()2xf x e x =--. (Ⅰ)求()f x 的单调区间;(Ⅱ)当0x >时,不等式()()1x k x f x '+>-恒成立,求整数k 的最大值.2017学年第二学期高二期中考试数学答案一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本题共有7小题,其中第11、12、13、14小题每空3分,第15、16、17小题每空4分,共36分)11.(],2-∞;[]1,2 12. 0;90,4⎡⎤⎢⎥⎣⎦13.1314.()1,2-;15. 416. 17. 0三、解答题(本大题共5题:其中第18题14分,第19、20、21、22题各15分,共74分)18.已知函数21()cos sin 2f x x x x ωωω=+-()0ω>的最小正周期是π. (Ⅰ)求ω,并求()f x 的单调递减区间;(Ⅱ)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的值域. 解:(Ⅰ)∵1()2cos 222f x x x ωω=- …………………………2分 ()sin 26f x x πω⎛⎫∴=-⎪⎝⎭………………………………………2分,1T πω=∴= ……………………………………………………2分()sin 26f x x π⎛⎫∴=- ⎪⎝⎭ 3222262k x k πππππ∴+≤-≤+ ∴函数()f x 的单调递减区间为()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦………………2分(Ⅱ)0,2x π⎡⎤∈⎢⎥⎣⎦,52,666x πππ⎡⎤∴-∈-⎢⎥⎣⎦………………………………2分 ∴()f x 的值域为1,12⎡⎤-⎢⎥⎣⎦…………………………………………………4分 19.已知函数1)(23+++=bx ax x x f 在1-=x 处有极值2. (Ⅰ)求)(x f 的解析式;(Ⅱ)当[]t x ,1-∈时,设)(x f 的最小值为)(t g ,求)(t g 的解析式.解: (Ⅰ)()b ax x x f ++='232 ……………………………………………………2分()()⎩⎨⎧=-=-'2101f f⎩⎨⎧=+-+-=+-∴211023b a b a ,⎩⎨⎧-==∴11b a …………………………………………3分此时()()()1131232+-=-+='x x x x x f ,所以1-=x 是极大值点1)(23+-+=∴x x x x f ……………………………………………………2分 (Ⅱ))(x f 在⎪⎭⎫ ⎝⎛-31,1递减,在⎪⎭⎫ ⎝⎛+∞,31上递增…………………………2分 若311<<-t ,则()1)()(23min +-+===t t t t f x f t g ……………………2分 若31≥t ,则272231)(=⎪⎭⎫ ⎝⎛=f t g ……………………………………………2分 则⎪⎪⎩⎪⎪⎨⎧≥<<-+-+=31,2722311,1)(23t t t t t t g ………………………………………………2分20.如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AD BC ,AB BC ⊥,侧面PAB ⊥底面ABCD .12PA PB AB BC AD ====,G 是PD 的中点. (Ⅰ)求证://CG 平面PAB ;(Ⅱ)求直线CA 与平面PAD 所成角的正弦值. 解:(Ⅰ)取AD 的中点M ,则//GM PA ,所以//GM 平面PAB …………2分//CM AB ,//CM ∴平面PAB …………2分所以平面//CGM 平面PAB ……………1分CG ⊂ 平面CGM//CG ∴平面PAB . …………………………2分(Ⅱ)BC AB ⊥ ,侧面PAB ⊥底面ABCD BC ∴⊥平面PAB …………………………2分 B C P B ∴⊥ 设112PA PB AB BC AD =====,则PC CD ==CG PD ∴⊥ ……………………………………………………1分 BC ⊥ 平面PAB ,BC ∴⊥平面CGM BC CG ∴⊥,CG AD ∴⊥ CG ∴⊥平面PADCAG ∴∠即为所求角…………………………3分PDCG ∴=CA =sin CAG ∴∠=∴直线CA 与平面PAD…………………………2分 21.已知椭圆22:13x C y +=,点P 是直线3x =上的动点,过点P 作椭圆的切线PA ,切点为A ,O 为坐标原点. (Ⅰ)若切线PA 的斜率为1,求点A 的坐标;D(Ⅱ)求AOP ∆的面积的最小值,并求出此时PA 的斜率.解:(Ⅰ)设切线PA :y x m =+2233y x m x y =+⎧⎨+=⎩得到2246330x mx m ++-=………2分 0∆=,得到24m =,所以2m =±……………2分 所以31,22A ⎛⎫-⎪⎝⎭或31,22A ⎛⎫- ⎪⎝⎭…………………2分 (Ⅱ)设切线PA :y kx m =+2233y kx mx y =+⎧⎨+=⎩得到222(13)6330k x kmx m +++-=…………………………2分0∆=,得到2213m k =+………………………………………1分23313A km kx k m--∴==+……………………………………………1分132AOP A S m x ∆∴=-133322k m m k m =⋅+=+…………………………2分 令m k t +=,则m t k =-,代入2213m k =+,得到222210k tk t ++-=0∆≥,得到223t ≥,所以t ≥ 所以()min 2AOP S ∆=2分此时6k =±.……………………………………………………1分 另解:设()00,A x y ,则00:13PA x xl y y +=……………………1分 所以0013,x P y ⎛⎫- ⎪⎝⎭………………………………………………2分 0000001311322AOP x x S x y y y ∆--∴=⋅-=…………………………2分设直线3x =与y 轴的交点为M ,则112AOP AMS k ∆∴=,当AM 与椭圆相切时,AM k 最大,即AOP ∆的面积最小所以()3,0P ,此时1,A ⎛ ⎝⎭,所以6k =± …………2分∴()min AOP S ∆=2分 22.已知函数()2x f x e x =--. (Ⅰ)求()f x 的单调区间;(Ⅱ)当0x >时,不等式()()1x k x f x '+>-恒成立,求整数k 的最大值. 解:(Ⅰ)()1xf x e '=-………………………………………………2分令()0f x '>,则0x >所以,()f x 在区间(),0-∞上单调递减,在区间()0,+∞上单调递增. ……………2分(Ⅱ)()()11xx k x e +>--令()()()11xg x x k e x =--++,则()min 0g x >…………………………………2分()()1xg x x k e'=-+………………………………………………1分 ①若1k ≤,则()0g x '>,所以()g x 在()0,+∞上递增,所以()()01g x g >=1k ∴≤成立………………………………………………………2分 ②若1k >,则()g x 在区间()0,1k -上递减,在()1,k -+∞上递增所以()()1min 110k g x g k e k -=-=-++>………………………………………2分即110k ek ---<()2x f x e x =-- 在区间()0,+∞上单调递增令1()1k h k ek -=--,则()h k 在()1,+∞上单调递增…………………………2分2(2)30,(3)40h e h e =-<=->,所以函数()h k 的零点()2,3∈∴整数k 的最大值是2………………………………………………2分。

【数学】河北省鸡泽、曲周、邱县、馆陶四县2017-2018学年高二下学期期中联考(理)

【数学】河北省鸡泽、曲周、邱县、馆陶四县2017-2018学年高二下学期期中联考(理)

参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.B2.D3.C4.C5.B6.D7.B8. A9.D 10. A 11.D 12.A 二.填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13. 2 14. -160 15. 22e 2π--.16. 1三,解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.证明:假设2,0,0.p q p q +>>>则()33223338p q p p q pq q +=+++>又332p q +=∴代入上式得:()36pq p q +>,即()2pq p q +>(1)又由332p q +=,即()()222p q p pq q +-+=代入(1)得:()()()22.pq p q p q p pq q +>+-+这与()20p q -≥矛盾,∴假设2p q +>不成立,故2p q +≤。

18.解:(I)当m e =时, ()ln ef x x x=+,其定义域为()0.+∞ ()221e x e f x x x x ='-=-,当0x e <<时, ()20x ef x x-'=<;当x e >时, ()20x ef x x-'=>故()f x 在()0,e 上单调递减,在(),e +∞上单调递增若函数上有极值点,须11,1a e a e a -<⎧⎪+>⎨⎪>⎩解得11e a e -<<+ (II )()()2133x m xg x f x x x =-=--' 32333x m x x --=,其定义域为()0,+∞ 令()0g x =,得313m x x =-+,令()313h x x x =-+,其定义域为()0,+∞. 则()g x 的零点为()h x 与y m =的公共点的横坐标.()()()2111h x x x x =-+=-+-'(0,1)1()1,+∞+-单增极大值单减故当1x =时, ()h x 取得最大值()213h =,又0,x →时, ()0h x →; x →+∞时, ()h x →-∞,所以当203m <<时, ()g x 有两个零点19.(1)21c xy C e =适宜(2)由21c xy C e=得21ln ln y C x C =+令ln y k =, 2=C β, 1=ln C α由图表中的数据可知351==1404β∧, 3=4α∧-∴13=44k x ∧-∴y 关于x 的回归方程为3444=0.47x x y ee -=(3)28x =时,由回归方程得=0.471096.63=515.4y ∧⨯,0.08515.4 2.81048.432z ∧=⨯-+=即鸡舍的温度为28℃时,鸡的时段产量的预报值为515.4,投入成本的预报值为48.432. 20.解(1)由题意知, ξ的值为0,1,2,3.()0346310C C 10C 6P ξ===, ()1246310C C 11C 2P ξ===,()2146310C C 32C 10P ξ===, ()3036310C C 13C 30P ξ===.∴ξ的分布列为:ξ 0 1 2 3P16 12 310 1301131()0123 1.2621030E ξ∴=⨯+⨯+⨯+⨯=.(2)由题意可知,全市70后打算生二胎的概率为P =42105=,η=0,1,2,3. 且23,5B η⎛⎫~ ⎪⎝⎭. ()()3323C 0,1,2,355kkk P k k η-⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.η的分布列为: η123P2712554125 36125 81252()3 1.25E η∴=⨯=. 21.(1)因为男生、女生各25名,于是将列联表补充如下:因为()225020151058.3337.87930202525K ⨯⨯-⨯=≈>⨯⨯⨯,所以有99.5%的把握认为“手机股”与性别有关.(2)用分层抽样的方法选出的5人中有“手机控”2人,“非手机控”3人. 再从这5人中随机选取3人,“手机控”的人数可能为0,1,2, 所以X 的所有可能取值为0,1,2,()33351010C P X C ===; ()122335315C C P X C ===; ()2123353210C C P X C ===. 所以X 的分布列是X0 1 2P110 35 310所以X 的数学期望()1336012105105E X =⨯+⨯+⨯=. 22.解:(1)当0a =时,()ln f x x x =,'()ln 1f x x =+ 令'()ln 1=0f x x =+,解得1x e=. 当10,x e ⎛⎫∈ ⎪⎝⎭时,'()0f x <,所以函数()f x 在10,e ⎛⎫ ⎪⎝⎭是减函数;当1+x e ⎛⎫∈∞ ⎪⎝⎭,时,'()0f x >,所以函数()f x 在1+e ⎛⎫∞ ⎪⎝⎭,为增函数. 所以函数()f x 在1x e =处取得最小值,11()f e e=-. 因为()0,1x ∈,ln 0x <,所以对任意()0,1x ∈,都有()0f x <. 即对任意()0,1x ∈,1()0f x e-≤<. (2)函数()f x 的定义域为()0+∞,. 又'ln (),()ln x x x af xg x x x x a x+-==+-设.令()ln =0g x x x x a =+-,即ln a x x x =+,设函数()ln h x x x x =+. 令'2()ln 20,h x x x e -=+==则. 当210,x e ⎛⎫∈ ⎪⎝⎭时,'()0h x <,所以()h x 在210,e ⎛⎫ ⎪⎝⎭上是减函数; 当21+x e ⎛⎫∈∞⎪⎝⎭,时,'()0h x >,所以()h x 在21+e ⎛⎫∞ ⎪⎝⎭,上是增函数; 所以min 2211()()h x h e e ==-.则()0,x ∈+∞时,1()eh x ≥-. 于是,当21a e≥-时,直线y a =与函数()ln h x x x x =+的图象有公共点, 即函数()ln g x x x x a =+-至少有一个零点,也就是方程'()0f x =至少有一个实数根. 当21=a e -时,()ln g x x x x a =+-有且只有一个零点,努力的你,未来可期!拼搏的你,背影很美! 所以'ln ()0x x x a f x x +-=≥恒成立,函数()f x 为单调增函数,不合题意,舍去. 即当21a e>-时,函数()f x 不是单调增函数. 又因为'()0f x <不恒成立,所以21a e>-为所求.。

2017-2018学年河北省邯郸市鸡泽县高二(下)期末数学试卷(理科)(解析版)

2017-2018学年河北省邯郸市鸡泽县高二(下)期末数学试卷(理科)(解析版)

2017-2018学年河北省邯郸市鸡泽县高二(下)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2} 2.(5分)复数的实部为()A.B.C.D.3.(5分)的展开式中x4的系数为()A.10B.20C.40D.804.(5分)《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为()A.2B.4C.4+4D.6+45.(5分)若实数x,y满足条件,则z=的最小值为()A.B.C.D.16.(5分)在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q等于()A.2B.﹣2C.3D.﹣37.(5分)直线x+y+3=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣1)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[3,9]C.D.8.(5分)函数f(x)=sin x•ln(x2+1)的部分图象可能是()A.B.C.D.9.(5分)抛物线y2=4x的焦点为F,点A(5,3),M为抛物线上一点,且M不在直线AF 上,则△MAF周长的最小值为()A.10B.11C.12D.6+10.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高和底面边长均为2,则该球的体积为()A.B.5πC.D.11.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.12.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(2+x)=f(﹣x).若f (1)=4,则f(1)+f(2)+f(3)+…+f(2018)=()A.﹣50B.0C.2D.4二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)曲线在点(0,0)处的切线方程为.14.(5分)已知向量=(2,1),=(1,﹣2),=(﹣1,λ).若∥(+2),则λ=.15.(5分)学校艺术节对A,B,C,D四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两件作品未获得一等奖”;丁说:“是C作品获得一等奖”.评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是.16.(5分)如图在△ABC中,AC=BC,,点O是△ABC外一点,OA=4,OB=2则平面四边形OACB面积的最大值是.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)记S n为等差数列{a n}的前n项和,已知a1=﹣7,S4=﹣16.(Ⅰ)求{a n}的通项公式;(Ⅱ)求S n,并求S n的最小值.18.(12分)在如图所示的六面体中,面ABCD是边长为2的正方形,面ABEF是直角梯形,∠F AB=90°,AF∥BE,BE=2AF=4.(Ⅰ)求证:AC∥平面DEF;(Ⅱ)若二面角E﹣AB﹣D为60°,求直线CE和平面DEF所成角的正弦值.19.(12分)为迎接8月8日的“全民健身日”,某大学学生会从全体男生中随机抽取16名男生参加1500米中长跑测试,经测试得到每个男生的跑步所用时间的茎叶图(小数点前一位数字为茎,小数点的后一位数字为叶),如图,若跑步时间不高于5.6秒,则称为“好体能”.(Ⅰ)写出这组数据的众数和中位数;(Ⅱ)要从这16人中随机选取3人,求至少有2人是“好体能”的概率;(Ⅲ)以这16人的样本数据来估计整个学校男生的总体数据,若从该校男生(人数众多)任取3人,记X表示抽到“好体能”学生的人数,求X的分布列及数学期望.20.(12分)设椭圆+=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为,|AB|=.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,1与直线AB交于点M,且点P,M 均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.21.(12分)已知函数f(x)=lnx.(Ⅰ)求函数g(x)=f(x﹣1)﹣x+2的最大值;(Ⅱ)已知0<a<b,求证.[选修4-4:坐标系与参数方程选讲]22.(10分)已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系.圆O的极坐标方程为.(Ⅰ)求圆心的极坐标;(Ⅱ)设点M的直角坐标为(2,1),直线l与圆O的交点为A,B,求|MA|•|MB|的值.[选修4-5:不等式选讲]23.已知关于x的不等式|2x﹣1|﹣|x﹣1|≤log2a.(Ⅰ)当a=8时,求不等式解集;(Ⅱ)若不等式有解,求a的范围.2017-2018学年河北省邯郸市鸡泽县高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}【解答】解:∵A={x|x﹣1≥0}={x|x≥1},B={0,1,2},∴A∩B={x|x≥1}∩{0,1,2}={1,2}.故选:C.2.(5分)复数的实部为()A.B.C.D.【解答】解:∵=,∴复数z的实部为,故选:A.3.(5分)的展开式中x4的系数为()A.10B.20C.40D.80【解答】解:通项公式T r+1==2r x3r﹣5,令3r﹣5=4,解得r=3.∴的展开式中x4的系数==80.故选:D.4.(5分)《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为()A.2B.4C.4+4D.6+4【解答】解:由几何体的三视图可得:该几何体是一个以正视图为底面的三棱柱,底面面积为:×2×1=1,底面周长为:2+2×=2+2,故直三棱柱的表面积为S=2×1+2×(2+2)=6+4.故选:D.5.(5分)若实数x,y满足条件,则z=的最小值为()A.B.C.D.1【解答】解:由题意作实数x,y满足条件的平面区域如下,z=的几何意义是点P(x,y)与点D(﹣1,0),连线的直线的斜率,由,解得A (1,1)故当P在A时,z=有最小值,z==.故选:B.6.(5分)在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q等于()A.2B.﹣2C.3D.﹣3【解答】解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选:C.7.(5分)直线x+y+3=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣1)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[3,9]C.D.【解答】解:∵直线x+y+3=0分别与x轴,y轴交于A,B两点,∴令x=0,得y=﹣3,令y=0,得x=﹣3,∴A(﹣3,0),B(0,﹣3),|AB|=,∵点P在圆(x﹣1)2+y2=2上,∴设P(1+cosθ,sinθ),∴点P到直线x+y+3=0的距离:d==,∵sin(θ+)∈[﹣1,1],∴d=∈[,3],∴△ABP面积的取值范围是:[×3×,×3×3]=[3,9],故选:B.8.(5分)函数f(x)=sin x•ln(x2+1)的部分图象可能是()A.B.C.D.【解答】解:∵f(﹣x)=sin(﹣x)•ln(x2+1)=﹣(sin x•ln(x2+1))=﹣f(x),∴函数f(x)为奇函数,图象关于原点对称,∵sin x存在多个零点,∴f(x)存在多个零点,故f(x)的图象应为含有多个零点的奇函数图象.故选:B.9.(5分)抛物线y2=4x的焦点为F,点A(5,3),M为抛物线上一点,且M不在直线AF 上,则△MAF周长的最小值为()A.10B.11C.12D.6+【解答】解:求△MAF周长的最小值,即求|MA|+|MF|的最小值,设点M在准线上的射影为D,根据抛物线的定义,可知|MF|=|MD|因此,|MA|+|MF|的最小值,即|MA|+|MD|的最小值根据平面几何知识,可得当D,M,A三点共线时|MA|+|MD|最小,因此最小值为x A﹣(﹣1)=5+1=6,∵|AF|==5,∴△MAF周长的最小值为11,故选:B.10.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高和底面边长均为2,则该球的体积为()A.B.5πC.D.【解答】解:如图所示,正四棱锥P﹣ABCD中,PE为正四棱锥的高,根据球的相关知识可知,正四棱锥的外接球的球心O必在正四棱锥的高线PE所在的直线上,延长PE交球面于一点F,连接AE,AF,由球的性质可知△P AF为直角三角形且AE⊥PF,根据平面几何中的射影定理可得P A2=PF•PE,∵AE=AB=,∴侧棱长P A==,PF=2R,∴6=2R×2,解得R=;∴该外接球的体积为V=•=.故选:A.11.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,∴A(1,0,0),D1(0,0,2),D(0,0,0),B1(1,1,2),=(﹣1,0,2),=(1,1,2),设异面直线AD1与DB1所成角为θ,则cosθ===,∴异面直线AD1与DB1所成角的余弦值为.故选:A.12.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(2+x)=f(﹣x).若f (1)=4,则f(1)+f(2)+f(3)+…+f(2018)=()A.﹣50B.0C.2D.4【解答】解:∵f(x)是奇函数,满足f(2+x)=f(﹣x),∴f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=4,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣4,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=4+0﹣4+0=0,则f(1)+f(2)+f(3)+…+f(2018)=504[f(1)+f(2)+f(3)+f(4)]+f(2017)+f(2018)=f(1)+f(2)=4+0=4,故选:D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)曲线在点(0,0)处的切线方程为x﹣2y=0.【解答】解:函数的导数为y′=,可得曲线y=ln(x+1)在点(0,0)处的切线斜率为:,则曲线y=ln(x+1)在点(0,0)处的切线方程为y﹣0=(x﹣0),即为y=x,即x﹣2y=0.故答案为:x﹣2y=0.14.(5分)已知向量=(2,1),=(1,﹣2),=(﹣1,λ).若∥(+2),则λ=.【解答】解:∵向量=(2,1),=(1,﹣2),=(﹣1,λ).∴=(4,﹣3),∵∥(+2),∴,解得λ=.故答案为:.15.(5分)学校艺术节对A,B,C,D四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两件作品未获得一等奖”;丁说:“是C作品获得一等奖”.评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是B.【解答】解:若A为一等奖,则甲,丙,丁的说法均错误,故不满足题意,若B为一等奖,则乙,丙说法正确,甲,丁的说法错误,故满足题意,若C为一等奖,则甲,丙,丁的说法均正确,故不满足题意,若D为一等奖,则只有甲的说法正确,故不合题意,故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B故答案为:B16.(5分)如图在△ABC中,AC=BC,,点O是△ABC外一点,OA=4,OB=2则平面四边形OACB面积的最大值是5+4.【解答】解:△ABC为等腰直角三角形.∵OA=2OB=4,不妨设AC=BC=m,则AB=.由余弦定理,42+22﹣2m2=16cosθ,⇒m2=10﹣8cosθ记平面四边形OACB面积为S,则S=S△ABC+S△AOB=4sinθ+=5+4sinθ﹣4cosθ=5+4.当时,平面四边形OACB面积的最大值是5+4.故答案为:5+4.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)记S n为等差数列{a n}的前n项和,已知a1=﹣7,S4=﹣16.(Ⅰ)求{a n}的通项公式;(Ⅱ)求S n,并求S n的最小值.【解答】解:(I)设{a n}的公差为d,由题意得4a1+6d=﹣16,由a1=﹣7得d=2.所以{a n}的通项公式为a n=2n﹣9,(II)由(1)S n=n2﹣8n=(n﹣4)2﹣16,所以当n=4时,S n取得最小值,最小值为﹣16.18.(12分)在如图所示的六面体中,面ABCD是边长为2的正方形,面ABEF是直角梯形,∠F AB=90°,AF∥BE,BE=2AF=4.(Ⅰ)求证:AC∥平面DEF;(Ⅱ)若二面角E﹣AB﹣D为60°,求直线CE和平面DEF所成角的正弦值.【解答】证明:(1)连接AC,BD相交于点O,取DE的中点为G,连接FG,OG.∵ABCD是正方形,∴O是DB的中点,∴OG∥BE,OG=,又因为AF∥BE,AF=,所以OG∥AF且OG=AF,所以四边形AOGF是平行四边形,(3分)∴AC∥FG,又因为FG⊂平面DEF,AC⊄平面EDF∴AC∥平面DEF(5分)(2)∵ABCD是正方形,ABEF是直角梯形,∠F AB=90°,∴DA⊥AB,F A⊥AB∵AD∩AF=A,∴AB⊥平面AFD,同理可得AB⊥平面EBC.又∵AB⊂平面ABCD,所以平面AFD⊥平面ABCD,又因为二面角E﹣AB﹣D为600,所以∠F AD=∠EBC=60°,BE=2AF=4,BC=2,由余弦定理得EC=2,所以EC⊥BC,又因为AB⊥平面EBC,∴EC⊥AB,所以EC⊥平面ABCD,(7分)法一:以C为坐标原点,CB为x轴、CD为y轴、CE为z轴建立空间直角坐标系.则C(0,0,0),D(0,2,0),E(0,0,2),F(1,2,),(8分)所以,,,设平面DEF的一个法向量为,则即令z=,则x=﹣3,y=3,所以(11分)设直线CE和平面DEF所成角为θ,则sinθ=|cos=|(12分)19.(12分)为迎接8月8日的“全民健身日”,某大学学生会从全体男生中随机抽取16名男生参加1500米中长跑测试,经测试得到每个男生的跑步所用时间的茎叶图(小数点前一位数字为茎,小数点的后一位数字为叶),如图,若跑步时间不高于5.6秒,则称为“好体能”.(Ⅰ)写出这组数据的众数和中位数;(Ⅱ)要从这16人中随机选取3人,求至少有2人是“好体能”的概率;(Ⅲ)以这16人的样本数据来估计整个学校男生的总体数据,若从该校男生(人数众多)任取3人,记X表示抽到“好体能”学生的人数,求X的分布列及数学期望.【解答】解:(I)这组数据的众数和中位数分别是 5.8,5.8;………………………………………………………………(3分)(II)设求至少有2人是“好体能”的事件为A,则事件A包含得基本事件个数为;总的基本事件个数为,…………………………………………(7分)(Ⅲ)X的可能取值为0,1,2,3,由于该校男生人数众多,故X近似服从二项分布……………………………………(9分),,,X的分布列为故X的数学期望………………………………………………………………………1(2分)20.(12分)设椭圆+=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为,|AB|=.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,1与直线AB交于点M,且点P,M 均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.【解答】解:(1)设椭圆的焦距为2c,由已知可得,又a2=b2+c2,解得a=3,b=2,∴椭圆的方程为:,(Ⅱ)设点P(x1,y1),M(x2,y2),(x2>x1>0).则Q(﹣x1,﹣y1).∵△BPM的面积是△BPQ面积的2倍,∴|PM|=2|PQ|,从而x2﹣x1=2[x1﹣(﹣x1)],∴x2=5x1,易知直线AB的方程为:2x+3y=6.由,可得>0.由,可得,⇒,⇒18k2+25k+8=0,解得k=﹣或k=﹣.由>0.可得k,故k=﹣,21.(12分)已知函数f(x)=lnx.(Ⅰ)求函数g(x)=f(x﹣1)﹣x+2的最大值;(Ⅱ)已知0<a<b,求证.【解答】(Ⅰ)解:g(x)=f(x﹣1)﹣x+2=ln(x﹣1)﹣x+2,.当x∈(1,2)时,g'(x)>0;当x∈(2,+∞)时,g'(x)<0,则g(x)在(1,2)单调递增,在(2,+∞)单调递减.∴g(x)=ln(x﹣1)﹣x+2的最大值为g(2)=0;(Ⅱ)证明:要证,只要证,即证:,∵0<a<b,有,构造函数,则,当x>1时,F'(x)>0,可得F(x)在(1,+∞)单调递增,有F(x)>F(1)=0,∴lnx>,∴有.[选修4-4:坐标系与参数方程选讲]22.(10分)已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系.圆O的极坐标方程为.(Ⅰ)求圆心的极坐标;(Ⅱ)设点M的直角坐标为(2,1),直线l与圆O的交点为A,B,求|MA|•|MB|的值.【解答】解:(I)圆O的极坐标方程为.由题意可知圆的直角坐标系方程为x2+y2=2x+2y,整理得:(x﹣1)2+(y﹣1)2=2,圆心坐标为(1,1),所以圆心的极坐标为;(II)因为圆的直角坐标系方程为x2+y2=2x+2y,直线方程为,(t为参数)t1和t2为A和B对应的参数,得到,所以|MA|•|MB|=1.[选修4-5:不等式选讲]23.已知关于x的不等式|2x﹣1|﹣|x﹣1|≤log2a.(Ⅰ)当a=8时,求不等式解集;(Ⅱ)若不等式有解,求a的范围.【解答】解:(I)当a=8时,不等式|2x﹣1|﹣|x﹣1|≤log2a化为|2x﹣1|﹣|x﹣1|≤3,所以,解得不等式的解集为{x|﹣3≤x≤3};…………………………(5分)(II)令f(x)=|2x﹣1|﹣|x﹣1|,由题意可知;log2a≥f(x)min,又因为,所以,所以log2a≥﹣,解得.……………………………(10分)。

河北省鸡泽一中2017-2018学年高二下学期第一次月考数

河北省鸡泽一中2017-2018学年高二下学期第一次月考数

2017-2018学年第二学期第一次月考高二数学试题(理科)第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知随机变量ξ服从正态分布N(2,σ2).且P(ξ<4)=0.8,则P(0<ξ<2)等于( )A. 0.6B. 0.4C. 0.3D. 0.2【答案】C【解析】∵P(ξ<4)=0.8,∴P(ξ>4)=0.2,由题意知图象的对称轴为直线x=2,P(ξ<0)=P(ξ>4)=0.2,∴P(0<ξ<4)=1-P(ξ<0)-P(ξ>4)=0.6.∴P(0<ξ<2)=P(0<ξ<4)=0.32. 已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( )A. -4B. -3C. -2D. -1【答案】D【解析】由题意知:,解得,故选D.【考点定位】本小题主要考查二项展开式,二项式定理在高考中主要以小题的形式考查,属容易题,熟练基础知识是解答好本类题目的关键.3. 随机变量ξ的概率分布规律为P(X=n)=(n=1、2、3、4),其中a为常数,则的值为( )A. B. C. D.【答案】D【解析】,,,故选D.4. 投掷两颗骰子,得到其向上的点数分别为m和n,则复数(m+n i)(n-m i)为实数的概率为( )A. B. C. D.【答案】C【解析】由为实数,所以,故,则可以取,共种情形,所以概率为,故选C.5. 若,,,则的大小关系为A. B.C. D.【答案】B【解析】由题意,因为,所以,故选B.6. 有6张卡片分别标有1、2、3、4、5、6,将其排成3行2列,要求每一行的两张卡片上的数字之和均不等于7,则不同的排法种数是( )A. 192B. 384C. 432D. 448【答案】B【解析】由题意,如图所示,先安排第一行第一列,有种方法,在安排第一行第二列,只有种方法,接着安排与第一行第二列的数的和为的那个数,根据分步计数原理得:共有不同的排法种,故选B.7. 在R上定义运算⊗:x⊗y=x(1-y).若不等式(x-a)⊗(x+a)<1对任意实数x都成立,则( )A. B. 0<a<2 C. -1<a<1 D.【答案】A【解析】由已知,得,即,令,只需,又,由,所以,即,解得,故选A.8. 已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( )A. B. C. D.【答案】D【解析】由题设可知取出的不放回,且每只灯泡被取出的机会相等,因此第一次取出螺口灯泡后剩余9只灯泡,其中有7只是卡口灯泡,故所求事件的概率是,应选答案D。

高二数学理2017-2018学年度第二学期中期质量检测试题及答案

高二数学理2017-2018学年度第二学期中期质量检测试题及答案

2017-2018学年度第二学期中期质量检测高二数学(理科)试卷满分:150分 时间:120分钟注意事项:1.答题前请在答题卡上填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、单项选择题(共12题,每小题5分,共60分)1.曲线曲线在32y x =-点x=-1处切线的斜率为( ) A. -1 B. 1 C. -5 D. 3 2. 已知函数()3232f x ax x =++,若()'14f -=,则()a =A.103 B. 133 C. 163 D. 1933.已知(2,1,3)a =-,()1,,2b x =-,若0a b ⋅=,则()x =A. -4B. 8C. -8D. -6 4. 下列求导运算正确的是( )'211.1A x x x ⎛⎫+=+ ⎪⎝⎭ ()'2.cos 2sin B x x x x =- ()'3.33log e x x C = ()'21.ln 2logx D x =5.若(2,2,2)a =--,()2,0,4b =,则a与b 的夹角的余弦值为( )A.15B. 5-15- D.0 6.已知(2,3,1)a =--,()2,0,4b =,()4,6,2c =--,则下列结论正确的是( ).//,//A a c b c .//,B a b a c ⊥ .//,C a c a b ⊥ D.以上都不对7.已知函数()()3'0,3f x x f x ==,则0x 的值为( )A. -1B. 1C. 1或或9.已知曲线2122y x =-上一点 21,3P ⎛⎫- ⎪⎝⎭ ,则过点 P 的切线的倾斜角为( )A. 30B. 45C. 135D. 60 9.函数22ln y x x =-的单调增区间为( ) A. (﹣∞,﹣1)和(0,1) B. (1,+∞) C. (﹣1,0)和(1,+∞) D. (0,1)10. 函数()31443f x x x =-+在[]0,3上的最值是( )A. 最大值是4,最小值是13-B. 最大值是2,最小值是13-C. 最大值是4,最小值是43-D. 最大值是2,最小值是43-11.若2x =- 或4x =是函数()32f x x ax bx =++的两个极值点,则有( ).2,4A a b =-= .3,24B a b =-=- .1,3C a b == .2,4D a b ==-12.已知()y x f x =⋅'的图象如图所示,则()f x 的一个可能图象是( )A.B.C.D.二、填空题(共4题,每小题5分,共20分)13.函数ln y x x =-的单调递减区间是_________14.若函数()y f x =的图象在4x =处的切线方程是29y x =-+,则()()44f f -'=__________. 15.已知函数()()3261y f x x ax a x ==++++有极大值和极小值,则a 的取值范围是__________ 16. 在正方体ABCD-A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为________.三、解答题(共6题,17题10分,18-22每题12分,共70分) 17.求下列函数的导数(1)cos x e xy x=(2)()1ln 21y x x=--18.如图,三角形PDC所在的平面与长方形ABCD 所在的平面垂直,4PD PC ==,6AB =,3BC =.点E 是CD 边的中点,点F G 、分别在线段AB BC 、上,且2AF FB =,2CG GB =. (1)证明: PE FG ⊥;(2)求直线PA 与直线FG 所成角的余弦值.19. 已知函数()3293f x x x x a --=+(a 为常数) (1)求()f x 的单调区间;(2)函数()f x 在[]2,2-上的最大值为10,求a 的值20.如图,四棱锥P ABCD-中,PA ABCD ⊥平面,梯形ABCD ,//AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (1)证明://MN 平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值21.已知函数()32f x x x a bx c +=++在点0x 处取得极小值5-,其导函数()'y f x =的图像经过点()0,0和点()2,0,(1)求,a b 的值;(2)求0x 及函数()f x 的表达式22. 已知函数()()21ln ,22f x x ax x a R -=-∈(1)若1a =,求曲线()y f x =在点()()1,1f 处的切线方程; (2)若函数()f x 在定义域内是单调递增,求实数a 的取值范围。

河北省鸡泽县第一中学2017_2018学年高二数学下学期期末考试试题理(含解析)

河北省鸡泽县第一中学2017_2018学年高二数学下学期期末考试试题理(含解析)

2017~2018年度第二学期期末考试试题高二数学(理)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.1.设全集,,集合,则集合()A. B. C. D.【答案】B【解析】由题得,,所以,,故选B.2.2.2017年1月我市某校高三年级1600名学生参加了2017届全市高三期末联考,已知数学考试成绩(试卷满分150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的,则此次期末联考中成绩不低于120分的学生人数约为A. 120B. 160C. 200D. 240【答案】C【解析】结合正态分布图象的性质可得:此次期末联考中成绩不低于120分的学生人数约为. 选C.3.3.已知具有线性相关的变量,设其样本点为,回归直线方程为,若,(为原点),则()A. B. C. D.【答案】B【解析】因为,所以,因此,选B.4.4.设且,则“”是“”的( )A. 必要不充分条件B. 充要条件C. 既不充分也不必要条件D. 充分不必要条件【答案】C【解析】或;而时,有可能为.所以两者没有包含关系,故选.5.5.已知,,,则,,的大小关系为()A. B. C. D.【答案】A【解析】由题易知:,∴故选:A点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小.6.6.从5种主料中选2种,8种辅料中选3种来烹饪一道菜,烹饪方式有5种,那么最多可以烹饪出不同的菜的种数为A. 18B. 200C. 2800D. 33600【答案】C【解析】【分析】根据组合定义以及分布计数原理列式求解.【详解】从5种主料中选2种,有种方法,从8种辅料中选3种,有种方法,根据分布计数原理得烹饪出不同的菜的种数为,选C.【点睛】求解排列、组合问题常用的解题方法:分布计数原理与分类计数原理,具体问题可使用对应方法:如 (1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.7.7.已知函数f(x)=x3-ax-1,若f(x)在(-1,1)上单调递减,则a的取值范围为( )A. a≥3B. a>3C. a≤3D. a<3【答案】A【解析】∵f(x)=x3−ax−1,∴f′(x)=3x2−a,要使f(x)在(−1,1)上单调递减,则f′(x)⩽0在x∈(−1,1)上恒成立,则3x2−a⩽0,即a⩾3x2,在x∈(−1,1)上恒成立,在x∈(−1,1)上,3x2<3,即a⩾3,本题选择A选项.8.8.甲乙等人参加米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是()A. B. C. D.【答案】D【解析】由题得甲不跑第一棒的总的基本事件有个,甲不跑第一棒,乙不跑第二棒的基本事件有,由古典概型的概率公式得在甲不跑第一棒的条件下,乙不跑第二棒的概率是.故选D.9.9.已知是定义在上的偶函数,且在上为增函数,则的解集为()A. B. C. D.【答案】B【解析】是定义在上的偶函数,,即,则函数的定义域为函数在上为增函数,故两边同时平方解得,故选10.10.若点是曲线上任意一点,则点到直线的距离的最小值为()A. B. C. D.【答案】C【解析】点是曲线上任意一点,所以当曲线在点P的切线与直线平行时,点P到直线的距离的最小,直线的斜率为1,由,解得或(舍).所以曲线与直线的切点为.点到直线的距离最小值是.选C.11.11.函数y=2x2–e|x|在[–2,2]的图像大致为()A. B. C. D.【答案】D【解析】试题分析:函数f(x)=2x2–e|x|在[–2,2]上是偶函数,其图象关于轴对称,因为,所以排除选项;当时,有一零点,设为,当时,为减函数,当时,为增函数.故选D视频12.12.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为A. B. C. D.【答案】B【解析】【分析】构造函数,则得的单调性,再根据为奇函数得,转化不等式为,最后根据单调性性质解不等式.【详解】构造函数,则,所以在上单独递减,因为为奇函数,所以.因此不等式等价于,即,选B.【点睛】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等二、填空题(本大题共4小题,每小题5分,共20分)13.13.已知命题,,则是_________________【答案】,【解析】【分析】根据的否定为写结果.【详解】因为的否定为,所以是,.【点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定. 的否定为,的否定为.14.14.设,则二项式的展开式中含项的系数为__________.【答案】192【解析】因为,所以,由于通项公式,令,则,应填答案。

精品解析:河北省鸡泽县第一中学2017-2018学年高二10月月考数学(理)试题(原卷版)

精品解析:河北省鸡泽县第一中学2017-2018学年高二10月月考数学(理)试题(原卷版)

2017--2018学年第一学期10月月考高二数学(理)试题一、选择题(本大题共12小题,每小题5分,共60分.)1. 若不等式2320ax x -+>的解集为{1?x x <或}x b >,则a b +=A. 1B. 2C. 3D. 42. 下列选项中正确的是( )A. 若ac bc >,则a b >B. 若a b >,c d >,则ac bd >C. 若a b >,则11a b <D. 若22ac bc >,则a b >3. 设椭圆C:221259x y +=的左、右焦点分别为F 1,F 2,A 是C 上任意一点,则三角形AF 1F 2的周长为( ) A. 9 B. 13 C. 15 D. 184. 已知等比数列{}n a 满足264,64a a ==,则4a =A. -16B. 16C. 16±D. 32 5. 已知等差数列{}n a 的前项和,若,则A. 27B. 18C. 9D. 3 6. 若在ABC ∆,“A B >”是“sin sin A B >”的( )条件A . 充分非必要 B. 必要非充分 C. 充要 D. 既非充分也非必要7. 已知数列{}n a 的前n 项和3n n S a =+,则“1a =-”是“{}n a 为等比数列”的A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分又不必要条件8. 已知,x y R ∈,且满足34,2y x x y x ≥⎧⎪+≤⎨⎪≥-⎩则2z x y =+的最大值为A. 10B. 6C. 5D. 39. 下列说法正确的是A. 命题“若21x >,则1x >”的否命题为“若21x >,则1x ≤”B. 命题“0x R ∃∈,201x >”的否定是“x ∀∈R ,21x ≤”C. 0x R ∃∈,使得00x e ≤D. “6x π≠”是“1sin 2x ≠”的充分条件 10. 已知等差数列{}na ,{}n b 的前n 项和分别为n S ,n T ,且有231n n S n T n =+,则77a b =( ) A. 1323 B. 12C. 1320D. 2311. 下列是有关ABC ∆的几个命题,①若tan tan tan 0A B C ++>,则ABC ∆是锐角三角形;②若cos cos a A b B =,则ABC ∆是等腰三角形;③若cos cos a B b A b +=,则ABC ∆是等腰三角形;④若 cos sin A B =,则ABC ∆是直角三角形; 其中所有正确命题的序号是A. ①③B. ②④C. ①④D. ②③ 12. 已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为A. 3B. 2C. 22D. 23 二、填空题(本大题共4小题,每小题5分,共20分.)13. 已知1x >,则()11f x x x =+-的最小值是__________. 14. 已知椭圆C 经过点3(1,)2M 和点3(3,)N ,则其标准方程为_______. 15. 若0,0a b >>,则()21a b a b ⎛⎫++ ⎪⎝⎭的最小值是_______ 16. 如图,为测量出高MN ,选择A 和另一座山山顶C 为测量观测点,从A 点测得M 点的仰角060MAN ∠=,C 点的仰角045CAB ∠=以及075MAC ∠=;从C 点测得060MCA ∠=.已知山高100BC m =,则山高MN =__________m .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为______元.18. 已知等比数列{}n a 是递增数列,其前n 项和为n S ,且3213,3S a ==.(I )求数列{}n a 的通项公式;(II )设n b n =,求数列{}n n a b 的前n 项和n T .19. 在()f x 中,角[]1,2的对边分别为a ,满足(2)cos cos b c A a C -=. (Ⅰ)求角A 的大小(Ⅱ)若3a =,求()()f x g x ≥的周长最大值.20. 已知数列{}n a 的11a =,前n 项和为n S ,且11,,n n S a +-成等差数列.(1)求数列{n a }的通项公式;(2)设数列{}n b 满足n b =31(2)[log 2]n n a ++,求数列{n b }的前n 项和n T .21. 在ABC ∆中,设边,,a b c 所对的角分别为,,A B C ,,,A B C 都不是直角,且22cos cos 8cos ac B bc A a b A +=-+(Ⅰ)若sin 2sin B C =,求,b c 的值;(Ⅱ)若a =ABC ∆面积的最大值.22. 如图,已知椭圆()2222:10x y C a b a b+=>>的左焦点为(1,0)F -,过点F 做x 轴的垂线交椭圆于A ,B 两点,且3AB =.(1)求椭圆C 的标准方程:(2)若M ,N 为椭圆上异于点A 的两点,且直线,AM AN 的倾斜角互补,问直线MN 的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.。

河北省鸡泽县2017_2018学年高二数学10月月考试题理201711060131

河北省鸡泽县2017_2018学年高二数学10月月考试题理201711060131

2017--2018学年第一学期10月月考高二数学(理)试题一、选择题(本大题共12小题,每小题5分,共60分.)1.若不等式ax 2 3x 2 0 的解集为{x x 1 或x b,则a bA.1 B.2 C.3 D.42.下列命题正确的是A. 若ac bc,则a bB. 若a b,c d,则ac bdC. 若a b,则1 1D. 若,则ac 2 bc2 a ba bx y2 23.设椭圆C: 1的左、右焦点分别为F1, F2 ,P是C上任意一点,则PF F的周长1 225 9为A.9 B.13 C.15 D.184.已知等比数列满足,则a a 2 4,a 6 64na4A.-16 B.16 C.16 D.325.已知等差数列的前项和,若,则a n aS 2 a a 9S n n 3 109A. 27B. 18C.9D. 36.在ABC中,“A B”是“sin A sin B”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件7.已知数列a 的前n项和S 3n a,则“a1”是“为等比数列”的an n nA. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分又不必要条件y x8.已知x, y R,且满足x3y4, 则z x 2y的最大值为x 2A.10B.6C.5D.39.下列说法正确的是A. 命题“若x2 1,则x1”的否命题为“若x2 1,则x1”- 1 -B. 命题“ , ”的否定是“ R , ”x 2x x 2 1xR1C. ,使得D.“”是“”的充分条件e xxx Rxsin1 06 2S2n 10.已知等差数列{b }的前 项和分别为 ,且有,则{ a } 、 n S 、TnnnnnT3n1na 7b713 1 13 A.B.C.D.2322011.下列是有关 ABC 的几个命题,23①若 tan Atan B tan C 0 ,则 ABC 是锐角三角形;②若 a cos A b cos B ,则 ABC是等腰三角形;③若 a cos Bb cos A b ,则 ABC 是等腰三角形;④若 cos A sin B ,则ABC是直角三角形; 其中所有正确命题的序号是A .①③B .②④C .①④D . ②③12.已知 a ,b ,c 分别为 ABC 的三个内角 A , B ,C 的对边, a =2,且(2 b )(sin A sin B ) (c b )sin CABC,则面积的最大值为A .3 B . 2 C . 2 2D . 2 3二、填空题(本大题共 4小题,每小题 5分,共 20分.) 13.已知 x1,,则1 最小值是_________.x 1 x3 314.已知椭圆C 经过点 M (1, )和点 N ( 3, ) ,则其标准方程为_______.2 22 115. 若 a0,b 0 ,则的最小值是_______a ba b16. 如图,为测量山高 MN ,选择 A 和另一座山的山顶C 为测量观测 点 .从 A 点 测 得M 点 的 仰 角 MAN 60 , C 点 的 仰 角CAB45 MAC75 C MCA60以及;从点测得.已知山高BC100m MN m,则山高________ .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企- 2 -业现有甲材料150kg ,乙材料90kg ,求在不超过600个工时的条件下,生产产品 A 和产品 B 的利 润之和的最大值(元).18.(本小题满分 12分)已知等比数列a 是递增数列,其前 n 项和为 Snn且 .S 3 13,a 2 3,(I )求数列a 的通项公式; nnanb3nnn(II )设 ,求数列的前 项和 .b 1log a n T.19.(本小题满分 12分) 在ABC 中,角 A , B ,C 的对边分别为 a ,b ,c ,满足 (2b c ) cos A a cos C .(Ⅰ)求角 A 的大小 (Ⅱ)若 a3,求 ABC 的周长最大值.20.(本小题满分 12分)已知数列的,前 项和为 ,且 成等差数列.a1a 1n S1,Sn,an nn 1(1)求数列{ }的通项公式;an1(2)设数列满足= ,求数列{ }的前 n 项和 .bbbTnnnann(2)[log2]3 n21.(本小题满分12分)△ABC中,A,B,C都不是直角,且ac B bc A a2b2Acos cos8cos(Ⅰ)若sin B2sin C,求b,c的值;(Ⅱ)若a6,求ABC面积的最大值.- 3 -x y2222. (本小题满分12分)如图,已知椭圆的左焦点为,过C:1a b0F(1,0)a b22点F做x轴的垂线交椭圆于A,B两点,且AB3.(1)求椭圆C的标准方程:(2)若M,N为椭圆上异于点A的两点,且直线AM,AN的倾斜角互补,问直线MN的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.- 4 -高二第二次月考数学(理)答案xy3 2 222CDDBA CADBC A A3, 1 ,,1504317. 17.解:设生产产品 A x 件,产品 B y 件,依题意,得x 0, y 0, 1.5 0.5 150x y x 0.3y 90, 5x 3y 600, ……………………………5分 设生产产品 A,产品 B 的利润之和为 z 元,则 z2100x900y .画出可行域,x 60,max216000 z易知最优解为此时.………………………10分y 100,18.解:(I)设的公比为,aqn2a a q a q 13111由已知得a q 31a91a11或解得1q 3q3又因为数列为递增数列anaq 3所以11,∴a 3n1(n N*).………………………………6分n(II),3n1bn n a b nn nT123n1n2333n3T n 3232333n3 n1n n n -2n 321nnT133-3(-)321 2T n(21)3nn414.………………………………12分19.(本小题满分12分)(I)解:由(2b c)cos A a cos C及正弦定理,得- 5 -(2sin B sin C)cos A sin A cos C…………………………………………3分2sin B cos A sin C cos A sin A cos C2sin B cos A sin(C A)sin Bsin BB (0,)A (0,)cos A12A3…………………………………………6分(II)解:由(I)得,由正弦定理得b c a323A3sin B sin C sin A32所以b 23sin B;c 23sin CABC 323sinB23sin(B)的周长…………………………………9分l3323sinB23(sinBcos cosBsin)33333sinB3cosB(0,2)36sin(B)B63当时,的周长取得最大值为9.…………………………………12分BABC320.(本小题满分12分)(1)∵-1,S n,a n+1成等差数列.∴2S n=a n+1-1,①当n≥2时,2S n-1=a n-1,②①-②,得2(S n-S n-1)=a n+1-a n,a∴3a n=a n+1,∴13.nana当n=1时,由①得2S1=2a1=a2-1,a1=1,∴a2=3,∴23.a1∴{a n}是以1为首项,3为公比的等比数列,∴a n=3n-1.………………………6分- 6 -111(2)∴b n ===.()n 1 (n 2)n 1 n 2 ∴Tn1 1 1 1 1 1 1 1......2 3 3 4 4 5 n 1 n 21 1 n -2 n 2 2 n2……………………12分21.(本小题满分 12分)ac bbca222222解:(1)2ac2bcb 2c 2 a 2 8cos A2bc cos A 8cos Acos Abc 4由正弦定理得b2cb 2 2,c 2(2) a 2 b 2 c 22bc cos A 2bc 2bc cos A 即 688cos Acos1 当且仅当 时取等号b cA41 sin 15sin AS bc A Sbc A151 sin 15 42 222,所以面积最大值为15222.解:(1)由题意可知 c1,…………………1分b2b22令 xc ,代入椭圆可得,所以3,又 a 2 b 2 1,yaa两式联立解得: a 24,b 2 3 ,………………………………………………3分x y22143…………………………………………………4分(2)由(1)可知,F (1,0),代入椭圆可得y3,所以(1,3),…………5分A22因为直线AM,AN的倾斜角互补,所以直线AM的斜率与AN的斜率互为相反数;- 7 -3xy22y k (x 1)1可设直线 AM 方程为: ,代入得:24 3 (3 4k )x4k (3 2k )x 4k12k3222, …………………………………7分3设 M (x , y ) ,N (x , y ) ,因为点 A (1, ) 在椭圆上, MMNN24k12k 3224k12k 33所以 ,,,……8分1xxykx kMMMM223 4k 3 4k2又直线 AM 的斜率与 AN 的斜率互为相反数,在上式中以 k 代替 k ,可得xN4k 12k 3 23 4k23 ykxk ,…………………………………10分NN2y yk (x x ) 2k1所以直线 MN 的斜率,kMNMNMNxxxx2MNMN1即直线 MN 的斜率为定值,其值为.…………………………………12分2- 8 -。

河北省邯郸市鸡泽县2017-2018学年高二数学下学期第一次月考试题 理

河北省邯郸市鸡泽县2017-2018学年高二数学下学期第一次月考试题 理

河北省鸡泽一中2017-2018学年高二数学下学期第一次月考试题 理本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知随机变量ξ服从正态分布N (2,σ2).且P (ξ<4)=0.8,则P (0<ξ<2)等于( ) A .0.6 B .0.4 C .0.3D .0.22.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ) A .-4 B .-3 C .-2 D .-13.随机变量ξ的概率分布规律为P (X =n )=a n n +(n =1、2、3、4),其中a 为常数,则P ⎝ ⎛⎭⎪⎫94<X <134的值为( )A .23B .34C .45D .5164.投掷两颗骰子,得到其向上的点数分别为m 和n ,则复数(m +n i)(n -m i)为实数的概率为( )A.13B.14C.16D.1125.若2211d s x x =⎰,,132d e x s x =⎰,则123s s s ,,的大小关系为A .123s s s <<B .213s s s <<C .231s s s <<D .321s s s <<6.有6张卡片分别标有1、2、3、4、5、6,将其排成3行2列,要求每一行的两张卡片上的数字之和均不等于7,则不同的排法种数是( ) A .192 B .384 C .432D .4487.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 都成立,则( )A .-12<a <32B .0<a <2C .-1<a <1D .-32<a <128.已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( )A.310 B.29 C.78D.799.直线3sin 20(cos 20x t t y t ⎧=+⎪⎨=-⎪⎩为参数) 的倾斜角是( )A.20B. 70C. 110D. 16010.一个电路如图所示,A ,B ,C ,D ,E ,F 为6个开关,其闭合的概率都是12,且是相互独立的,则灯亮的概率是( )A.164 B.5564 C.18 D.11611.如图所示,用6种不同的颜色把图中A 、B 、C 、D 四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有( )A .400种B .480种C .460种D .496种12单位:,的单位:m /s )行驶至停止.在此期间汽车继续行驶的距离(单位:m )是A .125ln5+B .425ln5+ D .450ln 2+ 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.绍兴臭豆腐闻名全国,一外地学者来绍兴旅游,买了两串臭豆腐,每串3颗(如图).规定:每串臭豆腐只能自左向右一颗一颗地吃,且两串可以自由交替吃.请问:该学者将这两串臭豆腐吃完,有________种不同的吃法.(用数字作答)14.,则33()d f x x -=⎰ . 15.设复数z 满足|z -3-4i|=1,则|z |的最大值是________.16.已知曲线C 的参数方程为x ty t⎧=⎪⎨=⎪⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_____________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.已知复数z =(2+i)m 2-6m1-i-2(1-i),当实数m 取什么值时,复数z 是(1)虚数,(2)纯虚数.18.已知(x -12x)n的展开式中,前三项系数的绝对值依次成等差数列.(1)求展开式中的常数项; (2)求展开式中所有整式项.19.电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?(2)方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望E (X )和方差D (X ).附:K 2=n ad -bc 2a +bc +d a +cb +d.20.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^;(2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y ^=b ^x +a ^中,b =∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a ^=y -b ^x ,其中x ,y 为样本平均值.21.已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).22.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X的分布列及数学期望.参考答案一、1-5 CDDCB 6-10BADCB 11-12BC二、13.解析: 如图所示,先吃A 的情况,共有10种,如果先吃D 情况相同,共有20种.答案: 2014.【解析】,其中41,即15.解析:设复数z =x +yi(x ,y ∈R),由复数的几何意义及模的定义可知,|z -3-4i|=1表示复平面内点(x ,y)到点(3,4)的距离为1,则点(x ,y)的轨迹为以点(3,4)为圆心,1为半径的圆.又点(3,4)到原点的距离为5,从而|z|的最大值为5+1=6. 答案:616.sin 4πρθ⎛⎫+= ⎪⎝⎭;曲线C 的普通方程为222x y +=,其在点()1,1处的切线l 的方程为2x y +=,对应的极坐标方程为cos sin 2ρθρθ+=,即sin 4πρθ⎛⎫+= ⎪⎝⎭.三、17.题由于m ∈R ,复数z 可表示为 z =(2+i)m2-3m(1+i)-2(1-i) =(2m2-3m -2)+(m2-3m +2)i , (1)当m2-3m +2≠0, 即m≠2且m≠1时,z 为虚数.(2)当⎩⎪⎨⎪⎧2m2-3m -2=0m2-3m +2≠0,即m =-12时,z 为纯虚数.所以当⎩⎪⎨⎪⎧x =0y =0或⎩⎪⎨⎪⎧x =32y =34时,z1,z2互为共轭复数.第18题(1);(2)x4,-4x3,7x2,-7x ,835. (1) Tr +1=C·()n-r·()r·(-1)r , ∴前三项系数的绝对值分别为C ,21C ,41C ,由题意知C =C +41C ,∴n =1+81n(n -1),n ∈N*,解得n =8或n =1(舍去),∴Tk +1=C·()8-k·(-x 1)k =C·(-21)k·x4-k,0≤k ≤8,令4-k =0得k =4,∴展开式中的常数项为T5=C(-21)4=835.(2)要使Tk +1为整式项,需4-k 为非负数,且0≤k ≤8,∴k =0,1,2,3,4. ∴展开式中的整式项为:x4,-4x3,7x2,-7x ,835.20.(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:将2×2K2=n1+n2+n+1n +2n11n22-n12n212==≈3.030.因为3.030<3.841,所以我们没有充分理由认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率41.由题意知X ~B(3,41),从而X 的分布列为E(X)=np =3×41=.D(X)=np(1-p)=3×41×=【解】 (1)由题意知n =10,x =1n ∑i =1nx i =8010=8, y =1n ∑i =1ny i =2010=2,又l xx =∑i =1nx 2i -n x 2=720-10×82=80,l xy =∑i =1nx i y i -n x y =184-10×8×2=24,由此得b ^=l xy l xx =2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4.故所求线性回归方程为y =0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元).21.【解析】将45cos 55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程22(4)(5)25x y -+-=,即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得, 28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=; (Ⅱ)2C 的普通方程为2220x y y +-=, 由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩, ∴1C 与2C4π),(2,)2π.22.解析: (1)记“甲队以3∶0胜利”为事件A1,“甲队以3∶1胜利”为事件A2,“甲队以3∶2胜利”为事件A3,由题意知,各局比赛结果相互独立,故P(A1)=⎝ ⎛⎭⎪⎫233=827,P(A2)=C23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-23×23=827,P(A3)=C24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-232×12=427.所以甲队以3∶0胜利、以3∶1胜利的概率都为827,以3∶2胜利的概率为427.(2)设“乙队以3∶2胜利”为事件A4, 由题意知,各局比赛结果相互独立,所以P(A4)=C24⎝ ⎛⎭⎪⎫1-232⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-12=427.由题意知,随机变量X 的所有可能的取值为0,1,2,3,根据事件的互斥性得 P(X =0)=P(A1+A2)=P(A1)+P(A2)=1627.又P(X =1)=P(A3)=427,P(X =2)=P(A4)=427,P(X =3)=1-P(X =0)-P(X =1)-P(X =2)=327,故X 的分布列为所以E(X)=0×1627+1×427+2×27+3×27=9.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017—2018学年第二学期期中考试
高二数学理科试题答案
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.B
2.D
3.C
4.C
5.B
6.D
7.B
8. A
9.D 10. A 11.D 12.A
二.填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
13. 2 14. -160 15. 22e 2π--.
16. 1 三,解答题(共70分,解答应写出文字说明,证明过程或演算步骤)
17.证明:假设2,
0,0.p q p q +>>>则()33223338p q p p q pq q +=+++> 又332p q +=∴代入上式得:
()36pq p q +>,即()2pq p q +>(1) 又由332p q +=,即()()
222p q p pq q +-+=代入(1)得: ()()()22.pq p q p q p pq q +>+-+这与()2
0p q -≥矛盾, ∴假设2p q +>不成立,故2p q +≤。

18.解:(I)当m e =时, ()ln e f x x x
=+
,其定义域为()0.+∞ ()221e x e f x x x x ='-=-,当0x e <<时, ()20x e f x x
-'=<; 当x e >时, ()20x e f x x -'=>故()f x 在()0,e 上单调递减,在(),e +∞上单调递增 若函数上有极值点,
须11,1a e a e a -<⎧⎪+>⎨⎪>⎩
解得11e a e -<<+
(II )()()2133x m x g x f x x x =-=--' 32
333x m x x --=,其定义域为()0,+∞ 令()0g x =,得313m x x =-+,令()313
h x x x =-+,其定义域为()0,+∞. 则()g x 的零点为()h x 与y m =的公共点的横坐标.
()()()2111h x x x x =-+=-+-'
故当1x =时, ()h x 取得最大值()213
h =,又0,x →时, ()0h x →; x →+∞时, ()h x →-∞,所以当203
m <<时, ()g x 有两个零点 19.(1)21c x y C e =适宜 (2)由21c x y C e =得21ln ln y C x C =+
令ln y k =, 2=C β,
1=ln C α 由图表中的数据可知351==1404β∧, 3=4
α∧- ∴13=44k x ∧- ∴y 关于x 的回归方程为3444=0.47x x y e
e -= (3)28x =时,由回归方程得=0.471096.63=515.4y ∧⨯, 0.08515.4 2.81048.432z ∧=⨯-+=
即鸡舍的温度为28℃时,鸡的时段产量的预报值为515.4,投入成本的预报值为48.432.
20.解(1)由题意知, ξ的值为0,1,2,3. ()034
6310C C 10C 6P ξ===, ()124
6310C C 11C 2
P ξ===, ()2146310C C 32C 10P ξ===, ()3036
310C C 13C 30
P ξ===. ∴ξ的分布列为:。

相关文档
最新文档