数学必修3章末复习题答案
高中数学必修3第三章课后习题解答
![高中数学必修3第三章课后习题解答](https://img.taocdn.com/s3/m/119e7112783e0912a3162a28.png)
新课程标准数学必修3第三章课后习题解答第三章概率3.1随机事件的概率练习(P113)1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面.(2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.2、略3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1.练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次.练习(P121)1、0.72、0.6153、0.44、D5、B习题3.1 A组(P123)1、D.2、(1)0;(2)0.2;(3)1.3、(1)430.067645≈;(2)900.140645≈;(3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率练习(P140)1、(1)1;(2)38.2、如果射到靶子上任何一点是等可能的,那么大约有100个镖落在红色区域.说明:在实际投镖中,命中率可能不同,这里既有技术方面的因素,又是随机因素的影响,所以在投掷飞镖、射击或射箭比赛中不会以一枪或一箭定输赢,而是取多次成绩的总和,这就是为了减少随机因素的影响.习题3.3 A组(P142)1、(1)49;(2)13;(3)29;(4)23;(5)59.2、(1)126;(2)12;(3)326;(4)326;(5)12;(6)313.说明:(4)是指落在6,23,9三个相邻区域的情况,而不是编号为6,7,8,9,四个区域.3、(1)25; (2)115; (3)35. 说明:本题假设在任何时间到达路口是等可能的. 习题3.3 B 组(P142) 1、设甲到达的时间为x ,乙到达的时间为y ,则0,24x y <<. 若至少一般船在停靠泊位时必须等待,则06y x <-<或06x y <-<,必须等待的概率为:22189711241616-=-=.2、D .第三章 复习参考题A 组(P145)1、56,16,23. 2、(1)0.548; (2)0.186; (3)0.266.3、(1)38; (2)14.4、(1)813; (2)726; (3)665. 5、分别计算两球均为白球的概率、均为红球的概率、均为黑球的概率,然后相加,得1223311166666636⨯⨯⨯++=⨯⨯⨯. 6、56. 说明:利用对立事件计算会比较简单. 第三章 复习参考题B 组(P146)1、第一步,先计算出现正面次数与反面次数相等的概率46328=. 第二步,利用对称性,即出现正面的次数多于反面次数的概率与出现反面的次数多于正面次数的概率是相等的,所以出现正面的次数多于反面次数的概率为35(1)2816-÷=. 2、(1)是; (2)否; (3)否; (4)是.3、(1)45; (2)15; (3)25; (4)25. 说明:此题属于古典概型的一类“配对问题”,由于这里的数比较小,可以用列举法.4、参考教科书140页例4.。
高中数学人教A版必修三 第三章 概率 章末综合测评及答案
![高中数学人教A版必修三 第三章 概率 章末综合测评及答案](https://img.taocdn.com/s3/m/0628a387f46527d3250ce0b2.png)
会,估计运动会期间不.下.雨.的概率. 【解】 (1)在容量为 30 的样本中,不下雨的天数是 26,以频率
估计概率,4 月份任选一天,西安市不下雨的概率为 2360=1153. (2)称相邻的两个日期为“互邻日期对”(如,1 日与 2 日,2 日与 3
日等).这样,在 4 月份中,前一天为晴天的互邻日期对有 16 个,其中 后一天不下雨的有 14 个,所以晴天的次日不下雨的频率为 78.
(2)该班成绩在[60,100]内的概率是 P(A∪B∪C∪D)=P(A)+P(B)
+P(C)+P(D)=0.17+0.36+0.25+0.15=0.93.
19.(本小题满分 12 分)小王、小李两位同学玩掷骰子(骰子质地均 匀)游戏,规则:小王先掷一枚骰子,向上的点数记为 x;小李后掷一 枚骰子,向上的点数记为 y.
【答案】 C
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分,把答案填在
题中横线上).
13.一个袋子中有 5 个红球,3 个白球,4 个绿球,8 个黑球,如
果随机地摸出一个球,记 A={摸出黑球},B={摸出白球},C={摸出
绿球},D={摸出红球},则 P(A)=________;P(B)=________;P(C∪D)
A,B,C 和 3 名女同学 X,Y,Z,其年级情况如下表:
一年级 二年级 三年级
男同学 A
=________.
【解析】 由古典概型的算法可得 P(A)=280=25,P(B)=230,P(C∪D)
=P(C)+P(D)=240+250=290.
【答案】
2 5
3 20
9 20
14.在区间(0,1)内任取一个数 a,能使方程 x2+2ax+12=0 有两
2024_2025学年高中数学第二章统计章末复习检测卷课时作业含解析新人教A版必修3
![2024_2025学年高中数学第二章统计章末复习检测卷课时作业含解析新人教A版必修3](https://img.taocdn.com/s3/m/cccd116a42323968011ca300a6c30c225901f0c6.png)
章末复习检测卷(二) 统计(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某年级500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是() A.500名学生是总体B.每个被抽查的学生是样本C.抽取的60名学生的体重是一个样本D.抽取的60名学生是样本容量解析:答案:2.某考察团对全国10大城市进行职工人均工资水平x(元)与居民人均消费水平y(元)统计调查,y与x具有相关关系,线性回来方程为y=0.66x+1562,若某城市居民人均消费水平为7675元,估计该城市人均消费额占人均工资收入的百分比约为()A.83% B.72%C.67% D.66%解析:将y=7675代入回来方程,可计算得x≈9262,所以该城市人均消费额占人均工资收入的百分比约为7675÷9262≈0.83,即约为83%.答案: A3.对于数据3,3,2,3,6,3,10,3,6,3,2,有以下结论:①这组数据的众数是3.②这组数据的众数与中位数的数值不等.③这组数据的中位数与平均数的数值相等.④这组数据的平均数与众数的数值相等.其中正确的结论有()A.1个B.2个C.3个D.4个解析: 由题意知,众数与中位数都是3,平均数为4.只有①正确,故选A. 答案: A4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回来方程可能是( ) A .y =-10x +200 B .y =10x +200 C .y =-10x -200D .y =10x -200解析: ∵商品销售量y (件)与销售价格x (元/件)负相关, ∴b <0,解除B ,D.又∵x =0时,y >0,∴故选A. 答案: A5.“互联网+”时代,全民阅读的内涵已然多元化,提倡读书成为一种生活方式.某校为了解中学学生的阅读状况,从该校1 600名高一学生中,采纳分层抽样方法抽取一个容量为200的样本进行调查.若抽到的男生比女生多10人,则该校高一男生共有( )A .760人B .840人C .860人D .940人解析: 本题考查分层抽样.设所抽取的男生、女生分别有x 人、y 人,则⎩⎪⎨⎪⎧x +y =200,x -y =10解得⎩⎪⎨⎪⎧x =105,y =95所以该校高一男生共有105200×1 600=840(人),故选B.答案: B6.(2024·山东日照一中期中考试)对某商店四月内每天的顾客人数进行统计,所得数据的茎叶图如图所示,则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53解析: 由茎叶图,可知中位数为45+472=46,众数为45,极差为68-12=56.答案: A7.为探讨某药品的疗效,选取若干名志愿者进行临床试验,全部志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的依次分别编号为第一组,其次组,…,第五组.如图是依据试验数据制成的频率分布直方图.已知第一组与其次组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .1B .8C .12D .18解析: 由图知,样本总数为N =200.16+0.24=50.设第三组中有疗效的人数为x ,则6+x50=0.36,解得x =12.答案: C8.假如在一次试验中,测得(x ,y )的四组数值分别是A (1,3),B (2,3.8),C (3,5.2),D (4,6),则y 与x 之间的回来直线方程是( )A .y =x +1.9B .y =1.04x +1.9C .y =0.95x +1.04D .y =1.05x -0.9解析: x =14(1+2+3+4)=2.5,y =14(3+3.8+5.2+6)=4.5.因为回来方程过点(x ,y ),代入验证知,应选B.答案: B9.若样本数据x 1,x 2,…,x 2 018的标准差为3,则数据4x 1-1,4x 2-1,…,4x 2 018-1的方差为( )A .11B .12C .143D .144解析: 本题考查数据方差的求解.因为样本数据x 1,x 2,…,x 2 018的标准差为3,所以方差为9,所以数据4x 1-1,4x 2-1,…,4x 2 018-1的方差为42×9=144,故选D.答案: D10.某学校随机抽取20个班,调查各班中有网上购物经验的人数,所得数据的茎叶图如下图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )解析: 借助已知茎叶图得出各小组的频数,再由频率=频数样本容量求出各小组的频率,进一步求出频率组距并得出答案.法一:由题意知样本容量为20,组距为5. 列表如下:分组频数频率 频率组距 [0,5) 1 120 0.01 [5,10) 1 120 0.01 [10,15) 4 15 0.04 [15,20) 2 110 0.02 [20,25) 4 15 0.04 [25,30) 3 320 0.03 [30,35)33200.03[35,40] 2 110 0.02 合计201视察各选择项的频率分布直方图知选A.法二:由茎叶图知落在区间[0,5)与[5,10)上的频数相等,故频率、频率组距也分别相等.比较四个选项知A 正确,故选A.答案: A二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.有A ,B ,C 三种零件,分别为a 个、300个、200个,采纳分层抽样法抽取一个容量为45的样本,A 种零件被抽取20个,则a =________.解析: 依据题意得45a +300+200=20a ,解得a =400.答案: 40012.如图是依据某中学为地震灾区捐款的状况而制作的统计图,已知该校共有学生3 000人,由统计图可得该校共捐款________元.解析: 由扇形统计图可知,该中学高一、高二、高三分别有学生960人、990人、1 050人,由条形统计图知,该中学高一、高二、高三人均捐款分别为15元、13元、 10元,所以共捐款15×960+13×990+10×1 050=37 770(元).答案: 37 77013.某校开展“爱我母校,爱我家乡”摄影竞赛,9位评委为某参赛作品给出的分数的茎叶图如图,记分员去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发觉有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应当是________.解析: 平均分为91分,∴总分应为637分.由于须要去掉一个最高分和一个最低分,故须要分类探讨:①若x ≤4,则89+89+92+93+92+91+90+x =637,∴x =1;②若x >4,则89+89+92+93+92+91+94=640≠637,不符合题意.故填1. 答案: 114.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:小李这56号打6小时篮球的投篮命中率为________.解析: 平均命中率y =15×(0.4+0.5+0.6+0.6+0.4)=0.5,而x =3,∑i =15x i y i =7.6,∑i =15x2i =55,由公式得b ∧=0.01,a ∧=y -b ∧x =0.5-0.01×3=0.47,∴y ∧=0.01x +0.47.令x =6,得y∧=0.53.答案: 0.5 0.53三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)已知一组数据按从小到大的依次排列为-1,0,4,x,7,14,中位数为5,求这组数据的平均数与方差.解析: 由于数据-1,0,4,x,7,14的中位数为5,所以4+x2=5,x =6.设这组数据的平均数为x ,方差为s 2,由题意得 x =16×(-1+0+4+6+7+14)=5,s 2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743. 16.(本小题满分12分)为了让学生了解更多有关“一带一路”的信息,某中学实行了一次“丝绸之路学问竞赛”,共有800名学生参与了这次竞赛.为了解本次竞赛成果状况,从中抽取了部分学生的成果(得分均为整数,满分为100分)进行统计.请你依据尚未完成的频率分布表,解答下列问题:分组频数频率60.5~70.50.1670.5~80.51080.5~90.5180.3690.5~100.5合计(1)若用系统抽样的方法抽取50个样本,现将全部学生的成果随机地编号为000,001,002,…,799,试写出其次组第一名学生成果的编号;(2)填充频率分布表中的空格(将答案干脆填在表格内),并作出频率分布直方图;(3)若成果在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约有多少名?解析:(1)依据系统抽样法则,要从总体中抽取50个样本,需将总体分为50组,则每组的学生数为800÷50=16,故其次组第一名学生成果的编号为016.(2)频率分布表如下表所示,频率分布直方图如图所示.分组频数频率60.5~70.580.1670.5~80.5100.2080.5~90.5180.3690.5~100.5140.28合计50 1(3)在被抽到的学生成果中在85.5~95.5分的个数是9+7=16,占样本的比例是1650=0.32,即获得二等奖的概率约为32%,所以获得二等奖的学生约有800×32%=256(名).17.(本小题满分12分)为了让学生了解环保学问,增加环保意识,某中学实行了一次环保学问竞赛,共有900名学生参与了这次竞赛.为了了解本次竞赛的成果状况,从中抽取了部分学生的成果(得分为正整数,满分为100分)进行统计.请你依据下面尚未完成的频率分布表和频率分布直方图(下图),解答下列问题:组号 分组 频数 频率 1 [50,60) 4 0.08 2 [60,70) 8 0.16 3 [70,80) 10 0.20 4 [80,90) 16 0.32 5 [90,100]合计(1)填充频率分布表中的空格;(2)不详细计算频率组距,补全频率分布直方图;(3)估计这900名学生竞赛的平均成果(同一组中的数据用该组区间的中点值作代表). 解析: (1)40.08=50,即样本容量为50.第5组的频数为50-4-8-10-16=12, 从而第5组的频率为1250=0.24.又各小组频率之和为1,所以频率分布表中的四个空格应分别填12,0.24,50,1.(2)依据小长方形的高与频数成正比,设第一个小长方形的高为h 1,其次个小长方形的高为h 2,第五个小长方形的高为h 5.由等量关系得h 1h 2=12,h 1h 5=13,补全的频率分布直方图如图所示.(3)50名学生竞赛的平均成果为x =4×55+8×65+10×75+16×85+12×9550=79.8≈80(分).利用样本估计总体的思想可得这900名学生竞赛的平均成果约为80分.18.(本小题满分14分)某部门为了了解用电量y (单位:千瓦时)与气温x (单位:℃)之间的关系,随机统计了某4天的用电量与当天气温,因某天统计的用电量数据丢失,用t 表示,如下表:(1)(2)若用电量与气温之间具有较好的线性相关关系,回来直线方程为y ∧=-2x +b ∧,且预料气温为-4 ℃时,用电量为2t 千瓦时.求t ,b 的值.解析: (1)x =14(18+13+10-1)=10,s =14[(18-10)2+(13-10)2+(10-10)2+(-1-10)2]=1942. (2)y =14(24+t +38+64)=t +1264,∴t +1264=-2×10+b ,即4b -t =206.①又2t =-2×(-4)+b ,即2t -b =8.② 由①②得,t =34,b =60.。
北师大版高中数学必修3 课后习题答案
![北师大版高中数学必修3 课后习题答案](https://img.taocdn.com/s3/m/e2df7220581b6bd97f19ea5a.png)
第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.第二步,取出2的到小数点后第i 位的不足近似值,赋给a ;取出2的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b am =-. 第四步,若m d <,则得到25的近似值为5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:INPUT “a ,b=”;a ,bsum=a+b diff=a -b pro=a*b quo=a/bPRINT sum ,diff ,pro ,quoEND2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;若r<6.8,则输出r ,并执行下一步.第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 1、程序:2、程序:3、程序:练习(P29) 1、程序:INPUT “a ,b ,c=”;a ,b ,cIF a+b>c AND a+c>b AND b+c>a THEN PRINT “Yes.” ELSEPRINT “No.” END IF ENDINPUT “a ,b ,c=”;a ,b ,cp=(a+b+c)/2 s=SQR(p*(p -a) *(p -b) *(p -c)) PRINT “s=”;s END INPUT “F=”;F C=(F -32)*5/9 PRINT “C=”;C END4、程序: INPUT “a ,b ,c=”;a ,b ,csum=10.4*a+15.6*b+25.2*c PRINT “sum =”;sum END2、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩23、程序:习题1.2 B 组(P33) 1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.第七步,输出成绩分别在区间[0,60),[60,80),[80,100]的人数,,a b c .2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等.1、(1)程序框图:程序:1、(2)程序框图:程序:2、见习题1.2 B组第1题解答.INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y ENDINPUT “x=”;x IF x<0 THENy=(x+2)^2 ELSEIF x=0 THENy=4ELSEy=(x-2)^2 END IFEND IFPRINT “y=”;y END34、程序框图:程序:INPUT “t=0”;t IF t<0 THENPRINT “Please input again.” ELSEIF t>0 AND t<=180 THEN y=0.2 ELSEIF (t -180) MOD 60=0 THEN y=0.2+0.1*(t-180)/60 ELSEy=0.2+0.1*((t-180)\60+1) END IF END IFPRINT “y=”;y END IF ENDINPUT “n=”;n i=1 S=0WHILE i<=n S=S+1/i i=i+1 WENDPRINT “S=”;S END5、 (1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m 第二章 复习参考题B 组(P35)1、 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.i=100 sum=0 k=1 WHILE k<=10 sum=sum+i i=i /2 k=k+1 WEND PRINT “(1)”;sum PRINT “(2)”;i PRINT “(3)”;2*sum -100 ENDINPUT “n=”;n IF n MOD 7=0 THEN PRINT “Sunday ” END IF IF n MOD 7=1 THEN PRINT “Monday ” END IF IF n MOD 7=2 THEN PRINT “Tuesday ” END IF IF n MOD 7=3 THEN PRINT “Wednesday ” END IF IF n MOD 7=4 THEN PRINT “Thursday ” END IF IF n MOD 7=5 THEN PRINT “Friday ” END IF IF n MOD 7=6 THEN PRINT “Saturday ” END IF END第二章统计2.1随机抽样练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生.3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a,则编号为7(050)+≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.a k k显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域.(3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关. (3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值y 之间的误差的原因之一,其大小取决于e 的方差.)(1)散点图如下: 2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(3)加工零件的个数与所花费的时间呈正线性相关关系.(2)回归直线如下图所示:4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表:从表中看出当把指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标.2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章 概率3.1随机事件的概率 练习(P113) 1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面. (2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25. 2、略 3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1. 练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B 习题3.1 A 组(P123) 1、D . 2、(1)0; (2)0.2; (3)1.3、(1)430.067645≈; (2)900.140645≈; (3)7010.891645-≈. 4、略 5、0.13 6、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率。
人教版2020年高中数学第三章概率章末检测新人教A版必修3
![人教版2020年高中数学第三章概率章末检测新人教A版必修3](https://img.taocdn.com/s3/m/67d86dadb8f67c1cfad6b87c.png)
第三章概率章末检测时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某人在打靶中连续射击两次,与事件“至少有一次中靶”互斥的事件是( )A.至多有一次中靶B.两次都中靶C.两次都不中靶D.只有一次中靶解析:连续射击两次,事件“至少有一次中靶”的互斥事件是“两次都不中靶”.答案:C2.先后抛掷两颗骰子,所得点数之和为7,则基本事件共有( )A.5个B.6个C.7个D.8个解析:所得点数之和为7的基本事件为(1,6),(6,1),(2,5),(5,2),(3,4),(4,3),共6个.答案:B3.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是( )A.对立事件B.不可能事件C.互斥但不对立事件D.既不互斥又不对立事件解析:甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.答案:C4.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为( )A.0.7 B.0.65C.0.35 D.0.3解析:事件“抽到的产品不是一等品”与事件A是对立事件,由于P(A)=0.65,所以由对立事件的概率公式得“抽到的产品不是一等品”的概率为P=1-P(A)=1-0.65=0.35.答案:C5.在长为12 cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20 cm 2的概率为( ) A.16 B.13 C.23D.45解析:设线段AC 的长为x cm ,则线段CB 的长为(12-x ) cm ,那么矩形的面积为x (12-x ) cm 2, 由x (12-x )>20,解得2<x <10.又0<x <12,所以该矩形面积大于20 cm 2的概率为23.答案:C6.从一批羽毛球产品中任取一个,其质量小于4.8 g 的概率为0.3,质量小于4.85 g 的概率为0.32,那么质量在[4.8,4.85]内的概率是( ) A .0.62 B .0.38 C .0.02D .0.068解析:由图知,质量x 在[4.8,4.85]的概率P (4.8≤x ≤4.85)=P (x < 4.85)-P (x <4.8)=0.32-0.3=0.02,故选C. 答案:C7.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13 B.12 C.23D.56解析:从红、黄、白、紫4种颜色的花中任取2种有6种取法,分别为红与黄,红与白,红与紫,黄与白,黄与紫,白与紫,共6种,其中红色与紫色不在同一花坛有4种情况,故红色与紫色不在同一花坛的概率P =46=23.答案:C8.在区间[-1,1]上任取两数x 和y ,组成有序实数对(x ,y ),记事件A 为“x 2+y 2<1”,则P (A )等于( ) A.π4 B.π2C .πD .2π解析:如图,集合S ={(x ,y )|-1≤x ≤1,-1≤y ≤1},则S 中每个元素与随机事件的结果一一对应.而事件A 所对应的事件(x ,y )与圆面x 2+y 2<1的点一一对应,∴P (A )=π4.答案:A9.将一枚骰子抛掷两次,若先后出现的点数分别为b ,c ,则方程x 2+bx +c =0有实根的概率为( ) A.13 B.12 C.1936D.25解析:将一枚骰子抛掷两次共有6×6=36种结果.方程x 2+bx +c =0有实根,则Δ=b2-4c ≥0,即b ≥2c ,其包含的结果有:(2,1),(3,1),(4,1),(5,1),(6,1),(3,2),(4,2),(5,2),(6,2),(4,3),(5,3),(6,3),(4,4),(5,4),(6,4),(5,5),(6,5),(5,6),(6,6),共19种,由古典概型的概率计算公式可得P =1936.故选C.答案:C10.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒以内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) A.14 B.12 C.34D.78解析:设第一串彩灯亮的时刻为x ,第二串彩灯亮的时刻为y ,则⎩⎪⎨⎪⎧0≤x ≤4,0≤y ≤4,要使两串彩灯亮的时刻相差不超过2秒, 则⎩⎪⎨⎪⎧ 0≤x ≤4,0≤y ≤4,-2≤x -y ≤2,如图,不等式组⎩⎪⎨⎪⎧0≤x ≤4,0≤y ≤4所表示的图形面积为16,不等式组⎩⎪⎨⎪⎧0≤x ≤4,0≤y ≤4,-2≤x -y ≤2所表示的六边形OABCDE 的面积为16-4=12,由几何概型的公式可得P=1216=34.答案:C11.已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为( ) A .0.4 B .0.6 C .0.8D .1解析:首先对5件产品编号为1,2,3,4,5.其中1,2两件为次品,3,4,5为正品,从5件产品中任取2件产品,基本事件为:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个.其中恰有一件为次品的事件为:(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),共6个. ∴恰有一件次品的概率P =610=35=0.6,选B. 答案:B12.袋子中装有大小相同的5个小球,分别有2个红球、3个白球.现从中随机抽取2个小球,则这2个小球中既有红球也有白球的概率为( ) A.34 B.710C.45D.35解析:设2个红球分别为a ,b,3个白球分别为A ,B ,C ,从中随机抽取2个,则有(a ,b ),(a ,A )(a ,B ),(a ,C ),(b ,A )(b ,B ),(b ,C ),(A ,B ),(A ,C ),(B ,C ),共10个基本事件,其中既有红球也有白球的基本事件有6个,则所求概率为P =610=35.答案:D二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 13.地面上有三个同心圆(如图),其半径分别为3、2、1.若向图中最大的圆内投点且投到图中阴影区域的概率为715,则两直线所夹锐角的弧度数为________.解析:设两直线所夹锐角弧度为α,则有:715=S 阴S=απ×π+1-απ×3π+απ×5π9π,解得:α=2π5.故答案为2π5.答案:2π514.从2本不同的数学书和2本不同的语文书中任意抽出2本书(每本书被抽中的机会相等),则抽出的书是同一学科的概率等于________.解析:从2本不同的数学书和2本不同的语文书中任意抽出2本书共有6种不同的取法,其中抽出的书是同一学科的取法共有2种,因此所求的概率等于26=13.答案:1315.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.解析:∵去看电影的概率P 1=π×12-π×⎝ ⎛⎭⎪⎫122π×12=34, 去打篮球的概率P 2=π×⎝ ⎛⎭⎪⎫142π×12=116, ∴不在家看书的概率为P =34+116=1316.答案:131616.如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.15,0.20,0.45,则不中靶的概率是________.解析:设射手“命中圆面Ⅰ”为事件A ,“命中圆环Ⅱ”为事件B ,“命中圆环Ⅲ”为事件C ,“不中靶”为事件D ,则A ,B ,C 互斥,故射手中靶概率为P (A ∪B ∪C )=P (A )+P (B )+P(C )=0.15+0.20+0.45=0.80.因为中靶和不中靶是对立事件,故不中靶的概率为P (D )=1-P (A ∪B ∪C )=1-0.80=0.20. 答案:0.20三、解答题(本大题共有6小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(12分)某人去开会,他乘火车、轮船、汽车、飞机去的概率分别是0.3,0.2,0.1,0.4. (1)求他乘火车或飞机去的概率; (2)求他不乘飞机去的概率.解析:设“乘火车”“乘轮船”“乘汽车”“乘飞机”分别为事件A ,B ,C ,D ,则P (A )=0.3,P (B )=0.2,P (C )=0.1,P (D )=0.4. (1)P (A ∪D )=P (A )+P (D )=0.3+0.4=0.7. (2)设“不乘飞机”为事件E , 则P (E )=1-P (D )=1-0.4=0.6.18.(12分)甲、乙两人做出猜拳游戏(锤子,剪刀,布). 求:(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.解析:设平局为事件A ,甲赢为事件B ,乙赢为事件C .容易得到如图所示的图形.平局含3个基本事件(图中的△),P (A )=39=13.(2)甲赢含3个基本事件(图中的⊙),P (B )=39=13.(3)乙赢含3个基本事件(图中的※),P (C )=39=13.19.(12分)袋中有红、黄、白三种颜色的球各3只,从中每次任取1只,有放回地抽取3次,求:(1)3只全是红球的概率;(2)3只颜色全相同概率; (3)3只颜色不全相同的概率; (4)3只颜色全不相同的概率.解析:从袋中有放回地抽取3次,全部的基本事件用树状图表示为:(1)记“3只球全是红球”为 事件A ,则P (A )=127.(2)记“3只球颜色相同”为事件B ,则P (B )=127+127+127=19.(3)记“3只球颜色不全相同”为事件C ,则有24种情况,故P (C )=2427=89.(4)要使3只球颜色全不相同,只可能是红、黄、白球各出现一次,记“3只颜色全不相同”为事件D ,则P (D )=627=29.20.(12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A 1,A 2和1个白球B 的甲箱与装有2个红球a 1,a 2和2个白球b 1,b 2的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖. (1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率.你认为正确吗?请说明理由.解析:(1)所有可能的摸出结果是{A 1,a 1},{A 1,a 2}, {A 1,b 1},{A 1,b 2},{A 2,a 1},{A 2,a 2},{A 2,b 1},{A 2,b 2},{B ,a 1},{B ,a 2},{B ,b 1}, {B ,b 2}. (2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A 1,a 1},{A 1,a 2},{A 2,a 1},{A 2,a 2},共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23>13,故这种说法不正确.21.(13分)某校高三学生体检后,为了解高三学生的视力情况,该校从高三六个班的300名学生中以班为单位(每班学生50人),每班按随机抽样方法抽取了8名学生的视力数据.其中高三(1)班抽取的8名学生的视力数据与人数见下表:(2)已知其余五个班学生视力的平均值分别为 4.3,4.4,4.5,4.6,4.8.若从这六个班中任意抽取两个班学生视力的平均值作比较,求抽取的两个班学生视力的平均值之差的绝对值不小于0.2的概率.解析:(1)高三(1)班学生视力的平均值为 4.4×2+4.6×2+4.8×2+4.9+5.18=4.7,故估计高三(1)班学生视力的平均值为4.7.(2)从这六个班中任意抽取两个班学生视力的平均值作比较,所有的取法共有15种,而满足抽取的两个班学生视力的平均值之差的绝对值不小于0.2的取法有:(4.3,4.5),(4.3,4.6),(4.3,4.7),(4.3,4.8),(4.4,4.6),(4.4,4.7),(4.4,4.8),(4.5,4.7),(4.5,4.8),(4.6,4.8),共有10种,故抽取的两个班学生视力的平均值之差的绝对值不小于0.2的概率为P =1015=23.22.(13分)某校高三共有900名学生,高三模拟考试之后,为了了解学生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,并制成如下的频率分布表.(1)确定表中a ,b ,c (2)为了了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生,在这6名学生中又再随机抽取2名与心理老师面谈,求第七组中至少有一名学生被抽到与心理老师面谈的概率; (3)估计该校本次考试的数学平均分. 解析:(1)因为频率和为1,所以b =0.18, 因为频率=频数/样本容量,所以c =100,a =15.(2)第六、七、八组共有30个样本,用分层抽样方法抽取6名学生,第六、七、八组被抽取的样本数分别为3,2,1,将第六组、第八组被抽取的样本分别用A ,B ,C ,D 表示,第七组抽出的样本用E ,F 表示.从这6名学生中随机抽取2个的方法有AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共15种.其中至少含E 或F 的取法有9种,则所求概率为35.(3)估计平均分为75×0.06+85×0.04+95×0.22+105×0.2+115×0.18+125×0.15+135×0.1+145×0.05=110.。
高中数学必修三课后习题答案
![高中数学必修三课后习题答案](https://img.taocdn.com/s3/m/56226cc4551810a6f524865f.png)
高中数学必修三课后习题答案第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a 的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b am =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:INPUT “a ,b=”;a ,bsum=a+b diff=a -b pro=a*b quo=a/bPRINT sum ,diff ,pro ,quoEND2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;若r<6.8,则输出r ,并执行下一步.第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 1、程序:2、程序:3、程序:练习(P29) 1、程序:INPUT “a ,b ,c=”;a ,b ,cIF a+b>c AND a+c>b AND b+c>a THEN PRINT “Yes.” ELSEPRINT “No.” END IF INPUT “a ,b ,c=”;a ,b ,cp=(a+b+c)/2 s=SQR(p*(p -a) *(p -b) *(p -c)) PRINT “s=”;s END INPUT “F=”;F C=(F -32)*5/9 PRINT “C=”;C END4、程序: INPUT “a ,b ,c=”;a ,b ,csum=10.4*a+15.6*b+25.2*c PRINT “sum =”;sum END2、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩23、程序: 习题1.2 B 组(P33) 1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等. 第二章复习参考题A组(P50)1、(1)程序框图:程序:1、(2)程序框图:程序:2、见习题1.2 B组第1题解答.INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y ENDINPUT “x=”;x IF x<0 THENy=(x+2)^2 ELSEIF x=0 THENy=4ELSEy=(x-2)^2 END IFEND IFPRINT “y=”;y END34、程序框图:程序:INPUT “t=0”;t IF t<0 THEN PRINT “Please input again.”ELSE IF t>0 AND t<=180 THENy=0.2ELSEIF (t -180) MOD 60=0 THENy=0.2+0.1*(t-180)/60ELSEy=0.2+0.1*((t-180)\60+1)END IFEND IFPRINT “y=”;yEND IF END INPUT “n=”;n i=1 S=0WHILE i<=n S=S+1/i i=i+1 WENDPRINT “S=”;S END5、 (1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m 第二章 复习参考题B 组(P35)1、 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =i=100 sum=0 k=1 WHILE k<=10 sum=sum+i i=i /2 k=k+1 WEND PRINT “(1)”;sum PRINT “(2)”;i PRINT “(3)”;2*sum -100 ENDINPUT “n=”;n IF n MOD 7=0 THEN PRINT “Sunday ” END IF IF n MOD 7=1 THEN PRINT “Monday ” END IF IF n MOD 7=2 THEN PRINT “Tuesday ” END IF IF n MOD 7=3 THEN PRINT “Wednesday ” END IF IF n MOD 7=4 THEN PRINT “Thursday ” END IF IF n MOD 7=5 THEN PRINT “Friday ” END IF IF n MOD 7=6 THEN PRINT “Saturday ” END IF END第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计 2.1随机抽样 练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差. 2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号. (2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生. 3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本. 练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差. 2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域. (3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关. (3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值(1)散点图如下: y 之间的误差的原因之一,其大小取决于e 的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(2)回归直线如下图所示:(3)加工零件的个数与所花费的时间呈正线性相关关系. 4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表:从表中看出当把指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标.2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章 概率3.1随机事件的概率 练习(P113) 1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面. (2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25. 2、略 3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1. 练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B 习题3.1 A 组(P123) 1、D . 2、(1)0; (2)0.2; (3)1.3、(1)430.067645≈; (2)900.140645≈; (3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率。
2021_2022学年新教材高中数学3圆锥曲线的方程章末综合测评含解析新人教A版选择性必修第一册20
![2021_2022学年新教材高中数学3圆锥曲线的方程章末综合测评含解析新人教A版选择性必修第一册20](https://img.taocdn.com/s3/m/77278ac9453610661ed9f4e8.png)
章末综合测评(三) 圆锥曲线的方程(满分:150分 时间:120分钟)一、选择题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A .12B .32C .1D .3B [抛物线y 2=4x 的焦点为(1,0),到双曲线x 2-y 23=1的一条渐近线3x -y =0的距离为|3×1-0|32+-12=32,故选B .]2.已知椭圆C 的两个焦点分别为F 1(-3,0),F 2(3,0),点P 为椭圆C 上一点,且|PF 1|+|PF 2|=10,那么椭圆C 的短轴长是( )A .6B .7C .8D .9C [设椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0).依题意得,2a =10,∴a =5,又c =3, ∴b 2=a 2-c 2=16,即b =4,因此椭圆的短轴长是2b =8,故选C .]3.在平面直角坐标系Oxy 中,动点P 关于x 轴对称的点为Q ,且OP →·OQ →=2,则点P 的轨迹方程为( )A .x 2+y 2=2B .x 2-y 2=2C .x +y 2=2D .x -y 2=2B [设P (x ,y ),Q (x ,-y ),则OP →·OQ →=(x ,y )·(x ,-y )=x 2-y 2=2,故选B .]4.椭圆C :x 2a 2+y 22=1(a >0)的长轴长为4,则C 的离心率为( )A .12B .22C .32D .2B [由椭圆C :x 2a 2+y 22=1(a >0)的长轴长为4,可知焦点在x 轴上即2a =4,a =2.∴椭圆的标准方程为:x 24+y 22=1,a =2,b =2,c =4-2=2,椭圆的离心率为e =c a=22,故答案为B .]5.“m >3”是“曲线mx 2-(m -2)y 2=1为双曲线”的( ) A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分也不必要条件 A [当m >3时,m -2>0,mx 2-(m -2)y 2=1⇒x 21m -y 21m -2=1,则原方程是双曲线方程;当原方程为双曲线方程时,有m (m -2)>0⇒m >2或m “m >3”是“曲线mx 2-(m -2)y 2=1为双曲线”的充分不必要条件.故选A .]6.抛物线y 2=4x 的焦点为F ,准线为l ,经过点F 且斜率为3的直线l 1与抛物线在x轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .43D .8C [∵y 2=4x ,∴焦点F (1,0),准线l :x =-1,过焦点F 且斜率为3的直线l 1:y =3(x-1),将其与y 2=4x联立,解得x =3或x =13(舍),故A (3,23),∴|AK |=4,∴S △AKF =12×4×23=43.故选C .]7.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点F 与抛物线C 2:y 2=2px (p >0)的焦点相同,C 1与C 2交于A ,B 两点,且直线AB 过点F ,则双曲线C 1的离心率为( )A .2B .3 C .2D .2+1D [由图形的对称性及题设条件得AF ⊥x 轴,且c =p2,则p =2c .不妨设交点A ⎝ ⎛⎭⎪⎫p 2,y 1,代入y 2=2px 可得y 1=p ,故A ⎝ ⎛⎭⎪⎫p 2,p ,代入双曲线方程可得p 24a 2-p 2b 2=1,即e 2-1=4c 2b 2,即e 2-1=4c 2c 2-a 2,由此可得(e 2-1)2=4e 2,即e 2-1=2e ,所以e =2+1(负值舍去).故选D .]8.直线y =-3x 与椭圆C :x 2a 2+y 2b 2=1(a >b >0)交于A 、B 两点,以线段AB 为直径的圆过椭圆的右焦点,则椭圆C 的离心率为( )A .32B .3-12C .3-1D .4-23C [直线y =-3x 与椭圆C :x 2a 2+y 2b 2=1(a >b >0)联立方程得(3a 2+b 2)x 2=a 2b 2,设A (x 0,y 0),∴B (-x 0,-y 0),右焦点F (c ,0),由FA →·FB →=0代入坐标得c 2=4a 2b 23a 2+b2,整理得c 4-8a 2c 2+4a 4=0, ∴e 4-8e 2+4=0,∴e =3-1故选C .]二、选择题(本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分)9.若方程x 25-t +y 2t -1=1所表示的曲线为C ,则下面四个命题中正确的是( )A .若1<t <5,则C 为椭圆B .若t <1,则C 为双曲线 C .若C 为双曲线,则焦距为4D .若C 为焦点在y 轴上的椭圆,则3<t <5BD [若方程x 25-t +y2t -1=1表示椭圆,则满足⎩⎪⎨⎪⎧5-t >0,t -1>0,5-t ≠t -1,解得1<t <3或3<t <5.对于A ,当t =3时,此时方程为x 2+y 2=2表示圆,所以A 不正确;对于B ,当t <1时,5-t >0,t -1<0,此时表示焦点在x 轴上的双曲线,所以B 正确; 对于C ,当t =0时,方程x 25-y 21=1所表示的曲线为双曲线,此时双曲线的焦距为26,所以C 不正确;若方程x 25-t +y2t -1=1表示焦点在y 轴上的椭圆,则满足⎩⎪⎨⎪⎧5-t >0,t -1>0,5-t <t -1,解得3<t <5,所以D 正确.故选BD .]10.已知椭圆C 1:x 2a2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e 1,椭圆C 1的上顶点为M ,且MF 1→·MF 2→=0,双曲线C 2和椭圆C 1有相同焦点,且双曲线C 2的离心率为e 2,P 为曲线C 1与C 2的一个公共点.若∠F 1PF 2=π3,则下列各项正确的是( )A .e 2e 1=2B .e 1e 2=32C .e 21+e 22=52D .e 22-e 21=1 BD [因为MF 1→·MF 2→=0且|MF 1→|=|MF 2→|,所以△MF 1F 2为等腰直角三角形. 设椭圆的半焦距为c ,则c =b =22a ,所以e 1=22.在焦点三角形PF 1F 2中,∠F 1PF 2=π3,设|PF 1|=x ,|PF 2|=y ,双曲线C 2的实半轴长为a ′,则⎩⎪⎨⎪⎧x 2+y 2-xy =4c 2,x +y =22c ,|x -y |=2a ′,故xy =43c 2,故(x -y )2=x 2+y 2-xy -xy =8c 23,所以(a ′)2=2c 23,即e 2=62,故e 2e 1=3,e 1e 2=32,e 21+e 22=2,e 22-e 21=1,故选BD .] 11.已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,A 为左顶点,P 为双曲线右支上一点,若|PF 1|=2|PF 2|,且△PF 1F 2的最小内角为30°,则( )A .双曲线的离心率为3B .双曲线的渐近线方程为y =±2xC .∠PAF 2=45°D .直线x +2y -2=0与双曲线有两个公共点ABD [依题意得,|PF 1|-|PF 2|=2a ,又知|PF 1|=2|PF 2|,∴|PF 1|=4a ,|PF 2|=2a . 又∵|F 1F 2|=2c ,且a <c , ∴在△PF 1F 2中,PF 2是最小的边, ∴∠PF 1F 2=30°,∴4a 2=4c 2+16a 2-2×2c ×4a ×32,整理得c 2-23ac +3a 2=0,即(c -3a )2=0,∴c =3a ,∴|F 1F 2|=2c =23a ,b =c 2-a 2=2a .∴双曲线的离心率e =ca =3a a=3,A 正确.双曲线的渐近线方程为y =±b a x =±2aax =±2x ,B 正确.根据前面的分析可知,△PF 1F 2为直角三角形,且∠PF 2F 1=90°, 若∠PAF 2=45°,则|PF 2|=|AF 2|. 又知|PF 2|=2a , |AF 2|=a +c =a +3a =(1+3)a ≠|PF 2|,∴∠PAF 2≠45°,C 不正确.直线x +2y -2=0,即y =-12x +1,其斜率为-12,-12∈[-2,2],∴直线x +2y -2=0与双曲线有两个公共点,D 正确.故选ABD .] 12.已知抛物线C :y 2=2px (p >0)的焦点为F ,直线l 的斜率为3且经过点F ,直线l与抛物线C 交于A ,B 两点(点A 在第一象限),与抛物线的准线交于点D .若|AF |=8,则以下结论正确的是( )A .p =4B .DF →=FA →C .|BD |=2|BF |D .|BF |=4ABC [如图,F ⎝ ⎛⎭⎪⎫p 2,0,直线l 的斜率为3,则直线方程为y=3⎝ ⎛⎭⎪⎫x -p 2,联立⎩⎪⎨⎪⎧y 2=2px ,y =3⎝ ⎛⎭⎪⎫x -p 2得12x 2-20px +3p 2=0.解得x A =32p ,x B =16p ,由|AF |=32p +p2=2p =8,得p =4,所以抛物线方程为y 2=8x . x B =16p =23,则|BF |=23+2=83;|BD |=|BF |cos 60°, 所以|BD |=2|BF |, |BD |+|BF |=83+163=8,则F 为AD 的中点,DF →=FA →. 所以运算正确的是ABC .]三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.抛物线y 2=8x 的焦点到双曲线x 22-y 22=1的渐近线的距离为________.2[由抛物线y 2=8x 可得其焦点为(2,0),又双曲线x 22-y 22=1的渐近线方程为x ±y =0,∴所求距离为d =22= 2.]14.过直线y =2与抛物线x 2=8y 的两个交点,并且与抛物线的准线相切的圆的方程为________.x 2+(y -2)2=16[由题意知,抛物线x 2=8y 的焦点(0,2)即为圆心,圆的半径为4,则圆的方程为x 2+(y -2)2=16.]15.椭圆x 25+y 24=1的左焦点为F ,直线x =m 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是________.855[如图,设右焦点为F ′,连接MF ′,NF ′,因为△FMN 的周长|MF |+|NF |+|MN |=2a -|MF ′|+2a -|NF ′|+|MN |=4a +|MN |-|MF ′|-|NF ′|,且|MN |≤|MF ′|+|NF ′|,当M ,N ,F ′三点共线,即m =1时,等号成立,所以当△FMN 的周长最大时,|MN |=2b 2a=855,所以△FMN 的面积S =12×855×2=855.]16.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n 2N 的两条渐近线与椭圆M的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________.(第一空2分,第二空3分)3-1 2[如图,六边形ABF 1CDF 2为正六边形,直线OA 、OB 是双曲线的渐近线,则△AOF 2是正三角形,∴直线OA 的倾斜角为π3,∴其斜率k =|n ||m |=3,∴双曲线的离心率e 1=1+⎝ ⎛⎭⎪⎫n m 2=1+3=2;连接F 1A ,∵正六边形的边长为c ,∴|F 1A |=3c .由椭圆的定义得|F 1A |+|F 2A |=2a ,即c +3c =2a ,∴椭圆的离心率e 2=c a =21+3=3-1.]四、解答题(本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,求椭圆C的标准方程.[解] 因为椭圆的离心率为32,所以e =c a =32,c 2=34a 2=a 2-b 2,所以b 2=14a 2,即a 2=4b 2.双曲线的渐近线方程为y =±x ,代入椭圆方程得x 2a 2+x 2b 2=1,即x 24b 2+x 2b 2=5x 24b2=1,所以x 2=45b 2,x =±25b .所以y =±25b ,则在第一象限,双曲线的渐近线与椭圆C 的交点坐标为⎝⎛⎭⎪⎪⎫25b ,25b ,所以四边形的面积为4×25b ×25b =165b 2=16,所以b 2=5,所以椭圆C 的方程为x 220+y 25=1.18.(本小题满分12分)已知抛物线的顶点在原点,它的准线过双曲线x 2a2-y 2b 2=1(a >0,b >0)的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交于点P ⎝ ⎛⎭⎪⎫32,6,求抛物线的方程和双曲线的方程. [解] 依题意,设抛物线的方程为y 2=2px (p >0),∵点P ⎝ ⎛⎭⎪⎫32,6在抛物线上,∴6=2p ×32.∴p =2,∴所求抛物线的方程为y 2=4x .∵双曲线的左焦点在抛物线的准线x =-1上, ∴c =1,即a 2+b 2=1,又点P ⎝ ⎛⎭⎪⎫32,6在双曲线上,∴94a 2-6b 2=1,解方程组⎩⎪⎨⎪⎧a 2+b 2=1,94a 2-6b2=1,得⎩⎪⎨⎪⎧a 2=14,b 2=34或⎩⎪⎨⎪⎧a 2=9,b 2=-8(舍去).∴所求双曲线的方程为4x 2-43y 2=1.19.(本小题满分12分)已知F 1,F 2分别为椭圆x 2100+y 2b 2=1(0<b <10)的左、右焦点,P 是椭圆上一点.(1)求|PF 1|·|PF 2|的最大值;(2)若∠F 1PF 2=60°,且△F 1PF 2的面积为6433,求b 的值.[解] (1)|PF 1|·|PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=100(当且仅当|PF 1|=|PF 2|时取等号), ∴|PF 1|·|PF 2|的最大值为100.(2)S △F 1PF 2=12|PF 1|·|PF 2|sin 60°=6433,∴|PF 1|·|PF 2|=2563,①由题意知:⎩⎪⎨⎪⎧|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=4a 2,|PF 1|2+|PF 2|2-4c 2=2|PF 1|·|PF 2|cos 60°,∴3|PF 1|·|PF 2|=400-4c 2.② 由①②得c =6,∴b =8.20.(本小题满分12分)如图所示,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴),与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2.证明:|MN 2|2-|MN 1|2为定值,并求此定值.[证明] (1)依题意可设AB 的方程为y =kx +2,代入x 2=4y ,得x 2=4(kx +2),即x 2-4kx -8=0,设A (x 1,y 1),B (x 2,y 2),则有x 1x 2=-8,直线AO 的方程为y =y 1x 1x , BD 的方程为x =x 2,则交点D 的坐标为⎝⎛⎭⎪⎫x 2,y 1x 2x 1. 又x 1x 2=-8,x 21=4y 1,则有y 1x 2x 1=y 1x 1x 2x 21=-8y 14y 1=-2,即D 点在定直线y =-2上(x ≠0).(2)依题意,切线l 的斜率存在且不等于0.设切线l 的方程为y =ax +b (a ≠0),代入x 2=4y ,得x 2=4(ax +b ),即x 2-4ax -4b =0,由Δ=0得(-4a )2+16b =0,化简整理,得b =-a 2,故切线的方程为y =ax -a 2.分别令y =2,y =-2,得N 1⎝ ⎛⎭⎪⎫2a +a ,2,N 2⎝ ⎛⎭⎪⎫-2a +a ,-2, 则|MN 2|2-|MN 1|2=⎝ ⎛⎭⎪⎫2a -a 2+42-⎝ ⎛⎭⎪⎫2a +a 2=8,即|MN 2|2-|MN 1|2为定值8.21.(本小题满分12分)设M (x ,y )与定点F (1,0)的距离和它到直线l 1:x =3的距离的比是常数33.记点M 的轨迹为曲线C . (1)求曲线C 的方程;(2)过定点F 的直线l 2交曲线C 于A ,B 两点,以O 、A 、B 三点(O 为坐标原点)为顶点作平行四边形OAPB ,若点P 刚好在曲线C 上,求直线l 2的方程.[解] (1)由题意得,x -12+y 2|x -3|=33,则3[(x -1)2+y 2]=(x -3)2,即2x 2+3y 2=6,∴x 23+y 22=1, 故曲线C 的方程为x 23+y 22=1. (2)设直线l 2的方程为x =my +1,P (x 0,y 0),A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧ x =my +1,2x 2+3y 2=6,消去x , 得(2m 2+3)y 2+4my -4=0.则y 1+y 2=-4m 2m 2+3,x 1+x 2=m (y 1+y 2)+2=-4m 22m 2+3+2=62m 2+3, ∴x 0=x 1+x 2=62m 2+3,y 0=y 1+y 2=-4m 2m 2+3. ∵P (x 0,y 0)在椭圆x 23+y 22=1上, ∴122m 2+32+8m 22m 2+32=1,即2m 2+3=4,解得m =±22.∴直线l 2的方程为x =22y +1或x =-22y +1,即2x -y -2=0或2x +y -2=0. 22.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝ ⎛⎭⎪⎪⎫1,22在椭圆C 上. (1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线l ,使得当直线l 与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM →=NQ →?若存在,求出直线l 的方程;若不存在,说明理由.[解] (1)设椭圆C 的焦距为2c ,则c =1,∵A ⎝ ⎛⎭⎪⎪⎫1,22在椭圆C 上, ∴2a =|AF 1|+|AF 2|=1+12+⎝ ⎛⎭⎪⎪⎫222+22=22, ∴a =2,b 2=a 2-c 2=1,故椭圆C 的方程为x 22+y 2=1. (2)假设这样的直线存在,设直线l 的方程为y =2x +t , 设M (x 1,y 1),N (x 2,y 2),P ⎝⎛⎭⎪⎫x 3,53,Q (x 4,y 4),MN 的中点为D (x 0,y 0), 由⎩⎪⎨⎪⎧y =2x +t x 2+2y 2=2,消去x ,得9y 2-2ty +t 2-8=0, ∴y 1+y 2=2t 9,且Δ=4t 2-36(t 2-8)>0,故y 0=y 1+y 22=t 9且-3<t <3, 由PM →=NQ →,知四边形PMQN 为平行四边形,而D 为线段MN 的中点,因此D 为线段PQ 的中点,∴y 0=53+y 42=t 9,得y 4=2t -159,又-3<t <3,可得-73<y 4<-1, ∴点Q 不在椭圆上,故不存在满足题意的直线l .。
人教b版数学必修三:第1章《算法初步》章末检测(含答案)
![人教b版数学必修三:第1章《算法初步》章末检测(含答案)](https://img.taocdn.com/s3/m/61eb6c185f0e7cd18525360c.png)
第一章 章末检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.下列关于算法的叙述不正确的是( )A .在任何数值计算或非数值计算的过程中所采取的方法和步骤,都可称之为算法B .解决一类问题的方法和步骤C .算法并不给出问题的精确的解,只是说明怎样才能得到解D .算法中执行的步骤可以是无限次的,能无休止地执行下去 2.下列给出的赋值语句中正确的是( ) A .4=M B .M =-M C .B =A =3 D .x +y =03.下列问题的算法适合用条件分支结构表示的是( ) A .求点P (-1,3)到直线l :3x -2y +1=0的距离 B .由直角三角形的两条直角边求斜边 C .解不等式ax +b >0(a ≠0) D .计算100个数的平均数4.循环语句for x =3:3:99循环的次数是( ) A .99 B .34 C .33 D .305.下面的四个问题中必须用条件分支结构才能实现的个数是( ) ①已知:梯形上、下两底为a 、b ,高为h ,求梯形面积; ②求方程ax 2+bx +c =0 (a 、b 、c 为常数)的根; ③求三个实数a 、b 、c 中的最小者;④计算函数f (x )=⎩⎪⎨⎪⎧x 2 (x >0)2x -7 (x ≤0)的函数值.A .4个B .3个C .2个D .1个 6.下列算法中,最后输出的x 、y 的值是( )A .4 011,2 006B .4 011,-1C .4 011,2 005D .4 011,17.下面的程序框图表示的算法是( )A .求1+2+3+…+100的值B.求12+22+32+…+1002的值C.求1+3+5+…+99的值D.求12+32+52+…+992的值8.在如图所示的程序中输入-2和2,则输出的结果分别是()A.2和6 B.0和6 C.3和6 D.3和29.下面程序表示求________的值.()A.3×10 B.39C.310D.1×2×3×…×1010.下列程序执行的目的是()A.求2×6×10×…×68的值B.求1×2×3×…×68的值C.求2×4×6×…×68的值D.求2×4×6×…×66的值11.用秦九韶算法计算多项式f(x)=2x7+x6+3x3+2x+1,当x=2时的函数值时,需要做加法和乘法的次数分别为()A.7,4 B.4,7 C.7,7 D.4,412.如果执行下边的程序框图,输入x=-2,h=0.5,那么输出的各个数的和等于()A.3 B.3.5 C.4 D.4.5二、填空题(本大题共4小题,每小题5分,共20分)13.三个数72,120,168的最大公约数是________.14.有如下程序框图:则该程序框图表示的算法的功能是_____________________________________________.15.下面是一个算法程序,回答下列问题:当输入的值为3时,输出的结果为________.16.下面是一个算法程序,按这个程序写出的程序在计算机上执行,其算法功能是求__________________________的值.三、解答题(本大题共6小题,共70分)17.(10分)求两底半径分别为2和4,且高为4的圆台的表面积及体积,写出该问题的算法.18.(12分)设计一个算法,求表达式12+22+32+…+102的值,画出程序框图.19.(12分)用秦九韶算法求多项式f(x)=3x5+8x4-3x3+5x2+12x-6当x=2时的值.20.(12分)计算:102+202+302+…+1002,写出解决该问题的算法程序,并画出相应的算法程序框图.21.(12分)有一只猴子第1天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个,第2天早上又将剩下的桃子吃了一半,又多吃了一个,以后每天早上都吃了前一天剩下的一半多一个,到第10天早上想再吃时,只剩下一个桃子,求第1天共摘了多少桃子?并设计程序.22.(12分)用100元钱购买100只鸡,其中公鸡每只5元,母鸡每只3元,小鸡3只1元,问能买多少只公鸡?多少只母鸡?多少只小鸡?写出程序解决这个问题.第一章 章末检测1.D [本题主要考查算法的基本概念和特点:算法就是解决问题的方法,可以是数值或者非数值操作,它必须是有限的步骤,不能无休止地执行下去,必须“有始有终”.]2.B 3.C 4.C5.B [只有②③④必须用条件分支结构.]6.C [x =2 005+2 006=4 011,y =2 005+2 006-2 006=2 005.] 7.D8.C [该算法是求y =⎩⎪⎨⎪⎧3, x ≤0x +4, x>0的值.∴当x =-2时,y =3;当x =2时,y =2+4=6.] 9.C10.C [i 的初始值为2,依次加2,相乘直到68.] 11.B12.B [输入x =-2时,y =0,执行x =x +0.5后x =-1.5. 当x =-1.5时,y =0,执行x =x +0.5后x =-1. 当x =-1时,y =0,执行x =x +0.5后x =-0.5. 当x =-0.5时,y =0,执行x =x +0.5后x =0. 当x =0时,y =0,执行x =x +0.5后x =0.5. 当x =0.5时,y =0.5,执行x =x +0.5后x =1. 当x =1时,y =1,执行x =x +0.5后x =1.5. 当x =1.5时,y =1,执行x =1.5+0.5后x =2. 当x =2时,y =1,此时2≥2,因此结束循环. 故输出各数之和为0.5+1+1+1=3.5.] 13.2414.求使1×3×5×…×n>10 000成立的最小正整数n 的值 15.26解析 计算函数y =⎩⎪⎨⎪⎧x 3-1 x<52x 2+2 x ≥5,解当x =3时,∴y =33-1=26.16.1+33+53+…+9993 17.解 算法:第一步,取r 1=2,r 2=4,h =4. 第二步,计算l =(r 2-r 1)2+h 2.第三步,计算S =πr 21+πr 22+π(r 1+r 2)l 与V =1π(r21+r22+r1r2)h.3第四步,输出S,V.18.解算法:第一步,令S=0,i=1.第二步,判断i是否小于或等于10,若是,则执行第三步;若否,则输出S.第三步,令S=S+i2,并令i=i+1,然后返回第二步.程序框图:19.解根据秦九韶算法,把多项式改写成如下形式:f(x)=((((3x+8)x-3)x+5)x+12)x-6,按照从内到外的顺序,依次计算一次多项式当x=2时的值.v0=3,v1=v0×2+8=3×2+8=14,v2=v1×2-3=14×2-3=25,v3=v2×2+5=25×2+5=55,v4=v3×2+12=55×2+12=122,v5=v4×2-6=122×2-6=238,∴当x=2时,多项式的值为238.20.解程序:相应程序框图如右图所示.21.解第10天为S10=1第9天为S9=(1+1)×2=4,第8天为S8=(S9+1)×2=10,…,第1天为S 1=(1+S 2)×2,从而可得递推式S n =2(1+S n +1),S 10=1,n =1,2, (9)故第一天共摘了S 1=1 534个桃子. 程序如下:22.解 设公鸡、母鸡、小鸡各有x 、y 、z 只,首先可以大致确定x ,y ,z 的范围;若100元钱全买公鸡,则最多可买20只,所以x 的范围是0~20,同理y 的范围是0~33;当x ,y 确定后,小鸡的只数也就确定了.事实上,本题就是求不定方程组:⎩⎪⎨⎪⎧x +y +z =100,5x +3y +z3=100的正整数解.程序如下:。
高中数学选择性必修三 精讲精炼 第六章 计原理 章末测试(提升)(含答案)
![高中数学选择性必修三 精讲精炼 第六章 计原理 章末测试(提升)(含答案)](https://img.taocdn.com/s3/m/bb374368326c1eb91a37f111f18583d049640f3e.png)
第六章 计数原理 章末测试(提升)一、单选题(每题只有一个选项为正确答案,每题5分,8题共40分)1.(2021·全国·高二课时练习)某平台设有“人物”“视听学习”等多个栏目.假设在这些栏目中,某时段“人物”更新了2篇文章,“视听学习”更新了4个视频.一位学习者准备从更新的这6项内容中随机选取2个视频和2篇文章进行学习,则这2篇文章学习顺序相邻的学法有( ) A .36种 B .48种 C .72种 D .144种【答案】C【解析】根据题意,从4个视频中选2个有24C 种方法, 2篇文章全选有22C 种方法,2篇文章要相邻则可以先捆绑看成1个元素,三个学习内容全排列有33A 种方法, 最后需要对捆绑元素进行松绑全排列有22A 种方法,故满足题意的学法有22324232C C A A 72=(种).故选:C2.(2021·全国·高二课时练习)一个66⨯的表格内,放有3辆完全相同的红车和3辆完全相同的黑车,每辆车占1格,每行每列只有1辆车,放法种数为( ) A .720 B .20 C .518400 D .14400【答案】D【解析】先假设3辆红车不同,3辆黑车也不相同, 第一辆车显然可占36个方格中任意一个,有36种放法,第二辆车由于不能与第一辆车同行,也不能与第一辆车同列,有25种放法, 同理,第三、四、五、六辆车分别有16,9,4,1种放法. 再注意到3辆红车相同,3辆黑车也相同,故不同的放法共有()22654321362516941720144003!3!6636⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯===⨯⨯(种).故选:D3.(2022·全国·高三专题练习)在关于[]()sin 0,x x π∈的二项式()1sin nx +的展开式中,末尾两项的二项式系数之和为7,且二项式系数最大的项的值为52,则x =( )A .3π B .3π或23πC .6πD .6π或56π 【答案】D【解析】由题意知:117n nn n C C n -+=+=,解得:6n =,∴展开式的第4项的二项式系数最大,3365sin 2C x ∴=,即3520sin 2x =,1sin 2x ∴=,又[]0,x π∈,6x π∴=或56π.故选:D .4.(2022·全国· 专题练习)已知()63212x a x x ⎛⎫+- ⎪⎝⎭的展开式中各项系数的和为3,则该展开式中常数项为( ) A .80 B .160 C .240 D .320【答案】D【解析】令1x =得6(1)(21)3a +-=,解得2a =,则6212x x ⎛⎫- ⎪⎝⎭展开式的通项为666316621C (2)(1)2C rr r r r r rr T x x x ---+⎛⎫=-=- ⎪⎝⎭,则()632122x x x ⎛⎫+- ⎪⎝⎭展开式中常数项为26223633662(1)2C (1)2C 320--⨯-+-=.故选:D5.(2021·全国·高二课时练习)已知2×1010+a (0≤a <11)能被11整除,则实数a 的值为( ) A .7 B .8 C .9 D .10【答案】C【解析】()10102102111a a ⨯+=⨯-+10921111111a ⎡⎤=-+-++⎣⎦()()()10921111112a ⎡⎤=-+-+⋯+-++⎣⎦, ∵()()()1092111111⎡⎤-+-+⋯+-⎣⎦能被11整除, ∴要使()10210011a a ⨯+≤<能被11整除,则2a +能被11整除,∵011a ≤<,∴2213a ≤+<,则211a +=,解得9a =, 故选:C.6.(2021·重庆市实验中学 )若()28210012101(41)(21)(21)(21)x x a a x a x a x ++=+++++++,则1210a a a +++等于( )A .2B .1C .54D .14-【答案】D【解析】令0x =,则 801210(01)(0+1)1a a a a =+⨯++++=,令12x =-,则8015(1)(2+1)44a =+⨯-=,121051144a a a ∴+=-+=-+故选:D7.(2021·全国·高二单元测试)如图所示,玩具计数算盘的三档上各有7个算珠,现将每档算珠分为左右两部分,左侧的每个算珠表示数2,右侧的每个算珠表示数1(允许一侧无珠),记上、中、下三档的数字和分别为a ,b ,c .例如,图中上档的数字和a =9.若a ,b ,c 成等差数列,则不同的分珠计数法有( )种.A .12B .24C .16D .32【答案】D【解析】根据题意,a ,b ,c 的取值范围都是从7~14共8个数字,故公差d 范围是3-到3,①当公差0d =时,有188C =种,②当公差1d =±时,b 不取7和14,有16212C ⨯=种, ③当公差2d =±时,b 不取7,8,13,14,有1428C ⨯=种, ④当公差3d =±时,b 只能取10或11,有1224C ⨯=种,综上共有8128432+++=种, 故选:D .8.(2021·全国·高二单元测试)设a >0,b >0,且52b ax x ⎛⎫+ ⎪⎝⎭展开式中各项的系数和为32,则14a b +的最小值为( )A .4BC .D .92【答案】D【解析】设0a >,0b >,且52()b ax x+展开式中各项的系数和为5()32a b +=, 2a b ∴+=,则141412529()22222222a b b a b a aba b a b a b ++=+=++++=, 当且仅当24,33a b ==时,等号成立.则14a b +的最小值为92, 故选:D .二、多选题(每题至少有2个选项为正确答案,每题5分,4题共20分)9.(2021·山东无棣·高二期中)已知102(0)ax a⎛> ⎝,展开式的各项系数和为1024,下列说法正确的是( )A .展开式中偶数项的二项式系数和为256B .展开式中第6项的系数最大C .展开式中存在常数项D .展开式中含10x 项的系数为45 【答案】BC【解析】解:∵展开式的各项系数之和为1024, ∴10(1)1024a +=, ∵a >0,∴a =1.原二项式为102x⎛ ⎝,其展开式的通项公式为:()520102211010rr r r r r T C x C x--+=⋅⋅= 展开式中偶数项的二项式系数和为12×1024=512,故A 错;因为本题中二项式系数和项的系数一样,且展开式有11项,故展开式中第6项的系数最大,B 对;令520082r r -=⇒=,即展开式中存在常数项,C 对;令410520104,2102r r C -=⇒==,D 错.故选:BC .10.(2021·山东·高二期中)为了做好社区新疫情防控工作,需要将5名志愿者分配到甲、乙、丙、丁4个小区开展工作,则下列选项正确的是( ) A .共有625种分配方法 B .共有1024种分配方法C .每个小区至少分配一名志愿者,则有240种分配方法D .每个小区至少分配一名志愿者,则有480种分配方法 【答案】BC【解析】对于选项AB:若需要将5名志愿者分配到甲、乙、丙、丁4个小区开展工作,则每个志愿者都有4种可能,根据计数原理之乘法原理,则有45=1024种不同的方法,故A 错误,B 正确,对于选项CD :若每个小区至少分配一名志愿者,则有一个小区有两名志愿者,其余小区均有1名志愿者,由部分均匀分组消序和全排列可知,把5名志愿者分成4组,有211145321433240C C C C A A =种不同的分配方法, 故C 正确,D 错误. 故选:BC.11.(2021·山东·高二期中)已知5()(1a x ++展开式的所有项系数之和为96,则下列说法正确的是( ) A .1a = B .2a =C .5()(1a x ++展开式中2x 项的系数为10D .5()(1a x ++展开式中2x 项的系数为20 【答案】BD【解析】由已知,令1x =可得,()51296a +⨯=,解得2a =,故A 错误,B 正确,因为二项式5(1+的展开式的通项公式为2155rr r r r T C C x +==,所以5(2)(1x +的展开式中含2x 的项为4222255220C x C x x +=,所以含2x 项的系数为20,故C 错误,D 正确, 故选:BD.12.(2021·福建·福清龙西中学高二期中)关于32212x x ⎛⎫+- ⎪⎝⎭的展开式,下列结论正确的是( )A .所有项的二项式系数和为32B .所有项的系数和为0C .常数项为20-D .二项式系数最大的项为第3项【答案】BC【解析】因为3223261112x x x x x x ⎡⎤=-=-⎢⎭⎛⎫⎛⎫⎛⎫+- ⎪ ⎪ ⎪⎝⎭⎢⎝⎝⎣⎦⎭⎥⎥,A.二项式系数和为6264=,错误;B.令1x =可得600=,所有项的系数为0,正确;C.展开式的通项为()66216611rr rrrr r T C xC x x --+⎛⎫=⋅⋅-=-⋅⋅ ⎪⎝⎭,令3r =,可得常数项为3620C -=-,正确; D.展开式中一共有7项,所以二项式系数最大的项为第4项,错误; 故选:BC.三、填空题(每题5分,4题共20分)13.(2022·浙江· )将2个2021,3个2019,4个2020填入如图的九宫格中,使得每行数字之和、每列数字之和都为奇数,不同的填法有___________种.(用数字回答)【答案】90【解析】某行(列)的数字和为奇数,则该行(列)的奇数个数为1个或3个,题中有5个奇数,4个偶数,则分布到3行,必有一行有3个奇数,另两行只有1个奇数,列同理,则奇数的位置分布有339⨯=种,对于每种位置,从5个位置中选择2个位置放2021,有2510C =种,由分步乘法计数原理可知,不同的填法种数为91090⨯=种. 故答案为:90.14.(2021·山东· )已知()()()()72801282111x x a a x a x a x -=+-+-+⋅⋅⋅+-,则56a a +=________.【答案】0【解析】由题知,7280128(2)(1)(1)(1)x x a a x a x a x -=+-+-+⋯⋯+-,且()()77(2)1111x x x x -=-+--⎡⎤⎡⎤⎣⎦⎣⎦,则()()23545771114a C C =⋅-+⋅-=-, ()()12656771114a C C =⋅-+⋅-=,所以5614140a a +=-+=. 故答案为:015.(2021·广东珠海 )4(12)(12)x x -+的展开式中含3x 的项的系数为________. 【答案】-16【解析】因为4(12)(12)x x -+44(12)2(12)x x x =+-+,所以4(12)(12)x x -+的展开式中3x 的系数为332244222324816C C -=-=-.故答案为:16-16.(2022·全国· 专题练习)设复数1i 1iz +=-,则0122334455668888888C C C C C C C z z z z z z +⋅+⋅+⋅+⋅+⋅+⋅ 778C z +⋅=______. 【答案】15【解析】()()()21i 1i 2i ==i 1i 1i 1i 2z ++==--+, 所以0122334455667788888888C C C C C C C C z z z z z z z +⋅+⋅+⋅+⋅+⋅+⋅+⋅=884(1i)i (2i)115+-=-=.故答案为:15.四、解答题(17题10分,其余每题12分,共70分)17.(2021·全国·高二课时练习)若251098109810(321)()x x a x a x a x a x a x C -+=+++++∈,求:(1)22024*********()()a a a a a a a a a a a +++++-++++;(2)246810a a a a a -+-+-. 【答案】(1)512;(2)127.【解析】(1)令x =1,得a 0+a 1+…+a 10=25;令x =-1,得(a 0+a 2+a 4+a 6+a 8+a 10)-(a 1+a 3+a 5+a 7+a 9)=65.两式相乘,得(a 0+a 2+a 4+a 6+a 8+a 10)2-(a 1+a 3+a 5+a 7+a 9)2=25×65=125.(2)令x =i ,得-a 10+a 9·i +a 8-a 7·i -a 6+a 5·i +a 4-a 3·i -a 2+a 1·i +a 0=(-2-2i)5=-25(1+i)5=-25[(1+i)2]2(1+i)=128+128i.整理得,(-a 10+a 8-a 6+a 4-a 2+a 0)+(a 9-a 7+a 5-a 3+a 1)·i =128+128i , 故-a 10+a 8-a 6+a 4-a 2+a 0=128. 因为a 0=1,所以-a 10+a 8-a 6+a 4-a 2=127.18.(2021·全国·高二课时练习)在①第5项的系数与第3项的系数之比是14:3,②第2项与倒数第3项的二项式系数之和为55,③221C C 10n n n-+-=这三个条件中任选一个,补充在下面问题的横线上,并解答.问题:已知在n的展开式中,______.(1)求展开式中二项式系数最大的项; (2)求展开式中含5x 的项.【答案】(1)答案见解析;(2)答案见解析. 【解析】方案一:选条件①.(1)n展开式的通项为()3561C 1C kn kn kk kk k nn T x--+⎛==- ⎝,0k =,1,2,…,n . 因为()()44221C 1431C nn-=-,即423C 14C n n =,所以()()!!3144!4!2!2!n n n n ⨯=⨯--, 整理得1050n n ,解得10n =或5n =-(舍去),所以10的展开式共有11项,所以展开式中二项式系数最大的项是第6项,为()302555566651101C 252T T xx -+==-=-.(2)令30556k-=,得0k =, 所以展开式中含5x 的项为展开式的第1项,即5x . 方案二:选条件②.(1)n展开式的通项为()3561C 1C kn kn kk kk k nn T x--+⎛==- ⎝,0k =,1,2,…,n . 因为12C C 55n n n -+=,所以2C 55n n +=,即()1552n n n -+=,即21100n n +-=, 解得10n =或11n =-(舍去),所以10的展开式共有11项,所以展开式中二项式系数最大的项是第6项,为()302555566651101C 252T T xx -+==-=-.(2)令30556k-=,得0k =, 所以展开式中含5x 的项为展开式的第1项,即5x . 方案三:选条件③.(1)n展开式的通项为()3561C 1C kn kn kk kk k nn T x--+⎛==- ⎝,0k =,1,2,…,n . 因为221C C 10n n n -+-=,所以221C C 10n n +-=,所以()()111022n n n n +--=,解得10n =,所以10的展开式共有11项,所以展开式中二项式系数最大的项是第6项,为()302555566651101C 252T T x x -+==-=-.(2)令30556k-=,得0k =, 所以展开式中含5x 的项为展开式的第1项,即5x .19.(2021·广东·深圳实验学校高中部高二月考)现有5本书和3位同学,将书全部分给这三位同学(要求用数字作答).(1)若5本书完全相同,共有多少种分法;(2)若5本书都不相同,每个同学至少有一本书,共有多少种分法;(3)若5本书仅有两本相同,按一人3本另两人各1本分配,共有多少种分法. 【答案】(1)21;(2)150;(3)39.【解析】(1)先借三本相同的书一人给一本,保证每人至少分得一本,再将这5本书和2个挡板排成一排,利用挡板将5本书分为3组,对应3位同学即可,有2721C =种情况,即有21种不同的分法; (2)分2步进行: ①将5本书分成3组,若分成1、1、3的三组,有31522210C CA =种分组方法,若分成1、2、2的三组,有1225422215C C C A =种分组方法, 从而分组方法有101525+=种;②将分好的三组全排列,对应3名学生,有336A =种情况,根据分步计数原理,故共有256150⨯=种分法;(3)记这5本书分别为A 、A 、B 、C 、D , 5本书取其三本分配时, ①不含A 时仅有一种分组,再分配给3人,有3种方法,②仅含一个A 时,分组的方法有23C 种,再分配给3人,共有233318C A ⨯=种方法,③含两个A 时,分组的方法有13C 种,再分配给3人,共有133318C A ⨯=种方法,从而共有18+18+3=39种分法.20.(2021·江苏江都·高二期中)生命在于运动。
人教b版数学必修三:第3章《概率》章末检测(含答案)
![人教b版数学必修三:第3章《概率》章末检测(含答案)](https://img.taocdn.com/s3/m/2cc95a8e02d276a201292e0c.png)
第三章 章末检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A .必然事件 B .随机事件 C .不可能事件 D .无法确定2.若事件A 是必然事件,事件B 是不可能事件,则事件A 与B 的关系是( ) A .互斥不对立 B .对立不互斥 C .互斥且对立 D .不对立且不互斥3.某医院治疗一种疾病的治愈率为15,那么,前4个病人都没有治愈,第5个病人治愈的概率是( )A .1 B.15 C.45D .04.从含有20个次品的1 000个显像管中任取一个,则它是正品的概率为( ) A.15 B.149 C.4950 D.11 0005.同时投掷两枚大小相同的骰子,用(x ,y )表示结果,记A 为“所得点数之和小于5”,则事件A 包含的基本事件数是( )A .3B .4C .5D .66.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是( )A.15B.14C.45D.1107.先后抛掷两枚骰子,若出现点数之和为2,3,4的概率分别为P 1,P 2,P 3,则有( ) A .P 1<P 2<P 3 B .P 1=P 2<P 3 C .P 1>P 2>P 3 D .P 2<P 1<P 38.如图如果你向靶子上射200支镖,大约有多少支镖落在黑色区域(颜色较深的区域)( )A .50B .100C .150D .2009.如图,A 是圆上固定的一点,在圆上其他位置任取一点A ′,连接AA ′,它是一条弦,它的长度大于等于半径长度的概率为( )A.12B.23C.32D.1410.一个盒子里装有标号为1,2,…,10的标签,随机地选取两张标签,若标签的选取是无放回的,则两张标签上数字为相邻整数的概率为( )A.15B.25C.35D.1411.假设在500 m 2的一块平地上有一只野兔,但不知道它的方位.在一个漆黑的晚上,5位猎人同时向这块地探照围捕这只野兔.若每位猎人探照范围为10 m 2,并且所探照光线不重叠.为了不惊动野兔,需一次探照成功才能捕到野兔,则成功的概率为( )A.150B.110C.15D.1212.现有五个球分别记为A ,C ,J ,K ,S ,随机放进三个盒子,每个盒子只能放一个球,则K 或S 在盒中的概率是( )A.110B.35C.310D.910二、填空题(本大题共4小题,每小题5分,共20分)13.一箱产品中有正品4件,次品3件,从中任取2件,其中事件:①恰有1件次品和恰有2件次品;②至少有1件次品和全是次品;③至少有1件正品和至少1件次品;④至少有1件次品和全是正品.其中互斥事件为________.(填序号)14.口袋中装有100个大小相同的红球、白球、黑球,其中红球40个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为________.15.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是17,从中取出2粒都是白子的概率是1235,现从中任意取出2粒恰好是同一色的概率是________.16.向边长为a 的正三角形内任投一点,点落在三角形内切圆内的概率是________. 三、解答题(本大题共6小题,共70分).(2)该油菜子发芽的概率约是多少?18.(12分)从分别写有数字1,2,3,…,9的9张卡片中,任取2张,观察上面数字,试求下列事件的概率:(1)两数和为偶数;(2)两数积为完全平方数.19.(12分)设A为圆周上一定点,在圆周上等可能的任取一点与A连结,求弦长超过半径的2倍的概率.20.(12分)一个盒子装有标号是1,2,3,4,5的标签共5张,今依次随机选取2张标签,如果(1)标签的选取是无放回的;(2)标签的选取是有放回的.求2张标签上的数字为相邻整数的概率.21.(12分)袋中有大小、形状相同的红球、黑球各一个,现依次有放回地随机摸取3次,每次摸取一个球.(1)试问:一共有多少种不同的结果?请列出所有可能的结果;(2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.22.(12分)汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(A类轿车10辆.(1)求z的值;(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.第三章 章末检测1.B [正面向上恰有5次的事件可能发生,也可能不发生,该事件为随机事件.] 2.C3.B [每一个病人治愈与否都是随机事件,故第五个人被治愈的概率仍为15.]4.C [1 000个显像管中含有980个正品,任取一个得到正品的概率为9801 000=4950.]5.D [事件A 包含(1,1)、(1,2)、(2,1)、(1,3)、(2,2)、(3,1)共6个.]6.C [从盒中任取一个铁钉包含的基本事件总数为10,其中抽到合格铁钉(记为事件A )包含8个基本事件,所以,所求概率为P (A )=810=45.]7.A [先后投掷两枚骰子,共有36个不同结果,点数之和为2的有1种情况,故P 1=136,点数之和为3的有2种情况,故P 2=236,点数之和为4的有3种情况,故P 3=336,所以,P 1<P 2<P 3.]8.B [这是几何概型问题.这200支镖落在每一点的可能性都是一样的,对每一支镖来说,落在黑色区域的概率P =黑色区域面积圆的面积=12,每一支镖落在黑色区域的概率都是12,则200支镖落在黑色区域的概率还是12,则落在黑色区域的支数=200支×12=100支.]9.B[如图,当AA ′长度等于半径时,A ′位于B 或C 点,此时∠BOC =120°,则优弧BC =43πR ,∴满足条件的概率为P =43πR 2πR =23.]10.A [若选取无放回,共有10×9÷2=45种可能,而两张标签上的数字相邻可能结果有9种(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7)、(7,8)、(8,9)、(9,10),所以P =945=15.]11.B12.D [K 或S 在盒中的对立事件是K ,S 都不在盒中,即A ,C ,J 在三个盒子中,记为A ,则P (A )=110.∴1-P (A )=910.]13.①④ 14.0.37解析 摸出黑球可以看作是摸出红、白球的对立事件;摸出白球概率P 1=0.23;摸出红球概率P 2=40100=0.40;所以摸出黑球概率P =1-0.23-0.40=0.37.15.1735 16.39π17.解 (1)填入表中的数据依次为1,0.8,0.9,0.857,0.892,0.913,0.893,0.903,0.905. (2)该油菜子发芽的概率约为0.9.18.解 从9张卡片中任取2张,共有9×8÷2=36(种)可能结果.(1)两数和为偶数,则取得的两数同为奇数或同为偶数,共有5×42+4×32=16(种)可能结果,故所求事件的概率为P =1636=49.(2)两数积为完全平方数,若为4有一种可能,若为9有一种可能,若为16有一种可能,若为36有一种可能,故共有4种可能结果(1,4)、(1,9)、(2,8)、(4,9),所求事件的概率为436=19. 19.解如图所示,在⊙O 上有一定点A ,任取一点B 与A 连结,则弦长超过半径的2倍,即为∠AOB 的度数大于90°,而小于270°.记“弦长超过半径的2倍”为事件C , 则C 表示的范围是∠AOB ∈(90°,270°). 则由几何概型求概率的公式,得P (C )=270-90360=12.∴弦长超过半径的2倍的概率为12.20.解 基本事件较少,可以分类列举,注意有放回与无放回的区别.(1)无放回选取2张标签,分两次完成,考虑顺序,共有20种取法,即(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)及把两数顺序交换的情况,其中抽到相邻整数仅有(1,2),(2,3),(3,4),(4,5)及其交换数字顺序的情况共计8种,所以标签选取无放回时,2张标签上的数字为相邻整数的概率为P =820=25.(2)标签选取有放回时,共有25种取法,即无放回的20种,再加上(1,1),(2,2),(3,3),(4,4),(5,5)这5种取法,其中2张标签上为相邻整数的取法仍然只有8种,因此标签选取有放回时,2张标签上的数字为相邻整数的概率为P =825.21.解 (1)一共有8种不同的结果,列举如下,(红,红,红)、(红,红,黑)、(红,黑,红)、(红,黑,黑),(黑,红,红)、(黑,红,黑),(黑,黑,红),(黑,黑,黑).(2)记“3次摸球所得总分为5”为事件A .事件A 包含的基本事件为:(红,红,黑)、(红,黑,红)、 (黑,红,红),事件A 包含的基本事件数为3.由(1)可知,基本事件总数为8,所以事件A 的概率为P (A )=38.22.解 (1)设该厂这个月共生产轿车n 辆,由题意得50n =10100+300,所以n =2 000.则z =2 000-(100+300)-(150+450)-600=400.(2)设所抽样本中有a 辆舒适型轿车,由题意得4001 000=a5,即a =2.因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A 1,A 2表示2辆舒适型轿车,用B 1,B 2,B 3表示3辆标准型轿车,用E 表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本事件空间包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3)共10个.事件E 包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3)共7个.故P (E )=710,即所求概率为710.(3)样本平均数x =18×(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.设D 表示事件“从样本中任取一数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D 包括的基本事件有:9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以P (D )=68=34,即所求概率为34.。
人教b版数学必修三:第2章《统计》章末复习导学案(含答案)
![人教b版数学必修三:第2章《统计》章末复习导学案(含答案)](https://img.taocdn.com/s3/m/8a69dae05ef7ba0d4b733b0c.png)
章末复习课知识概览对点讲练知识点一三种抽样方法的选择例1选择合适的抽样方法抽样,写出抽样过程.(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个.(2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个.(3)有甲厂生产的300个篮球,抽取10个.(4)有甲厂生产的300个篮球,抽取30个.点评弄清三种抽样方法的实质和适用范围,是灵活选用抽样方法的前提和基础.若用分层抽样,应先确定各层的抽取个数,然后在各层中用系统抽样或简单随机抽样进行抽取.变式迁移1某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是() A.4 B.5 C.6 D.7知识点二用样本估计总体例2有1个容量为100的样本,数据的分组及各组的频数如下:[12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18;[21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;[30.5,33.5),8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计小于30的数据约占多大百分比.点评频率分布直方图可直观看出在各个区间内机会的差异,可对总体情况作出估计.变式迁移2为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力,得到频率分布直方图,如下图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a,b的值分别为()A.0.27,78 B.0.27,83 C.2.7,78 D.2.7,83例3甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm2):变式迁移3随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差.知识点三回归直线方程及应用例4在7块并排、形状大小相同的实验田上进行施化肥量对水稻产量影响的试验,得数据列表(1)(2)求水稻产量y与施化肥量x之间的回归直线方程;(3)当施化肥50 kg时,对水稻的产量予以估计.点评(1)回归分析是寻找相关关系中非确定性关系的某种确定性;(2)求回归直线方程,关键在于正确地求出系数a ^,b ^,由于a ^,b ^的计算量大,计算时要仔细,避免计算失误.变式迁移4 某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这种服装件数x已知:∑7i =1x 2i =280,∑i =1y 2i =45 309,∑i =1x i y i =3 487,且y 与x 有线性相关关系.(1)求x ,y ;(2)求纯利y 与每天销售件数x 之间的回归直线方程.课时作业一、选择题1.某质检人员从编号为1~100这100件产品中,依次抽出号码为3,7,13,17,23,27,…,93,97的产品进行检验,则这样的抽样方法是( )A .简单随机抽样B .系统抽样C .分层抽样D .以上都不对2.下列说法:①一组数据不可能有两个众数;②一组数据的方差不可能是负数;③将一组数据中的每一个数据都加上或减去同一常数后,方差恒不变;④在频率分布直方图中,每个小长方形的面积等于相应小组的频率,其中错误的个数有( )A .0B .1C .2D .33.现有60瓶牛奶制品,编号从1至60,若从中抽取6瓶进行检验,用系统抽样方法确定所抽的编号为( )A .3,13,23,33,43,53B .2,14,26,38,42,56C .5,8,31,36,48,54D .5,10,15,20,25,304.数学老师对某同学在参加高考前的5次数学模拟考试成绩进行统计分析,判断该同学的数学成绩是否稳定,于是老师需要知道该同学这5次成绩的( )A .平均数或中位数B .方差或标准差C .众数或频率D .频数或众数5.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到的回归直线方程为y ^=b ^x +a ^,那么下列说法不正确的是( )A .直线y ^ =b ^ x +a ^ 必经过点(x ,y )B .直线y ^=b ^x +a ^至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点 C .直线y ^=b ^x +a ^的斜率为∑ni =1x i y i -n x y∑n i =1x 2i -n x 2D .直线y ^=b ^x +a ^和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差∑ni =1[y i -(bx i +a )]2是该坐标平面上所有直线与这些点的偏差中最小的 二、填空题6.某校有教师200人,男学生1 200人,女学生1 000人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从女学生中抽取的人数为80人,则n 的值为________.7.甲、乙两位同学某学科的连续五次考试成绩用茎叶图表示如图所示,则平均分数较高的是________,成绩较为稳定的是________.8.某中学期中考试后,对成绩进行分析,从某班中选出5名学生的总成绩和外语成绩如下表:三、解答题9.对划艇运动员甲、乙二人在相同的条件下进行了6次测试,测得他们最大速度(m/s)的数据如下:甲 27,38,30,37,35,31; 乙 33,29,38,34,28,36.根据以上数据,试判断他们谁更优秀. 10.随机选取15家销售公司,由营业报告中查出其上年度的广告费(占总费用的百分比)及盈利额(1)画出散点图;(2)如果变量x 与y 之间具有线性相关关系,求出回归直线方程; (3)已知某销售公司的广告费为其总费用的1.7%,试估计其盈利额占销售总额的百分比.章末复习课对点讲练例1 解 (1)总体容量较小,用抽签法. ①将30个篮球编号,号码为00,01, (29)②将以上30个编号分别写在一张小纸条上,揉成小球,制成号签; ③把号签放入一个不透明的袋子中,充分搅拌;④从袋子中逐个抽取3个号签,并记录上面的号码; ⑤找出和所得号码对应的篮球.(2)总体由差异明显的两个层次组成,需选用分层抽样法. ①确定抽取个数. 3010=3,所以甲厂生产的应抽取213=7(个), 乙厂生产的应抽取93=3(个);②用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个.这些篮球便组成了我们要抽取的样本.(3)总体容量较大,样本容量较小,宜用随机数表法.①将300个篮球用随机方式编号,编号为000,001,…,299; ②在随机数表中随机的确定一个数作为开始,如第8行第11列的数“2”开始.任选一个方向作为读数方向,比如向右读;③从数“2”开始向右读,每次读三位,凡不在000~299中的数跳过去不读,遇到已经读过的数也跳过去不读,便可依次得到10个号码,这就是所要抽取的10个样本个体的号码.(4)总体容量较大,样本容量也较大宜用系统抽样法.①将300个篮球用随机方式编号,编号为001,002,003,…,300,并分成30段,其中每一段包含30030=10(个)个体;②在第一段001,002,003,…,010这十个编号中用简单随机抽样抽出一个(如002)作为起始号码;③将编号为002,012,022,…,292的个体抽出,组成样本. 变式迁移1 C [抽取的植物油类种数:1040+10+30+20×20=2,抽取的果蔬类食品种数:2040+10+30+20×20=4,故抽取的植物油类与果蔬类食品种数之和是6.] 例2 解 (1)(2)(3)小于30的数据约占90%.变式迁移2 A [100人分为10组,第1组1人,第2组3人,第三组9人,第四组27人,故a =0.27;后六组共87人,故b =78.]例3 甲解析 方法一 x 甲=15×(9.8+9.9+10.1+10+10.2)=10,x 乙=15×(9.4+10.3+10.8+9.7+9.8)=10,即甲、乙两种冬小麦的平均单位面积产量的均值都等于10,其方差分别为s 2甲=15×(0.04+0.01+0.01+0+0.04)=0.02,s 2乙=15×(0.36+0.09+0.64+0.09+0.04) =0.244,即s 2甲<s 2乙,表明甲种小麦的产量比较稳定.方法二 (通过特殊的数据作出合理的推测)表中乙品种在第一年的产量为9.4,在第三年的产量为10.8,其波动比甲品种大得多,所以甲种冬小麦的产量比较稳定.变式迁移3 解 (1)由茎叶图可知:甲班身高集中于160~179之间,而乙班身高集中于170~180之间,因此乙班平均身高高于甲班.(2)x =158+162+163+168+168+170+171+179+179+18210=170.甲班的样本方差s 2=110×[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2.例4 解 (1)画出散点图如下图:由图可见是线性相关的.x =30,y ≈399.3,∑i =17x i y i =87 175.∑i =17x 2i =7 000.计算得:b ^=87 175-7×30×399.37 000-7×302≈4.75,a ^ =399.3-4.75×30=256.8.即得回归直线方程y ^=256.8+4.75x.(3)施化肥50 kg 时,可以估计水稻产量约为494.3 kg .变式迁移4 解 (1)x =3+4+5+6+7+8+97=6,y =66+69+73+81+89+90+917=5597≈79.86.(2)设回归直线方程为y ^=b ^x +a ^,因为∑7i =1x 2i =280,∑7i =1y 2i =45 309,∑7i =1x i y i =3 487,x =6,y =5597,所以b ^=3 487-7×6×5597280-7×36=13328=4.75,a ^=5597-6×4.75≈51.36.所以回归直线方程为y ^=4.75x +51.36. 课时作业 1.B 2.B 3.A 4.B 5.B 6.192解析 801 000=n2 400,n =192.7.甲 甲解析 甲的平均分为x =68+69+70+71+725=70,乙的平均分为y =68;甲的方差为s 21=(68-70)2+(69-70)2+(70-70)2+(71-70)2+(72-70)25=2.乙的方差为s 22=7.2,故甲的平均分高于乙,甲的成绩比乙稳定.8.y ^=14.7+0.132x9.解 x 甲=16×(27+38+30+37+35+31)=1986=33.s 2甲=16×[(27-33)2+(38-33)2+…+(31-33)2] =16×94≈15.7. x 乙=16×(33+29+38+34+28+36)=1986=33,s 2乙=16×[(33-33)2+(29-33)2+…+(36-33)2] =16×76≈12.7 ∴x 甲=x 乙,s 2甲>s 2乙,说明甲乙二人的最大速度的平均值相同,但乙比甲更稳定,故乙比甲更优秀.10.解 (1)散点图如图所示.(2)回归直线方程是y ^=1.414 68x +0.821 23.(3)当x =1.7时,由回归直线方程得y =3.23,即可估算其盈利额占销售总额的3.23%.。
人教b版数学必修三:第3章《概率》章末复习导学案(含答案)
![人教b版数学必修三:第3章《概率》章末复习导学案(含答案)](https://img.taocdn.com/s3/m/d522ce200066f5335b81210c.png)
章末复习课知识概览对点讲练知识点一互斥事件与对立事件互斥事件和对立事件,都是研究怎样从一些较简单的事件的概率的计算来推算较复杂事件的概率.应用互斥事件的概率加法公式解题,备受高考命题者的青睐,应用公式时一定要注意首先确定各个事件是否彼此互斥,然后求出各事件分别发生的概率,再求和.对于较复杂事件的概率,可以转化为求对立事件的概率.例1某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3、0.2、0.1、0.4.(1)求他乘火车或乘飞机去的概率;(2)求他不乘轮船去的概率.点评“互斥”和“对立”事件容易搞混.互斥事件是指两事件不可能同时发生.对立事件是指互斥的两事件中必有一个发生.变式迁移1互相输血,小明是B型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?知识点二 古典概型古典概型是一种基本的概型,也是学习其它概型的基础,在高考题中,经常出现此种概型的题目,解题时要紧紧抓住古典概型的两个基本特征,即有限性和等可能性.在应用公式P (A )=mn时,关键是正确理解基本事件与事件A 的关系,求出n 、m .例2 将一颗骰子先后抛掷2次,观察向上的点数,求(1)两次向上的点数之和为7或是4的倍数的概率;(2)以第一次向上的点数为横坐标x ,第二次向上的点数为纵坐标y 的点(x ,y )在圆x 2+y 2=20的内部(不包括边界)的概率.变式迁移2 任取两个一位数,观察结果,问: (1)共有多少种不同的结果?(2)取出的两数之和等于3的结果有多少种? (3)两数的和是3的概率是多少?知识点三 几何概型几何概型同古典概型一样,是概率中最具有代表性的试验概型之一,在高考命题中占有非常重要的位置.我们要理解并掌握几何概型试验的两个基本特征,即每次试验中基本事件的无限性和每个事件发生的等可能性,并能求简单的几何概型试验的概率.例3 甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.(保留小数点后三位)变式迁移3 在圆心角为90°的扇形中,以圆心O 为起点作射线OC ,求使得∠AOC 和∠BOC 都不小于30°的概率.课时作业一、选择题1.从装有2个红球和2个黑球的口袋中任取2个球,那么互斥而不对立的两个事件是( )A .至少有1个黑球与都是黑球B .至少有1个黑球与至少有1个红球C .恰有1个黑球与都是黑球D .至少有1个黑球与都是红球2.一个电路板上装有甲、乙两根熔丝,甲熔断的概率为0.85,乙熔断的概率为0.74,两根同时熔断的概率为0.63,则至少有一根熔断的概率是( )A .0.59B .0.85C .0.96D .0.743.将一个各个面上均涂有颜色的正方体锯成27个同样的大小的小正方体,从中任取一个小正方体,其中恰有3面涂有颜色的概率为( )A.19B.827C.427D.494.在5张卡片上分别写有数字1,2,3,4,5,然后将它们混和,再任意排列成一行,则得到的数能被2或5整除的概率是( )A .0.2B .0.4C .0.6D .0.85.已知实数x 、y ,可以在0<x <2,0<y <2的条件下随机取数,那么取出的数对(x ,y )满足(x -1)2+(y -1)2<1的概率是( )A.π4B.4πC.π2D.π3 二、填空题6.某射击选手射击一次,击中10环、9环、8环的概率分别为0.3、0.4、0.1,则射手射击一次,击中环数小于8的概率是________.7.某市公交车每隔10分钟一班,在车站停1分钟,则乘客等车时间不超过7分钟的概率为________.8.在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投点在E 中的概率是________.三、解答题9.袋中有红、黄、白3种颜色的球各1只,从中每次任取1只,有放回地抽取3次,求: (1)3只全是红球的概率; (2)3只颜色全相同的概率; (3)3只颜色不全相同的概率; (4)3只颜色全不相同的概率.10.在圆x 2+y 2-2x -2y +1=0内随机投点,求点与圆心距离小于13的概率.章末复习课对点讲练例1 解 (1)记“他乘火车去”为事件A 1,“他乘轮船去”为事件A 2,“他乘汽车去”为事件A 3,“他乘飞机去”为事件A 4,这四个事件不可能同时发生,故它们彼此互斥.故P (A 1∪A 4)=P (A 1)+P (A 4)=0.3+0.4=0.7. 所以他乘火车或乘飞机去的概率为0.7.(2)设他不乘轮船去的概率为P ,则P =1-P (A 2) =1-0.2=0.8.变式迁移1 解 (1)对任一人,其血型为A 、B 、AB 、O 型血的事件分别记为A ′、B ′、C ′、D ′,它们是互斥的.由已知,有P (A ′)=0.28,P (B ′)=0.29,P (C ′)=0.08,P (D ′)=0.35.因为B 、O 型血可以输给B 型血的人,故“可以输给B 型血的人”为事件B ′∪D ′.根据互斥事件的加法公式,有P (B ′∪D ′)=P (B ′)+P (D ′)=0.29+0.35=0.64. (2)由于A 、AB 型血不能输给B 型血的人,故“不能输给B 型血的人”为事件A ′∪C ′,且P (A ′∪C ′)=P (A ′)+P (C ′)=0.28+0.08=0.36.答 任找一人,其血可以输给小明的概率为0.64,其血不能输给小明的概率为0.36. 例2 解 (1)第一颗骰子先后抛掷2次,此问题中含有36个等可能的基本事件.记“两数之和为7”为事件A ,则事件A 中含有(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),6个基本事件.∴P (A )=636=16.记“两数之和是4的倍数”为事件B ,则事件B 中含有(1,3),(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6),9个基本事件,∴P (B )=936=14.∵事件A 与事件B 是互斥事件,∴所求概率为P (A )+P (B )=512.(2)记“点(x ,y )在圆x 2+y 2=20的内部”为事件C ,则事件C 中共含有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),11个基本事件,∴P (C )=1136.变式迁移2 解 (1)因为每次取出的数是0,1,2,…,9这十个数字中的一个,从而每次取数都有10种可能,所以两次取数共有等可能的结果总数为n =10×10=100(种).(2)记“两个数的和等于3”为事件A ,则事件A 的可能取法有第一次取的数分别为0,1,2,3,相应的第二次取的数分别为3,2,1,0,即事件A 包含4种结果.(3)事件A 的概率是P (A )=4100=0.04.例3 解 要使两船都不需要等待码头空出,当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上,即y -x ≥1或x -y ≥2,设A 为“两船都不需要等待码头空出”,则A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为右图中阴影部分,Ω为边长是24的正方形,由几何概型定义知, 所求概率为P (A ) =A 的面积Ω的面积=(24-1)2×12+(24-2)2×12242=506.5576≈0.879. 变式迁移3 解 如图所示,设事件A 是“作射线OC ,使∠AOC 和∠BOC 都不小于30°”,μA =90°-30°-30°=30°,μΩ=90°,由几何概型的计算公式,得P (A )=μA μΩ=30°90°=13.故所求“使得∠AOC 和∠BOC 都不小于30°”的概率是13.课时作业1.C [结合互斥事件和对立事件的定义知,对于C 中恰有1个黑球,即1黑1红,与都是黑球是互斥事件.但不是对立事件,因为还有2个都是红球的情况,故应选C.]2.C 3.B4.C [最后一位数有5种结果,而能被2或5整除的有3种.] 5.A 6.0.2解析 P =1-0.3-0.4-0.1=0.2. 7.45 8.π169.解 (1)记“3只全是红球”为事件A .从袋中有放回地抽取3次,每次取1只,共会出现3×3×3=27种等可能的结果,其中3只全是红球的结果只有一种,故事件A 的概率为P (A )=127.(2)“3只颜色全相同”只可能是这样三种情况:“3只全是红球”(设为事件A ),“3只全是黄球”(设为事件B ),“3只全是白球”(设为事件C ),且它们之间是互斥关系,故“3只颜色全相同”这个事件可记为A ∪B ∪C .由于事件A 、B 、C 不可能同时发生,因此它们是互斥事件;再由于红、黄、白球个数一样,故不难得到P (B )=P (C )=P (A )=127,故P (A ∪B ∪C )=P (A )+P (B )+P (C )=19.(3)3只颜色不全相同的情况较多,如有两只球同色而另一只球不同色,可以两只同红色或同黄色或同白色;或三只球颜色全不相同,这些情况一一考虑起来比较麻烦.现在记“3只颜色不全相同”为事件D ,则事件D 为“3只颜色全相同”,显然事件D 与D 是对立事件.∴P (D )=1-P (D )=1-19=89.(4)要使3只颜色全不相同,只可能是红、黄、白各一只,要分三次抽取,故3次抽到红、黄、白各一只的可能结果有3×2×1=6种,故3只颜色全不相同的概率为627=29.10.解 圆x 2+y 2-2x -2y +1=0可化为(x -1)2+(y -1)2=1,则圆的圆心C (1,1),半径r =1,点与圆心距离小于13的区域是以C (1,1)为圆心,以13为半径的圆内部分.故点与圆心距离小于13的概率为P =π⎝⎛⎭⎫132π·12=19.。
高中数学 章末综合测评3 概率(含解析)新人教A版必修3-新人教A版高一必修3数学试题
![高中数学 章末综合测评3 概率(含解析)新人教A版必修3-新人教A版高一必修3数学试题](https://img.taocdn.com/s3/m/59b6811b6fdb6f1aff00bed5b9f3f90f76c64ddc.png)
章末综合测评(三) 概 率(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在学校明年召开的田径运动会上,学生X 涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4X 号签中任取一X ,恰为1号签;④在标准大气压下,水在4℃时结冰.A .1B .2C .3D .4C [①在明年运动会上,可能获冠军,也可能不获冠军.②李凯不一定被抽到.③任取一X 不一定为1号签.④在标准大气压下水在4℃时不可能结冰,故①②③是随机事件,④是不可能事件.]2.若干个人站成一排,其中为互斥事件的是( )A .“甲站排头”与“乙站排头”B .“甲站排头”与“乙不站排尾”C .“甲站排头”与“乙站排尾”D .“甲不站排头”与“乙不站排尾”A [由互斥事件的定义知,“甲站在排头”与“乙站在排头”不能同时发生,是互斥事件.]3.给甲、乙、丙三人打,若打的顺序是任意的,则第一个打给甲的概率是( )A.16B.13C.12D.23B [给三人打的不同顺序有6种可能,其中第一个给甲打的可能有2种,故所求概率为P =26=13.] 4.在两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m 的概率为( )A.12B.13C.14D.15B [所求事件构成的区域长度为2 m ,试验的全部结果所构成的区域长度为6 m ,故灯与两端距离都大于2 m 的概率为26=13.] 5.掷一枚均匀的硬币两次,事件M :“一次正面朝上,一次反面朝上”;事件N :“至少一次正面朝上”,则下列结果正确的是( )A .P (M )=13,P (N )=12B .P (M )=12,P (N )=12C .P (M )=13,P (N )=34D .P (M )=12,P (N )=34D [掷一枚硬币两次,所有基本事件为(正,正),(正,反),(反,正),(反,反)四种情况,事件M 包含2种情况,事件N 包含3种情况,故P (M )=12,P (N )=34.] 6.某人从甲地去乙地共走了500 m ,途中要过一条宽为x m 的河流,他不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里,则能找到,已知该物品能找到的概率为45,则河宽为( ) A .100 mB .80 mC .50 mD .40 mA [设河宽为x m ,则1-x 500=45,∴x =100.] 7.考察下列命题:(1)掷两枚硬币,可能出现“两个正面”“两个反面”“一正一反”3种等可能的结果;(2)某袋中装有大小均匀的三个红球、二个黑球、一个白球,那么每种颜色的球被摸到的可能性相同;(3)从-4,-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同;(4)分别从3个男同学、4个女同学中各选一个作代表,那么每个同学当选的可能性相同;(5)5人抽签,甲先抽,乙后抽,那么乙与甲抽到某号中奖签的可能性肯定不同.其中正确的命题有( )A .0个B .1个C .2个D .3个A [(1)中,出现“两个正面”“两个反面”的概率都是14,出现“一正一反”的概率是12,因此不是等可能的;(2)中,每种颜色的球的个数不同,因此被摸到的可能性不同;(3)中,小于0的数有4个,不小于0的数有3个,显然取到的数小于0的可能性更大;(4)中,每个男同学当选为代表的机会是13,每个女同学当选为代表的机会是14,显然可能性不同;(5)中,抽签无论先抽还是后抽,中奖的机会相等.综上,选A.]8.在区间[-1,4]内取一个数x ,则2x -x 2≥14的概率是( ) A.12B.13C.25D.35D [不等式2x -x 2≥14,可化为x 2-x -2≤0, 则-1≤x ≤2,故所求概率为2-(-1)4-(-1)=35.] 9.定义:abcde =10 000a +1 000b +100c +10d +e ,当五位数abcde 满足a <b <c ,且c >d >e 时,称这个五位数为“凸数”.由1,2,3,4,5组成的没有重复数字的五位数共120个,从中任意抽取一个,则其恰好为“凸数”的概率为( )A.16B.110C.112D.120D [由题意,由1,2,3,4,5组成的没有重复数字的五位数恰好为“凸数”的有:12543,13542,14532,23541,24531,34521,共6个基本事件,所以恰好为“凸数”的概率为P =6120=120.故选D.] 10.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m 和n ,则m >n 的概率为( ) A.710B.310C.35D.25A [建立平面直角坐标系(如图所示),则由图可知满足m >n 的点应在梯形ABCD 内,所以所求事件的概率为P =S 梯形ABCD S 矩形ABCE =710. ]11.在一次随机试验中,彼此互斥的事件A ,B ,C ,D 的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是( )A .A +B 与C 是互斥事件,也是对立事件B .B +C 与D 是互斥事件,也是对立事件C .A +C 与B +D 是互斥事件,但不是对立事件D .A 与B +C +D 是互斥事件,也是对立事件D [由于A ,B ,C ,D 彼此互斥,且A +B +C +D 是一个必然事件,故各事件的关系可由图表示.由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.]12.阅读图所示的程序框图,如果函数的定义域为(-3,4),则输出函数的值在⎝⎛⎭⎫54,32内的概率为( )A.17B.37C.27D.47A [由程序框图得,f (x )=⎩⎪⎨⎪⎧2x +1,-1≤x ≤1,2-x +1,x <-1或x >1.若-1≤x ≤1,令54<2x +1<32,即14<2x <12,∴-2<x <-1(舍去);若x <-1或x >1,令54<2-x +1<32,即14<2-x <12,∴1<x <2. 问题转化为长度的几何概型,总长度为4-(-3)=7,所求事件表示的长度为2-1=1,则所求的概率为17.故选A.] 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题纸的横线上)13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.0.98[由题意得,经停该高铁站的列车正点数约为10×0.97+20×0.98+10×0.99=39.2,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.240=0.98.] 14.从1,2,3,4这四个数字中,任取两个,这两个数字都是奇数的概率是________,这两个数字之和是偶数的概率是________.1613[从1,2,3,4四个数字中任取两个共有6种取法.取的两个数字都是奇数只有1,3一种情况,故此时的概率为16.若取出两个数字之和是偶数,必须同时取两个偶数或两个奇数,有1,3;2,4两种取法,所以所求的概率为26=13.]15.已知集合A ={(x ,y )|x 2+y 2=1},集合B ={(x ,y )|x +y +a =0},若A ∩B ≠∅的概率为1,则a 的取值X 围是________.[-2,2] [依题意知,直线x +y +a =0与圆x 2+y 2=1恒有公共点,故|a |12+12≤1, 解得-2≤a ≤ 2.]16.如图是在召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,它是由正方形ABCD 中四个全等的直角三角形和一个小正方形EFGH 构成.现设直角三角形的两条直角边长为3和4,在正方形ABCD 内随机取一点,则此点取自小正方形EFGH 内的概率为________.125[因为直角三角形的两条直角边长为3和4,所以正方形ABCD 的边长为a =32+42=5,所以S 正方形ABCD =a 2=25,所以S 正方形EFGH =S 正方形ABCD -4S △ABF =25-4×12×3×4=1, 因此,在正方形ABCD 内随机取一点,则此点取自小正方形EFGH 内的概率为P =S 正方形EFGH S 正方形ABCD =125.] 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)某校从高二甲、乙两班各选出3名学生参加书画比赛,其中从高二甲班选出了1名女同学、2名男同学,从高二乙班选出了1名男同学、2名女同学.(1)若从这6名同学中抽出2名进行活动发言,写出所有可能的结果,并求高二甲班女同学、高二乙班男同学至少有一人被选中的概率;(2)若从高二甲班和乙班各选1名同学现场作画,写出所有可能的结果,并求选出的2名同学性别相同的概率.[解] (1)设选出的3名高二甲班同学为A ,B ,C ,其中A 为女同学,B ,C 为男同学,选出的3名高二乙班同学为D ,E ,F ,其中D 为男同学,E ,F 为女同学.从这6名同学中抽出2人的所有可能结果有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.其中高二甲班女同学、高二乙班男同学至少有一人被选中的可能结果有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,D ),(C ,D ),(D ,E ),(D ,F ),共9种,故高二甲班女同学、高二乙班男同学至少有一人被选中的概率P =915=35. (2)高二甲班和乙班各选1名的所有可能结果为(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),共9种,选出的2名同学性别相同的有(A ,E ),(A ,F ),(B ,D ),(C ,D ),共4种,所以选出的2名同学性别相同的概率为49. 18.(本小题满分12分)甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指,若和为偶数算甲赢,否则算乙赢.(1)若以A 表示和为6的事件,求P (A );(2)现连玩三次,若以B 表示甲至少赢一次的事件,C 表示乙至少赢两次的事件,试问B 与C 是否为互斥事件?为什么?(3)这种游戏规则公平吗?试说明理由.[解] (1)甲、乙出手指都有5种可能,因此基本事件的总数为5×5=25(种),事件A 包括甲、乙出的手指的情况有(1,5),(5,1),(2,4),(4,2),(3,3),共5种情况,∴P (A )=525=15. (2)B 与C 不是互斥事件.因为事件B 与C 可以同时发生,如甲赢一次,乙赢两次的事件即符合题意.(3)这种游戏规则不公平.由(1)知和为偶数的基本事件数为13,即(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).所以甲赢的概率为1325,乙赢的概率为1225. 所以这种游戏规则不公平.19.(本小题满分12分)四X 大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一X(不放回),再从桌子上剩下的3X 中随机抽取第二X .(1)列出前后两次抽得的卡片上所标数字的所有可能情况;(2)计算抽得的两X 卡片上的数字之积为奇数的概率是多少.[解] (1)如图.则所有可能情况为:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12种.(2)积为奇数的情况为(1,3),(3,1),共2种,因此有P (积为奇数)=16. 20.(本小题满分12分)在等腰三角形ABC 中 ,∠B =∠C =30°,求下列事件的概率.(1)在底边BC 上任取一点P ,使BP <AB ;(2)在∠BAC 的内部任作射线AP 交BC 于P ,使BP <AB .[解](1)因为点P 随机地落在线段BC 上,故线段BC 为试验的全部结果所构成的区域,以B 为圆心,BA 为半径的弧交BC 于M ,记“在底边BC 上任取一点P ,使BP <AB ”为事件A ,则P (A )=BA BC =BA 2BA cos 30°=13=33. (2)所作射线AP 在∠BAC 内是等可能分布的,在BC 上取一点M ,使∠AMP =75°,则BM=BA .记“在∠BAC 的内部作射线AP 交线段BC 于P ,使BP <AB ”为事件B ,则P (B )=∠BAM ∠BAC=75°120°=58. 21. (本小题满分12分)某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5,现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到如下频率分布表:(1)2件,求a,b,c的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2这5件日用品中任取2件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这2件日用品的等级系数恰好相等的概率.[解](1)因为抽取的20件日用品中,等级系数为4的恰有3件,所以b=320=0.15.等级系数为5的恰有2件,所以c=220=0.1.从而a=1-0.2-0.45-0.1-0.15=0.1.所以a=0.1,b=0.15,c=0.1.(2)从x1,x2,x3,y1,y2这5件日用品中任取2件,所有可能的结果为(x1,x2),(x1,x3),(x1,y1),(x1,y2),(x2,x3),(x2,y1),(x2,y2),(x3,y1),(x3,y2),(y1,y2),共10个.设事件A表示“从x1,x2,x3,y1,y2这5件日用品中任取2件,其等级系数相等”,则事件A所包含的基本事件为(x1,x2),(x1,x3),(x2,x3),(y1,y2),共4个.故所求的概率P(A)=410=0.4.22.(本小题满分12分)一条笔直街道上的A,B两盏路灯之间的距离为120米,由于光线较暗,想在中间再随意安装两盏路灯C,D,路灯次序为A,C,D,B,求A与C,B与D 之间的距离都不小于40米的概率.[解]设A与C之间的距离为x米,B与D之间的距离为y米,(x,y)可以看成平面中的点,在如图所示的平面直角坐标系xOy中,(x,y)的所有可能结果构成的区域为Ω={(x,y)|0<x +y<120,x>0,y>0},即两直角边边长都为120米的等腰直角三角形区域(不包括边界).而“A 与C,B与D之间的距离都不小于40米”(记为事件M)的所有可能结果构成的区域为M={(x,y )|x ≥40,y ≥40,x ∈Ω且y ∈Ω},即图中的阴影部分.由几何概型的概率计算公式得P (M )=12×40×4012×120×120=19.故A 与C ,B 与D 之间的距离都不小于40米的概率为19.。
新教材高中数学第三章圆锥曲线的方程章末复习练习含解析新人教A版选择性必修第一册
![新教材高中数学第三章圆锥曲线的方程章末复习练习含解析新人教A版选择性必修第一册](https://img.taocdn.com/s3/m/49b326e3f605cc1755270722192e453610665b2f.png)
章末复习一、圆锥曲线的定义及标准方程 1.求圆锥曲线方程的常用方法(1)直接法:动点满足的几何条件本身就是几何量的等量关系,只需把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程.(2)定义法:动点满足已知曲线的定义,可先设定方程,再确定其中的基本量.(3)代入法:动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的.如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程.(4)待定系数法:根据条件能确定曲线的类型,可设出方程形式,再根据条件确定待定的系数. 2.求圆锥曲线方程体现了逻辑推理和数学运算、直观想象的数学素养.例1 (1)已知动点M 的坐标满足方程5x 2+y 2=|3x +4y -12|,则动点M 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .以上都不对答案 C解析 把轨迹方程5x 2+y 2=|3x +4y -12|写成x 2+y 2=|3x +4y -12|5.∴动点M 到原点的距离与它到直线3x +4y -12=0的距离相等.∴点M 的轨迹是以原点为焦点,直线3x +4y -12=0为准线的抛物线.(2)在圆x 2+y 2=4上任取一点P ,设点P 在x 轴上的正投影为点D .当点P 在圆上运动时,动点M 满足PD →=2MD →,动点M 形成的轨迹为曲线C .求曲线C 的方程.解 方法一 由PD →=2MD →,知点M 为线段PD 的中点,设点M 的坐标为(x ,y ),则点P 的坐标为(x ,2y ).因为点P 在圆x 2+y 2=4上, 所以x 2+(2y )2=4,所以曲线C 的方程为x 24+y 2=1.方法二 设点M 的坐标为(x ,y ),点P 的坐标是(x 0,y 0), 由PD →=2MD →,得x 0=x ,y 0=2y , 因为点P (x 0,y 0)在圆x 2+y 2=4上, 所以x 20+y 20=4,(*)把x 0=x ,y 0=2y 代入(*)式,得x 2+4y 2=4, 所以曲线C 的方程为x 24+y 2=1.反思感悟 (1)应用定义解题时注意圆锥曲线定义中的限制条件.(2)涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三角形的知识来解决.(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.跟踪训练1 (1)已知抛物线y 2=8x 的准线过双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________. 答案 x 2-y 23=1解析 由题意得⎩⎪⎨⎪⎧c =2,ca=2,解得⎩⎪⎨⎪⎧a =1,c =2,则b 2=c 2-a 2=3,因此双曲线方程为x 2-y 23=1.(2)点P 是抛物线y 2=8x 上的任意一点,F 是抛物线的焦点,点M 的坐标是(2,3),求|PM |+|PF |的最小值,并求出此时点P 的坐标.解 抛物线y 2=8x 的准线方程是x =-2,那么点P 到焦点F 的距离等于它到准线x =-2的距离,过点P 作PD 垂直于准线x =-2,垂足为D ,那么|PM |+|PF |=|PM |+|PD |.如图所示,根据平面几何知识,当M ,P ,D 三点共线时,|PM |+|PF |的值最小, 且最小值为|MD |=2-(-2)=4, 所以|PM |+|PF |的最小值是4.此时点P 的纵坐标为3,所以其横坐标为98,即点P 的坐标是⎝ ⎛⎭⎪⎫98,3. 二、圆锥曲线的几何性质1.本类问题主要有两种考查类型:(1)已知圆锥曲线的方程研究其几何性质,其中以求椭圆、双曲线的离心率为考查重点. (2)已知圆锥曲线的性质求其方程,基本方法是待定系数法,其步骤可以概括为“先定位、后定量”.2.圆锥曲线的性质的讨论和应用充分体现了直观想象和逻辑推理的数学素养.例2 (1)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62答案 D解析 由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3.因为四边形AF 1BF 2为矩形, 所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4, 所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|=12-4=8, 所以|AF 2|-|AF 1|=22,因此对于双曲线有a =2,c =3, 所以C 2的离心率e =c a =62.(2)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为________. 答案 x ±2y =0解析 设椭圆C 1和双曲线C 2的离心率分别为e 1和e 2,则e 1=a 2-b 2a ,e 2=a 2+b 2a.因为e 1·e 2=32,所以a 4-b 4a 2=32,即⎝ ⎛⎭⎪⎫b a 4=14,所以b a =22. 故双曲线的渐近线方程为y =±ba x =±22x , 即x ±2y =0.反思感悟 求解离心率的三种方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x 轴上还是y 轴上都有关系式a 2-b 2=c 2(a 2+b 2=c 2)以及e =c a,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a 与c 之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.跟踪训练2 (1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的半焦距是c ,A ,B 分别是长轴、短轴的一个端点,O 为原点,若△ABO 的面积是3c 2,则此椭圆的离心率是( ) A.12 B.32 C.22 D.33 答案 A解析 12ab =3c 2,即a 2(a 2-c 2)=12c 4,所以(a 2+3c 2)(a 2-4c 2)=0,所以a 2=4c 2,a =2c ,故e =c a =12.(2)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|FA |=c ,则双曲线的渐近线方程为_________.答案 x ±y =0 解析 c 2=a 2+b 2,①由双曲线截抛物线的准线所得线段长为2c 知, 双曲线过点⎝⎛⎭⎪⎫c ,-p 2,即c 2a 2-p 24b2=1.② 由|FA |=c ,得c 2=a 2+p 24,③由①③得p 2=4b 2.④将④代入②,得c 2a 2=2.∴a 2+b 2a 2=2,即ba=1,故双曲线的渐近线方程为y =±x ,即x ±y =0. 三、直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系,可以通过讨论直线方程与曲线方程组成的方程组的实数解的个数来确定,通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式.2.借用直线与圆锥曲线问题培养数学运算的数学核心素养.例 3 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程. 解 (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得a =2,b =3,c =1, ∴椭圆的方程为x 24+y 23=1. (2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心到直线l 的距离d =2|m |5, 由d <1得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 23=1,得x 2-mx +m 2-3=0,由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-122[m 2-4m 2-3]=1524-m 2. 由|AB ||CD |=534,得 4-m25-4m2=1, 解得m =±33,满足(*). ∴直线l 的方程为y =-12x +33或y =-12x -33.反思感悟 (1)直线与圆锥曲线的位置关系可以通过代数法判断. (2)一元二次方程的判别式Δ、弦长公式是代数法解决问题的常用工具.跟踪训练3 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0),其焦点为F 1,F 2,离心率为22,直线l :x +2y-2=0与x 轴,y 轴分别交于点A ,B .(1)若点A 是椭圆E 的一个顶点,求椭圆的方程;(2)若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,求a 的取值范围. 解 (1)由椭圆的离心率为22,得a =2c , 由A (2,0),得a =2, ∴c =2,b =2, ∴椭圆方程为x 24+y 22=1.(2)由e =22,设椭圆方程为x 2a 2+2y2a2=1,联立⎩⎪⎨⎪⎧x 2a 2+2y 2a2=1,x +2y -2=0,得6y 2-8y +4-a 2=0,若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,则线段AB 与椭圆E 有公共点,等价于方程6y 2-8y +4-a 2=0在y ∈[0,1]上有解. 设f (y )=6y 2-8y +4-a 2,∴⎩⎪⎨⎪⎧Δ≥0,f 0≥0,即⎩⎪⎨⎪⎧a 2≥43,4-a 2≥0,∴43≤a 2≤4, 故a 的取值范围是⎣⎢⎡⎦⎥⎤233,2. 四、圆锥曲线的综合问题1.圆锥曲线的综合问题包括位置关系证明及定值、最值问题,解决的基本思路是利用代数法,通过直线与圆锥曲线的方程求解.2.圆锥曲线的综合问题的解决培养学生的逻辑推理和数学运算素养.例4 已知抛物线C :y 2=2px (p >0)经过点P (2,2),A ,B 是抛物线C 上异于点O 的不同的两点,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)若OA ⊥OB ,求△AOB 面积的最小值.解 (1)由抛物线C :y 2=2px 经过点P (2,2)知4p =4,解得p =1. 则抛物线C 的方程为y 2=2x .抛物线C 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,准线方程为x =-12.(2)由题意知,直线AB 不与y 轴垂直,设直线AB :x =ty +a ,由⎩⎪⎨⎪⎧x =ty +a ,y 2=2x ,消去x ,得y 2-2ty -2a =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t ,y 1y 2=-2a . 因为OA ⊥OB ,所以x 1x 2+y 1y 2=0,即y 21y 224+y 1y 2=0,解得y 1y 2=0(舍去)或y 1y 2=-4. 所以-2a =-4,解得a =2.所以直线AB :x =ty +2. 所以直线AB 过定点(2,0).S △AOB =12×2×||y 1-y 2=y 21+y 22-2y 1y 2=y 21+y 22+8≥2||y 1y 2+8=4. 当且仅当y 1=2,y 2=-2或y 1=-2,y 2=2时,等号成立. 所以△AOB 面积的最小值为4.反思感悟 (1)解决最值问题常见的题型,可用建立目标函数的方法求解.(2)圆锥曲线的综合问题可以从分析问题的数量关系入手,利用直线系或曲线系方程或函数方程思想,通过联想与类比,使问题获解.跟踪训练4 已知动圆P 与圆O 1:x 2-x +y 2=0内切,且与直线x =-1相切,设动圆圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过曲线C 上一点M (2,y 0)(y 0>0)作两条直线l 1,l 2与曲线C 分别交于不同的两点A ,B ,若直线l 1,l 2的斜率分别为k 1,k 2,且k 1k 2=1.证明:直线AB 过定点.(1)解 由题意可知,动圆圆心P 到点⎝ ⎛⎭⎪⎫12,0的距离与到直线x =-12的距离相等,所以点P 的轨迹是以⎝ ⎛⎭⎪⎫12,0为焦点,直线x =-12为准线的抛物线,所以曲线C 的方程为y 2=2x .(2)证明 易知M (2,2),设点A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my +b ,联立⎩⎪⎨⎪⎧x =my +b ,y 2=2x ,得y 2-2my -2b =0,所以⎩⎪⎨⎪⎧y 1+y 2=2m ,y 1y 2=-2b ,所以⎩⎪⎨⎪⎧x 1+x 2=2m 2+2b ,x 1x 2=b 2,因为k 1k 2=y 1-2x 1-2·y 2-2x 2-2=1, 即y 1y 2-2(y 1+y 2)=x 1x 2-2(x 1+x 2), 所以b 2-2b -4m 2+4m =0, 所以(b -1)2=(2m -1)2, 所以b =2m 或b =-2m +2.当b =-2m +2时,直线AB 的方程为x =my -2m +2过定点(2,2)与M 重合,舍去; 当b =2m 时,直线AB 的方程为x =my +2m 过定点(0,-2),所以直线AB 过定点(0,-2).1.(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( ) A .2sin 40° B .2cos 40° C.1sin 50°D.1cos 50°答案 D解析 由题意可得-b a=tan 130°, 所以e =1+b 2a2=1+tan 2130° =1+sin 2130°cos 2130° =1|cos 130°|=1cos 50°.2.(2019·全国Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p 等于( )A .2B .3C .4D .8 答案 D解析 由题意知,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p2,0,椭圆的焦点坐标为(±2p ,0), 所以p2=2p ,解得p =8,故选D.3.(2019·全国Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( ) A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 答案 B解析 由题意设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),连接F 1A ,令|F 2B |=m ,则|AF 2|=2m ,|BF 1|=3m .由椭圆的定义知,4m =2a ,得m =a2,故|F 2A |=a =|F 1A |,则点A 为椭圆C 的上顶点或下顶点.令∠OAF 2=θ(O 为坐标原点),则sin θ=c a=1a.在等腰三角形ABF 1中,cos 2θ=2m2+3m 2-3m 22×2m ·3m=13,因为cos 2θ=1-2sin 2θ,所以13=1-2⎝ ⎛⎭⎪⎫1a 2,得a 2=3.又c 2=1,所以b 2=a 2-c 2=2,椭圆C 的方程为x 23+y 22=1,故选B.4.(2019·北京)已知椭圆C :x 2a 2+y 2b2=1的右焦点为(1,0),且经过点A (0,1).(1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点. (1)解 由题意,得b 2=1,c =1, 所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1.(2)证明 设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为y =y 1-1x 1x +1. 令y =0,得点M 的横坐标x M =-x 1y 1-1.又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1.同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1.由⎩⎪⎨⎪⎧y =kx +t ,x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1=⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k t -1x 1+x 2+t -12=2⎪⎪⎪⎪⎪⎪1+t 1-t .又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2.解得t =0,所以直线l 经过定点(0,0).。
北师大数学必修三课件:第3章 章末复习课
![北师大数学必修三课件:第3章 章末复习课](https://img.taocdn.com/s3/m/4faa550f33687e21ae45a92b.png)
[解] (1)空气受到污染的概率 P=1320+340+320=1380=35. (2)易知用分层抽样的方法从“良”“轻度污染”“中度污染” 的监测数据中抽取的个数分别为 2,3,1. 设它们的数据依次为 a1,a2,b1,b2,b3,c1,则抽取 2 个数据 的所有基本事件为(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c1), (a2,b1),(a2,b2),(a2,b3),(a2,c1),(b1,b2),(b1,b3),(b1,c1), (b2,b3),(b2,c1),(b3,c1),共 15 种.
章末复习课
随机事件的频率与概率
【例 1】 空气质量已成为城市居住环境的一项重要指标,空气质量 的好坏由空气质量指数确定,空气质量指数越高,代表空气污染越严重:
空气质 0~35 35~75 75~115 115~150 150~250 ≥250
量指数
空气质
轻度 中度 重度 严重
优良
量类别
污染 污染 污染 污染
(1)P(A+B)=P(A)+P(B)=0.24+0.28=0.52,即射中 10 环或 9 环的概率为 0.52.
(2)“射中环数小于 7 环”为“至少射中 7 环”的对立事件,所 以所求事件的概率为 1-P(E)=1-0.13=0.87.
(3)P(D+E)=P(D)+P(E)=0.16+0.13=0.29,即射中环数不足 8 环的概率为 0.29.
进球次数 m
6 8 12 17 25 32 40
进球频率mn
(1)计算表中进球的频率;
(2)这位运动员投篮一次,进球的概率约是多少?
[解](1)填入表中的数据依次为 0.75,0.80,0.80,0.85,0.83,0.80,0.80. (2)由于上述频率接近 0.80,因此,进球的概率约为 0.80.
高中数学 第三章 不等式章末复习课练习(含解析)新人教A版必修5-新人教A版高二必修5数学试题
![高中数学 第三章 不等式章末复习课练习(含解析)新人教A版必修5-新人教A版高二必修5数学试题](https://img.taocdn.com/s3/m/76214b14640e52ea551810a6f524ccbff121ca3d.png)
第三章章末复习课[整合·网络构建][警示·易错提醒]1.不等式的基本性质不等式的性质是不等式这一章内容的理论基础,是不等式的证明和解不等式的主要依据.因此,要熟练掌握和运用不等式的八条性质.2.一元二次不等式的求解方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,共同确定出解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.当m<n时,若(x-m)(x-n)>0,则可得x>n或x<m;若(x-m)(x-n)<0,则可得m <x<n.有口诀如下:大于取两边,小于取中间.3.二元一次不等式(组)表示的平面区域(1)二元一次不等式(组)的几何意义:二元一次不等式(组)表示的平面区域.(2)二元一次不等式表示的平面区域的判定:对于任意的二元一次不等式Ax+By+C>0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数,当B >0时,①Ax +By +C >0表示直线Ax +By +C =0上方的区域;②Ax +By +C <0表示直线Ax +By +C =0下方的区域.4.求目标函数最优解的两种方法(1)平移直线法.平移法是一种最基本的方法,其基本原理是两平行直线中的一条上任意一点到另一条直线的距离相等;(2)代入检验法.通过平移法可以发现,取得最优解对应的点往往是可行域的顶点,其实这具有必然性.于是在选择题中关于线性规划的最值问题,可采用求解方程组代入检验的方法求解.5.运用基本不等式求最值,把握三个条件(易错点) (1)“一正”——各项为正数;(2)“二定”——“和”或“积”为定值; (3)“三相等”——等号一定能取到.专题一 不等关系与不等式的基本性质1.同向不等式可以相加,异向不等式可以相减;但异向不等式不可以相加,同向不等式不可以相减.(1)若a >b ,c >d ,则a +c >b +d ; (2)若a >b ,c <d ,则a -c >b -a .2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘.(1)若a >b >0,c >d >0,则ac >bd ; (2)若a >b >0,0<c <d ,则a c >bd.3.左右同正不等式,两边可以同时乘方或开方:若a >b >0,则a n >b n或n a >nb . 4.若ab >0,a >b ,则1a <1b ;若ab <0,a >b ,则1a >1b.[例1] 已知a >0,b >0,且a ≠b ,比较a 2b +b 2a 与a +b 的大小.解:因为⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )=a 2b -b +b 2a -a = a 2-b 2b +b 2-a 2a =(a 2-b 2)⎝ ⎛⎭⎪⎫1b -1a =(a 2-b 2)a -b ab =(a -b )2(a +b )ab,因为a >0,b >0,且a ≠b , 所以(a -b )2>0,a +b >0,ab >0,所以⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )>0,即a 2b +b 2a >a +b .归纳升华不等式比较大小的常用方法(1)作差比较法:作差后通过分解因式、配方等手段判断差的符号得出结果. (2)作商比较法:常用于分数指数幂的代数式. (3)乘方转化的方法:常用于根式比较大小. (4)分子分母有理化. (5)利用中间量.[变式训练] (1)已知0<x <2,求函数y =x (8-3x )的最大值; (2)设函数f (x )=x +2x +1,x ∈[0,+∞),求函数f (x )的最小值. 解:(1)因为0<x <2,所以0<3x <6,8-3x >0, 所以y =x (8-3x )=13×3x ·(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163,当且仅当3x =8-3x ,即x =43时,取等号,所以当x =43时,y =x (8-3x )有最大值为163.(2)f (x )=x +2x +1=(x +1)+2x +1-1,因为x ∈[0,+∞),所以x +1>0,2x +1>0, 所以x +1+2x +1≥2 2. 当且仅当x +1=2x +1, 即x =2-1时,f (x )取最小值. 此时f (x )min =22-1.专题二 一元二次不等式的解法 一元二次不等式的求解流程如下: 一化——化二次项系数为正数.二判——判断对应方程的根. 三求——求对应方程的根. 四画——画出对应函数的图象. 五解集——根据图象写出不等式的解集. [例2] (1)解不等式:-1<x 2+2x -1≤2; (2)解不等式a (x -1)x -2>1(a ≠1).解:(1)原不等式等价于⎩⎪⎨⎪⎧x 2+2x -1>-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x >0, ①x 2+2x -3≤0. ② 由①得x (x +2)>0,所以x <-2或x >0; 由②得(x +3)(x -1)≤0, 所以-3≤x ≤1.将①②的解集在数轴上表示出来,如图所示.求其交集得原不等式的解集为{x |-3≤x <-2或0<x ≤1}.(2)原不等式可化为a (x -1)x -2-1>0,即(a -1)⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0(*), ①当a >1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0,而a -2a -1-2=-a a -1<0,所以a -2a -1<2,此时x >2或x <a -2a -1. ②当a <1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)<0, 而2-a -2a -1=aa -1, 若0<a <1,则a -2a -1>2,此时2<x <a -2a -1; 若a =0,则(x -2)2<0,此时无解; 若a <0,则a -2a -1<2,此时a -2a -1<x <2. 综上所述,当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a -2a -1或x >2; 当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2<x <a -2a -1; 当a =0时,不等式的解集为∅; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a -2a -1<x <2.归纳升华含参数的一元二次不等式的分类讨论(1)对二次项系数含有参数的一元二次不等式,要注意对二次项系数是否为零进行讨论,特别当二次项系数为零时需转化为一元一次不等式问题来求解.(2)对含参数的一元二次不等式,在其解的情况不明确的情况下,需要对其判别式分Δ>0,Δ=0,Δ<0三种情况并加以讨论.(3)若含参数的一元二次不等式可以转化成用其根x 1,x 2表示的形如a (x -x 1)(x -x 2)的形式时,往往需要对其根分x 1>x 2、x 1=x 2,x 1<x 2三种情况进行讨论,或用根与系数的关系帮助求解.[变式训练] 定义在(-1,1)上的奇函数f (x )在整个定义域上是减函数,且f (1-a )+f (1-a 2)<0,某某数a 的取值X 围.解:因为f (x )的定义域为(-1,1),所以⎩⎪⎨⎪⎧-1<1-a <1,-1<1-a 2<1, 所以⎩⎨⎧0<a <2,-2<a <2且a ≠0,所以0<a <2,①原不等式变形为f (1-a )<-f (1-a 2). 由于f (x )为奇函数,有-f (1-a 2)=f (a 2-1), 所以f (1-a )<f (a 2-1). 又f (x )在(-1,1)上是减函数, 所以1-a >a 2-1,解得-2<a <1.② 由①②可得0<a <1, 所以a 的取值X 围是(0,1). 专题三 简单的线性规划问题 线性规划问题在实际中的类型主要有:(1)给定一定数量的人力、物力资源,求如何运用这些资源,使完成任务量最大,收到的效益最高;(2)给定一项任务,问怎样统筹安排,使得完成这项任务耗费的人力、物力资源最少. [例3] 某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A ,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:原料 每种产品所需原料/t现有原料数/tAB甲 2 1 14 乙 1 3 18 利润/(万元/t)53____(1)在现有原料条件下,生产A ,B 两种产品各多少时,才能使利润最大?(2)每吨B 产品的利润在什么X 围变化时,原最优解不变?当超出这个X 围时,最优解有何变化?解:(1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎪⎨⎪⎧2x +y ≤14.x +3y ≤18,x ≥0,y ≥0,作出可行域如图所示:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品 245 t ,B 产品 225t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m,又k AB =-2,k CB =-13,要使最优解仍为B 点,则-2≤-5m ≤-13,解得52≤m ≤15.归纳升华解答线性规划应用题的步骤(1)列:设出未知数,列出约束条件,确定目标函数. (2)画:画出线性约束条件所表示的可行域.(3)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(4)求:通过解方程组求出最优解. (5)答:作出答案.[变式训练] 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:法一:依题意得,x +1>1,2y +1>1,易知(x +1)·(2y +1)=9,则(x +1)+(2y +1)≥2(x +1)(2y +1)=29=6,当且仅当x +1=2y +1=3,即x =2,y =1时,等号成立,因此有x +2y ≥4,所以x +2y 的最小值为4.法二:由题意得,x =8-2y 2y +1=-(2y +1)+92y +1=-1+92y +1, 所以x +2y =-1+92y +1+2y =-1+92y +1+2y +1-1,≥292y +1·(2y +1)-2=4,当且仅当2y +1=3,即y =1时,等号成立. 答案:B专题四 成立问题(恒成立、恰成立等)[例4] 已知函数f (x )=mx 2-mx -6+m ,若对于m ∈[1,3],f (x )<0恒成立,某某数x 的取值X 围.解:因为mx 2-mx -6+m <0, 所以m (x 2-x +1)-6<0, 对于m ∈[1,3],f (x )<0恒成立⇔⎩⎪⎨⎪⎧1×(x 2-x +1)-6<0,3×(x 2-x +1)-6<0, 即为⎩⎪⎨⎪⎧1-212<x <1+212,1-52<x <1+52,计算得出:1-52<x <1+52.所以实数x 的取值X 围:1-52<x <1+52.归纳升华不等式恒成立求参数X 围问题常见解法(1)变更主元法:根据实际情况的需要确定合适的主元,一般将知道取值X 围的变量看作主元. (2)分离参数法:若f (a )<g (x )恒成立,则f (a )<g (x )min ; 若f (a )>g (x )恒成立,则f (a )>g (x )max . (3)数形结合法:利用不等式与函数的关系将恒成立问题通过函数图象直观化.[变式训练] 已知函数y =2x 2-ax +10x 2+4x +6的最小值为1,某某数a 的取值集合.解:由y ≥1即2x 2-ax +10x 2+4x +6≥1⇒x 2-(a +4)x +4≥0恒成立,所以Δ=(a +4)2-16≤0,解得-8≤a ≤0(必要条件). 再由y =1有解,即2x 2-ax +10x 2+4x +6=1有解,即x 2-(a +4)x +4=0有解,所以Δ=(a +4)2-16≥0,解得a ≤-8或a ≥0. 综上即知a =-8或a =0时,y min =1, 故所某某数a 的取值集合是{-8,0}. 专题五 利用分类讨论思想解不等式 [例5] 解关于x 的不等式x -ax -a 2<0(a ∈R). 分析:首先将不等式转化为整式不等式(x -a )(x -a 2)<0,而方程(x -a )(x -a 2)=0的两根为x 1=a ,x 2=a 2,故应就两根a 和a 2的大小进行分类讨论.解:原不等式等价于(x -a )(x -a 2)<0.(1)若a =0,则a =a 2=0,不等式为x 2<0,解集为∅; (2)若a =1,则a 2=1,不等式为(x -1)2<0,解集为∅; (3)若0<a <1,则a 2<a ,故解集为{x |a 2<x <a }; (4)若a <0或a >1,则a 2>a ,故解集为{x |a <x <a 2}. 归纳升华分类讨论思想解含有字母的不等式时,往往要对其中所含的字母进行适当的分类讨论.分类讨论大致有以下三种:(1)对不等式作等价变换时,正确运用不等式的性质而引起的讨论. (2)对不等式(组)作等价变换时,由相应方程的根的大小比较而引起的讨论. (3)对不等式作等价变换时,由相应函数单调性的可能变化而引起的讨论.[变式训练] 已知奇函数f (x )在区间(-∞,+∞)上单调递减,α,β,γ∈R 且α+β>0,β+γ>0,γ+α>0.试判断f (α)+f (β)+f (γ)的值与0的关系.解:因为f(x)为R上的减函数,且α>-β,β>-γ,γ>-α,所以f(α)<(-β),f(β)<f(-γ),f(γ)<f(-α),又f(x)为奇函数,所以f(-β)=-f(β),f(-α)=-f(α),f(-γ)=-f(γ),所以f(α)+f(β)+f(γ)<f(-β)+f(-γ)+f(-α)=-[f(β)+f(γ)+f(α)],所以f(α)+f(β)+f(γ)<0.。
高中数学 章末检测试卷(一)(含解析)新人教A版必修3-新人教A版高一必修3数学试题
![高中数学 章末检测试卷(一)(含解析)新人教A版必修3-新人教A版高一必修3数学试题](https://img.taocdn.com/s3/m/d6487859ac02de80d4d8d15abe23482fb4da025d.png)
章末检测试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是( ) A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合答案 D解析任何一种算法都是由上述三种逻辑结构组成的,它可以含有三种结构中的一种、两种或三种.2.下面一段程序执行后的结果是( )A.6B.4C.8D.10答案 A解析由程序知a=2,2×2=4,4+2=6,故最后输出a的值为6,故选A.3.执行如图所示的程序框图,若输出的结果为11,则M处可填入的条件为( )A.k≥31B.k≥15C.k>31D.k>15答案 B解析依题意k=1,S=0,进入循环,循环过程依次为:S=0+1=1,k=2×1+1=3;S=1+3=4,k=2×3+1=7;S=4+7=11,k=2×7+1=15,终止循环,输出S=11.结合选项知,M处可填k≥15.4.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s为( )A.7B.12C.17D.34答案 C解析由框图可知,输入x=2,n=2,a=2,s=2,k=1,不满足条件;a=2,s=4+2=6,k=2,不满足条件;a=5,s=12+5=17,k=3,满足条件输出s=17,故选C.5.执行如图所示的程序框图,输出的S值为( )A.1B.3C.7D.15答案 C解析由程序框图得S=0+20=1,k=1;S=1+21=3,k=2;S=3+22=7,k=3,输出S的值为7.6.运行如图所示的程序,当输入的数据为75,45时,输出的值为( ) INPUT “输入两个不同正整数m,n=”;m,nDOIF m>n THENm=m-nELSEn=n-mEND IFLOOP UNTIL m=nPRINT mENDA.24B.18C.12D.15答案 D解析由程序语句知,此程序是用更相减损术求75,45的最大公约数.7.执行如图所示的框图,输入N=5,则输出S的值为( )A.54B.45C.65D.56 答案 D解析 第一次循环,S =0+11×2=12,k =2; 第二次循环,S =12+12×3=23,k =3;第三次循环,S =23+13×4=34,k =4;第四次循环,S =34+14×5=45,k =5;第五次循环,S =45+15×6=56,此时k =5不满足判断框内的条件,跳出循环, 输出S =56,故选D.8.若如图所示的程序框图的功能是计算1×12×13×14×15的结果,则在空白的执行框中应该填入( )A .T =T ·(i +1)B .T =T ·iC .T =T ·1i +1D .T =T ·1i答案 C解析 程序框图的功能是计算1×12×13×14×15的结果,依次验证选项可得C 正确.9.如图所示的程序运行时,从键盘输入-3,则输出值为( ) INPUT “x=”;x IF x >0 THEN y =1 ELSEIF x =0 THENy =0 ELSEy =-1 END IF END IF PRINT y END A .-3B .3C .1D .-1 答案 D解析 由程序知,当x >0时,y =1;否则,当x =0时,y =0;当x <0时,y =-1. 即y =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.10.执行如图所示的程序框图,若输出的k =5,则输入的整数p 的最大值为( )A .7B .15C .31D .63 答案 B解析 由程序框图可知:①S =0,k =1;②S =1,k =2;③S =3,k =3;④S =7,k =4;⑤S =15,k =5,输出k ,此时S =15≥p ,则p 的最大值为15,故选B.11.执行如图所示的程序框图,若输出的结果是4,则判断框内实数m 的取值X 围是( )A .(2,6]B .(6,12]C .(12,20]D .(2,20] 答案 B解析 由程序框图,知第一次循环后,S =0+2=2,k =2; 第二次循环后,S =2+4=6,k =3; 第三次循环后,S =6+6=12,k =4.∵输出k =4,∴循环体执行了3次,此时S =12,∴6<m ≤12,故选B.12.执行如图所示的程序框图,若输出的结果为2,则输入的正整数a 的取值的集合是( )A.{1,2,3,4,5}B.{1,2,3,4,5,6}C.{2,3,4,5}D.{2,3,4,5,6}答案 C解析若输入a=1,则a=2×1+3=5,i=0+1=1,因为5>13不成立,所以继续循环;a =2×5+3=13,i=1+1=2,因为13>13不成立,所以继续循环;a=2×13+3=29,i=2+1=3,因为29>13成立,所以结束循环,输出的结果为3,不为2,所以a≠1,排除A,B,若输入a=6,则a=2×6+3=15,i=0+1=1,因为15>13成立,所以结束循环,输出的结果为1,不为2,所以a≠6,排除D,故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图程序框图,若输入的a,b的值分别为0和9,则输出的i的值为________.答案 3解析第1次循环:i=1,a=1,b=8,a<b;第2次循环:i=2,a=3,b=6,a<b;第3次循环:i=3,a=6,b=3,a>b,输出i的值为3.14.将二进制数110101(2)化成十进制数,结果为________,再将该结果化成七进制数,结果为________.答案53 104(7)解析110101(2)=1×25+1×24+0×23+1×22+0×21+1×20=53,然后用除7取余法得53=104(7).15.执行如图所示的程序框图,则输出结果S=________.答案1010解析根据程序框图知,S=(-1+2)+(-3+4)+…+(-2019+2020)=1010,故输出的S 的值为1010.16.阅读下面的程序,该算法的功能是_____________________.S=0t=1i=1DOS=S+it=t*ii=i+1LOOP UNTIL i>20PRINT S,tEND答案求S=1+2+3+…+20,t=1×2×3×…×20三、解答题(本大题共6小题,共70分)17.(10分)分别用辗转相除法和更相减损术求282与470的最大公约数.解辗转相除法:470=1×282+188,282=1×188+94,188=2×94,所以282与470的最大公约数为94.更相减损术:470与282分别除以2得235和141.235-141=94,141-94=47,94-47=47,所以470与282的最大公约数为47×2=94.18.(12分)下面给出一个用循环语句编写的程序:(1)指出程序所用的是何种循环语句,并指出该程序的算法功能;(2)请用另一种循环语句的形式把该程序写出来.解(1)本程序所用的循环语句是WHILE循环语句,其功能是计算12+22+32+…+92的值.(2)用UNTIL语句改写程序如下:19.(12分)下列是某个问题的算法,将其改为程序语言,并画出程序框图. 算法:第一步,令i =1,S =0.第二步,若i ≤999成立,则执行第三步; 否则,输出S ,结束算法. 第三步,S =S +1i.第四步,i =i +2,返回第二步. 解 程序如下: i =1 S =0WHILE i<=999 S =S +1/i i =i +2 WEND PRINT S END程序框图如图:20.(12分)下列语句是求S =2+3+4+…+99的一个程序,请回答问题: i =1 S =0DOS =S +ii =i +1LOOP UNTIL i >=99PRINT SEND(1)程序中是否有错误?若有,请加以改正;(2)把程序改成另一种类型的循环语句.解 (1)错误有两处:第一处:语句i =1应改为i =2.第二处:语句LOOPUNTIL i >=99应改为LOOPUNTIL i >99.(2)改为当型循环语句为:i =2S =0WHILE i <=99S =S +ii =i +1WENDPRINT SEND21.(12分)输入x ,求函数y =⎩⎪⎨⎪⎧ 3x -2,x ≥2,-2,x <2的值的程序框图如图所示.(1)指出程序框图中的错误之处并写出正确的算法步骤;(2)重新绘制程序框图,并回答下面提出的问题.①要使输出的值为7,则输入的x 的值应为多少?②要使输出的值为正数,则输入的x 应满足什么条件?解 (1)函数y =⎩⎪⎨⎪⎧ 3x -2,x ≥2,-2,x <2是分段函数,其程序框图中应该有判断框,应该有条件结构,不应该只用顺序结构.正确的算法步骤如下所示:第一步,输入x .第二步,判断x ≥2是否成立.若是,则y =3x -2;否则y =-2.第三步,输出y .(2)根据(1)中的算法步骤,可以画出程序框图如图所示.①要使输出的值为7,则3x -2=7,故x =3,即输入的x 的值应为3.②要使输出的值为正数,则⎩⎪⎨⎪⎧ x ≥2,3x -2>0,得x ≥2.故当x ≥2时,输出的值为正数.22.(12分)为了节约用水,学校改革澡堂收费制度,开始实行计时收费,30min 以内每分钟收费0.1元,30min 以上超过部分每分钟收费0.2元,编写程序并画出程序框图,要求输入洗澡时间,输出洗澡费用.解 用y (单位:元)表示洗澡费用,x (单位:min)表示洗澡时间,则y =⎩⎪⎨⎪⎧ 0.1x ,0<x ≤30,3+0.2x -30,x >30.程序如下:INPUT xIF x <=30 THENy =0.1*xELSEy =3+0.2*x -30END IFPRINT yEND程序框图如图所示.。
高中数学必修第三章经典习题含答案
![高中数学必修第三章经典习题含答案](https://img.taocdn.com/s3/m/23a51cc104a1b0717fd5dd8c.png)
第三章经典习题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.sin 2π12-cos 2π12的值为( )A .-12 B.12 C .-32 D.32[答案] C[解析] 原式=-(cos 2π12-sin 2π12)=-cos π6=-32.2.函数f (x )=sin2x -cos2x 的最小正周期是( ) A.π23 B .π C .2π D .4π[答案] B[解析] f (x )=sin2x -cos2x =2sin(2x -π4),故T =2π2=π. 3.已知cos θ=13,θ∈(0,π),则cos(3π2+2θ)=( ) A .-429B .-79C.429D.79[答案] C[解析] cos(3π2+2θ)=sin2θ=2sin θcos θ=2×223×13=429. 4.若tan α=3,tan β=43,则tan(α-β)等于( ) A .-3 B .-13 C .3 D.13[答案] D[解析] tan(α-β)=tan α-tan β1+tan αtan β=3-431+3×43=13. 5.cos 275°+cos 215°+cos75°·cos15°的值是( ) A.54 B.62 C.32 D .1+23[答案] A[解析] 原式=sin 215°+cos 215°+sin15°cos15°=1+12sin30°=54. 6.y =cos 2x -sin 2x +2sin x cos x 的最小值是( ) A. 2 B .- 2 C .2 D .-2 [答案] B[解析] y =cos2x +sin2x =2sin(2x +π4),∴y max =- 2. 7.若tan α=2,tan(β-α)=3,则tan(β-2α)=( ) A .-1 B .-15 C.57 D.17[答案] D[解析] tan(β-2α)=tan[(β-α)-α]=tan ?β-α?-tan α1+tan ?β-α?tan α=3-21+6=17.8.已知点P (cos α,sin α),Q (cos β,sin β),则|PQ →|的最大值是( ) A. 2 B .2 C .4 D.22[答案] B[解析] PQ →=(cos β-cos α,sin β-sin α),则|PQ →|=?cos β-cos α?2+?sin β-sin α?2=2-2cos ?α-β?,故|PQ →|的最大值为2.9.函数y =cos2x +sin2xcos2x -sin2x 的最小正周期为( )A .2πB .π C.π2D.π4[答案] C[解析] y =1+tan2x 1-tan2x =tan(2x +π4),∴T =π2.10.若函数f (x )=sin 2x -12(x ∈R ),则f (x )是( ) A .最小正周期为π2的奇函数 B .最小正周期为π的奇函数 C .最小正周期为2π的偶函数 D .最小正周期为π的偶函数 [答案] D[解析] f (x )=sin 2x -12=-12(1-2sin 2x )=-12cos2x ,∴f (x )的周期为π的偶函数.11.y =sin(2x -π3)-sin2x 的一个单调递增区间是( ) A .[-π6,π3] B .[π12,712π] C .[512π,1312π] D .[π3,5π6][答案] B[解析] y =sin(2x -π3)-sin2x =sin2x cos π3-cos2x sin π3-sin2x =-(sin2x cos π3+cos2x sin π3)=-sin(2x +π3),其增区间是函数y =sin(2x +π3)的减区间,即2k π+π2≤2x +π3≤2k π+3π2,∴k π+π12≤x ≤k π+7π12,当k =0时,x ∈[π12,7π12].12.已知sin(α+β)=12,sin(α-β)=13,则log 5(tan αtan β)2等于( )A .2B .3C .4D .5[答案] C [解析]由sin(α+β)=12,sin(α-β)=13得⎩⎪⎨⎪⎧sin αcos β+cos αsin β=12sin αcos β-cos αsin β=13,∴⎩⎪⎨⎪⎧sin αcos β=512cos αsin β=112,∴tan αtan β=5, ∴log5(tan αtan β)2=log552=4.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.(1+tan17°)(1+tan28°)=________. [答案] 2[解析] 原式=1+tan17°+tan28°+tan17°·tan28°,又tan(17°+28°)=tan17°+tan28°1-tan17°·tan28°=tan45°=1,∴tan17°+tan28°=1-tan17°·tan28°,代入原式可得结果为2.14.(2012·全国高考江苏卷)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为______. [答案]17250[解析] ∵α为锐角,∴π6<α+π6<2π3,∵cos ⎝⎛⎭⎪⎫α+π6=45,∴sin ⎝⎛⎭⎪⎫α+π6=35;∴sin ⎝ ⎛⎭⎪⎫2α+π3=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6=2425, cos(2α+π3)=cos(α+π6)2-sin 2(α+π6)=725∴sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎝ ⎛⎭⎪⎫2α+π3-π4=sin ⎝ ⎛⎭⎪⎫2α-π3cos π4-cos ⎝ ⎛⎭⎪⎫2α+π3sin π4=17250.15.已知cos2α=13,则sin 4α+cos 4α=________. [答案] 59[解析] cos2α=2cos 2α-1=13得cos 2α=23,由cos2α=1-2sin 2α=13得sin 2α=13(或据sin 2α+cos 2α=1得sin 2α=13),代入计算可得.16.设向量a =(32,sin θ),b =(cos θ,13),其中θ∈(0,π2),若a∥b ,则θ=________.[答案] π4[解析] 若a ∥b ,则sin θcos θ=12,即2sin θcos θ=1,∴sin2θ=1,又θ∈(0,π2),∴θ=π4.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)已知cos α-sin α=352,且π<α<32π,求sin2α+2sin 2α1-tan α的值.[解析] 因为cos α-sin α=325,所以1-2sin αcos α=1825,所以2sin αcos α=725.又α∈(π,3π2),故sin α+cos α=-1+2sin αcos α=-425, 所以sin2α+2sin 2α1-tan α=?2sin αcos α+2sin 2α?cos αcos α-sin α=2sin αcos α?cos α+sin α?cos α-sin α=725×?-425?325=-2875.18.(本题满分12分)设x ∈[0,π3],求函数y =cos(2x -π3)+2sin(x -π6)的最值.[解析] y =cos(2x -π3)+2sin(x -π6) =cos2(x -π6)+2sin(x -π6)=1-2sin 2(x -π6)+2sin(x -π6)=-2[sin(x -π6)-12]2+32.∵x ∈[0,π3],∴x -π6∈[-π6,π6]. ∴sin(x -π6)∈[-12,12], ∴y max =32,y min =-12.19.(本题满分12分)已知tan 2θ=2tan 2α+1,求证:cos2θ+sin 2α=0.[证明] cos2θ+sin 2α=cos 2θ-sin 2θcos 2θ+sin 2θ+sin 2α=1-tan 2θ1+tan 2θ+sin 2α=-2tan 2α1+2tan 2α+1+sin 2α=-tan 2α1+tan 2α+sin 2α=-sin 2αcos 2α+sin 2α+sin 2α=-sin 2α+sin 2α=0.20.(本题满分12分)已知向量a =(cos 3x 2,sin 3x 2),b =(cos x2,-sin x2),c =(3-1),其中x ∈R .(1)当a ⊥b 时,求x 值的集合; (2)求|a -c |的最大值.[解析] (1)由a ⊥b 得a ·b =0,即cos 3x 2cos x 2-sin 3x 2sin x2=0,则cos2x =0,得x =k π2+π4(k ∈Z ),∴x 值的集合是{x |x =k π2+π4,k ∈Z }.(2)|a -c |2=(cos 3x 2-3)2+(sin 3x2+1)2 =cos 23x 2-23cos 3x 2+3+sin 23x 2+2sin 3x 2+1=5+2sin 3x 2-23cos 3x 2=5+4sin(3x 2-π3),则|a -c |2的最大值为9.∴|a -c |的最大值为3.21.设函数f (x )=22cos(2x +π4)+sin 2x (Ⅰ)求函数f (x )的最小正周期;(Ⅱ)设函数g (x )对任意x ∈R ,有g (x +π2)=g (x ),且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,g (x )=12-f (x );求函数g (x )在[-π,0]上的解析式。
高中数学必修三课时作业:第三章 章末检测 Word版含答案
![高中数学必修三课时作业:第三章 章末检测 Word版含答案](https://img.taocdn.com/s3/m/f80c1c448e9951e79b8927b4.png)
分组(重量)
[80,85)
[85,90)
[90,95)
[95,100)
频数(个)
5
10
20
15
(1)根据频数分布表计算苹果的重量在[90,95)的频率;
(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?
A.①③B.①④
C.②④D.③④
答案:C
解析:②④是随机事件;①是必然事件;③是不可能事件.
2.连续抛掷一枚质地均匀的硬币三次,三次正面都向上的概率为()
A. B.
C. D.
答案:D
解析:连续抛掷三次,出现结果8种,三次正面向上只有一种,故选D.
3.从甲、乙、丙、丁4人中选3人当代表,则甲被选中的概率是()
A.①②B.①④
C.③④D.①③
答案:B
解析:∵从一批产品中任取两件,观察正品件数和次品件数,其中正品、次品都多于两件,∴恰有一件次品和恰有两件次品是互斥的,至少有一件次品和全是正品是互斥的,∴①④是互斥事件.
5.
如图,一颗豆子随机扔到桌面上,假设豆子不落在线上,则它落在阴影区域的概率为()
A. B.
A. B.
C. D.
答案:A
解析:记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,
则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.
记事件A为“甲、乙两位同学参加同一个兴趣小组”,其中事件A有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此P(A)= = .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修三复习题
第一章复习参考题A组(P50)
1、(1)程序框图:程序:
1、(2)程序框图:程序:
2、见习题1.2 B组第1题解答. 3
4、程序框图:
5
(1
)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3
)全程共经过约299.609 m B 组(P51)
1 2、
3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2
n
m =
;如果n 是奇数,令1
2
n m -=
.
第三步,令1i =
第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.
第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步
第二章复习参考题A 组(P100)
1、A .
2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)
nm N
. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法.
(2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点. 4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法. 5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等. 6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高.
(2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的. 7、(1)中位数为182.5,平均数为217.1875.
(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.
(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.
(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.
第二章复习参考题B 组(P101)
1、频率分布如下
表:
从表中看出
当把指标定为17.46千元时,月65%的推销员经过努力才能完成销售指标。
2、(1)数据的散点图如下:
(2)用y 表示身高,x 表示年龄,则数据的回归方程为
6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.
(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.
第三章 复习参考题A 组(P145)
1、56,16,23.
2、(1)0.548; (2)0.186; (3)0.266.
3、(1)38; (2)14.
4、(1)813; (2)726; (3)6
65
.
5、分别计算两球均为白球的概率、均为红球的概率、均为黑球的概率,然后相加,得
12233111
66666636
⨯⨯⨯++=⨯⨯⨯. 6、5
6
. 说明:利用对立事件计算会比较简单.
第三章 复习参考题B 组(P146)
1、第一步,先计算出现正面次数与反面次数相等的概率
46328
=. 第二步,利用对称性,即出现正面的次数多于反面次数的概率与出现反面的次数多于正面次数的概率是相等的,所以出现正面的次数多于反面次数的概率为
35(1)2816-÷=.
2、(1)是; (2)否; (3)否; (4)是.
3、(1)45; (2)15; (3)25; (4)2
5
.
说明:此题属于古典概型的一类“配对问题”,由于这里的数比较小,可以用列举法.
4、参考教科书140页例4. 选修1-1复习题。