2017年贵州省铜仁市中考数学试卷(解析版)
2017年铜仁市数学中考说明1
2017年铜仁市初中数学毕业考试中考说明(一)班级 姓名一、选择题(每小题4分,共40分)1、2的相反数是( )A 、 21B 、21- C 、 2 D 、 -2 2、下列二次根式是最简二次根式的是( )A 、a 32B 、22xC 、2yD 、3b 3、中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区总人口约为4600000000人,这个数用科学记数法表示为 ( )A 、81046⨯B 、 9106.4⨯C 、9106.4-⨯D 、10106.4⨯ 4、如图为二次函数y=ax 2+bx+c (a ≠0)的图象,则下列说法:①a >0 ②2a+b=0 ③a+b+c >0 ④当﹣1<x <3时,y >0其中正确的个数为A .1B .2C .3D .4第4题 第6题 5、函数413-+-=x x y 的自变量x 的取值范围为( ) A 、3≤x B 、4≠x C 、43≠≥x x 且 D 、43≠≤x x 且 6、如图,在△ABC 中,点D 在BC 上,AB=AD=DC ,∠B=80°,则∠C 的度数为( )A.30°B.40°C.45°D.60°7、有一组数据:1,3,4,5,5,则这组数据的平均数、众数、中位数分别是( )A.3.6,5,5B.5,5,5C.3.6,5,4D.3.6,4,58、已知一次函数y=2x-3与反比例函数y=-2/x ,那么它们在同一坐标系中的图象可能是A B C D910、如图,已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB=54,点P 是对角线OB 上的一个动点,D (0,1),当CP+DP 最短时,点P 的坐标为( )A 、)0,0(B 、)21,1( C 、)53,56( D 、)75,710( 二、填空题(每小题4分,共32分)11、2017的相反数的倒数 。
【真题】贵州省铜仁市中考数学试题含答案解析()
贵州省铜仁市中考数学试卷一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D4个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上1.(4.00分)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.812.(4.00分)提出了未来五年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×107B.11.7×106C.0.117×107D.1.17×1083.(4.00分)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3 4.(4.00分)掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A.B.C.D.5.(4.00分)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120° D.125°6.(4.00分)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF 的面积为()A.32 B.8 C.4 D.167.(4.00分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.118.(4.00分)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm9.(4.00分)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1 10.(4.00分)计算+++++……+的值为()A. B. C.D.二、填空题:(本大题共8个小题,每小题4分,共32分)11.(4.00分)分式方程=4的解是x=.12.(4.00分)因式分解:a3﹣ab2=.13.(4.00分)一元一次不等式组的解集为.14.(4.00分)如图,m∥n,∠1=110°,∠2=100°,则∠3=°.15.(4.00分)小米的爸爸为了了解她的数学成绩情况,现从中随机抽取他的三次数学考试成绩,分别是87,93,90,则三次数学成绩的方差是.16.(4.00分)定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=.17.(4.00分)在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE 所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB=.18.(4.00分)已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P 在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为.三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10.00分)(1)计算:﹣4cos60°﹣(π﹣3.14)0﹣()﹣1(2)先化简,再求值:(1﹣)÷,其中x=2.20.(10.00分)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.21.(10.00分)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.22.(10.00分)如图,有一铁塔AB,为了测量其高度,在水平面选取C,D两点,在点C处测得A的仰角为45°,距点C的10米D处测得A的仰角为60°,且C、D、B在同一水平直线上,求铁塔AB的高度(结果精确到0.1米,≈1.732)四、(本大题满分12分)23.(12.00分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.五、(本大题满分12分)24.(12.00分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.六、(本大题满分14分)25.(14.00分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF 是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.贵州省铜仁市中考数学试卷参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D4个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上1.(4.00分)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3,故选:C.2.(4.00分)提出了未来五年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×107B.11.7×106C.0.117×107D.1.17×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:11700000=1.17×107.故选:A.3.(4.00分)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3【分析】利用因式分解法求出已知方程的解.【解答】解:x2﹣4x+3=0,分解因式得:(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,故选:C.4.(4.00分)掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A.B.C.D.【分析】根据题意和题目中的数据可以求得点数为奇数的概率.【解答】解:由题意可得,点数为奇数的概率是:,故选:C.5.(4.00分)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120° D.125°【分析】根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半.【解答】解:根据圆周角定理,得∠ACB=(360°﹣∠AOB)=×250°=125°.故选:D.6.(4.00分)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF 的面积为()A.32 B.8 C.4 D.16【分析】由△ABC∽△DEF,相似比为2,根据相似三角形的面积的比等于相似比的平方,即可得△ABC与△DEF的面积比为4,又由△ABC的面积为16,即可求得△DEF的面积.【解答】解:∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF的面积比为4,∵△ABC的面积为16,∴△DEF的面积为:16×=4.故选:C.7.(4.00分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.11【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故选:A.8.(4.00分)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm【分析】分类讨论:当直线c在a、b之间或直线c不在a、b之间,然后利用平行线间的距离的意义分别求解.【解答】解:当直线c在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4﹣1=3(cm);当直线c不在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4+1=5(cm),综上所述,a与c的距离为3cm或3cm.故选:C.9.(4.00分)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【解答】解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.故选:D.10.(4.00分)计算+++++……+的值为()A. B. C.D.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.二、填空题:(本大题共8个小题,每小题4分,共32分)11.(4.00分)分式方程=4的解是x=﹣9.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=4x+8,解得:x=﹣9,经检验x=﹣9是分式方程的解,故答案为:﹣912.(4.00分)因式分解:a3﹣ab2=a(a+b)(a﹣b).【分析】观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).13.(4.00分)一元一次不等式组的解集为x>﹣1.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.【解答】解:,由①得:x>﹣1,由②得:x>﹣2,所以不等式组的解集为:x>﹣1.故答案为x>﹣1.14.(4.00分)如图,m∥n,∠1=110°,∠2=100°,则∠3=150°.【分析】两直线平行,同旁内角互补,然后根据三角形内角和为180°即可解答.【解答】解:如图,∵m∥n,∠1=110°,∴∠4=70°,∵∠2=100°,∴∠5=80°,∴∠6=180°﹣∠4﹣∠5=30°,∴∠3=180°﹣∠6=150°,故答案为:150.15.(4.00分)小米的爸爸为了了解她的数学成绩情况,现从中随机抽取他的三次数学考试成绩,分别是87,93,90,则三次数学成绩的方差是6.【分析】根据题目中的数据可以求得相应的平均数,从而可以求得相应的方差,本题得以解决.【解答】解:,∴=6,故答案为:6.16.(4.00分)定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=4.【分析】根据新运算的定义,可得出关于x的一元一次方程,解之即可得出x的值.【解答】解:∵4※x=42+x=20,∴x=4.故答案为:4.17.(4.00分)在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE 所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB=4.【分析】由CE所在直线垂直平分线段AD可得出CE平分∠ACD,进而可得出∠ACE=∠DCE,由CD平分∠BCE利用角平分线的性质可得出∠DCE=∠DCB,结合∠ACB=90°可求出∠ACE、∠A的度数,再利用余弦的定义结合特殊角的三角函数值,即可求出AB的长度.【解答】解:∵CE所在直线垂直平分线段AD,∴CE平分∠ACD,∴∠ACE=∠DCE.∵CD平分∠BCE,∴∠DCE=∠DCB.∵∠ACB=90°,∴∠ACE=∠ACB=30°,∴∠A=60°,∴AB===4.故答案为:4.18.(4.00分)已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P 在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为(﹣1,﹣2)或(2,1).【分析】由三角形三边关系知|PA﹣PB|≥AB知直线AB与双曲线y=的交点即为所求点P,据此先求出直线AB解析式,继而联立反比例函数解析式求得点P的坐标.【解答】解:如图,设直线AB的解析式为y=kx+b,将A(1,0)、B(0,﹣1)代入,得:,解得:,∴直线AB的解析式为y=x﹣1,直线AB与双曲线y=的交点即为所求点P,此时|PA﹣PB|=AB,即线段PA与线段PB之差的绝对值取得最大值,由可得或,∴点P的坐标为(﹣1,﹣2)或(2,1),故答案为:(﹣1,﹣2)或(2,1).三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10.00分)(1)计算:﹣4cos60°﹣(π﹣3.14)0﹣()﹣1(2)先化简,再求值:(1﹣)÷,其中x=2.【分析】(1)先计算立方根、代入三角函数值、计算零指数幂和负整数指数幂,再分别计算乘法和加减运算可得;(2)先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:(1)原式=2﹣4×﹣1﹣2=2﹣2﹣1﹣2=﹣3;(2)原式=(﹣)÷=•=,当x=2时,原式==2.20.(10.00分)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;【解答】证明:∵AD=BC,∴AC=BD,在△ACE和△BDF中,,∴△ACE≌△BDF(SSS)∴∠A=∠B,∴AE∥BF;21.(10.00分)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.【分析】(1)由B类人数及其所占百分比求得总人数,再用总人数分别乘以A、C类别对应百分比求得其人数,据此结合条形图进一步得出答案;(2)画树状图列出所有等可能结果,从中找到所选两位同学恰好是一男一女同学的结果数,利用概率公式求解可得.【解答】解:(1)∵被调查的总人数为(7+5)÷60%=20人,∴A类别人数为20×15%=3人、C类别人数为20×(1﹣15%﹣60%﹣10%)=3,则A类男生人数为3﹣1=2、C类女生人数为3﹣1=2,补全图形如下:(2)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一男一女同学的概率为.22.(10.00分)如图,有一铁塔AB,为了测量其高度,在水平面选取C,D两点,在点C处测得A的仰角为45°,距点C的10米D处测得A的仰角为60°,且C、D、B在同一水平直线上,求铁塔AB的高度(结果精确到0.1米,≈1.732)【分析】根据AB和∠ADB、AB和∠ACB可以求得DB、CB的长度,根据CD=CB ﹣DB可以求出AB的长度,即可解题.【解答】解:在Rt△ADB中,DB==AB,Rt△ACB中,CB==AB,∵CD=CB﹣DB,∴AB=≈23.7(米)答:电视塔AB的高度约23.7米.四、(本大题满分12分)23.(12.00分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数=24000、10把甲种桌子钱数﹣5把乙种桌子钱数+多出5张桌子对应椅子的钱数=2000”列方程组求解可得;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,根据“总费用=甲种桌子总钱数+乙种桌子总钱数+所有椅子的总钱数”得出函数解析式,再由“甲种办公桌数量不多于乙种办公桌数量的3倍”得出自变量a的取值范围,继而利用一次函数的性质求解可得.【解答】解:(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据题意,得:,解得:,答:甲种办公桌每张400元,乙种办公桌每张600元;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,则y=400a+600(40﹣a)+2×40×100=﹣200a+32000,∵a≤3(40﹣a),∵﹣200<0,∴y随a的增大而减小,∴当a=30时,y取得最小值,最小值为26000元.五、(本大题满分12分)24.(12.00分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O 交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.【分析】(1)连接OC,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得:D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;(2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.【解答】(1)证明:如图,连接OC,CD,∵BC是⊙O的直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线∴OD∥AC,∵DF为⊙O的切线,∴DF⊥AC;(2)解:如图,连接BG,∵BC是⊙O的直径,∴∠BGC=90°,∵∠EFC=90°=∠BGC,∴EF∥BG,∴∠CBG=∠E,Rt△BDC中,∵BD=3,BC=5,∴CD=4,S△ABC=,6×4=5BG,BG=,由勾股定理得:CG==,∴tan∠CBG=tan∠E===.六、(本大题满分14分)25.(14.00分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF 是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=x﹣2,则Q(m,﹣m2+m+2)、M(m,m﹣2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得==,再证△MBQ∽△BPQ得=,即=,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q 坐标.【解答】解:(1)由抛物线过点A(﹣1,0)、B(4,0)可设解析式为y=a(x+1)(x﹣4),将点C(0,2)代入,得:﹣4a=2,解得:a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)由题意知点D坐标为(0,﹣2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,﹣2)代入,得:,解得:,∴直线BD解析式为y=x﹣2,∵QM⊥x轴,P(m,0),∴Q(m,﹣m2+m+2)、M(m,m﹣2),则QM=﹣m2+m+2﹣(m﹣2)=﹣m2+m+4,∵F(0,)、D(0,﹣2),∴DF=,∵QM∥DF,∴当﹣m2+m+4=时,四边形DMQF是平行四边形,解得:m=﹣1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则===,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴=,即=,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=﹣1,点Q的坐标为(﹣1,0);综上,点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.。
铜仁市中考数学试卷真题
铜仁市中考数学试卷真题铜仁市中考数学试卷真题是中学生每年都要面对的考试内容,以下是对该试卷的详细介绍。
第一部分:选择题(共50分)1. 某城市一天的最高温度是32℃,最低温度是20℃,这一天的平均温度是多少度?2. 在平面直角坐标系中,A(2,3),B(-4,6),则AB的距离是多少?3. 已知直线l平行于x轴,过点A(-1,3)的坐标为(x,y),求直线l的解析式。
4. 已知正方形ABCD的边长为4cm,点E是边AB的中点,连接DE交对角线AC于F,求AF的长度。
5. 笔记本电脑原价8000元,商场打85折促销,打折后的价格是多少元?第二部分:计算题(共50分)1. 某运动场地的长为60m,宽为40m,要在其周围修建一条宽度相同的跑道,求该跑道的面积。
2. 甲、乙两个数的和是100,甲比乙大35,求甲和乙分别是多少?3. 按照比例1:3, 2:5, 3:4将一份土地分成三部分,第一部分的面积是15平方米,求原来的土地面积。
4. 小明从A地到B地的路程是km,中途休息2小时,以每小时48km的速度继续行驶,共用时12小时,求AB的距离。
5. 解方程:3(x - 2) + 2(3x + 1) = 10第三部分:应用题(共50分)1. 一条长绳剪成3段,第一段比第二段长1/5,第二段比第三段长2/5,如果最短段长为3米,求原始绳长。
2. 小明用一段绳子绕成一个圆形,该圆的半径为10cm,再用这段绳子绕成一个正方形,求正方形的边长。
3. 甲乙两个数相差12,甲比乙大1/4,求甲和乙。
4. 有50个book,甲去了x本,乙比甲去了两倍,丙比乙去了两倍,丙也比甲去了多1,求x的值。
5. 有一辆长7m,宽3m的卡车,一辆长4m,宽2m的小轿车,将它们同时放入一个长40m,宽30m的大型仓库,卡车和小轿车的面积是否能完全覆盖大型仓库的面积?这是铜仁市中考数学试卷真题的部分内容,题目涵盖了选择题、计算题和应用题的不同类型。
贵州铜仁中考数学试卷真题
贵州铜仁中考数学试卷真题一、选择题1. 以下哪个选项中的数是无理数?A) 0.5 B) 3/4 C) √2 D) 2.52. 解方程2(x+1) = 5(x-2),得出的x的值为:A) -1 B) 1 C) 3 D) 43. 若两个角互补,则它们的和是:A) 45° B) 90° C) 135° D) 180°4. 下列各组数中,按从小到大的顺序排列正确的是:A) 0.25,0.33,0.31 B) -0.6,-0.9,-0.7 C) -1,0,1 D) -2,-1,05. 如图所示,一个正方形的对角线被一刀切割成两段,比值为2:3。
求短边的长度是长边的几分之一。
(图略)A) 1/2 B) 2/5 C) 2/3 D) 3/5二、计算题1. 若m = 2,n = 4,则下列哪个不等式是正确的?A) m + n > 0 B) m + n < 0 C) m - n > 0 D) m - n < 02. 已知△ABC中,AB = 8 cm,AC = 10 cm,BC = 6 cm。
则△ABC 的面积为:A) 24 cm^2 B) 30 cm^2 C) 32 cm^2 D) 48 cm^23. 一个半径为4 cm的正圆锥体,高为6 cm,则其体积为:A) 32 cm^3 B) 64 cm^3 C) 96 cm^3 D) 128 cm^3三、解答题1. 某商店进行促销活动,原价300元的商品打8折出售,售出了180个。
求此活动后的总收入。
2. 小明乘坐火车从A地到B地,沿途共经过4个站点。
第一个站点上车的人数是600人,每过一个站点,人数会减少40%。
求小明到达B地时,剩余的乘客人数。
3. 一个正方形的边长是x,一个矩形的长是正方形的两倍,宽是正方形的一半。
若正方形的面积是16,求矩形的周长。
四、解析题1. 在星期一至星期五这五天里,小明中午从学校回家吃饭,然后再返回学校。
铜仁市2017年中考数学科试题质量分析 (2)
铜仁市2017年中考数学科试题质量分析一、试题背景:2017年铜仁市中考数学科试题,延续了前两年的特点,充分体现了“以稳为主,稳中求变”的命题指导思想,坚持“注重基础考查,突出能力立意”的命题思路。
试题内容依据2011版《全日制义务教育数学课程标准》(以下简称《标准》)、湖南版数学7——9年级教材和《铜仁市2017年中考说明》及铜仁本地选材《2017(湘教版)》,体现了《标准》的评价理念:有利于引导和促进数学教学,全面落实《标准》所设立的课程目标;有利于改善学生的数学学习方式、丰富学生的数学学习体验、提高学生学习数学的效益和效率;起点低、坡度缓、深入易,有一定的区分度,同时也体现了中考数学的选拔功能;有利于高中阶段学校综合、有效地评价学生的数学学习状况。
试题的总体难易度控制较好,与学业考试的目标指向(“有利于课改,有利于减负,有利于教育均衡”)一致。
为初中数学教与学起到很好的导向作用。
二、试卷结构及试题特点:试卷结构科学合理,没有超出《标准》的要求。
试题设置梯度合理,有利于学生装的正常发挥。
题型和题量比例恰当,题型分为:选择题、填空题、解答题三种。
其中选择题有10道小题,每小题4分,共40分;填空题每小题4分,共32分;解答题有7道题共计78分,全卷合计150分。
整份试卷中代数72分,约占48%;几何60分,占40%;统计与概率18分,占12%,均接近于前几年中考各部分所占比例的平均值。
教材上内容改编题71分;中考说明改编题22分;命题人员(甲、乙、丙)自编题57分。
1、降低难度,突出基础,有实施以基础知识与基本技能的考查2017年试题难度在总体上低于2016年,整卷没有复杂的综合性难题,大部分试题只涉及一两个知识点,题目的形式、难度与教材习题都比较接近,强调对初中数学基础知识和基本技能的掌握,这样有利于引导教师在教学中以教材为主,对学生的学习有积极的引导作用。
试卷中对于初中数学主干的、核心的知识,如有理数、整式、不等式、方程、函数、三角形、圆、全等形、相似形、概率统计等重点知识,考查的都很基础,对大部分学生来说,没有思维障碍。
铜仁中考数学试题及答案
铜仁中考数学试题及答案一、选择题1. 已知数a、b满足条件a×b=12。
若a的一个取值为4,则b的值为多少?A) 24 B) -24 C) 3 D) -32. 若一根棍子长度为18 cm,其中a cm为蓝色部分,b cm为红色部分,若a/b=2/3,则b=多少?A) 12 cm B) 6 cm C) 9 cm D) 8 cm3. 若正整数x满足3x+2=17,则x的值等于?A) 5 B) 6 C) 7 D) 84. 若正整数x满足x+3<15,则x的最大值为多少?A) 12 B) 11 C) 10 D) 95. 若图中三角形ABC的面积为24 cm²,BC边长为3 cm,AB边长为8 cm,则角ACB的大小为多少度?A) 60° B) 90° C) 30° D) 45°二、填空题1. 在一辆公共汽车上,一共有30人,其中男生占总人数的三分之二,女生占剩下的部分。
那么女生的数量为______人。
答案:102. 小明上学迟到了5分钟,他从家中到学校的路程正常需要10分钟。
他正常速度行走时,每分钟行走的距离为______米。
答案:1003. 一根绳子长80厘米,从绳子上剪下的一段边长为12厘米的正方形,剩下的绳子长度为______厘米。
答案:444. 若一辆汽车以每小时60公里的速度行驶,那么20分钟后该汽车行驶的距离为______公里。
答案:205. 若3x+5=14,则x的值为______。
答案:3三、解答题1. 某商店玩具部销售了一批玩具,其中有3个卡通人物玩偶和5个娃娃。
求从这批玩具中随机选出3个玩具,其中至少有一个卡通人物玩偶的概率。
解答:设从3个卡通人物玩偶中选出1个的概率为P1,从5个娃娃中选出2个的概率为P2。
则所求概率为1 - 选出3个娃娃的概率 = 1 - P2根据组合公式计算P2:P2 = C(5, 2) / C(8, 3) = 10 / 56 = 5 / 28所以所求概率为1 - 5 / 28 = 23 / 28。
贵州省铜仁市中考数学试卷有答案
数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前贵州省铜仁市2015年初中毕业生学业(升学)统一考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2 015的相反数是( ) A .2015B .2015-C .12015-D .12015 2.下列计算正确的是( )A .2242a a a +=B .23622a a a ⨯=C .321﹣=a aD .236()a a =3.河北省赵县的赵州桥的桥拱是近似的抛物线型,建立如图所示的平面直角坐标系,其函数的关系式为2125y x =-,当水面离桥拱顶的高度DO 是4m 时,这时水面宽度AB为 ( )A .20﹣m B .10m C .20m D .10-m4.已知关于x 的一元二次方程234-50+=x x ,下列说法不正确的是( )A .方程有两个相等的实数根B .方程有两个不相等的实数根C .没有实数根D .无法确定5.请你观察下面四个图形,其中既是轴对称图形又是中心对称图形的是( )ABCD 6.如果一个多边形的每一个外角都是60︒,则这个多边形的边数是( )A .3B .4C .5D .67.在一次数学模拟考试中,小明所在的学习小组7名同学的成绩分别为129,136,145,136,148,136,150.则这次考试的平均数和众数分别为( ) A .145,136B .140,136C .136,148D .136,1458.如图,在矩形ABCD 中,6BC =,3CD =,将BCD △沿对角线BD 翻折,点C 落在点'C 处,'BC 交AD 于点E ,则线段DE 的长为( ) A .3 B .154C .5D .1529.如图,在平行四边形ABCD 中,点E 在边DC 上,31DE EC =::,连接AE 交BD 于点F ,则DEF △的面积与BAF △的面积之比为( ) A .34:B .916:C .91:D .31:10.如图,在平面直角坐标系系xOy 中,直线12y k x =+与x 轴交于点A ,与y 轴交于点C ,与反比例函数2k y x=在第一象限内的图象交于点B ,连接BO .若1S =△OBC ,1tan 3BOC ∠=,则2k 的值是 ( )A .3-B .1C .2D .3第Ⅱ卷(非选择题 共110分)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)二、填空题(本大题共8小题,每小题4分,共32分.请把答案填写在题中的横线上) 11.||6.18﹣= .12.定义一种新运算:2*x y x y x +=,如2212*122+⨯==,则4*2*()()1=﹣ . 13.不等式5335x x -+<的最大整数解是 .14.已知点()3,P a 关于y 轴的对称点为2(),Q b ,则ab = .15.已知一个菱形的两条对角线长分别为6cm 和8cm ,则这个菱形的面积为 2cm . 16.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 .17.如图,90ACB ∠=,D 为AB 中点,连接DC 并延长到点E ,使14CE CD =,过点B 作BF DE ∥交AE 的延长线于点F .若10BF =,则AB 的长为 .18.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则6()a b += .三、解答题(本大题共7小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分,每题5分)(1)计算:41||(1)(sin 451)22-1÷--+⨯-;(2)先化简22252)x+2443(+++⨯+++x x x x x x,然后选择一个你喜欢的数代入求值.20.(本小题满分10分)为了增强学生的身体素质,教育部门规定学生每天参加体育锻炼时间不少于1小时,为了了解学生参加体育锻炼的情况,抽样调查了900名学生每天参加体育锻炼的时间并将调查结果制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)请补充这次调查参加体育锻炼时间为1小时的频数分布直方图. (2)求这次调查参加体育锻炼时间为1.5小时的人数. (3)这次调查参加体育锻炼时间的中位数是多少?21.(本小题满分10分)已知:如图,点D 在等边三角形ABC 的边AB 上,点F 在边AC 上,连接DF 并延长交BC 的延长线于点E ,=FE FD . 求证:AD CE =.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)22.(本小题满分10分)如图,一艘轮船航行到B 处时,测得小岛A 在船的北偏东60︒的方向,轮船从B 处继 续向正东方向航行200海里到达C 处时,测得小岛A 在船的北偏东30︒的方向.己知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险. 1.)73223.(本小题满分12分)2015年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬?(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?24.(本小题满分12分)如图,已知ABC △的边AB 是O 的切线,切点为B ,AC 经过圆心O 并与圆相交于点D ,C ,过C 作直线CE AB 丄,交AB 的延长线于点E . (1)求证:CB 平分ACE ∠;(2)若3BE =,4CE = ,求O 的半径.25.(本小题满分14分)如图,已知:关于x 的二次函数2y x bx c =++的图象与x 轴交于点()1,0A 和点B ,与y 轴交于点()0,3C ,抛物线的对称轴与x 轴交于点D . (1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使C PB △为等腰三角形?若存在,请求出点P 的坐标); (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,MNB △面积最大,试求出最大面积.数学试卷 第7页(共18页) 数学试卷 第8页(共18页)贵州省铜仁市2015年初中毕业生学业(升学)统一考试数 学第Ⅰ卷一、选择题 1.【答案】B【解析】根据相反数的含义,可得2015的相反数是:2015-.故选:B .【提示】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“-”,据此解答即可. 【考点】相反数 2.【答案】D【解析】A 、应为2222+=a a a ,故本选项错误;B 、应为23522⨯=a a a ,故本选项错误;C 、应为321-=a a ,故本选项错误;D 、26()3=a a ,正确.故选:D .【提示】根据合并同类项法则、单项式乘法、幂的乘方的运算方法,利用排除法求解. 【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方 3.【答案】C【解析】根据题意B 的纵坐标为4-,把4=-y 代入2125=-y x ,得10=±x ,∴(10,4)--A ,(10,4)-B ,∴20m =AB .即水面宽度AB 为20m .故选C .【提示】根据题意,把4=-y 直接代入解析式即可解答. 【考点】二次函数的应用 4.【答案】B【解析】解:∵,∴方程有两个不相等的实数根.故选B . 【提示】先求出∆的值,再判断出其符号即可. 【考点】根的判别式 5.【答案】C【解析】解:A 、是轴对称图形,不是中心对称图形.故错误;B 、是轴对称图形,不是中心对称图形.故错误;C 、是轴对称图形,也是中心对称图形.故正确;D 、是轴对称图形,不是中心对称图形.故错误.故选C .【提示】根据轴对称图形与中心对称图形的概念求解. 【考点】中心对称图形;轴对称图形 6.【答案】D【解析】解:∵一个多边形的每一个外角都等于60︒,且多边形的外角和等于360︒,∴这个多边形的边数是:360606÷=.故选:D .【提示】由一个多边形的每一个外角都等于60︒,且多边形的外角和等于360︒,即可求得这个多边形的边数. 【考点】多边形内角与外角 7.【答案】B【解析】解:在这一组数据中136是出现次数最多的,故众数是136;他们的成绩的平均数为:(129136145136148136150)7140++++++÷=.故选B .【提示】众数的定义求解;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;再利用平均数的求法得出答案. 【考点】众数,加权平均数 8.【答案】C【解析】设=ED x ,则8=-AE x ;∵四边形ABCD 为矩形,∴∥AD BC ,∴∠=∠EDB DBC ;由题意得:∠=∠EBD DBC ,∴∠=∠EDB EBD ,∴==EB ED x ;由勾股定理得:222=+BE AB AE ,即2242(8)=+-x x ,解得:5=x ,∴5=ED .故选:C .【提示】首先根据题意得到=BE DE ,然后根据勾股定理得到关于线段AB 、AE 、BE 的方程,解方程即可解决问题. 【考点】翻折变换(折叠问题) 9.【答案】B【解析】∵四边形ABCD 为平行四边形,∴∥DC AB ,∴△∽△DFE BFA ,∵:31=:DE EC ,∴:134==:DE DC ,∴:34=:DE AB ,∴9:16=△△:DFE BFA S S .选:数学试卷 第9页(共18页) 数学试卷 第10页(共18页)B .【提示】可证明△∽△DFE BFA ,根据相似三角形的面积之比等于相似比的平方即可得出答案.【考点】相似三角形的判定与性质;平行四边形的性质 10.【答案】D【解析】∵直线12=+y k x 与x 轴交于点A ,与y 轴交于点C ,∴点C 的坐标为(0,2),∴2=OC ,∵1=△OBC S ,∴1=BD ,∵1tan 3∠=BOC ,∴13=BD OD ,∴3=OD ,∴点B 的坐标为(1,3),∵反比例函数2=ky x在第一象限内的图象交于点B ,∴2133=⨯=k .选D .【提示】首先根据直线求得点C 的坐标,然后根据△BOC 的面积求得BD 的长,然后利用正切函数的定义求得OD 的长,从而求得点B 的坐标,求得结论. 【考点】反比例函数与一次函数的交点问题第Ⅱ卷二、填空题 11.【答案】6.18【解析】 6.18-的绝对值是6.18.答案为:6.18.【提示】一个数到原点的距离叫做该数的绝对值.一个负数的绝对值是它的相反数.【考点】绝对值 12.【答案】0【解析】4224*224+⨯==,22(1)2*(1)02+⨯--==.故(4*2)*(1)0-=.答案为:0.【提示】先根据新定义计算出4*22=,然后再根据新定义计算2*(1)-即可. 【考点】有理数的混合运算13.【答案】3【解析】不等式的解集是4<x ,故不等式5335-+<x x 的正整数解为1,2,3,则最大整数解为3.故答案为:3.【提示】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【考点】一元一次不等式的整数解 14.【答案】6-【解析】∵点(3,)P a 关于y 轴的对称点为(,2)Q b ,∴2=a ,3=-b ,∴6=-ab ,故答案为:6-.【提示】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得2=a ,3=-b ,进而可得答案.【考点】关于x 轴、y 轴对称的点的坐标15.【答案】24【解析】∵一个菱形的两条对角线长分别为6cm 和8cm ,∴这个菱形的面积216824(cm )2=⨯⨯=.故答案为:24. 【提示】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【考点】菱形的性质16.【答案】12【解析】根据题意知,掷一次骰子6个可能结果,而奇数有3个,所以掷到上面为奇数的概率为12.故答案为:12.【提示】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 【考点】概率公式数学试卷 第11页(共18页) 数学试卷 第12页(共18页)17.【答案】8【解析】∵点D 是AB 的中点,∥BF DE ,∴DE 是△ABF 的中位线.∵10=BF ,∴152==DE BF .14=CE CD ,∴554=CD ,解得4=CD .△ABC 是直角三角形,∴28==AB CD .答案为:8.【提示】先根据点D 是AB 的中点,∥BF DE 可知DE 是△ABF 的中位线,故可得出DE 的长,根据14=CE CD 可得出CD 的长,再根据直角三角形的性质即可得出结论.【考点】三角形中位线定理,直角三角形斜边上的中线 18.【答案】654233245661520156++++++a a b a b a b a b ab b【解析】6642332456()651520156+=++++++a b a a b a b a b a b ab b ,本题答案为:654233245661520156++++++a a b a b a b a b ab b .【提示】通过观察可以看出6()+a b 的展开式为6次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1. 【考点】完全平方公式,规律型,数字的变化 三、解答题19.【答案】(1)原式|212()2=-÷÷-- 222(2)=-÷-⨯-14=-+ 3=;(2)原式22452(2)(3)++++=++x x x x x x 23(3)2(2)(3)++=++x x x x x 3(2)=+x x , 当1=x 时,原式1=.【提示】(1)分别根据数的开方法则、特殊角的三角函数值、负整数指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.【考点】分式的化简求值,实数的运算,负整数指数幂,特殊角的三角函数值 20.【答案】(1)调查的总人数是好:9010%900÷=(人), 锻炼时间是1小时的人数是:90040%460⨯=(人).;(2)这次调查参加体育锻炼时间为1.5小时的人数是:90027036090180---=(人); (3)锻炼的中位数是:1小时.【提示】(1)根据时间是2小时的有90人,占10%,据此即可求得总人数,利用总人数乘以百分比即可求得时间是1小时的一组的人数,即可作出直方图; (2)总数减去其它各组的人数即可求解;(3)根据中位数的定义就是大小处于中间位置的数,据此即可求解. 【考点】频数(率)分布直方图,扇形统计图,中位数 21.【答案】证明:作∥DG BC 交AC 于G ,如图所示:则∠=∠DGF ECF ,在△DFG 和△EFC 中,∠=∠⎧⎪∠=∠⎨⎪=⎩DGF ECFDFG EFC FD EF ,∴()△≌△DFG EFC AAS , ∴=GD CE ,∵△ABC 是等边三角形, ∴60∠=∠=∠=︒A B ACB , ∵∥DG BC ,∴∠=∠ADG B ,∠=∠AGD ACB , ∴∠=∠=∠A ADG AGD , ∴△ADG 是等边三角形, ∴=AD GD ,数学试卷 第13页(共18页) 数学试卷 第14页(共18页)∴=AD CE .【提示】作∥DG BC 交AC 于G ,先证明△≌△DFG EFC ,得出=GD CE ,再证明△ADG 是等边三角形,得出=AD GD ,即可得出结论.【考点】全等三角形的判定与性质,等边三角形的判定与性质 22.【答案】该轮船不改变航向继续前行,没有触礁危险 理由如下:如图所示.则有30∠=︒ABD ,60∠=︒ACD . ∴∠=∠CAB ABD , ∴200==BC AC 海里.在Rt △ACD 中,设=CD x 海里, 则2=AC x,==AD ,在Rt △ABD中,2==AB AD ,3=BD x ,又∵=+BD BC CD , ∴3200=+x x , ∴100=x .∴173.2==≈AD , ∵173.2170海里>海里,∴轮船不改变航向继续向前行使,轮船无触礁的危险.【提示】如图,直角△ACD 和直角△ABD 有公共边AD ,在两个直角三角形中,利用三角函数即可用AD 表示出CD 与BD ,根据=-CB BD CD 即可列方程,从而求得AD 的长,与170海里比较,确定轮船继续向前行驶,有无触礁危险. 【考点】解直角三角形的应用-方向角问题23.【答案】(1)设甲种货车每辆车可装x 件帐蓬,乙种货车每辆车可装y 件帐蓬,依题意有201000800=+⎧⎪⎨=⎪⎩x y x y ,解得10080=⎧⎨=⎩x y ,经检验,10080=⎧⎨=⎩x y 是原方程组的解.故甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬; (2)设甲种汽车有z 辆,乙种汽车有(16)-z 辆,依题意有10080(161)501490+--+=z z ,解得6=z ,1616610-=-=z . 故甲种汽车有6辆,乙种汽车有10辆.【提示】(1)可设甲种货车每辆车可装x 件帐蓬,乙种货车每辆车可装y 件帐蓬,根据等量关系:①甲种货车比乙种货车每辆车多装20件帐篷;②甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等;列出方程组求解即可; (2)可设甲种汽车有z 辆,乙种汽车有(16)-z 辆,根据等量关系:这批帐篷有1490件,列出方程求解即可.【考点】分式方程的应用,二元一次方程组的应用 24.【答案】(1)证明:如图1,连接OB , ∵AB 是O 的切线, ∴⊥OB AB , ∵丄CE AB , ∴∥OB CE ,∴13∠=∠,数学试卷 第15页(共18页) 数学试卷 第16页(共18页)∵=OB OC , ∴12∠=∠, ∴23∠=∠, ∴CB 平分∠ACE ; (2)如图2,连接BD , ∵丄CE AB , ∴90∠=︒E ,∴5===BC , ∵CD 是O 的直径, ∴90∠=︒DBC , ∴∠=∠E DBC , ∴△∽△DBC CBE , ∴=CD BC BC CE , ∴2=BC CD CE ,∴252544==CD , ∴12528==OC CD ,∴O 的半径258=.【提示】(1)证明:如图1,连接OB ,由AB 是O 的切线,得到⊥OB AB ,由于丄CE AB ,的∥OB CE ,于是得到13∠=∠,根据等腰三角形的性质得到12∠=∠,通过等量代换得到结果.(2)如图2,连接BD 通过△∽△DBC CBE ,得到比例式=CD BCBC CE,列方程可得结果. 【考点】切线的性质25.【答案】(1)把(1,0)A 和(0,3)C 代入2=++y x bx c ,103++=⎧⎨=⎩b c c 解得:4=-b ,3=c ,∴二次函数的表达式为:243=-+y x x ; (2)令0=y ,则2430-+=x x , 解得:1=x 或3=x , ∴(3,0)B ,∴=BC点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1, ①当=CP CB 时,=PC ,∴3=+=+OP OC PC或33=-=-OP PC OC∴1(0,3+P,2(0,3-P ; ②当=PB PC 时,3==OP OB , ∴3(3,0)-P ; ③当=BP BC 时, ∵3==OC OB∴此时P 与O 重合, ∴4(0,0)P ;综上所述,点P的坐标为:(0,3+或(0,3-或(3,0)-或(0,0);数学试卷 第17页(共18页) 数学试卷 第18页(共18页)(3)如图2,设=AM t ,由2=AB ,得2=-BM t ,则2=DN t ,∴221(2)22(1)12=⨯-⨯=-+=--+△MNB S t t t t t ,当点M 出发1秒到达D 点时,△MNB 面积最大,试求出最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【提示】(1)代入(1,0)A 和(0,3)C ,解方程组即可;(2)求出点B 的坐标,再根据勾股定理得到BC ,当△PBC 为等腰三角形时分三种情况进行讨论:①=CP CB ;②=BP BC ;③=PB PC ; (3)设=A M t 则2=DN t ,由2=AB ,得2=-BM t ,21(2)222=⨯-⨯=-+△MNB S t t t t ,运用二次函数的顶点坐标解决问题;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处. 【考点】二次函数综合题。
2017年贵州省铜仁市中考数学试卷
第4页(共6页)
六、解答题 25.(14 分)如图,抛物线 y=x2+bx+c 经过点 A(﹣1,0),B(0,﹣2),并与 x 轴交于点
C,点 M 是抛物线对称轴 l 上任意一点(点 M,B,C 三点不在同一直线上). (1)求该抛物线所表示的二次函数的表达式; (2)在抛物线上找出两点 P1,P2,使得△MP1P2 与△MCB 全等,并求出点 P1,P2 的坐标; (3)在对称轴上是否存在点 Q,使得∠BQC 为直角,若存在,作出点 Q(用尺规作图,保
10.(4 分)观察下列关于自然数的式子: 4×12﹣12① 4×22﹣32② 4×32﹣52③ …
根据上述规律,则第 2017 个式子的值是( )
A.8064
B.8065
C.8066
二、填空题(本大题共 8 小题,每小题 4 分,共 32 分)
11.(4 分)5 的相反数是
.
12.(4 分)一组数据 2,3,2,5,4 的中位数是
留作图痕迹),并求出点 Q 的坐标.
第5页(共6页)
2017 年贵州省铜仁市中考数学试卷
参考答案
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分) 1.A; 2.B; 3.D; 4.B; 5.B; 6.C; 7.C; 8.B; 9.C; 10.D; 二、填空题(本大题共 8 小题,每小题 4 分,共 32 分) 11.﹣5; 12.3; 13.2; 14. ; 15.15; 16.18; 17. ; 18. ;
第6页(共6页)
四、解答题 23.(12 分)某商店以 20 元/千克的单价新进一批商品,经调查发现,在一段时间内,销售
2017年贵州省铜仁市中考数学试卷(含答案及考点解析)
2017年贵州省铜仁市中考数学试卷(含答案及考点解析)2017年贵州省铜仁市中考数学试卷满分150分,考试时间120分钟共8页姓名得分:一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣120172.(4分)一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.43.(4分)单项式2x y3的次数是()A.1 B.2 C.3 D.44.(4分)如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°5.(4分)世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×1046.(4分)如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S27.(4分)一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.118.(4分)把不等式组{2x+3>13x+4≥5x的解集表示在数轴上如下图,正确的是()A.B C.D.9.(4分)如图,已知点A在反比例函数y=kx上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y=4xB.y=2xC.y=8xD.y=﹣8x10.(4分)观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067二、填空题(本大题共8小题,每小题4分,共32分)11.(4分)5的相反数是.12.(4分)一组数据2,3,2,5,4的中位数是.13.(4分)方程1x−1﹣2x=0的解为x= .14.(4分)已知一元二次方程x2﹣3x+k=0有两个相等的实数根,则k= .15.(4分)已知菱形的两条对角线的长分别是5cm,6cm,则菱形的面积是cm2.16.(4分)如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是米.17.(4分)从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为.18.(4分)如图,在Rt△ABC中,∠C=90°,点D是AB的中点,ED⊥AB交AC于点E.设∠A=α,且tanα=13,则tan2α=.三、解答题(本大题共7小题,其中19题每小题5分,20、21、22每题10分,23、24每题12分,25题14分,共78分)19.(10分)(1)计算:(12)﹣1﹣4sin60°﹣(√3﹣1.732)0+√12(2)先化简,再求值:2x+6x2−2x+1•x−1x+3,其中x=2.20.(10分)如图,已知:∠BAC=∠EAD,AB=20.4,AC=48,AE=17,AD=40.求证:△ABC∽△AED.21.(10分)某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A,B,C(A等:成绩大于或等于80分;B等:成绩大于或等于60分且小于80分;C等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A等所在的扇形的圆心角等于度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.22.(10分)如图,已知点E,F分别是平行四边形ABCD对角线BD所在直线上的两点,连接AE,CF,请你添加一个条件,使得△ABE≌△CDF,并证明.23.(12分)某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?24.(12分)如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC 的中点,连接BD,DE.(1)若ADAB=13,求sinC;(2)求证:DE是⊙O的切线.25.(14分)如图,抛物线y=x2+b x+c经过点A(﹣1,0),B(0,﹣2),并与x轴交于点C,点M 是抛物线对称轴l上任意一点(点M,B,C三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P1,P2,使得△MP1P2与△MCB全等,并求出点P1,P2的坐标;(3)在对称轴上是否存在点Q,使得∠BQC为直角,若存在,作出点Q(用尺规作图,保留作图痕迹),并求出点Q的坐标.2017年贵州省铜仁市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2017•铜仁市)﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【考点】15:绝对值.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣2017的绝对值是2007.故选:A.【点评】此题考查了绝对值,解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)(2017•铜仁市)一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【考点】W5:众数.【分析】根据众数的定义即可得到结论.【解答】解:∵在数据1,3,4,2,2中,2出现的次数最多,∴这组数据1,3,4,2,2的众数是2,故选B.【点评】本题考查了众数的定义,熟记众数的定义是解题的关键.3.(4分)(2017•铜仁市)单项式2xy3的次数是()A.1 B.2 C.3 D.4【考点】42:单项式.【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得答案.【解答】解:单项式2xy3的次数是1+3=4,故选:D.【点评】此题主要考查了单项式,关键是掌握单项式次数的计算方法.4.(4分)(2017•铜仁市)如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【考点】JA:平行线的性质.【分析】由直线a∥b,c∥b,得出a∥c,∠1=60°,根据两直线平行,同位角相等,即可求得∠2的度数.【解答】解:∵直线a∥b,c∥b,∴a∥c,∵∠1=60°,∴∠2=∠1=60°.故选B【点评】此题考查了平行线的性质.解题的关键是注意掌握两直线平行,同位角相等定理的应用.5.(4分)(2017•铜仁市)世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104 B.6.7×105 C.6.7×106 D.67×104【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:670000=6.7×105.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.6.(4分)(2017•铜仁市)如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【考点】Q2:平移的性质;JC:平行线之间的距离.【分析】根据平行线间的距离相等可知△ABC,△PB′C′的高相等,再由同底等高的三角形面积相等即可得到答案.【解答】解:∵△ABC沿着BC方向平移得到△A′B′C′,∴AA′∥BC′,∵点P是直线AA′上任意一点,∴△ABC,△PB′C′的高相等,∴S1=S2,故选C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.7.(4分)(2017•铜仁市)一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【考点】L3:多边形内角与外角.【分析】先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【解答】解:180°﹣144°=36°,360°÷36°=10,则这个多边形的边数是10.故选:C.【点评】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.8.(4分)(2017•铜仁市)把不等式组{2x+3>13x+4≥5x的解集表示在数轴上如下图,正确的是()A.B C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+3>1,得:x>﹣1,解不等式3x+4≥5x,得:x≤2,则不等式组的解集为﹣1<x≤2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键9.(4分)(2017•铜仁市)如图,已知点A在反比例函数y=kx上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y=4xB.y=2xC.y=8xD.y=﹣8x【考点】G7:待定系数法求反比例函数解析式;G5:反比例函数系数k的几何意义.【分析】由S△AOC =12x y=4,设反比例函数的解析式y=kx,则k=x y=8.【解答】解:∵S△AOC =4,∴k=2S△AOC=8;∴y=8x;故选:C.【点评】此题考查了待定系数法求反比例函数解析式,反比例函数系数k的几何意义.属于基础题,难度不大.10.(4分)(2017•铜仁市)观察下列关于自然数的式子:4×12﹣12 ① 4×22﹣32 ② 4×32﹣52 ③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067【考点】37:规律型:数字的变化类;1G:有理数的混合运算.【分析】由①②③三个等式可得,减数是从1开始连续奇数的平方,被减数是从1开始连续自然数的平方的4倍,由此规律得出答案即可.【解答】解:4×12﹣12 ① 4×22﹣32 ② 4×32﹣52 ③…4n2﹣(2n﹣1)2=4n﹣1,所以第2017个式子的值是:4×2017﹣1=8067.故选:D.【点评】此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.二、填空题(本大题共8小题,每小题4分,共32分)11.(4分)(2017•铜仁市)5的相反数是﹣5 .【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故答案为﹣5.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.12.(4分)(2017•铜仁市)一组数据2,3,2,5,4的中位数是 3 .【考点】W4:中位数.【分析】根据中位数的定义解答即可.【解答】解:数据2,3,2,5,4的中位数是3;故答案为:3【点评】此题考查中位数问题,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(4分)(2017•铜仁市)方程1x−1﹣2x=0的解为x = 2 .【考点】B3:解分式方程.【分析】利用:①去分母;②求出整式方程的解;③检验;④得出结论解出方程.【解答】解:1x−1﹣2x=0方程两边同乘x (x ﹣1),得x ﹣2(x ﹣1)=0x ﹣2x +2=0,解得,x =2,检验:当x =2时,x (x ﹣1)≠0,则x =2是分式方程的解,故答案为:2.【点评】本题考查的是分式方程的解法,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.14.(4分)(2017•铜仁市)已知一元二次方程x 2﹣3x +k=0有两个相等的实数根,则k= 94.【考点】AA :根的判别式.【分析】根据方程的系数结合根的判别式△=0,即可得出关于k 的一元一次方程,解之即可得出结论.【解答】解:∵方程x 2﹣3x +k=0有两个相等的实数根,∴△=(﹣3)2﹣4k=9﹣4k=0,解得:k=94.故答案为:94.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.15.(4分)(2017•铜仁市)已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 15 cm 2.【考点】L8:菱形的性质.【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.【解答】解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×5cm×6cm=15cm2,故答案为 15.【点评】本题考查了根据对角线计算菱形的面积的方法,记住菱形的面积等于对角线乘积的一半是解题的关键.16.(4分)(2017•铜仁市)如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是18 米.【考点】SA:相似三角形的应用.【分析】根据相似三角形的判定推出△ABE∽△ACD,得出比例式,代入求出即可.【解答】解:如图:∵BE⊥AC,CD⊥AC,∴BE∥CD,∴△ABE∽△ACD,∴BECD=ABAC,∴1.8CD=22+18,解得:CD=18.故答案为:18.【点评】本题考查了相似三角形的判定和性质的应用,能根据相似三角形的判定定理推出两三角形相似是解此题的关键.17.(4分)(2017•铜仁市)从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为16.【考点】X6:列表法与树状图法;D1:点的坐标.【分析】首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果与点P落在抛物线y=﹣x2+x+2上的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,点P落在第一象限的可能是(1,2),(2,1)两种情形,∴则该点在第一象限的概率为212=16.故答案为16.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.18.(4分)(2017•铜仁市)如图,在Rt△ABC中,∠C=90°,点D是AB的中点,ED⊥AB交AC于点E.设∠A=α,且tanα=13,则tan2α=34.【考点】T7:解直角三角形;KG:线段垂直平分线的性质.【分析】根据题目中的数据和锐角三角函数可以求得tan2α的值,本题得以解决.【解答】解:连接BE,∵点D是AB的中点,ED⊥AB,∠A=α,∴ED是AB的垂直平分线,∴EB=EA,∴∠EBA=∠A=α,∴∠BEC=2α,∵tanα=13,设DE=x,∴AD=3a,AE=√10a,∴AB=6a,∴BC=3a√105,AC=9a√105∴CE=9a√105−√10a=4a√105,∴tan2α=BCCE=3a√105√10a−9a√105=BCCE=3a√1054a√105=34,故答案为:3 4.【点评】本题考查解直角三角形、线段垂直平分线,解答本题的关键是明确题意,找出所求问题需要的条件,利用解直角三角形的相关知识解答.三、解答题19.(10分)(2017•铜仁市)(1)计算:(12)﹣1﹣4sin60°﹣(√3﹣1.732)0+√12(2)先化简,再求值:2x+6x2−2x+1•x−1x+3,其中x=2.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据零指数幂意义,立方根的意义,绝对值的意义即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=2﹣4×√32﹣1+2√3=1(2)当x=2时,原式=2(x+3) (x−1)2•x−1x+3=2x−1=2【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(10分)(2017•铜仁市)如图,已知:∠BAC=∠EAD,AB=20.4,AC=48,AE=17,AD=40.求证:△ABC∽△AED.【考点】S8:相似三角形的判定.【分析】先证得ABAE=ACAD,然后根据相似三角形的判定定理即可证得结论.【解答】证明:∵AB=20.4,AC=48,AE=17,AD=40.∴ABAE=20.417=1.2,ACAD=4840=1.2,∴ABAE=ACAD,∵∠BAC=∠EAD,∴△ABC∽△AED.【点评】本题重点考查了相似三角形的判定定理,本题比较简单,注要找准相似的两个三角形就可以了.21.(10分)(2017•铜仁市)某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A,B,C(A等:成绩大于或等于80分;B等:成绩大于或等于60分且小于80分;C等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A等所在的扇形的圆心角等于108 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【考点】VC :条形统计图;V5:用样本估计总体;VB :扇形统计图.【分析】(1)根据百分比=所占人数总人数,计算即可解决问题;(2)求出A 组人数即可解决问题;(3)用样本估计作图的思想解决问题即可;【解答】解:(1)抽查了部分学生的总人数为25÷50%=50(人),A 组人数=50﹣25﹣10=15(人),条形图如图所示:(2)扇形统计图中A 等所在的扇形的圆心角为360°×(1﹣20%﹣50%)=108°,故答案为108.(3)1000×4050=800(人),答:估计体育测试众60分以上(包括60分)的学生人数有800人.【点评】本题考查条形统计图、扇形统计图、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)(2017•铜仁市)如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【考点】L5:平行四边形的性质;KB :全等三角形的判定.【分析】根据平行四边形性质推出AB=CD ,AB ∥CD ,得出∠EBA=∠FDC ,根据SAS 证两三角形全等即可.【解答】解:添加的条件是DE=BF ,理由是:∵四边形ABCD 是平行四边形, ∴AB=CD ,AB ∥CD ,∴∠EBA=∠FDC ,∵DE=BF ,∴BE=DF ,∵在△ABE 和△CDF 中{AB =CD∠EBA =∠FDC BE =DF,∴△ABE ≌△CDF (SAS ).【点评】本题考查了平行四边形的性质和全等三角形的判定的应用,通过做此题培养了学生的分析问题和解决问题的能力,也培养了学生的发散思维能力,题目比较好,是一道开放性的题目,答案不唯一23.(12分)(2017•铜仁市)某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y (千克)与销售单价x (元/千克)之间为一次函数关系,如图所示.(1)求y 与x 的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【考点】AD :一元二次方程的应用;FH :一次函数的应用.【分析】(1)当20≤x ≤80时,利用待定系数法即可得到y 与x 的函数表达式;(2)根据销售利润达到800元,可得方程(x ﹣20)(﹣x +80)=800,解方程即可得到销售单价.【解答】解:(1)当0<x <20时,y =60;当20≤x ≤80时,设y 与x 的函数表达式为y =k x +b ,把(20,60),(80,0)代入,可得{60=20k +b 0=80k +b,解得{k =−1b =80,∴y =﹣x +80,∴y 与x 的函数表达式为y={60(0<x <20)−x +80(20≤x ≤80);(2)若销售利润达到800元,则(x ﹣20)(﹣x +80)=800,解得1x =40,2x =60,∴要使销售利润达到800元,销售单价应定为每千克40元或60元.【点评】本题主要考查了一元二次方程的应用以及一次函数的应用,列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.24.(12分)(2017•铜仁市)如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sinC;(2)求证:DE是⊙O的切线.【考点】MD:切线的判定;T7:解直角三角形.【分析】(1)根据圆周角定理可得∠ADB=90°,再利用同角的余角相等证明∠C=∠ABD,进而可得答案.(2)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.【解答】(1)解:∵AB为直径,∴∠ADB=90°,∴∠ABD+∠BAD=90°,∵∠ABC=90°,∴∠C+∠BAC=90°,∴∠C=∠ABD,∵ADAB=13,∴sin∠ABD=13,∴sinC=13;(2)证明:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠BDC=90°,∵E为BC的中点,∴DE=BE=CE,∴∠EDB=∠EBD,∵OD=OB,∴∠ODB=∠OBD,∵∠ABC=90°,∴∠EDO=∠EDB+∠ODB=∠EBD+∠OBD=∠ABC=90°,∴OD⊥DE,∴DE是⊙O的切线.【点评】本题考查了切线的判定,直角三角形的性质,圆周角定理的应用和三角函数,解此题的关键是求出∠ODE=90°,注意:经过半径的外端,并且垂直于这条半径的直线是圆的切线.25.(14分)(2017•铜仁市)如图,抛物线y=x2+b x+c经过点A(﹣1,0),B(0,﹣2),并与x 轴交于点C,点M是抛物线对称轴l上任意一点(点M,B,C三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P1,P2,使得△MP1P2与△MCB全等,并求出点P1,P2的坐标;(3)在对称轴上是否存在点Q,使得∠BQC为直角,若存在,作出点Q(用尺规作图,保留作图痕迹),并求出点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)利用待定系数法求二次函数的表达式;(2)分两种情况:①当△P 1MP 2≌△CMB 时,取对称点可得点P 1,P 2的坐标;②当△BMC ≌△P 2P 1M 时,构建▱P 2MBC 可得点P 1,P 2的坐标;(3)如图3,先根据直径所对的圆周角是直角,以BC 为直径画圆,与对称轴的交点即为点Q ,这样的点Q 有两个,作辅助线,构建相似三角形,证明△BDQ 1∽△Q 1EC ,列比例式,可得点Q 的坐标.【解答】解:(1)把A (﹣1,0),B (0,﹣2)代入抛物线y=x 2+b x +c 中得:{1−b +c =0c =−2,解得:{b =−1c =−2,∴抛物线所表示的二次函数的表达式为:y =x 2﹣x ﹣2;(2)如图1,P 1与A 重合,P 2与B 关于l 对称,∴MB=P 2M ,P 1M=CM ,P 1P 2=BC ,∴△P 1MP 2≌△CMB ,∵y =x 2﹣x ﹣2=(x ﹣12)2﹣94,此时P 1(﹣1,0),∵B (0,﹣2),对称轴:直线x =12,∴P 2(1,﹣2);如图2,MP 2∥BC ,且MP 2=BC ,此时,P 1与C 重合,∵MP 2=BC ,MC=MC ,∠P 2MC=∠BP 1M ,∴△BMC ≌△P 2P 1M ,∴P 1(2,0),由点B 向右平移12个单位到M ,可知:点C 向右平移12个单位到P 2,当x =52时,y =(52﹣12)2﹣94=74,∴P 2(52,74);(3)如图3,存在,作法:以BC 为直径作圆交对称轴l 于两点Q 1、Q 2,则∠BQ 1C=∠BQ 2C=90°;过Q 1作DE ⊥y 轴于D ,过C 作CE ⊥DE 于E ,设Q1(12,y)(y>0),易得△BDQ1∽△Q1EC,∴BDQ1E=DQ1EC,∴2+y2−12=12y,y2+2y﹣34=0,解得:y1=−2−√72(舍),y2=−2+√72,∴Q1(12,−2+√72),同理可得:Q2(12,−2−√72);综上所述,点Q的坐标是:(12,−2+√72)或(12,−2−√72).【点评】本题考查了待定系数法求函数解析式、二次函数图象上点的坐标特征、二次函数的性质、圆周角定理以及三角形全等的性质和判定,解题的关键是:(1)利用待定系数法求出函数解析式;(2)利用二次函数的对称性解决三角形全等问题;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,利用二次函数的对称性,再结合相似三角形、方程解决问题是关键.。
2017年铜仁市数学中考说明3
2017年铜仁市初中数学毕业考试中考说明(三)班级 姓名一、选择题(每小题4分,共40分)1、-2的相反数是( )A 、 21B 、21- C 、 2 D 、 -2 2、下列说法正确的是( )A 、623a a a =⋅B 、1055a a a =+C 、 226)3(a a =-D 、 723)(a a a =⋅3、计算)51()5()1(-⨯-÷-的结果是( )A 、-1B 、1C 、251- D 、-25 4、甲型H1N1流感病毒的直径大约是0.0000000081米,该数用科学记数法表示为( )A 、9101.8-⨯B 、 8101.8-⨯C 、91081-⨯D 、71081.0-⨯5、把不等式组⎩⎨⎧>-≥+0101x x 的解集表示在数轴上如图,正确的是( )A B C D6、下列各组二次根式中是同类二次根式的是( )A 、2112与 B 、 2718与 C 、 313与 D 、 5445与 7、在一个不透明的口袋中装有若干个只有颜色不同的秋,如果口袋中只装有3个黄球且摸出黄球的概率为31,那么袋中共有球( )A 、6个B 、7个C 、9个D 、12个8、如图所示的几何体是有几个相同的小正方形搭成的一个几何体,它的主视图是( )A .B .C .D .9、如图,△ABC 内接于圆O ,AD 是圆O 的直径,∠ABC=25度,则∠CAD 的度数是( )A .25°B .60°C .65° D. 75°10、二次函数的图象如图所示,则下列结论中正确的是( )A .a >0B .当x≥1时,y 随x 的增大而增大C .c <0D .当-1<x <3时,y >0二、填空题(每小题4分,共32分)11、方程3)3(+=+x x x 的解是 2第15题图 第16题图 第15题图17、如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB=2m ,CD=6m ,点P 到CD 的距离是2.7m ,则AB 与CD 的间的距离是 m 。
2017年贵州省贵阳市中考数学试卷(含答案解析版)
2017年贵州省贵阳市中考数学试卷一、选择题(每题3分,共30分)1.在一、﹣一、3、﹣2这四个数中,互为相反数的是( )A .1与﹣1B .1与﹣2C .3与﹣2D .﹣1与﹣22.如图,a ∥b ,∠1=70°,那么∠2等于( )A .20°B .35°C .70°D .110°3.生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”整体计划,持续四届的成功举行,已接踵吸引近7000名各国政要及佳宾出席,7000那个数用科学记数法可表示为( )A .70×102B .7×103C .0.7×104D .7×1044.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是( )A .B .C .D .5.某学校在进行防溺水平安教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容别离是:①相互关切;②相互提示;③不要彼此嬉水;④彼此比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是( )A .21B .31C .32D .61 6.假设直线y=﹣x+a 与直线y=x+b 的交点坐标为(2,8),那么a ﹣b 的值为( )A .2B .4C .6D .87.贵阳市“阳光小区”开展“节约用水,从我做起”的活动,一个月后,社区居委会从小区住户中抽取10个家庭与他们上月的用水量进行比较,统计出节水情形如下表: 节水量(m 3)0.3 0.4 0.5 0.6 0.7 家庭数(个) 22 4 1 1 那么这10个家庭的节水量(m 3)的平均数和中位数别离是( )A .0.47和0.5B .0.5和0.5C .0.47和4D .0.5和48.如图,在▱ABCD 中,对角线AC 的垂直平分线别离交AD 、BC 于点E 、F ,连接CE ,假设△CED 的周长为6,那么▱ABCD 的周长为( )A .6B .12C .18D .249.已知二次函数y=ax 2+bx+c (a ≠0)的图象如下图,以下四个结论:①a >0;②c >0;③b 2﹣4ac >0;④﹣ab 2<0,正确的选项是( )A .①②B .②④C .①③D .③④10.如图,四边形ABCD 中,AD ∥BC ,∠ABC+∠DCB=90°,且BC=2AD ,以AB 、BC 、DC 为边向外作正方形,其面积别离为S 1、S 2、S 3,假设S 1=3,S 3=9,那么S 2的值为( )A .12B .18C .24D .48二、填空题(每题4分,共20分)11.关于x 的不等式的解集在数轴上表示如下图,那么该不等式的解集为 .12.方程(x ﹣3)(x ﹣9)=0的根是 .13.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,那么那个正六边形的边心距OM的长为.14.袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一进程,摸了100次后,发觉有30次摸到红球,请你估量那个袋中红球约有个.15.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF 所在直线翻折,取得△A′EF,那么A′C的长的最小值是.三、解答题(本大题共10小题,共100分)16.下面是小颖化简整式的进程,认真阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简进程从第步开始显现错误;(2)对此整式进行化简.17.2017年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖依照公报中的部份数据,制成了下面两幅统计图,请依照图中提供的信息,回答以下问题:(1)a= ,b= ;(结果保留整数)(2)求空气质量品级为“优”在扇形统计图中所占的圆心角的度数;(结果精准到1°)(3)依照了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相较,今年前五个月贵阳市空气质量的优良率是提高仍是降低了?请对改善贵阳市空气质量提一条合理化建.议.18.如图,在△ABC中,∠ACB=90°,点D,E别离是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判定四边形ACEF的形状并说明理由.19.2017年5月25日,中国国际大数据产业展览会在贵阳会展中心揭幕,展览会设了编号为1~6号展厅共6个,小雨一家打算利用两天时刻参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的5个展厅中再随机选择一个,且每一个展厅被选中的机遇均等.(1)第一天,1号展厅没有被选中的概率是 ;(2)利用列表或画树状图的方式求两天中4号展厅被选中的概率.20.贵阳市某消防支队在一幢居民楼前进行消防演习,如下图,消防官兵利用云梯成功救出在C 处的求救者后,发此刻C 处正上方17米的B 处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A 与居民楼的水平距离是15米,且在A 点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD 的度数(结果精准到1°).21.“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举行,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发觉演唱会门票忘带了,现在离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时刻比跑步的时刻少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)若是小张在家取票和寻觅“共享单车”共用了5分钟,他可否在演唱会开始前赶到奥体中心?说明理由. 22.如图,C 、D 是半圆O 上的三等分点,直径AB=4,连接AD 、AC ,DE ⊥AB ,垂足为E ,DE 交AC 于点F .(1)求∠AFE 的度数;(3)求阴影部份的面积(结果保留π和根号).23.如图,直线y=2x+6与反比例函数y=xk (k >0)的图象交于点A (1,m ),与x 轴交于点B ,平行于x 轴的直线y=n (0<n <6)交反比例函数的图象于点M ,交AB 于点N ,连接BM .(1)求m 的值和反比例函数的表达式;(2)直线y=n 沿y 轴方向平移,当n 为何值时,△BMN 的面积最大?24.(1)阅读明白得:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,假设AE是∠BAD的平分线,试判定AB,AD,DC之间的等量关系.解决此问题能够用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,取得AB=FC,从而把AB,AD,DC转化在一个三角形中即可判定.AB、AD、DC之间的等量关系为;(2)问题探讨:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,假设AE是∠BAF的平分线,试探讨AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判定AB、DF、CF之间的数量关系,并证明你的结论.25.咱们明白,通过原点的抛物线能够用y=ax2+bx(a≠0)表示,关于如此的抛物线:(1)当抛物线通过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;(2)当抛物线的极点在直线y=﹣2x上时,求b的值;(3)如图,现有一组这样的抛物线,它们的极点A1、A2、…,A n在直线y=﹣2x上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),别离过每一个极点作x轴的垂线,垂足记为B1、B2,…,B n,以线段A n B n 为边向左作正方形A n B n C n D n,若是这组抛物线中的某一条通过点D n,求现在知足条件的正方形A n B n C n D n的边长.2017年贵州省贵阳市中考数学试卷一、选择题(每题3分,共30分)1.在一、﹣一、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣2【考点】14:相反数.【分析】依照相反数的概念解答即可.【解答】解:1与﹣1互为相反数,应选A.2.如图,a∥b,∠1=70°,那么∠2等于()A.20° B.35° C.70° D.110°【考点】JA:平行线的性质.【分析】先依照平行线的性质得出∠3的度数,再依照对顶角相等求解.【解答】解:∵a∥b,∠1=70°,∴∠3=∠1=70°,∴∠2=∠1=70°,应选:C.3.生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”整体计划,持续四届的成功举行,已接踵吸引近7000名各国政要及佳宾出席,7000那个数用科学记数法可表示为()A.70×102B.7×103C.0.7×104D.7×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确信n的值是易错点,由于7000有4位,因此能够确信n=4﹣1=3.【解答】解:7000=7×103.应选:B.4.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】依照俯视图是从物体的上面看取得的视图解答即可.【解答】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图左侧是一个圆、右边是一个矩形,应选:D.5.某学校在进行防溺水平安教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容别离是:①相互关切;②相互提示;③不要彼此嬉水;④彼此比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是()A.B.C.D.【考点】X4:概率公式.【分析】先找出正确的纸条,再依照概率公式即可得出答案.【解答】解:∵共有6张纸条,其中正确的有①相互关切;②相互提示;③不要彼此嬉水;⑥选择有人看护的游泳池,共4张,∴抽到内容描述正确的纸条的概率是=;应选C.6.假设直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),那么a﹣b的值为()A.2 B.4 C.6 D.8【考点】FF:两条直线相交或平行问题.【分析】把(2,8)代入y=﹣x+a和y=x+b,即可求出a、b,即可求出答案.【解答】解:∵直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),∴8=﹣2+a,8=2+b,解得:a=10,b=6,∴a﹣b=4,应选B.7.贵阳市“阳光小区”开展“节约用水,从我做起”的活动,一个月后,社区居委会从小区住户中抽取10个家庭与他们上月的用水量进行比较,统计出节水情形如下表:节水量(m3)0.3 0.4 0.5 0.6 0.7家庭数(个) 2 2 4 1 1那么这10个家庭的节水量(m3)的平均数和中位数别离是()A.0.47和0.5 B.0.5和0.5 C.0.47和4 D.0.5和4【考点】W4:中位数;W2:加权平均数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:这10个数据的平均数为=0.47,中位数为=0.5,应选:A8.如图,在▱ABCD中,对角线AC的垂直平分线别离交AD、BC于点E、F,连接CE,假设△CED 的周长为6,那么▱ABCD的周长为()A.6 B.12 C.18 D.24【考点】L5:平行四边形的性质;KG:线段垂直平分线的性质.【分析】由平行四边形的性质得出DC=AB,AD=BC,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12;应选:B.9.已知二次函数y=ax2+bx+c(a≠0)的图象如下图,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的选项是()A.①② B.②④ C.①③ D.③④【考点】H4:二次函数图象与系数的关系.【分析】①由抛物线开口向上可得出a>0,结论①正确;②由抛物线与y轴的交点在y轴负半轴可得出c<0,结论②错误;③由抛物线与x轴有两个交点,可得出△=b2﹣4ac>0,结论③正确;④由抛物线的对称轴在y轴右边,可得出﹣>0,结论④错误.综上即可得出结论.【解答】解:①∵抛物线开口向上,∴a>0,结论①正确;②∵抛物线与y轴的交点在y轴负半轴,∴c<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵抛物线的对称轴在y轴右边,∴﹣>0,结论④错误.应选C.10.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积别离为S1、S2、S3,假设S1=3,S3=9,那么S2的值为()A.12 B.18 C.24 D.48【考点】KQ:勾股定理.【分析】依照已知条件取得AB=,CD=3,过A作AE∥CD交BC于E,那么∠AEB=∠DCB,依照平行四边形的性质取得CE=AD,AE=CD=3,由已知条件取得∠BAE=90°,依照勾股定理取得BE==2,于是取得结论.【解答】解:∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD,AE=CD=3,∵∠ABC+∠DCB=90°,∴∠AEB+∠ABC=90°,∴∠BAE=90°,∴BE==2,∵BC=2AD,∴BC=2BE=4,∴S2=(4)2=48,应选D.二、填空题(每题4分,共20分)11.关于x的不等式的解集在数轴上表示如下图,那么该不等式的解集为x≤2 .【考点】C4:在数轴上表示不等式的解集.【分析】观看数轴取得不等式的解集都在2的左侧包括2,依照数轴表示数的方式取得不等式的解集为x≤2.【解答】解:观看数轴可得该不等式的解集为x≤2.故答案为:x≤2.12.方程(x﹣3)(x﹣9)=0的根是x1=3,x2=9 .【考点】A8:解一元二次方程﹣因式分解法.【分析】先把一元二次方程转化成一元一次方程,求出方程的解即可.【解答】解:(x﹣3)(x﹣9)=0,x﹣3=0,x﹣9=0,x1=3,x2=9,故答案为:x1=3,x2=9.13.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,那么那个正六边形的边心距OM的长为3.【考点】MM:正多边形和圆.【分析】依照正六边形的性质求出∠BOM,利用余弦的概念计算即可.【解答】解:连接OB,∵六边形ABCDEF是⊙O内接正六边形,∴∠BOM==30°,∴OM=OB•cos∠BOM=6×=3;故答案为:3.14.袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一进程,摸了100次后,发觉有30次摸到红球,请你估量那个袋中红球约有 3 个.【考点】X8:利用频率估量概率.【分析】第一求出摸到红球的频率,用频率去估量概率即可求出袋中红球约有多少个.【解答】解:∵摸了100次后,发觉有30次摸到红球,∴摸到红球的频率==0.3,∵袋子中有红球、白球共10个,∴那个袋中红球约有10×0.3=3个,故答案为:3.15.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,取得△A′EF,那么A′C的长的最小值是﹣1 .【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】连接CE,依照折叠的性质可知A′E=1,在Rt△BCE中利用勾股定理可求出CE的长度,再利用三角形的三边关系可得出点A′在CE上时,A′C取最小值,最小值为CE﹣A′E=﹣1,此题得解.【解答】解:连接CE,如下图.依照折叠可知:A′E=AE=AB=1.在Rt△BCE中,BE=AB=1,BC=3,∠B=90°,∴CE==.∵CE=,A′E=1,∴点A′在CE上时,A′C取最小值,最小值为CE﹣A′E=﹣1.故答案为:﹣1.三、解答题(本大题共10小题,共100分)16.下面是小颖化简整式的进程,认真阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简进程从第一步开始显现错误;(2)对此整式进行化简.【考点】4A:单项式乘多项式;4C:完全平方公式.【分析】(1)注意去括号的法那么;(2)依照单项式乘以多项式、完全平方公式和去括号的法那么进行计算即可.【解答】解:(1)括号前面是负号,去掉括号应变号,故第一步犯错,故答案为一;(2)解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1.17.2017年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖依照公报中的部份数据,制成了下面两幅统计图,请依照图中提供的信息,回答以下问题:(1)a= 14 ,b= 125 ;(结果保留整数)(2)求空气质量品级为“优”在扇形统计图中所占的圆心角的度数;(结果精准到1°)(3)依照了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相较,今年前五个月贵阳市空气质量的优良率是提高仍是降低了?请对改善贵阳市空气质量提一条合理化建议.【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)依照题意列式计算即可;(2)依照2016年全年总天数为:125+225+14+1+1=366(天),即可取得结论;(3)第一求得2016年贵阳市空气质量优良的优良率为×100%≈95.6%,与今年前5 个月贵阳市空气质量优良率比较即可.【解答】解:(1)a=×3.83%=14,b=﹣14﹣225﹣1﹣1=125;故答案为:14,125;(2)因为2016年全年总天数为:125+225+14+1+1=366(天),那么360°×=123°,因此空气质量品级为“优”在扇形统计图中所占的圆心角的度数为123°;(3)2016年贵阳市空气质量优良的优良率为×100%≈95.6%,∵94%<95.6%,∴与2016年全年的优良相较,今年前5 个月贵阳市空气质量优良率降低了,建议:低碳出行,少开空调等.18.如图,在△ABC中,∠ACB=90°,点D,E别离是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判定四边形ACEF的形状并说明理由.【考点】L9:菱形的判定;KX:三角形中位线定理;L7:平行四边形的判定与性质.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E别离是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.19.2017年5月25日,中国国际大数据产业展览会在贵阳会展中心揭幕,展览会设了编号为1~6号展厅共6个,小雨一家打算利用两天时刻参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的5个展厅中再随机选择一个,且每一个展厅被选中的机遇均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方式求两天中4号展厅被选中的概率.【考点】X6:列表法与树状图法.【分析】(1)依照有6个展厅,编号为1~6号,第一天,抽到1号展厅的概率是,从而得出1号展厅没有被选中的概率;(2)依照题意先列出表格,得出所有可能的数和两天中4号展厅被选中的结果数,然后依照概率公式即可得出答案.【解答】解:(1)依照题意得:第一天,1号展厅没有被选中的概率是:1﹣=;故答案为:;(2)依照题意列表如下:1 2 3 4 5 61 (1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)由表格可知,总共有30种可能的结果,每种结果显现的可能性相同,其中,两天中4号展厅被选中的结果有10种,因此,P(4号展厅被选中)==.20.贵阳市某消防支队在一幢居民楼前进行消防演习,如下图,消防官兵利用云梯成功救出在C处的求救者后,发此刻C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精准到1°).【考点】T8:解直角三角形的应用.【分析】延长AD交BC所在直线于点E.解Rt△ACE,得出CE=AE•tan60°=15米,解Rt△ABE,由tan∠BAE==,得出∠BAE≈71°.【解答】解:延长AD交BC所在直线于点E.由题意,得BC=17米,AE=15米,∠CAE=60°,∠AEB=90°,在Rt△ACE中,tan∠CAE=,∴CE=AE•tan60°=15米.在Rt△ABE中,tan∠BAE==,∴∠BAE≈71°.答:第二次施救时云梯与水平线的夹角∠BAD约为71°.21.“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举行,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发觉演唱会门票忘带了,现在离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时刻比跑步的时刻少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)若是小张在家取票和寻觅“共享单车”共用了5分钟,他可否在演唱会开始前赶到奥体中心?说明理由.【考点】B7:分式方程的应用.【分析】(1)设小张跑步的平均速度为x米/分钟,那么小张骑车的平均速度为1.5x米/分钟,依照时刻=路程÷速度结合小张骑车的时刻比跑步的时刻少用了4分钟,即可得出关于x的分式方程,解之并查验后即可得出结论;(2)依照时刻=路程÷速度求出小张跑步回家的时刻,由骑车与跑步所需时刻之间的关系可得出骑车的时刻,再加上取票和寻觅“共享单车”共用的5分钟即可求出小张赶回奥体中心所需时刻,将其与23进行比较后即可得出结论.【解答】解:(1)设小张跑步的平均速度为x米/分钟,那么小张骑车的平均速度为1.5x米/分钟,依照题意得:﹣=4,解得:x=210,经查验,x=210是原方程组的解.答:小张跑步的平均速度为210米/分钟.(2)小张跑步抵家所需时刻为2520÷210=12(分钟),小张骑车所历时刻为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时刻为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.22.如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE 交AC于点F.(1)求∠AFE的度数;(3)求阴影部份的面积(结果保留π和根号).【考点】MO:扇形面积的计算;M5:圆周角定理.【分析】(1)连接OD,OC,依照已知条件取得∠AOD=∠DOC=∠COB=60°,依照圆周角定理取得∠CAB=30°,于是取得结论;(2)由(1)知,∠AOD=60°,推出△AOD是等边三角形,OA=2,取得DE=,依照扇形和三角形的面积公式即可取得结论.【解答】解:(1)连接OD,OC,∵C、D是半圆O上的三等分点,∴==,∴∠AOD=∠DOC=∠COB=60°,∴∠CAB=30°,∵DE⊥AB,∴∠AEF=90°,∴∠AFE=90°﹣30°=60°;(2)由(1)知,∠AOD=60°,∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2,∵DE⊥AO,∴DE=,∴S阴影=S扇形AOD﹣S△AOD=﹣×2=π﹣.23.如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;【解答】解:(1)∵直线y=2x+6通过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数通过点A(1,8),∴8=,∴k=8,∴反比例函数的解析式为y=.(2)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3时,△BMN的面积最大.24.(1)阅读明白得:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,假设AE是∠BAD的平分线,试判定AB,AD,DC之间的等量关系.解决此问题能够用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,取得AB=FC,从而把AB,AD,DC转化在一个三角形中即可判定.AB、AD、DC之间的等量关系为AD=AB+DC ;(2)问题探讨:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC 的中点,假设AE是∠BAF的平分线,试探讨AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判定AB、DF、CF之间的数量关系,并证明你的结论.【考点】SO:相似形综合题.【分析】(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,依照全等三角形的性质取得AB=FC,依照等腰三角形的判定取得DF=AD,证明结论;(2)延长AE交DF的延长线于点G,利用同(1)相同的方式证明;(3)延长AE交CF的延长线于点G,依照相似三角形的判定定理取得△AEB∽△GEC,依照相似三角形的性质取得AB=CG,计算即可.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).25.咱们明白,通过原点的抛物线能够用y=ax2+bx(a≠0)表示,关于如此的抛物线:(1)当抛物线通过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;(2)当抛物线的极点在直线y=﹣2x上时,求b的值;(3)如图,现有一组这样的抛物线,它们的极点A1、A2、…,A n在直线y=﹣2x上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),别离过每一个极点作x轴的垂线,垂足记为B1、B2,…,B n,以线段A n B n为边向左作正方形A n B n C n D n,若是这组抛物线中的某一条通过点D n,求现在知足条件的正方形A n B n C n D n的边长.【考点】HF:二次函数综合题.【分析】(1)把点(﹣2,0)和(﹣1,3)别离代入y=ax2+bx,取得关于a、b的二元一次方程组,解方程组即可;(2)依照二次函数的性质,得出抛物线y=ax2+bx的极点坐标是(﹣,﹣),把极点坐标代入y=﹣2x,得出﹣=﹣2×(﹣),即可求出b的值;(3)由于这组抛物线的极点A1、A2、…,A n在直线y=﹣2x上,依照(2)的结论可知,b=4或b=0.①当b=0时,不合题意舍去;②当b=﹣4时,抛物线的表达式为y=ax2﹣4x.由题意可知,第n条抛物线的极点为A n(﹣n,2n),那么D n(﹣3n,2n),因为以A n为极点的抛物线不可能通过点D n,设第n+k(k为正整数)条抛物线通过点D n,现在第n+k条抛物线的极点坐标是A n+k(﹣n﹣k,2n+2k),依照﹣=﹣n﹣k,得出a==﹣,即第n+k条抛物线的表达式为y=﹣x2﹣4x,依照D n(﹣3n,2n)在第n+k条抛物线上,取得2n=﹣×(﹣3n)2﹣4×(﹣3n),解得k=n,进而求解即可.【解答】解:(1)∵抛物线y=ax2+bx通过点(﹣2,0)和(﹣1,3),∴,解得,∴抛物线的表达式为y=﹣3x2﹣6x;(2)∵抛物线y=ax2+bx的极点坐标是(﹣,﹣),且该点在直线y=﹣2x上,∴﹣=﹣2×(﹣),∵a≠0,∴﹣b2=4b,解得b1=﹣4,b2=0;(3)这组抛物线的极点A1、A2、…,A n在直线y=﹣2x上,由(2)可知,b=4或b=0.①当b=0时,抛物线的极点在座标原点,不合题意,舍去;②当b=﹣4时,抛物线的表达式为y=ax2﹣4x.由题意可知,第n条抛物线的极点为A n(﹣n,2n),那么D n(﹣3n,2n),∵以A n为极点的抛物线不可能通过点D n,设第n+k(k为正整数)条抛物线通过点D n,现在第n+k条抛物线的极点坐标是A n+k(﹣n﹣k,2n+2k),∴﹣=﹣n﹣k,∴a==﹣,∴第n+k条抛物线的表达式为y=﹣x2﹣4x,∵D n(﹣3n,2n)在第n+k条抛物线上,∴2n=﹣×(﹣3n)2﹣4×(﹣3n),解得k=n,∵n,k为正整数,且n≤12,∴n1=5,n2=10.当n=5时,k=4,n+k=9;当n=10时,k=8,n+k=18>12(舍去),∴D5(﹣15,10),∴正方形的边长是10.。
2017年贵州省各市中考数学试题汇总(6套)
21.计算:(1) ;
(2) .
22.如图,在边长为1的正方形网格中, 的顶点均在格点上.
(1)画出 关于原点成中心对称的 ,并直接写出 各顶点的坐标.
(2)求点 旋转到点 的路径(结果保留 ).
23.端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.
7.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为( )
A.6cmB.7cmC.8cmD.9cm
8.若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是( )
A.0B.﹣1C.2D.﹣3
9.如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为( )
12.在函数 中,自变量x的取值范围.
13.三角形三边长分别为3,4,5,那么最长边上的中线长等于.
14.已知x+y= ,xy= ,则x2y+xy2的值为.
15.若代数式x2+kx+25是一个完全平方式,则k=.
(2)分别画出两种函数的所有图象.(不需列表)
(3)求 与 的交点个数.
2017年贵州省安顺市中考数学试卷
一、选择题(每小题3分,共30分)
1.﹣2017的绝对值是( )
A.2017B.﹣2017C.±2017D.﹣
2.我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( )
2017年贵州省贵阳市中考数学试卷(含答案解析版)
2017年贵州省贵阳市中考数学试卷(含答案解析版)2017年贵州省贵阳市中考数学试卷一、选择题(每小题3分,共30分)1.在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣2 2.如图,a∥b,∠1=70°,则∠2等于()A.20°B.35°C.70°D.110°3.生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”总体规划,持续四届的成功举办,已相继吸引近7000名各国政要及嘉宾出席,7000这个数用科学记数法可表示为()A.70×102 B.7×103C.0.7×104D.7×104 4.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A. B.C.D.5.某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是( )A .21B .31C .32D .61 6.若直线y=﹣x+a 与直线y=x+b 的交点坐标为(2,8),则a ﹣b 的值为( )A .2B .4C .6D .87.贵阳市“阳光小区”开展“节约用水,从我做起”的活动,一个月后,社区居委会从小区住户中抽取10个家庭与他们上月的用水量进行比较,统计出节水情况如下表: 节水量(m 3)0.3 0.4 0.5 0.6 0.7 家庭数(个)2 2 4 1 1 那么这10个家庭的节水量(m 3)的平均数和中位数分别是( )摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有个.15.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是.三、解答题(本大题共10小题,共100分)16.下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第步开始出现错误;(2)对此整式进行化简.17.2017年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:(1)a= ,b= ;(结果保留整数)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建.议.18.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.19.2017年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~6号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的5个展厅中再随机选择一个,且每个展厅被选中的机会均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.20.贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).21.“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.22.如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).k(k>0)23.如图,直线y=2x+6与反比例函数y=x的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?24.(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图②,在四边形ABCD中,AB ∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF 之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.25.我们知道,经过原点的抛物线可以用y=ax2+bx (a≠0)表示,对于这样的抛物线:(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;(2)当抛物线的顶点在直线y=﹣2x上时,求b 的值;(3)如图,现有一组这样的抛物线,它们的顶点A1、A2、…,A n在直线y=﹣2x上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,B n,以线段A n B n为边向左作正方形A n B n C n D n,如果这组抛物线中的某一条经过点D n,求此时满足条件的正方形A n B n C n D n的边长.2017年贵州省贵阳市中考数学试卷一、选择题(每小题3分,共30分)1.在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣2 【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:1与﹣1互为相反数,故选A.2.如图,a∥b,∠1=70°,则∠2等于()A.20°B.35°C.70°D.110°【考点】JA:平行线的性质.【分析】先根据平行线的性质得出∠3的度数,再根据对顶角相等求解.【解答】解:∵a∥b,∠1=70°,∴∠3=∠1=70°,∴∠2=∠1=70°,故选:C.3.生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”总体规划,持续四届的成功举办,已相继吸引近7000名各国政要及嘉宾出席,7000这个数用科学记数法可表示为()A.70×102 B.7×103C.0.7×104D.7×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7000有4位,所以可以确定n=4﹣1=3.【解答】解:7000=7×103.故选:B.4.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A. B.C.D.【考点】U2:简单组合体的三视图.【分析】根据俯视图是从物体的上面看得到的视图解答即可.【解答】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图左边是一个圆、右边是一个矩形,故选:D.5.某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是()A.B.C.D.【考点】X4:概率公式.【分析】先找出正确的纸条,再根据概率公式即可得出答案.【解答】解:∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③不要相互嬉水;⑥选择有人看护的游泳池,共4张,∴抽到内容描述正确的纸条的概率是=;故选C.6.若直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),则a﹣b的值为()A.2 B.4 C.6 D.8【考点】FF:两条直线相交或平行问题.【分析】把(2,8)代入y=﹣x+a和y=x+b,即可求出a、b,即可求出答案.【解答】解:∵直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),∴8=﹣2+a,8=2+b,解得:a=10,b=6,∴a﹣b=4,故选B.7.贵阳市“阳光小区”开展“节约用水,从我做起”的活动,一个月后,社区居委会从小区住户中抽取10个家庭与他们上月的用水量进行比较,统计出节水情况如下表:节水量0.3 0.4 0.5 0.6 0.7 (m3)家庭数2 2 4 1 1 (个)那么这10个家庭的节水量(m3)的平均数和中位数分别是()A.0.47和0.5 B.0.5和0.5 C.0.47和4 D.0.5和4【考点】W4:中位数;W2:加权平均数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:这10个数据的平均数为=0.47,中位数为=0.5,故选:A8.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.24【考点】L5:平行四边形的性质;KG:线段垂直平分线的性质.【分析】由平行四边形的性质得出DC=AB,AD=BC,由线段垂直平分线的性质得出AE=CE,得出△CDE 的周长=AD+DC,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12;故选:B.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④【考点】H4:二次函数图象与系数的关系.【分析】①由抛物线开口向上可得出a>0,结论①正确;②由抛物线与y轴的交点在y轴负半轴可得出c<0,结论②错误;③由抛物线与x轴有两个交点,可得出△=b2﹣4ac>0,结论③正确;④由抛物线的对称轴在y轴右侧,可得出﹣>0,结论④错误.综上即可得出结论.【解答】解:①∵抛物线开口向上,∴a>0,结论①正确;②∵抛物线与y轴的交点在y轴负半轴,∴c<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵抛物线的对称轴在y轴右侧,∴﹣>0,结论④错误.故选C.10.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48【考点】KQ:勾股定理.【分析】根据已知条件得到AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=3,由已知条件得到∠BAE=90°,根据勾股定理得到BE==2,于是得到结论.【解答】解:∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD,AE=CD=3,∵∠ABC+∠DCB=90°,∴∠AEB+∠ABC=90°,∴∠BAE=90°,∴BE==2,∵BC=2AD,∴BC=2BE=4,∴S 2=(4)2=48,故选D.二、填空题(每小题4分,共20分)11.关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集为x≤2 .【考点】C4:在数轴上表示不等式的解集.【分析】观察数轴得到不等式的解集都在2的左侧包括2,根据数轴表示数的方法得到不等式的解集为x≤2.【解答】解:观察数轴可得该不等式的解集为x ≤2.故答案为:x≤2.12.方程(x﹣3)(x﹣9)=0的根是x1=3,x2=9 .【考点】A8:解一元二次方程﹣因式分解法.【分析】先把一元二次方程转化成一元一次方程,求出方程的解即可.【解答】解:(x﹣3)(x﹣9)=0,x﹣3=0,x﹣9=0,x1=3,x2=9,故答案为:x1=3,x2=9.13.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为3.【考点】MM:正多边形和圆.【分析】根据正六边形的性质求出∠BOM,利用余弦的定义计算即可.【解答】解:连接OB,∵六边形ABCDEF是⊙O内接正六边形,∴∠BOM==30°,∴OM=OB•cos∠BOM=6×=3;故答案为:3.14.袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有 3 个.【考点】X8:利用频率估计概率.【分析】首先求出摸到红球的频率,用频率去估计概率即可求出袋中红球约有多少个.【解答】解:∵摸了100次后,发现有30次摸到红球,∴摸到红球的频率==0.3,∵袋子中有红球、白球共10个,∴这个袋中红球约有10×0.3=3个,故答案为:3.15.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是﹣1 .【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】连接CE,根据折叠的性质可知A′E=1,在Rt△BCE中利用勾股定理可求出CE的长度,再利用三角形的三边关系可得出点A′在CE上时,A′C取最小值,最小值为CE﹣A′E=﹣1,此题得解.【解答】解:连接CE,如图所示.根据折叠可知:A′E=AE=AB=1.在Rt△BCE中,BE=AB=1,BC=3,∠B=90°,∴CE==.∵CE=,A′E=1,∴点A′在CE上时,A′C取最小值,最小值为CE﹣A′E=﹣1.故答案为:﹣1.三、解答题(本大题共10小题,共100分)16.下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第一步开始出现错误;(2)对此整式进行化简.【考点】4A:单项式乘多项式;4C:完全平方公式.【分析】(1)注意去括号的法则;(2)根据单项式乘以多项式、完全平方公式以及去括号的法则进行计算即可.【解答】解:(1)括号前面是负号,去掉括号应变号,故第一步出错,故答案为一;(2)解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1.17.2017年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:(1)a= 14 ,b= 125 ;(结果保留整数)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议.【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)根据题意列式计算即可;(2)根据2016年全年总天数为:125+225+14+1+1=366(天),即可得到结论;(3)首先求得2016年贵阳市空气质量优良的优良率为×100%≈95.6%,与今年前5 个月贵阳市空气质量优良率比较即可.【解答】解:(1)a=×3.83%=14,b=﹣14﹣225﹣1﹣1=125;故答案为:14,125;(2)因为2016年全年总天数为:125+225+14+1+1=366(天),则360°×=123°,所以空气质量等级为“优”在扇形统计图中所占的圆心角的度数为123°;(3)2016年贵阳市空气质量优良的优良率为×100%≈95.6%,∵94%<95.6%,∴与2016年全年的优良相比,今年前5 个月贵阳市空气质量优良率降低了,建议:低碳出行,少开空调等.18.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【考点】L9:菱形的判定;KX:三角形中位线定理;L7:平行四边形的判定与性质.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF 是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.19.2017年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~6号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的5个展厅中再随机选择一个,且每个展厅被选中的机会均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.【考点】X6:列表法与树状图法.【分析】(1)根据有6个展厅,编号为1~6号,第一天,抽到1号展厅的概率是,从而得出1号展厅没有被选中的概率;(2)根据题意先列出表格,得出所有可能的数和两天中4号展厅被选中的结果数,然后根据概率公式即可得出答案.【解答】解:(1)根据题意得:第一天,1号展厅没有被选中的概率是:1﹣=;故答案为:;(2)根据题意列表如下:1 2 3 4 5 61 (1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,4)(3,5)(3,6)4 (4,(4,(4,(4,(4,1)2)3)5)6)5 (5,1)(5,2)(5,3)(5,4)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)由表格可知,总共有30种可能的结果,每种结果出现的可能性相同,其中,两天中4号展厅被选中的结果有10种,所以,P(4号展厅被选中)==.20.贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).【考点】T8:解直角三角形的应用.【分析】延长AD交BC所在直线于点E.解Rt△ACE,得出CE=AE•tan60°=15米,解Rt△ABE,由tan∠BAE==,得出∠BAE≈71°.【解答】解:延长AD交BC所在直线于点E.由题意,得BC=17米,AE=15米,∠CAE=60°,∠AEB=90°,在Rt△ACE中,tan∠CAE=,∴CE=AE•tan60°=15米.在Rt△ABE中,tan∠BAE==,∴∠BAE≈71°.答:第二次施救时云梯与水平线的夹角∠BAD约为71°.21.“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.【考点】B7:分式方程的应用.【分析】(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)根据时间=路程÷速度求出小张跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的5分钟即可求出小张赶回奥体中心所需时间,将其与23进行比较后即可得出结论.【解答】解:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据题意得:﹣=4,解得:x=210,经检验,x=210是原方程组的解.答:小张跑步的平均速度为210米/分钟.(2)小张跑步到家所需时间为2520÷210=12(分钟),小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.22.如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).【考点】MO:扇形面积的计算;M5:圆周角定理.【分析】(1)连接OD,OC,根据已知条件得到∠AOD=∠DOC=∠COB=60°,根据圆周角定理得到∠CAB=30°,于是得到结论;(2)由(1)知,∠AOD=60°,推出△AOD是等边三角形,OA=2,得到DE=,根据扇形和三角形的面积公式即可得到结论.【解答】解:(1)连接OD,OC,∵C、D是半圆O上的三等分点,∴==,∴∠AOD=∠DOC=∠COB=60°,∴∠CAB=30°,∵DE⊥AB,∴∠AEF=90°,∴∠AFE=90°﹣30°=60°;(2)由(1)知,∠AOD=60°,∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2,∵DE⊥AO,∴DE=,∴S 阴影=S扇形AOD﹣S△AOD=﹣×2=π﹣.23.如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴8=,∴k=8,∴反比例函数的解析式为y=.(2)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3时,△BMN的面积最大.24.(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为AD=AB+DC ;(2)问题探究:如图②,在四边形ABCD中,AB ∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF 之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【考点】SO:相似形综合题.【分析】(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB∽△GEC,根据相似三角形的性质得到AB=CG,计算即可.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).25.我们知道,经过原点的抛物线可以用y=ax2+bx (a≠0)表示,对于这样的抛物线:(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;(2)当抛物线的顶点在直线y=﹣2x上时,求b 的值;(3)如图,现有一组这样的抛物线,它们的顶点A1、A2、…,A n在直线y=﹣2x上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,B n,以线段A n B n为边向左作正方形A n B n C n D n,如果这组抛物线中的某一条经过点D n,求此时满足条件的正方形A n B n C n D n的边长.【考点】HF:二次函数综合题.【分析】(1)把点(﹣2,0)和(﹣1,3)分别代入y=ax2+bx,得到关于a、b的二元一次方程组,解方程组即可;(2)根据二次函数的性质,得出抛物线y=ax2+bx 的顶点坐标是(﹣,﹣),把顶点坐标代入y=﹣2x,得出﹣=﹣2×(﹣),即可求出b的值;(3)由于这组抛物线的顶点A1、A2、…,A n在直线y=﹣2x上,根据(2)的结论可知,b=4或b=0.①当b=0时,不合题意舍去;②当b=﹣4时,抛物线的表达式为y=ax2﹣4x.由题意可知,第n条抛物线的顶点为A n(﹣n,2n),则D n(﹣3n,2n),因为以A n为顶点的抛物线不可能经过点D n,设第n+k(k为正整数)条抛物线经过点D n,此时第n+k 条抛物线的顶点坐标是A n+k(﹣n﹣k,2n+2k),根据﹣=﹣n﹣k,得出a==﹣,即第n+k条抛物线的表达式为y=﹣x2﹣4x,根据D n(﹣3n,2n)在第n+k条抛物线上,得到2n=﹣×(﹣3n)2﹣4×(﹣3n),解得k=n,进而求解即可.【解答】解:(1)∵抛物线y=ax2+bx经过点(﹣2,0)和(﹣1,3),∴,解得,∴抛物线的表达式为y=﹣3x2﹣6x;(2)∵抛物线y=ax2+bx的顶点坐标是(﹣,﹣),且该点在直线y=﹣2x上,∴﹣=﹣2×(﹣),∵a≠0,∴﹣b2=4b,解得b1=﹣4,b2=0;(3)这组抛物线的顶点A1、A2、…,A n在直线y=﹣2x上,由(2)可知,b=4或b=0.①当b=0时,抛物线的顶点在坐标原点,不合题意,舍去;②当b=﹣4时,抛物线的表达式为y=ax2﹣4x.由题意可知,第n条抛物线的顶点为A n(﹣n,2n),则D n(﹣3n,2n),∵以A n为顶点的抛物线不可能经过点D n,设第n+k (k为正整数)条抛物线经过点D n,此时第n+k 条抛物线的顶点坐标是A n+k(﹣n﹣k,2n+2k),∴﹣=﹣n﹣k,∴a==﹣,∴第n+k条抛物线的表达式为y=﹣x2﹣4x,∵D n(﹣3n,2n)在第n+k条抛物线上,∴2n=﹣×(﹣3n)2﹣4×(﹣3n),解得k=n,∵n,k为正整数,且n≤12,∴n1=5,n2=10.当n=5时,k=4,n+k=9;当n=10时,k=8,n+k=18>12(舍去),∴D5(﹣15,10),∴正方形的边长是10.。
2017年贵州省铜仁市中考真题及答案
铜仁市2018年初中毕业生学业<升学)统一考试数 学 试 题卷I一、选择题:<本大题共10个小题,每小题4分,共40分)本题每小题均有A 、B 、C 、D 四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上.ue70uBOf2K 1.-2的相反数是< ) A. B. - C. -2 D. 22.下列四个图形中,既是轴对称图形又是中心对称图形的有< )A .4个B .3个C .2个D .1个3.某中学足球队的18名队员的年龄情况如下表:则这些队员年龄的众数和中位数分别是< )A .15,15B .15,15.5C .15,16D .16,152题图4. 铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5M 栽1棵,则树苗缺21棵;如果每隔6M 栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是< )ue70uBOf2K A.B. C.D.5.如图,正方形ABOC 的边长为2,反比例函数的图象经过点A ,则k 的值是< )A .2B .-2C .4D .-46.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm,母线长为30cm 的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为< )ue70uBOf2K A .270πcm2 B .540πcm2C .135πcm2D .216πcm2ue70uBOf2K 7.如图,在ΔABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则5题图 7题图线段MN的长为( >ue70uBOf2KA. 6B. 7C. 8D. 98.如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是< )A.∠E=2∠KB. BC=2HIC. 六边形ABCDEF的周8题图长=六边形GHIJKL的周长D. S六边形ABCDEF=2S六边形GHIJKL9.从权威部门获悉,中国海洋面积是299.7万平方公里,约为陆地面积的三分之一, 299.7万平方公里用科学计数法表示为< )平方公里<保留两位有效数字)ue70uBOf2KA .B .C .D .10.如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……则第⑩个图形中平行四边形的个数是< )ue70uBOf2KA.54B.110C.19D.109ue70uBOf2K卷II二、填空题:<本大题共8个小题,每小题4分,共32分)11.=_________;12.当___________时,二次根式有意义;13.一个多边形每一个外角都等于,则这个多边形的边数是______;14.已知圆O1和圆O2外切,圆心距为10cm,圆O1的半径为3cm,则圆O2的半径为 ______;ue70uBOf2K15.照下图所示的操作步骤,若输入x的值为5,则输出的值为_______________;球3个,这些球除颜色不同外没有任何区别,从中任意摸出一个球,则摸到黑球的概率为_______________;ue70uBOf2K17.一元二次方程的解为____________;18.以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的最小值是__________.ue70uBOf2K三、解答题:<本题共4个题,19题每小题5分,第20、21、22每题10分,共40分,要有解题的主要过程)ue70uBOf2K 19.<1)化简:<2)某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示,请在原图上利用尺规作图作出音乐喷泉M 的位置.<要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)ue70uBOf2K20.如图,E 、F 是四边形ABCD 的对角线BD 上的两点,AE ∥CF ,AE=CF ,BE=DF.求证: ΔADE ≌ΔCBF21.某市对参加2018年中考的50000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方ue70uBOf2K <1)在频数分布表中,a 的值为__________,b 的值为__________,并将频数分布直方图补充完整;ue70uBOf2K <2)甲同学说“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围内?<3)若视力在4.9以上<含4.9)均属正常,则视力正常的人数占被统计人数的百分比是________,并根据上述信息估计全市初中毕业生中视力正常的学生有多少人?ue70uBOf2K22.如图,定义:在直角三角形ABC中,锐角的邻边与对边的比叫做角的余切,记作ctan , 即ctan =,根据上述角的余切定义,ue70uBOf2K 解下列问题:<1)ctan30◦= ;<2)如图,已知tanA=,其中∠A 为锐角,试求ctanA的值.四、<本题满分12分)21题图频率23.如图,已知⊙O的直径AB与弦CD相交于点E,AB⊥CD,⊙O的切线BF与弦AD的延长线相交于点F. ue70uBOf2K<1)求证:CD∥ BF;<2)若⊙O的半径为5, cos∠BCD=,求线段AD的长.23题图五、<本题满分12分)24.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B 种纪念品6件,需要800元.ue70uBOf2K<1)求购进A、B两种纪念品每件各需多少元?<2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?ue70uBOf2K<3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第<2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?ue70uBOf2K六、<本题满分14分)25.如图已知:直线交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C<1,0)三点.ue70uBOf2K<1)求抛物线的解读式;<2)若点D的坐标为<-1,0),在直线上有一点P,使ΔABO与ΔADP相似,求出点P的坐标;<3)在<2)的条件下,在x轴下方的抛物线上,是否存在点E,使ΔADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.ue70uBOf2K铜仁市2018年初中毕业生学业<升学)统一考试数学参考答案及评分标准一、选择题(每小题4分>:5678910D A D B C D二、填空题<每小题4分):11.2018 12. 13.9 14.7cm15.97 16. 17. 18.三、解答题19.<1)<5分)解:原式=………………………………1分=…………………. ……………….……3分= -1 (5)分<2)<5分)作图:连结AB………………………………………………………1分作出线段AB的垂直平分线……………………………………………3分在矩形中标出点M的位置…………………………………………… 5分< 必须保留尺规作图的痕迹,痕迹不全少一处扣1分,不用直尺连结AB不给分,无圆规痕迹不给分.)20.<10分)证明:∵AE∥CF∴∠AED=∠CFB…………………… 3分∵DF=BE∴DF+EF=BE+EF 即DE=BF………6分在△ADE和△CBF中…………………9分∴△ADE≌△CBF<SAS)……… 10分21.<10分)解:<1)60;0.05;补全图形……………….. 3分<2)4.6x<4.9 ……………………….…. 6分<3)35%……………………………………7分(人>………… 10分22.<10分)解:(1> ……………………. 5分<2),∴……………. . 10分四、23.<12分)<1)证明:∵BF是圆O的切线,AB是圆O的直径∴BF⊥AB…………………………………………3分∵CD⊥AB∴CD∥BF ………………………………….…… 6分<2)解:∵AB是圆O的直径∴∠ADB=90º………………………………… 7分∵圆O的半径5∴AB=10 ……………………………………… 8分∵∠BAD=∠BCD …………………………… 10分∴cos∠BAD= cos∠BCD==∴=8∴AD=8…………………………………………12分五、24.<12分)解:<1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元, 根据题意得方程组ue70uBOf2K…………………………………………………………2分解方程组得∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元…………4分<2)设该商店购进A种纪念品x个,则购进B种纪念品有<100—x)个∴………………………………………6分解得50≤x≤53 …………………………………………………………7分∵ x 为正整数,∴共有4种进货方案………………………………………………8分<3)因为B种纪念品利润较高,故B种数量越多总利润越高,因此选择购A种50件,B种50件.…………………………………………………10分总利润=<元)∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元………………………………………………………………………12分六、25.<14分)解<1):由题意得,A<3,0),B<0,3)∵抛物线经过A、B、C三点,∴把A<3,0),B<0,3),C<1,0)三点分别代入得方程组……3分解得:∴抛物线的解读式为………………5分<2)由题意可得:△ABO为等腰三角形,如图所示,若△ABO∽△AP1D,则∴DP1=AD=4 ,∴P1…………………………………………………………7分若△ABO∽△ADP2 ,过点P2作P2 M⊥x轴于M,AD=4,∵△ABO为等腰三角形, ∴△ADP2是等腰三角形,由三线合一可得:DM=AM=2= P2M,即点M与点C重合∴P2<1,2)……………………10分ue70uBOf2K<3)如图设点E ,则①当P1(-1,4>时,S四边形AP1CE=S三角形ACP1+S三角形ACE= ………………………11分∴∴∵点E在x轴下方∴代入得:,即∵△=(-4>2-4×7=-12<0∴此方程无解……………………………………………………………12分②当P2<1,2)时,S四边形AP2CE=S三角形ACP2+S三角形ACE =∴∴∵点E在x轴下方∴代入得:即,∵△=(-4>2-4×5=-4<0∴此方程无解综上所述,在x轴下方的抛物线上不存在这样的点E.……………14分申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
2017年贵州省贵阳市中考数学试卷(含答案解析)
2017年贵州省贵阳市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣22.(3分)如图,a∥b,∠1=70°,则∠2等于()A.20°B.35°C.70°D.110°3.(3分)生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”总体规划,持续四届的成功举办,已相继吸引近7000名各国政要及嘉宾出席,7000这个数用科学记数法可表示为()A.70×102 B.7×103C.0.7×104D.7×1044.(3分)如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A.B.C.D.5.(3分)某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是()A.B.C.D.6.(3分)若直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),则a﹣b的值为()A.2 B.4 C.6 D.87.(3分)贵阳市“阳光小区”开展“节约用水,从我做起”的活动,一个月后,社区居委会从小区住户中抽取10个家庭与他们上月的用水量进行比较,统计出节水情况如下表:那么这10个家庭的节水量(m 3)的平均数和中位数分别是( )A .0.47和0.5B .0.5和0.5C .0.47和4D .0.5和48.(3分)如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .249.(3分)已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,以下四个结论:①a >0;②c >0;③b 2﹣4ac >0;④﹣<0,正确的是( )A .①②B .②④C .①③D .③④10.(3分)如图,四边形ABCD 中,AD ∥BC ,∠ABC +∠DCB=90°,且BC=2AD ,以AB 、BC 、DC 为边向外作正方形,其面积分别为S 1、S 2、S 3,若S 1=3,S 3=9,则S 2的值为( )A .12B .18C .24D .48二、填空题(每小题4分,共20分)11.(4分)关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集为.12.(4分)方程(x﹣3)(x﹣9)=0的根是.13.(4分)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为.14.(4分)袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有个.15.(4分)如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是.三、解答题(本大题共10小题,共100分)16.(8分)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第步开始出现错误;(2)对此整式进行化简.17.(10分)2017年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:(1)a=,b=;(结果保留整数)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议.18.(10分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE 并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.19.(10分)2017年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~6号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的5个展厅中再随机选择一个,且每个展厅被选中的机会均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.20.(8分)贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).21.(10分)“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.22.(10分)如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).23.(10分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x 轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?24.(12分)(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE 是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC 的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.25.(12分)我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线:(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;(2)当抛物线的顶点在直线y=﹣2x上时,求b的值;(3)如图,现有一组这样的抛物线,它们的顶点A1、A2、…,A n在直线y=﹣2x上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,B n,以线段A n B n为边向左作正方形A n B n C n D n,如果这组抛物线中的某一条经过点D n,求此时满足条件的正方形A n B n C n D n的边长.2017年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•贵阳)在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣2【分析】根据相反数的概念解答即可.【解答】解:1与﹣1互为相反数,故选A.【点评】本题考查了相反数的概念:只有符号不同的两个数叫做互为相反数.2.(3分)(2017•贵阳)如图,a∥b,∠1=70°,则∠2等于()A.20°B.35°C.70°D.110°【分析】先根据平行线的性质得出∠3的度数,再根据对顶角相等求解.【解答】解:∵a∥b,∠1=70°,∴∠3=∠1=70°,∴∠2=∠1=70°,故选:C.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等.3.(3分)(2017•贵阳)生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”总体规划,持续四届的成功举办,已相继吸引近7000名各国政要及嘉宾出席,7000这个数用科学记数法可表示为()A.70×102 B.7×103C.0.7×104D.7×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7000有4位,所以可以确定n=4﹣1=3.【解答】解:7000=7×103.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(2017•贵阳)如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A.B.C.D.【分析】根据俯视图是从物体的上面看得到的视图解答即可.【解答】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图左边是一个圆、右边是一个矩形,故选:D.【点评】本题考查的是几何体的三视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图.5.(3分)(2017•贵阳)某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是()A.B.C.D.【分析】先找出正确的纸条,再根据概率公式即可得出答案.【解答】解:∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③不要相互嬉水;⑥选择有人看护的游泳池,共4张,∴抽到内容描述正确的纸条的概率是=;故选C.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.6.(3分)(2017•贵阳)若直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),则a﹣b的值为()A.2 B.4 C.6 D.8【分析】把(2,8)代入y=﹣x+a和y=x+b,即可求出a、b,即可求出答案.【解答】解:∵直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),∴8=﹣2+a,8=2+b,解得:a=10,b=6,∴a﹣b=4,故选B.【点评】本题考查了两直线的交点问题,能求出a、b的值是解此题的关键.7.(3分)(2017•贵阳)贵阳市“阳光小区”开展“节约用水,从我做起”的活动,一个月后,社区居委会从小区住户中抽取10个家庭与他们上月的用水量进行比较,统计出节水情况如下表:那么这10个家庭的节水量(m3)的平均数和中位数分别是()A.0.47和0.5 B.0.5和0.5 C.0.47和4 D.0.5和4【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:这10个数据的平均数为=0.47,中位数为=0.5,故选:A【点评】本题考查了中位数的定义:把一组数据按从小到大(或从大到小)排列,最中间那个数(或最中间两个数的平均数)叫这组数据的中位数.8.(3分)(2017•贵阳)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.24【分析】由平行四边形的性质得出DC=AB,AD=BC,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12;故选:B.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.9.(3分)(2017•贵阳)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④【分析】①由抛物线开口向上可得出a>0,结论①正确;②由抛物线与y轴的交点在y轴负半轴可得出c<0,结论②错误;③由抛物线与x轴有两个交点,可得出△=b2﹣4ac>0,结论③正确;④由抛物线的对称轴在y轴右侧,可得出﹣>0,结论④错误.综上即可得出结论.【解答】解:①∵抛物线开口向上,∴a>0,结论①正确;②∵抛物线与y轴的交点在y轴负半轴,∴c<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵抛物线的对称轴在y轴右侧,∴﹣>0,结论④错误.【点评】本题考查了二次函数图象与系数的关系以及抛物线与x轴的交点,观察函数图象逐一分析四条结论的正误是解题的关键.10.(3分)(2017•贵阳)如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48【分析】根据已知条件得到AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=3,由已知条件得到∠BAE=90°,根据勾股定理得到BE==2,于是得到结论.【解答】解:∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD,AE=CD=3,∵∠ABC+∠DCB=90°,∴∠AEB+∠ABC=90°,∴∠BAE=90°,∴BE==2,∵BC=2AD,∴BC=2BE=4,∴S2=(4)2=48,【点评】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.二、填空题(每小题4分,共20分)11.(4分)(2017•贵阳)关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集为x≤2.【分析】观察数轴得到不等式的解集都在2的左侧包括2,根据数轴表示数的方法得到不等式的解集为x≤2.【解答】解:观察数轴可得该不等式的解集为x≤2.故答案为:x≤2.【点评】本题考查了在数轴表示不等式的解集,运用数形结合的思想是解答此题的关键.12.(4分)(2017•贵阳)方程(x﹣3)(x﹣9)=0的根是x1=3,x2=9.【分析】先把一元二次方程转化成一元一次方程,求出方程的解即可.【解答】解:(x﹣3)(x﹣9)=0,x﹣3=0,x﹣9=0,x1=3,x2=9,故答案为:x1=3,x2=9.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.13.(4分)(2017•贵阳)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为3.【分析】根据正六边形的性质求出∠BOM,利用余弦的定义计算即可.【解答】解:连接OB,∵六边形ABCDEF是⊙O内接正六边形,∴∠BOM==30°,∴OM=OB•cos∠BOM=6×=3;故答案为:3.【点评】本题考查的是正多边形和圆的有关计算,掌握正多边形的中心角的计算公式、熟记余弦的概念是解题的关键.14.(4分)(2017•贵阳)袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有3个.【分析】首先求出摸到红球的频率,用频率去估计概率即可求出袋中红球约有多少个.【解答】解:∵摸了100次后,发现有30次摸到红球,∴摸到红球的频率==0.3,∵袋子中有红球、白球共10个,∴这个袋中红球约有10×0.3=3个,故答案为:3.【点评】此题考查利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.15.(4分)(2017•贵阳)如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是﹣1.【分析】连接CE,根据折叠的性质可知A′E=1,在Rt△BCE中利用勾股定理可求出CE的长度,再利用三角形的三边关系可得出点A′在CE上时,A′C取最小值,最小值为CE﹣A′E=﹣1,此题得解.【解答】解:连接CE,如图所示.根据折叠可知:A′E=AE=AB=1.在Rt△BCE中,BE=AB=1,BC=3,∠B=90°,∴CE==.∵CE=,A′E=1,∴点A′在CE上时,A′C取最小值,最小值为CE﹣A′E=﹣1.故答案为:﹣1.【点评】本题考查了翻折变换、矩形的性质、勾股定理以及三角形的三边关系,利用三角形的三边关系可得出点A′在CE上时,A′C取最小值是解题的关键.三、解答题(本大题共10小题,共100分)16.(8分)(2017•贵阳)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第一步开始出现错误;(2)对此整式进行化简.【分析】(1)注意去括号的法则;(2)根据单项式乘以多项式、完全平方公式以及去括号的法则进行计算即可.【解答】解:(1)括号前面是负号,去掉括号应变号,故第一步出错,故答案为一;(2)解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1.【点评】本题考查了单项式乘以多项式以及完全平方公式,掌握运算法则是解题的关键.17.(10分)(2017•贵阳)2017年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:(1)a=14,b=125;(结果保留整数)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议.【分析】(1)根据题意列式计算即可;(2)根据2016年全年总天数为:125+225+14+1+1=366(天),即可得到结论;(3)首先求得2016年贵阳市空气质量优良的优良率为×100%≈95.6%,与今年前5 个月贵阳市空气质量优良率比较即可.【解答】解:(1)a=×3.83%=14,b=﹣14﹣225﹣1﹣1=125;故答案为:14,125;(2)因为2016年全年总天数为:125+225+14+1+1=366(天),则360°×=123°,所以空气质量等级为“优”在扇形统计图中所占的圆心角的度数为123°;(3)2016年贵阳市空气质量优良的优良率为×100%≈95.6%,∵94%<95.6%,∴与2016年全年的优良相比,今年前5 个月贵阳市空气质量优良率降低了,建议:低碳出行,少开空调等.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.18.(10分)(2017•贵阳)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【点评】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.19.(10分)(2017•贵阳)2017年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~6号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的5个展厅中再随机选择一个,且每个展厅被选中的机会均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.【分析】(1)根据有6个展厅,编号为1~6号,第一天,抽到1号展厅的概率是,从而得出1号展厅没有被选中的概率;(2)根据题意先列出表格,得出所有可能的数和两天中4号展厅被选中的结果数,然后根据概率公式即可得出答案.【解答】解:(1)根据题意得:第一天,1号展厅没有被选中的概率是:1﹣=;故答案为:;(2)根据题意列表如下:由表格可知,总共有30种可能的结果,每种结果出现的可能性相同,其中,两天中4号展厅被选中的结果有10种,所以,P==.(4号展厅被选中)【点评】此题考查的是用列表法或树状图法求概率的知识.列表法或树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.(8分)(2017•贵阳)贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).【分析】延长AD交BC所在直线于点E.解Rt△ACE,得出CE=AE•tan60°=15米,解Rt△ABE,由tan∠BAE==,得出∠BAE≈71°.【解答】解:延长AD交BC所在直线于点E.由题意,得BC=17米,AE=15米,∠CAE=60°,∠AEB=90°,在Rt△ACE中,tan∠CAE=,∴CE=AE•tan60°=15米.在Rt△ABE中,tan∠BAE==,∴∠BAE≈71°.答:第二次施救时云梯与水平线的夹角∠BAD约为71°.【点评】本题考查了解直角三角形的应用,首先构造直角三角形,再运用三角函数的定义解题,构造出直角三角形是解题的关键.21.(10分)(2017•贵阳)“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.【分析】(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)根据时间=路程÷速度求出小张跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的5分钟即可求出小张赶回奥体中心所需时间,将其与23进行比较后即可得出结论.【解答】解:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据题意得:﹣=4,解得:x=210,经检验,x=210是原方程组的解.答:小张跑步的平均速度为210米/分钟.(2)小张跑步到家所需时间为2520÷210=12(分钟),小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.【点评】本题考查了分式方程的应用,解题的关键是:(1)根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,列出关于x的分式方程;(2)根据数量关系,列式计算.22.(10分)(2017•贵阳)如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).【分析】(1)连接OD,OC,根据已知条件得到∠AOD=∠DOC=∠COB=60°,根据圆周角定理得到∠CAB=30°,于是得到结论;(2)由(1)知,∠AOD=60°,推出△AOD是等边三角形,OA=2,得到DE=,根据扇形和三角形的面积公式即可得到结论.【解答】解:(1)连接OD,OC,∵C、D是半圆O上的三等分点,∴==,∴∠AOD=∠DOC=∠COB=60°,∴∠CAB=30°,∵DE⊥AB,∴∠AEF=90°,∴∠AFE=90°﹣30°=60°;(2)由(1)知,∠AOD=60°,∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2,∵DE⊥AO,∴DE=,∴S阴影=S扇形AOD﹣S△AOD=﹣×2=π﹣.【点评】本题考查了扇形的面积,等边三角形的判定和性质,正确的作出辅助线是解题的关键.23.(10分)(2017•贵阳)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴8=,∴k=8,∴反比例函数的解析式为y=.(2)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴S△BMN∴n=3时,△BMN的面积最大.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考常考题型.24.(12分)(2017•贵阳)(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为AD=AB+DC;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC 的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【分析】(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB∽△GEC,根据相似三角形的性质得到AB=CG,计算即可.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、解答题 23.(12 分)某商店以 20 元/千克的单价新进一批商品,经调查发现,在一段时 间内,销售量 y(千克)与销售单价 x(元/千克)之间为一次函数关系,如图所 示. (1)求 y 与 x 的函数表达式; (2)要使销售利润达到 800 元,销售单价应定为每千克 多少元?
五、解答题 24.(12 分)如图,已知在 Rt△ABC 中,∠ABC=90°,以 AB 为直径的⊙O 与 AC 交于点 D,点 E 是 BC 的中点,连接 BD,DE. (1)若 = ,求 sinC; (2)求证:DE 是⊙O 的切线.
(1)请把条形统计图补充完整;
(2)扇形统计图中 A 等所在的扇形的圆心角等于
度;
(3)若九年级有 1000 名学生,请你用此样本估计体育测试众 60 分以上(包括 60 分)的学生人数.
22.(10 分)如图,已知点 E,F 分别是平行四边形 ABCD 对角线 BD 所在直线上 的两点,连接 AE,CF,请你添加一个条件,使得△ABE≌△CDF,并证明.
A.2017 B.﹣2017 C.
D.﹣
【考点】15:绝对值. 【分析】根据绝对值定义去掉这个绝对值的符号. 【解答】解:﹣2017 的绝对值是 2007. 故选:A. 【点评】此题考查了绝对值,解题关键是掌握绝对值的规律.一个正数的绝对 值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0.
2017 年贵州省铜仁市中考数学试卷
(满分:150 分,时间:120 分钟) 一、选择题(本大题共 10 小题,每小题 4 分,共 40 分) 1.(4 分)﹣2017 的绝对值是( )
A.2017 B.﹣2017 C.
D.﹣
2.(4 分)一组数据 1,3,4,2,2 的众数是( )
A.1 B.2 C.3 D.4
4×12﹣12①
4×22﹣32②
4×32﹣52③
根据上述规律,则第 2017 个式子的值是( )
A.8064 B.8065 C.8066 D.8067
二、填空题(本大题共 8 小题,每小题 4 分,共 32 分)
11.(4 分)5 的相反数是
.
12.(4 分)一组数据 2,3,2,5,4 的中位数是
处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得 AB=2 米,BC=18 米,
则旗杆 CD 的高度是
米.
17.(4 分)从﹣1,0,1,2 这四个数中,任取两个不同的数作为点的坐标,则
该点在第一象限的概率为
.
18.(4 分)如图,在 Rt△ABC 中,∠C=90°,点 D 是 AB 的中点,ED⊥AB 交 AC
A.6.7×104 B.6.7×105 C.6.7×106 D.67×104
6.(4 分)如图,△ABC 沿着 BC 方向平移得到△A′B′C′,点 P 是直线 AA′上任意
一点,若△ABC,△PB′C′的面积分别为 S1,S2,则下
列关
系正确的是( )
A.S1>S2 B.S1<S2 C.S1=S2 D.S1=2S2 7.(4 分)一个多边形的每个内角都等于 144°,则这个多边形的边数是( )
六、解答题 25.(14 分)如图,抛物线 y=x2+bx+c 经过点 A(﹣1,0),B(0,﹣2),并与 x 轴交于点 C,点 M 是抛物线对称轴 l 上任意一点(点 M,B,C 三点不在同一直 线上). (1)求该抛物线所表示的二次函数的表达式;
(2)在抛物线上找出两点 P1,P2,使得△MP1P2 与△MCB 全等,并求出点 P1, P2 的坐标;
3.(4 分)单项式 2xy3 的次数是( )
A.1 B.2 C.3 D.4
4.(4 分)如图,已知直线 a∥b,c∥b,∠1=60°,则∠2 的度数是( )
A.30° B.60° C.120°D.61°
5.(4 分)世界文化遗产长城总长约 670000 米,将数 670000 用科学记数法可表 示为( )
21.(10 分)某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学 生的体育测试成绩的样本,按 A,B,C(A 等:成绩大于或等于 80 分;B 等: 成绩大于或等于 60 分且小于 80 分;C 等:成绩小于 60 分)三个等级进行统计, 并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:
.
13.(4 分)方程 ﹣ =0 的解为 x=
.
14.(4 分)已知一元二次方程 x2﹣3x+k=0 有两个相等的实数根,则 k=
.
15.(4 分)已知菱形的两条对角线的长分别是 5cm,6cm,则菱形的面积是
cm2.
16.(4 分)如图,身高为 1.8 米的某学生想测量学校旗杆的高度,当他站在 B
(3)在对称轴上是否存在点 Q,使得∠BQC 为直角,若存在,作出点 Q(用尺 规作图,保留作图痕迹),并求出点 Q 的坐标.
2017 年贵州省铜仁市中考数学试卷
参考答案与试题解析
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分) 1.(4 分)(2017•铜仁市)﹣2017 的绝对值是( )
2.(4 分)(2017•铜仁市)一组数据 1,3,4,2,2 的众数是( ) A.1 B.2 C.3 D.4 【考点】W5:众数. 【分析】根据众数的定义即可得到结论. 【解答】解:∵在数据 1,3,4,2,2 中, 2 出现的次数最多, ∴这组数据 1,3,4,2,2 的众数是 2,
A.8 B.9 C.10 D.11
8.(4 分)把不等式组
的解集表示在数轴上如下图,正确的是( )
A.
B
C.
D.
9.(4 分)如图,已知点 A 在反比例函数 y= 上,AC⊥x 轴,垂足为点 C,且△ AOC 的面积为 4,则此反比例函数的表达式为( )
A.y= B.y= C.y= D.y=﹣
10.(4 分)观察下列关于自然数的式子:
于点 E.设∠A=α,且 tanα= ,则 tan2α=
.
三、解答题 19.(10 分)(1)计算:( )﹣1﹣4sin60°﹣( ﹣1.732)0+
(2)先化简,再求值:
• ,其中 x=2.
20.(10 分)如图,已知:∠BAC=∠EAD,AB=20.4,AC=48,AE=17,AD=40. 求证:△ABC∽△AED.