高中数学 1.7.1《定积分在几何中的应用》教案 新人教A版选修2-2

合集下载

数学1.7.1《定积分在几何中的应用》教案1(新人教A版选修2-2)

数学1.7.1《定积分在几何中的应用》教案1(新人教A版选修2-2)

1.7定积分的简单应用一、教学目标知识与技能:进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法;让学生深刻理解定积分的几何意义以及微积分的基本定理;初步掌握利用定积分求曲边梯形的几种常见题型及方法;体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。

过程与方法:通过实例体会用微积分基本定理求定积分的方法情感、态度与价值观:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。

二、教学重点与难点重点 曲边梯形面积的求法难点 定积分求体积以及在物理中应用三、教学过程 1、复习1、求曲边梯形的思想方法是什么?2、定积分的几何意义是什么?3、微积分基本定理是什么? 2、定积分的应用(一)利用定积分求平面图形的面积例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积. 分析:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。

解:201y xx x y x⎧=⎪⇒==⎨=⎪⎩及,所以两曲线的交点为(0,0)、 (1,1),面积S=1120xdx x dx =-⎰⎰,所以⎰120S =(x -x )dx 32130233x x ⎡⎤=-⎢⎥⎣⎦=13【点评】在直角坐标系下平面图形的面积的四个步骤:1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。

巩固练习 计算由曲线36y x x =-和2y x =所围成的图形的面积.例2.计算由直线4y x =-,曲线2y x =以及x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =-与曲线2y x =的交点的横坐标,直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图1. 7一2 阴影部分的面积.解方程组2,4y x y x ⎧=⎪⎨=-⎪⎩ 得直线4y x =-与曲线2y x =的交点的坐标为(8,4) .y=x 2y x= OxyxxO y=x 2 AB C 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2488442[2(4)]xdx xdx x dx =+--⎰⎰⎰334828220442222140||(4)|3323x x x =++-= 由上面的例题可以发现,在利用定积分求平面图形的面积时,一般要先画出它的草图,再借助图形直观确定出被积函数以及积分的上、下限.例3.求曲线2sin [0,]3 y x x π=∈与直线20,3x x π==x 轴所围成的图形面积。

数学1.7.1《定积分在几何中的应用》教案2(新人教A版选修2-2)

数学1.7.1《定积分在几何中的应用》教案2(新人教A版选修2-2)

1.7 定积分的简单应用(共两课时)一、感悟要点1.知识与技能能利用定积分求曲边梯形的面积,以及解决物理中的变速直线运动的路程,变力做功问题。

2.过程与方法通过利用定积分求曲边梯形的面积,体会定积分的基本思想,学会其方法,通过定积分在物理中应用,学会用数学工具解决物理问题,进一步体会定积分的价值。

3.情感态度与价值观通过本节学习,进一步感受数学的应用价值,提高数学的应用意识,坚定学好数学的信心。

二、学习重难点1.重点:应用定积分解决平面图形的面积、变速直线运动的路程和变力做功等问题,使学生在解决问题的过程中体验定积分的价值。

2.难点:将实际问题化归为定积分的问题。

三、温习旧知1.定积分的几何意义和微积分基本定理分别是什么?2.曲边梯形的面积表达式是什么?3.匀变速直线运动中,s与v,t间的关系是什么?4.如果物体在变力F(x)的作用下做直线运动,那么如何计算变力F(x)所做的功W 呢?四、 例题精析例1 计算由两条抛物线2y x =和2y x =所围成的图形的面积.解析:【教学札记】合作探究:由例1总结求由两条曲线围成的平面图形面积的步骤是什么?(1) 画出图形;(2) 确定图形范围,通过解方程组求出交点的横坐标,定出积分上下限;(3) 确定被积函数,特别是要分清被积函数的上下位置;(4) 写出平面图形的面积的定积分表达式;(5) 运用微积分基本公式计算定积分,求出平面图形的面积。

例2 计算由曲线y =4y x =-以及x 轴所围成的图形的面积.解析:【教学札记】探究:这道题还有其它解法吗?解法二:将所求平面图形的面积看成一个曲边梯形与一个三角形的面积之差:解法三:将所求平面图形的面积看成位于y 轴右边的一个梯形与一个曲边梯形的面积之差,因此可以取y 为积分变量,还需把函数y=x-4变形为x=y-4,,函数y =22y x =.变式训练:计算有曲线22y x =和直线y=x-4所围成的图形面积.作业:58P 练习,60P A 组第1题.例3 一辆汽车的速度-时间曲线如图所示,求汽车在这1min 行驶的路程。

高中数学新课标人教A版选修2-2《1.7.1定积分在几何中的应用》课件

高中数学新课标人教A版选修2-2《1.7.1定积分在几何中的应用》课件

课前探究学习
课堂讲练互第动二十六页,编辑活于星页期规一:范点训十九练分。
解 法一 设椭圆2x52 +1y62 =1 围成的面积为 S,椭圆在第一象限内 围成图形的面积为 S1,则由对称性得 S=4S1, 在第一象限内椭圆2x52 +1y62 =1 的方程可化为 y=45 25-x2,椭圆在第一象限内围成的面积为
课前探究学习
课堂讲练互第动十九页,编辑于活星期页一规:点范十训九分练。
[规范解答] (1)设 f(x)=ax2+bx+c(a≠0), 则 f′(x)=2ax+b. 又 f′(x)=2x+2,所以 a=1,b=2. ∴f(x)=x2+2x+c. 又方程 f(x)=0 有两个相等实根, 即 x2+2x+c=0 有两个相等实根, 所以 Δ=4-4c=0,即 c=1. 故 f(x)=x2+2x+1.
交点为(-3,5)和(2,0),设所求图形面积为 S,根据图形可得
课前探究学习
课堂讲练互第动九页,编辑于星活期一页:规点 十范九训分。练
不分割型图形面积的求解步骤: (1)准确求出曲线的交点横坐标; (2)在坐标系中画出由曲线围成的平面区域; (3)根据图形写出能表示平面区域面积的定积分; (4)计算得所求面积.
法二 设椭圆2x52 +1y62 =1 围成的面积为 S,椭圆在第一象限内围成 图形的面积为 S1,则由对称性得 S=4S1, 令 x=5 cos t,则当 x=0 时,t=π2; 当 x=5 时,t=0 在第一象限内椭圆2x52 +1y62 =1 的方程可化为 y=45 25-x2=4 sin t
课前探究学习
课堂讲练互第动十二页,编辑于活星期页一规:点范十训九分练。
题型二 分割型图形面积的求解
【例 2】 求由曲线 y= x,y=2-x,y=-13x 所围成图形的面积. [思路探索] 可先求出曲线与直线交点的横坐标,确定积分区 间,然后分段利用公式求解. 解 法一 画出草图,如图所示.

高中数学 教案定积分及其应用学案 新人教A版选修2-2 学案

高中数学 教案定积分及其应用学案 新人教A版选修2-2 学案

某某省某某市肥城市第三中学高中数学教案定积分及其应用学案新人教A版选修2-2yy记作f(x)dx 。

即f(x)dx =)(1lim i ni n f n ab ξ∑=∞→-。

其中)(x f 称为被积函数,dx x f )(称为被积式,x 称为积分变量,],[b a 称为积分区间,b a ,分别称为 积分上限和积分下限。

2定积分的几何意义:①若0)(≥x f ,则积分⎰badxx f )(表示如图所示的曲边梯形的面积,即S dx x f ba=⎰)(②若0)(≤x f ,则积分⎰ba dx x f )(表示如图所示的曲边梯形面积的负值,即S dx x f ba-=⎰)(③一般情况下,定积分⎰b adxx f )(表示介于x 轴、曲线()f x及b x a x ==,之间的曲边梯形面积的代数和,其中在x 轴上方的面积等于该区间上的积分值,在x 轴上方的面积等于该区间上的积分值的相反数, 3定积分的性质。

(1)⎰badx x kf )(=k ⎰ba dxx f )(。

(2)[]dx x fx f ba)()(21±⎰=。

(3)dx x f ba⎰)(= 。

4微积分基本定理:一般地,若f(x)为在][b a ,上的连续函数,且有)()(x f x F =',那么⎰=badx x f )(,这个结论叫做微积分基本定理,又叫牛顿—莱布尼兹公式,可记作⎰=badx x f )(= 。

常见求定积分的公式新知得到知识1n B.1n C.1n D.3lim n n →∞由落体的速,则落体从到0t t =所走路程为B.gtC.2012gtD.2014gt答案: 234-125+2l 4n四.精讲点拨: 例1:计算下列定积分:(1)dx x ⎰402sin π(2)。

dx x e x⎰⎪⎭⎫ ⎝⎛+2121(3)dx x ⎰-2123答案:(1)418-π(2)21e 4+ln2-21e 2 (3)21例2利用定积分求图形的面积:求由抛物线,12-=x y 直线x=2,y=0围成的图形的面积。

高中数学 1.7.1定积分在几何中应用 新人教A版选修2-2

高中数学 1.7.1定积分在几何中应用 新人教A版选修2-2

2
8
0 2 2xdx 2 ( 2x x 4)dx
4 3 2 x 3 2|0 2 (2 3 2 x 3 2 1 2 x 2 pp t课4 件x )|8 2 1 3 6 6 3 4 2 3 6 1 8
三、小结
如何求在直角坐标系下平面图形的面积? 1.作图象 2.求交点 3.用定积分表示所求的面积 4.用牛顿-莱布尼茨公式求定积分
的图形的面积.
解 两曲线的交点
y x3 6x
y
x2
( 0 ,0 )( , 2 ,4 )( ,3 ,9 ).
y x2
0
A12
(x36xx2)dx
3
A20
(x2x36x)dx
yx36x
于是所求面积 AA 1A 2
A 02(x36xx2)dx03(x2x36x)dx
253 . 12
说明:
y x2
b
a f2(x)dx
b
a f1(x)dx
b
a [ f2(x) f1(x)]dx
ppt课件
例 1计 算 由 两 条 抛 物 线 y2x和 yx2所 围 成 的
图 形 的 面 积 .

y y
x x2
x0及x
1
两曲线的交点 (0,0) (1,1)
S=S曲 边 梯 形 OABC-S曲 边 梯 形 OABD
1.7.1 定积分在几何中的应用
ppt课件
2.微积分基本定理---------牛顿-莱布尼茨公式
a bf(x ) d x a b F '(x ) d x F (x )|b a F ( b ) F (a )
牛顿-莱布尼茨公式沟通了导数与定积分之间的关系. 3.利用牛顿-莱布尼茨公式求定积分的关键是

高中数学 专题1.7.1 定积分在几何中的应用教案 新人教A版选修22

高中数学 专题1.7.1 定积分在几何中的应用教案 新人教A版选修22

定积分在几何中的应用【教学目标】1.会应用定积分求两条或多条曲线围成的图形的面积. 【教法指导】本节学习重点:会应用定积分求两条或多条曲线围成的图形的面积. 本节学习难点:会应用定积分求两条或多条曲线围成的图形的面积. 【教学过程】 ☆探索新知☆探究点一 求不分割型图形的面积思考 怎样利用定积分求不分割型图形的面积?答 求由曲线围成的面积,要根据图形,确定积分上下限,用定积分来表示面积,然后计算定积分即可. 例1 计算由曲线y 2=x ,y =x 2所围图形的面积S .因此,所求图形的面积为S =S 曲边梯形OABC —S 曲边梯形OABD=ʃ10x d x -ʃ10x 2d x =23x 32|10-13x 3|10=23-13=13.反思与感悟 求由曲线围成图形面积的一般步骤: (1)根据题意画出图形;(2)找出范围,确定积分上、下限; (3)确定被积函数; (4)将面积用定积分表示;(5)用微积分基本定理计算定积分,求出结果.跟踪训练1 求由抛物线y =x 2-4与直线y =-x +2所围成图形的面积.解 由⎩⎪⎨⎪⎧ y =x 2-4y =-x +2得⎩⎪⎨⎪⎧ x =-3y =5或⎩⎪⎨⎪⎧x =2y =0,所以直线y =-x +2与抛物线y =x 2-4的交点为(-3,5)和(2,0),设所求图形面积为S , 根据图形可得S =ʃ2-3(-x +2)d x -ʃ2-3(x 2-4)d x =(2x -12x 2)|2-3-(13x 3-4x )|2-3=252-(-253)=1256.探究点二 分割型图形面积的求解思考 由两条或两条以上的曲线围成的较为复杂的图形,在不同的区间位于上方和下方的曲线不同时,这种图形的面积如何求呢?例2 计算由直线y =x -4,曲线y =2x 以及x 轴所围图形的面积S . 解 方法一 作出直线y =x -4,曲线y =2x 的草图.解方程组⎩⎨⎧y =2x ,y =x -4得直线y =x -4与曲线y =2x 交点的坐标为(8,4). 直线y =x -4与x 轴的交点为(4,0). 因此,所求图形的面积为S =S 1+S 2=ʃ42x d x +[]ʃ 842x d x -ʃ 84x -4d x=22332x |40+22332x |84-12(x -4)2|84=403.方法二 把y 看成积分变量,则S =ʃ40(y +4-12y 2)d y =(12y 2+4y -16y 3)|4=403. 反思与感悟 两条或两条以上的曲线围成的图形,一定要确定图形范围,通过解方程组求出交点的坐标,定出积分上、下限,若积分变量选x 运算较繁锁,则积分变量可选y ,同时要更换积分上、下限. 跟踪训练2 求由曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.解 画出图形,如图所示.得交点分别为(1,1),(0,0),(3,-1), 所以S =ʃ10[x -(-13x )]d x +ʃ31[(2-x )-(-13x )]d x=ʃ10(x +13x )d x +ʃ31(2-x +13x )d x=(23x 32+16x 2)|10+(2x -12x 2+16x 2)|31 =23+16+(2x -13x 2)|31 =56+6-13×9-2+13 =136. 探究点三 定积分的综合应用例3 在曲线y =x 2(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴所围成的面积为112,试求:切点A 的坐标以及在切点A 处的切线方程. 解 如图,设切点A (x 0,y 0),其中x 0≠0,由y ′=2x ,过点A 的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x -x 20,令y =0,得x =x 02,即C (x 02,0),=12(x 0-x 02)·x 20=14x 30. ∴S =13x 30-14x 30=112x 30=112.∴x 0=1,从而切点为A (1,1), 切线方程为2x -y -1=0.反思与感悟 本题综合考查了导数的意义以及定积分等知识,运用待定系数法,先设出切点的坐标,利用导数的几何意义,建立了切线方程,然后利用定积分以及平面几何的性质求出所围成的平面图形的面积,根据条件建立方程求解,从而使问题得以解决.跟踪训练3 如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.解 抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1, 所以,抛物线与x 轴所围图形的面积S =ʃ1(x -x 2)d x =⎝ ⎛⎭⎪⎫x 22-13x 3|10=16. 又⎩⎪⎨⎪⎧y =x -x 2,y =kx ,又知S =16,所以(1-k )3=12,于是k =1- 312=1-342.☆课堂提高☆1.用S 表示图中阴影部分的面积,则S 的值是( )A.f(x)dxB.f(x)dxC.f(x)dx+f(x)dx D.f(x)dx-f(x)dx【答案】D【解析】 因为在区间[a ,b]上f(x)<0,所以在区间[a ,b]上对应图形的面积为-f(x)dx ,所以阴影部分的面积为:S=f (x)dx-f(x)dx.2.已知a =(cosx ,sinx),b =(cosx ,-sinx),f(x)=a ·b ,则直线x=0,x=,y=0以及曲线y=f(x)围成平面图形的面积为( ) A.B.C.D.【答案】C由定积分的几何意义,直线x=0,x=,y=0以及曲线y=f(x)围成平面图形的面积为cos2xdx-cos2xdx=sin2x|4π-sin2x|34ππ=-+=.3.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( ) A.43 B .2 C.83 D.1623 【答案】 C【解析】 ∵抛物线方程为x 2=4y ,∴其焦点坐标为F (0,1),故直线l 的方程为y =1. 如图所示,可知l 与C 围成的图形的面积等于矩形OABF 的面积与函数y =14x 2的图象和x 轴正半轴及直线x =2围成的图形的面积的差的2倍(图中阴影部分的2倍), 即S =4-2ʃ20x 24d x =⎪⎪⎪4-2·x 31220=4-43=83.4.直线x=-1,x=1,y=0与曲线y=sinx 所围成的平面图形的面积表示为( ) A.sinxdx B.sinxdx C.2sinxdxD.2sinxdx【答案】D【解析】由于y=sinx ,x∈[-1,1]为奇函数,当x∈[-1,0]时,sinx≤0;当x∈(0,1]时,sinx>0.由定积分的几何意义,直线x=-1,x=1,y=0与曲线y=sinx 所围成的平面图形的面积为|si nx|dx=2sinxdx.5.求由抛物线y =-x 2+4x -3及其在点A (1,0)和点B (3,0)处的切线所围成图形的面积.6.求曲线y=x2和直线x=0,x=1,y=t2,t∈(0,1)所围成的图形(如图阴影部分)的面积的最小值.【解析】由定积分与微积分基本定理,得S=S1+S2=(t2-x2)dx+(x2-t2)dx=+=t3-t3+-t2-t3+t3=t3-t2+,t∈(0,1),所以S′=4t2-2t,所以t=或t=0(舍去).当t变化时,S′,S变化情况如下表:tS′- 0 +S ↘极小值↗所以当t=时,S最小,且S min=.。

数学:1.7.1《定积分在几何中的应用》教案(新人教A版选修2-2)

数学:1.7.1《定积分在几何中的应用》教案(新人教A版选修2-2)

1.7.1 定积分在几何中的应用一、教学目标:1. 了解定积分的几何意义及微积分的基本定理.2.掌握利用定积分求曲边图形的面积二、教学重点与难点:1. 定积分的概念及几何意义2. 定积分的基本性质及运算的应用 三教学过程: (一)练习1.若11(2)a x x+⎰d x = 3 + ln 2,则a 的值为( D ) A .6 B .4 C .3 D .22.设2(01)()2(12)x x f x x x ⎧≤<=⎨-<≤⎩,则1()a f x ⎰d x 等于( C ) A .34B .45C .56D .不存在 3.求函数dx a ax x a f )46()(1022⎰++=的最小值 解:∵102231022)22()46(x a ax x dx a ax x ++=++⎰223221200(64)(22)|22x ax a dx x a a x a a ++=++=++⎰.∴22()22(1)1f a a a a =++=++. ∴当a = – 1时f (a )有最小值1.4.求定分3-⎰x .5.怎样用定积分表示:x =0,x =1,y =0及f (x )=x 2所围成图形的面积?6. 你能说说定积分的几何意义吗?例如⎰ba dx x f )(的几何意义是什么?表示x 轴,曲线)(x f y =及直线a x =,b x =之间的各部分面积的代数和, 在x 轴上方的面积取正,在x 轴下方的面积取负二、新课例1.教材P56面的例1例2.教材P57面的例2。

练习:例3.求曲线y=sinx ,x ]32,0[π∈与直线x=0 ,32π=x ,x 轴所围成图形的面积。

练习:1.如右图,阴影部分面积为( B )A .[()()]b a f x g x -⎰d xB .[()()][()()]c b a c g x f x dx f x g x -+-⎰⎰d xC .[()()][()()]b b a c f x g x dx g x f x -+-⎰⎰d xD .[()()]b a g x f x +⎰d x2.求抛物线y = – x 2 + 4x – 3及其在点A (1,0)和点B (3,0。

最新人教版高中数学选修2-2第一章《定积分在几何中的应用》示范教案

最新人教版高中数学选修2-2第一章《定积分在几何中的应用》示范教案

1.7 定积分的简单应用 1.7.1 定积分在几何中的应用教材分析这一节的教学要求就是让学生在充分认识导数与积分的概念、计算、几何意义的基础上,掌握用积分解决实际问题的基本思想和方法.在学习过程中,了解导数与积分的工具性作用,从而进一步认识到数学知识的实用价值以及数学在实际应用中的强大作用.在整个高中数学体系中,这部分内容也是学生在高等学校进一步学习数学的基础.课时分配 1课时.教学目标 知识与技能目标应用定积分解决平面图形的面积问题. 过程与方法目标1.能够初步掌握应用定积分解决实际问题的基本思想和方法; 2.强化数形结合和化归思想的思维意识. 情感、态度与价值观1.激发学生的求知欲,培养学生对学习的浓厚兴趣;2.培养学生严谨的科学思维习惯和方法;培养学生勇于探索和实践的精神; 3.培养将数学知识应用于生活的意识. 重点难点 重点:应用定积分解决平面图形的面积,使学生在解决问题的过程中体验定积分的价值. 难点:如何恰当选择积分变量和确定被积函数.教学过程引入新课提出问题1:(1)求曲边梯形的方法;(2)定积分的几何意义;(3)微积分基本定理. 活动设计:以教师提问学生回答的形式回顾前面的知识. 设计意图这些知识是本节课定积分应用的理论基础.提出问题2:通过学习前面的知识,我们知道了定积分的哪些应用? 活动设计:让学生观察国家大剧院的图片,使其明确大剧院边缘的玻璃形状属于曲边梯形,要计算其面积可以通过计算曲边梯形的面积实现.设计意图通过具体的实例,将定积分与现实生活相联系,激发学生的学习兴趣. 探究新知提出问题1:计算由抛物线y =x 2在[0,1]上与x 轴在第一象限围成图形的面积S 1;计算由抛物线y 2=x 在[0,1]上与x 轴在第一象限围成图形的面积S 2.活动设计:让学生自己动手画图,找出所围图形,思考解决问题的方法.活动成果:通过画出图象,根据定积分的几何意义,可知面积S 1=∫10x 2dx =x 33|10=13,面积S 2=∫10xdx =2x 323|10=23. 设计意图这个问题把课本例1所求面积进行适当的分割,降低难度的同时,突出应用定积分解决平面图形面积问题的重要性,突破如何把平面图形的面积问题化归为定积分问题.提出问题2:计算由两条抛物线y 2=x 和y =x 2所围成图形的面积S.活动设计:先让学生独立思考,然后小组交流,教师巡视指导,并注意与学生交流. 活动成果:两条抛物线所围成图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到.先由方程组⎩⎨⎧y =xy =x 2⇒ x =0或x =1,得到两曲线的交点为(0,0)、(1,1),再由定积分的几何意义可知,面积S =∫10xdx -∫10x 2dx ,所以S =∫10(x -x 2)dx =23x 32|10-x 33|10=13.提出问题3:求两曲线围成的平面图形面积的一般步骤是什么?活动设计:学生独立思考,自由发言.活动结果:1.作出示意图(找到所求平面图形); 2.求交点坐标(确定积分上、下限); 3.确定被积函数; 4.列式求解. 设计意图让学生明确求两曲线围成的平面图形面积的方法和步骤. 理解新知提出问题1:计算由直线y =x -4,曲线y =2x 以及x 轴所围图形的面积S.先画出图象,你发现此题与例1有什么不同?活动设计:学生独立思考.活动成果:此题需把所求图形的面积分成两部分来求. 设计意图此题是例1的深入和扩展,让学生独立思考,培养他们解决问题的能力. 提出问题2:你能仿照例1,自己完成这个问题的解答吗?活动设计:学生独立完成,再将一学生的做题步骤进行投影,然后共同分析.活动成果:作出直线y =x -4,曲线y =2x 的草图,所求面积为图中阴影部分的面积.解方程组⎩⎨⎧y =2x ,y =x -4,得直线y =x -4与曲线y =2x 的交点的坐标为(8,4).直线y =x -4与x 轴的交点坐标为(4,0).因此,所求图形的面积为S 1+S 2=∫402xdx +[∫842xdx -∫84(x -4)dx]=223 32x |40+223 32x |84-12(x -4)2|84=403. 设计意图学生运用新知识解决问题,可以获得极大的成就感,既激发了学习兴趣,又加强了学生应用数学知识的意识.提出问题3:还有其他解法吗?活动设计:分小组讨论,让学生交流自己的想法.活动成果:方法一:将所求平面图形面积看成一个曲边梯形与一个三角形的面积之差.S =∫802xdx -12×4×4. 方法二:将所求平面图形的面积看成位于y 轴右边的一个梯形与一个曲边梯形的面积之差,因此取y 为积分变量,还需把函数y =x -4变形为x =y +4,函数y =2x 变形为x =y 22.S=12×(4+8)×4-∫40y 22dy. 设计意图考虑到学生思维方式的不同,所以对问题解决的方法可能会有所不同.有可能直接面积相减,也有可能把所求面积分两部分相加.学生通过体会不同方法的区别及联系,加强对重难点的理解.提出问题4:根据对以上问题的分析,你能再详细叙述求曲边梯形的面积的步骤,以及解决此类问题应注意什么吗?活动设计:让学生独立思考,再找几个学生叙述,然后教师补充总结. 活动成果:具体步骤:(1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其范围,从而确定积分的上、下限; (3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和.①由一条曲线y =f(x)(其中f(x)>0)与直线x =a ,x =b(a<b)以及x 轴所围成的曲边梯形的面积:S =∫b a f(x)dx ;②由一条曲线y =f(x)(其中f(x)<0)与直线x =a ,x =b(a<b)以及x 轴所围成的曲边梯形的面积:S =|∫b a f(x)dx|=-∫ba f(x)dx ;③由两条曲线y =f(x),y =g(x)(f(x)≥g(x))与直线x =a ,x =b(a<b)所围成的曲边梯形的面积:S =∫b a |f(x)-g(x)|dx.注意的问题:选择最优化的积分变量;根据图形特点选择最优化的解题方法. 设计意图让学生进一步理解定积分的几何意义,同时体会如何用定积分解决同类问题. 运用新知例1计算由y =x -4与y 2=2x 所围图形的面积. 解:作出草图,所求面积为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y =x -4,y 2=2x 得到交点坐标为(2,-2)及(8,4).∴S =12×(2+8)×6-∫4-2(12y 2)dy =18. 例2计算由曲线y =x ,y =2-x ,y =-13x 围成的图形面积.解:由⎩⎨⎧y =x ,y =2-x ,⎩⎪⎨⎪⎧y =x ,y =-13x ,⎩⎪⎨⎪⎧y =2-x ,y =-13x , 得交点坐标为(1,1),(0,0),(3,-1).∴S =∫10[x -(-13x)]dx +∫31[(2-x)-(-13x)]dx =∫10(x +13x)dx +∫31[(2-x)+13x]dx =(23x 23+16x 2)|10+(2x -12x 2+16x 2)|31 =23+16+(2x -13x 2)|31=56+(6-13×9-2+13)=136. 巩固练习计算由曲线y =sinx ,y =cosx 及x =0,x =π2所围平面图形的面积.解:法一:S =S 1+S 2,其中S 1=∫π40(cosx -sinx)dx =∫π40cosxdx -∫π40sinxdx =sinx|π40+cosx|π4=sin π4-sin0+cosπ4-cos0=2-1,S 2=∫π2π4(sinx -cosx)dx =∫π2π4sinxdx -∫π2π4cosxdx =-cosx|π2π4-sinx|π2π4=-cos π2+cosπ4-sin π2+sin π4=2-1,所以S =S 1+S 2=2(2-1).法二:根据图形的对称性,S =2(S 1-S 2),其中 S 1=∫π20sinxdx =-cosx|π20=-cos π2+cos0=1,S 2=2∫π40sinxdx =-2cosx|π40=-2cos π4+2cos0=2-2,所以S =2(S 1-S 2)=2[1-(2-2)]=2(2-1).变练演编有一直线与抛物线y =x 2相交于A 、B 两点,AB 与抛物线所围成图形的面积恒等于43,求线段AB 的中点P 的轨迹方程.解:设抛物线y =x 2上的两点为A(a ,a 2),B(b ,b 2),不妨设b>a ,直线AB 与抛物线所围成图形的面积为S ,则S =∫b a [(a +b)x -ab -x 2]dx =(a +b 2x 2-abx -13x 3)|b a =16(b -a)3. 当S =43,即16(b -a)3=43时,有b -a =2.(*)设AB 的中点P(x ,y),则x =a +b 2,y =a 2+b 22.由(*)得⎩⎪⎨⎪⎧x =a +1,y =a 2+2a +2,消去a 得y =x 2+1.这就是所求的P 点的轨迹方程. 达标检测1.由y =sinx ,y =cosx ,x =0,x =π所围成的图形面积可表示为( )A .∫π0(sinx -cosx)dx B .∫π40(cosx -sinx)dx +∫ππ4(sinx -cosx)dxC .∫π0(cosx -sinx)dxD .∫π20(cosx -sinx)dx +∫ππ2(sinx -cosx)dx2.求直线y =2x +3与抛物线y =x 2所围成的图形面积. 3.求曲线y =e x 与直线x =0,y =e 所围成的图形面积.4.求曲线y =sinx(x ∈[0,2π3])与直线x =0,x =2π3,x 轴所围成的图形面积.答案:1.B 2.323;3.1;4.32.课堂小结1.知识收获:用定积分求曲边梯形面积问题:(1)画图确定图形范围;(2)确定被积函数和积分区间;(3)写出平面图形面积的积分表达式,计算定积分,求出面积.2.方法收获:归纳方法、数形结合方法. 3.思维收获:数形结合的思想. 布置作业课本习题1.7A 组第1题,B 组第1题. 补充练习 基础练习1.曲线y =x 2与直线y =x +2所围成的图形的面积等于__________.2.由y =sinx ,y =cosx ,x =0,x =π4所围成的图形面积等于__________.3.求由抛物线y =-x 2+4x -3及其在点M(0,-3)和N(3,0)处的两条切线所围成的图形的面积.拓展练习 4.在曲线y =x 2(x ≥0)上的某点A 处作一切线使之与曲线以及x 轴所围成图形的面积为112,试求:切点A 的坐标以及切线方程. 5.一桥拱的形状为抛物线,已知该抛物线拱的高为3,宽为10,求抛物线拱的面积S. 答案:1.922.2-13.9.4.如图,由题意,可设切点坐标为A(x 0,x 20),则切线方程为y =2x 0x -x 20,且切线与x轴的交点坐标为B(x 02,0).则由题意可知有S =∫x 020x 2dx +∫x 0x 02(x 2-2x 0x +x 20)dx =x 3012=112,则x 0=1,所以所求切点坐标与切线方程分别为A(1,1),y =2x -1.5.20.设计说明通过具体实例创设问题情境,让学生体验到数学在现实生活中无处不在,从而激发他们的学习热情,引导他们积极主动地参与到学习中来;通过问题探究的形式,形成教师与学生的互动,同时提高学生分析问题、解决问题的能力;教师对学生主要出现的不同解法进行投影分析,并进行比较,学生体会这些方法的区别及联系,突破本节课的重难点.巩固练习,目的在于巩固解题方法,由一题多解锻炼学生的发散思维.备课资料 平地上有一条小沟,沟沿是两条长100 m 的平行线段,沟宽AB 为2 m ,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为O ,对称轴与地面垂直,沟深1.5 m ,沟中水深1 m.(1)求水面宽.(2)如图所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,则沟中的水有多少立方米?解:(1)如图建立直角坐标系xOy ,设抛物线方程为y =ax 2(a>0),则由抛物线过点B(1,32),可得a =32.于是抛物线方程为y =32x 2. 当y =1时,x =±63,由此知水面宽为263m.(2)柱体的底面积 S =2∫630(1-32x 2)dx =2(∫630dx -32∫630x 2dx) =2(x|630-32·13x 3|630)=469(m 2). ∴柱体体积为100×469=40069(m 3),即沟中的水有40069m 3.(设计者:孙娜)。

数学:1.7.1《定积分在几何中的应用》教案(新人教A版选修2-2)

数学:1.7.1《定积分在几何中的应用》教案(新人教A版选修2-2)

定积分在几何中的应用一、教课目的:1.认识定积分的几何意义及微积分的基本定理 .2.掌握利用定积分求曲边图形的面积二、教课要点与难点:1.定积分的观点及几何意义2.定积分的基天性质及运算的应用三教课过程:(一)练习a 1.若(2 x1A . 6 2.设 f (x)1) dx = 3 + ln 2,则a的值为(D)xB.4C. 3D. 2x2 (0 x1)则a), f ( x) dx 等于( C2 x(1x 2)1A.3B.4C.5D.不存在4561a2 )dx 的最小值3.求函数f (a)0(6x24ax124ax23(2ax221a.解:∵ (6x a(6)dx4ax( 2x) dx2a2 a x)) |0 2 2a223212 00∴ f (a)a22a2(a1)2 1 .∴当 a = –1 时 f (a)有最小值 1.3166x x2dx.4.求定分25.如何用定积分表示:x=0, x=1, y=0 及 f(x)=x2所围成图形的面积?S1 f ( x )dx x 2dx1110036.你能谈谈定积分的几何意义吗?比如bf ( x )dx 的几何意义是什么? a表示 x 轴,曲线 y f ( x) 及直线 x a ,x b之间的各部分面积的代数和,在 x 轴上方的面积取正, 在x轴下方的面积取负二、新课例 1.教材 P56 面的例 1例 2.教材 P57 面的例 2。

练习: P58 面例 3.求曲线y=sinx ,x[0,23练习:1.如右图 , 暗影部分面积为(A.b g (x)] dx[ f (x)aB.c b[ g( x) f (x)]dx [ f ( x)a c ] 与直线x=0 , x2,x 轴所围成图形的面积。

3B)g( x)] dxC.b b[ f (x)g (x)]dx [ g ( x) f ( x)] dxa cD.b f (x)] dx[ g (x)a2.求抛物线 y = –x2 + 4x –3 及其在点 A(1, 0)和点 B(3, 0)处的切线所围成的面积.23四、作业:《习案》作业十九。

高中数学 1.7.1定积分在几何中的应用 新人教A版选修2-2

高中数学 1.7.1定积分在几何中的应用 新人教A版选修2-2
ppt课件
【易错剖析】复杂图形的面积的求解,合理分割 图形是关键,方法一中的分割是解本题较好的一 种方法.若不能抓住图形的特征,进行合理分割, 则会出现错解.
ppt课件
1.7.1 定积分在几何中的应用
ppt课件
研题型 学方 法
ppt课件
题型一 不分割图形求面积
ppt课件
规律方法:求不分割图形面积的一般步骤: (1)在坐标系中画出由直线与曲线围成的图形;(2)求 出直线与曲线交点的横坐标并确定积分上、下限;(3) 用定积分表示图形的面积;(4)求定积分进而得到图 形的面积.
ppt课件
ppt课件
题型二 分割图形求面积
ppt课件
ppt课件
规律方法:求两条曲线围成的平面图形的面积的步 骤是:①画图,确定图形范围;②求交点的横坐标, 确定积分上下限;③写出积分表达式;④用微积分 基本定理计算定积分.
ppt课件
对图形分割不合理致误

高中数学人教版选修2-2教学设计:定积分在几何中的简单应用教学设计讲义

高中数学人教版选修2-2教学设计:定积分在几何中的简单应用教学设计讲义


0

x

2 2
4 x 2 dx
1 22 2
sin x dx 0


【热身训练】练习3.用定积分表示阴影部分面积
y D C
y A
y f 1 x)
D
-2-
b N
x f1 ( y)
B C
x f 2 ( y)
培养学生用 发展、 联系的 哲学思想解 决问题 图1 【学生活动】回忆并口答图 1 的答案; 引导学生由 X 为积分变量的定积分类型来发现以 Y 为积分变量的另一种 定积分类型。 【得出结论】定积分表示曲边梯形面积的两种类型. 【板书】配合学生探究的进展书写推理的过程. 【课件展示】 图 1 选择 X 为积分变量,曲边梯形面积为 图2
【学生活动】本环节安排学生讨论,自主发现解决问题方向——定积分跟面积的关系, 激情, 为后面 作开启性的 铺垫。
(三) 新课讲授:
【热身训练】练习1.计算

2
2
4 x 2 dx
2.计算
sin x dx
2 2

复习定积分 的几何意义
【学生活动】思考口答 【课件展示】定积分表示的几何图形、练习答案. y
作业即是探 究活动的一 种延续。
b 4h b 2 2 …… 2 h ( 2 x 3 ) 0 bh 3 3b 2
(四) .互动小结 问:本节课我们做了什么探究活动呢? 答:用定积分解曲边形面积。 问:如何用定积分解决曲边形面积问题呢? 答:1.画草图,求出曲线的交点坐标. 2.将曲边形面积转化为曲边梯形面积. 3.根据图形特点选择适当的积分变量. (注意选择 y 型积分变量时,要把函数 变形成用 y 表示 x 的函数) 4.确定被积函数和积分区间. 5.计算定积分,求出面积. 问:解答曲线所围的平面图形面积时须注意什么问题? 答:选择最优化的积分变量;根据图形特点选择最优化的解题方法. 问:体会到什么样的数学研究思路及方法呢? 答:从问题出发,联系相关知识,探究出解决问题的思路,通过实践的检验得到一 般方法,通过练习巩固,通过应用提升。

高中数学人教A版选修2-2教学设计:1.7定积分的简单应用

高中数学人教A版选修2-2教学设计:1.7定积分的简单应用

§1.7定积分的简单应用教学目标1.会利用定积分的几何意义求定积分的值,通过数形结合的思想方法,加深对定积分几何意义的理解;2.会用定积分求两条或多条曲线围成的图形的面积;3.通过具体实例了解定积分在物理中的应用;重难点:求多条曲线围成的分割型图形的面积,将几何问题和物理问题转化为定积分问题一、复习回顾1.微积分的基本思想2.微积分基本定理--------牛顿-莱布尼茨公式利用牛顿-莱布尼茨公式求定积分的关键是_____________3.定积分的几何意义:____________4.微积分的性质(1) ______________________ (2) ______________________(3) ______________________ (4) ______________________思考:试用定积分表示下面各平面图形的面积值.图1 图2 _______________________ ________________________图3 图4 _______________________ ________________________定积分()ba f x dx ⎰的几何意义它是介于x 轴、函数()f x 的图象及________________________之间的各部分面积的_________(在x 轴上面的____________,在x 轴下面的____________).二、自主探究探究一:定积分的计算例1.(1)若0,a > 则220a a x dx -=⎰____________ (2)120(1(1))x x dx ---=⎰____________练习:(1)sin xdx ππ-=⎰______ (2) 22cos xdx ππ-=⎰________ (3)20cos xdx π=⎰ _________ 探究二:求面积例2.计算由曲线2y x = ,直线4y x =-以及x 轴所围成的图形的面积.练习1(课本变式题):计算由曲线22y x = ,直线4y x =-以及x 轴所围成的图形的面积.36y x x =-2y x =例3.已知抛物线22y x x =-及直线0,,0x x a y === 围成的平面图形的面积为43 ,求a 的值.探究三:物理学方面的应用微积分在物理方面的应用十分广泛,中学阶段主要掌握求物体的路程(位移)、变力作功等问题例1.一物体的运动速度随时间的变化关系为32()2532,V t t t t =-+-则该物体在0至3秒, 的位移和路程分别为多少?例2. 如图,在弹性限度内,倔强系数为k,将一弹簧从平衡位置拉到离水平位置L 米处,求克服弹力所作的功.练习:一物体从0至1小时内运动的速度(千米/小时)随时间t (小时)的关系式为12)(2+-=t t t V(1) 求这1个小时该物体所走的路程S ;(2)问该物体从开始运动经历多长的时间走过一半路程.三、课堂小结求由曲线围成的平面图形面积的一般步骤:(1)画草图;(2)求曲线的交点定出积分上、下线;(3)确定被积函数,但要保证求出的面积是非负的;(4)写出定积分并计算.四、训练案1.求下列曲线所围成的图形的面积:(1)2,23;y x y x ==+ (2),,0;xy e y e x ===(3)求由抛物线28(0)y x y => 与直线60x y +-= 及0y =所围成的图形的面积.2. 抛物线24y x =-与直线3y x =的两个交点为,A B ,点P 在抛物弧上从A 向B 运动(1)求使△PAB 的面积为最大时P 点的坐标(,)a b ;(2)证明由抛物线与线段AB 围成的图形,被直线x a =分为面积相等的两部分.321lim1> +++++∞→pnn pp pppn3.求)0(。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学 1.7.1《定积分在几何中的应用》教案 新人教A 版选修
2-2
一、教学目标:
1. 了解定积分的几何意义及微积分的基本定理.
2.掌握利用定积分求曲边图形的面积
二、教学重点与难点:
1. 定积分的概念及几何意义
2. 定积分的基本性质及运算的应用 三教学过程: (一)练习
1.若11(2)a x x +⎰d x = 3 + ln 2,则a 的值为( D )
A .6
B .4
C .3
D .2
2.设2
(01)()2(12)x x f x x x ⎧≤<=⎨-<≤⎩,则1
()a f x ⎰d x 等于( C )
A .3
4 B .4
5 C .5
6 D .不存在
3.求函数dx a ax x a f )46()(1
022⎰++=的最小值
解:∵102231
022)22()46(x a ax x dx a ax x ++=++⎰223221200(64)(22)|22x ax a dx x a a x a a ++=++=++⎰.
∴22()22(1)1f a a a a =++=++. ∴当a = – 1时f (a )有最小值1.
4.求定分3
22166x x -+-⎰d x .
5.怎样用定积分表示:
x =0,x =1,y =0及f (x )=x 2所围成图形的面积?
31)(1021
01⎰⎰===dx x dx x f S
6. 你能说说定积分的几何意义吗?例如⎰b
a dx x f )(的几何意义是什么?
表示x 轴,曲线)(x f y =及直线a x =,b x =之间的各部分面积的代数和, 在x 轴上方的面积取正,在x 轴下方的面积取负
二、新课
例1.教材P56面的例1
例2.教材P57面的例2。

练习:P58面
例3.求曲线y=sinx ,x ]32,0[π∈与直线x=0 ,3
2π=x ,x 轴所围成图形的面积。

练习:
1.如右图,阴影部分面积为( B )
A .[()()]b a f x g x -⎰d x
B .[()()][()()]c b
a c g x f x dx f x g x -+-⎰⎰d x C .[()()][()()]
b b
a c f x g x dx g x f x -+-⎰⎰d x D .[()()]b
a g x f x +⎰d x 2.求抛物线y = –x 2+ 4x – 3及其在点A (1,0)和点B (3,0)处的切线所围成的面积.
3
2 四、作业:《习案》作业十九。

相关文档
最新文档