对数函数及其性质(习题课)
2 第2课时 对数函数及其性质的应用(习题课) 纯答案
第2课时 对数函数及其性质的应用(习题课)答案比较对数值的大小【解】 (1)因为函数y =ln x 是增函数,且0.3<2, 所以ln 0.3<ln 2.(2)当a >1时,函数y =log a x 在(0,+∞)上是增函数, 又3.1<5.2,所以log a 3.1<log a 5.2;当0<a <1时,函数y =log a x 在(0,+∞)上是减函数. 又3.1<5.2, 所以log a 3.1>log a 5.2. (3)因为0>log 0.23>log 0.24, 所以1log 0.23<1log 0.24,即log 30.2<log 40.2.(4)因为函数y =log 3x 是增函数,且π>3,所以log 3π>log 33=1,同理,1=log ππ>log π3,即log 3π>log π3.1.解析:选D.因为log 0.4x 为减函数,故log 0.44>log 0.46,故A 错;因为1.01x 为增函数,所以1.013.4<1.013.5,故B 错;由指数函数图象特点知,3.50.3>3.40.3,故C 错.2.解析:选A.因为a =30.5>1,b =log 312<0,0<c =log 32<1,所以a >c >b .解对数不等式【解】 (1)由题意可得⎩⎪⎨⎪⎧x >0,4-x >0,x <4-x ,解得0<x <2.所以原不等式的解集为(0,2). (2)当x >1时,log x 12>1=log x x ,解得x <12,此时不等式无解.当0<x <1时,log x 12>1=log x x ,解得x >12,所以12<x <1.综上所述,原不等式的解集为⎪⎭⎫⎝⎛1,21. (3)当a >1时,原不等式等价于⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5>x -1,解得x >4.当0<a <1时,原不等式等价于 ⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5<x -1, 解得52<x <4.综上所述,当a >1时,原不等式的解集为{x |x >4};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x |52<x <4.1.解析:因为函数y =log 0.2x 在(0,+∞)上是减函数,所以由log 0.22x <log 0.2(x -1)得⎩⎪⎨⎪⎧2x >0,x -1>0,2x >x -1,解得x >1,即x的取值范围为(1,+∞).答案:(1,+∞)2.解:由题意知log a (3a -1)>0=log a 1. 当a >1时,y =log a x 是增函数,所以⎩⎪⎨⎪⎧3a -1>1,3a -1>0,解得a >23,所以a >1;当0<a <1时,y =log a x 是减函数,所以⎩⎪⎨⎪⎧3a -1<1,3a -1>0,解得13<a <23.所以13<a <23.综上所述,a 的取值范围是⎪⎭⎫⎝⎛3231,∪(1,+∞).对数型函数的单调性【解】 (1)由4x -1>0,解得x >0, 因此f (x )的定义域为(0,+∞). (2)设0<x 1<x 2,则0<4x 1-1<4x 2-1, 因此log 4(4x 1-1)<log 4(4x 2-1), 即f (x 1)<f (x 2),故f (x )在(0,+∞)上单调递增.(3)因为f (x )在区间⎥⎦⎤⎢⎣⎡2,21上单调递增,又f ⎪⎭⎫⎝⎛21=0,f (2)=log 415,因此f (x )在区间⎥⎦⎤⎢⎣⎡2,21上的值域为[0,log 415].解:因为1-2x >0,所以x <12.又设u =1-2x ,则y =f (u )是(0,+∞)上的增函数.又u =1-2x ,则x ∈()⎝⎛⎭⎫-∞,12时,u (x )是减函数, 所以函数f (x )=log 2(1-2x )的单调递减区间是⎝⎛⎭⎫-∞,12,无单调递增区间.与对数函数有关的值域与最值问题【解】 (1)由题意得⎩⎪⎨⎪⎧1+x >0,3-x >0,解得-1<x <3.所以f (x )的定义域为(-1,3).(2)f (x )=log a [(1+x )(3-x )]=log a (-x 2+2x +3) =log a [-(x -1)2+4],-1<x <3,若0<a <1,则当x =1时,f (x )有最小值log a 4, 所以log a 4=-2,即a -2=4,又0<a <1,所以a =12.若a >1,则当x =1时,f (x )有最大值log a 4,f (x )无最小值. 综上可知,a =12.解:(1)由⎩⎪⎨⎪⎧f (1)=1,f (2)=log 212,得⎩⎪⎨⎪⎧log 2(a -b )=1,log 2(a 2-b 2)=log 212, 所以⎩⎪⎨⎪⎧a -b =2,a 2-b 2=12,即⎩⎪⎨⎪⎧a -b =2,a +b =6,所以a =4,b =2.(2)由(1)知f (x )=log 2(4x -2x ),设t =2x ,因为x ∈[1,3],所以t ∈[2,8]. 令u =4x-2x=t 2-t =⎝⎛⎭⎫t -122-14,所以当t =8,即x =3时,u 最大,u max =56, 故f (x )的最大值为log 256.1.解析:选C.因为x ≥2,所以log 2x ≥1,所以y ≥3. 2.解析:选B.易知函数y =lg|x |是偶函数.当x >0时,y =lg|x |=lg x ,所以在区间(0,+∞)上单调递增.由偶函数的性质知,函数在区间(-∞,0)上单调递减.3.解析:选C.由题意知,f (x )=log a x (0<a <1)为减函数,则f (x )max =f (a )=1,f (x )min =f (2a )=1+log a 2,所以1=3(1+log a 2),即log a 2=-23,解得a -23=2,即a =24,故选C.4.解析:因为y =log 5x 与y =2x +1均为增函数,故函数f (x )=log 5(2x +1)是其定义域上的增函数,所以函数f (x ) 的单调增区间是⎝⎛⎭⎫-12,+∞. 答案:⎝⎛⎭⎫-12,+∞ 5.解:设f (x )=log a x (a >0且a ≠1), 因为f (4)=2,所以log a 4=2,所以a =2,所以f (x )=log 2x ,所以f (2x -3)>f (x )⇒log 2(2x -3)>log 2x ⇒⎩⎪⎨⎪⎧2x -3>0,x >0,2x -3>x ⇒x >3,所以原不等式的解集为(3,+∞).[A 基础达标]1.解析:选C.由指数函数的性质可知,函数y =0.75x 为单调递减函数,又因为-0.1<0.1,所以0.75-0.1>0.750.1.2.解析:选D.f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).3.解析:选D.由函数f (x )的解析式知定义域为⎪⎭⎫ ⎝⎛∞+,61,设t =2x -13(t >0),t 在⎪⎭⎫ ⎝⎛∞+,61上是增函数,y =21log t在(0,+∞)上是减函数,由复合函数的单调性可知f (x )在⎪⎭⎫ ⎝⎛∞+,61上是减函数,故选D. 4.解析:选B.因为a x ≥1=a 0的解集为{x |x ≤0},所以0<a <1,所以x 2+2≥2. 又因为函数y =log a (x 2+2)的最大值为-1,则a =12.5.解析:选B.因为f (x )=log 3x , 所以f (x )在(0,+∞)上为增函数. 又因为2>12>14,所以f (2)>f ⎪⎭⎫ ⎝⎛21>f ⎪⎭⎫ ⎝⎛41.6.解析:由y =log (2a -3)x 在(0,+∞)上是增函数,所以2a -3>1,解得a >2. 答案:(2,+∞)7.解析:由⎩⎪⎨⎪⎧2x +3>0,5x -6>0,2x +3>5x -6,解得⎩⎪⎨⎪⎧x >-32,x >65,x <3,即65<x <3,故不等式的解集为{x |65<x <3}. 答案:{x |65<x <3}8.解析:因为a >1,所以f (x )=log a x 在[a ,2a ]上递增, 所以log a (2a )-log a a =12,即log a 2=12,所以a 12=2,a =4.答案:4 9.解:(1)因为y =log 3.1x 在(0,+∞)上是增函数,所以log 3.10.5>log 3.10.2. (2)法一:因为y =21log x 在(0,+∞)上是减函数,所以21log 8<21log 4.法二:21log 8=-3,21log 4=-2,由-3<-2知21log 8<21log 4.(3)因为log 56>log 55=1,log 65<log 66=1,所以log 56>log 65. 10.解:要使y =21log (1-x 2)有意义,则1-x 2>0,所以x 2<1,则-1<x <1,因此函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).当x ∈(-1,0]时,x 增大,t 增大,y =21log t 减小,所以当x ∈(-1,0]时,y =21log (1-x 2)是减函数;同理当x ∈[0,1)时,y =21log (1-x 2)是增函数.故函数y =21log (1-x 2)的单调增区间为[0,1),且函数的最小值y min =21log (1-02)=0.[B 能力提升]11.解析:选D.因为0<12<1,21log m <21log n <0,所以m >n >1,故选D.12.解析:选C.当-1<x <0时,0<x +1<1. 因为log a |x +1|>0,所以0<a <1,所以函数f (x )=log a |x +1|在(-∞,-1)上递增,在(-1,+∞)上递减. 13.解:(1)因为g (9)=log a 9=2,解得a =3,所以g (x )=log 3x .因为函数y =f (x )的图象与g (x )=log 3x 的图象关于x 轴对称,所以f (x )=31log x .(2)因为f (3x -1)>f (-x +5),所以31log (3x -1)>31log (-x +5),则⎩⎪⎨⎪⎧3x -1>0,-x +5>0,3x -1<-x +5, 解得13<x <32,即x 的取值范围为⎝⎛⎭⎫13,32.14.解:设t =x 2-2x +3=(x -1)2+2. 当x ∈R 时,t 有最小值2. 所以lg(x 2-2x +3)的最小值为lg 2.又因为y =a lg(x 2-2x +3)有最大值,所以0<a <1. 由f (x )=log a (3-2x ),得其定义域为⎝⎛⎭⎫-∞,32. 设u (x )=3-2x ,x ∈⎝⎛⎭⎫-∞,32, 则f (x )=log a u (x ).因为u (x )=3-2x 在⎝⎛⎭⎫-∞,32上是减函数, 所以f (x )=log a u (x )在⎝⎛⎭⎫-∞,32上是增函数. 所以f (x )=log a (3-2x )的单调增区间为⎝⎛⎭⎫-∞,32. [C 拓展探究]15.解:(1)由题设,3-ax >0对x ∈[0,2]恒成立,且a >0,a ≠1.设g (x )=3-ax , 则g (x )在[0,2]上为减函数, 所以g (x )min =g (2)=3-2a >0, 所以a <32.所以实数a 的取值范围是(0,1)∪⎝⎛⎭⎫1,32. (2)假设存在这样的实数a ,则由题设知f (1)=1, 即log a (3-a )=1,所以a =32.此时f (x )=⎪⎭⎫ ⎝⎛-x 233log 23 但x =2时,f (x )=0log 23无意义.故这样的实数a 不存在.。
高中数学:2.2.2对数函数及其性质 (1)
2.2.2对数函数及其性质第二课时对数函数及其性质的应用(习题课)比较对数值的大小[例1]比较下列各组数中两个值的大小:(1)log23.4,log28.5;(2)log0.31.8,log0.32.7;(3)log a5.1,log a5.9(a>0,且a≠1).[解](1)考察对数函数y=log2x,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log23.4<log28.5.(2)考察对数函数y=log0.3x,因为它的底数0<0.3<1,所以它在(0,+∞)上是减函数,于是log0.31.8>log0.32.7.(3)当a>1时,y=log a x在(0,+∞)上是增函数,于是log a5.1<log a5.9;当0<a<1时,y=log a x在(0,+∞)上是减函数,于是log a5.1>log a5.9.比较对数值大小时常用的4种方法(1)同底的利用对数函数的单调性.1.比较下列各题中两个值的大小: (1)lg 6,lg 8; (2)log 0.56,log 0.54; (3)log 132与log 152;(4)log 23与log 54.解:(1)因为函数y =lg x 在(0,+∞)上是增函数,且6<8,所以lg 6<lg 8. (2)因为函数y =log 0.5x 在(0,+∞)上是减函数,且6>4,所以log 0.56<log 0.54. (3)由于log 132=1log 213,log 152=1log 215. 又∵对数函数y =log 2x 在(0,+∞)上是增函数,且13>15,∴0>log 2 13>log 2 15,∴1log 213<1log 215.∴log 132<log 152. (4)取中间值1,∵log 23>log 22=1=log 55>log 54,∴log 23>log 54.[例2] (1)已知log a 12>1,求a 的取值范围;(2)已知log 0.7(2x )<log 0.7(x -1),求x 的取值范围. [解] (1)由log a 12>1得log a 12>log a a .求解对数不等式①当a >1时,有a <12,此时无解.②当0<a <1时,有12<a ,从而12<a <1.∴a 的取值范围是⎝⎛⎭⎫12,1.(2)∵函数y =log 0.7x 在(0,+∞)上为减函数, ∴由log 0.72x <log 0.7(x -1) 得⎩⎪⎨⎪⎧2x >0,x -1>0,2x >x -1,解得x >1.∴x 的取值范围是(1,+∞).常见对数不等式的2种解法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式,再借助y =log a x 的单调性求解.2.已知log a (3a -1)恒为正,求a 的取值范围. 解:由题意知log a (3a -1)>0=log a 1. 当a >1时,y =log a x 是增函数,∴⎩⎪⎨⎪⎧ 3a -1>1,3a -1>0,解得a >23,∴a >1;当0<a <1时,y =log a x 是减函数,∴⎩⎪⎨⎪⎧3a -1<1,3a -1>0,解得13<a <23.∴13<a <23. 综上所述,a 的取值范围是⎝⎛⎭⎫13,23∪(1,+∞).有关对数型函数的值域与最值问题[例3] 求下列函数的值域.(1)y =log 2(x 2+4);(2)y =log 12(3+2x -x 2).[解] (1)y =log 2(x 2+4)的定义域是R. 因为x 2+4≥4,所以log 2(x 2+4)≥log 24=2, 所以y =log 2(x 2+4)的值域为[2,+∞). (2)设u =3+2x -x 2=-(x -1)2+4≤4. 因为u >0,所以0<u ≤4.又y =log 12u 在(0,+∞)上为减函数,所以log 12u ≥log 124=-2,所以y =log 12(3+2x -x 2)的值域为[-2,+∞).(1)求对数型函数的值域,一般需根据对数函数的单调性及真数的取值范围求解. (2)求函数的值域时,一定要注意定义域对它的影响,结合函数的单调性求解,当函数中含有参数时,有时需讨论参数的取值.3.已知f (x )=2+log 3x ,x ∈[1,9],求函数y =[f (x )]2+f (x 2)的最大值及此时x 的值. 解:y =[f (x )]2+f (x 2)=(2+log 3x )2+log 3x 2+2=(log 3x )2+6log 3x +6=(log 3x +3)2-3. ∵f (x )的定义域为[1,9], ∴y =[f (x )]2+f (x 2)中,x必须满足⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9,∴1≤x ≤3,∴0≤log 3x ≤1,∴6≤y ≤13. ∴当x =3时,y 取得最大值,为13.[例4] 已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),其中(a >0且a ≠1),设h (x )=f (x )-g (x ).求函数h (x )的定义域,判断h (x )的奇偶性,并说明理由. [解] ∵f (x )=log a (1+x )的定义域为{x |x >-1}, g (x )=log a (1-x )的定义域为{x |x <1},∴h (x )=f (x )-g (x )的定义域为{x |x >-1}∩{x |x <1}={x |-1<x <1}. ∵h (x )=f (x )-g (x )=log a (1+x )-log a (1-x ),∴h (-x )=log a (1-x )-log a (1+x )=-[log a (1+x )-log a (1-x )]=-h (x ), ∴h (x )为奇函数. [一题多变]1.[变条件]若f (x )变为log a 1+x1-x (a >1):求f (x )的定义域.解:因为f (x )=log a 1+x1-x,需有1+x1-x >0,即⎩⎪⎨⎪⎧ 1+x >0,1-x >0,或⎩⎪⎨⎪⎧1+x <0,1-x <0,所以-1<x <1.所以函数f (x )的定义域为(-1,1).2.[变设问]在本例条件下,若f (3)=2,求使h (x )<0成立的x 的集合. 解:∵f (3)=log a (1+3)=log a 4=2,∴a =2. ∴h (x )=log 2(1+x )-log 2(1-x ), ∴h (x )<0等价于log 2(1+x )<log 2(1-x ),对数函数性质的综合应用∴⎩⎪⎨⎪⎧1+x <1-x ,1+x >0,1-x >0,解得-1<x <0.故使h (x )<0成立的x 的集合为{x |-1<x <0}.层级一 学业水平达标1.若lg(2x -4)≤1,则x 的取值范围是( ) A .(-∞,7] B .(2,7] C .[7,+∞)D .(2,+∞)解析:选B ∵lg(2x -4)≤1,∴0<2x -4≤10,解得2<x ≤7,∴x 的取值范围是(2,7],故选B.2.已知log 12m <log 12n <0,则( )A .n <m <1B .m <n <1C .1<m <nD .1<n <m解析:选D 因为0<12<1,log 12m <log 12n <0,所以m >n >1,故选D.3.函数f (x )=|log 12x |的单调递增区间是( )A.⎝⎛⎦⎤0,12 B .(0,1] C .(0,+∞)D .[1,+∞)解析:选D f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).4.已知实数a =log 45,b =⎝⎛⎭⎫120,c =log 30.4,则a ,b ,c 的大小关系为( ) A .b <c <a B .b <a <c C .c <a <bD .c <b <a解析:选D 由题知,a =log 45>1,b =⎝⎛⎭⎫120=1,c =log 30.4<0,故c <b <a . 5.函数f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1+x 是( ) A .奇函数 B .偶函数 C .既奇又偶函数D .非奇非偶函数解析:选A f (x )定义域为R ,f (-x )+f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1-x +lg ⎝ ⎛⎭⎪⎫1x 2+1+x =lg1(x 2+1)-x 2=lg 1=0,∴f (x )为奇函数,故选A. 6.比较大小: (1)log 22______log 23; (2)log 3π______log π3.解析:(1)因为函数y =log 2x 在(0,+∞)上是增函数,且2>3,所以log 22>log 2 3. (2)因为函数y =log 3x 增函数,且π>3,所以log 3π>log 33=1. 同理1=log ππ>log π3,所以log 3π>log π3. -=-=答案=-=-:(1)> (2)>7.不等式log 13(5+x )<log 13(1-x )的解集为________.解析:由⎩⎪⎨⎪⎧5+x >0,1-x >0,5+x >1-x ,得-2<x <1.-=-=答案=-=-:{x |-2<x <1}8.设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为12,则a =________.解析:∵a >1,∴f (x )=log a x 在[a,2a ]上递增, ∴log a (2a )-log a a =12,即log a 2=12,∴a 12=2,a =4. -=-=答案=-=-:49.已知对数函数f (x )的图象过点(4,2),试解不等式f (2x -3)>f (x ). 解:设f (x )=log a x (a >0且a ≠1), 因为f (4)=2,所以log a 4=2,所以a =2,所以f (x )=log 2x ,所以f (2x -3)>f (x )⇒log 2(2x -3)>log 2x ⇒⎩⎪⎨⎪⎧2x -3>0,x >0,2x -3>x ⇒x >3,所以原不等式的解集为(3,+∞).10.求函数y =log 12(1-x 2)的单调增区间,并求函数的最小值.解:要使y =log 12(1-x 2)有意义,则1-x 2>0,∴x 2<1,则-1<x <1,因此函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).当x ∈(-1,0]时,x 增大,t 增大,y =log 12t 减小,∴x ∈(-1,0]时,y =log 12(1-x 2)是减函数;同理当x ∈[0,1)时,y =log 12(1-x 2)是增函数.故函数y =log 12(1-x 2)的单调增区间为[0,1),且函数的最小值y min =log 12(1-02)=0.层级二 应试能力达标1.若a >0,且log 0.25(a 2+1)>log 0.25(a 3+1),则实数a 的取值范围是( )A .(0,1)∪(1,+∞)B .(0,1)C .(1,+∞)D .[1,+∞)解析:选C ∵log 0.25(a 2+1)>log 0.25(a 3+1),∴a 2<a 3,即a 2(1-a )<0,∴a >1,故选C.2.设a =log 54,b =log 53,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <cD .b <a <c解析:选D 由于b =log 53<a =log 54<1<log 45=c ,故b <a <c . 3.关于函数f (x )=log 12(1-2x )的单调性的叙述正确的是( )A .f (x )在⎝⎛⎭⎫12,+∞内是增函数 B .f (x )在⎝⎛⎭⎫12,+∞内是减函数 C .f (x )在⎝⎛⎭⎫-∞,12内是增函数 D ..f (x )在⎝⎛⎭⎫-∞,12内是减函数 解析:选C 由于底数12∈(0,1),所以函数f (x )=log 12(1-2x )的单调性与y =1-2x 的单调性相反.由1-2x >0,得x <12,所以f (x )=log 12(1-2x )的定义域为(-∞,12).因为y =1-2x 在(-∞,+∞)内是减函数,所以f (x )在⎝⎛⎭⎫-∞,12内是增函数,故选C. 4.(2017·全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞)解析:选D 由x 2-2x -8>0,得x >4或x <-2.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞).5.若y =log (2a -3)x 在(0,+∞)上是增函数,则实数a 的取值范围为________. 解析:由y =log (2a -3)x 在(0,+∞)上是增函数,所以2a -3>1,解得a >2. -=-=答案=-=-:(2,+∞)6.已知f (x )是定义在R 上的偶函数,且在[0,+∞)上为增函数,f ⎝⎛⎭⎫13=0,则不等式f (log 18x )>0的解集为________________.解析:∵f (x )是R 上的偶函数,∴它的图象关于y 轴对称.∵f (x )在[0,+∞)上为增函数,∴f (x )在(-∞,0]上为减函数,做出函数图象如图所示.由f ⎝⎛⎭⎫13=0,得f ⎝⎛⎭⎫-13=0. ∴f (log 18x )>0⇒log 18x <-13或log 18x >13⇒x >2或0<x <12, ∴x ∈⎝⎛⎭⎫0,12∪(2,+∞). -=-=答案=-=-:⎝⎛⎭⎫0,12∪(2,+∞) 7.求函数f (x )=log 2(4x )·log 14x 2,x ∈⎣⎡⎦⎤12,4的值域. 解:f (x )=log 2(4x )·log 14x 2 =(log 2x +2)·⎣⎡⎦⎤-12(log 2x -1) =-12[](log 2x )2+log 2x -2. 设log 2x =t .∵x ∈⎣⎡⎦⎤12,4,∴t ∈[-1,2],则有y =-12(t 2+t -2),t ∈[-1,2], 因此二次函数图象的对称轴为t =-12, ∴它在⎣⎡⎦⎤-1,-12上是增函数,在⎣⎡⎦⎤-12,2上是减函数, ∴当t =-12时,有最大值,且y max =98. 当t =2时,有最小值,且y min =-2.∴f (x )的值域为⎣⎡⎦⎤-2,98.8.已知函数f (x )=log a (1-x )+log a (x +3),其中0<a <1.(1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-4,求a 的值.解:(1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0, 解得-3<x <1,所以函数的定义域为(-3,1).(2)函数可化为:f (x )=log a (1-x )(x +3)=log a (-x 2-2x +3)=log a [-(x +1)2+4], 因为-3<x <1,所以0<-(x +1)2+4≤4. 因为0<a <1,所以log a [-(x +1)2+4]≥log a 4,即f (x )min =log a 4,由log a 4=-4,得a -4=4,所以a =4-14=22.。
高中数学 第二章 基本初等函数 2.2.2 对数函数及其性质(第2课时)对数函数性质的应用课时作业(
第2课时 对数函数性质的应用A 级 基础巩固一、选择题1.(2019·某某某某众兴中学高一期末测试)函数f (x )=3-lg x 的定义域为( A ) A .(0,1 000] B .[3,1 000] C .(0,11 000]D .[11 000,3][解析] 由题意得3-lg x ≥0, ∴lg x ≤3,∴0<x ≤103=1 000, 故选A .2.(2019·某某市南开区高一期末测试)函数f (x )=lg(1-x 2)的单调递减区间为( B )A .(0,+∞)B .(0,1)C .(-∞,0)D .(-1,0)[解析] 由题意得1-x 2>0,∴x 2<1,∴-1<x <1. 令u =1-x 2,函数f (x )的单调递减区间即为u =1-x 2在(-1,1)上单调递减区间, 又u =1-x 2在(0,1)上递减,故选B .3.已知f (x )=log 3x ,则f (14),f (12),f (2)的大小是( B )A .f (14)>f (12)>f (2)B .f (14)<f (12)<f (2)C .f (14)>f (2)>f (12)D .f (2)>f (14)>f (12)[解析] 由函数y =log 3x 的图象知,图象呈上升趋势,即随x 的增大,函数值y 在增大,故f (14)<f (12)<f (2).4.(2019·某某文,5)已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为( A )A .c <b <aB .a <b <cC .b <c <aD .c <a <b[解析]a =log 27>log 24=2,log 38<log 39=2,log 38>log 33=1,∴1<b <2,c =0.30.2<0.30=1,∴c <b <a ,故选A .5.(2019·全国卷Ⅱ理,6)若a >b ,则( C ) A .ln(a -b )>0 B .3a <3bC .a 3-b 3>0D .|a |>|b |[解析]∵函数y =x 3在R 上是增函数, ∴若a >b ,则a 3>b 3,∴a 3-b 3>0,故选C .6.(2019·某某泸西一中高一期中测试)函数y =lg|x |x的图象大致是( D )[解析]∵函数y =lg|x |x是奇函数,∴其图象关于原点对称,排除A 、B ;又∵x =1时,y =0,排除C ,故选D .二、填空题7.(2019·某某某某高一期中测试)不等式log 2x <12的解集为__(0,2)__.[解析] 由题意得log 2x <log 2212,∴0<x <212,∴0<x <2,故不等式的解集为(0,2).8.(2019·某某云天化中学高一期末测试)设函数f (x )=⎩⎪⎨⎪⎧2e x -1x <2log 3x 2-1x ≥2,则f [f (2)]=__2__.[解析]∵x ≥2时,f (x )=log 3(x 2-1), ∴f (2)=log 33=1, ∴f [f (2)]=f (1),又∵x <2时,f (x )=2e x -1,∴f (1)=2e 0=2,∴f [f (2)]=f (1)=2. 三、解答题9.已知f (x )=log a (1-x )+log a (x +3),(a >0且a ≠1). (1)求函数f (x )的定义域、值域;(2)若函数f (x )有最小值为-2,求a 的值.[解析] (1)⎩⎪⎨⎪⎧1-x >0x +3>0,∴-3<x <1∴函数f (x )的定义域为{x |-3<x <1}.f (x )=log a (-x 2-2x +3),令t =-x 2-2x +3=-(x +1)2+4,∵x ∈(-3,1),∴t ∈(0,4].∴y =log a t ,t ∈(0,4]. 当0<a <1时,y min =f (4)=log a 4, ∴函数f (x )的值域为[log a 4,+∞).当a >1时,y max =log a 4,∴函数f (x )的值域为(-∞,log a 4].(2)∵函数f (x )有最小值-2,由(1)得⎩⎪⎨⎪⎧0<a <1log a 4=-2,得a =12.B 级 素养提升一、选择题1.已知函数f (x )=log a (x 2+2x -3),若f (2)>0,则此函数的单调递增区间是( D ) A .(-∞,-3) B .(1,+∞)∪(-∞-3) C .(-∞,-1)D .(1,+∞)[解析]∵f (2)=log a 5>0=log a 1,∴a >1.由x 2+2x -3>0,得函数f (x )的定义域为(-∞,-3)∪(1,+∞). 设u =x 2+2x -3,则此函数在(1,+∞)上为增函数. 又∵y =log a u (a >1)为增函数,∴函数f (x )的单调递增区间是(1,+∞),故选D .2.(2018·某某文,5)已知a =log 372,b =(14)13 ,c =log 1315,则a ,b ,c 的大小关系为( D )A .a >b >cB .b >a >cC .c >b >aD .c >a >b[解析]∵函数y =log 3x 在(0,+∞)上单调递增, ∴log 1315=log 35>log 372>log 33=1,又(14)13 <(14)0=1,∴c >a >b ,故选D . 3.(2019·某某理,6)已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( A )A .a <c <bB .a <b <cC .b <c <aD .c <a <b[解析]a =log 52<log 55=12,b =log 0.50.2>log 0.50.5=1,0.51<0.50.2<0.50,∴12<0.50.2<1,∴12<c <1,∴a <c <b ,故选A . 4.已知函数f (x )=log a (2-ax )在[0,1]上是减函数,则a 的取值X 围为( B ) A .(1,+∞) B .(1,2) C .(2,+∞)D .(0,1)[解析] 由题意得a >0且a ≠1,2-ax >0,∴x <2a ,即函数f (x )的定义域为(-∞,2a ).∵函数在[0,1]上为减函数,∴2a>1,即a <2,∵函数y =log a (2-ax )在(0,1)上是减函数,又t =2-ax 为减函数,∴y =log a t 是增函数,∴a >1,∴1<a <2.二、填空题5.已知f (x )=|log 2x |,若f (a )>f (4),则a 的取值X 围是__(0,14)∪(4,+∞)__.[解析]∵f (4)=|log 24|=2.∴不等式化为f (a )>2,即|log 2a |>2,∴log 2a >2或log 2a <-2,∴a >4或0<a <14.6.若函数f (x )=x ln(x +a +x 2)为偶函数,则a =__1__. [解析]∵f (x )为偶函数,∴f (-1)=f (1),∴-ln(-1+a +1)=ln(1+a +1), ∴ln(1+a +1)+ln(-1+a +1)=0, ∴ln[(a +1)2-1]=0, ∴ln a =0,∴a =1. 三、解答题7.设f (x )为奇函数,且当x >0时,f (x )=log 12x .(1)求当x <0时,f (x )的解析式; (2)解不等式f (x )≤2.[解析] (1)当x <0时,-x >0,则f (-x )=log 12(-x ),又f (x )为奇函数,所以f (x )=-f (-x )=-log 12 (-x ).故当x <0时,f (x )=-log 12(-x ).(2)由题意及(1)知,原不等式等价于⎩⎪⎨⎪⎧x >0log 12x ≤2,或⎩⎪⎨⎪⎧x <0-log 12-x ≤2,解得x ≥14或-4≤x <0.∴不等式的解集{x |x ≥14或-4≤x <0}.8.已知函数f (x )=log a (3+2x ),g (x )=log a (3-2x )(a >0,且a ≠1). (1)求函数f (x )-g (x )的定义域;(2)判断函数f (x )-g (x )的奇偶性,并予以证明; (3)求使f (x )-g (x )>0的x 的取值X 围.[解析] (1)使函数f (x )-g (x )有意义,必须有⎩⎪⎨⎪⎧3+2x >03-2x >0,解得-32<x <32.所以函数f (x )-g (x )的定义域是{x |-32<x <32}.(2)f (x )-g (x )为奇函数.证明:由(1)知函数f (x )-g (x )的定义域关于原点对称.f (-x )-g (-x )=log a (3-2x )-log a (3+2x )=-[log a (3+2x )-log a (3-2x )]=-[f (x )-g (x )],∴函数f (x )-g (x )是奇函数.(3)f (x )-g (x )>0,即log a (3+2x )>log a (3-2x ). 当a >1时,有⎩⎪⎨⎪⎧3+2x >3-2x 3-2x >03+2x >0,解得x 的取值X 围是(0,32).当0<a <1时,有⎩⎪⎨⎪⎧3+2x <3-2x 3-2x >03+2x >0,解得x 的取值X 围是(-32,0).综上所述,当a >1时,x 的取值X 围是(0,32);当0<a <1时,x 的取值X 围是(-32,0).9.(2019·某某宿迁市高一期末测试)已知函数f (x )=ln(1+x )+ln(a -x )为偶函数. (1)某某数a 的值;(2)讨论函数f (x )的单调性. [解析] (1)∵f (x )为偶函数, ∴f (-x )=f (x ),∴ln(1-x )+ln(a +x )=ln(1+x )+ln(a -x ), ∴ln(1-x )-ln(1+x )=ln(a -x )-ln(a +x ), ∴ln 1-x 1+x =ln a -x a +x ,∴1-x 1+x =a -x a +x, 整理得2x (a -1)=0,∵x 不恒为0,∴a -1=0,∴a =1. (2)由(1)知f (x )=ln(1+x )+ln(1-x ),要使函数f (x )有意义,应满足⎩⎪⎨⎪⎧1+x >01-x >0,∴-1<x <1.∴函数f(x)的定义域为(-1,1).设任意x1,x2∈(-1,1),且x1<x2,∴f(x2)-f(x1)=ln(1+x2)+ln(1-x2)-ln(1+x1)-ln(1-x1) =ln(1-x22)-ln(1-x21)当-1<x1<x2<0时,x21>x22,1-x21<1-x22,∴ln(1-x22)>ln(1-x21),∴ln(1-x22)-ln(1-x21)>0,∴f(x2)-f(x1)>0,∴f(x2)>f(x1),∴f(x)在(-1,0)上是增函数,当0≤x1<x2<1时,x21<x22,∴1-x21>1-x22,∴ln(1-x21)>ln(1-x22),∴ln(1-x22)-ln(1-x21)<0,∴f(x2)-f(x1)<0,∴f(x2)<f(x1),∴f(x)在[0,1)上是减函数.综上可知,函数f(x)在(-1,0)上是增函数,在[0,1)上是减函数.。
(罗益龙)对数函数习题课教案
对数函数习题课教案一、教学目标知识目标使学生掌握对数函数性质并能熟练应用,加深学生对函数性质的理解。
过程与方法渗透分类讨论,归纳总结等方法,引导学生运用已学知识解决问题。
情感目标培养学生对数学的兴趣,激发学生探索解题的积极性。
二、重点难点教学重点对数函数及其性质的应用教学重点对数函数及其性质的综合应用三、教学过程:(一)知识回顾1.对数函数的性质2.指数函数与对数函数的关系1.指数函数y=a x与对数函数y=log a x互为反函数.2. 指数函数y=a x与对数函数y=log a x的图象在同一坐标平面内关于直线y=x对称.(二)典型范例分析例1 设f(x)=log2x.若f(2x-x2)<f(3-2x2),求x的取值范围.解:∵f(x)的定义域是(0,+∞),且是增函数,∴222220 320 232x x x x x x ⎧->⎪->⎨⎪-<-⎩22(2)0302+230x x x x x -<⎧⎪⎪⇒-<⎨⎪-<⎪⎩0231x x x <<⎧⎪⎪⇒<<⎨⎪⎪-<<⎩∴0<x <1 即x 的取值范围是(0,1).例2 若f (x )=log (2a -1)x ,且f (5)<1,求a 的取值范围. 解:f (5)<1⇔ log (2a -1)5< log (2a -1)(2a -1) (1)当0<2a -1<1,即12<a <1时,521112a a >-⎧⎪⎨<<⎪⎩3112a a <⎧⎪⇒⎨<<⎪⎩, 即12<a <1. (2)当2a -1>1,即a >1时,5211a a <-⎧⎨>⎩31a a >⎧⇒⎨>⎩,即a >3. 综上可知,a 的取值范围是(12,1)∪(3,+∞).复合函数的概念若函数y =f (u )与u =g (x )是两个函数,则称函数y =f (g (x ))是函数y =f (u )与u =g (x )的复合函数. 复合函数单调性判断法则同增异减例3 已知函数f (x )=12log (2x -x 2),试求出f (x )的单调区间.解:∵2x -x 2>0,∴0<x <2,即f (x )的定义域为(0,2).又∵y =2x -x 2在区间(0,1]上单调递增,在区间[1,2)上单调递减,且函数y=12log x 是减函数,∴函数f (x )在区间(0,1]上单调递减,在区间[1,2)上单调递增. 例4已知函数f (x )求f (x )的定义域和值域.解:∵222(lg )lg 300 0x x x x ⎧-++≥⎪>⎨⎪>⎩∴(lg 1)(lg 3)00 x x x +-≤⎧⎨>⎩即1lg 30x x -≤≤⎧⎨>⎩ 1100010x ⇒≤≤∴f (x )的定义域为[110,1000].又∵0≤-(lg x )2+lg x 2+3=-(lg x -1)2+4≤4∴f (x )的值域为[0,2].例5 已知函数f (x )=212log >0log () <0x x x x ⎧⎪⎨-⎪⎩.若f (a ) >f (-a ),试求a 的取值范围.解:f (x )=212log >0log () <0x x x x ⎧⎪⎨-⎪⎩=22log >01log () <0x x x x ⎧⎪-⎨⎪⎩. (1)当a >0时,-a <0,所以f (a )= 2log a > f (-a )= 21log ()a-- ∴10a a a ⎧>⎪⎨⎪>⎩ 210a a ⎧>⇒⎨>⎩ 110 a a a ><-⎧⇒⎨>⎩或,∴a >1 (2)当a <0时,-a >0,所以f (a )= 21log ()a-> f (-a )= 2log ()a - ∴1aa a -⎧>-⎪⎨⎪<⎩ 210a a ⎧<⇒⎨<⎩ 110a a -<<⎧⇒⎨<⎩ ∴-1<a <0综上可知,a 的取值范围是(-1,0)∪(1,+∞).(三)小结作业1.解答与对数函数相关的问题时,首先要保证在定义域范围内解题;注意数形结合的方法在解题中的应用;对数函数的底数如果是变量,要注意对底数(a>1,0<a<1)进行两种讨论.2.复合函数的单调性的判断:设函数y=f(u)和u=g(x)是两个函数,则称y=f(g(x))是f与g的复合函数.若y=f(u)与u=g(x)都是增函数或者都是减函数时,y=f(g(x))是增函数;若y=f(u)与u=g(x)一个是增函数,另一个是减函数,则y=f(g(x))是减函数.作业:P75 习题2.2 B组2,3,4。
高中数学精讲优练课型第二章基本初等函数(I)2.2.2对数函数及其性质第2课时习题课对数函数及其性质
第七页,共44页。
(4)(分类讨论(tǎolùn)法)当a>1时,函数y=logax在定义域上是增函数, 则有logaπ>loga3.14; 当0<a<1时,函数y=logax在定义域上是减函数, 则有logaπ<loga3.14. 综上所述,当a>1时,logaπ>loga3.14; 当0<a<1时,logaπ<loga3.14.
1 当f(x)=2log x=12 4时,解得x= ,2
故该函数的定义1 域为
1
2
4
[1 , 1]. 42
第十六页,共44页。
2.(变换条件(tiáojiàn))若将本题中的函数“f(x)=2log x”改为 1
“f(x)=
+3log2x-1”,其他条件(tiáojià2n)不变,又如何求其值
域呢?
角度2:与对数函数有关的奇偶性问题
【典例】讨论(tǎolùn)函数f(x)=log3(
+x)的奇偶性.
【解题探究】本例函数f(x)=log3( x2 +1x)的定义域是什么?
提示:因为 域为R.
>x≥-x,所以
x2 1
+xx>2 0对1 任意实数都成立,故函数的定义 x2 1
第三十页,共44页。
【解析( jiě xī)】因为 >|x|≥-x,
2log
2 2
x
第十七页,共44页。
【解析】令t=log2x,则f(t)=2t2+3t-1, 因为2≤x≤4,所以(suǒyǐ)t=log2x在[2,4]上为增函数. 当x=2时,t取得最小值1,当x=4时,t取得最大值2, 故1≤t≤2. 又f(t)=2t2+3t-1在[1,2]上为增函数, 故当t=1时,f(t)取得最小值4, 当t=2时,f(t)取得最大值13, 所以(suǒyǐ)函数f(x)的值域为[4,13].
2.2.2 对数函数及其性质(一)
1 >0 1 1-3x (3)由 ,得 x< ; 3 1-3x≠0
1 ∴所求函数定义域为x|x< ; 3
x>0 (4)由 log3x≥0 x>0 ,得 x≥1
;
∴x≥1,∴所求函数定义域为{x|x≥1}.
小结
此题主要利用对数函数 y=logax 的定义域为(0,
2.2.2 对数函数及其性质(一)
问题: 某种细胞分裂时,由1个分裂为2个,2个分为4
个,……,一个这样的细胞分裂x次后,得到的细胞的
个数 y 与 x 的函数关系是:
y2 .
x
现在我们来研究相反的问题.如果要求这种细胞 经过多少次分裂,大约可以得到1万个,10万个…… 细胞,那么,分裂次数 x 就是要得到的细胞个数 y 的函数. 即 x log y .
∴ 函数的定义域为 (1,2)∪(2,3) .
例 2:比较大小 例3:
(1) log2 3 , log2 3.5 (3) log3 2 , log3.5 2 (2) log0.7 1.6 , log0.7 1.8 (4) log1.6 0.7 , log1.8 0.7
( 解:1) y log2 x 在 (0 , ) 上是增函数,
∴函数 y=loga(9-x2)的定义域是{x|-3<x<3}. (4)由 16-4x>0,得 4x<16=42,由指数函数的单调性得
x<2, ∴函数 y=log2(16-4x)的定义域为{x|x<2}.
例2.求下列函数的定义域 :
(1) y loga x ;
2
(2) y loga (4 x 2 );
否
否 否
对数函数及其性质(讲义)含答案
对数函数及其性质(讲义)➢ 知识点睛一、对数函数的定义一般地,函数__________( )叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 二、对数函数的图象和性质1. 对数函数log a y x =(a >0,且a ≠1)的图象和性质:①log a y x =,②log b y x =,③log c y x =,④log d y x =, 则有0<b <a <1<d <c ,即:x ∈(1,+∞)时,log log log log a b c d x x x x <<<; x ∈(0,1)时,log log log log a b c d x x x x >>>. 3. 反函数log a y x =与x y a =互为反函数,其中a >0,且a ≠1;互为反函数的两个函数的图象关于直线y =x 对称.➢ 精讲精练1. 直接写出下列函数的定义域:(1)3log (2)y x =- __________________; (2)y =__________________; (3)y __________________;(4)1ln(1)y x =+__________________.2. (1)已知()f x 的定义域为[0,1],则函数12(log (3))y f x =-的定义域是_____________;(2)已知函数122()log (2log )f x x =-的值域是(-∞,0),则它的定义域是_____________;(3)函数212()log (613)f x x x =++的值域是_____________.3. 已知a >0,且a ≠1,则函数x y a =与log ()a y x =-的图象只可能是( )A .B .C .D .4. 函数f (x )=1+2log x 与g (x )=12x -在同一直角坐标系中的图象可能是( )A .B .C .D .5. 若点(a ,b )在函数y =lg x 的图象上,则下列点也在此图象上的是( )A .1()b a , B .(10a ,1-b )C .10(1)b a+,D .(a 2,2b )6. 若log 21a <,则实数a 的取值范围是( )A .(1,2)B .(0,1)∪(2,+∞)C .(0,1)∪(1,2)D .(0,12)7. 若函数log a y x =在区间[2,π]上的最大值比最小值大1,则a =__________.8. 已知函数2log 0()20x x x f x x >⎧=⎨⎩≤,,,若1()2f a =,则a =________.9. (1)已知函数x y a )1(log -=在(0,+∞)上为增函数,则a 的取值范围是_____________;(2)已知函数log (2)a y ax =-在(-1,1)上是x 的减函数,则a 的取值范围是_____________;(3)若函数22log ()y x ax a =---在区间(1-∞-,上是增函数,则a 的取值范围是_____________.10. (1)函数()|log |01a f x x a a =>≠()且的单调递增区间是_____________;(2)函数212()log (2)f x x x =+的单调递增区间是__________,单调递减区间是_____________;(3)已知2()2f x x x =+,12()log g x x =,则函数(())y f g x =的单调递增区间是___________,单调递减区间是_________.11. 比较下列各组数的大小:(1)112246log log 57,;(2)35log 2log 2,;(3)0.32log 2log 3,;(4)0.450.450.4log 5,,.12.设32log πlog log a b c ===, )A .a >b >cB .a >c >bC .b >a >cD .b >c >a13. 设a ,b ,c 均为正数,且112212log ()log 2a b a b ==,,21()log 2c c =,则( ) A .a <b <c B .c <b <aC .c <a <bD .b <a <c【参考答案】➢ 知识点睛一、对数函数的定义log 01a y x a a =>≠(,且) ➢ 精讲精练1. (1)(2)+∞,;(2)(0)+∞,;(3)2(1]3,;(4)(10)(02]-,, 2. (1)5[2]2,;(2)(02),;(3)(2]-∞-, 3. B 4. C 5. D 6. B7.22ππ或 8.或-19. (1)(2)+∞,;(2)(1,2);(3)[22]- 10. (1)(1)+∞,(2)(2)(0)-∞-+∞,,, (3)(2)(02)+∞,,,13. A。
对数函数及其性质(人教A版)(含答案)
对数函数及其性质(人教A版)一、单选题(共10道,每道10分)1.函数的定义域是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:对数函数的定义域2.已知函数的定义域是,则的定义域为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:对数函数的定义域3.已知函数,则的值为( )A.4B.C. D.答案:B解题思路:试题难度:三颗星知识点:对数函数的值域与最值4.函数的值域为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:对数函数的值域5.函数的图象必经过定点( )A.(1,0)B.(1,1)C.(1,2)D.(2,1)答案:B解题思路:试题难度:三颗星知识点:对数函数的图象与性质6.设,,,则( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:对数值大小的比较7.已知函数在上是增函数,则a的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:复合函数的单调性8.若函数的定义域为,则k的取值范围是( )A. B.C. D.解题思路:试题难度:三颗星知识点:对数函数的定义域9.已知函数在上恒有,则a的取值范围是( )A.(1,2)B.C.(1,3)D.(2,3)答案:A解题思路:试题难度:三颗星知识点:对数函数的值域与最值10.下列函数中既不是奇函数,又不是偶函数的是( )A. B.C. D.解题思路:试题难度:三颗星知识点:对数函数的图象与性质。
对数函数及性质-习题课课件
目录
• 对数函数的基本性质 • 对数函数的习题解析 • 对数函数的应用 • 对数函数与其他函数的比较 • 总结与回顾
01 对数函数的基本性质
定义与性质
01
02
03
定义
对数函数是指数函数的反 函数,记作y=logₐx (a>0,a≠1)。
性质
对数函数在其定义域内是 单调递增或递减的,其值 域为全体实数R。
运算性质
01
换底公式
logₐb=log₰b/log₰a(a>0,a≠1,b>0)。
02 03
性质
对数函数具有加减乘除运算性质,即logₐm+logₐn=logₐmn、logₐmlogₐn=logₐm/n、logₐm×logₐn=logₐm+logₐn、logₐm/n=logₐmlogₐn(m>0,n>0)。
鼓励学生在实际生活中运用对数知识,通过解决实际问题提高自己 的应用能力。
拓展知识面和视野
建议学生阅读相关资料和文献,了解对数函数在其他领域的应用和 发展趋势,拓展自己的知识面和视野。
THANKS FOR WATCHING
感谢您的观看
对数不等式的求解
掌握如何求解对数不等式,以及对数 不等式的性质。
综合习题
实际应用问题
结合实际问题,例如增长率、复利等,来求解对数方程或不 等式。
与其他知识点的综合
例如与指数函数、幂函数的综合应用,以及对数在实际问题 中的应用。
03 对数函数的应用
在数学中的应用
求解对数方程
概率论与统计学
对数函数在数学中常用于求解对数方 程,如求解$log_b(x) = c$的形式。
微专题16 对数函数及其性质(原卷版)
微专题16对数函数及其性质【方法技巧与总结】知识点一、对数函数的图象与性质1a >01a <<图象性质定义域:()0,+∞值域:R过定点()1,0,即1x =时,0y =在()0,+∞上增函数在()0,+∞上是减函数当01x <<时,0y <,当1x ≥时,0y ≥当01x <<时,0y >,当1x ≥时,0y ≤知识点诠释:关于对数式log a N 的符号问题,既受.a .的制约又受N 的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.以1为分界点,当a ,N 同侧时,log 0a N >;当a ,N 异侧时,log 0a N <.知识点二、底数对对数函数图象的影响1、底数制约着图象的升降.如图知识点诠释:由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于1,不要忽略.2、底数变化与图象变化的规律在同一坐标系内,当1a >时,随a 的增大,对数函数的图像愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)【题型归纳目录】题型一:对数函数与对数型函数图象问题题型二:对数函数性质的理解与运用题型三:对数不等式的解法题型四:对数函数图象与性质的综合问题题型五:反函数性质的高级应用【典型例题】题型一:对数函数与对数型函数图象问题例1.(2022·江西·赣州市赣县第三中学高一阶段练习(理))函数ln||1()e x f x x=+的图像大致为()A .B.C.D.例2.(2022·全国·高一专题练习)已知函数lg ,010()16,102x x f x x x ⎧<≤⎪=⎨-+>⎪⎩,若a ,b ,c 均不相等,且()f a =()f b =()f c ,则abc 的取值范围是()A .(1,10)B .(5,6)C .(10,12)D .(20,24)例3.(2022·全国·高一课时练习)函数2()log ||f x x x =的图象大致为()A .B.C .D .变式1.(2022·全国·高一课时练习)已知函数()()lg 1f x x =+,若()()()f a f b a b =<,则()A .()()111a b -->B .()()111a b --=C .()()111a b --<D .以上选项均有可能变式2.(2022·全国·高一专题练习)函数()log 10(a y x a =+>,且1a ≠)与函数221y x ax =-+在同一直角坐标系中的图象大致是()A .B .C .D .变式3.(2022·湖南·高一期末)已知三个函数,,log x b c y a y x y x ===的图象示,则()A .a b c >>B .c a b >>C .a c b>>D .c b a>>变式4.(2022·全国·高一专题练习)设幂函数312,,c c c y x y x y x ===,指数函数1234,,,x x x x y a y a y a y a ====,对数函数1234log ,log ,log ,log b b b b y x y x y x y x ====在同一坐标系中的图象如下图所示,则它们之间的大小关系错误的是().A .13201c c c <<<<B .431201a a a a <<<<<C .342101b b b b <<<<<D .431201b b b b <<<<<变式5.(2022·江西师大附中高一期末)已知()2232,0,lg ,0.x x x f x x x ⎧--≤⎪=⎨>⎪⎩,若关于x 的方程()()f x m m R =∈有四个不相等的实根1234,,,x x x x ,则1234x x x x ⋅⋅⋅的取值范围是()A .10,4⎡⎫⎪⎢⎣⎭B .70,16⎡⎫⎪⎢⎣⎭C .10,2⎡⎫⎪⎢⎣⎭D .90,16⎡⎫⎪⎢⎣⎭变式6.(2022·四川·广安二中高一期中)当104x <<时,16log xa x <,则a 的取值范围是A .1(,1)2B .1,12⎡⎫⎪⎢⎣⎭C .1(0,2D .102⎛⎤ ⎥⎝⎦,变式7.(2022·黑龙江·哈九中高一期中)已知函数()log 11a y x =-+(0a >且1a ≠)恒过定点()00,A x y ,且满足001mx ny +=,其中m ,n 是正实数,则21m n+的最小值()A .4B.C .9D变式8.(2022·全国·高一专题练习)已知函数log (3)2a y x =-+(0a >且1a ≠)的图象恒过定点P ,点P 在幂函数()y f x =的图象上,则lg (4)lg (25)f f +=()A .2-B .2C .1D .1-变式9.(2022·全国·高一课时练习)已知1x ,2x ,3x 分别为方程122log xx =,21log 2xx ⎛⎫= ⎪⎝⎭,121log 2xx ⎛⎫= ⎪⎝⎭的根,则1x ,2x ,3x 的大小关系为()A .132x x x <<B .123x x x <<C .312x x x <<D .321x x x <<题型二:对数函数性质的理解与运用例4.(2022·天津南开·高一期末)已知函数f (x )=m +log 2x 2的定义域是[1,2],且f (x )≤4,则实数m 的取值范围是()A .(-∞,2]B .(-∞,2)C .[2,+∞)D .(2,+∞)例5.(2022·全国·高一单元测试)已知函数()()[]2lg 1,1,3f x x x =+∈-,则()f x 的值域为()A .[)0,∞+B .[)0,1C .[]lg2,1D .[]0,1例6.(2022·陕西省安康中学高一期末)已知函数()()123,1ln 1,1a x a x f x x x ⎧-+<=⎨+≥⎩的值域为R ,则a 的取值范围是()A .1,2⎛⎫-∞ ⎪⎝⎭B .11,2⎡⎫-⎪⎢⎣⎭C .10,2⎛⎫ ⎪⎝⎭D .10,2⎡⎫⎪⎢⎣⎭变式10.(2022·四川攀枝花·高一期末)已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是()A .()(),25,-∞⋃+∞B .(][),25,-∞⋃+∞C .()2,5D .[]2,5变式11.(2022·新疆·石河子第二中学高一阶段练习)已知()212()log f x x ax a =-+的值域为R ,且()f x 在(3,1)--上是增函数,则实数a 的取值范围是()A .20a ≤≤B .102a -≤≤或4a ≥C .20a -≤≤或4a ≥D .04a ≤≤变式12.(2022·江苏省新海高级中学高一期中)若0.8log 0.9a =, 1.2log 0.9b =,0.91.2c =,则a ,b ,c 的大小关系为()A .a b c >>B .a c b >>C .c b a>>D .c a b>>变式13.(2022·四川·成都铁路中学高一阶段练习)已知log 3>log 3>0b a ,则下列不等式一定成立的是()A .11a b>B .1122ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C .2log ()0a b ->D .21a b -<变式14.(2022·全国·高一课时练习)函数22log (2)y x x =-的单调递减区间为()A .(1,2)B .(]1,2C .(0,1)D .[)0,1变式15.(2022·全国·高一课时练习)已知函数()()log 6a f x ax =-在()0,2上为减函数,则实数a 的取值范围是()A .(]1,3B .()1,3C .()0,1D .()1,+∞变式16.(2022·全国·高一课时练习)设函数()()2lg 1f x x =+,则使得()()324f x f x ->-成立的x 的取值范围为()A .1,13⎛⎫ ⎪⎝⎭B .31,2⎛⎫- ⎪⎝⎭C .3,2⎛⎫-∞ ⎪⎝⎭D .()3,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭变式17.(2022·全国·高一单元测试)函数212)(()log 34f x x x =-++的单调增区间为()A .31,2⎛⎫- ⎪⎝⎭B .3,2⎛⎫-∞- ⎪⎝⎭C .3,42⎛⎫⎪⎝⎭D .3,2⎛⎫+∞ ⎪⎝⎭变式18.(2022·浙江·长兴县教育研究中心高一期中)若函数22()log f x m x =+在区间[1,2]上恒有()4f x ≤,则实数m 的取值范围是()A .(,2]-∞B .(,2)-∞C .[2,)+∞D .(2,)+∞变式19.(2022·全国·高一专题练习)已知()()2ln 1f x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭,若[]10,3x ∀∈,[]21,2x ∃∈,使得()()12f x g x ≥,则实数m 的取值范围为()A .1,2⎛⎤-∞- ⎥⎝⎦B .1,4⎛⎤-∞ ⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .1,4⎡⎫+∞⎪⎢⎣⎭变式20.(2022·河南平顶山·高一期末)已知函数()21log ,a f x x x a ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的最大值与最小值的差为2,则=a ()A .4B .3C .2D题型三:对数不等式的解法例7.(2022·全国·高一专题练习)已知函数()()2log 1f x x x =+-,则不等式()0f x >的解集是___________.例8.(2022·吉林松原·高一阶段练习)已知函数f (x )是定义在R 上的偶函数,且在[0,+∞)上是减函数,103f ⎛⎫-= ⎪⎝⎭,则不等式()8log 0f x >的解集为___.例9.(2022·河南新乡·高一期末)已知函数()2log 1f x x =-,则不等式()12f x -≤的解集为__________.变式21.(2022·上海市控江中学高一期末)不等式lg 1x >的解集为______.变式22.(2022·全国·高一专题练习)不等式1log (4)log a ax x ->-的解集是_______.变式23.(2022·广东·深圳实验学校高中部高一阶段练习)已知实数0a >,且满足324155,a a ++>则不等式()()log 32log 85a a x x +<-的解集为___________.变式24.(2022·全国·高一单元测试)不等式()2log 431x x ->+的解集是______.变式25.(2022·全国·高一单元测试)不等式()22log 12x +<的解集为______.变式26.(2022·重庆市杨家坪中学高一阶段练习)已知不等式()22log 251ax x -+>的解集为R ,则a 的取值范围是________.变式27.(2022·全国·高一专题练习)不等式log 2(2x +3)>log 2(5x -6)的解集为________.变式28.(2022·全国·高一专题练习)21,1()lg ,1x x f x x x ⎧-<⎪=⎨-⎪⎩,则不等式(2)()f x f x -<的解集为__.变式29.(2022·上海市行知中学高一期中)已知函数2()lg ||f x x x =+,则不等式()1f x >的解集为________.变式30.(2022·云南·昭通市第一中学高一期中)已知函数()()()11330log 0x x f x x x +⎧≤⎪=⎨>⎪⎩,则不等式()1f x >的解集为___________.变式31.(2022·浙江·高一期末)已知函数1(),12xf x x R =∈+,则不等式()1log 23af >的解集为____________.题型四:对数函数图象与性质的综合问题例10.(2022·湖南·株洲二中高一阶段练习)已知定义在R 上的函数()f x 满足()()0f x f x --=且()()2log 21x f x kx =++,()()g x f x x =+.(1)求()f x 的解析式;(2)若不等式()()4213x xg a g -⋅+>-恒成立,求实数a 取值范围;(3)设()221h x x mx =-+,若对任意的[]10,3x ∈,存在[]21,3x ∈,使得()()12g x h x ≥,求实数m 取值范围.例11.(2022·天津市西青区杨柳青第一中学高一阶段练习)已知函数()()241=log 2log +2f x x x -⎛⎫ ⎪⎝⎭(1)求不等式()2f x >的解集;(2)当[]1,16x ∈时,求该函数的值域;(3)若()4log f x m x <对于任意[]4,16x ∈恒成立,求m 的取值范围.例12.(2022·辽宁·东北育才学校高一阶段练习)已知函数()()2210f x ax x a a =-+->.(1)若()f x 在区间[]1,2为单调增函数,求a 的取值范围;(2)设函数()f x 在区间[]1,2上的最小值为()g a ,求()g a 的表达式;(3)设函数211()log 21xh x x ⎛⎫=+ ⎪+⎝⎭,若对任意[]12,1,2x x ∈,不等式()()12f x h x ≥恒成立,求实数a 的取值范围.变式32.(2022·上海交大附中高一期中)已知0a ≠,函数()2log 4axf x x=-.(1)若3a =,求不等式()1f x <的解集;(2)若0a >,求证:函数y f x =()的图象关于点()22,log P a 成中心对称;(3)若方程2(()log 2)0f x a x +--=的解集恰有一个元素,求a 的取值范围.变式33.(2022·全国·高一单元测试)已知函数()()2log (0f x x a a =+>),当点M (x ,y )在函数g (x )的图象上运动时,对应的点(3,2)M x y '在f (x )的图象上运动,则称g (x )是f (x )的相关函数.(1)解关于x 的不等式()1f x <;(2)若对任意的()0,1x ∈,f (x )的图象总在其相关函数图象的下方,求a 的取值范围;(3)设函数()()()F x f x g x =-,()0,1x ∈,当1a =时,求|F (x )|的最大值.题型五:反函数性质的高级应用例13.(2022·湖北·高一阶段练习)若实数α,β满足e 2αα=,ln 2ββ=,则αβ=()A .eB .1C .12D .2例14.(2022·北京市八一中学高一阶段练习)已知1a >,若1x 是函数()log 2021a f x x x =-的一个零点,2x 是函数()2021xg x xa =-的一个零点,则12x x 的值为()A .1B .2021C .22021D .4016例15.(2022·全国·高一课时练习)若关于x 的方程5log 4x x +=与54x x +=的根分别为m 、n ,则m n +的值为()A .3B .4C .5D .6变式34.(2022·辽宁·高一阶段练习)设函数()f x 的图象与2x a y +=的图象关于直线y x =-对称,若,2020m n +=,()()222m nf f -+-=,则=a ()A .1011B .1009C .1009-D .1011-变式35.(2022·福建师大二附中高一期中)设方程230 x x +-=的根为α,方程260x x +-=的根为β,则αβ+=()A .1B .2C .3D .6变式36.(2022·河北师范大学附属中学高一期中)已知函数()102x x f x =+-的零点为a ,()()lg 13g x x x =-+-的零点为b ,则a b +=()A .1B .2C .3D .4【过关测试】一、单选题1.(2022·山东省青岛第十九中学高一期中)对于实数0a >,且1a ≠,0b >,且1b ≠,“a b >”是“log 2log 2a b <”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件2.(2022·山东省青岛第十九中学高一期中)已知 5.10.9m =,0.8log 5.1n =, 5.10.8p =,则m 、n 、p 的大小关系为()A .p <n <mB .n <p <mC .m <n <pD .n <m <p3.(2022·江苏·宿迁中学高一期中)空间复杂度是指一个算法运行过程所占用的空间,根据相关资料,围棋状态空间复杂度的上限M 约为3613,而中国象棋空间复杂度的上限N 约为4810(参考数据:lg30.48)≈,则下列各数中与MN最接近的是()A .5010l B .12510C .10510D .135104.(2022·北京·牛栏山一中高一阶段练习)已知函数()f x 的图象沿x 轴向左平移2个单位后与函数2x y =的图象关于y 轴对称,若()03f x =,则0=x ()A .2log 3B .2log 3-C .22log 3-D .22log 3--5.(2022·天津·高一期末)函数()213()log 65f x x x =-+-的单调递减区间是()A .(,3]-∞B .[3,)+∞C .(1,3]D .[3,5)6.(2022·辽宁·东北育才学校高一阶段练习)已知函数()||2()ln 211x f x x =-+-,则不等式(2)0xf x -<的解集是()A .(,0)(1,3)-∞B .(3,1)(0,)--+∞C .(,0)(1,2)(2,3)-∞D .(3,0)(0,2)(2,)-+∞7.(2022·江苏省响水中学高一阶段练习)已知正数,,x y z ,满足346x y z ==,则下列说法不正确的是()A .1112x y z +=B .346x y z >>C.3(2x y z+>D .22xy z >8.(2022·四川省射洪县射洪中学外国语实验学校高一阶段练习)已知函数()()221,01log 1,1x x x f x x x ⎧-+≤<⎪=⎨+≥⎪⎩,g (x )=ax 2+2x +a -1,若对任意的实数x 1∈[0,+∞),总存在实数x 2∈[0,+∞),使得f (x 1)=g (x 2)成立,则实数a 的取值范围为()A .7,4⎛⎫-∞ ⎪⎝⎭B .7,4⎡⎫+∞⎪⎢⎣⎭C .70,4⎡⎫⎪⎢⎣⎭D .70,4⎡⎤⎢⎥⎣⎦二、多选题9.(2022·山东省青岛第十九中学高一期中)下列判断正确的是()A .0∈∅B .函数()1f x x=在定义域上单调递减C .函数()log 11(0,1)a y x a a =-+>≠过定点()2,1D .函数234()2xx f x -++=的单调递增区间是3,2⎛⎤-∞ ⎝⎦10.(2022·浙江师范大学附属中学高一期中)已知0a >,0b >,且1a b +=,则()A .149a b+ B .222139a b b ++C .224a b + D .22log log 2a b +- 11.(2022·浙江大学附属中学高一期末)已知函数()ln f x x =,0a b <<,且()() f a f b =,下列结论正确的是()A .1b a >B.2a b ->C .23b a+>D .()()22118a b +++>12.(2022·浙江·杭十四中高一期末)关于函数1()ln 1xf x x-=+,下列说法中正确的有()A .()f x 的定义域为()(),11,-∞-⋃+∞B .()f x 为奇函数C .()f x 在定义域上是减函数D .对任意1x ,()21,1x ∈-,都有()()1212121x x f x f x f x x ⎛⎫+ ⎪⎝++⎭=三、填空题13.(2022·江苏省新海高级中学高一期中)若不等式()()2log ln 40,1a x x a a -<>≠对于任意()31,e x ∈恒成立,则实数a 的取值范围是____________14.(2022·天津南开·高一期末)下列命题中:①2x y =与2log y x =互为反函数,其图像关于y x =对称;②已知函数()2121f x x x -=--,则()526f =;③当0a >,且1a ≠时,函数()23x f x a -=-必过定点()2,2-;④已知()231a bk k ==≠,且121a b+=,则实数8k =.上述命题中的所有正确命题的序号是___________.15.(2022·辽宁·东北育才学校高一阶段练习)已知定义在()0,+∞上的函数331log ,0<3()=log 1,3<94>9x x f x x x x -≤-≤-⎧⎪⎨⎪⎩,设,,a b c 为三个互不相同的实数,满足()()()f a f b f c ==,则abc 的取值范围为_______.16.(2022·云南省楚雄第一中学高一阶段练习)已知函数()f x 是定义在[]121a a -+,上的偶函数,当01x a + 时,()3.1f x x x =-+若()2log 1f m >,则m 的取值范围是__________.17.(2022·湖南·株洲二中高一阶段练习)已知函数())ln 31f x x x =-++,若,R a b ∈,2022a b +=,则()()20231f b f a -++=________.18.(2022·山东·德州市陵城区翔龙高级中学高一阶段练习)已知函数()22,1log ,1x x f x x x ⎧≤=⎨>⎩,若()f x m =有三个不同实根满足123x x x <<,则()2021123x x m x ++的取值范围为___________.四、解答题19.(2022·山东·济南市章丘区第四中学高一阶段练习)已知21()log 1xf x x+=-(1)求()f x 的定义域、并判断函数的奇偶性;(2)求使()0f x >的x 的取值范围.20.(2022·浙江大学附属中学高一期末)已知a ∈R ,函数()()22log f x x x a =++(1)若函数()f x 过点()1,1,求此时函数()f x 的解析式;(2)设0a >,若对任意1,12t ⎡⎤∈⎢⎥⎣⎦,函数()f x 在区间[],1t t +上的最大值与最小值的差不超过1,求a 的取值范围.21.(2022·辽宁·新民市第一高级中学高一期末)已知函数()2f x x bx c =-+,()f x 的对称轴为1x =且()01f =-.(1)求b 、c 的值;(2)当[]0,3x ∈时,求()f x 的取值范围;(3)若不等式()()2log 2f k f >成立,求实数k 的取值范围.。
2.2.2对数函数及其性质(三课时)
< 1、 log0.56______log0.54
< 3、 若 log3m log3n,则m___n;
> > 2、 log1.51.6______log1.514. 4、 若 log0.7m log0.7n , 则m___n.
利用单调性比较大小
练习:比较下列各数的大
1 1
2
3
4
5
6
7
8
定义域: 值域:
(0,+∞) (,)
性
过点(1,0),即当x=1时,y=0
质 x (0,1)
y0
x (0,1) y 0
x (1,) y 0
在(0,+∞)上是 增 函数
x (1,) y 0
在(0,+∞)上是 减 函数
y
图
y=log 2x
形
y=log 3x
01
y log 1 x x
一
在第一象限按顺时针方向底 补充 数增大。
性质 二
指数函数、对数函数的图象有何关系呢? 先看y=2x 与y=log2x
y=2x
y=2x
y=log2x y=x
指数函数与对数函数
图 象 间 的 关 系
指数函数与对数函数
图 象 间 的 关 系
3、指数函数与对数函数的图象的关系:
对数函数 y loga x 与指数函数 y ax
3
y log 1 x
2
补充 底数互为倒数的两个对数
性质 函数的图象关于x轴对称。
一
在第一象限按顺时针方向底 补充 数增大。
性质 二
3、指数函数与对数函数的图像的关系:
对数函数 y loga x 与指数函数 y ax
第二章 2.2.2对数函数及其性质(2)
答案:A
返回
3.不等式 log 1 (2x+1)>log 1 (3-x)的解集为_____________.
2 2
2x+1>0, 解析:由题意3-x>0, 2x+1<3-x 1 2 ⇒-2<x<3.
1 2 答案:{x|-2<x<3}
1 x>-2, ⇒x<3, 2 x< 3
-
1 3
.
返回
取得最小值时 x= 2
1 - 3 - 2 3
= 2<2,
这时 x [2,8],舍去. 32 1 1 若2loga8+2 -8=1, 1 则 a=2,此时取得最小值时
1- 3 x=2 2 =2
2∈[2,8]符合题意,
1 ∴a=2.
=(log2x-1)(log2x-2)
返回
=(log2x)2-3log2x+2,(6 分) 令 t=log2x. ∵x∈[ 2,8],
1 ∴t∈2,3,(8
分)
利用换元法解决问题时, 一定要求出换元后的变 量的取值范围,即新 函数的定义域.
求此类函数的最值,应 借助函数的图象求解, 此处极易将两端点处的 函数值作为最值,从 而导致解题错误.
返回
[随堂即时演练]
1.设 a=log54,b=log53,c=log45,则 A.a<c<b C.a<b<c B.b<c<a D.b<a<c ( )
解析:由于 b=log53<a=log54<1<log45=c,故 b< a<c.
答案:D
返回
2.函数
f(x)=lg
1 的奇偶性是 2 x +1+x
高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质(第2课时)对数函数及其性质的应用(习题课)应用
高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质(第2课时)对数函数及其性质的应用(习题课)应用案巩固提升新人教A 版必修1[A 基础达标]1.已知a =log 0.60.5,b =ln 0.5,c =0.60.5,则( ) A .a >b >c B .a >c >b C .c >a >bD .c >b >a解析:选B.a =log 0.60.5>log 0.60.6=1,b =ln 0.5<0,0<c =0.60.5<0.60=1, 故a >c >b .2.(2019·衡阳高一检测)函数y =log 15(1-3x)的值域为( )A .(-∞,+∞)B .(-∞,0)C .(0,+∞)D .(1,+∞)解析:选C.因为3x>0,所以-3x<0, 所以1-3x<1.又y =log 15t (t =1-3x)是关于t 的减函数,所以y =log 15t >log 151=0.选C.3.(2019·聊城高一检测)关于函数f (x )=log 12(1-2x )的单调性的叙述正确的是( )A .f (x )在⎝ ⎛⎭⎪⎫12,+∞上是增函数B .f (x )在⎝ ⎛⎭⎪⎫12,+∞上是减函数 C .f (x )在⎝ ⎛⎭⎪⎫-∞,12上是增函数D .f (x )在⎝⎛⎭⎪⎫-∞,12上是减函数 解析:选C.由1-2x >0,得x <12,所以f (x )=log 12(1-2x )的定义域为⎝⎛⎭⎪⎫-∞,12.由于底数12∈(0,1),所以函数f (x )=log 12(1-2x )的单调性与y =1-2x 的单调性相反.因为y =1-2x 在(-∞,+∞)上是减函数,所以f (x )在⎝⎛⎭⎪⎫-∞,12上是增函数,故选C. 4.(2019·六安高一检测)若a >1,且log 1ax 1=log a x 2=log a +1x 3<0,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 3<x 2<x 1D .x 3<x 1<x 2解析:选C.因为log 1ax 1=log a x 2=log a +1x 3<0,所以lg x 1lg 1a=lg x 2lg a =lg x 3lg (a +1)<0,因为a >1,则lg 1a<0,lg(a +1)>lg a >0,所以lg x 1>0,lg x 2<0,lg x 3<0,且lg x 2>lgx 3,所以x 1>1,0<x 3<x 2<1,所以x 3<x 2<x 1.5.下列函数为奇函数的是( )A .f (x )=lg ⎝⎛⎭⎪⎫2x +12xB .f (x )=|lg x |C .f (x )=lg |x |D .f (x )=lg 1-x1+x解析:选D.对于选项A 中的函数f (x )=lg ⎝ ⎛⎭⎪⎫2x +12x ,函数定义域为R ,f (-x )=lg ⎝ ⎛⎭⎪⎫2-x +12-x =lg ⎝ ⎛⎭⎪⎫12x +2x =f (x ),故选项A 中的函数为偶函数;对于选项B 中的函数f (x )=|lg x |,由于函数定义域为(0,+∞),不关于原点对称,故选项B 中的函数既不是奇函数,也不是偶函数;对于选项C 中的函数f (x )=lg|x |,定义域为(-∞,0)∪(0,+∞),关于原点对称,f (-x )=lg|-x |=lg|x |=f (x ),故选项C 中的函数为偶函数;对于选项D 中的函数f (x )=lg 1-x 1+x ,由于函数的定义域为(-1,1),关于原点对称,f (-x )=lg 1+x 1-x =-lg 1-x1+x=-f (x ),故选项D 中的函数为奇函数.故选D.6.若lg(2x -4)≤1,则x 的取值范围是________. 解析:由lg(2x -4)≤1得lg(2x -4)≤lg 10, 所以0<2x -4≤10, 解得2<x ≤7. 答案:(2,7]7.(2019·凉州高一检测)已知函数y =log 2(1-x )的值域为(-∞,0),则其定义域是________.解析:因为函数y =log 2(1-x )的值域为(-∞,0),所以0<1-x <1,即-1<x -1<0,解得0<x <1,所以该函数的定义域为(0,1).答案:(0,1)8.设a >1,函数f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为12,则a =________.解析:因为a >1,所以f (x )=log a x 在[a ,2a ]上递增, 所以log a (2a )-log a a =12,即log a 2=12,所以a 12=2,a =4.答案:49.已知函数f (x )是定义在R 上的奇函数.当x >0时,f (x )=log 2x . (1)求f (x )的解析式; (2)解关于x 的不等式f (x )≤12.解:(1)设x <0,则-x >0, 因为当x >0时,f (x )=log 2x , 所以f (-x )=log 2(-x ), 又因为函数f (x )是奇函数,所以f (x )=-f (-x )=-log 2(-x ). 当x =0时,f (0)=0,综上所述,f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,0,x =0,-log 2(-x ),x <0.(2)由(1)得不等式f (x )≤12可化为x >0时,log 2x ≤12,解得0<x ≤ 2.x =0时,0≤12满足条件.x <0时,-log 2(-x )≤12,解得x ≤-22. 综上可知,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≤-22或0≤x ≤2.10.已知函数f (x )=log 2(1+x 2).求证:(1)函数f (x )是偶函数;(2)函数f (x )在区间(0,+∞)上是增函数.证明:(1)函数f (x )的定义域是R ,f (-x )=log 2[1+(-x )2]=log 2(1+x 2)=f (x ),所以函数f (x )是偶函数.(2)设x 1,x 2为(0,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=log 2(1+x 21)-log 2(1+x 22)=log 21+x 211+x 22.因为0<x 1<x 2,所以0<x 21<x 22,0<1+x 21<1+x 22,所以0<1+x 211+x 22<1.又函数y =log 2x 在(0,+∞)上是增函数,所以log 21+x 211+x 22<0.所以f (x 1)<f (x 2).所以函数f (x )在区间(0,+∞)上是增函数.[B 能力提升]11.log 12(a 2+a +1)与log 1234的大小关系为( )A .log 12(a 2+a +1)≥log 1234B .log 12(a 2+a +1)>log 1234C .log 12(a 2+a +1)≤log 1234D .log 12(a 2+a +1)<log 1234解析:选C.因为y =log 12x 在(0,+∞)上是减函数,而a 2+a +1=⎝ ⎛⎭⎪⎫a +122+34≥34,所以log 12(a 2+a +1)≤log 1234.12.(2019·大庆高一检测)若⎪⎪⎪⎪⎪⎪log a 14=log a 14,且|log b a |=-log b a .则a ,b 满足的关系式是( )A .a >1且b >1B .a >1且0<b <1C .b >1且0<a <1D .0<a <1且0<b <1解析:选C.因为⎪⎪⎪⎪⎪⎪log a 14=log a 14,且|log b a |=-log b a ,所以log a 14>0,log b a <0,即0<a <1,b >1.13.已知函数f (x )=log a (1-x )+log a (x +3)(0<a <1). (1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-2,求a 的值.解:(1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0,解得-3<x <1,所以定义域为(-3,1).(2)函数可化为f (x )=log a (1-x )(x +3)=log a (-x 2-2x +3)=log a [-(x +1)2+4],因为-3<x <1,所以0<-(x +1)2+4≤4,又0<a <1,所以log a [-(x +1)2+4]≥log a 4,即f (x )的最小值为log a 4.由log a 4=-2,得a -2=4,所以a =4-12=12.14.(选做题)已知函数f (x )=log a (3-ax ),(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.解:(1)由题设,3-ax >0对x ∈[0,2]恒成立,且a >0,a ≠1.设g (x )=3-ax , 则g (x )在[0,2]上为减函数,所以g (x )min =g (2)=3-2a >0,所以a <32.所以实数a 的取值范围是(0,1)∪⎝ ⎛⎭⎪⎫1,32. (2)假设存在这样的实数a ,则由题设知f (1)=1, 即log a (3-a )=1,所以a =32.此时f (x )=log 32⎝ ⎛⎭⎪⎫3-32x . 但x =2时,f (x )=log 320无意义.故这样的实数a 不存在.。
第二章 对数函数 习题课
学习目标 1.巩固和深化对数及其运算的理解和运用.2.掌握简单的对数函数的图象变换及其应用.3.会综合应用对数函数性质与其他有关知识解决问题.知识点一 对数概念及其运算1.由指数式对数式互化可得恒等式:⎭⎪⎬⎪⎫a b =Nlog a N =b ⇒log a N a =N (a >0,且a ≠1). 2.对数log a N (a >0,且a ≠1)具有下列性质: (1)0和负数没有对数,即N >0; (2)log a 1=0; (3)log a a =1. 3.运算公式已知a >0,且a ≠1,M 、N >0. (1)log a M +log a N =log a (MN ); (2)log a M -log a N =log a MN ;(3)log a n M m =mnlog a M ;(4)log a M =log c Mlog c a =1log Ma(c >0,且c ≠1).知识点二 对数函数及其图象、性质 函数y =log a x (a >0,且a ≠1)叫做对数函数.(1)对数函数y =log a x (a >0,且a ≠1)的定义域为(0,+∞);值域为R ; (2)对数函数y =log a x (a >0,且a ≠1)的图象过点(1,0); (3)当a >1时,y =log a x 在(0,+∞)上单调递增; 当0<a <1时,y =log a x 在(0,+∞)上单调递减;(4)直线y =1与函数y =log a x (a >0,且a ≠1)的图象交点为(a,1). (5)y =log a x 与y =a x 的图象关于y =x 对称. y =log a x 与y =1log ax 的图象关于x 轴对称.类型一 对数式的化简与求值 例1 (1)计算:(2log (2-3);(2)已知2lg x -y 2=lg x +lg y,求(3log -xy .解 (1)方法一 利用对数定义求值: 设log (2+3)(2-3)=x ,则(2+3)x =2-3=12+3=(2+3)-1,∴x =-1.方法二 利用对数的运算性质求解: log (2+3)(2-3)=log (2+3)12+3=log (2+3)(2+3)-1=-1.(2)由已知得lg(x -y2)2=lg xy ,∴(x -y 2)2=xy ,即x 2-6xy +y 2=0.∴(x y )2-6(xy )+1=0. ∴xy =3±2 2. ∵⎩⎪⎨⎪⎧x -y >0,x >0,y >0,∴x y >1,∴xy=3+22,∴log (3-22)xy =log (3-22)(3+22)=log (3-22)13-22=-1.反思与感悟 在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底,指数与对数互化.跟踪训练1 (1)(lg 3)2-lg 9+1(lg 27+lg 8-lg 1 000)lg 0.3·lg 1.2=________.(2)已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________. 答案 (1)-32 (2)2解析 (1)∵(lg 3)2-lg 9+1=(lg 3)2-2lg 3+1=1-lg 3,lg 27+lg 8-lg 1 000=32lg 3+3lg 2-32=32(lg 3-1)+3lg 2=32(lg 3+2lg 2-1), lg 0.3·lg 1.2=lg310·lg 1210=(lg 3-1)(lg 12-1) =(lg 3-1)(lg 3+2lg 2-1), ∴原式=-32.(2)∵f (ab )=lg(ab )=1.∴f (a 2)+f (b 2)=lg a 2+lg b 2=lg(a 2b 2)=2lg(ab )=2. 类型二 对数函数图象的应用例2 已知函数f (x )=⎩⎪⎨⎪⎧|ln x |,0<x ≤e ,2-ln x ,x >e ,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),求abc 的取值范围.解 f (x )的图象如图:设f (a )=f (b )=f (c )=m , 不妨设a <b <c ,则直线y =m 与f (x )交点横坐标从左到右依次为a ,b ,c , 由图象易知0<a <1<b <e<c <e 2, ∴f (a )=|ln a |=-ln a ,f (b )=|ln b |=ln b .∴-ln a =ln b ,ln a +ln b =0,ln ab =ln 1,∴ab =1. ∴abc =c ∈(e ,e 2).反思与感悟 函数的图象直观形象地显示了函数的性质,因此涉及方程解的个数及不等式的解集等问题大都可以通过函数的图象解决,即利用数形结合思想,使问题简单化.跟踪训练2 已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈[13,2]都有|f (x )|≤1成立,试求a 的取值范围.解 ∵f (x )=log a x ,则y =|f (x )|的图象如图.由图示,要使x ∈[13,2]时恒有|f (x )|≤1,只需|f (13)|≤1,即-1≤log a 13≤1,即log a a -1≤log a 13≤log a a ,亦当a >1时,得a -1≤13≤a ,即a ≥3;当0<a <1时,a -1≥13≥a ,得0<a ≤13.综上所述,a 的取值范围是(0,13]∪[3,+∞).类型三 对数函数的综合应用例3 已知函数f (x )=log a (x +1)(a >1),若函数y =g (x )图象上任意一点P 关于原点对称的点Q 在函数f (x )的图象上. (1)写出函数g (x )的解析式;(2)当x ∈[0,1)时总有f (x )+g (x )≥m 成立,求m 的取值范围. 解 (1)设P (x ,y )为g (x )图象上任意一点, 则Q (-x ,-y )是点P 关于原点的对称点, ∵Q (-x ,-y )在f (x )的图象上, ∴-y =log a (-x +1), 即y =g (x )=-log a (1-x ). (2)f (x )+g (x )≥m ,即log a x +11-x≥m .设F (x )=log a 1+x 1-x =log a (-1+21-x ),x ∈[0,1),由题意知,只要F (x )min ≥m 即可.∵F (x )在[0,1)上是增函数,∴F (x )min =F (0)=0. 故m ≤0即为所求.跟踪训练3 已知函数f (x )的定义域是(-1,1),对于任意的x ,y ∈(-1,1),有f (x )+f (y )=f ⎝⎛⎭⎪⎫x +y 1+xy ,且当x <0时,f (x )>0. (1)验证函数g (x )=ln 1-x1+x,x ∈(-1,1)是否满足上述这些条件;(2)你发现这样的函数f (x )还具有其他什么样的性质?试将函数的奇偶性、单调性方面的结论写出来,并加以证明.解 (1)因为g (x )+g (y )=ln 1-x 1+x +ln 1-y1+y=ln ⎝ ⎛⎭⎪⎫1-x 1+x ·1-y 1+y =ln 1-x -y +xy1+x +y +xy , g ⎝ ⎛⎭⎪⎫x +y 1+xy =ln 1-x +y1+xy 1+x +y 1+xy=ln 1-x -y +xy1+x +y +xy ,所以g (x )+g (y )=g ⎝ ⎛⎭⎪⎫x +y 1+xy 成立.又当x <0时,1-x >1+x >0,所以1-x1+x >1,所以g (x )=ln 1-x1+x >0成立,综上g (x )=ln 1-x1+x满足这些条件.(2)发现这样的函数f (x )在(-1,1)上是奇函数. 因为x =y =0代入条件,得f (0)+f (0)=f (0), 所以f (0)=0.将y =-x 代入条件得f (x )+f (-x )=f (0)=0⇒f (-x )=-f (x ), 所以函数f (x )在(-1,1)上是奇函数. 又发现这样的函数f (x )在(-1,1)上是减函数.因为f (x )-f (y )=f (x )+f (-y )=f ⎝ ⎛⎭⎪⎫x -y 1-xy ,当-1<x <y <1时,x -y1-xy <0,由条件知f ⎝ ⎛⎭⎪⎫x -y 1-xy >0,即f (x )-f (y )>0⇒f (x )>f (y ), 所以函数f (x )在(-1,1)上是减函数.1.若log x 7y =z ,则( ) A.y 7=x z B.y =x 7z C.y =7x z D.y =z 7x答案 B解析 由log x 7y =z ,得x z =7y ,∴⎝⎛⎭⎫7y 7=(x z )7,即y =x 7z .2.当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1C.(1,2)D.(2,2)答案 B解析 a >1时,当0<x ≤12时,log a x <0,不合题意.0<a <1时,只需124<log a 12,即log a a 2<log a 12,解得a >22,又a ∈(0,1),∴a ∈⎝⎛⎭⎫22,1.3.已知函数y =f (2x )的定义域为[-1,1],则函数y =f (log 2x )的定义域为( ) A.[-1,1] B.[12,2] C.[1,2] D.[2,4]答案 D解析 ∵-1≤x ≤1,∴2-1≤2x ≤2,即12≤2x ≤2.∴y =f (x )的定义域为[12,2],即12≤log 2x ≤2,∴2≤x ≤4.4.函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( ) A.14 B.12 C.2 D.4 答案 B解析 函数f (x )=a x +log a (x +1),令y 1=a x ,y 2=log a (x +1),显然在[0,1]上, y 1=a x 与y 2=log a (x +1)同增或同减. 因而[f (x )]max +[f (x )]min =f (1)+f (0) =a +log a 2+1+0=a ,解得a =12.5.已知23a =49(a >0),则23log a =________.答案 3解析 设23log a =x ,则a =⎝⎛⎭⎫23x,又23a =49,∴2323x⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=⎝⎛⎭⎫232,即2323x ⎛⎫⎪⎝⎭=⎝⎛⎭⎫232,∴23x =2,解得x =3.1.指数式a b =N 与对数式log a N =b 的关系以及这两种形式的互化是对数运算法则的关键.2.指数运算的实质是指数式的积、商、幂的运算,对于指数式的和、差应充分运用恒等变形和乘法公式;对数运算的实质是把积、商、幂的对数转化为对数的和、差、积.3.注意对数恒等式、对数换底公式及等式log a m b n =n m ·log a b ,log a b =1log b a 在解题中的灵活应用.4.在运用性质log a M n =n log a M 时,要特别注意条件,在无M >0的条件下应为log a M n =n log a |M |(n ∈N *,且n 为偶数).5.指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别.6.明确函数图象的位置和形状要通过研究函数的性质,要记忆函数的性质可借助于函数的图象.因此要掌握指数函数和对数函数的性质首先要熟记指数函数和对数函数的图象.课时作业一、选择题1.已知a =log 0.60.5,b =ln 0.5,c =0.60.5,则( ) A.a >b >c B.a >c >b C.c >a >b D.c >b >a答案 B解析 ∵y =log 0.6x 在(0,+∞)上为减函数. ∴log 0.60.6<log 0.60.5,即a >1. 同理,ln 0.5<ln 1=0,即b <0.0<0.60.5<0.60,即0<c <1. ∴a >c >b .2.已知x ,y ,z 都是大于1的正数,m >0,且log x m =24,log y m =40,log xyz m =12,则log z m 的值为( ) A.160 B.60 C.2003 D.3200答案 B解析 由已知得log m (xyz )=log m x +log m y +log m z =112,而log m x =124,log m y =140,故log m z =112-log m x -log m y =112-124-140=160,即log z m =60.3.函数f (x )=log a [(a -1)x +1]在定义域上( ) A.是增函数 B.是减函数 C.先增后减 D.先减后增 答案 A解析 ∵a >1时,y =log a u ,u =(a -1)x +1都是增函数. 0<a <1时,y =log a u ,u =(a -1)x +1都是减函数. ∴f (x )在定义域上为增函数.4.函数f (x )=ln(x 2+1)的图象大致是( )答案 A解析 本题考查的是对数函数的图象.由函数解析式可知f (x )=f (-x ),即函数为偶函数,排除C ;由函数过(0,0)点,排除B 、D.5.设函数f (x )=⎩⎪⎨⎪⎧21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A.[-1,2]B.[0,2]C.[1,+∞)D.[0,+∞)答案 D解析 f (x )≤2等价于⎩⎪⎨⎪⎧ x ≤1,21-x ≤2或⎩⎪⎨⎪⎧x >1,1-log 2x ≤2,解得0≤x ≤1或x >1. ∴x 的取值范围是[0,+∞).6.两个函数的图象经过平移后能够重合,称这两个函数为“同形”函数,给出下列四个函数: f 1(x )=2log 2(x +1),f 2(x )=log 2(x +2),f 3(x )=log 2x 2,f 4(x )=log 2(2x ), 则是“同形”函数的是( ) A.f 2(x )与f 4(x ) B.f 1(x )与f 3(x ) C.f 1(x )与f 4(x ) D.f 3(x )与f 4(x )答案 A解析 因为f 4(x )=log 2(2x )=1+log 2x ,所以f 2(x )=log 2(x +2),沿着x 轴先向右平移2个单位得到y =log 2x 的图象,然后再沿着y 轴向上平移1个单位可得到f 4(x )=log 2(2x )=1+log 2x ,根据“同形”函数的定义,f 2(x )与f 4(x )为“同形”函数.f 3(x )=log 2x 2=2log 2|x |与f 1(x )=2log 2(x +1)不“同形”,故选A. 二、填空题7.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为________. 答案 23解析 由题意可知求b -a 的最小值即求区间[a ,b ]的长度的最小值,当f (x )=0时,x =1,当f (x )=1时,x =3或13,所以区间[a ,b ]的最短长度为1-13=23,所以b -a 的最小值为23.8.(lg 2)2+lg 2·lg 50+lg 25=________. 答案 2解析 原式=lg 2·(lg 2+lg 50)+lg 25=2lg 2+lg 25=lg 100=2. 9.已知实数a ,b 满足log 12a =log 13b ,下列五个关系式:①a >b >1;②0<b <a <1;③b >a >1;④0<a <b <1;⑤a =b . 其中可能成立的关系式序号为________. 答案 ②③⑤解析 由图易知,12log a =13log b 有且仅有3种情形:0<b <a <1或1<a <b 或a =b =1.10.已知0<a <1,0<b <1,若a log b (x -3)<1,则x 的取值范围是__________.答案 (3,4)解析 ∵0<a <1,∴a log b (x -3)<1=a 0等价于log b (x -3)>0=log b 1.∵0<b <1,∴⎩⎪⎨⎪⎧x -3>0,x -3<1,解得3<x <4. 三、解答题11.已知定义在R 上的偶函数f (x )在区间[0,+∞)上是单调减函数,若f (1)>f (lg 1x),求x 的取值范围.解 因为f (x )是定义在R 上的偶函数且在区间[0,+∞)上是单调减函数,所以f (x )在区间(-∞,0)上是单调增函数,所以不等式f (1)>f (lg 1x)可化为 lg 1x >1或lg 1x<-1, 所以lg 1x >lg 10或lg 1x <lg 110, 所以1x >10或0<1x <110, 所以0<x <110或x >10. 所以x 的取值范围为(0,110)∪(10,+∞). 12.已知函数f (x )=2+log 2x ,x ∈[1,4].(1)求函数f (x )的值域;(2)设g (x )=[f (x )]2-f (x 2),求g (x )的最值及相应的x 的值.解 (1)∵f (x )=2+log 2x 在[1,4]上是增函数,又f (1)=2+log 21=2,f (4)=2+log 24=2+2=4.∴函数f (x )的值域是[2,4].(2)g (x )=[f (x )]2-f (x 2)=4+4log 2x +(log 2x )2-(2+log 2x 2)=(log 2x )2+2log 2x +2=(log 2x +1)2+1.由⎩⎪⎨⎪⎧1≤x ≤4,1≤x 2≤4,得1≤x ≤2, ∴g (x )的定义域是[1,2].∴0≤log 2x ≤1.∴当log 2x =0,即x =1时,g (x )有最小值g (1)=2;当log 2x =1,即x =2时,g (x )有最大值g (2)=5.13.已知函数f (x )=lg(a x -b x )(a >1>b >0).(1)求y =f (x )的定义域;(2)在函数y =f (x )的图象上是否存在不同的两点,使得过这两点的直线平行于x 轴;(3)当a ,b 满足什么条件时,f (x )在(1,+∞)上恒取正值.解 (1)由a x -b x >0,得(a b)x >1,且a >1>b >0, 得a b>1,所以x >0, 即f (x )的定义域为(0,+∞).(2)任取x 1>x 2>0,a >1>b >0,则ax 1>ax 2>1,0<bx 1<bx 2<1,所以ax 1-bx 1>ax 2-bx 2>0,即lg(ax 1-bx 1)>lg(ax 2-bx 2).故f (x 1)>f (x 2).所以f (x )在(0,+∞)上为增函数.假设函数y =f (x )的图象上存在不同的两点A (x 1,y 1),B (x 2,y 2),使直线平行于x 轴,则x 1≠x 2,y 1=y 2,这与f (x )是增函数矛盾.故函数y =f (x )的图象上不存在不同的两点使过两点的直线平行于x 轴.(3)因为f (x )是增函数,所以当x ∈(1,+∞)时,f (x )>f (1),这样只需f (1)=lg(a -b )≥0,即当a ≥b +1时,f (x )在(1,+∞)上恒取正值.四、探究与拓展14.函数f (x )=log 2x ·log 2(2x )的最小值为________.答案 -14解析 由题意得x >0,∴f (x )=log 2x ·log 2(2x )=12log 2x ·log 2(4x 2)=12log 2x ·(log 24+2log 2x )=log 2x +(log 2x )2=⎝⎛⎭⎫log 2x +122-14≥-14.当且仅当x =22时,有f (x )min =-14. 15.已知函数f (x )=log 2(2x +1).(1)求证:函数f (x )在(-∞,+∞)内单调递增;(2)若g (x )=log 2(2x -1)(x >0),且关于x 的方程g (x )=m +f (x )在[1,2]上有解,求m 的取值范围.(1)证明 因为函数f (x )=log 2(2x +1),任取x 1<x 2,则f (x 1)-f (x 2)=log 2(2x 1+1)-log 2(2x 2+1)=log 22x 1+12x 2+1, 因为x 1<x 2,所以0<2x 1+12x 2+1<1, 所以log 22x 1+12x 2+1<0, 所以f (x 1)<f (x 2),所以函数f (x )在(-∞,+∞)内单调递增.(2)解 g (x )=m +f (x ),即g (x )-f (x )=m .设h (x )=g (x )-f (x )=log 2(2x -1)-log 2(2x +1)=log 22x -12x +1=log 2⎝ ⎛⎭⎪⎫1-22x +1. 设1≤x 1<x 2≤2.则3≤2x 1+1<2x 2+1≤5, 13≥12x 1+1>12x 2+1≥15, -23≤-22x 1+1<-22x 2+1≤-25, ∴13≤1-22x 1+1<1-22x 2+1≤35, ∴log 213≤h (x 1)<h (x 2)≤log 235, 即h (x )在[1,2]上为增函数且值域为[log 213,log 235]. 要使g (x )-f (x )=m 有解,需m ∈[log 213,log 235].。
对数函数的图像与性质知识点与习题
对数函数的图像与性质知识点与习题一、知识回顾:1、指数函数)1,0(≠>=a a a y x与对数函数)1,0(log ≠>=a a xy a 的图象与性质2、指数函数)1,0(≠>=a a a y x与对数函数)1,0(log ≠>=a a x y a 互为反函数,其图象关于直线x y =对称二、例题与习题1.)35lg(lg x x y -+=的定义域为___ __;2. 已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若 3.041log212≤-x ,则________∈x4.函数)2(log )(π≤≤=x x x f a 的最大值比最小值大1,则__________∈a5.若函数m y x +=+-12的图象不经过第一象限,则m 的取值范围是 ( )(A )2-≤m (B )2-≥m (C )1-≤m (D )1-≥m6.函数x x f a )1(2log )(-=是减函数,则实数a 的取值范围是 .7.若132log >a,则a 的取值范围是8.已知函数)(x f y =是奇函数,则当0≥x 时,13)(-=xx f ,设)(x f 的反函数是)(x g y =,则=-)8(g9.方程lgx?x +1=0的实数解有______个.10.)2lg(2x x y +-=的递增区间为___________,值域为 .11.求)1,0()(log ≠>-=a a a a y xa 的定义域。
12.已知3log 1)(x x f +=,2log 2)(x x g =,试比较)(x f 与)(x g 的大小关系。
13.已知函数)10)(1(log )1(log )(≠>--+=a a x x x f a a 且, (1)讨论)(x f 的奇偶性与单调性; (2)若不等式2|)(|<x f 的解集为a x x 求},2121|{<<-的值; (3)求)(x f 的反函数)(1x f -;三、练习题1.函数y=log (x-1)(3-x)的定义域是 。
新教材高中数学第四章对数运算与对数函数33第2课时对数函数图象及性质的应用(习题课)课件北师大版
当 log2x=0,即 x=1 时,f(x)取得最大值为 2,
∴函数 f(x)的值域是-14,2.
求函数值域的方法 (1)求对数型函数的值域,一般需要根据对数函数的单调性及真数的取值范 围求解; (2)求函数的值域时,一定要注意定义域对它的影响,并结合函数的单调性 求解,当函数较为复杂时,可对对数函数进行换元,把复杂问题简单化.
(2)[解] 设 u(x)=x2-2ax-a. ∵f(x)在(-∞,-3)上是减函数, ∴u(x)在(-∞,-3)上是减函数, 且 u(x)>0 在(-∞,-3)上恒成立. 又 u(x)=(x-a)2-a-a2 在(-∞,a)上是减函数. ∴au≥(--33,)≥0,∴a≥-95. ∴满足条件的实数 a 的取值范围是-95,+∞.
[跟踪训练] 1.若 y=log(2a-3)x 在(0,+∞)上是增函数,则实数 a 的取值范围为________.
解析:由 y=log(2a-3)x 在(0,+∞)上是增函数,所以 2a-3>1,解得 a>2. 答案:(2,+∞)
2.讨论函数 y=loga(3x-1)的单调性. 解:由 3x-1>0,得函数的定义域为xx>13. 当 a>1,x>13时, 函数 y=f(x)=loga(3x-1)为增函数; 当 0<a<1,x>13时, 函数 y=f(x)=loga(3x-1)为减函数.
[问题探究] 1.已知函数 f(x)=log2( x2+1+x),试判断其奇偶性.
提示:由 f(x)知 x∈R ,
又 f(-x)+f(x)=log2( x2+1-x)+log2( x2+1+x) =log21=0.∴f(x)为奇函数. 2.探究 1 中函数若变为 f(x)=log2( x2+1-x),f(x)还是奇函数吗? 提示:是.
32714_《对数函数及其性质》同步练习9(人教A版必修1)
2.2.2对数函数及其性质5分钟训练(预习类训练,可用于课前) 1.函数f (x )=|log 2x|的图象是()思路解析:考查对数函数的图象及图象变换.注意到y=|log 2x|的图象应是将y=log 2x 的图象位于x 轴下方的部分翻折到x 轴的上方,故选A. 答案:A2.若log a 2<log b 2<0,则a 、b 满足的关系是() A.1<a <bB.1<b <aC.0<a <b <1D.0<b <a <1思路解析:考查y=log a x 和y=log b x 的图象.当x=2时,又log a 2<log b 2<0,所以y=log a x 和y=log b x 为减函数.∴a 、b 均小于1.又由log a 2<log b 2知y=log a x 的图象与y=log b x 的图象如下图所示.故0<b <a <1. 答案:D3.函数y=log a (x-2)+1(a >0且a ≠1)恒过定点_________. 思路解析:若x-2=1,则不论a 为何值,只要a >0且a=1,都有y=1. 答案:(3,1)4.函数f (x )=log (a-1)x 是减函数,则a 的取值范围是_________.思路解析:考查对数函数的概念、性质.注意到a-1既受a-1>0且a-1≠1的制约,又受减函数的约束,由此可列关于a 的不等式求a.由题意知0<a-1<1,∴1<a <2. 答案:1<a <210分钟训练(强化类训练,可用于课中)1.(2006广东高考)函数f(x)=xx -132+lg(3x+1)的定义域是()A.(-31,+∞)B.(-31,1)C.(-31,31)D.(-∞,-31) 思路解析:要使函数有意义,则⎩⎨⎧>+>-,013,01x x 解得-31<x<1.答案:B2.若函数f (x )=log a x (0<a<1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于() A.42B.22C.41D.21思路解析:本题关键是利用f (x )的单调性确定f (x )在[a ,2a ]上的最大值与最小值.f (x )=log a x (0<a<1)在(0,+∞)上是减函数,当x ∈[a ,2a ]时,f (x )max =f (a )=1,f (x )min =f(2a )=log a 2a.根据题意,3log a 2a=1,即log a 2a=31,所以log a 2+1=31,即log a 2=-32.故由32-a =2得a=322-42=. 答案:A3.右图是对数函数y=log a x 当底数a 的值分别取3,34,53,101时所对应图象,则相应于C 1,C 2,C 3,C 4的a 的值依次是()A.3,34,53,101B.3,34,101,53 C.34,3,53,101D.34,3,101,53思路解析:因为底数a 大于1时,对数函数的图象自左向右呈上升趋势,且a 越大,图象就越靠近x 轴;底数a 大于0且小于1时,对数函数的图象自左向右呈下降趋势,且a 越小,图象就越靠近x 轴. 答案:A 4.比较大小:(1)log 0.27和log 0.29;(2)log 35和log 65;(3)(lgm )1.9和(lgm )2.1(m >1);(4)log 85和lg4.思路解析:本题大小比较代表了几个典型的题型.其中题(1)是直接利用对数函数的单调性;题(2)是对数函数底数变化规律的应用;题(3)是指数函数单调性及对数函数性质的综合运用;题(4)是中间量的运用.当两个对数的底数和真数都不相同时,需要找出中间量来“搭桥”,再利用对数函数的增减性.常用的中间量有0、1、2等可通过估算加以选择.(1)log 0.27和log 0.29可看作是函数y=log 0.2x 当x=7和x=9时对应的两函数值,由y=log 0.2x 在(0,+∞)上单调递减,得log 0.27>log 0.29.(2)考察函数y=log a x 底数a >1的底数变化规律,函数y=log 3x (x >1)的图象在函数y=log 6x (x >1)的上方,故log 35>log 65.(3)把lgm 看作指数函数的底数,要比较两数的大小,关键是比较底数lgm 与1的关系.若lgm >1即m >10,则(lgm )x 在R 上单调递增,故(lgm )1.9<(lgm )2.1.若0<lgm <1即1<m <10,则(lgm )x 在R 上单调递减,故(lgm )1.9>(lgm )2.1.若lgm=1即m=10,则(lgm )1.9=(lgm )2.1.(4)因为底数8、10均大于1,且10>8,所以log 85>lg5>lg4,即log 85>lg4.答案:(1)log 0.27>log 0.29.(2)log 35>log 65.(3)m >10时,(lgm )1.9<(lgm )2.1;m=10时,lgm=1,(lgm )1.9=(lgm )2.1;1<m <10时,(lgm )1.9>(lgm )2.1.(4)log 85>lg4. 5.已知函数y=lg (x x -+12),求其定义域,并判断其奇偶性、单调性. 思路解析:注意到12+x +x=xx -+112,即有lg (12+x -x )=-lg (12+x +x ),从而f (-x )=lg (12+x +x )=-lg (12+x -x )=-f (x ),可知其为奇函数.又因为奇函数在关于原点对称的区间上的单调性相同,所以我们只需研究(0,+∞)上的单调性. 解:由题意12+x -x >0,解得x ∈R ,即定义域为R.又f (-x )=lg [1)(2+-x -(-x )]=lg (12+x +x )=lgxx -+112=lg (12+x -x )-1=-lg (12+x -x )=-f (x ),∴y=lg (12+x -x )是奇函数.任取x 1、x 2∈(0,+∞)且x 1<x 2,则121+x <122+x ⇒121+x +x 1<122+x +x 2⇒12111x x ++>22211x x ++,即有121+x -x 1>122+x -x 2>0,∴lg(121+x -x 1)>lg (122+x -x 2),即f (x 1)>f (x 2)成立.∴f (x )在(0,+∞)上为减函数.又f (x )是定义在R 上的奇函数,故f (x )在(-∞,0)上也为减函数. 6.作出下列函数的图象:(1)y=|log 4x|-1;(2)y=31log |x+1|.思路解析:(1)y=|log 4x|-1的图象可以看成由y=log 4x 的图象经过变换而得到:将函数y=log 4x 的图象在x 轴下方部分以x 轴为对称轴翻折上去,得到y=|log 4x|的图象,再将y=|log 4x|的图象向下平移1个单位,横坐标不变,就得到了y=|log 4x|-1的图象.(2)y=31log |x+1|的图象可以看成由y=31log x 的图象经过变换而得到:将函数y=31log x 的图象作出右边部分关于y 轴的对称图象,即得到函数y=31log |x|的图象,再将所得图象向左平移一个单位,就得到所求的函数y=31log |x+1|的图象.解:函数(1)的图象作法如图①~③所示.函数(2)的图象作法如图④~⑥所示. 7.函数y=lg|x|()A.是偶函数,在区间(-∞,0)上单调递增B.是偶函数,在区间(-∞,0)上单调递减C.是奇函数,在区间(0,+∞)上单调递增D.是奇函数,在区间(0,+∞)上单调递减 思路解析:画出函数y=lg|x|的草图即得答案.在画函数y=lg|x|的草图时,注意应用函数y=lg|x|是个偶函数,其图象关于y 轴对称.比如列表时,要先确定对称轴,然后在对称轴的两侧取值列表. 答案:B8.已知f (x )=1+log x 3,g (x )=2log x 2,试比较f (x )与g (x )的大小.思路解析:要比较两个代数式的大小,通常采取作差法或作商法,作差时,所得差同零比较,作商时,应先分清代数式的正负,再将商同“1”比较大小.因为本题中的f (x )与g (x )的正负不确定,所以采取作差比较法.解:f (x )和g (x )的定义域都是(0,1)∪(1,+∞).f (x )-g (x )=1+log x 3-2log x 2=1+log x 3-log x 4=log x 43x. (1)当0<x <1时,若0<43x <1,即0<x <34,此时log x 43x >0,即0<x <1时,f (x )>g (x );(2)当x >1时,若43x >1,即x >34,此时log x 43x >0,即x >34时,f (x )>g (x ); 若43x=1,即x=34,此时log x 43x=0,即x=34时,f (x )=g (x ); 若0<43x <1,即0<x <34,此时log x 43x <0,即1<x <34时,f (x )<g (x ).综上所述,当x ∈(0,1)∪(34,+∞)时,f (x )>g (x );当x=34时,f (x )=g (x ); 当x ∈(1,34)时,f (x )<g (x ).快乐时光 七个男人和一个女人朋友闲来无事,到街上遛达,看到有一录像点高挂着牌子,写着:今晚精彩录像——《七个男人与一个女人的故事》,莫失良机.朋友好奇心发作,买票进场.待人坐齐以后,开始放映.一开场屏幕上出现了真实片名《八仙过海》. 30分钟训练(巩固类训练,可用于课后)1.如下图,当a >1时,在同一坐标系中,函数y=a -x 与y=log a x 的图象是() 思路解析:首先把y=a -x 化为y=(a 1)x ,∵a >1,∴0<a 1<1.因此y=(a1)x ,即y=a -x 的图象是下降的,y=log a x 的图象是上升的. 答案:A2.(2006福建高考,文)已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lgx.设a=f(56),b=f(23),c=f(25),则() A.a<b<cB.b<a<cC.c<b<aD.c<a<b 思路解析:由题意,a=f(56)=f(-54)=-f(54)=-lg 54=lg 45,b=f(23)=f(-21)=-f(21)=-lg 21=lg2, c=f(25)=f(21)=lg 21,由于f(x)=lgx 在实数范围内为增函数,所以有c<a<b. 答案:D3.已知函数f (x )=lg (x 2-3x+2)的定义域为F ,函数g (x )=lg (x-1)+lg (x-2)的定义域为G ,那么()A.GFB.G=FC.F ⊆GD.F ∩G=∅思路解析:F={x|x 2-3x+2>0}={x|x>2或x<1},G={x|x>2}.∴G F.答案:A4.已知函数f (x )=log 2(x 2-ax+3a )在[2,+∞]上是增函数,则实数a 的取值范围是() A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,4)思路解析:解决复合函数问题的通法是把复合函数化归为基本初等函数.令u (x )=x 2-ax+3a ,其对称轴x=2a . 由题意有⎪⎩⎪⎨⎧≤>+-=.22,0324)2(a a a u解得-4<a ≤4. 答案:B5.(2006福建高考,理)函数y=log 21-x x(x>1)的反函数是() A.y=122-x x (x>0)B.y=122-x x(x<0)C.y=x x 212-(x>0)D.y=xx 212-(x<0) 思路解析:求函数时一定不要忘记求反函数的定义域,也就是原函数的值域.原函数值域为y>0,由于y=log 21-x x (x>1)=log 21-x x =log 2(1+11-x ),所以1+11-x =2y,x=121-y +1=122-y y .将x,y对调,可得反函数为y=122-x x(x>0).答案:A6.已知函数f (x )=log abx bx -+(a >1且b >0). (1)求f (x )的定义域; (2)判断函数的奇偶性;(3)判断f (x )的单调性,并用定义证明.思路解析:本题考查定义域、单调性的求法及判断方法,注意要利用定义求解.解:(1)由⎪⎩⎪⎨⎧≠->-+,0,0b x b x bx 解得x <-b 或x >b.∴函数f (x )的定义域为(-∞,-b )∪(b ,+∞). (2)由于f (-x )=log a (b x b x --+-)=log a (b x b x +-)=log a (b x b x -+)-1=-log a (bx bx -+)=-f (x ),所以f (x )为奇函数.(3)设x 1、x 2是区间(b ,+∞)上任意两个值,且x 1<x 2.则b x b x -+22-b x b x -+11=))(()(2))(()(1221122121221212b x b x x x b b x b x b bx bx x x b bx bx x x ---=----+--+-. ∵b >0,x 1-x 2<0,x 2-b >0,x 1-b >0, ∴b x b x -+22-b x bx -+11<0.∴b x b x -+22<bx bx -+11.又a >1时,函数y=log a x 是增函数, ∴log ab x b x -+22<log a bx bx -+11,即f (x 2)<f (x 1).∴函数f (x )在区间(b ,+∞)上是减函数.同理,可证f (x )在(-∞,-b )上也是减函数. 7.已知f (x )=log axx-+11(a>0且a ≠1). (1)求函数的定义域; (2)讨论函数的单调性;(3)求使f (x )>0的x 的取值范围. 解:(1)由xx-+11>0得-1<x<1. ∴函数的定义域为(-1,1). (2)对任意-1<x 1<x 2<1,1111x x -+-2211x x -+=)1)(1()(22121x x x x ---<0,∴1111x x -+<2211x x -+.当a>1时,log a1111x x -+<log a 2211x x -+,即f (x 1)<f (x 2); 当0<a<1时,log a2211x x -+>log a 2211x x -+,即f (x 1)>f (x 2).∴当a>1时,f (x )为(-1,1)上的增函数; 当0<a<1时,f (x )为(-1,1)上的减函数.(3)log axx-+11>0=log a 1. ∴当a>1时,x x -+11>1,即x x -+11-1=xx-12>0.∴2x (x-1)<0.∴0<x<1.当0<a<1时,⎪⎪⎩⎪⎪⎨⎧<-+>-+,111,011xx xx解得-1<x<0;当a>1时,f (x )>0的解为(0,1); 当0<a<1时,f (x )>0的解为(-1,0).8.设函数f (x )=x 2-x+b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1),求f (log 2x )的最小值及对应的x 的值.思路解析:关键是利用已知的两个条件求出a 、b 的值.解:由已知得⎪⎩⎪⎨⎧=+-=+-,2)(log ,log log 22222b a a b b a a即)2()1(.4,0)1(log log 222⎪⎩⎪⎨⎧=+-=-b a a a a由①得log 2a=1,∴a=2. 代入②得b=2.∴f (x )=x 2-x+2.∴f (log 2x )=log 22x-log 2x+2=(log 2x-21)2+47. ∴当log 2x=21时,f (log 2x )取得最小值47,此时x=2.9.设a ≠0,对于函数f (x )=log 3(ax 2-x+a ), (1)若x ∈R ,求实数a 的取值范围; (2)若f (x )∈R ,求实数a 的取值范围.思路解析:f (x )的定义域是R ,等价于ax 2-x+a >0对一切实数都成立,而f (x )的值域为R ,等价于其真数ax 2-x+a 能取遍大于0的所有实数值,(1)与(2)虽只有一字之差,但结果却大不相同.解:(1)f (x )的定义域为R ,则ax 2-x+a >0对一切实数x 恒成立,其等价条件是⎩⎨⎧<-=∆>.041,02a a 解得a >21. (2)f (x )的值域为R ,则真数ax 2-x+a 能取遍大于0的所有实数,其等价条件是⎩⎨⎧≥-=∆>.041,02a a 解得0<a ≤21. 10.已知a>0且a ≠1,f (log a x )=12-a a (x-x1). (1)试证明函数y=f (x )的单调性.(2)是否存在实数m 满足:当y=f (x )的定义域为(-1,1)时,有f (1-m )+f (1-m 2)<0?若存在,求出其取值范围;若不存在,请说明理由.(3)若函数f (x )-4恰好在(-∞,2)上取负值,求a 的值. (1)证明:由f (log a x )=12-a a (x-x 1),得f (x )=12-a a (a x -a -x ),x ∈R ,任取x 1<x 2,f (x 1)-f (x 2)=12-a a (1x a -2x a )21211x x x x a a +++.a>1时,1x a <2x a ,a 2-1>0;0<a<1时,1x a >2xa ,a 2-1<0.综上可得f (x 1)<f (x 2),即函数为减函数.(2)解:因为f (-x )=-12-a a(a x -a -x )=-f (x ),即函数为奇函数,f (1-m )+f (1-m 2)<0可转化为f (1-m )<f (m 2-1),所以⎪⎩⎪⎨⎧-<-<-<-<-<-.11,111,11122m m m m 解得1<m<2.(3)解:f (x )-4恰好在(-∞,2)的值为负,即当x ∈(-∞,2)时,有f (x )-4<f (2)-4=0,解得a=2±3.11.已知f (x )=lg (a x -b x )(a>1>b>0). (1)求y=f (x )的定义域;(2)在函数图象上是否存在不同两点,使过这两点的直线平行于x 轴?思路解析:(2)的思维难点是把问题化归为研究函数的单调性问题. 解:(1)由a x -b x >0,得(b a )x >1=(ba )0. ∵ba>1,∴x>0. ∴函数的定义域为(0,+∞).(2)先证明f (x )是增函数.对于任意x 1>x 2>0,∵a>1>b>0,∴1x a >2x a ,1x b <2xb . ∴1xa -1x b >2x a -2xb .∴lg (1xa -1x b )>lg (2x a -2xb ). ∴f (x 1)>f (x 2).∴f (x )在(0,+∞)上为增函数.假设y=f (x )上存在不同的两点A (x 1,y 1)、B (x 2,y 2),使直线AB 平行于x 轴,则x 1≠x 2,y 1=y 2,这与f (x )是增函数矛盾.∴y=f (x )的图象上不存在两点,使过这两点的直线平行于x 轴.12.2006年春节晚会的现场上无数次响起响亮的掌声,某报记者用仪器测量到最响亮的一次音量达到了90.1分贝.分贝是计量声音强度相对大小的单位.物理学家引入了声压级(spl )来描述声音的大小:把一很小的声压P 0=2×10-5帕作为参考声压,把所要测量的声压P 与参考声压P 0的比值取常用对数后乘以20得到的数值称为声压级.声压级是听力学中最重要的参数之一,单位是分贝(dB ).分贝值在60以下为无害区,60~110为过渡区,110以上为有害区. (1)根据上述材料,列出分贝y 与声压P 的函数关系式.(2)某地声压P=0.002帕,试问该地为以上所说的什么区?声音环境是否优良?思路解析:由已知条件即可写出分贝y 与声压P 之间的函数关系式,然后由函数关系式求得当P=0.002帕时,分贝y 的值.由此可判断所在区. 解:(1)由已知y=(lg0P P )×20=20·lg 0P P(其中P 0=2×10-5). (2)将P=0.002代入函数关系y=20lg0P P ,则y=20lg 5102002.0-⨯=20lg102=40(分贝). 由已知条件知40分贝小于60分贝,所以在噪音无害区,环境优良.。
对数函数的图象与性质(含答案)
对数函数的图象与性质一、单选题(共10道,每道10分)1.函数(a>0,且a≠1)的图象过定点( )A.(0,)B.(1,0)C.(1,3)D.(,3)答案:C解题思路:试题难度:三颗星知识点:对数函数的图象与性质2.已知函数在(,0)上恒有f(x)>0,则a的取值范围是( )A.(1,2)B.(2,+∞)C.(1,3)D.(2,3)答案:A解题思路:试题难度:三颗星知识点:对数函数的图象与性质3.已知函数的图象不经过第四象限,则实数a,b满足( )A.a≥1,b≥0B.a>0,b≥1C. D.a+2b≥0答案:C解题思路:试题难度:三颗星知识点:对数函数的图象4.已知点(m,n)在函数f(x)=lgx的图象上,则下列各点也在该函数的图象上的是( )A.(m2,2n)B.(10m,10n)C.(,n+1)D.(,n+1)答案:A解题思路:试题难度:三颗星知识点:对数函数的图象与性质5.函数的值域为( )A.[0,+∞)B.(0,+∞)C.[1,+∞)D.(1,+∞)答案:B解题思路:试题难度:三颗星知识点:对数函数的值域6.函数的值域是( )A.RB.[-2,+∞)C.[0,+∞)D.(0,4]答案:B解题思路:试题难度:三颗星知识点:对数函数的值域7.关于函数,下列结果正确的是( )A.值域为(0,+∞)B.图象关于x轴对称C.定义域为RD.在区间(-∞,0)上单调递增答案:D解题思路:试题难度:三颗星知识点:对数函数的定义域、值域、图象和单调性8.若函数(a>0,且a≠1)的定义域和值域都是[0,1],则a=( )A. B.C.2D.3答案:C解题思路:试题难度:三颗星知识点:对数函数的定义域、值域和单调性9.若,则有( )A.0<a<1,x>0B.0<a<1,x>1C.a>1,x>0D.a>1,x>1答案:D解题思路:试题难度:三颗星知识点:对数函数的单调性10.若函数(a>0,且a≠1)在区间[a,2a2]上的最大值与最小值之差为2,则a=( )A.2或B.3或C.4或D.2或答案:A解题思路:试题难度:三颗星知识点:对数函数的单调性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M (2) log a log a M log a N N
(3) loga M n n loga M (n R) 语言表达:
(1) 积的对数等于对数的和; (2) 商的对数等于对数的差; (3) 幂的对数等于指数与对数的积.
重要公式:
换底公式
log c b log a b log ca
质
ቤተ መጻሕፍቲ ባይዱ
x>1时, y>0
(5) 在(0,+∞)上是增函数 (5)在(0,+∞)上是减函数
点睛:
要正确识别函数的图象:一是熟悉各种 基本初等函数的图象,如:一次函数、 二次函数、反比例函数、指数函数、对 数函数的图象;二是把握函数图象的性 质,根据图象的性质去判断,如:过定 点、定义域、值域、单调性、奇偶性等。
请大家认真回顾总结以上七种题型 及其解题方法,举一反三。 完成《导学案》P51~54页相应题目, 后天随机抽取15名幸运同学的《导 学案》给老师批阅。~O(∩_∩)O~
对数函数y=log a x (a>0, a≠1)
a>1
图 象
o y (1, 0) x y
0<a<1
(1, 0) o
x
(1) 定义域: (0,+∞) 性 (2) 值域:R (3) 过点(1,0), 即x=1 时, y=0 (4) 0<x<1时, y<0; (4) 0<x<1时, y>0; x>1时, y<0
对数恒等式
a
loga N
N.
(a, c (0,1) (1, ), N 0)
其他重要公式:
(1) log a m n N log a N m
n
1 (2) loga b logb a
a, b (0,1) (1, )
对数函数的定义:
一般地,函数 y = loga x (a>0,且a≠1) 叫做对数函数.其中 x是自变量, 函数的定义域是( 0 , +∞).
点睛:
两个对数值比较大小,如果是同一函数的 函数值,可利用单调性比较,如果不是同 一函数的函数值,可对所涉及的值进行变 换,尽量化为可比较的形式。另外,还可 利用函数图象直观判断。 比较大小方法灵活多样,是对数学能力的 极好训练,注意在平时的练习中积累方法。
点睛: 先用换元思想求出X的取值范围, 即f(x)的定义域,再转化为二次 函数求最值的方法求解。
对数函数及其性质 习题课
复习回顾:
1) 对数的定义:如果 a N a 0, 且a 1, 那么 数 x 叫做以 a 为底的 N 的对数,记作 x log a N ,
x
王新敞
奎屯 新疆
其中 a 叫做对数的底数,N 叫做真数。
王新敞
奎屯
新疆
2) 指数式与对数式的互化:
,
王新敞
奎屯 新疆
a N loga N b
b
3) 对数的重要性质:
① 负数与零没有对数; ② loga 1 0, loga a 1;
王新敞
奎屯
新疆
王新敞
奎屯
新疆
4) 对数的运算性质: 如果 a > 0,a 1,M > 0, N > 0 有:
⑴ log(MN) loga M loga N a