一元二次方程知识点串讲
一元二次方程九年级知识点
一元二次方程九年级知识点一元二次方程作为初中数学中的重要内容之一,是九年级数学学习的重点之一。
掌握一元二次方程的知识,不仅能够解决实际问题,还能培养学生逻辑思维和解决问题的能力。
本文将带领大家逐步了解一元二次方程的基本概念、求解方法以及相关应用。
一、一元二次方程的概念和形式一元二次方程是指含有未知数的二次项、一次项和常数项的等式。
一般表示为ax² + bx + c = 0,其中a、b、c为已知数,且a≠0。
其中a、b、c分别代表二次项系数、一次项系数和常数项。
解一元二次方程就是要求解出未知数x的值,使得方程成立。
二、一元二次方程的求解方法1. 因式分解法当一元二次方程能够因式分解时,我们可以通过因式分解的方法来求解方程。
以方程x² - 5x + 6 = 0为例,我们可以将方程因式分解为(x - 2)(x - 3) = 0,然后令(x - 2)和(x - 3)分别等于0,解得x的值为2和3。
2. 公式法当一元二次方程在因式分解上比较困难或无法进行因式分解时,我们可以通过公式法来求解方程。
一元二次方程的求解公式为x = (-b ± √(b² - 4ac)) / (2a)。
其中带 ±的是因为方程可能有两个解。
三、一元二次方程的相关性质除了求解一元二次方程,了解一些与一元二次方程相关的性质也是很重要的。
1. 二次函数和一元二次方程的关系二次函数和一元二次方程是相互关联的。
一元二次方程y = ax²+ bx + c的解对应于二次函数y = ax² + bx + c的图像上的零点。
而二次函数的图像上的顶点坐标则能告诉我们方程的最值。
2. 一元二次方程根的判别式方程的根是指使方程成立的解,一元二次方程根的判别式能够告诉我们方程有几个根以及根的性质。
根的判别式为D = b²- 4ac。
当D > 0时,方程有两个不相等的实根;当D = 0时,方程有两个相等的实根;当D < 0时,方程无实根,但可能有复根。
一元二次方程复习知识点梳理
一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0)。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a )2=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
X+a=±b∴1x =-a+b 2x =-a-b2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b ≤0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0)。
步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2-4ac ≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。
步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2 =3(x+4)中,不能随便约去x +4。
一元二次方程讲义全
一元二次方程讲义全一元二次方程讲义考点一、概念1)定义:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。
2)一般表达式:ax^2+bx+c=(a≠0)注:当b=0时可化为ax^2+c=0,这是一元二次方程的配方式。
3)四个特点:只含有一个未知数;且未知数次数最高次数是2;是整式方程。
要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。
如果能整理为ax^2+bx+c=(a≠0)的形式,则这个方程就为一元二次方程。
4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a≠0)。
4)难点:如何理解“未知数的最高次数是2”:①该项系数不为0;②未知数指数为2;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x的一元二次方程的是()A。
(x+1)^3=2(x+1)B。
2√x+1-11=0C。
ax^2+bx+c=0D。
x^2+2x=x^2+1变式:当k≠0时,关于x的方程kx^2+2x=x^2+3是一元二次方程。
例2、方程(m+2)x^m+3mx+1=0是关于x的一元二次方程,则m的值为。
考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;典型例题:例1、已知2y^2+y-3的值为2,则4y^2+2y+1的值为。
例2、关于x的一元二次方程(a-2)x^2+x+(a^2-4)=0的一个根为-2,则a的值为。
说明:任何时候,都不能忽略对一元二次方程二次项系数的限制。
例3、已知关于x的一元二次方程ax^2+bx+c=0(a≠0)的系数满足a+c=b,则此方程必有一根为-1.说明:本题的关键点在于对“代数式形式”的观察,再利用特殊根“-1”巧解代数式的值。
例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为。
一元二次方程知识点
一元二次方程知识点一元二次方程,是指形式为ax^2 + bx + c = 0的方程,其中a、b、c为已知常数且a ≠ 0,x为未知数。
一元二次方程是高中数学的重要内容之一,了解一元二次方程的知识点对于解决相关问题非常有帮助。
一、解的个数和性质:对于一元二次方程ax^2 + bx + c = 0,它的解的个数和性质与判别式有关。
判别式Δ = b^2 - 4ac,根据Δ的值可以得出以下结论:1. 当Δ > 0时,方程有两个不相等的实根。
2. 当Δ = 0时,方程有两个相等的实根。
3. 当Δ < 0时,方程没有实根。
二、求解过程:求解一元二次方程的过程包括以下几个步骤:1. 化简方程,将方程整理成标准形式:ax^2 + bx + c = 0。
2. 判断方程的根的个数。
根据判别式Δ的值可以判断根的个数。
3. 根据根的个数分别求解:(1) 当方程有两个不相等的实根时,可以应用求根公式:x = (-b ± √Δ) / 2a。
(2) 当方程有两个相等的实根时,可以将方程化简为(x -x1)^2 = 0的形式,解得x = x1。
(3) 当方程没有实根时,可应用虚数解的概念,解的形式为x = (-b ± i√|Δ|) / 2a,其中i是虚数单位。
三、一元二次方程的图像:一元二次方程的图像是抛物线,其开口的方向与二次项系数a的正负有关。
当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
抛物线的顶点坐标为(-b/2a, -Δ/4a)。
四、应用:一元二次方程的应用非常广泛,尤其在物理学和工程学中。
例如,在抛体运动中,物体的运动轨迹可以用一元二次方程描述;在工程设计中,一元二次方程可以用于求解最优化问题,如求解最大面积或最小成本等。
总之,掌握一元二次方程的知识点对于高中数学的学习非常重要。
需要熟练掌握求解一元二次方程的方法,并能灵活应用于实际问题的解决中。
同时,理解一元二次方程的图像及其性质,能够更好地理解方程的几何意义和应用背景。
一元二次方程知识点归纳
②销售问题;利润问题,利润=售价-本钱;利润率=利润/本钱×100%;
③比赛问题:
④面积问题:a.直接利用相应图形的面积公式列方程;b.将不规那么图形通过割补或平移形成规那么图形,运用面积之间的关系列方程.
3.根的判别式
(1)当Δ= 0时,原方程有两个不相等的实数根.
(2)当Δ= 0时,原方程有两个相等的实数根.ቤተ መጻሕፍቲ ባይዱ
(3)当Δ= 0时,原方程没有实数根.
例:方程 的判别式等于8,故该方程有两个不相等的实数根;方程 的判别式等于-8,故该方程没有实数根.
*4.根与系数的关系
〔1〕根本关系:假设关于x的一元二次方程ax2+bx+c=0(a≠0)有两个根分别为x1、x2,那么x1+x2=;x1x2=。注意运用根与系数关系的前提条件是△≥0.
一元二次方程知识点
一、知识清单梳理
知识点一:一元二次方程及其解法
关键点拨及对应举例
1.一元二次方程的相关概念
(1)定义:只含有一个未知数,且未知数的最高次数是2的整式方程.
(2)一般形式:ax2+bx+c=0(a≠0),其中ax2、bx、c分别叫做二次项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常数项.
(4)配方法:当一元二次方程的二次项系数为1,一次项系数为偶数时,也可以考虑用配方法.
解一元二次方程时,注意观察, 先特殊后一般,即先考虑能否用直接开平方法与因式分解法,不能用这两种方法解时,再用公式法.
例:把方程x2+6x+3=0变形为(x+h)2=k的形式后,h=-3,k=6.
一元二次方程专题讲解,知识点归纳,典型例题精讲精练
第二章 一元二次方程专题1 一元二次方程的定义1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 要点诠释: 识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,都能化成形如02=++c bx ax ,(0≠a )这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx 是一次项,b是一次项系数;c 是常数项.要点诠释:(1)只有当时,方程02=++c bx ax 才是一元二次方程; (2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.【例题精选】例1 方程5x 2﹣2=﹣3x 的二次项系数、一次项系数、常数项分别是( )A .5、3、﹣2B .5、﹣3、﹣2C .5、3、2D .5、﹣3、2【分析】直接利用一元二次方程中各部分的名称分析得出答案.【解答】解:5x 2﹣2=﹣3x 整理得:5x 2+3x ﹣2=0,则二次项系数、一次项系数、常数项分别是:5、3、﹣2.故选:A .例2(2019秋•兰州期末)下列方程是关于x的一元二次方程的是()A.x=B.ax2+c=0C.a2x﹣3x=x(1﹣x)D.x(x2﹣1)=0【分析】根据一元二次方程的定义逐个判断即可.【解答】解:A、不是关于x的一元二次方程,故本选项不符合题意;B、不是关于x的一元二次方程,故本选项不符合题意;C、是关于x的一元二次方程,故本选项符合题意;D、不是关于x的一元二次方程,故本选项不符合题意;故选:C.例3 (2019秋•襄阳期末)已知x=1是一元二次方程2x2﹣cx=0的一个根,则c的值是()A.﹣1B.2C.3D.﹣2【分析】将x=1代入方程可得关于c的方程,解之可得.【解答】解:将x=1代入方程2x2﹣cx=0,得:2﹣c=0,解得c=2,故选:B.【随堂练习】1.(2021•潜江模拟)下列是一元二次方程的是()A.﹣5x+2=1B.2x2﹣y+1=0C.x2+2x=0D.x2﹣=0【解答】解:A、含有一个未知数,不是一元二次方程,故此选项不符合题意;B、含有两个未知数,不是一元二次方程,故此选项不符合题意;C、是一元二次方程,故此选项符合题意;D、含有分式,不是一元二次方程,故此选项不符合题意.故选:C.2.(2020秋•姜堰区期末)已知关于x的方程(a﹣1)x2﹣2x+1=0是一元二次方程,则a满足的条件是()A.a≠0B.a≠1C.a>1D.a≤2【解答】解:∵方程(a﹣1)x2+x﹣2=0是关于x的一元二次方程,∴a﹣1≠0,解得a≠1.故选:B.3.(2021•武汉模拟)方程3x2﹣2x﹣1=0的二次项系数和一次项系数分别为()A.3和2B.3和﹣2C.3和﹣1D.3和1【解答】解:方程3x2﹣2x﹣1=0的二次项系数和一次项系数分别为3和﹣2,故选:B.2 直接开平方法1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.【例题精选】例1(2020•颍州区一模)解方程:(x﹣3)2=4.【分析】根据直接开方法即可求出答案.【解答】解:∵(x﹣3)2=4,∴x﹣3=±2,∴x=5或x=1;例2(2020•宿松县模拟)解方程:4(2x﹣1)2﹣36=0.【分析】根据直接开方法即可求出答案.【解答】解:∵4(2x﹣1)2﹣36=0,∴(2x﹣1)2=9,∴2x﹣1=±3,∴x=2或﹣1【随堂练习】1.(2020秋•南京期末)方程(x+3)2=4的根是()A.x1=﹣1,x2=﹣5B.x1=1,x2=﹣5C.x1=x2=﹣1D.x1=﹣1,x2=5【解答】解:(x+3)2=4,∴x+3=±2,∴x1=﹣1,x2=﹣5,故选:A.2.(2020秋•市中区期末)方程x2=4的解是()A.x1=4,x2=﹣4B.x1=x2=2C.x1=2,x2=﹣2D.x1=1,x2=4【解答】解:∵x2=4,∴x=2或x=﹣2,故选:C.3 配方法1.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.【例题精选】例1(2020•闽侯县模拟)解方程:x2﹣6x﹣8=0.【分析】利用配方法得到(x﹣3)2=17,然后利用直接开平方法解方程.【解答】解:x2‒6x=8,x2‒6x+9=17,(x﹣3)2=17,x﹣3=±,所以x1=3+,x2=3﹣.例2(2019秋•天门期末)解方程:x2﹣2x﹣5=0.【分析】先利用配方法得到(x﹣1)2=6,然后利用直接开平方法解方程.【解答】解:x2﹣2x=5,x2﹣2x+1=6,(x﹣1)2=6,x﹣1=±,所以x1=1+,x2=1﹣.【随堂练习】1.(2021•泸县模拟)将一元二次方程x2﹣2x=1配方,其正确的结果是()A.(x+1)2=2B.(x﹣2)2=5C.(x﹣1)2=1D.(x﹣1)2=2【解答】解:x2﹣2x=1,配方得:x2﹣2x+1=1+1,即(x﹣1)2=2.故选:D.2.(2020秋•郁南县期末)一元二次方程x2+4x=2配方后化为()A.(x+2)2=6B.(x﹣2)2=6C.(x+2)2=﹣6D.(x+2)2=﹣2【解答】解:∵x2+4x=2,∴x2+4x+4=2+4,∴(x+2)2=6.故选:A.3.(2020秋•兰陵县期末)用配方法解方程x2﹣6x+1=0,方程应变形为()A.(x﹣3)2=8B.(x﹣3)2=10C.(x﹣6)2=10D.(x﹣6)2=8【解答】解:∵x2﹣6x+1=0,∴x2﹣6x+9=8,∴(x﹣3)2=8,故选:A.4.(2020秋•费县期末)用配方法解方程x2﹣4x﹣7=0,可变形为()A.(x+2)2=3B.(x+2)2=11C.(x﹣2)2=3D.(x﹣2)2=11【解答】解:∵x2﹣4x﹣7=0,∴x2﹣4x+4=11,∴(x﹣2)2=11,故选:D.4 公式法1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:.①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤用公式法解关于x的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a、b、c的值(要注意符号);③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.【例题精选】例1(2019秋•玉田县期中)一元二次方程ax2+bx+c=0(c≠0)的求根公式是()A.B.C.D.【分析】根据求根公式即可求出答案.【解答】解:一元二次方程的求根公式为x=,故选:A.例2(2019秋•行唐县期末)解方程.(1)2x2﹣6x﹣1=0;(2)2y(y+2)﹣y=2.【分析】(1)根据配方法即可求出答案;(2)根据因式分解法即可求出答案;【解答】解:(1)∵2x2﹣6x﹣1=0,∴x2﹣3x=,∴(x﹣)2=,∴x=;(2)∵2y(y+2)﹣y=2,∴2y(y+2)﹣y﹣2=0,∴(y+2)(2y﹣1)=0,∴y=﹣2或y=;【随堂练习】1.(2020秋•北海期末)用公式法解方程x2﹣6x+1=0所得的解正确的是()A.B.C.D.【解答】解:∵a=1,b=﹣6,c=1,∴△=(﹣6)2﹣4×1×1=32>0,则x===3±2,故选:D.2.(2020秋•普宁市期末)用公式法解方程3x2+5x+1=0,正确的是()A.B.C.D.【解答】解:这里a=3,b=5,c=1,∵△=25﹣12=13,∴x=,故选:A.3.(2020秋•市北区期末)解方程:4x2﹣6x﹣3=0.【解答】解:△=(﹣6)2﹣4×4×(﹣3)=84,x==,所以x1=,x2=.4.(2021春•三水区校级月考)解方程:2x2﹣10x=3.【解答】解:2x2﹣10x﹣3=0,△=(﹣10)2﹣4×2×(﹣3)=124,x==,所以x1=,x2=.5 因式分解法1.用因式分解法解一元二次方程的步骤(1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【例题精选】例1 (2019春•浏阳市期中)计算:选择适当方法解下列方程(1)x2﹣2x﹣3=0(2)3x(x﹣1)=2﹣2x【分析】(1)利用因式分解法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得x=3或x=﹣1;(2)3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0或3x+2=0,所以x1=1,x2=﹣.例2(2019秋•罗湖区校级期中)解方程(1)x2+x﹣3=0(2)(2x+1)2=3(2x+1)【分析】(1)先写出a,b,c的值,再计算△,然后用公式法求解即可;(2)先将原方程右边的移到左边,然后利用因式分解法进行分解即可.【解答】解:(1)∵x2+x﹣3=0∴a=1,b=1,c=﹣3∴△=b2﹣4ac=1﹣4×1×(﹣3)=1+12=13>0∴x==∴x1=,x2=.(2)∵(2x+1)2=3(2x+1)∴(2x+1)2﹣3(2x+1)=0∴(2x+1)(2x+1﹣3)=0∴(2x+1)(2x﹣2)=0∴2x+1=0或2x﹣2=0∴x1=﹣,x2=1.【点评】本题考查了利用公式法和因式分解法解一元二次方程,属于基本计算能力的考查,难度不大.【随堂练习】1.(2020秋•南京期末)方程x2﹣x=0的根为()A.x1=x2=0B.x1=1,x2=0C.x1=x2=﹣1D.x1=﹣1,x2=0【解答】解:x2﹣x=0,x(x﹣1)=0,x﹣1=0或x=0,解得:x1=1,x2=0,故选:B.2.(2020秋•南充期末)方程(x﹣1)(x﹣2)=0的解是()A.1B.2C.1和2D.﹣1和﹣2【解答】解:∵(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,解得x1=1,x2=2,故选:C.3.(2020秋•鼓楼区期末)方程x2﹣x=0的解是()A.x1=x2=0B.x1=0,x2=﹣1C.x1=x2=1D.x1=0,x2=1【解答】解:x2﹣x=0,x(x﹣1)=0,解得:x1=0,x2=1.故选:D.4.(2020秋•濮阳期末)方程x(x+3)=0的解是()A.x1=x2=﹣3B.x1=0,x2=﹣2C.x1=0,x2=﹣3D.x1=1,x2=3【解答】解:∵x(x+3)=0,∴x=0或x+3=0,解得x1=0,x2=﹣3,故选:C.综合练习一.选择题(共3小题)1.一元二次方程﹣x2+2x=0的根为()A.﹣2B.0,2C.0,﹣2D.2【解答】解:﹣x(x﹣2)=0,﹣x=0或x﹣2=0,所以x1=0,x2=2.故选:B.2.下列一元二次方程中,两实数根之和为2的是()A.x2+2x+1=0B.x2﹣x﹣=0C.﹣x2﹣2x+3=0D.x2﹣2=0【解答】解:A.方程x2+2x+1=0的两根之和为﹣2,不符合题意;B.方程x2﹣x﹣=0的两根之和为2,符合题意;C.方程﹣x2﹣2x+3=0的两根之和为﹣2,不符合题意;D.方程x2﹣2=0的两根之和为0,不符合题意;故选:B.3.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5B.a≥1C.a>1且a≠5D.a≥1且a≠5【解答】解:由题意知,△=(﹣4)2﹣4×(a﹣5)×(﹣1)≥0,且a﹣5≠0,解得:a≥1且a≠5,故选:D.二.解答题(共4小题)4.解方程(1)3x2﹣8x+4=0;(2)(2x﹣1)2=(x﹣3)2【解答】解:(1)3x2﹣8x+4=0,(3x﹣2)(x﹣2)=0,∴3x﹣2=0或x﹣2=0,∴x1=,x2=2;(2)(2x﹣1)2=(x﹣3)2,(2x﹣1)2﹣(x﹣3)2=0,(2x﹣1+x﹣3)(2x﹣1﹣x+3)=0,∴3x﹣4=0或x+2=0,∴x1=,x2=﹣2.5.已知a是方程x2﹣2x﹣4=0的根,求代数式a(a+1)2﹣a(a2+a)﹣3a﹣2的值.【解答】解:a(a+1)2﹣a(a2+a)﹣3a﹣2=a3+2a2+a﹣a3﹣a2﹣3a﹣2=a2﹣2a﹣2∵a是方程x2﹣2x﹣4=0的根,∴a2﹣2a﹣4=0,∴a2﹣2a=4,∴原式=4﹣2=2.6.已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)若m是方程的一个实数根,求m的值.【解答】(1)证明:∵△=(m+3)2﹣4(m+1)=(m+1)2+4,∵无论m取何值,(m+1)2+4恒大于0,∴原方程总有两个不相等的实数根.(2)解:∵m是方程的一个实数根,∴m2+(m+3)m+m+1=0.整理得:2m2+4m+1=0解得:m=.7.用适当的方法解方程:(1)3x2﹣2x=0;(2)(x﹣1)2=4;(3)x2+2x﹣5=0;(4)(3x+2)(x+3)=8x+15【解答】解:(1)3x2﹣2x=0;分解因式得:x(3x﹣2)=0,解得:x1=0,x2=;(2)(x﹣1)2=4;开方得:x﹣1=±2,解得:x1=3,x2=﹣1;(3)x2+2x﹣5=0,配方得:x2+2x+1=6,即(x+1)2=6,开方得:x+1=±,解得:x1=﹣1+,x2=﹣1﹣;方程整理得:x(2x﹣5)﹣2(2x﹣5)=0,分解因式得:(x﹣2)(2x﹣5)=0,解得:x1=2,x2=2.5;(4)(3x+2)(x+3)=8x+15方程整理得:x2+x﹣3=0,a=1,b=1,c=﹣3∴b2﹣4ac=12﹣4×1×(﹣3)=13,∴x=;解得:x1=,x2=.6 根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.要点诠释:1.一元二次方程的根的判别式正反都成立.利用其可以解决以下问题: (1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程. 【例题精选】例 1 (2020•鼓楼区一模)已知方程2x 2+4x ﹣3=0的两根分别为x 1、x 2,则x 1+x 2=________,x 1x 2=__________.【分析】根据方程的系数结合根与系数的关系,即可得出x 1+x 2和x 1x 2的值.【解答】解:∵x 1、x 2是方程2x 2+4x ﹣3=0的两根,∴x 1+x 2=﹣=﹣2,x 1x 2==﹣.故答案为:﹣2;﹣.例2(2020•泰兴市一模)一元二次方程x 2﹣4x +2=0根的情况是( )A .无实数根B .有两个正根C .有一个正根,一个负根D .有两个负根【分析】先求出“△”的值,再根据根的判别式的内容得出即可.【解答】解:x 2﹣4x +2=0,∵△=(﹣4)2﹣4×1×2=8>0,且x 1+x 2=4>0,x 1•x 2=2>0,∴有两个正根,故选:B .【随堂练习】1.(2020秋•鄂州期末)一元二次方程2x2+4x+1=0的两根为x1、x2,则x1+x2的值是()A.4B.﹣4C.﹣2D.2【解答】解:根据题意得x1+x2=﹣=﹣2.故选:C.2.(2020秋•遂宁期末)若一元二次方程5x﹣1=4x2的两根为x1和x2,则x1•x2的值等于()A.1B.C.D.【解答】解:方程化为4x2﹣5x+1=0,根据题意得x1•x2=.故选:B.3.(2020秋•东台市期末)方程x2﹣5x﹣6=0的两根之和为()A.﹣6B.5C.﹣5D.1【解答】解:设方程的两根是x1、x2,那么有x1+x2=﹣=﹣(﹣5)=5.故选:B.7增长率问题列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次.(1)增长率问题:平均增长率公式为(1)na xb += (a 为原来数,x 为平均增长率,n 为增长次数,b 为增长后的量.)(2)降低率问题:平均降低率公式为(1)n a x b -= (a 为原来数,x 为平均降低率,n 为降低次数,b 为降低后的量.) 【例题精选】例1 (2020•铁西区二模)国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口1万人,通过各方面的共同努力,2018年底该地区贫困人口减少到0.25万人,求该地区2016年底至2018年底贫困人口年平均下降的百分率.【分析】等量关系为:2016年贫困人口×(1﹣下降率)2=2018年贫困人口,把相关数值代入计算即可.【解答】解:设这两年全省贫困人口的年平均下降率为x ,根据题意得:(1﹣x )2=0.25,解得:x =0.5=50%或x =1.5(舍去)答:该地区2016年底至2018年底贫困人口年平均下降的百分率为50%.【点评】本题考查一元二次方程的应用,得到2年内变化情况的等量关系是解决本题的关键.例2(2019秋•薛城区期末)某药品原价为100元,连续两次降价a %后,售价为64元,则a 的值为( )A .10B .20C .23D .36【分析】可先用x 表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,然后根据已知条件得到关于x 的方程.【解答】解:当药品第一次降价%时,其售价为100﹣100a %=100(1﹣a %);当药品第二次降价x 后,其售价为100(1﹣a %)2.∴100(1﹣a %)2=64.解得:a =20或a =﹣180(舍去),故选:B .【点评】本题主要考查一元二次方程的应用,要根据题意列出第一次降价后商品的售价,再根据题意列出第二次降价后售价的方程,令其等于64即可.【随堂练习】1.(2021•长丰县模拟)一种商品原价100元,经过两次降价后的售价是60元,设平均每次降价的百分率为x,那么所列方程正确的是()A.60(1+x)2=100B.60(1+2x)=100C.100(1﹣x)2=60D.100(1﹣2x)=60【解答】解:设平均每次降价的百分率为x,根据题意,得100(1﹣x)2=60.故选:C.2.(2020秋•孟津县期末)某超市一月份的营业额为36万元,由于受疫情影响,二月份营业额有所下降,三月份开始复苏,营业额为48万元,设从一月到三月平均每月的增长率为x.则下面所列方程正确的是()A.36(1﹣x)2=48B.36(1+x)2=48C.36(1﹣x)2=48﹣36D.48(1﹣x)2=36【解答】解:依题意得:36(1+x)2=48.故选:B.3.(2020秋•金台区期末)某市为解决当地教育“大班额”问题,计划用三年时间完成对相关学校的扩建,2019年市政府已投资5亿人民币,若每年投资的增长率相同,预计2021年投资额达到y亿元人民币,设每年投资的增长率为x,则可得()A.y=5(1+2x)B.y=5x2C.y=5(1+x)2D.y=5(1+x2)【解答】解:依题意,得y=5(1+x)2.故选:C.8、利润问题利润(销售)问题中常用的等量关系:利润=售价-进价(成本)总利润=每件的利润×总件数【例题精选】例1 (2020•谷城县校级模拟)某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?【分析】关系式为:每件服装的盈利×(原来的销售量+增加的销售量)=1600,为了减少库存,计算得到降价多的数量即可.【解答】解:设每件服装应降价x元,根据题意,得:(44﹣x)(20+5x)=1600解方程得x=4或x=36,∵在降价幅度不超过10元的情况下,∴x=36不合题意舍去,答:每件服装应降价4元.【点评】此题主要考查了一元二次方程的应用,得到现在的销售量是解决本题的难点;根据每天盈利得到相应的等量关系是解决本题的关键.例2 (2019秋•平江县期末)某商场销售一批衬衫,平均每天可销售出20件,每件盈利40元,为扩大销售盈利,商场决定采取适当的降价措施,但要求每件盈利不少于20元,经调查发现.若每件衬衫每降价1元,则商场每天可多销售2件.(1)若每件衬衫降价4元,则每天可盈利多少元?(2)若商场平均每天盈利1200元.则每件衬衫应降价多少元?【分析】(1)可直接根据每件的利润×销售量=总利润,求出结果;(2)此题首先根据盈利1200元,列出一元二次方程:(20+2×x)×(40﹣x)=1200,然后解出即可.【解答】解:(1)(20+2×4)×(40﹣4)=1008元.答:商场每天销售这种衬衫可以盈利1008元.(2)设每件衬衫降价x元时,商场每天销售这种衬衫可以盈利1200元,根据题意得:(20+2x)×(40﹣x)=1200,整理得:x2﹣30x+200=0,(x﹣10)(x﹣20)=0,解得:x1=10,x2=20,答:每件衬衫降价10元或20元时,商场每天销售这种衬衫可以盈利1200元.【点评】本题主要考查一元二次方程的应用,解题的关键是读懂题意找出题中的等量关系每件的利润×销售量=总利润.【随堂练习】1.(2020秋•福州期末)某餐厅主营盒饭业务,每份盒饭的成本为12元.若每份盒饭的售价为16元,每天可卖出360份.市场调查反映:如调整价格,每涨价1元,每天要少卖出40份.若该餐厅想让每天盒饭业务的利润达到1680元,设每份盒饭涨价x元,则符合题意的方程是()A.(16+x﹣12)(360﹣40x)=1680B.(x﹣12)(360﹣40x)=1680C.(x﹣12)[360﹣40(x﹣16)]=1680D.(16+x﹣12)[360﹣40(x﹣16)]=1680【解答】解:设售价应涨价x元,则:(16+x﹣12)(360﹣40x)=1680,故选:A.2.(2020秋•宁德期末)某商场将进货价为20元的玩具以30元售出,平均每天可售出300件,调查发现,该玩具的单价每上涨1元,平均每天就少售出10件.若商场要想平均每天获得3750元利润,则每件玩具应涨价多少元?设每件玩具应涨价x元,则下列说法错误的是()A.涨价后每件玩具的售价是(30+x)元B.涨价后平均每天少售出玩具的数量是10x件C.涨价后平均每天销售玩具的数量是(300﹣10x)件D.根据题意可列方程为:(30+x)(300﹣10x)=3750【解答】解:设涨价x元,根据题意可得:A、∵(30+x)表示涨价后玩具的单价,∴A选项正确,不符合题意;B、∵10x表示涨价后少售出玩具的数量,∴B选项正确,不符合题意;C、∵(300﹣10x)表示涨价后销售玩具的数量,∴C选项正确,不符合题意;D、∵可列方程(30+x﹣20)(300﹣10x)=3750,故D选项错误,符合题意,故选:D.3.(2020秋•鼓楼区期末)某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1250元,那么衬衫的单价降了多少元?设衬衫的单价降了x元,则可列方程为.【解答】解:由题意可得,(40﹣x)(20+2x)=1250,故答案为:(40﹣x)(20+2x)=1250.4.(2021春•长兴县月考)某商场销售一批衬衣,每件衬衣的进价为80元,平均每天可售出30件,每件衬衣盈利50元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衣降价10元,商场平均每天可多售出20件.若商场平均每天盈利2000元,则每件衬衣的售价应为多少元?【解答】解:设每件衬衣降价x元,则每件衬衣的售价为(80+50﹣x)元,每件衬衣盈利(50﹣x)元,平均每天可售出(30+)=(30+2x)件,依题意得:(50﹣x)(30+2x)=2000,整理得:x2﹣35x+250=0,解得:x1=10,x2=25,又∵为了扩大销售,增加盈利,尽快减少库存,∴x=25,∴80+50﹣x=105(元).答:每件衬衣的售价应为105元.9 其他问题1.利用方程解决实际问题的关键是寻找等量关系.2.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等);设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,列出方程);解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义)答(写出答案,切忌答非所问).【例题精选】例1 (2019秋•斗门区期末)学校打算用长16米的篱笆围成一个长方形的生物园饲养小兔,生物园的一面靠在长为8米的墙上(如图).(1)若生物园的面积为30平方米,求生物园的长和宽.(2)能否围成面积为35平方米的生物园?若能,求出长和宽;若不能,请说明理由.【分析】(1)设垂直于墙的一边长为x米,则平行于墙的一边长为(16﹣2x)米,根据长方形的面积公式结合生物园的面积为30平方米,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;(2)设垂直于墙的一边长为y米,则平行于墙的一边长为(16﹣2y)米,根据长方形的面积公式结合生物园的面积为35平方米,即可得出关于y的一元二次方程,由根的判别式△<0可得出该方程无解,进而可得出不能围成面积为35平方米的生物园.【解答】解:(1)设垂直于墙的一边长为x米,则平行于墙的一边长为(16﹣2x)米,依题意,得:x(16﹣2x)=30,整理,得:x2﹣8x+15=0,解得:x1=3,x2=5.当x=3时,16﹣2x=10>8,不合题意,舍去;当x=5时,16﹣2x=6.答:生物园的长为6米,宽为5米.(2)不能,理由如下:设垂直于墙的一边长为y米,则平行于墙的一边长为(16﹣2y)米,依题意,得:y(16﹣2y)=35,整理,得:2y2﹣16y+35=0.∵△=(﹣16)2﹣4×2×35=﹣24<0,∴原方程无解,∴不能围成面积为35平方米的生物园.【点评】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.例2 (2020•德阳模拟)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035B.x(x﹣1)=1035C.x(x+1)=1035D.x(x﹣1)=1035【分析】如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.【解答】解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选:B.【点评】本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.【随堂练习】1.(2021春•上城区校级期中)在一幅长50cm,宽40cm的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm2,设边框的宽为xcm,那么x满足的方程是()A.(50﹣2x)(40﹣2x)=3000B.(50+2x)(40+2x)=3000C.(50﹣x)(40﹣x)=3000D.(50+x)(40+x)=3000【解答】解:设边框的宽为xcm,所以整个挂画的长为(50+2x)cm,宽为(40+2x)cm,根据题意,得:(50+2x)(40+2x)=3000,故选:B.2.(2020秋•大余县期末)如图,学校课外生物小组的试验园地是长20米,宽15米的长方形.为了便于管理,现要在中间开辟一横两纵等宽的小道(如图),要使种植面积为252平方米,则小道的宽为()A.5米B.1米C.2米D.3米【解答】解:设该小道的宽为x米,依题意得(20﹣2x)(15﹣x)=252,整理得x2﹣25x+24=0,即:(x﹣24)(x﹣1)=0,解得x1=24(舍去),x2=1.即:该小道的宽为1米.故选:B.3.(2020秋•官渡区期末)《生物多样性公约》第十五次缔约方大会(COP15)将于2021年5月17日至30日在云南省昆明市举办、昆明某景观园林公司为迎接大会召开,计划在一个长为32m,宽为20m的矩形场地ABCD(如图所示)上修建三条同样宽的道路,使其中两条与AB平行、另一条与AD平行,其余部分种草坪,若使每一块草坪的面积为95m2,求道路的宽度、若设道路的宽度为xm,则x满足的方程为()A.(32﹣x)(20﹣x)=95B.(32﹣2x)(20﹣x)=95C.(32﹣x)(20﹣x)=95×6D.(32﹣2x)(20﹣x)=95×6【解答】解:设道路的宽度为xm,则六块草坪可合成长(32﹣2x)m,宽(20﹣x)m的矩形,依题意得:(32﹣2x)(20﹣x)=95×6.故选:D.综合练习一.解答题(共7小题)1.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染,每轮感染中平均一台电脑会感染多少台电脑?【解答】解:设每轮感染中平均一台电脑感染x台,依题意,得:(1+x)2=144,解得:x1=11,x2=﹣13(不合题意,舍去).答:每轮感染中平均一台电脑感染11台.2.社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位,当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?【解答】解:(1)设甬道的宽为x米,根据题意得:(52﹣2x)(28﹣2x)=640解得:x=34(舍去)或x=6,答:甬道的宽为6米;(2)设月租金上涨a元,停车场的月租金收入为14400元,根据题意得:(200+a)(64﹣)=14400整理,得a2﹣440a+16000=0解得:a1=400(舍去),a2=40答:每个车位的月租金上涨40元时,停车场的月租金收入为14400元.3.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元,问第一次降价后至少要售出该种商品多少件?【解答】解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×(100﹣m)=36m+2400≥3210,解得:m≥22.5.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.4.某公园要在一块长40m,宽30m的长方形空地上建成一个矩形花园,要求在花园中修三条纵向平行和两条横向平行的宽度相同的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为500m2,那么小道进出口的宽度应为多少米?【解答】解:设小道进出口的宽度为x米,依题意得(40﹣3x)(30﹣2x)=500.整理,得3x2﹣85x+350=0.解得,x1=5,x2=.∵>30(不合题意,舍去),∴x=5.答:小道进出口的宽度应为5米.5.某公司2016年的生产成本是100万元,由于改进技术,生产成本逐年下降,2018年的生产成本是81万元,若该公司2017、2018年每年生产成本下降的百分率都相同.(1)求平均每年生产成本下降的百分率;(2)假设2019年该公司生产成本下降的百分率与前两次相同,请你预测2019年该公司的生产成本.【解答】解:(1)设每年生产成本的下降率为x,根据题意得:100(1﹣x)2=81,解得:x1=0.1=10%,x2=1.1(不合题意,舍去).答:每年生产成本的下降率为10%.(2)81×(1﹣10%)=72.9(万元).答:预测2019该公司的生产成本为72.9万元.6.如图,要利用一面墙(墙长为15米)建羊圈,用30米的围栏围成两个大小相同的矩形羊圈,设羊圈的一边AB为xm,总面积为ym2.(1)求y与x的函数关系式.(2)如果要围成总面积为63m2的羊圈,AB的长是多少?【解答】解:(1)y=x(30﹣3x),=﹣3x2+30x;(2)当y=63时﹣3x2+30x=63,解得x1=7,x2=3,当x=7时30﹣3x=9<15当x=3时30﹣3x=21>15 (不合题意,舍去)答:AB为7m.7.已知长方形硬纸板ABCD的长BC为40cm,宽CD为30cm,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),剩余部分恰好能折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm.(纸板的厚度忽略不计)(1)EF=(30﹣2x)cm,GH=(20﹣x)cm;(用含x的代数式表示)(2)若折成的长方体盒子底面M的面积为300cm2,求剪掉的小正方形的边长.。
初中数学一元二次方程知识点
初中数学一元二次方程知识点
一元二次方程是形如$ax^2+bx+c=0$的方程,其中$a、b、c$为已知常数,$x$为未知数。
1. 一次项系数$b$和常数项$c$可以是任意实数,二次项系数$a$不能为0。
2. 方程的解称为方程的根,方程的解可以为实数根或复数根。
3. 一元二次方程可以有0个、1个或2个实数根,又可以有2个共轭复数根。
4. 一元二次方程的判别式$\Delta=b^2-4ac$可以判断方程的根的情况:
- 当$\Delta>0$时,方程有两个不相等的实数根;
- 当$\Delta=0$时,方程有两个相等的实数根;
- 当$\Delta<0$时,方程有两个共轭复数根。
5. 一元二次方程的解可以通过求解关于$x$的一元二次方程来获得,解的公式为:
- 当$\Delta>0$时,解为$x=\frac{-b+\sqrt{\Delta}}{2a}$和
$x=\frac{-b-\sqrt{\Delta}}{2a}$;
- 当$\Delta=0$时,解为$x=\frac{-b}{2a}$;
- 当$\Delta<0$时,解为$x=\frac{-
b}{2a}\pm\frac{\sqrt{|\Delta|}i}{2a}$,其中$i$为虚数单位。
6. 解一元二次方程时,可以应用配方法、因式分解、求根公式等方法。
完整版)一元二次方程(知识点考点题型总结)
完整版)一元二次方程(知识点考点题型总结)一元二次方程专题复考点一、概念一元二次方程是只含有一个未知数,且未知数的最高次数是2的整式方程。
一般表达式为ax^2+bx+c=0,其中a不等于0.关于“未知数的最高次数是2”,需要注意以下三点:一是该项系数不为0;二是未知数指数为2;三是若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x的一元二次方程的是():A。
2x^2+11x-2=0B。
ax^2+bx+c=DC。
2x=x+1变式:当k时,关于x的方程kx+2x=x+3是一元二次方程。
例2、方程m+2xm+1=0是关于x的一元一次方程,求m 的值,并写出关于x的一元一次方程。
针对练:1.方程8x^2+3mx+1=0是关于x的一元二次方程,则m的值为多少?2.若方程m-2x=0是关于x的一元一次方程,求m的值,并写出关于x的一元一次方程。
3.若方程(m-1)x+m·x=1是关于x的一元二次方程,则m 的取值范围是多少?4.若方程nx+x-2x=0是一元二次方程,则下列不可能的是():A。
m=n=2B。
m=2.n=1C。
n=2.m=1D。
m=n=1考点二、方程的解方程的解是指使方程两边相等的未知数的值。
根的概念可用于求代数式的值。
典型例题:例1、已知2y+y^2-3的值为2,则4y+2y^2+1的值为多少?例2、关于x的一元二次方程(a-2)x^2+x+a-4=0的一个根为2,求a的值。
例3、已知关于x的一元二次方程ax^2+bx+c=0的系数满足a+c=b,则此方程必有一根为多少?例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为多少?针对练:1.已知方程x+kx-10=0的一根是2,则k为多少?另一根是多少?2.已知关于x的方程x^2+kx-2=0的一个解与方程(x+1)/(x-1)=3的解相同,求k的值,并求方程的另一个解。
一元二次方程知识点归纳和重难点精析
一元二次方程知识点归纳和重难点精析一、知识点归纳1.一元二次方程的基本概念一元二次方程是指只含有一个未知数,且未知数的最高次数为2的整式方程。
其一般形式为ax²+bx+c=0(a≠0)。
2.一元二次方程的解法公式一元二次方程的解法公式为x=[-b ±sqrt(b²-4ac)] / (2a)。
其中,sqrt表示求平方根,x为未知数,a、b、c为方程的系数。
二、重难点精析九年级数学一元二次方程的重难点1.高次项:一元二次方程中,二次项的系数a不能为0.且最高次数为2.这是在解一元二次方程时需要特别注意的难点。
2.整体化简:在求解一元二次方程时,需要将方程进行整体化简,从而得到未知数的值。
这需要学生具备一定的化简和运算能力。
针对重难点的解决方法及相关思考题1.高次项注意事项:在一元二次方程中,要确保二次项的系数不为0.且最高次数不超过2.如有其他高次项,可将其合并或转化为二次项。
2.整体化简技巧:为了更好地求解一元二次方程,学生需要掌握整体化简的方法。
可以通过移项、合并同类项等方式,将方程化简为更易于求解的形式。
思考题:求解一元二次方程x²-6x+9=0时,有哪些方法可以解题?哪种方法更适合处理此类方程?三、扩展知识一元二次方程的历史背景及应用领域一元二次方程作为九年级数学的重要知识点,在实际生活和后续学习中有着广泛的应用。
例如,在解决实际问题时,一元二次方程可用于解决诸如最大化、最小化、平均值等优化问题。
此外,在物理、化学、生物等科学领域中,一元二次方程也常常用于描述现象和解决问题。
相关知识点补充在求解一元二次方程的过程中,可能会涉及到其他数学知识点,如三角函数、平移和缩放等。
这些知识点对于理解一元二次方程的解法和实际应用都有一定的帮助。
例如,三角函数可以用于求解一元二次方程的近似解;平移和缩放可以用于将复杂的一元二次方程转化为简单的形式,从而更容易求解。
因此,学生在学习的过程中需要注意知识点的联系与运用。
一元二次方程知识点整理笔记
一元二次方程是初中数学的重要知识点之一,以下是一些关于一元二次方程的知识点整理笔记:一、一元二次方程的定义一元二次方程是一个整式方程,只含有一个未知数,且未知数的最高次数为2。
一元二次方程的一般形式为:ax²+bx+c=0(a≠0),其中a、b、c为常数。
二、一元二次方程的解一元二次方程的解也称为根,是指使方程成立的未知数的值。
一元二次方程的解可以通过公式法、配方法、因式分解法等方法求解。
一元二次方程的解的个数取决于判别式b²-4ac的值。
当b²-4ac>0时,方程有两个不相等的实根;当b²-4ac=0时,方程有两个相等的实根;当b²-4ac<0时,方程没有实根。
三、一元二次方程的图像一元二次函数的图像是一条抛物线。
抛物线的开口方向取决于二次项系数a的正负。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
抛物线的顶点坐标可以通过配方法或公式法求解。
四、一元二次方程的应用一元二次方程在实际问题中有广泛的应用,如求解物体运动的最大高度、最大距离等问题。
在解决实际问题时,需要根据问题的实际意义来设定未知数和建立方程。
在解决实际问题时,需要注意方程的解是否符合问题的实际意义。
五、一元二次方程的解法直接开平方法:对于形如x²=a(a≥0)的方程,可以直接开平方求解。
因式分解法:对于可以因式分解的一元二次方程,可以通过因式分解法求解。
公式法:对于一般形式的一元二次方程,可以通过公式法求解。
公式为:x=[-b±√(b²-4ac)]/2a。
配方法:对于可以配成完全平方的一元二次方程,可以通过配方法求解。
具体步骤为:将常数项移到等号的右边;将含x的项的系数化为1;等式两边同时加上一次项系数一半的平方;用直接开平方法求解。
初中数学一元二次方程知识点总结(含方法技巧归纳,易错辨析)
初中数学⼀元⼆次⽅程知识点总结(含⽅法技巧归纳,易错辨析)
考情分析⾼频考点考查频率所占分值
1.元⼆次⽅程的概念★7~12分
2.⼀元⼆次⽅程的解法★★★
3.⼀元⼆次⽅程根的判别式★★
4.⼀元⼆次⽅程根与系数的关系★
5.利⽤⼀元⼆次⽅程解决实际问题★★★
1⼀元⼆次⽅程的定义及⼀般形式
定义:等号两边都是整式,只含有⼀个未知数(⼀元),并且未知数的最⾼次数是2(⼆次)的⽅程,
叫作⼀元⼆次⽅程.
点拨
对定义的理解抓住三个条件:“⼀元”“⼆次”“整式⽅程”,缺⼀不可,同时强调⼆次项的系数不为0.
⽤公式法解⼀元⼆次⽅程的记忆⼝诀
要⽤公式解⽅程,⾸先化成⼀般式.
调整系数随其后,使其成为最简⽐.
确定参数
,计算⽅程判别式.
判别式值与零⽐,有⽆实根便得知.
若有实根套公式,若⽆实根要告之.
3因式分解法
通过因式分解,使⼀元⼆次⽅程化为两个⼀次式的乘积等于0的形式,再使这两个⼀次式分别等
于0,从⽽实现降次,这种解⼀元⼆次⽅程的⽅法叫作因式分懈法.
因式分解法体现了将⼀元⼆次⽅程“降次”转化为⼀元⼀次⽅程来解的思想,运⽤这种⽅法的步
骤:
(1)将所有项移到⽅程的左边,将⽅程的右边化为0;
(2)将⽅程左边分解为两个⼀次因式的乘积;
(3)令每个因式分别等于零,得到两个⼀元⼀次⽅程;
(4)解这两个⼀元⼀次⽅程,他们的解就是原⽅程的解.。
(完整版)一元二次方程知识点总结
一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:,它的特征是:等式左边十一个关)0(02≠=++a c bx ax 于未知数x 的二次多项式,等式右边是零,其中叫做二2ax 次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
3.一元二次方程的解法(1)直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如的一元二次方程。
根据b a x =+2)(平方根的定义可知,是b 的平方根,当时,,a x +0≥b b a x ±=+,当b<0时,方程没有实数根。
b a x ±-=(2)配方法:配方法的理论根据是完全平方公式,把公式中的a 看222)(2b a b ab a +=+±做未知数x ,并用x 代替,则有。
222)(2b x b bx x ±=+±配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(3)公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程的求根公式:)0(02≠=++a c bx ax )04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c(4)因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式4.一元二次方程根的判别式:一元二次方程中,叫做一)0(02≠=++a c bx ax ac b 42-元二次方程的根的判别式,通常用“)0(02≠=++a c bx ax ”来表示,即∆acb 42-=∆I 当△>0时,一元二次方程有2个不相等的实数根;II 当△=0时,一元二次方程有2个相同的实数根;III 当△<0时,一元二次方程没有实数根5.一元二次方程根与系数的关系如果方程的两个实数根是,那么,)0(02≠=++a c bx ax 21x x ,ab x x -=+21。
(完整版)一元二次方程知识点总结
(完整版)⼀元⼆次⽅程知识点总结⼀元⼆次⽅程1、⼀元⼆次⽅程:含有⼀个未知数,并且未知数的最⾼次数是2的整式⽅程叫做⼀元⼆次⽅程。
2、⼀元⼆次⽅程的⼀般形式:,它的特征是:等式左边⼗⼀个关)0(02≠=++a c bx ax 于未知数x 的⼆次多项式,等式右边是零,其中叫做⼆2ax 次项,a 叫做⼆次项系数;bx 叫做⼀次项,b 叫做⼀次项系数;c 叫做常数项。
3.⼀元⼆次⽅程的解法(1)直接开平⽅法:利⽤平⽅根的定义直接开平⽅求⼀元⼆次⽅程的解的⽅法叫做直接开平⽅法。
直接开平⽅法适⽤于解形如的⼀元⼆次⽅程。
根据b a x =+2)(平⽅根的定义可知,是b 的平⽅根,当时,,a x +0≥b b a x ±=+,当b<0时,⽅程没有实数根。
b a x ±-=(2)配⽅法:配⽅法的理论根据是完全平⽅公式,把公式中的a 看222)(2b a b ab a +=+±做未知数x ,并⽤x 代替,则有。
222)(2b x b bx x ±=+±配⽅法的步骤:先把常数项移到⽅程的右边,再把⼆次项的系数化为1,再同时加上1次项的系数的⼀半的平⽅,最后配成完全平⽅公式(3)公式法:公式法是⽤求根公式解⼀元⼆次⽅程的解的⽅法,它是解⼀元⼆次⽅程的⼀般⽅法。
⼀元⼆次⽅程的求根公式:)0(02≠=++a c bx ax )04(2422≥--±-=ac b aac b b x 公式法的步骤:就把⼀元⼆次⽅程的各系数分别代⼊,这⾥⼆次项的系数为a ,⼀次项的系数为b ,常数项的系数为c(4)因式分解法:因式分解法就是利⽤因式分解的⼿段,求出⽅程的解的⽅法,这种⽅法简单易⾏,是解⼀元⼆次⽅程最常⽤的⽅法。
分解因式法的步骤:把⽅程右边化为0,然后看看是否能⽤提取公因式,公式法(这⾥指的是分解因式中的公式法)或⼗字相乘,如果可以,就可以化为乘积的形式4.⼀元⼆次⽅程根的判别式:⼀元⼆次⽅程中,叫做⼀)0(02≠=++a c bx ax ac b 42-元⼆次⽅程的根的判别式,通常⽤“)0(02≠=++a c bx ax ”来表⽰,即?acb 42-=?I 当△>0时,⼀元⼆次⽅程有2个不相等的实数根;II 当△=0时,⼀元⼆次⽅程有2个相同的实数根;III 当△<0时,⼀元⼆次⽅程没有实数根5.⼀元⼆次⽅程根与系数的关系如果⽅程的两个实数根是,那么,)0(02≠=++a c bx ax 21x x ,ab x x -=+21。
一元二次方程(知识点+考点+题型总结)
一元二次方程(知识点+考点+题型总结)类型三、配方法()002≠=++a c bx ax 222442a acb a b x -=⎪⎭⎫ ⎝⎛+⇒※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。
典型例题:例1、 试用配方法说明322+-x x 的值恒大于0。
例2、 已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。
例3、 已知,x、y y x y x 0136422=+-++为实数,求y x 的值。
例4、 分解因式:31242++x x针对练习:★★1、试用配方法说明47102-+-x x 的值恒小于0。
★★2、已知041122=---+x x x x ,则=+x x 1.★★★3、若912322-+--=x x t ,则t 的最大值为 ,最小值为 。
★★★4、如果4122411-++-=--++b a c b a ,那么c b a 32-+的值为 。
类型四、公式法⑴条件:()04,02≥-≠ac b a 且⑵公式: a acb b x 242-±-=,()04,02≥-≠ac b a 且典型例题:例1、选择适当方法解下列方程:⑴().6132=+x ⑵()().863-=++x x ⑶0142=+-x x⑷01432=--x x ⑸()()()()5211313+-=+-x x x x例2、在实数范围内分解因式:(1)3222--x x ; (2)1842-+-x x . ⑶22542y xy x --说明:①对于二次三项式c bx ax ++2的因式分解,如果在有理数范围内不能分解,一般情况要用求根公式,这种方法首先令c bx ax ++2=0,求出两根,再写成c bx ax ++2=))((21x x x x a --.②分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去.类型五、 “降次思想”的应用⑴求代数式的值; ⑵解二元二次方程组。
(完整版)一元二次方程知识点总结
一元二次方程1. 一元二次方程的定义及一般形式:(1)等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2 (二次)的方程,叫做一元二次方程。
(2)一元二次方程的一般形式:ax2 bx c 0(a 0)。
其中a为二次项系数,b为一次项系数,c为常数项。
注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。
2. 一元二次方程的解法(1 )直接开平方法:形如(x a)2 b(b 0)的方程可以用直接开平方法解,两边直接开平方得x a b或者x a 、、b,x a , b。
注意:若b<0,方程无解(2)因式分解法:一般步骤如下:①将方程右边得各项移到方程左边,使方程右边为0 ;②将方程左边分解为两个一次因式相乘的形式;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是原方程的解。
(3)配方法:用配方法解一元二次方程ax2 bx c 0(a 0)的一般步骤①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一般的平方,把方程化为(x m)2 n(n 0)的形式;④用直接开平方法解变形后的方程。
注意:当n 0时,方程无解(4)公式法:一元二次方程ax2 bx c 0(a 0)根的判别式:b24ac0方程有两个不相等的实根:x b甘4/( b2 4ac 0)2af(x)的图像与x轴有两个交点0方程有两个相等的实根f(x)的图像与x轴有一个交点0方程无实根f(x)的图像与x轴没有交点3. 韦达定理(根与系数关系)我们将一元二次方程化成一般式ax2+bx+c = 0之后,设它的两个根是x i 和X2,则&和X2与方程的系数a, b, c之间有如下关系:X i+X2 = b;X i?X2 = 2a a4. 一元二次方程的应用列一元二次方程解应用题,其步骤和二元一次方程组解应用题类似①“审”,弄清楚已知量,未知量以及他们之间的等量关系;②“设”指设元,即设未知数,可分为直接设元和间接设元;③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式,即方程。
一元二次方程知识点总结
考点四、一元二次方程根与系数的关系
两边同时除于 a ,展开后可得:
x2
b c x 0 x 2 ( x1 x2 ) x x1 x2 0 a a
2
b c x1 x2 ; x1 x2 a a
法 3:如果一元二次方程 ax bx c 0 ( a 0) 定的两个根为 x1 , x2 ;那么
(4)因式分解法:提公因式,平方公式,平方差,十字相乘法
步骤:把方程右边化为 0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字 相乘,如果可以,就可以化为乘积的形式 如: ax bx 0( a, b 0) x( ax b) 0
2
此类方程适合用提供因式,而且其中一个根为 0
b b 2 4ac b b 2 4ac (b) 2 ( b 2 4ac ) 2 4ac c 2 2a 2a a (2a) 2 4a
2
法 2:如果一元二次方程 ax bx c 0 ( a 0) 定的两个根为 x1 , x2 ;那么
ax 2 bx c 0 a ( x x1 )( x x2 ) 0
4 x 2 12 x 9 0 (2 x 3) 2 0 2 x 2 5 x 12 0 (2 x 3)( x 4) 0
考点三、一元二次方程解的情况,即根的判别式
一元二次方程 ax 2 bx c 0(a 0) 中, b 2 4ac 叫做一元二次方程 ax 2 bx c 0(a 0) 的根的 判别式,通常用“ ”来表示,即 b 2 4ac
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程知识点串讲
一元二次方程考点及对策
1)易错点:首先一定要看题目中有无“一元二次方程”六个字,确
定是否需要讨论a=0的情况;
2)讨论根的情况:判别式
3)讨论整数根问题:
a)90%的都可以进行因式分解
b)不能因式分解的,△一定是完全平方式
c)可以设△=k2,左边配方,利用平方差公式来解决。
4)两根问题:
a)根与系数的关系的应用(即韦达定理)
b)根的分布与函数不等式的几何:画图,数形结合来解决
c)构造一元二次方程:有两数和,两数积,可以你用韦达定理构
造一元二次方程,利用有根的考点来解决
以上是关于一元二次方程的常用考点总结,考点记住并不代表你会解题,所以多看多想多练是你必须要做的。
一元二次方程练习(自己找考点)
例1:关于x的方程(a-1)x2+2x-a-1=0的根都是整数,那么符合条件的整数a有______个
例2:若一直角三角形两直角边的长为a、b(a≠b)均为整数,且满足
求这个直角三角形三边的长
例3:已知二次函数y=(k 2-1)x 2-(3k-1)x+2
(1)二次函数的顶点在x 轴上,求k 的值;
(2)若二次函数与x 轴的两个交点A 、B 均为整数点(坐标为整数的点),当k 为整数时,求A 、B 两点的坐标
2
4a b m ab m +=+⎧⎨=⎩。