一次函数的简单应用(1)解读

合集下载

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用1. 引言1.1 一次函数的定义一次函数是指形式为y=ax+b的函数,其中a和b为常数,且a不等于0。

简单来说,一次函数就是一个斜率不为零的直线函数。

在数学中,一次函数是最简单的函数之一,但却有着广泛的应用。

在一次函数中,变量之间是线性关系,可以用来描述很多现实生活中的问题。

一次函数的斜率代表了变量之间的变化率,而常数项则代表了起始值。

通过一次函数,我们可以快速地了解变量之间的关系,并进行预测和分析。

一次函数还有很多重要性质,比如通过两点确定一条直线、平行直线具有相同的斜率等。

这些性质使一次函数成为解决实际问题的有效工具。

在接下来的内容中,我们将探讨一次函数在各个领域的具体应用,包括经济学、市场营销、工程、金融学和医学。

通过这些具体案例,我们可以更好地理解一次函数在生活中的重要性和广泛应用性。

1.2 一次函数在生活中的重要性在经济学中,一次函数常常被用来描述供需关系和价格变化的规律。

通过分析一次函数的图像和方程,经济学家可以更好地预测市场走势和制定合理的政策措施,从而促进经济的稳定发展。

在市场营销领域,一次函数可以帮助企业分析销售数据、制定定价策略和评估市场需求。

借助一次函数的模型,市场营销人员可以更加准确地了解消费者的行为和喜好,从而提高产品的市场竞争力。

在工程领域,一次函数常被用来描述物体的运动轨迹和能量转化过程。

工程师利用一次函数的性质来设计各种设备和结构,确保其在实际应用中具有良好的性能和稳定性。

在金融学领域,一次函数被广泛应用于风险分析、投资组合管理和资产定价等方面。

通过构建一次函数的模型,金融学家可以更好地评估资产的价值和波动性,从而降低投资风险并获取更高的收益。

在医学领域,一次函数可以用来描述人体各个器官的生理变化和疾病进程。

医生通过对一次函数的分析和建模,可以更好地诊断疾病、制定治疗方案和预测患者的康复情况。

一次函数在生活中的重要性不可忽视,它为各个领域提供了重要的数学工具和理论基础,促进了社会的进步和发展。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用1. 引言1.1 什么是一次函数一次函数是指数学中的一种特殊函数形式,通常表示为f(x) = ax + b的形式。

a和b是常数,且a不等于0。

一次函数也被称为一次多项式函数,因为它的最高次数为1。

在一次函数中,变量x的最高次数为1,这使得函数的图像呈现为一条直线。

一次函数的特点是其图像是一条直线,具有线性的特性。

这种简单的函数形式在数学建模和实际问题求解中具有重要意义。

一次函数可以描述很多实际生活中的问题,比如描述两个变量之间的线性关系,预测未来的变化趋势,进行经济预测和规划等。

在实际应用中,一次函数可以帮助我们分析经济学、物理学、工程学、社会科学和医学领域中的各种现象和问题。

通过一次函数的建模和分析,我们可以更好地理解和解决复杂的实际问题,为社会发展和个人发展提供有力的支持和指导。

了解一次函数的基本概念和应用是非常重要的。

1.2 为什么一次函数在生活中具有重要意义一次函数在生活中的重要意义在于其简单性和直观性。

一次函数是最基本的一种函数形式,具有线性关系的特点,易于理解和应用。

通过一次函数,我们可以轻松地描述许多实际问题的规律和模式,比如物体的运动轨迹、经济的增长趋势、工程中的力学关系等,为我们理解和解决问题提供了重要的工具和方法。

一次函数在生活中的重要意义还体现在其广泛应用的范围。

一次函数几乎涉及到生活的各个领域,包括经济学、物理学、工程学、社会科学、医学等,可以用来分析和描述各种不同的现象和问题。

掌握一次函数的知识和技能对我们了解世界、改善生活具有重要的意义。

一次函数在生活中的重要意义在于其简单性、直观性和广泛应用性。

通过学习和应用一次函数,我们可以更好地理解世界、解决问题,促进社会的发展和进步。

深入理解和掌握一次函数的知识对我们每个人来说都是非常重要的。

2. 正文2.1 一次函数在经济学中的应用一次函数在经济学中的应用非常广泛,经济学家们经常使用一次函数来描述和分析各种经济现象和关系。

一次函数讲解

一次函数讲解

一次函数讲解一次函数是初中数学中最基础、最简单的函数之一。

它是一种线性函数,由一个常数和一个一次项组成。

在本文中,我们将深入探讨一次函数的定义、图像、性质、应用以及解题技巧。

一、定义一次函数也称为线性函数,其定义为:f(x) = kx + b,其中k 和b分别是常数,x是自变量,f(x)是因变量。

其中,k称为函数的斜率,b称为截距。

二、图像一次函数的图像是一条直线。

其中,斜率k表示这条直线的倾斜程度,正斜率表示直线向上倾斜,负斜率表示直线向下倾斜,斜率为0表示直线水平。

截距b表示直线与y轴的交点。

三、性质1.一次函数是一种线性函数,其图像是一条直线。

2.斜率k表示直线的倾斜程度,正斜率表示直线向上倾斜,负斜率表示直线向下倾斜,斜率为0表示直线水平。

3.截距b表示直线与y轴的交点。

4.一次函数的自变量和因变量成正比例关系。

5.一次函数的定义域为实数集,值域为实数集。

四、应用1.物理学中,一次函数可以用来描述速度、加速度等物理量的变化规律。

2.经济学中,一次函数可以用来描述商品价格、销售量等经济变量的关系。

3.工程学中,一次函数可以用来描述电压、电流等工程量的变化规律。

4.统计学中,一次函数可以用来描述数据的线性趋势。

五、解题技巧1.求斜率k:斜率k可以通过两个点的纵坐标之差除以横坐标之差来求得。

2.求截距b:截距b可以通过直线与y轴的交点来求得。

3.求函数解析式:可以通过已知的两个点的坐标来求得函数解析式。

4.求函数值:可以直接代入自变量的值来求得函数值。

六、例题解析1.已知一次函数y = 2x + 3,求当x = 5时的函数值。

解:将x = 5代入函数中,得到y = 2 × 5 + 3 = 13。

因此,当x = 5时,函数值为13。

2.已知一次函数y = kx + 2,当x = 3时,y = 5;当x = 4时,y = 8。

求函数解析式。

解:根据已知条件,可以列出如下方程组:k × 3 + 2 = 5k × 4 + 2 = 8解得k = 1。

7.5一次函数的简单应用(1)

7.5一次函数的简单应用(1)

枫树
山毛榉
2.32
2.59
2.82
2.95
全长y(m) 10.00 10.25 10.72 11.52 12.50
13.16 13.90
问题:1、根据以上数据你能确定蓝鲸的全长y和吻尖
到喷水孔的长度x之间有怎样的关系吗? 2、能否用一次函数刻画这两个变量x与y的关系?如 果能,请求出这个函数的解析式。
y x
用这样的方法获得 解:建立直角坐标系,画出以表中的 x 值为横坐标, 吻尖到喷水 的函数有时是近似 y 孔的长度 的值为纵坐标的7个点。 1.78 1.91 2.06 2.32 的!! 2.82 2.95 2.59 x(m) 吻尖到喷水 7个点几乎在同一直线上,则所求的函数可以看成 孔的长度 1.78 1.91 2.06 2.32 2.59 2.82 2.95 全长y(m) 10.00 10.25 10.72 11.52 12.50 13.16 13.90 x(m) 是一次函数! 设函数为 y kx b 把点(1.78,10.00), 全长y(m) 10.00 10.25 10.72 11.52 12.50 13.16 13.90 y kx b Y(m) (2.82,13.16)的坐标分别代入
一般地,利用一次函数解决实际问题 的基 本步骤是:
(1)先判断问题中的两个变量之间是不是一次
函数关系。 (2)求得函数解析式。 (3)利用函数解析式或其图象解决实际问题。
确定两个变量是否构成一次函数的关系 的一种常用方法是利用图象去获得经验公式, 其基本步骤是:
(1)通过实验、测量获得数量足够多的两个变 量的对应值; (2)建立合适的直角坐标系,在坐标系内以各 对应值为坐标描点,并用描点法画出函数图象; (3)观察图象特征,判定函数的类型。

一次函数的应用与解析

一次函数的应用与解析

一次函数的应用与解析一、引言一次函数是数学中最基本的函数之一,也是数学建模和实际问题解决中常见的一种函数类型。

本文将探讨一次函数的应用和解析,通过实际案例来说明其在日常生活和科学领域中的重要性。

二、一次函数的定义和特点一次函数,又称线性函数,是指函数表达式为 y = kx + b 的函数,其中 k 和 b 是常数,且k ≠ 0。

一次函数的特点包括直线图像、斜率和截距。

三、一次函数在经济学中的应用1. 成本和收益预测一次函数可应用于经济学中的成本和收益预测。

例如,某公司制造某种产品的成本可以表示为 y = mx + b,其中 x 表示生产数量,y 表示总成本,m 表示单位成本,b 表示固定成本。

通过拟合一次函数模型,可以根据生产数量预测总成本,并做出相应的决策。

2. 市场需求和供应分析一次函数还可用于市场需求和供应分析。

如果市场需求或供应的变化可以用一次函数来近似,就可以通过函数的斜率和截距来分析市场的变化趋势。

这有助于企业制定合理的定价策略和库存管理策略。

四、一次函数在物理学中的应用1. 物体的运动分析在物理学中,一次函数可以用来描述物体的运动。

例如,一个物体的位移与时间的关系可以表示为 y = kx + b,其中 y 表示位移,x 表示时间,k 表示速度,b 表示初始位移。

通过解析一次函数,可以计算物体的速度和初始位移,从而深入了解物体的运动规律。

2. 电流和电压的关系一次函数还可应用于电路分析。

例如,欧姆定律描述了电流和电压之间的关系,可以表示为 y = kx + b,其中 y 表示电流,x 表示电压,k 表示电阻,b 表示电流的截距。

通过解析一次函数,可以计算电阻的大小以及电路的特性参数。

五、一次函数在社会学中的应用1. 人口增长预测一次函数可应用于社会学中的人口增长预测。

例如,某个地区的人口增长可以表示为 y = kx + b,其中 y 表示人口数量,x 表示时间,k 表示增长率,b 表示初始人口数量。

7.5 一次函数的简单应用(1)

7.5 一次函数的简单应用(1)

2.59
2.82
2.95
10.00 10.25 10.72 11.52 12.50 13.16 13.90
问能否用一次函数刻画两个变量的关系?如果能,请求 出这个一次函数的解析式。
建立直角坐标系,画出以表中的x值为横坐标,y的 解: 用这样的方法获得 的函数有时是近似 吻尖到喷水 的!! 孔的长度 1.78 1.91 2.06 2.32 2.59 2.82 2.95 7个点几乎在同一直线上,则所求的函数可以看成 x(m) 是一次函数! 全长y(m) 10.00 10.25 10.72 11.52 12.50 13.16 13.90 设函数为 y kx b
析式
值为坐标描点,并用描点法画出函数图像。
(3)观察图像特征,判定函数的类型。
经实验检测,不同气温下声音传播的速度如下表所示
气温x(℃) 音速y(米/秒)
0 331
5 334
10 337
15 340
20 343
(1)能否用一次函数刻画这两个变量x和y的关系?如 果能,写出y关于x的函数解析式。 (2)当气温x=22 ℃时,小明看到烟花燃放5秒后才听 到声响,那么小明与燃放烟花所在地相距多远。
当 x > 6 ,即学生人数多于6人时,y甲 < y乙 则甲公司收费少。 当 x = 6 ,即学生人数为6人时, y甲 = y乙 则两家公司收费相同;
蓝鲸是现存动物中体形最大的一种,体长的
最高记录是3200cm.根据生物学家对成熟的
雄性鲸的测量,其全长和吻尖到喷水孔的长度
有一定的规律.
例1、生物学家测得7条成熟的雄性鲸的全长y和吻尖到
喷水孔的长度x的数据如下表(单位:米)
吻尖到喷水 孔的长度 x(m) 全长y(m)

7.5一次函数的简单应用(1)

7.5一次函数的简单应用(1)

蓝鲸身上的数学奥秘
生物学家测得7条成熟的雄性蓝鲸全长y和 生物学家测得7条成熟的雄性蓝鲸全长 和吻尖到喷水孔的 全长 长度x的数据如下表 单位: 的数据如下表( 长度 的数据如下表(单位:m): x 1.78 1.91 2.06 2.32 2.59 2.82 2.95
y 10.00 10.25 10.72 11.52 12.50 13.16 13.90
用这样的方法获得 y 解:建立直角坐标系,画出以表中的 x 值为横坐标, 吻尖到喷水 建立直角坐标系, 值为横坐标, 的函数有时是近似 孔的长度 1.78 1.91 个点。 2.06 2.59 的值为纵坐标的7个点 的值为纵坐标的 个点。 2.32的!! 2.82 2.95 x(m) 吻尖到喷水 7个点几乎在同一直线上,则所求的函数可以看成 个点几乎在同一直线上, 个点几乎在同一直线上 全长y(m) 10.00 10.25 10.72 11.52 12.50 13.16 13.90 孔的长度 1.78 1.91 2.06 2.32 2.59 2.82 2.95 是一次函数! x(m) 是一次函数! 设函数为 = kx b 全长y(m) 10.00y 10.25 +10.72 11.52 12.50 13.16 13.90 把点( ),(2.82,13.16) 把点(1.78,10.00),( , ),( , ) Y(m) ( )
----高 ----高

利用函数
解决问题
已知y是 的一次函数 的一次函数, 已知 是x的一次函数,这个函数图象 上有两点( ),( )。求 ),(2,5)。 上有两点(1,3),( )。求: (1)这个函数解析式; )这个函数解析式;
y=2x+1 x
(2)当x=15时,求y的值 ) 时 求 的值;

利用一次函数解决问题

利用一次函数解决问题

利用一次函数解决问题一次函数(也称为线性函数)是数学中常见且重要的函数类型之一。

它的表达式为 y = ax + b,其中 a 和 b 是常数,且a ≠ 0。

一次函数的图像是一条直线,具有许多应用领域。

本文将介绍如何利用一次函数解决问题。

一、利用一次函数解决实际问题一次函数在实际问题中的应用非常广泛。

它可以描述物体的直线运动、收入与支出的关系、成本与产量的关系等。

下面举例说明:例1:小明每天骑自行车上学,他发现骑行的时间与距离之间存在一定的关系。

他测量了两天的数据,如下所示:时间(分钟):10 20 30 40距离(千米):1 2 3 4小明想要知道骑行 50 分钟可以骑多远,他可以利用一次函数解决这个问题。

解:我们可以先通过已知数据构建一个一次函数。

选择时间作为自变量 x,距离作为因变量 y。

现在我们来求解 a 和 b 的值。

已知点 A (10, 1) 和点 B (20, 2),可以利用两点间的斜率公式计算 a的值:a = (yB - yA) / (xB - xA) = (2 - 1) / (20 - 10) = 1 / 10 = 0.1接下来,我们可以代入其中一点的坐标和已知的 a 值,求解 b 的值:1 = 0.1 * 10 + bb = 1 - 1 = 0所以,一次函数为 y = 0.1x + 0。

现在可以利用求得的一次函数来解决问题。

当 x = 50 时,我们可以通过函数表达式求得对应的 y 值:y = 0.1 * 50 + 0 = 5因此,小明骑行 50 分钟可以骑行 5 千米。

二、利用一次函数解决图像问题一次函数的图像是一条直线,通过直线的性质,我们可以解决一些与图像相关的问题。

下面举例说明:例2:某公司生产零件,每天生产数量与花费的时间之间呈一次函数的关系。

已知当生产数量为 1000 时,需要 4 小时。

而当生产数量为2000 时,需要 8 小时。

现在需要求解该函数的表达式并计算生产 3000 个零件所需的时间。

一次函数的应用

一次函数的应用

一次函数的应用一次函数是高中数学中最基本的函数之一,它的应用非常广泛。

简单来说,一次函数就是指一个形如 $y = kx +b$ 的函数,其中,$k$ 和 $b$ 是常数,$x$ 和 $y$ 分别是自变量和因变量。

在实际生活中,一次函数的应用非常广泛。

以下是一些例子:1. 电影票价计算电影院的票价通常都是一次函数的形式。

假设某个电影院的票价为 $y = 15x + 25$,其中 $x$ 表示购买的票数,$y$ 表示所需支付的费用。

根据这个函数,我们可以算出如果购买 $3$ 张票,需要支付的费用为 $y = 15\times 3 + 25 = 70$ 元。

2. 车行里程计算汽车的油耗通常也可以用一次函数来表示。

假设某辆车的油耗为 $y = 0.1x + 10$,其中 $x$ 表示行驶的里程数(千米),$y$ 表示所需的汽油(升数)。

如果这辆车行驶了$100$ 公里,需要消耗的汽油量就是 $y = 0.1\times 100 + 10 = 20$ 升。

3. 银行利率计算银行的利率计算也可以用一次函数来表示。

假设某个银行的存款利率为 $y = 0.03x + 0.01$,其中 $x$ 表示存款的金额(万元),$y$ 表示所能获得的利息(万元)。

如果存款$200$ 万元,那么能够获得的利息就是 $y = 0.03\times 200+ 0.01 = 6.01$ 万元。

除了以上的实际应用,一次函数还有很多其他的数学应用,如经济学、物理学、工程学等等。

例如,在经济学中,一次函数可以用来表示市场供给和需求的关系,帮助决策者做出更明智的决策。

在物理学中,一次函数可以用来表示运动的速度与时间的关系,帮助科学家研究物理现象。

在工程学中,一次函数可以用来表示信号的传输、电路的特性等等,帮助工程师设计和优化工程设备。

总的来说,一次函数是我们生活中不可或缺的数学工具,它的应用非常广泛,涵盖多个领域。

理解一次函数的原理和应用,有助于我们更好地理解世界和解决实际问题。

一次函数知识点(全)

一次函数知识点(全)

一次函数知识点(全)一次函数,也称为线性函数,是数学中最简单的一类函数之一,其定义域为全体实数,函数的表达式为f(x) = ax + b,其中a和b为常数。

一次函数以一条直线表示,具有线性关系,其图像是一条直线,斜率为a,截距为b。

一次函数的基本性质及应用:1. 斜率:一次函数的斜率a代表了直线的倾斜程度,也称为直线的导数或变化率。

斜率的计算方法为:a = (y2 - y1) / (x2 - x1),其中(x1,y1)和(x2,y2)为直线上的两个点。

斜率可正可负,若a > 0,表示直线向右上方倾斜;若a < 0,表示直线向右下方倾斜;若a = 0,表示直线水平。

2. 截距:一次函数的截距b代表了直线与y轴的交点,即x = 0时对应的y值。

截距可为正、负或零,当b > 0时,直线在y轴上方与之交点在正半轴;当b < 0时,直线在y轴下方与之交点在负半轴;当b = 0时,直线通过原点。

3. 表示方式:一次函数可以通过函数表达式、函数关系式、函数图像、函数性质等多种方式进行表示和描述。

4. 对称性:一次函数的图像关于直线y = x具有对称性,即将图像沿y = x对称后,两者完全重合。

5. 平行和垂直:两条直线平行的情况是它们的斜率相等,即a1 = a2;两条直线垂直的情况是它们的斜率之积等于-1,即a1 * a2 = -1。

6. 定义域和值域:一次函数的定义域为全体实数,即(-∞, +∞);值域为全体实数,即(-∞, +∞)。

7. 函数运算:一次函数可以进行相加、相减、相乘、相除等运算,运算结果仍为一次函数。

8. 应用:一次函数广泛应用于经济学、物理学、工程学等领域。

在经济学中,一次函数常用来描述成本、收入、利润等与产量的关系。

在物理学中,一次函数可以描述速度、位移与时间的关系。

在工程学中,一次函数可用于线性规划、线性回归等问题的建模与解决。

综上所述,一次函数是数学中基础的一类函数,具有简单明了的性质和应用。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用【摘要】一次函数是数学中的基本概念,其在生活中有着广泛的应用。

在经济学中,一次函数被用来分析市场供求关系,帮助决策者制定价格策略。

在物理学中,一次函数可以描述物体的运动状态,如速度与时间的关系。

在工程学中,一次函数被用来设计桥梁和建筑物的结构,保证其稳定性。

在社会学中,一次函数可以分析人口增长和社会趋势,帮助政府调整政策。

在医学中,一次函数被用来研究药物的代谢过程,优化治疗方案。

结合以上应用领域,可以看出一次函数在生活中扮演着重要的角色,拥有广泛的应用价值。

通过深入理解和应用一次函数,我们可以更好地解决实际问题,提高生活质量和工作效率。

【关键词】一次函数,生活应用,经济学,物理学,工程学,社会学,医学,广泛应用1. 引言1.1 一次函数的定义一次函数,也称为线性函数,是数学中最简单的一种函数类型之一。

一次函数的一般形式可以表示为f(x) = ax + b,其中a和b为常数,且a不等于0。

在这个函数中,变量x的最高次数为1,因此称为一次函数。

一次函数的特点包括斜率和截距。

斜率a表示函数图像的倾斜程度,正斜率表示函数图像向上倾斜,负斜率表示函数图像向下倾斜,斜率的绝对值表示倾斜的程度。

截距b表示函数图像与y轴的交点,即当x 等于0时,函数值为b。

一次函数在生活中有着广泛的应用,可以用来描述各种实际情况和问题。

在经济学中,一次函数常常用来描述成本、收入、利润等与数量的关系。

在物理学中,一次函数可以用来描述速度、加速度等物理量随时间的变化。

在工程学中,一次函数可以用来建立模型、优化设计等。

在社会学中,一次函数可以用来分析人口增长、社会变化等。

在医学中,一次函数可以用来研究疾病传播、药物代谢等。

一次函数在生活中具有非常重要的作用,深刻影响着我们的生活和工作。

1.2 一次函数的特点一次函数是一种最简单的线性函数,其特点主要有以下几点:1. 一次函数的图像是一条直线。

这是因为一次函数的图像是以常数速率变化的,因此在坐标系中表现为一条倾斜的直线。

一次函数的简单应用(解析版)

一次函数的简单应用(解析版)

5.5一次函数的简单应用一、数学建模的一般思路数学建模的关键是将实际问题数学化,从而得到解决问题的最佳方案、最佳策略.在建模的过程中,为了既合乎实际问题又能求解,这就要求在诸多因素中抓住主要因素进行抽象化简,而这一过程恰是我们的分析、抽象、综合、表达能力的体现.函数建模最困难的环节是将实际情景通过数学转化为什么样的函数模型.二、正确认识实际问题的应用在实际生活问题中,如何应用函数知识解题,关键是建立函数模型,即列出符合题意的函数解析式,然后根据函数的性质综合方程(组)、不等式(组)及图象求解.要点:要注意结合实际,确定自变量的取值范围,这是应用中的难点,也是中考的热门考点. 三、选择最简方案问题分析问题的实际背景中包含的变量及对应关系,结合一次函数的解析式及图象,通过比较函数值的大小等,寻求解决问题的最佳方案,体会函数作为一种数学模型在分析解决实际问题中的重要作用.一、单选题1.小苏现已存款180元.为赞助“希望工程”,她计划今后每月存款10元,则存款总金额y (元)与时间x (月)之间的关系式是( )A .10y x =B .180y x =C .18010y x =-D .18010y x =+ 【答案】D【提示】根据存款总数=已存款180元+x 个月的存款数,可以写出存款总金额y (元)与时间x (月)之间的函数关系式,从而可以解答本题. 【解答】解:由题意可得,18010y x =+. 故选:D .【点睛】本题考查函数关系式,解答本题的关键是明确题意,写出其中的函数关系式. 2.下列变量之间关系中,一个变量是另一个变量的正比例函数的是( ) A .正方形的面积S 随着边长x 的变化而变化 B .正方形的周长C 随着边长x 的变化而变化C .水箱有水10L ,以0.5L/min 的流量往外放水,水箱中的剩水量L V 随着放水时间min t 的变化而变化D .面积为20的三角形的一边a 随着这边上的高h 的变化而变化 【答案】B【提示】先依据题意列出函数关系式,然后依据函数关系式进行判断即可.【解答】解:A 、正方形的面积S 随着边长x 的变化而变化的关系式,关系式为S =x2,不是正比例函数,故错误;B 、正方形的周长C 随着边长x 的变化而变化,关系式为C =4x ,是正比例函数,故正确;C 、水箱有水10L ,以0.5L/min 的流量往外放水,水箱中的剩水量L V 随着放水时间min t 的变化而变化,关系式为V =10−0.5t ,不是正比例函数,故错误;D 、面积为20的三角形的一边a 随着这边上的高h 的变化而变化的关系式为a =40h,不是正比例函数,故错误. 故选:B .【点睛】本题主要考查的是正比例函数的定义,熟练掌握正比例函数的定义:形如y=kx (k≠0)的函数为正比例函数是解题的关键.3.小张加工某种机器零件,工作一段时间后,提高了工作效率.小张加工的零件总数m (单位:个)与工作时间t (单位:时)之间的函数关系如图所示,则小张提高工作效率前每小时加工零件( )个A .3B .4C .5D .6【答案】B【提示】此题只要能求出3时之后的一次函数解析式,从而求出当x=3时的纵坐标,除以3即可. 【解答】解:从图象可知3时之后的函数图象为一次函数且经过(5,24),(6,30) 设该时段的一次函数解析式为:y kx b =+,可列出方程组:524630k b k b +=⎧⎨+=⎩,求解得:66k b =⎧⎨=-⎩∴一次函数解析式为:66y x =-,当3x =时,12y =,1234∴÷=故选:B .【点睛】本题考查了一次函数的应用,熟练掌握求解一次函数解析式和掌握图象中的关键拐点含义是解题的关键.4.食用油沸点的温度远高于水的沸点温度(100℃).小明为了用刻度不超过100℃的温度计测量出某种食用油沸点的温度,在锅中倒人一些这种食用油,用煤气灶均匀加热,并每隔10s 测量一次锅中油温,测量得到的数据如下表: 时间/s t10 20 30 40油温/y ℃ 10 30 50 70 90而且,小明发现,烧了110s 时,油沸腾了.你估计这种油沸点的温度是( )A .200℃B .230℃C .260℃D .290℃【答案】B【提示】由表中数据发现油温与时间成一次函数关系,根据表中数据,求出一次函数解析式,然后把x=110代入即可.【解答】解:设油温与时间的函数关系是y=kx+b ,则103010b k b =⎧⎨=+⎩,解得210k b =⎧⎨=⎩ ∴y=2x+10,当x=110时,y=2×110+10=230. 故选:B .【点睛】本题主要考查的是一次函数的应用,关键是根据表中数据,求出一次函数解析式. 5.八(1)班同学参加社会实践活动,在王伯伯的指导下,要围一个如图所示的长方形菜园ABCD ,莱园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为12m ,设边BC 的长为x m ,边AB 的长为y m ()x y >.则y 与x 之间的函数表达式为( )A .212(012)y x x =-+<<B .()164122y x x =-+<<C .212(012)y x x =-<<D .16(412)2y x x =-<< 【答案】B【提示】根据菜园的三边的和为12m ,即可得出一个x 与y 的关系式. 【解答】解:根据题意得,菜园三边长度的和为12m ,212y x ∴+=,162y x ∴=-+,0y >,x y >, ∴1602162x x x ⎧-+>⎪⎪⎨⎪>-+⎪⎩,解得412x <<,16(412)2y x x ∴=-+<<,故选:B .【点睛】本题考查一次函数的应用,理解题目中的数量关系,即菜园三边的长度和为12m ,列出关于x ,y 的方程是解决问题的关键.6.某油箱容量为50L 的汽车,加满汽油后开了200km 时,油箱中的汽油大约消耗了14.如果加满汽油后汽车行驶的路程为km x ,油箱中的剩油量为L y ,则y 与x 之间的函数解析式和自变量取值范围分别是( )A .0.0625,0y x x =>B .500.0625,0y x x =->C .0.0625,0800y x x =≤≤D .500.0625,0800y x x =-≤≤ 【答案】D【提示】根据题意列出一次函数解析式,即可求得答案.【解答】解:因为油箱容量为50 L 的汽车,加满汽油后行驶了200 km 时,油箱中的汽油大约消耗了14,可得:14×50÷200=0.0625L/km ,50÷0.0625=800(km ), 所以y 与x 之间的函数解析式和自变量取值范围是:y =50−0.0625x ,0≤x≤800, 故选D .【点睛】本题主要考查了一次函数的实际应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,属于中档题.7.已知A 、B 两地相距600米,甲、乙两人同时从A 地出发前往B 地,所走路程y(米)与行驶时间x(分)之间的函数关系如图所示,则下列说法中:①甲每分钟走100米;②2分钟后,乙每分钟走50米;③甲比乙提前3分钟到达B 地;④当x=2或6时,甲乙两人相距100米.其中,正确的是( )A.①②③B.②③④C.①②④D.①②【答案】C【提示】根据函数图像中的信息,逐一解答即可判定.【解答】解:由图像可得:①甲图像是正比例函数,甲每分钟走600÷6=100(米),故①正确;②两分钟后,乙每分钟走5003005062-=-(米),故②正确;③甲到达B地所用的时间是6分钟,乙前2分钟走300米,2分钟之后速度为50米/分,2分钟之后所用的时间为600300650-=(分),所以甲比乙提前2分钟到达B地,故③不正确;④当x=2时,甲路程为100×2=200(米),乙路程为300米,则甲乙两人相距100米;当x=6时,甲路程为600米,乙路程为500米,则甲乙两人相距100米,故④正确;故正确的有①②④,故选:C.【点睛】本题考查了一次函数的图像,准确识图并根据函数图像的变化情况获取信息是解题的关键.8.“吉祥物趣事”,某天,墩墩和容融在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速行走3600米、当墩墩领先容融1000米时,墩墩停下来休息,当容融追上墩墩的瞬间,墩墩立即又以原来的速度继续走向终点,在整个行走过程中,墩墩和容融之间的距离y(米)与它们出发时间x(分钟)的关系如图所示,下列说法错误的是()A.容融的速度为40米/分钟B.墩墩休息了23分钟C.第85分钟时,墩墩到达终点D.领先者到达终点时,两者相距200米【答案】B【提示】根据题意和图象中的数据,可以计算出各个选项中的结果是否正确,然后即可判断哪个选项符合题意.【解答】解:由图象可得,容融的速度为:36009040÷=(米/分钟),故选项A正确,不符合题意;÷=(分钟),故选项B错误,符合题意;墩墩休息了:10004025墩墩的速度为:4010005060+÷=(米/分钟),5025(36006050)6085++-⨯÷=(分钟),即第85分钟时,墩墩到达终点,故选项C正确,符合题意;-⨯=(米),(9085)40200即领先者到达终点时,两者相距200米,故选项D正确,不符合题意;故选:B.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.9.牛奶配送员小吴从县城出发,骑配送车到米村配送牛奶,途中遇到在县城上学的外甥张聪从米村步行返校上学,小吴在米村配送牛奶后,在返回县城途中又遇到张聪,便用配送车载上张聪一起返回县城,结果小吴比预计时间晚到5分钟.二人与县城间的距离y(km)和小吴从县城出发后所用的时间x(min)之间的关系如图,假设两人之间的交流时间忽略不计,则下列说法正确的有()个.①小吴到达米村后配送牛奶所用时间为25min.②小吴从县城出发,最后回到县城用时100min.③两人第一次相遇时,小吴距离米村2km.④张聪从米村到县城步行速度为0.05km/min.A.1 B.2 C.3 D.4【答案】D【提示】从图中可以看出小吴和张聪并不是同时出发的,小吴还有在A村停留时间30分钟,小吴去A村和返回速度不一样,这些都可以从图中看出来.小吴到达米村后配送牛奶所用时间为停留时间即65与35的差可对①判断;小吴从县城出发到返回县城所用时间,从图中可以看出包括去时用的时间加在A 村待的时间加上返回遇张聪的时间加上原计划时间再加上晚到1分钟,即可对②进行判断;由图象可知,小吴35分钟后离县城7千米,所以两人第一次相遇即25分钟时小王距县城25×735=5千米,进一步可对③判断;求出两次相遇时的距离及间隔时间即可求出张聪从米村到县城步行速度,从而对④进行判断 【解答】①小吴到达米村后配送牛奶所用时间为60-35=25min ,故①正确; ②从图中可以看出小吴从离城7千米到2千米用时85分钟 小吴返回的速度=(7-2)÷(85-60)=0.2(千米/分钟), 小吴原计划返回用时7÷0.2=35分钟, 结果小吴比预计时间晚到5分钟.故小吴从县城出发,最后回到县城用时为35+25+25+10+5=100min .故②正确; ③由图象可知,小吴35分钟后离县城7千米,所以两人第一次相遇即25分钟时小吴距米村:7-25×735=7-5=2千米,故③正确;④两次相遇时张聪走的路程为5-2=3千米,用时为85-25=60分钟, 所以步行速度为:3÷60=0.05千米/分钟,故④正确. 正确的结论有4个, 故选:D .【点睛】此题考查了一次函数的应用,注意数形结合以及行程问题的解决方法.10.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示,则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,56t =或54或154或256.其中正确的结论有( )A .4个B .3个C .2个D .1个 【答案】A【提示】直接根据函数图像可判断①②;分别求出两条直线的解析式,令y y =甲乙可判断③;令50y y -=甲乙,结合先出发的时间内以及乙到达目的地的时间进行计算可得结论④.【解答】由图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时, ∴①②都正确;设甲车离开A 城的距离y 与t 的关系式为y kt =甲, 把()5,300代入可求得60k =,60y t ∴=甲,设乙车离开A 城的距离y 与t 的关系式为y mt n =+乙,把()1,0和()4,300代入可得04300m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩,100100y t ∴=-乙,令y y =甲乙可得:60100100t t =-, 解得 2.5t =,即甲、乙两直线的交点横坐标为 2.5t =,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车, ∴③正确;令50y y -=甲乙,可得6010010050t t -+=,即1004050t -=, 当1004050t -=时,可解得54t =, 当1004050t -=-时,可解得154t =, 又当56t =时,50y =甲,此时乙还没出发, 当256t =时,乙到达B 城,250y =甲; 综上可知当t 的值为56或54或154或256时,两车相距50千米,∴④正确;综上可知正确的有①②③④共4个, 故选:A .【点睛】本题考查了一次函数的实际应用,从函数图像上读取信息,读懂题意,理清甲乙两车的行驶情况,运用数形结合思想解题是关键.11.已知A ,B 两地相距3千米,小黄从A 地到B 地,平均速度为4千米/时.若用(x 时)表示行走的时间,(y 千米)表示余下的路程,则y 关于x 的函数解析式是______. 【答案】()3400.75y x x =-≤≤【提示】先求出小黄从A 地到B 地所需的时间,从而可得x 的取值范围,再利用余下的路程等于3减去已走的路程即可得.【解答】解:小黄从A 地到B 地所需的时间为340.75÷=(时), 则00.75x ≤≤, 由题意得:34y x =-,则y 关于x 的函数解析式是()3400.75y x x =-≤≤, 故答案为:()3400.75y x x =-≤≤.【点睛】本题考查了一次函数的应用,找准等量关系,并正确求出自变量的取值范围是解题关键. 12.公民的月收入超过5000元时,超过部分须依法缴纳个人所得税,当超过部分在3000 元以内(含3000元)时税率为3%.根据已知信息,公民每月所缴纳税款y (元)与月收入x (元)之间的函数关系式是__________,自变量的取值范围是__________. 【答案】 003150.y x =-+ 5000<x≤8000【提示】超过部分在3000元以内(含3000元)时税率为3%,所以必须从收入中减去5000后,再去考虑缴税多少,即可解答.【解答】解:根据题意可知y 与x 之间的函数关系式为:()50003003150%.y x x =-⨯=-+,(5000<x≤8000).故答案为:003150.y x =-+;5000<x≤8000.【点睛】本题主要考查的是一次函数的实际问题,理解题意,根据题意得出需要缴税的部分为()5000x -元,是解题的关键.13.在槐荫区“勾股数学”杯初中校际联赛中,小明的队伍在第一轮中获得积分50分,第二轮共10道题,每答对一道题得10分,则两轮总积分y (分)与第二轮答对题目数量x (道)之间的关系式为__________(010x ≤≤,x 为正整数). 【答案】5010y x =+【提示】根据“两轮总积分y (分)等于第一轮积分与第二轮积分的和”,用含有x 的代数式表示第二轮的积分即可. 【解答】解:由题意得,故答案为:5010y x =+;【点睛】本题考查函数关系式,理解“两轮总积分y (分)”的意义,掌握“积分=每题得分×答对的题目数”是正确解答的关键.14.某公司准备和A 、B 两家出租车公司中的一家签订合同.设A 、B 两出租车公司收费y (元)与行程x (每千米)的关系分别是l1,l2,若行驶大于2500km ,则选择 _____出租车公司较合算.【答案】A【提示】根据函数图象作出判断即可. 【解答】解:由图象可知:当1500x <时,12y y >;当1500x >时,12y y <; ∵行驶大于2500km ,即2500x >, ∴选择A 出租车公司较合算, 故答案为:A .【点睛】本题考查一次函数的实际应用,根据图象越高费用也越高判断出图象各部分的费用高低,再作出选择是解答本题的关键.15.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用水为____方. 月用水量不超过12方部分 超过12方不超过18方部分 超过18方部分收费标准(元/方) 2 2.53【答案】20【提示】根据题意可知:先判断出该用户用的水与18方的关系,再设用水x 方,水费为y 元,继而求得关系式为y=39+3(x-18);将y=45时,代入上式即可求得所用水的方数. 【解答】解:∵45>12×2+6×2.5=39, ∴用户5月份交水费45元可知5月用水超过了18方,设用水x 方,水费为y 元,则关系式为y=39+3(x-18). 当y=45时,x=20, 即用水20方. 故答案为:20.【点睛】本题主要考查了一次函数的应用,用待定系数法求函数的解析式和根据自变量的值求函数值.弄清对应的水费是解决问题的关键.16.某医药研究所研发了一种新药,经临床实验发现,成人按规定剂量服用,每毫升血液中含药量y (微克)随时间x (小时)而变化的情况如图所示.研究表明,当血液中含药量5y ≥(微克)时,对治疗疾病有效,则有效时间是__________小时.【答案】3【提示】当2x ≤时,设1y k x =,把(2,6)代入计算即可得3y x =,当2x >时,设2y k x b =+,把点(2,6),(10,3)代入计算即可得82734y x =-+,把5y =代入3y x =中得53x =,把5y =代入82734y x =-+中得143x =,进行计算即可得.【解答】解:当2x ≤时,设1y k x =,把(2,6)代入得, 162k =,解得,13k =, ∴当2x ≤,3y x =,当2x >时,设2y k x b =+,把点(2,6),(10,3)代入得,2226103k b k b +=⎧⎨+=⎩ 解得,283274k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴当2x >时,82734y x =-+,把5y =代入3y x =中,得53x =,把5y =代入82734y x =-+中,得143x =,则145333-=(小时), 即该药治疗的有效时间是3小时, 故答案为:3.【点睛】本题考查了一次函数的应用,解题的关键是掌握一次函数的性质.17.2022年4月7日,许昌市首批新能源出租车上路,新车空间更大,舒适度更高,受到大众欢迎.新车的收费方式也做了调整,新车的打车费用y (单位:元)与行驶里程x (单位:千米)的函数关系如图所示.老款出租的收费方式为:不超过2千米收费5元,超过2千米部分收费1.5元/千米,同时,每次再加收1元的燃料附加费.小明爸爸从家到公司打车上班的行驶里程为22千米,则他上班乘坐新车的打车费用比老款车多______元.【答案】3【提示】待定系数法求出x≥2时y 关于x 的函数解析式,再求出x=22时y 的值可求得新车的费用,根据老款车的收费标准进行计算求得老款车的费用,比较即可求解. 【解答】解:当行驶里程x≥2时,设新车的打车费用为y=kx+b , 将(2,7)、(7,15)代入,得:27715k b k b +=⎧⎨+=⎩,解得:85195k b ⎧=⎪⎪⎨⎪=⎪⎩,∴y=85x+195,当x=22时,y=85×22+195=39, 即新车的打车费用为39(元),老款车的费用为:5+1.5×(22-2)+1=36(元),39-36=3(元). 故答案为:3.【点睛】本题主要考查一次函数的图象与待定系数法求一次函数解析式,熟练掌握待定系数法求得一次函数解析式是解题的关键.18.已知A ,C 两地之间有一站点B ,甲从A 地匀速跑步去C 地,2分钟后乙以50米/分钟的速度从站点B 走向C 地,两人到达C 地后均原地休息.甲、乙两人与站点B 的距离y(米)与甲所用的时间x(分钟)之间的关系如图所示.(1)站点B 到C 地的距离为_____米; (2)当x=_____时,甲、乙两人相遇.【答案】 800 10【提示】(1)由图象可知乙从站点B 到C 地所用时间,再用时间×速度=路程得出结论; (2)先求出甲的速度,再根据追击问题写出方程,解方程即可.【解答】解:(1)根据题意,站点B 到C 地的距离为:50×(18-2)=800(米), 故答案为:800;(2)由图象可知甲的速度:400÷5=80(米/分), 设经过x 分钟,甲、乙两人相遇, 则80x=400+50(x-2), 解得x=10,∴甲出发10分钟,甲、乙两人相遇, 故答案为:10.【点睛】本题考查了一次函数的实际应用,理解图象上各点的实际含义,并根据题意列方程是解题的关键.三、解答题19.某种气体在0℃时的体积为100L ,温度每升高1℃,它的体积增加0.37L . (1)写出气体体积()L V 与温度()t ℃之间的函数表达式(2)求当温度为30℃时气体的体积.(3)当气体的体积为107.4L 时,温度为多少摄氏度? 【答案】(1)1000.37V t =+ (2)111.1L (3)20℃【提示】(1)根据题意,直接写出函数表达式即可,气体体积=0℃时的体积+增加的体积; (2)将30t =℃代入(1)中的函数表达式即可; (3)将107.4L V =代入(1)中的函数表达式即可. 【解答】(1)解:根据题意得:1000.37V t =+.(2)当30t =℃时,1000.3730111.1V =+⨯=, ∴当温度为30℃时,气体的体积为111.1L . (3)当107.4L V =时,107.41000.37t =+, 解得:20t =,∴气体的体积为107.4L 时,温度为20℃.【点睛】本题主要考查了一次函数的实际应用,解题的关键是根据题意找出等量关系,写出一次函数的表达式.20.在某一段时期,一年期定期储蓄的年利率为4.14%,规定储蓄利息应付个人所得税的税率为5%.设按一年期定期储蓄存入银行的本金为x 元,到期支取时扣除个人所得税后实得本利和为y 元. (1)求y 关于x 的函数表达式.(2)把18000元钱按一年期定期储蓄存入银行.问:到期支取时,扣除个人所得税后实得本利和为多少元?【答案】(1) 1.03312y x = (2)18707.94元【提示】(1)根据利息=本金⨯利率⨯时间列式计算求出本金;根据税率为利息的20%可得扣除个人所得税后实际利息=利息()120%⨯-;(2)将18000x =代入(1)的解析式进行计算即可求解.【解答】(1)解:依题意,()()1 4.14%1 4.14%5%1 1.04140.00207 1.03933y x x x x =+⨯-⨯⨯=-= 即: 1.03933y x =,(2)当18000x =时, 1.039331800018707.94y =⨯= 到期支取时,扣除个人所得税后实得本利和为18707.94元.【点睛】本题考查了一次函数的应用,根据题意列出函数关系是解题的关键.21.“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的销售方式,让大山深处的农产品远销全国各地.若要对某地特色花生与茶叶两种产品助销,已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同. (1)求每千克花生、茶叶的售价;(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克,计划两种产品共助销600千克,若花生销售m 千克()120m ≥,花生和茶叶的销售总利润为w 元,求w 的最大值. 【答案】(1)每千克花生10元,每千克茶叶50元(2)当花生销售120千克,茶叶销售480千克时利润最大,w 的最大值为7200【提示】(1)设每千克花生x 元,每千克茶叶(40)x +元,列出一元一次方程求解即可;(2)设花生销售m 千克,茶叶销售(600)m -千克,先根据总成本不高于1260元,且花生的数量不高于茶叶数量的2倍求出m 的取值范围,再根据利润之和求出函数解析式,根据函数的性质求出最大值.【解答】(1)解:设每千克花生x 元,每千克茶叶(40)x +元, 根据题意得:5010(40)x x =+, 解得:10x =,40401050x +=+=(元),答:每千克花生10元,每千克茶叶50元;(2)解:设花生销售m 千克,茶叶销售(600)m -千克获利最大,利润w 元, 由题意得:(106)(5036)(600)484014108400w m m m m m =-+--=+-=-+,100-<,w ∴随m 的增大而减小,120m ,∴当120m =时,利润w 最大,此时花生销售120千克,茶叶销售600120480-=(千克),1012084007200w =-⨯+=最大(元), ∴当花生销售120千克,茶叶销售480千克时利润最大,w 的最大值为7200.【点睛】本题考查一次函数的性质和一元一次方程的应用,解题的关键是读懂题意,列出方程和函数关系式进行求解.22.某电信公司手机的A 类收费标准如下:不管通话时间多长,每部手机每月必须缴月租费12元,另外,通话费按0.2元/min 计;B 类收费标准如下:没有月租费,但通话费按0.6元/min 计.按照此类收费标准完成下列各题:(1)直接写出每月应缴费用y (元)与通话时长x (分)之间的关系式: A 类:________;B 类:______.(2)若每月平均通话时长为300分钟,选择类收费方式较少.(3)求每月通话多长时间时,按A ,B 两类收费标准缴费,所缴话费相等. 【答案】(1)0.212y x =+;0.6y x = (2)选择A 收费方式较少 (3)30分钟【提示】(1)根据题目中收费标准可列出函数关系式; (2)根据两种收费方式,计算结果比较得出答案即可;(3)设每月通话时间x 分钟,按A 、B 两类收费标准缴费,所缴话费相等列出方程解答即可. 【解答】(1)解:根据题意,得A 类:0.212y x =+,B 类:0.6y x =;故答案为:0.212y x =+;0.6y x =. (2)解:A 类收费:120.230072+⨯=元;B 类收费:0.6300180⨯=元;18072>,所以选择A 类收费方式;(3)解:设每月通话时间x 分钟,根据题意,得120.20.6x x +=,解得:30x =.答:每月通话时间30分钟,按A 、B 两类收费标准缴费,所缴话费相等【点睛】本题主要考查一次函数的应用,由条件列出相应的函数关系式是解题的关键.23.某移动公司设了两类通讯业务,A 类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.4元,B 类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x 分钟,两种方式费用分别是A y ,B y 元. (1)分别写出A y ,B y 与x 之间的函数关系式.(2)某人估计一个月通话时间为300分钟,应选哪种通讯方式合算些,请书写计算过程.(3)小明用的A 卡,他计算了一下,若是B 卡,他本月话费将会比现在多100元,请你算一下小明实际话费是多少元?【答案】(1)500.4A y x =+,0.6B y x = (2)选择A 类 (3)350元【提示】(1)A 类应缴50元月租费,每通话1分钟,付0.4元,则费用是月租费加上通话费;B 类不缴月租费,每通话1分钟,付话费0.6元,则费用是通话费与时间的乘积,通讯x 分钟,由此即可求解; (2)由(1)的结论可知,当300x =时,170A y =元,180B y =元,由此即可求解;(3)由题意可知选择A 卡的费用比选择B 卡的费用少100元,由此可列出等量关系100A B y y +=,由此即可求解.【解答】(1)解:根据题意得,A 类的费用是月租费加上通话费,即500.4A y x =+;B 类的费用是通话费与时间的乘积,即0.6B y x =,∴500.4A y x =+,0.6B y x =.(2)解:通话时间为300分钟,根据(1)中的结论得,500.4500.4300170A y x =+=+⨯=(元),0.60.6300180B y x ==⨯=(元) ∵AB y y <,∴选择A 类.(3)解:根据题意得,100A B y y +=,∴500.41000.6x x ++=,解方程得,750x =,即小明打电话的时间为750分钟, ∴500.4500.4750350A y x =+=+⨯=(元), ∴小明实际话费是350元.【点睛】本题主要考查一次函数在实际中的运用,解题的关键是理解两类缴费的方式,A 类的费用是月租费加上通话费,B 类的费用是通话费与时间的乘积.24.如图,有80名师生要到离学校若干千米的大剧院参加演出,学校只有一辆能做40人的汽车,学校决定采用步行和乘车相结合的办法:先把一部分人送到大剧院,车按原路返回接到步行的师生后开往大剧院,其中车和人的速度保持不变.(学生上下车,汽车掉头的时间忽略不计).y 表示车离学校的距离(千米),x 表示汽车所行驶的时间(小时).请结合图象解答下列问题:(1)学校离大剧院相距 千米,汽车的速度为 千米/小时; (2)求线段BC 所在直线的函数表达式;(3)若有一名老师因临时有事晚了0.5小时出发,为了赶上学生,该老师选择从学校打车前往,已知出租车速度为80千米/小时,请问该老师能在学生全部达到前赶到大剧院吗?并画出相关图象. 【答案】(1)15,60 (2)105604y x =-(3)该老师能在学生全部达到前赶到大剧院,图象见解析【提示】(1)由图象直接可得学校与大剧院的距离,由路程除以时间可得汽车的速度; (2)设步行速度为m 千米/小时,可得:15(60)21532m +=⨯,即可解得15(32B ,15)8,从而可得11(16C ,15),用待定系数法得线段BC 所在直线的函数表达式为105604y x =-; (3)由学生全部达到大剧院时,1116x =,出租车到达大剧院时,15110.58016x =+=,知该老师能在学生全部达到前赶到大剧院,再画出图象即可.【解答】(1)解:由图象可得,学校与大剧院相距15千米, 汽车的速度为115604÷=(千米/小时), 故答案为:15,60;(2)设步行速度为m 千米/小时, 根据题意得:15(60)21532m +=⨯, 解得4m =, ∴步行的路程为15154328⨯=(千米), 15(32B ∴,15)8,。

5.5 一次函数的简单应用(1)

5.5 一次函数的简单应用(1)
合作探究:还能用其
V/万米3
它方法解答本题吗? (1)设v=kt+1200
(2)将t=10,V=1000代 V=kt+1200中求的k= -20
V= -20 t+1200
(3)再代入各组 t 或 V 的
值对应的求V 与 t 的值
t/天
探索四:蓝鲸是现存动物中体形最大的一种,
体长的最高记录是3200cm.根据生物学家对 成熟的雄性鲸的测量,其全长和吻尖到喷水孔
全长Y(m)
10.00 10.25 10.72 11.52 12.50 13.16 13.90 全长,并判断能否 超过已知的体长记
录.
x
1) 是否也能用一次函数
刻画两个变量x和y的关系?
蓝鲸
描点
2)请求出这个一次函数的解析式。
解:建立直角坐标系,画出以表中的用x这值样为的横方坐法标获,得y的
值为纵坐标的7个点。
把点(1.91,10.25),(2.59,12.50)代入
20 18 16 14
y kx b 得 10.25 1.91k b
12.50 2.59k b
12 10
8 6
解得 k 3.31 b 3.93
4 2
X(m)所以所求的函数解析式为:
o 1 2 34 5
y 3.31x 3.93
800
因变量的值------------数
体现在图象上就是找一个点,使点的横
600
坐标是10,对应在图象上找到此点纵坐
400
标的值(10,V)--------形
200
0
10
20
30
40
50 t/天
探索二:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而 3 V/万米3 减少.干旱持续时间 t( 天)与蓄水量V(万米 ) 的关系如图所示, 回答下列问题: (1).连续干旱23天,储水量为:750 万米 1200

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用1. 引言1.1 一次函数的定义一次函数,又称为线性函数,是指形式为y=ax+b的函数,其中a 和b为常数,且a不为零。

在一次函数中,x的最高次数为1,因此表现为直线的图像。

一次函数具有简单的特征:斜率为a,截距为b。

一次函数在数学中的地位十分重要,它是初等数学中最基本的函数之一。

通过一次函数,我们可以描述简单的线性关系,例如时间和距离之间的关系、价格和数量之间的关系等。

一次函数在解决实际问题中具有广泛的应用。

除了在数学中应用广泛之外,一次函数在生活中也有着重要的作用。

它被广泛运用在经济学、物理学、工程学等领域中,帮助人们分析问题、预测趋势、优化方案等。

通过一次函数的建模方法,人们可以更好地理解现实世界中的复杂现象,并做出科学的决策。

一次函数在生活中扮演着重要的角色,是现代社会中不可或缺的数学工具之一。

通过深入研究一次函数的应用,我们可以更好地理解世界,解决问题,推动社会的发展和进步。

1.2 一次函数在生活中的重要性一次函数在生活中的重要性体现在许多方面。

一次函数在生活中的具体应用非常广泛,涉及到经济学、物理学、工程学等多个领域。

通过一次函数的应用,可以更好地解决实际问题,提高生活质量和工作效率。

一次函数能够帮助我们更好地理解和分析各种现象,为决策和规划提供重要参考。

一次函数在生活中的重要性不可忽视,它为我们提供了丰富的思维工具和解决问题的方法。

在日常生活中,无论是计算开支、预测销量,还是设计建筑、分析运动,都离不开一次函数的运用。

了解和掌握一次函数的知识,对我们发展个人能力和解决各种实际问题都有着重要的意义。

通过对一次函数的深入研究和应用,我们可以更好地理解世界的运行规律,提高自身的分析能力和解决问题的能力,从而更好地适应社会的发展需求。

2. 正文2.1 经济学中的应用在经济学中,一次函数也被广泛运用于各种实际问题的建模和分析中。

经济学家常常使用一次函数来描述市场需求、供给和成本等关键概念,从而帮助他们预测市场走势、制定政策和做出决策。

一次函数的应用(一.)

一次函数的应用(一.)

斜率
一次函数的斜率为$k$, 决定了函数图像的倾斜程 度。
截距
当$x=0$时,$y$的值称 为截距,表示函数图像与 $y$轴的交点。
一次函数的图像
1 2 3
直线
一次函数图像是一条直线。
斜率与图像的倾斜度
斜率$k$决定了直线是上升还是下降。当$k > 0$时,函数图像为上升直线;当$k < 0$时,函 数图像为下降直线。
一次函数在其定义域内是 可微的。
02 一次函数在实际生活中的 应用
一次函数在经济学中的应用
描述成本与产量的关系
评估投资回报
在经济学中,一次函数可以用来描述 成本与产量的关系,通过拟合数据, 可以分析出生产成本、边际成本等信 息。
在投资领域,一次函数可以用来评估 投资回报与投资时间的关系,帮助投 资者做出明智的决策。
பைடு நூலகம்工资计算
在工资计算中,一次函数可以用来 描述工资与工作年限的关系,帮助 企业制定合理的薪酬体系。
03 一次函数与其他数学知识 的结合
一次函数与一元一次方程
一次函数与一元一次方程在形式上具 有相似性,可以通过对方程进行变形 ,转化为一次函数的形式,从而利用 一次函数的性质求解方程。
例如,对于方程 $y = x + 1$,可以将 其视为一次函数 $y = kx + b$ 的形式, 其中 $k=1$,$b=1$,通过求解该一 次函数的零点,可以得到方程的解。
预测市场需求
通过建立市场需求与时间等变量的线 性关系,一次函数可以帮助预测未来 的市场需求,从而为企业制定合理的 生产和销售计划。
一次函数在物理学中的应用
描述速度与时间的关系
在匀速直线运动中,一次函数可以用来描述速度与时间的关系, 通过已知初速度和时间,可以求出位移。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用【摘要】一次函数是数学中的基础概念之一,在生活中具有广泛的应用价值。

本文探讨了一次函数在经济学、物理学、工程学、管理学和生物学等不同学科领域的具体应用。

在经济学中,一次函数常用于描述价格与供求关系,帮助分析市场走势和决策制定。

物理学中的直线运动问题可以通过一次函数来描述物体的位置随时间的变化规律。

在工程学中,线性电路中的电压和电流关系也可以用一次函数来表示。

管理学中的线性规划问题可以通过一次函数优化资源分配和成本控制。

生物学中的物种增长模型也常用一次函数来描述种群数量随时间的变化。

一次函数在各个学科领域都发挥着重要的作用,展示出其在现实生活中的广泛适用性和重要性。

【关键词】一次函数、生活应用、经济学、价格、供求关系、物理学、直线运动、工程学、线性电路、管理学、线性规划、生物学、物种增长模型、重要应用价值1. 引言1.1 一次函数在生活中的具体应用一次函数在生活中的具体应用广泛存在,它在经济学、物理学、工程学、管理学和生物学等各个领域都有着重要的应用价值。

在经济学中,一次函数常常用于描述价格与供求关系,帮助分析市场运行规律。

物理学中,一次函数被用来描述物体的直线运动,预测位置随时间的变化。

工程学中的线性电路中,一次函数被用来描述电流和电压的关系,设计出各种电子设备。

在管理学领域,一次函数被应用于线性规划,帮助企业优化资源分配和决策制定。

生物学中,一次函数被用来建立物种增长模型,分析生态系统中的物种数量变化趋势。

通过对这些具体应用的研究和应用,可以更好地理解和利用一次函数在各个学科领域中的重要性,促进学科间的交叉和发展。

2. 正文2.1 经济学中的价格与供求关系经济学中的价格与供求关系是一次函数在生活中的具体应用之一。

在经济学中,价格与供求关系是一个非常重要的概念,也是经济学家研究市场和决策的基础之一。

一次函数可以很好地描述价格与数量之间的关系,帮助我们更好地理解市场的运作。

1一次函数的应用(1)借助函数表达式解决一些简单问题 课件

1一次函数的应用(1)借助函数表达式解决一些简单问题  课件

确定正比例函数的表达式需要几 个条件?
一个
确定一次函数的表达式呢?
两个
例题讲解
例1 在弹性限度内,弹簧的长度y(厘米)是所挂物体质量 x(千克)的一次函数。一根弹簧不挂物体时长14.5厘米; 当所挂物体的质量为3千克时,弹簧长16厘米。请写出y与x 之间的关系式,并求当所挂物体的质量为4千克时弹簧的长 度。
C.y= 2 x+3 3
D.y= 2 x+3 3
4.用每张长6 cm的纸条,重叠1 cm粘贴成一条纸
带,如图.纸带的长度y(cm)与纸条的张数x之间
的函数表达式是( D )
A.y=6x+1
B.y=4x+1
C.y=4x+2
D.y=5x+1
5. 如图,直线l是一次函数y=kx+b的图象,填空:
(1)b=___2___,k=____23__;
间 t (秒)的关系如右图所示:
(2,5)
(1)请写出 v 与 t 的关系式;
设V=kt;
∵(2,5)在图象上Fra bibliotek∴5=2k , ∴k=2.5
∴V=2.5t O
(2)下滑3秒时物体的速度是多少?
t/秒
V=7.5米/秒
假定甲、乙二人在一项赛跑中 路程与时间的关系如图所示. (1)这是一次多少米的赛跑? (2)甲、乙二人谁先到达终点? (3)甲、乙二人的速度分别是多少? (4)求甲、乙二人y与x的函数关系 式.
2.在直角坐标系中,点M,N在同一个正比例 函数图象上的是( A ) A.M(3,-3),N(-4,4) B.M(-3,3),N(4,4)
C.M(-3,-3),N(4,-4) D.M(3,3),N(-4,4)
3.如图,直线AB对应的函数表达式是( A )

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用一次函数是数学中的基本函数之一,其表达式为 y = kx + b,其中 k 和 b 都是常数,x 和 y 分别表示自变量和函数值。

一次函数有着简单直线的特点,因此在生活中有着各种具体应用。

下面我们就来看一看一次函数在生活中的具体应用。

一次函数在经济学中有着广泛的应用。

成本函数可以用一次函数来近似描述,表示成本和产量之间的关系。

假设某个企业的成本函数为 C(x) = kx + b,其中 x 表示产量,C(x) 表示成本,k 和 b 分别表示单位产量成本和固定成本。

这个成本函数可以帮助企业在制定产量和成本预算时提供决策依据。

一次函数还可以用来描述市场需求函数和供给函数,通过这些函数可以分析市场价格和供求关系的变化,为市场调控和经济政策制定提供依据。

一次函数在工程学中也有着重要的应用。

物体的位移和时间之间的关系可以用一次函数来描述。

在工程设计中,如果我们知道物体在 t 时刻的位移为 s(t) = kt + b,那么我们就可以通过一次函数来预测物体的运动轨迹和速度变化。

工程中的许多问题,如电路中的电压和电流关系、机械运动中的速度和加速度关系等,都可以用一次函数来描述,帮助工程师们分析和优化设计方案。

一次函数在市场营销中也有着广泛的应用。

销售额和广告投入之间的关系可以用一次函数来描述。

假设某品牌的销售额与广告投入的关系为 S(x) = kx + b,其中 x 表示广告投入,S(x) 表示销售额,k 和 b 分别表示单位广告投入带来的销售额和固定销售额。

通过分析这个销售额函数,企业可以评估广告效果、制定营销策略,从而提高销售绩效。

市场调查中的问卷调查和样本调查也经常用到一次函数来分析数据,帮助企业了解消费者的需求和行为。

一次函数在日常生活中也有着许多应用。

汽车的油耗和行驶路程之间的关系可以用一次函数来描述。

假设某辆汽车的油耗与行驶路程的关系为 F(x) = kx + b,其中 x 表示行驶路程,F(x) 表示消耗的汽油量,k 和 b 分别表示单位路程消耗的汽油量和固定消耗量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

②下面哪个图形符合这一实际情况?
ห้องสมุดไป่ตู้
问题二:旅行的安排是上午8:00从湖州出发,到达递铺后,先安排师 生入住酒店,吃过午饭后再去中南百草园.下图是离湖州的距离s(千米) 关于时间t(时)的函数关系,根据图象,回答下列问题:
s(km)
①汽车到达递铺的时间是__________.
100 60
o
1.5
4.5
①如果你是生物学家,你想知道两者存在什么具体关系,你会怎么做 ?
x
y

吻尖到喷水孔 的长度
全长
1.78 12.00
1.91 10.25
2.06 10.72
2.32 11.52
2.59
2.82
2.95 13.90
12.50 13.16
y(m)
②如何确定两个变量间的关系?
③如何画好图象?
20 18 16 14 12 10 8 6 4 2
o
1
2
3
4
5 x(m)
④观察图象,这条线有什么特征,可近 似地看成什么函数的图象?
⑤可以用什么方法求出函数解析式?
利用图象获得经验公式的基本步骤: (1) 通过实验,测量获得数量足够多的两个变量的对应值; (2) 建立合适的直角坐标系,在坐标系中,以各对应值为坐 标描点,利用描点法画出函数图象; (3) 观察图象特征,判定函数类型; (4) 利用待定系数法求出解析式.
同时为了巩固这一知识,我设计了下面的问题:
问题五:进了中南百草园后,发现人们正在植树 造林,种植的树有两种,一种是山毛榉,一种是枫树.现 在山毛榉高2.4m,枫树高0.9m,山毛榉的平均生长速度 是每年长高0.15m,枫树的平均速度是每年长高0.3m, 问几年之后枫树比山毛榉高?
★今天我们一起游览了安吉,一路下来,你有什么收获? ★问题六:
票价:30元 A方案:教师全额
收费,学生打7折
B方案:全部师生 按8折收费
本问题有点难,我分成两个小问题:
★如果有x名学生,A方案收费yA关于x的函数
解析式是___________ B方案的收费yB关于x的函数解析式是_____ _____ ★要知道收费哪个合算,还得知道什么?
②下列是这两种方案的收费Y(元)关于学生人数X(人)的图 象,你认为哪一种方案合算?
游玩好中南百草园,大家同时乘车返回湖州,由于一部 分人要到递铺酒店取东西,所以打车回去取了东西后,继续打 车回湖州.另一部分直接回去,最后两部分人同时到达湖州, 下面四个图象中符合这一实际情况的是( )
A
B
C
D
作业布置:体现整体和局部相结合,注意分层 训练,分两部分:一是A组题,二是B组题.
教学内容分析
《一次函数的简单应用(1)》

利用图象获得经验公式 的基本步骤: 1: 2: 3: 4:

教师版面

学生版面
说 课 过 程 教法与学法分析 教学过程分析 设计意图分析
1. 以贯彻新课程理念为前提,从学生的认知特点出发,通过 创设情境,以安吉旅游为主线,把整节课串联起来,让学生从 始至终都置身于旅游之中,却又紧紧围绕学习, 学中玩, 玩 中学,不知不觉学到了新知识. 2. 引导学生观察﹑类比﹑联想已有的知识经验,归纳﹑总结新 知识等一系列活动.让学生充分感受知识的产生和发展过程, 使学生始终处于积极的思维状态之中,使新概念得出不觉意 外,让学生跳一跳就可以摘到桃子. 3. 练习﹑作业注意分层,即让人人获得必需的数学知识,同 时也实现了不同的人在数学上得到不同的发展.
突破难点的策略: ①引入时,设计的实际情景. ②探究时,教师的适时引导. ③巩固时,适量的配套练习.
教学内容分析
说 课 过 程 教法与学法分析 教学过程分析 设计意图分析
说教法
(引导发现法)
问题情境——启发引导——合作探索 ——总结结果——运用实际
说学法
教师 创设情境 教师的启发点拔
找到解决问题的方法
5.5
t(h)
②师生在递铺停留了__________小时.
③分别写出0≤t≤1.5和4.5≤t≤5.5时s关于t的函数关系式.
中午休息时,酒店组织师生观看了 一个宣传人与动物和谐相处的生态短 片, 结尾时的一个内容是“日本的捕 鲸船”事件, 前后形成鲜明对比.大家 知道今天全世界的生物学家们,想方设 法的在保护鲸,为了了解鲸的习性,长 期不断的在研究,其中也取得了不少成 果.还有他们惊奇的发现鲸身上也存在 着不少数学关系. 问题三:成熟的雄性鲸的全长和吻 尖到喷水孔的长度有何关系?
通过实验获得U、V两个变量的各对应值如下表:
U
0
0.5
1
1.5
2
2.5
3
4
V
50
100
155
207
260
292
365
470
判断变量U、V是否近似地满足一次函数关系式,如果是求V关于U的函 数解析式,并利用函数解析式求出当U=2.2时,函数V的值.
问题四:看了短片后,师生共同乘车前往中南百草园, 在买门票时,发现票价栏上是这样写的: ① 现有3名教师和若干学生,如果老师派你去买 门票,你将选择A方案还是B方案?
学情分析
学生已经学习过了一次函数的图像及其性
质,同时已有用数学知识解决实际问题的经验, 另外学生个性活泼,思维活跃,积极性高,已初步 具有对数学问题进行合作探究的意识与能力 .
知识与技能目标:
教学目标
过程与方法目标:
情感态度与价值观目标:
教学重点与难点
教学重点:利用图象取得函数的解析式的基本方法与步骤. 突出重点的措施: ①通过分析——对比——交流——归纳——建模等环节,让学 生经历方法和步骤的产生过程,使学生在过程中获得对数学概念 的理解. ②通过引例——例题——练习,多次经历其方法的运用过程. 教学难点:理解分段函数在解决实际问题中的应用及从实 际问题中提炼出函数的解析式.
学生共同努力
学生
想办法解 决疑问
教学内容分析
说 课 过 程 教法与学法分析 教学过程分析 设计意图分析
在旅游过程中,依次遇到下列几个问题: 问题一:从湖州出发到递铺有60千米的路程,汽车的速 度为40千米/小时. ①求离递铺的距离S(千米)关于行车时间t(小时)的函数 关系式是 ,自变量t的取值范围是 .
《一次函数的简单应用(1)》
说课人:
安吉县孝丰中学
陆林瑾
教学内容分析 说 课 过 程 教法与学法分析 教学过程分析 设计意图分析
教学内容分析 说 课 过 程
教法与学法分析 教学过程分析 设计意图分析
教学内容﹑地位及作用
一次函数的简单应用(1)是在 学习了一次函数的概念、图象和性质 的基础上,进一步研究应用一次函数 的图像及性质解决生活﹑生产实际问 题,不仅是对本章前面所学知识的巩 固及应用,也为以后学习其他函数的 应用打下了基础.同时也培养了学生 的数学应用意识和用函数思想解决简 单实际问题的能力。
相关文档
最新文档