AGC电路AD603应用

合集下载

ad603手册

ad603手册

ad603手册1. 简介AD603是ADI(Analog Devices Inc.)推出的一款低噪声,宽带可变增益放大器。

该芯片内部集成了一个控制电压输入端,可通过调节该输入电压实现增益的控制。

本手册将为您介绍AD603的主要特性,电路连接,使用方法和一些应用示例。

2. 主要特性2.1 低噪声:AD603采用了高性能放大器核心,能够在低噪声环境下提供出色的信号放大效果。

2.2 宽带性能:该芯片的带宽范围从DC到40MHz,可以满足多种应用场景的需求。

2.3 可变增益:AD603的增益范围为-14dB到20dB,通过控制电压输入端的电压,可以轻松地调节增益。

2.4 供电电压范围:AD603可以在单电源供电下工作,供电电压范围为5V到15V,非常适合嵌入式系统等低功耗应用。

2.5 稳定性:该芯片具有良好的温度稳定性和电源稳定性,保证了信号放大的一致性和可靠性。

3. 电路连接AD603的电路连接非常简单,下面是一种常见的连接方式:3.1 高频输入端(INHI和INLO):将要放大的信号输入到INHI和INLO引脚,可以通过串联电容和电阻来完成信号的直流分离和控制输入阻抗。

3.2 控制电压输入端(VGAIN):通过改变VGAIN引脚的电压,可以实现对增益的控制,增益和控制电压之间存在线性关系。

3.3 电源端(VD+和VD-):将正负电源连接到VD+和VD-引脚,供芯片工作所需的电能。

3.4 输出端(OUTHI和OUTLO):从OUTHI和OUTLO引脚输出放大后的信号,可以通过串联电阻和电容来滤除直流分量和控制输出阻抗。

4. 使用方法AD603的使用方法非常简单,下面是一般的步骤:4.1 电路连接:按照上述的电路连接方式,将AD603与其他电路元件连接好。

4.2 供电:将适当的电源电压接入VD+和VD-引脚,确保芯片正常工作。

4.3 增益控制:通过控制电压输入端(VGAIN)的电压,调节增益到合适的值。

ad603中文资料

ad603中文资料

aAD603*FEATURESLinear in dB Gain ControlPin Programmable Gain Ranges–11 dB to +31 dB with 90 MHz Bandwidth 9 dB to 51 dB with 9 MHz BandwidthAny Intermediate Range, e.g., –1 dB to +41 dB with 30 MHz BandwidthBandwidth Independent of Variable Gain 1.3 nV/√Hz Input Noise Spectral Density ؎0.5 dB Typical Gain AccuracyMIL-STD-883 Compliant and DESC Versions Available APPLICATIONSRF/IF AGC Amplifier Video Gain Control A/D Range Extension Signal Measurement Low Noise, 90MHz Variable Gain AmplifierPRODUCT DESCRIPTIONThe AD603 is a low noise, voltage-controlled amplifier for use in RF and IF AGC systems. It provides accurate, pin selectable gains of –11dB to +31dB with a bandwidth of 90 MHz or 9dB to 51 dB with a bandwidth of 9 MHz. Any intermediate gain range may be arranged using one external resistor. The input referred noise spectral density is only 1.3nV/√Hz and power con-sumption is 125 mW at the recommended ±5 V supplies.The decibel gain is linear in dB, accurately calibrated, and stable over temperature and supply. The gain is controlled at a high impedance (50 M Ω), low bias (200 nA) differential input; theFUNCTIONAL BLOCK DIAGRAMOUTscaling is 25 mV/dB, requiring a gain-control voltage of only 1 V to span the central 40 dB of the gain range. An overrange andunderrange of 1 dB is provided whatever the selected range. The gain-control response time is less than 1µs for a 40 dB change.The differential gain-control interface allows the use of either differential or single-ended positive or negative control voltages.Several of these amplifiers may be cascaded and their gain-control gains offset to optimize the system S/N ratio.The AD603 can drive a load impedance as low as 100 Ω with low distortion. For a 500 Ω load in shunt with 5 pF, the total harmonic distortion for a ±1V sinusoidal output at 10 MHz is typically –60 dBc. The peak specified output is ±2.5 V mini-mum into a 500Ω load, or ±1 V into a 100 Ω load.The AD603 uses a proprietary circuit topology—the X-AMP ®.The X-AMP comprises a variable attenuator of 0 dB to –42.14dB followed by a fixed-gain amplifier. Because of the attenuator,the amplifier never has to cope with large inputs and can use negative feedback to define its (fixed) gain and dynamic perfor-mance. The attenuator has an input resistance of 100 Ω, laser trimmed to ±3%, and comprises a seven-stage R-2R ladder net-work, resulting in an attenuation between tap points of 6.021dB.A proprietary interpolation technique provides a continuous gain-control function which is linear in dB.The AD603A is specified for operation from –40°C to +85°C and is available in both 8-lead SOIC (R) and 8-lead ceramic CERDIP (Q). The AD603S is specified for operation from –55°C to +125°C and is available in an 8-lead ceramic CERDIP (Q).The AD603 is also available under DESC SMD 5962-94572.*Patented.REV.FInformation furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781/329-4700 Fax: 781/326-8703© 2004 Analog Devices, Inc. All rights reserved.AD603–SPECIFICATIONSREV. F–2–ModelAD603ParameterConditions Min Typ Max Unit INPUT CHARACTERISTICS Input Resistance Pins 3 to 497100103ΩInput Capacitance2pFInput Noise Spectral Density 1Input Short Circuited1.3nV/√Hz Noise Figuref = 10 MHz, Gain = max, R S = 10 Ω8.8dB 1 dB Compression Point f = 10 MHz, Gain = max, R S = 10 Ω–11dBm Peak Input Voltage±1.4±2V OUTPUT CHARACTERISTICS –3 dB Bandwidth V OUT = 100 mV rms 90MHz Slew Rate R L ≥ 500 Ω275V/µs Peak Output 2R L ≥ 500 Ω±2.5±3.0V Output Impedancef ≤ 10 MHz2ΩOutput Short-Circuit Current 50mA Group Delay Change vs. Gainf = 3 MHz; Full Gain Range ±2ns Group Delay Change vs. Frequency V G = 0 V; f = 1 MHz to 10 MHz ±2ns Differential Gain 0.2%Differential Phase0.2Degree Total Harmonic Distortion f = 10 MHz, V OUT = 1V rms–60dBc Third Order Intercept f = 40 MHz, Gain = max, R S = 50 Ω15dBm ACCURACY f = 10.7 MHzGain Accuracy –500 mV ≤ V G ≤ +500 mV –1±0.5؉1dB T MIN to T MAX–1.5ϩ1.5dB Output Offset Voltage 3V G = 0V–20؉20mV T MIN to T MAX–30ϩ30mV Output Offset Variation vs. V G –500 mV ≤ V G ≤ +500 mV–20؉20mV T MIN to T MAX –30ϩ30mV GAIN CONTROL INTERFACE Gain Scaling Factor 39.44040.6dB/V T MIN to T MAX3842dB/V GNEG, GPOS Voltage Range 4–1.2+2.0V Input Bias Current 200nA Input Offset Current10nA Differential Input Resistance Pins 1 to 250M ΩResponse RateFull 40 dB Gain Change40dB/µs POWER SUPPLYSpecified Operating Range ±4.75±6.3V Quiescent Current 12.517mA T MIN to T MAX20mANOTES 1Typical open or short-circuited input; noise is lower when system is set to maximum gain and input is short-circuited. This figure includes the effects of both voltage and current noise sources.2Using resistive loads of 500Ω or greater, or with the addition of a 1 k Ω pull-down resistor when driving lower loads.3The dc gain of the main amplifier in the AD603 is ×35.7; thus, an input offset of 100 µV becomes a 3.57 mV output offset.4GNEG and GPOS, gain control, and voltage range are guaranteed to be within the range of –V S + 4.2 V to +V S – 3.4 V over the full temperature range of –40°C to +85°C.Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.Specifications subject to change without notice.(@ T A = 25؇C, V S = ؎5 V, –500 mV ≤ V G ≤ +500 mV, GNEG = 0 V, –10 dB to +30dB Gain Range, R L = 500⍀, and C L = 5 pF, unless otherwise noted.)AD603–3–REV.FABSOLUTE MAXIMUM RATINGS 1Supply Voltage ±V S . . . . . . . . . . . . . . . . . . . . . . . . . . . .±7.5V Internal Voltage VINP (Pin 3) . . . . . . . . . . . ±2 V Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±V S for 10 ms GPOS, GNEG (Pins 1, 2) . . . . . . . . . . . . . . . . . . . . . . . ±V S Internal Power Dissipation 2 . . . . . . . . . . . . . . . . . . . . 400mW Operating Temperature RangeAD603A . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C AD603S . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C Lead Temperature Range (Soldering 60sec) . . . . . . . . .300°CNOTES 1Stresses above those listed under Absolute Maximum Ratings may cause perma-nent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.2Thermal Characteristics:8-Lead SOIC Package: θJA = 155°C/W, θJC = 33°C/W 8-Lead CERDIP Package: θJA = 140°C/W, θJC = 15°C/WPIN FUNCTION DESCRIPTIONSPin No.Mnemonic Description1GPOS Gain-Control Input High(Positive Voltage Increases Gain)2GNEG Gain-Control Input Low(Negative Voltage Increases Gain)3VINP Amplifier Input 4COMM Amplifier Ground5FDBK Connection to Feedback Network 6VNEG Negative Supply Input 7VOUT Amplifier Output 8VPOSPositive Supply InputCONNECTION DIAGRAM 8-Lead Plastic SOIC (R) Package 8-Lead Ceramic CERDIP (Q) PackageVPOSVOUT VNEGFDBKCAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD603 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recom-mended to avoid performance degradation or loss of functionality.ORDERING GUIDETemperature Package Package Part Number RangeDescriptionOption AD603AR–40°C to +85°C 8-Lead SOICR-8AD603AR-REEL –40°C to +85°C 8-Lead SOIC, 13" Reel R-8AD603AR-REEL7–40°C to +85°C 8-Lead SOIC, 7" Reel R-8AD603ARZ 1–40°C to +85°C 8-Lead SOICR-8AD603ARZ-REEL 1–40°C to +85°C 8-Lead SOIC, 13" Reel R-8AD603ARZ-REEL71–40°C to +85°C 8-Lead SOIC, 7" Reel R-8AD603AQ–40°C to +85°C 8-Lead CERDIP Q-8AD603SQ/883B 2–55°C to +125°C8-Lead CERDIP Q-8AD603-EBEvaluation Board AD603ACHIPSDIENOTES 1Z = Pb-free part.2Refer to AD603 Military data sheet. Also available as 5962-9457203MPA.REV. F–4–AD603GAIN VOLTAGE (Volts)G A I N E R R O R (d B )2.50–0.52.001.501.000.500.00–0.50–1.00–1.50–0.4–0.3–0.2–0.10.00.20.30.40.50.6TPC 1.Gain Error vs. Gain Control Voltage at 455 kHz, 10.7 MHz, 45MHz, 70 MHzFREQUENCY (Hz)REF LEVEL /DIV MARKER 505 156.739Hz–31.550dB 1.000dB MAG (UDF)–35.509dB 0.0deg 45.000deg MARKER 505 156.739HzG A I N (d B )P H A S E (D E G )TPC 4.Frequency and PhaseResponse vs. Gain (Gain = +30dB,P IN = –30 dBm, Pin 5 Connectedto Pin 7)TPC 7.Third Order Intermodula-tion Distortion at 455kHz (10ϫ Probe Used to HP3585A Spectrum Ana-lyzer, Gain = 0dB, P IN = 0dBm, Pin 5Connected to Pin 7)100k1M 10M 100MREF LEVEL /DIV MARKER 505 156.739Hz8.100dB 1.000dB MAG (UDF) 4.127dB 0.0deg 45.000degMARKER 505 156.739Hz –1–2–3–4–5–622518013590450–45–90–135–180–225G A I N (dB )P H A S E (D E G )FREQUENCY (Hz)TPC 2.Frequency and PhaseResponse vs. Gain (Gain = –10dB,P IN = –30dBm, Pin 5 Connected to Pin 7)GAIN CONTROL VOLTAGE (V)G R O U P D E L A Y (n s )7.60–0.67.407.207.006.806.606.40–0.4–0.200.20.40.6TPC 5.Group Delay vs. Gain Control Voltage TPC 8.Third Order Intermodulation Distortion at 10.7MHz (10ϫ Probe Used to HP3585A Spectrum Ana-lyzer, Gain = 0dB, P IN = 0dBm, Pin 5Connected to Pin 7)FREQUENCY (Hz)100k1M 10M 100MREF LEVEL /DIV MARKER 505 156.739Hz–11.850dB 1.000dB MAG (UDF) –15.859dB 0.0deg 45.000deg MARKER 505 156.739Hz G A I N (d B )22518013590450–45–90–135–180–225TPC 3.Frequency and Phase Response vs. Gain (Gain = +10dB, P IN = –30dBm,Pin 5 Connected to Pin 7)TPC 6.Third Order Intermodulation Distortion Test SetupLOAD RESISTANCE (⍀)N E G A T I V E O U T P U T V O L T A G E L I M I T (V )–1.0–1.2–1.4–1.6–1.8–2.0–2.2–2.4–2.6–2.8–3.05010020050010002000–3.2–3.4TPC 9.Typical Output Voltage Swing vs. Load Resistance (Negative Output Swing Limits First)–Typical Performance CharacteristicsAD603–5–REV.FFREQUENCY (Hz)I N P U T I M P E D A N C E (⍀)100k10210098961M 10M100M94 TPC 10.Input Impedance vs.Frequency (Gain = –10dB)TPC 13.Gain-Control Channel Response Time3.5V 500mV–1.5VGNDGNDTPC 16.Transient Response,G = 0dB, Pin 5 Connected to Pin 7(Input Is 500ns Period, 50% Duty-Cycle Square Wave, Output Is Captured Using Tektronix 11402Digitizing Oscilloscope)FREQUENCY (Hz)I N P U T I M P E D A NC E (⍀)100k10210098961M 10M 100M94 TPC 11.Input Impedance vs.Frequency (Gain = +10dB)4.5V 500mV –500mVTPC 14.Input Stage OverloadRecovery Time, Pin 5 Connected to Pin 7 (Input Is 500ns Period, 50% Duty-Cycle Square Wave, Output Is Captured Using Tektronix 11402 Digitizing Oscilloscope)3.5V500mV–1.5VTPC 17.Transient Response,G = +20dB, Pin 5 Connected to Pin 7 (Input Is 500 ns Period, 50% Duty- Cycle Square Wave, Output Is Captured Using Tektronix 11402 Digitizing Oscilloscope)FREQUENCY (Hz)I N P U T I M P E D A N C E (⍀)100k10210098961M 10M 100M94 TPC 12.Input Impedance vs. Frequency (Gain = +30dB)8V1V–2V TPC 15.Output Stage Overload Recovery Time, Pin 5 Connected to Pin 7 (Input Is 500 ns Period, 50% Duty-Cycle Square Wave, Output Is Captured Using Tektronix 11402 Digitizing Oscilloscope)FREQUENCY (Hz)P S R R (d B )100k0–20–40–601M 10M 100M–10–30–50TPC 18.PSRR vs. Frequency (Worst Case Is Negative Supply PSRR,Shown Here)REV. F–6–AD603TPC 19.Test Setup Used for: Noise Figure, Third Order Intercept and 1 dB Compression Point MeasurementsINPUT FREQUENCY (MHz)I N P U T L E V E L (d B m )10–5–10–25–15–20305070TPC 22.1 dB Compression Point,–10 dB/+30 dB Mode, Gain = +30 dB GAIN (dB)N O I S E F I G U R E (d B )232021191715135119721222324252627282930TPC 20.Noise Figure in –10 dB/+30 dB Mode INPUT LEVEL (dBm)O U T P U T L E V E L (d B m )–2020181681412–1010TPC 23.Third Order Intercept –10 dB/+30 dB Mode, Gain = +10 dB GAIN (dB)N O I S E F I G U R E (dB )3021191715135119731323334353637383940TPC 21.Noise Figure in 0 dB/40 dB ModeINPUT LEVEL (dBm)O UT P U T L E V E L (d B m )–4020181681412–30–2010TPC 24.Third Order Intercept,–10 dB/+30 dB Mode, Gain = +30 dBAD603–7–REV.FTHEORY OF OPERATIONThe AD603 comprises a fixed-gain amplifier, preceded by a broadband passive attenuator of 0dB to 42.14 dB, having a gain-control scaling factor of 40 dB per volt. The fixed gain is laser-trimmed in two ranges, to either 31.07 dB (×35.8) or 50dB (×358), or may be set to any range in between using one external resistor between Pins 5 and 7. Somewhat higher gain can be obtained by connecting the resistor from Pin 5 to common,but the increase in output offset voltage limits the maximum gain to about 60 dB. For any given range, the bandwidth is independent of the voltage-controlled gain. This system provides an underrange and overrange of 1.07 dB in all cases; for example, the overall gain is –11.07 dB to +31.07 dB in the maximum-bandwidth mode (Pin 5 and Pin 7 strapped).This X-AMP structure has many advantages over former methods of gain-control based on nonlinear elements. Most importantly,the fixed-gain amplifier can use negative feedback to increase its accuracy. Since large inputs are first attenuated, the amplifier input is always small. For example, to deliver a ±1 V output in the –1 dB/+41 dB mode (that is, using a fixed amplifier gain of 41.07 dB) its input is only 8.84 mV; thus the distortion can be very low. Equally important, the small-signal gain and phase response, and thus the pulse response, are essentially indepen-dent of gain.Figure 1 is a simplified schematic. The input attenuator is a seven-section R-2R ladder network, using untrimmed resistors of nominally R = 62.5 Ω, which results in a characteristic resis-tance of 125 Ω ± 20%. A shunt resistor is included at the input and laser trimmed to establish a more exact input resistance of 100 Ω ± 3%, which ensures accurate operation (gain and HP corner frequency) when used in conjunction with external resistors or capacitors.The nominal maximum signal at input VINP is 1 V rms (±1.4 V peak) when using the recommended ±5 V supplies, although operation to ±2 V peak is permissible with some increase in HF distortion and feedthrough. Pin 4 (SIGNAL COMMON) must be connected directly to the input ground; significant impedance in this connection will reduce the gain accuracy.The signal applied at the input of the ladder network is attenu-ated by 6.02 dB by each section; thus, the attenuation to each of the taps is progressively 0 dB, 6.02 dB, 12.04 dB, 18.06 dB,24.08 dB, 30.1 dB, 36.12 dB, and 42.14 dB. A unique circuittechnique is employed to interpolate between these tap points,indicated by the slider in Figure 1, thus providing continuous attenuation from 0 dB to 42.14 dB. It will help in understanding the AD603 to think in terms of a mechanical means for moving this slider from left to right; in fact, its position is controlled by the voltage between Pins 1 and 2. The details of the gain-control interface are discussed later.The gain is at all times very exactly determined, and a linear-in-dB relationship is automatically guaranteed by the exponential nature of the attenuation in the ladder network (the X-AMP principle). In practice, the gain deviates slightly from the ideal law, by about ±0.2 dB peak (see, for example, TPC 1).Noise PerformanceAn important advantage of the X-AMP is its superior noise per-formance. The nominal resistance seen at inner tap points is 41.7 Ω (one third of 125 Ω), which exhibits a Johnson noise-spectral density (NSD) of 0.83 nV/√Hz (that is, √4kTR ) at 27°C,which is a large fraction of the total input noise. The first stage of the amplifier contributes a further 1nV/√Hz , for a total input noise of 1.3 nV/√Hz . It will be apparent that it is essential to use a low resistance in the ladder network to achieve the very low specified noise level. The signal’s source impedance forms a voltage divider with the AD603’s 100 Ω input resistance. In some applications, the resulting attenuation may be unaccept-able, requiring the use of an external buffer or preamplifier to match a high impedance source to the low impedance AD603.The noise at maximum gain (that is, at the 0 dB tap) depends on whether the input is short-circuited or open-circuited: when shorted, the minimum NSD of slightly over 1 nV/√Hz is achieved;when open, the resistance of 100 Ω looking into the first tap generates 1.29 nV/√Hz , so the noise increases to a total of 1.63 nV/√Hz . (This last calculation would be important if the AD603 were preceded by, for example, a 900 Ω resistor to allow operation from inputs up to 10 V rms.) As the selected tap moves away from the input, the dependence of the noise on source impedance quickly diminishes.Apart from the small variations just discussed, the signal-to-noise (S/N) ratio at the output is essentially independent of the attenuator setting. For example, on the –11 dB/+31 dB range,the fixed gain of ×35.8 raises the output NSD to 46.5 nV/√Hz .Thus, for the maximum undistorted output of 1V rms and a 1MHz bandwidth, the output S/N ratio would be 86.6 dB, that is, 20 log (1 V/46.5 µV).OUTFigure 1.Simplified Block DiagramAD603The Gain-Control InterfaceThe attenuation is controlled through a differential, high impedance (50 MΩ) input, with a scaling factor which is laser-trimmed to 40 dB per volt, that is, 25 mV/dB. An internal band gap reference ensures stability of the scaling with respect to supply and temperature variations.When the differential input voltage V G = 0 V, the attenuator slider is centered, providing an attenuation of 21.07 dB. For the maximum bandwidth range, this results in an overall gain of10 dB (= –21.07 dB + 31.07 dB). When the control input is –500mV, the gain is lowered by 20 dB (= 0.500 V × 40dB/V), to –10 dB; when set to +500 mV, the gain is increased by 20dB, to 30 dB. When this interface is overdriven in either direction, the gain approaches either –11.07 dB (= –42.14 dB + 31.07 dB) or 31.07 dB (= 0 + 31.07 dB), respectively. The only constraint on the gain-control voltage is that it be kept within the common-mode range (–1.2 V to +2.0 V assuming +5 V supplies) of the gain control interface.The basic gain of the AD603 can thus be calculated using the following simple expression:Gain (dB) = 40 V G + 10(1) where V G is in volts. When Pins 5 and 7 are strapped (see next section), the gain becomesGain (dB) = 40 V G + 20 for 0 to +40 dBandGain (dB) = 40 V G + 30 for +10 to +50dB(2) The high impedance gain-control input ensures minimal loading when driving many amplifiers in multiple channel or cascaded applications. The differential capability provides flexibility in choosing the appropriate signal levels and polarities for various control schemes.For example, if the gain is to be controlled by a DAC providing a positive only ground-referenced output, the Gain Control Low (GNEG) pin should be biased to a fixed offset of 500mV, to set the gain to –10 dB when Gain Control High (GPOS) is at zero, and to 30 dB when at 1.00 V.It is a simple matter to include a voltage divider to achieve other scaling factors. When using an 8-bit DAC having an FS output of 2.55 V (10 mV/bit), a divider ratio of 2 (generating 5 mV/bit) would result in a gain-setting resolution of 0.2 dB/bit. The use of such offsets is valuable when two AD603s are cascaded, when various options exist for optimizing the S/N profile, as will be shown later.Programming the Fixed-Gain Amplifier Using Pin Strapping Access to the feedback network is provided at Pin 5 (FDBK). The user may program the gain of the AD603’s output amplifier using this pin, as shown in Figure 2. There are three modes: in the default mode, FDBK is unconnected, providing the range+9 dB/+51 dB; when V OUT and FDBK are shorted, the gain is lowered to –11 dB/+31 dB; when an external resistor is placed between V OUT and FDBK any intermediate gain can be achieved, for example, –1 dB/+41 dB. Figure 3 shows the nominal maxi-mum gain versus external resistor for this mode.V INOUTa.–10 dB to +30 dB; 90 MHz BandwidthV INOUTb.0 dB to 40 dB; 30 MHz BandwidthV INOUTc.10 dB to 50 dB; 9 MHz BandwidthFigure 2.Pin Strapping to Set GainR EXT (⍀)52101M DECIBELS1001k10k100k5048464442403836343230Figure 3.Gain vs. R EXT, Showing Worst-Case LimitsAssuming Internal Resistors Have a Maximum Tolerance of 20%REV. F –8–AD603–9–REV.FOptionally, when a resistor is placed from FDBK to COMM,higher gains can be achieved. This fourth mode is of limited value because of the low bandwidth and the elevated output off-sets; it is thus not included in Figure 2.The gain of this amplifier in the first two modes is set by the ratio of on-chip laser-trimmed resistors. While the ratio of these resistors is very accurate, the absolute value of these resistors can vary by as much as ±20%. Thus, when an external resistor is connected in parallel with the nominal 6.44 k Ω ± 20% inter-nal resistor, the overall gain accuracy is somewhat poorer. The worst-case error occurs at about 2 k Ω (see Figure 4).R EXT (⍀)1.2101MD E C I B E L S1001k10k100k1.00.80.60.40.20.0–0.2–0.4–0.6–0.8–1.0Figure 4.Worst-Case Gain Error, Assuming Internal Resistors Have a Maximum Tolerance of –20%(Top Curve) or +20% (Bottom Curve)While the gain-bandwidth product of the fixed-gain amplifier is about 4 GHz, the actual bandwidth is not exactly related to the maximum gain. This is because there is a slight enhancing of the ac response magnitude on the maximum bandwidth range, due to higher order poles in the open-loop gain function; this mild peaking is not present on the higher gain ranges. Figure 2 shows how optional capacitors may be added to extend the frequency response in high gain modes.CASCADING TWO AD603STwo or more AD603s can be connected in series to achieve higher gain. Invariably, ac coupling must be used to prevent the dc offset voltage at the output of each amplifier from overloading the following amplifier at maximum gain. The required high-pass coupling network will usually be just a capacitor, chosen to set the desired corner frequency in conjunction with the well defined 100 Ω input resistance of the following amplifier.For two AD603s, the total gain-control range becomes 84 dB (2 ϫ 42.14 dB); the overall –3 dB bandwidth of cascaded stages will be somewhat reduced. Depending on the pin strapping, the gain and bandwidth for two cascaded amplifiers can range from –22 dB to +62 dB (with a bandwidth of about 70 MHz) to +22 dB to +102 dB (with a bandwidth of about 6 MHz).There are several ways of connecting the gain-control inputs in cascaded operation. The choice depends on whether it is impor-tant to achieve the highest possible Instantaneous Signal-to-Noise Ratio (ISNR), or, alternatively, to minimize the ripple in the gain error. The following examples feature the AD603 programmed for maximum bandwidth; the explanations apply to other gain/bandwidth combinations with appropriate changes to the arrange-ments for setting the maximum gain.Sequential Mode (Optimal S/N Ratio)In the sequential mode of operation, the ISNR is maintained at its highest level for as much of the gain control range possible.Figure 5 shows the SNR over a gain range of –22 dB to +62 dB,assuming an output of 1 V rms and a 1 MHz bandwidth;Figure 6 shows the general connections to accomplish this.Here, both the positive gain-control inputs (GPOS) are driven in parallel by a positive-only, ground-referenced source with a range of 0 V to +2 V, while the negative gain-control inputs (GNEG) are biased by stable voltages to provide the needed gain offsets. These voltages may be provided by resistive divid-ers operating from a common voltage reference.V C (V)90S /N R A T I O (d B )–0.22.20.20.61.0 1.4 1.88580757065605550Figure 5.SNR vs. Control Voltage—Sequential Control (1 MHz Bandwidth)The gains are offset (Figure 7) such that A2’s gain is increased only after A1’s gain has reached its maximum value. Note that for a differential input of –600 mV or less, the gain of a single amplifier (A1 or A2) will be at its minimum value of –11.07 dB;for a differential input of +600 mV or more, the gain will be at its maximum value of 31.07 dB. Control inputs beyond these limits will not affect the gain and can be tolerated without dam-age or foldover in the response. This is an important aspect of the AD603’s gain-control response. (See the Specifications sec-tion of this data sheet for more details on the allowable voltage range.) The gain is nowGain (dB) = 40V G + G O(3)where V G is the applied control voltage and G O is determined by the gain range chosen. In the explanatory notes that follow,it is assumed the maximum bandwidth connections are used,for which G O is –20 dB.REV. F–10–AD603V C OUTPUT –20dBa.V C OUTPUT 20dBb.V C OUTPUT 60dBc.Figure 6.AD603 Gain Control Input Calculations for Sequential Control OperationC –2020406062.14–22.14GAIN(dB)*GAIN OFFSET OF 1.07dB, OR 26.75mVFigure 7.Explanation of Offset Calibration for Sequential ControlWith reference to Figure 6, note that V G1 refers to the differen-tial gain-control input to A1, and V G2 refers to the differential gain-control input to A2. When V G is 0, V G1 = –473 mV and thus the gain of A1 is –8.93 dB (recall that the gain of each indi-vidual amplifier in the maximum bandwidth mode is –10 dB for V G = –500 mV and 10 dB for V G = 0 V); meanwhile,V G2 = –1.908 V so the gain of A2 is pinned at –11.07 dB. The overall gain is thus –20 dB. This situation is shown in Figure 6a.When V G = +1.00 V, V G1 = 1.00 V – 0.473 V = +0.526 V,which sets the gain of A1 to at nearly its maximum value of 31.07 dB, while V G2 = 1.00 V – 1.526 V = 0.526 V, which sets A2’s gain at nearly its minimum value –11.07 dB. Close analysis shows that the degree to which neither AD603 is completely pushed to its maximum or minimum gain exactly cancels in the overall gain, which is now +20 dB. This is depicted in Figure 6b.When V G = 2.0 V, the gain of A1 is pinned at 31.07 dB and that of A2 is near its maximum value of 28.93 dB, resulting in an overall gain of 60 dB (see Figure 6c). This mode of operation is further clarified by Figure 8, which is a plot of the separate gains of A1 and A2 and the overall gain versus the control voltage.Figure 9 is a plot of the SNR of the cascaded amplifiers versus the control voltage. Figure 10 is a plot of the gain error of the cas-caded stages versus the control voltages.V C–0.22.20.2O V E R A L L G A I N (d B )0.61.0 1.41.8Figure 8. Plot of Separate and Overall Gains in Sequential Control。

自动增益控制(AGC)放大器

自动增益控制(AGC)放大器

自动增益控制放大器(AGC)设计摘要:本设计以程控增益调整放大器AD603为核心,通过单片机MSP430控制各模块,实现电压增益连续可调,输出电压基本恒定。

系统由5个模块组成:前级缓冲模块,电压增益调整模块,峰值检测模块,后级输出缓冲模块,控制与显示模块。

将输入信号经前级缓冲电路输入给程控增益调整放大器AD603,将信号放大输出,通过峰值检测电路检测输出信号,并送给单片机AD采样,与理想输出信号数值进行比较,若有多偏差,则通过调整对AD603的增益控制电压,来调整放大倍数,从而实现输出信号的稳定。

整个设计使用负反馈原理,实现了自动增益的控制。

关键字:AD603 MSP430 峰值检测自动增益控制一、方案设计与论证1.1整体方案方案一:采用纯硬件电路实现,由AD603和运放构成的电压比较器和减法电路实现。

把实际电压与理论电压的差值通过适当幅值和极性的处理,作为AD603的控制信号,从而实现放大倍数的自动调整,实现输出电压恒定。

优点:该方案理论简单,制作起来也相对容易,只有硬件电路。

缺点:理论低端,精度不够,没有创新,通用性不好。

方案二:采用AD603和单片机结合,通过单片机对输出信号AD采样并转化为数字量,与理论输出电压值进行比较,得到差值转换为控制电压,通过DA转化,对程控增益放大器AD603的放大倍数惊醒调整,从而实现输出电压的恒定。

优点:该方案控制精确,自动控制速度快,系统可移植性强,功能改变和增加容易,对后期改善和提升电路性能有益。

缺点:需要软硬件配合,系统稍复杂。

通过对两个方案的综合对比,我们选用方案二。

1.2控制模块方案一:采用MCS-51。

Intel公司的MCS-51的发展已经有比较长的时间,以其典型的结构、完善的总线、SFR的集中管理模式、位操作系统和面向控制功能的丰富的指令系统,为单片机的发展奠定了良好的基础,应用比较广泛,各种技术都比较成熟。

MCS-51优点是控制简单,二缺点也明显因为资源有限,功能实现有困难,而且需要大量外扩单元。

ad603中文资料

ad603中文资料

AD603: 低噪声、90 MHz可变增益放大器Product DescriptionAD603是一款低噪声、电压控制型放大器,用于射频(RF)和中频(IF)自动增益控制(AGC)系统。

它提供精确的引脚可选增益,90 MHz带宽时增益范围为−11 dB至+31 dB,9 MHz带宽时增益范围为+9 dB 至+51 dB。

用一个外部电阻便可获得任何中间增益范围。

折合到输入的噪声谱密度仅为1.3 nV/√Hz,采用推荐的±5 V电源时功耗为125mW。

增益以dB为线性,经过精密校准,而且不随温度和电源电压而变化。

增益由高阻抗(50 MΩ)、低偏置(200 nA)差分输入控制;比例因子为25 mV/dB,仅需1 V增益控制电压便可获得中间40 dB的增益范围。

无论选择何种范围,均提供1 dB的超量程和欠量程。

对于40 dB变化,增益控制响应时间不到1 μs。

差分增益控制接口允许使用差分或单端正或单端负控制电压。

可将数个这种放大器级联起来,由其增益控制增益偏置以优化系统信噪比(SNR)。

AD603可以驱动低至100 Ω的负载阻抗,且失真较低。

对于采用5 pF 分流的500 Ω负载,10 MHz、±1 V正弦输出的总谐波失真典型值为-60 dBc。

进入500 Ω负载的额定峰值输出最小值为±2.5 V。

AD603采用专有的专利电路结构X-AMP®。

X-AMP含有0 dB至-42.14 dB可变衰减器,后接固定增益放大器。

由于存在衰减器,放大器永远不必处理较大输入,并且可以用负反馈来定义其(固定)增益和动态性能。

衰减器具有经激光调整至±3%的100 Ω输入阻抗,并且包括一个7级R-2R梯形网络,由此获得6.021 dB的触点间衰减。

利用专有插值技术,可提供以dB为单位的线性连续增益控制功能。

AD603的工作温度范围为−40°C至+85°C。

AD603构成AGC变增益放大电路

AD603构成AGC变增益放大电路
1.
AGC 电路设计 为保证 AD9851 输出的信号经滤波网络后带内平坦,则需要增加一级 AGC 电路。AGC 电路
的其特点为:当输入信号较强时,自动将增益降低;当信号较弱时,又使其增益自动增高, 从而保证输出信号幅值的相对稳定。 本系统采用 AD603 构成 AGC 电路。AD603 为超低噪声、精密控制的可变增益放大器,最 大增益误差为 0.5dB,增益范围为-1.07dB 到+41.07dB(记为 0dB 到 40dB) ,其增益(dB)与 控制电压成线性关系。 因此可以通过控制电压来控制放大器的增益。 难点就是尽量滤出控制 电压的纹波及干扰, 因为芯片 AD603 对控制电压非常敏感, 微小的电压波动就能造成输出波 形上下起伏。所以采用这种方案屏蔽和抗干扰措施很重要。 AD603 内部利用负反馈技术来提高增益的准确度,而且内部的固定增益放大器不用处理 幅度大的信号,这样能减小失真。 AD603 的基本增益为:
Gain(dB) 32*VG 20
其中, VG 为差分输入电压(V) , VG 的范围为-625Mv~+625mV。利用该芯片的特点,设计 AGC 电路如图 14 所示。
图 14 AD603 构成 AGC 电路
电压控制增益的原理
图4 AD603内部结构图
AD603的基本增益可以用下式算出: Gain (dB) = 40 VG + 10 其中,VG是差分输入电压,单位是V,Gain是AD603的基本增益,单位是dB。 从此式可以 看出,以dB作单位的对数增益和电压之间是线性的关系。由此可以得出,只要单片机 进行简单的线性计算就可以控制对数增益,增益步进可以很准确的实现。但若要用放 大倍数来表示增益的话,则需将放大倍数经过复杂的对数运算转化为以 db为单位后再 去控制AD603的增益,这样在计算过程中就引入了较大的运算误差。

AD600与AD603的应用简介

AD600与AD603的应用简介

AD600与AD603的应用简介崔振威摘要:压控放大芯片具有增益与外加控制电压成比例关系的特点,很适合用于需要对信号的幅度进行程控的场合,并可以根据芯片的特点制作出性能优异的AGC电路,广泛用于信号的的动态压缩处理,信号的提取,稳幅等场合。

ADI公司出品有几款性能优异的VCA芯片,如AD600,602,603等,这里主要讨论AD600和AD603的一些典型使用方法。

AD600简介AD600引脚图如图1图1AD600内置两路放大单元,其增益(dB)与外加控制电压成线性关系,增益范围为0~+40dB(AD602为-10~+30dB),具有低噪声、低失真、高增益精度、宽频带的特点,广泛用于视频增益控制、高性能音频电路、RF/IF系统中的AGC电路以及信号测量等电路。

AD600的内部结构AD600的内部框图如图2所示:图2AD600内部有一固定增益放大器、0~—42.14dB的宽带压控无源精密衰减器和32dB/V的线性增益控制电路。

AD600采用了X-AMP结构,该结构组成部分为一0~—42.14dB的可变衰减器和一固定增益放大器。

其中可变衰减器由一7级R-2R梯形网络构成,每级的衰减梁为6.02dB,可对输入信号进行0~—42.14dB的衰减。

该结构最组要的的特点是噪声小,在1MHz带宽,最大不失真输出为1Vrms时,信噪比优于76dB(AD602、AD603为86dB)。

另外,AD600在100KHz~10MHz的通频带内增益起伏不大于0.5dB,具有控制精度高的特点。

外加信号从精密无源衰减网络的输入端输入,其衰减量由高阻低偏流差分输入的增益控制电路的控制电压VG(VGPOS—VGNEG)决定AD603简介AD603引脚图如图3图3AD603是ADI公司继AD600、AD602之后推出的新品,它的结构与AD600类似,同时使用更灵活。

它内部只有一路放大单元,区别于AD600、AD602的双路放大单元,它的的增益范围可通过改变外部电路来设定,具有三种工作模式,此外,它的增益与控制电压的关系也略有不同。

程控放大器(ad603)

程控放大器(ad603)

程控放大器(ad603)本设计由三个模块电路构成:前级放大电路(带AGC部分)、后级放大电路和单片机显示与控制模块。

在前级放大电路中,用宽带运算放大器AD603两级级联放大输入信号,输出放大一定倍数的电压,经过后级放大电路达到大于8V的有效值输出。

ADUC812的单片机显示、控制和数据处理模块除可以程控调节放大器的增益外,还可以实时显示输出电压有效值。

本设计采用高级压控增益器件,进行合理的级联和阻抗匹配,加入后级负反馈互补输出级,全面提高了增益带宽积和输出电压幅度。

应用单片机和数字信号处理技术对增益进行预置和控制,AGC稳定性好,可控范围大,完成了题目的所有基本和发挥要求。

方案论证与比较1.可控增益放大器部分方案一简单的放大电路可以由三极管搭接的放大电路实现,图1为分立元件放大器电路图。

为了满足增益60dB的要求,可以采用多级放大电路实现。

对电路输出用二极管检波产生反馈电压调节前级电路实现自动增益的调节。

本方案由于大量采用分立元件,如三极管等,电路比较复杂,工作点难于调整,尤其增益的定量调节非常困难。

此外,由于采用多级放大,电路稳定性差,容易产生自激现象。

方案二为了易于实现最大60dB增益的调节,可以采用D/A芯片AD7520的电阻权网络改变反馈电压进而控制电路增益。

又考虑到AD7520是一种廉价型的10位D/A转换芯片,其输出Vout=Dn×Vref/210,其中Dn为10位数字量输入的二进制值,可满足210=1024挡增益调节,满足题目的精度要求。

它由CMOS电流开关和梯形电阻网络构成,具有结构简单、精确度高、体积小、控制方便、外围布线简化等特点,故可以采用AD7520来实现信号的程控衰减。

但由于AD7520对输入参考电压Vref有一定幅度要求,为使输入信号在mV~V每一数量级都有较精确的增益,最好使信号在到达AD7520前经过一个适应性的幅度放大调整,再通过AD7520衰减后进行相应的后级放大,并使前后级增益积为1024,与AD7520的衰减分母抵消,即可实现程控放大。

AD603应用说明

AD603应用说明

一、极限参数
最大输入电压V rms=1V,V P=1.4V 最大输入电压峰值不可以超过2V
二、基本连接方法
本电路采用5脚和7脚短接的高通频带接法(-11dB~31dB,90MHz带宽)
三、增益控制方法
当VG=0时,衰减器处于中央位置,提供一个21.07dB的衰减,对于最大频带范围模式,输出增益为10dB(=-21.07dB+31.07dB)
增益转换比为:25mV/dB
当控制输入端为-500mV时,增益被减小了20dB(=0.5*40dB/V),变为-10dB
当控制输入端为500mV 时,增益增加了20dB 变为30dB
增益的输出范围-11.07dB (=-42.14dB+31.07dB )~31.07dB (=0+31.07dB )连续变化 基本增益计算公式:1040)(+=G V dB Gain
具体操作方法
首先将Veng 调整为2.5V (6脚)
然后调整TLV5618输出2.5V 电压至Vp (8脚)将VG 变为0,使当前增益为10dB 下表为增益对照表:
步进5dB ,因此VG 步进0.125V。

论文 宽带放大器

论文 宽带放大器

宽带放大器摘要本设计全部采用集成电路,具有硬件电路形式简单,调试容易,频带宽,增益高,AGC动态范围宽的特点,且增益可调,步进间隔小。

本宽带放大器以可编程增益放大器AD603为核心,由三级放大器组成,前级放大主要是提高输入阻抗,对小信号进行放大;中间级为可变增益放大器,主要作用是实现增益可调及AGC功能,增益控制和AGC功能都由单片机控制,可预置并显示增益值,增益可调范围10dB~58dB,步进1dB,由单片机自动调节放大倍数可实现AGC功能,使输出电压稳定在4.5V~5.5V 之间;后级放大进一步增加放大倍数,扩大输出电流,提升放大器的带负载能力,提高输出电压幅度。

后级输出接峰值检波电路,检波电路输出由单片机采样并计算后,用液晶显示屏显示输出正弦波电压的有效值和峰峰值。

由于宽带放大器普遍存在容易自激及输出噪声过大的缺点,本系统采用多种形式的屏蔽措施减少干扰,抑制噪声,以改善系统性能。

一、方案论证与比较1、总体方案方案一:选用结电容小,f T高的晶体管,采用多种补偿法,多级放大加深度负反馈,以及组合各种组态的放大电路形式,可以组成优质的宽带放大器,而且成本较低。

但若要全部采用晶体管实现题目要求,有一定困难,首先高频晶体管配对困难,不易购买;其次,理论计算往往与实际电路有一定差距,工作点不容易调整;而且,晶体管参数易受环境影响,影响系统总体性能。

另外,晶体管电路增益调节较为复杂,不易实现题目要求的增益可调。

方案二:使用专用的集成宽带放大器。

如TITHS6022、NE592等集成电路。

通过外接少数的元件就可以满足本题目要求,甚至远超过题目要求的带宽和增益的指标,但这种放大器难以购买,价格较贵,灵活性不够,不易满足题目扩展功能要求。

方案三:市面上有多种型号、各具特色的宽频带集成运算放大器。

这些集成运算放大器有的通频带宽,有足够的增益,有的可以输出较高电压,使用方便,有的甚至可以实现增益可调及AGC的功能。

一种用于便携式超声接收机的模拟AGC设计

一种用于便携式超声接收机的模拟AGC设计

1 引言超声波在水中传播的损失在作用距离不变时随着频率的提高而迅速增大[1],对于工作频率为500k H z ,作用距离为100m 时信号动态范围约为80d B ,甚至更大,如果接收机增益不变,A D C 很难采集到远处微弱回波信号的幅度信息;近距离混响或回波信号会很强,会造成接收机饱和或阻塞,超出A D C 的正常工作范围,因此可以通过自动增益控制(A G C )技术有效解决这一问题。

A G C 技术主要有模拟和数字两种方法实现,模拟方法有实时性好,响应时间、起控点和线性区增益可调等优点,缺点是分立器件参数的差别会影响系统的稳定;数字方法有着系统稳定和较高信噪比等优点,缺点是实时性不好、功耗和成本都较高[2]。

为满足便携式超声接收机系统在体积、功耗、实时性和稳定性上较严格的要求,本文提出以可变增益放大器(V G A )A D 603、对数放大器A D 8307和集成运放为核心的模拟A G C ,从而实现对水下起伏较大的超声信号的自动增益控制。

2 可变增益放大器AD603与对数放大器AD8307简介AD603是一种线性分贝增益控制的可变增益放大器[3],增益控制范围可达42dB,增益控制比例为25mV/dB,即1V 增益控制电压来覆盖增益为40d B 的范围,两个AD603级联增益范围可达82d B。

工作频率可达90MHz,具有负载能力强,可靠性高等优点。

AD8307是一种基于连续压缩技术的完全单片500MHz解调对数放大器[4],内部带有gm 型全波检波器,其主要功能是计算某个输入信号包络的对数。

可以实现对动态范围最大为92 dB的信号非线性压缩。

实际应用电路中无需实质意义的外部元件。

3 AGC放大电路设计3.1A G C 放大电路的整体结构根据A D 603的结构特点,采用两级AD603实现0~80dB放大,设计AGC放大电路如图1所示,超声信号经耦合送至U1的输入引脚(第3脚),然后再耦合到下一级U2,输出信号经AD8307包络对数压缩、加法器与环路滤波器后反馈给两级AD603的正电压控制引脚(第1脚),R1、R2和R3为分压电阻,给两级放大器负电压控制引脚提供压差为1V 的参考电压,使反馈信号可以对两级放大器进行先后控制,从而达到自动增益控制的目的。

ad603手册

ad603手册

AD603是一款低噪声、电压控制型放大器,适用于射频(RF)和中频(IF)自动增益控制(AGC)系统。

以下是AD603的手册概述:
1. 功能特点
-低噪声:AD603具有极低的噪声系数,可提供优异的信号放大性能。

-电压控制型:AD603采用电压控制型放大器设计,可提供精确的增益控制。

-高增益:AD603的增益范围为+31dB至-11dB,可满足不同应用的需求。

-宽带宽:AD603的带宽可达到90MHz,可满足高频信号放大的需求。

2. 技术指标
-电源电压:+5V至+15V
-输出功率:最大2W(+20dBm)
-增益:+31dB至-11dB
-噪声系数:≤1.2dB@1MHz,≤1.8dB@10MHz
-工作温度:0℃至70℃
3. 应用
AD603适用于射频和中频自动增益控制系统,可广泛应用于雷达、卫星通信、无线电广播、卫星导航等领域。

4. 注意事项
-在使用AD603前,应仔细阅读手册,确保正确连接电路和电源。

- AD603的输入和输出阻抗应匹配,否则会影响放大效果。

-在使用AD603时,应注意保护器件和电路,避免过载和损坏器件。

以上是AD603的手册概述,如果需要更详细的操作指南,请查阅AD603的官方手册或在线教程。

AD603_DataSheet_CH

AD603_DataSheet_CH

特征线性dB增益控制引脚可编程增益范围-11 dB至+31 dB,带宽为90 MHz9 dB至51 dB,带宽为9 MHz任何中间范围,例如-1 dB至+41 dB,带宽为30 MHz带宽独立于可变增益1.3 nV /√Hz输入噪声频谱密度±0.5 dB典型增益精度应用RF / IF AGC放大器视频增益控制A / D范围扩展信号测量一般说明AD603是用于RF和IF AGC系统的低噪声,压控放大器。

它提供-11 dB至+31 dB的精确的引脚可选增益,带宽为90 MHz或+9 dB至51+ dB,带宽为9 MHz。

可以使用一个外部电阻器来布置任何中间增益范围。

输入参考噪声频谱密度仅为1.3 nV /√Hz,推荐的±5 V 电源功耗为125 mW。

分贝增益为dB,线性精确校准,温度和电源稳定。

增益控制在高阻抗(50MΩ),低偏置(200 nA)差分输入;缩放比例为25 mV / dB,需要仅1 V的增益控制电压才能跨越增益范围的中心40 dB。

无论选择的范围如何,都会提供1 dB的超范围和小范围。

对于40 dB的变化,增益控制响应时间小于1μs。

差分增益控制接口允许使用差分或单端正或负控制电压。

这些放大器中的几个可以级联并且它们的增益控制增益偏移以优化系统SNR。

AD603可以将低阻抗低至100Ω的负载阻抗驱动。

对于分压为5 pF的500Ω负载,10 MHz ±1 V正弦输出的总谐波失真通常为-60 dBc。

峰值指定输出在500Ω负载下最小为±2.5 V。

AD603采用专利专有电路拓扑--X-AMP®。

X-AMP包括0 dB至-42.14 dB的可变衰减器,然后是固定增益放大器。

由于衰减器,放大器从来不必处理大量输入,并可以使用负反馈来定义其(固定)增益和动态性能。

衰减器的输入电阻为100Ω,激光修整为±3%,并包含7级R-2R梯形网络,导致点距6.021 dB之间的衰减。

AGC

AGC

有些组最近做了宽带放大,跳频等题目,里面都用到了AGC模块,一个优异的AGC电路往往能极大的改善输出,比如前置电路带宽有限,随着频率的上升,增益下降,这时候AGC能对他们的幅值进行增益补偿,稳定信号的输出幅度,突破了前级放大电路的带宽瓶颈。

比如我在做跳频的时候,为了得到好的输出波形,在经过滤波电路后加了一级宽带放大器,但是由于三极管的频率特性不好,10M的输出幅度比15M大一倍以上,如果不采用AGC调节,就无法满足题目所要求的1.8~2.2V的输出要求。

以上三个图是从AD603,AD600的PDF里截出来的。

是标准的AGC接法,但我在宽带放大和跳频里没有使用上述任何一种接法,图一:找不到AD590。

图二:单电源,设置工作点麻烦图三:电路太复杂,增益虽然高达120dB但是用不着,而且没有AD636。

分析这三个图,它们的工作原理是一样的,利用AD600,AD603的压放大特性将输出信号反馈到增益控制端,来达到AGC的效应。

在宽带放大器中我使用的是AD603,采用图一的双电源供电方式,用图二的检波方式接成了第一块AGC电路,效果良好,说明一点就是:图二中最重要的是那个806欧的电阻,最好用滑变代替,方便调试。

在跳频系统中用的是AD600(一片),采用检波二极管峰值检测再反馈,没有使用AD636和2N3904,将电路简化了,具体电路可以到FTP上看到。

最后介绍AD600和AD603的一种玩法,将他们变成一个短波调幅发射装置,原理极其简单,我们知道一般的调幅是将调制信号与载波信号相乘,使得输出载波的幅度按照调制信号的变化而变化,在波形上看就是给它加上了一个包络。

AD600,603有一个压控放大的特性,如果将正增益端或负增益端其中的一端接地,另一端输入音频信号(比如接根音频线插在电脑的耳机孔上),在信号输入端加上13.56~15.71MHz的高频信号(短波SW5~SW6),这样输出高频信号的幅度就随音频信号变化了,可惜的是它们的增益是在dB上线性的,不然就和真正的调幅没区别了,它的信号包络并不是正弦波,具体是什么有兴趣的用数学公式推导一下就出来了,但是调幅的效果大同小异,在输出端加根天线不用接功率放大就可以轻易发射10米远了,音质不错。

AGC电路原理实例分析

AGC电路原理实例分析

AGC 电路原理实例分析
AGC(Automatic Generation Control)自动增益控制电路的目的是实现对于信号幅度变化较大的检测对象的放大增益控制,譬如音频设计中,为了保证喇
叭输出合适音量的声音,当然这个音量是与输入无关的(不然岂不是不停调
节音量旋钮),需要加AGC 控制,以及图像采集设计中也可以采用AGC 来
实现强弱光线情况下稳定的图像信号检测。

现在以AD603 为例来学习一下AGC 电路的原理。

AGC 电路基本原理很简单:
AD603 的结构:
这个结构被称为X-AMP,由固定增益运放和可变衰减器组成。

该结构的
特点是噪声性能优异。

固定放大器的增益由VOUT 和FDBK 之间的阻值决定:
1、VOUT 和FDBK 之间短路,宽频带模式下增益范围为- 11dB~+31dB(0.28~+35.5 倍)。

AD603

AD603

模拟器件低噪声,90MHz可变增益放大器AD603目录特征 (1)应用 (1)概述 (1)功能框图 (1)历史回顾 (2)说明书 (3)极限参数 (4)防静电警告 (4)管脚配置和功能描述 (5)典型使用性能 (6)工作原理 (11)噪声性能 (11)增益控制接口 (12)使用管脚约束的固定增益放大器编程 (12)AD603的级联使用 (14)顺序模式 (Optimal SNR) (14)并行模式 (Simplest Gain Control Interface) (16)低增益纹波模式 (Minimum Gain Error) (16)应用信息 (17)低噪声AGC放大器 (17)注意 (18)评价板 (19)外围轮廓 (21)订购指南 (21)概述:AGC电路是一款低功耗,电压控制的放大器,常用于RF/IF自动增益控制电路系统中。

它提供了精确地,引脚可选的增益。

当带宽为90 MHz时,增益为−11 dB 到+31 dB,当带宽为9 MHz时,增益为+9 dB 到+51 dB。

可使用一个外部电阻来调节任何中间范围的增益。

输入级的参考噪声频谱密度仅有1.3 nV/√Hz,在参考电源5V的情况下,功耗只有125 mW。

增益分贝为线性,经过精确校准,在外界温度和供电电源影响下可以稳定工作。

增益受控于一个高阻抗(50兆欧),低偏置(200 NA)的差分输入;该比例为25毫伏/分贝,要求只有1伏增益控制电压来覆盖中央增益为40分贝的范围。

无论选定的范围如何,都会提供1分贝的超量程或欠量程增益。

对于40分贝的增益改变,增益控制响应时间小于1微秒。

差分增益控制接口允许使用差分或单端正极或负极的控制电压使用。

这些放大器的几种可能是级联,因此其增益控制得到补偿,以优化系统的信噪比。

AD603可驱动100Ω的低失真低负载阻抗。

对于一个并联5PF电容的500Ω负载来说,在输出端,频率为10 MHz的正弦波的总谐波失真通常是-60Db。

AD603自动增益控制

AD603自动增益控制

AGC 电路的设计自动增益控制线路,简称AGC 线路,A 是AUTO (自动),G 是GAIN (增益),C 是CONTROL (控制)。

它是输出限幅装置的一种,是利用线性放大和压缩放大的有效组合对输出信号进行调整。

当输入信号较弱时,线性放大电路工作,保证输出声信号的强度;当输入信号强度达到一定程度时,启动压缩放大线路,使声输出幅度降低,满足了对输入信号进行衰减的需要。

也就是说,AGC 功能可以通过改变输入输出压缩比例自动控制增益的幅度,扩大了接收机的接收范围,它能够在输入信号幅度变化很大的情况下,使输出信号幅度保持恒定或仅在较小范围内变化,不至于因为输入信号太小而无法正常工作,也不至于因为输入信号太大而使接收机发生饱和或堵塞。

一:实验方案AGC 常用的实现方案有三种:1)利用电阻电容来实现自动增益控制:图1:由图1可以看出,此方案是通过自动调节RP 1(调节低频)、RP 2(调节高频)来实现对输入信号的增益控制。

当RP 1的滑动端在最左端时,电容C 1被短路,音频信号经R 1、R 2送至运放的反相输入端,运放输出信号经过R 1、RP 1与C 2并联后反馈回来,此时低音增益达到最大值。

当RP 1到右端时,音频信号经过R 1、RP 1、R 2送到运放的反相输入端,运放输出信号经过R 1、C 2反馈回来,此时增益到最小值。

同理,RP 2的滑动端在最左端时,高音增益到最大,在最右端时,高音增益到最小。

本电路虽然实现简单,没有复杂的构造,但由于高低音的转折区分不明显,导致电路的性能的不完善,在高低音分界时,不能准确的确定增益的调节是通过哪一个滑动电阻,也就不能稳定的实现自动增益控制,因此不可选。

2)利用放大器和场效应管共同组成的电路实现自动增益控制图2:整个电路由包括场效应管在内的压控增益放大器,整流滤波电路,直流放大器组成,实现增益的闭环控制。

信号自输入端进入到电路中,运放A1构成压随器,作为输入级。

高性能自动增益控制_AGC_电路的设计与实现

高性能自动增益控制_AGC_电路的设计与实现

《电测与仪表》199817总第35卷第391期高性能自动增益控制(A GC)电路的设计与实现天津大学精仪学院 张汉奇 黄战华 蔡敬忠摘要 介绍利用AD603设计的自动增益控制电路,试验结果表明:该电路增益调节范围宽,频率响应带宽高,具有良好的性能。

关键词 放大器 自动增益控制一、引 言在信号检测处理过程中,经常需要对信号电平进行调整;微弱的电信号经长线传输后,需要进行适当的补偿和校正。

自动增益控制电路在解决上述问题时具有其独特的效果。

我们利用可控增益放大器(AD603)配以适当的外围电路,用反馈控制技术实现了自动增益控制的设计电路。

该电路可广泛用于仪器仪表检测及视频信号处理等领域。

二、AD603的性能特点AD603为单通道、低噪声、增益变化范围线性连续可调的可控增益放大器。

带宽90MHz时增益变化范围为-11dB~+31dB;带宽为9MHz时为9dB~51dB。

增益变化范围可进行控制。

共有三种模式:(1)5脚与7脚断开时,增益变化范围为9dB~51dB;(2)5脚与7脚短接时,增益变化范围为-11dB~+31dB;(3)5脚与7脚之间接一电阻时,可使增益变化范围进行平移,例如5脚与7脚间接2115kΩ电阻时,增益变化范围为0dB~40dB。

其主要技术指标如下:信号输入电阻(3、4脚)100Ω峰值输入电压90MHz 峰值输出电压(R L≥500Ω)±3V 输出短路电流50mA 输出阻抗(f≤10MHz)2Ω增益控制精度(-015V≤V G≤+015V)±015dB增益控制输入电阻(1、2脚)50MΩ供电电压±5V(±5%)静态电流1215mA 值得注意的是:(1)在±5V电源供电时,最大信号输入为1Vrms(±114V峰—峰值);(2)信号输入阻抗为100Ω,在某些应用场合下,需要在输入端加一级缓冲器或预放大器用以阻抗匹配;(3)将两个AD603串联使用可扩展增益控制范围。

基于AD603低噪声可编程放大器电路

基于AD603低噪声可编程放大器电路

3.5.1 基于AD603的90MHz低噪声可编程放大器电路1. AD603的主要技术性能与特点AD603是ADI公司生产的90MHz低噪声可编程放大器电路,采用线性dB的增益控制,可控增益范围从-11dB ~+31dB(90MHz带宽),或者9dB~51dB(9MHz带宽),增益精度为±0.5dB,输入噪音为 1.3nV/Hz。

电源电压范围为±4.75~±6.3V,电流消耗为17mA。

工作温度范围为-40℃~+85℃。

2. AD603的引脚功能与封装形式AD603采用SOIC-8封装,引脚端VINP为放大器输入端。

COMM为放大器接地端。

FDBK引脚端连接到反馈网络。

VNEG为电源电压负端。

VOUT为放大器输出端。

VPOS为电源电压正端。

GPOS 为增益控制引脚端,加正电压增益增加;GNEG为增益控制引脚端,加负电压增益增加。

GNEG、GPOS引脚端电压范围为-1.2V~+2.0V,增益调节系数为39.4~40.6dB/V。

3.AD603的内部结构与应用电路AD603的芯片内部包含有增益控制接口、固定增益的放大器、电阻网络等电路。

(1)-10dB~+30dB、90MHz带宽放大器电路AD603构成的-10dB~+30dB、90MHz带宽放大器电路如图3.5.1所示。

图3.5.1 AD603构成的-10dB~+30dB、90MHz带宽放大器电路(2)0dB~+40dB、30MHz带宽放大器电路AD603构成的0dB~+40dB、30MHz带宽放大器电路如图3.5.2所示。

图3.5.2 AD603构成的0dB~+40dB、30MHz带宽放大器电路(3)低噪声AGC放大器电路125AD603构成的两级低噪声AGC放大器电路如图3.5.3所示。

图3.5.3 AD603构成的两级低噪声AGC放大器电路3.5.2 基于VCA2612的可编程80MHz低噪声前置放大器电路1. VCA2612的主要技术性能与特点VCA2612是TI公司生产的(原BURR-BROWN公司)双通道、可编程80MHz低噪声前置放大器电路,芯片中包含低噪声前置放大器和低噪声可变增益放大器,其中:低噪声前置放大器的输入噪声为1.25 nV/Hz,80 MHz带宽,增益范围为5~25dB,差分输入/输出方式;低噪声可变增益放大器的噪声VCA为3.3nV/Hz,增益范围为24~45dB,40MHz带宽,差分输入/输出,串扰为52dB(最大增益,5 MHz时)。

ad603工作原理

ad603工作原理

AD603工作原理简介AD603是一款高性能、低功耗、低噪声的可编程增益放大器。

它是由Analog Devices公司设计和生产的,广泛应用于无线通信、雷达、医疗设备等领域。

AD603的工作原理基于可变增益放大器(VGA)的原理,通过控制增益来调节输入信号的幅度。

AD603的组成部分AD603由多个关键组件组成,包括可编程增益放大器、控制电路、输入/输出接口等。

可编程增益放大器可编程增益放大器是AD603的核心部件,它负责放大输入信号并提供可调的增益。

该放大器由多级差分放大器和可编程电阻网络组成。

差分放大器是一种常见的放大器电路,它通过将输入信号分为两个相位相反的信号进行放大,从而提高放大器的增益和抗干扰能力。

AD603中的差分放大器采用了高精度的运算放大器和电流镜电路,以实现高增益和低功耗。

可编程电阻网络用于调节放大器的增益。

它由一系列有源和无源元件组成,通过改变电阻值来改变放大器的增益。

AD603中的可编程电阻网络通常由开关和电阻阵列构成,可以通过控制电路来选择不同的电阻组合,从而实现不同的增益。

控制电路控制电路用于控制AD603的工作模式和增益。

它由多个模块组成,包括电流源、比较器、计数器等。

电流源用于为AD603的差分放大器提供稳定的工作电流,以保证放大器的线性度和稳定性。

比较器用于将输入信号与参考电压进行比较,以判断输入信号的幅度。

比较器通常采用高速运算放大器构成,可以快速响应输入信号的变化。

计数器用于记录输入信号的幅度,并根据设定的增益范围和步进值来调节可编程电阻网络。

计数器通常由数字逻辑电路实现,可以实现快速、精确的增益调节。

输入/输出接口AD603的输入/输出接口用于连接外部信号源和目标设备。

它通常包括输入端口、输出端口、电源接口等。

输入端口用于接收外部信号源提供的输入信号。

AD603的输入端口通常支持不同的信号类型,如差分信号、单端信号等。

输出端口用于输出放大后的信号。

AD603的输出端口通常具有低输出阻抗和高驱动能力,以便连接到后级设备,如滤波器、模数转换器等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档