基础物理学第四章题解
基础物理学 第四章(2)
一、质点的动量定理 dv 牛顿第二定律表述为: ma m F
dt
式中F为质点所受合力,由于质量m为常量,所以有
d (mv ) F dt
d义质点的动量:
p mv
动量是矢量,方向与质点的速度同向。 定义Fdt为dt时间内力F对质点的元冲量,用dI表示,即
14
普 通 物理学
三、质点动量定理的积分形式
对动量定理表达式两边同乘 dt,积分: p2 t2 t2 p1 dp t1 Fdt t1 dI t2 p2 p1 Fdt I t1 t2 右边称合力的冲量,表示为: I Fdt t1 t 于是有: Fdt mv mv0
dI 1 dI 2 dI n
即合力对质点的元冲量等于各分力对质点元冲量的矢 量和。
13
普 通 物理学
二、质点的动量守恒定律
若在某一过程中,质点所受合力恒为零,即F=0,则在 该过程中质点的动量守恒,即P=C(常矢量)。
d pl Fl dt
ˆ 质点动量沿 el 方向的分量守恒
t0
质点动量定理:质点所受的外力冲量,等于 质点动量的增量。
15
普 通 物理学
动量定理的分量式:
I x Fx dt mvx mv0 x
t t0
I y Fy dt mvy mv0 y
t t0
t
I Z FZ dt mv Z mv 0 Z
t0
16
普 通 物理学
1
ˆ (5 N s ) ˆ (7 N s)i j
19
普 通 物理学
由动量定理
mv2 mv1 I
基础物理学第四次习题课_2.0
(A) 换光栅常数小的光栅. (B) 换光栅常数大的光栅. (C) 将光栅向靠近屏幕的方向移动. (D) 将光栅向远离屏幕的方向移动.
解:(a b)sin k ,
(a b)sin900
km
(a b)
B
8、波长λ=550 nm(1nm=10−9 m)的单色光垂直入射于光栅常数 d=2×10-4 cm的平面衍射光栅上,可能观察到的光谱线的最大 级次为
可见,在两个主极大之间有N-1个极小。
*(3) 干涉次极大
d sin (m 2m''1)
2N
(m 0, 1, 2 ; m'' 1, 2, 3 N 2)
因此, 在两个干涉主极大之间 有(N-2)个 干涉次极大.
(4)缺级
bsin n
(a+b)sin m.
(n 1, 2, )
a b m.
设入射自然光光强为I0
I0 cos2 450 I
2
I0 2I 2
3、一束光是自然光和线偏振光的混合光,让它们垂
直通过一偏振片,若以此入射光束为轴旋转偏振片, 测得透射光强度最大值是最小值的 5 倍,那么入射光 束中自然光与线偏振光的光强比值为:
(A) 1/2 ; (C) 1/3;
(B) 1/5; (D) 2/3.
(B) 光强之和
(C) 振动振幅之和的平方
(D) 振动的相干叠加
解:惠更斯—菲涅耳原理 D
3、在单缝夫琅和费衍射的实验中,波长为λ的单色光垂直入射
到宽度为 a = 4λ 的单缝上,对于衍射角为 30 o 的方向,单
缝处波阵面可分成半波带的数目为:
A
300
(A)2个 (B) 4个 (C) 6个 (D) 8个
物理学史——第四章光学的建立与发展
③判决性实验
他用两块木版各开一小孔F和G,并分别放于三棱镜两侧, 光从S 处平行射入F后,经棱镜折射穿过小孔G,到达另一 块木版de上,投过小孔g的光再经棱镜abc的折射后,抵达 墙壁MN。使第一个棱镜ABC缓缓绕其轴旋转,这样第二块 木版上不同颜色的光相继穿过小孔g到达三棱镜abc。实验 结果是:被第一个三棱镜折射最厉害的紫光,经过第二个 三棱镜时也偏折的最多。结论:白光是由折射性能不同的 各种颜色的光组成。
1、 斐索的旋转齿轮法
在地面上首先成功测出光速的是法国物理学家斐索( A. Fizeau,1819-1896)。他于1849年创造了旋转齿轮法,即巧妙 地利用旋转齿轮作为遮光测时设备,确定光传播时间,再通过 光程计算光速。
他的实验数据为: L(齿轮和平面镜间的距离)= 8.633 公里, N(齿轮齿数)=720, Z(齿轮转数)=12.67/秒。 利用公式c=2L/t,t=1/2NZ,则可算出c=315014公里/秒。 考虑到他所利用仪器的局限,这个结果已经相当精确了。
一.早期光学
欧几里得——光的反射
阿勒.哈增——光的折射
西奥多里克——彩虹现象
达芬奇——针孔照相机
二 折射定律的建立
光学真正形成一门科学,应该从建立反射定律和折射定 律的时代算起,这两个定律奠定了几何光学的基础。17 世纪,望远镜和显微镜的应用大大促进了几何光学的发 展。
1 开普勒的工作:1611年写了《折光学》,记载了两个
如右图,若当地球(人)从B点运 动到A点时,恒星发出的光线从C点 传播到A,则光速和地球的公转速 度之比为:
v tg c v c
由此测得光速为:C=299930千米/秒
三. 光速的地面测定方法
1849年,法国人菲索(1819-1896)用齿轮旋转 法测得光速为 3.15× 108 米 / 秒。他是第一个首次证明 光速可以在实验中测得的人。另外,法国人傅科、美 国人纽克姆等都对光速测定做过贡献。
新教材高中物理第四章光本章小结课件新人教版选择性必修第一册
乙
丙
(3)如果测量头中的分划板中心刻度线与干涉条纹不在同一方向上,
如图丙所示.则在这种情况下测量干涉条纹的间距Δx时,测量值
________(填“大于”“小于”或“等于”)实际值.
【答案】(1)ACD (2)0.705 (3)大于 【解析】(1)为使屏上的干涉条纹清晰,灯丝与单缝和双缝必须平行 放置,所得到的干涉条纹与双缝平行;由Δx=dl λ可知,条纹的疏密程度 与双缝间距离、光的波长有关,所以A、C、D正确. (2)固定刻度读数为0.5 mm,可动刻度读数为20.5,所以测量结果为 0.5 mm+20.5×0.01 mm=0.705 mm. (3)测量头中的分划板中心刻线与干涉条纹不在同一方向上,由几何 知识可知测量头的读数大于条纹间的实际距离.
则n=ssinin9C0°= ACA2C+h2=43, 解得AC=172 7 m(或AC=4.5 m). 答案:(1)34 (2)127 7 m(或4.5 m)
专题3 光的干涉、衍射与偏振 1.光的干涉 (1)产生条件:两列频率相同,相位差恒定的单色光在相互覆盖的区 域发生叠加,会出现明暗相间的条纹,产生亮条纹的条件是双缝到光屏 某点的路程差等于光波半波长的偶数倍,产生暗条纹的条件是双缝到光 屏某点的路程差等于光波半波长的奇数倍.
波长较长,由干涉条纹间距公式Δx=
l d
λ可知,红光的条纹间距较大,D
错误.
2.[物理观念]如图所示,用单色光A做双缝干涉实验时,P处为第
二条暗纹的中心,改用频率较低的单色光B重做实验,若其他条件不
变,则
()
A.第二条暗纹中点仍在P点
B.第二条暗纹中点在P点上方
C.中央亮纹的宽度变小,亮纹中点仍在O点
例3 下列说法中正确的是
《大学物理》课后解答题 第四章狭义相对论基础
第四章 狭义相对论基础一、思考讨论题1、根据相对论问答下列问题: (1)在一个惯性系中同时、同地点发生的两事件,在另一惯性系中是否也是同时同地点发生? (2)在一个惯性系中同地点、不同时发生的两事件,可否在另一惯性系中为同时、同地点发生?(3)在一惯性系中的不同地点发生的两事件,应满足什么条件才可找另一惯性系,使它们成为同地点发生的事件?(4)在一惯性系中的不同时刻发生的两事件,应满足什么条件才可找到另一惯性系,使它们成为同时的事件?答:依据洛仑兹时空坐标变换)(ut x x -='γ )(2c ux t t -='γ (其中2211c u -=γ)得 )(t u x x ∆-∆='∆γ )(2c x u t t ∆-∆='∆γ(其中12x x x -=∆,'-'='∆12x x x ,12t t t -=∆,'-'='∆12t t t ) 所以有 (1)是。
(2)不能。
(3)若0≠∆x ,而欲0='∆x 应有0=∆-∆t u xxu c t∆∴=<∆ (4)若0≠∆t 而欲0='∆t ,应有02=∆-∆x u t2x c c t u∆∴=>∆ 2、一个光源沿相反方向放出两个光子(以光速c 运动),问两光子的相对速度的大小是多少?答:由相对论速度变换式易算得,相对速度大小仍为c 。
3、一发射台向东西两侧距离均为L 0的两个接收站发射光讯号,今有一飞机自西向东匀速飞行,在飞机上观察,两个接收站是否同时接到讯号?哪个先接到?如飞机在水平内向其它方向运动,又如何?解:以地面为S 系,飞机为S '系,设飞机相对于地面的速度为u 。
西、东两接收站接到光信号的时刻分别为:系中)(和系)(和S t t S t t '''2121S显然 021=∆⇒=t t t 0111222022222212<---=-∆-=-∆-∆='-'cu c L u cu c x u cu c x u t t t'<'∴12t t 即东边的接收台先接到。
04第四章 功与能作业答案
一.选择题 [ B ]1、(基础训练1)一质点在如图4-5所示的坐标平面内作圆周运动,有一力)(0j y i x F F+=作用在质点上.在该质点从坐标原点运动到(0,2R )位置过程中,力F对它所作的功为(A) 20R F . (B) 202R F .(C) 203R F . (D) 204R F .【提示】020220000d 2RRx y A F r F dx F dy F xdx F ydy F R =⋅=+=+=⎰⎰⎰⎰⎰[ C ]2、(基础训练3)如图4-6,一质量为m 的物体,位于质量可以忽略的直立弹簧正上方高度为h 处,该物体从静止开始落向弹簧,若弹簧的劲度系数为k ,不考虑空气阻力,则物体下降过程中可能获得的最大动能是(A) mgh . (B) kg m mgh 222-.(C) k g m mgh 222+. (D) kg m mgh 22+.【提示】 当合力为零时,动能最大,记为km E ,此时00, mgmg kx x k==;以弹簧原长处作为重力势能和弹性势能的零点,根据机械能守恒,有:20012km mgh E kx mgx =+-,求解即得答案。
[ B ]3、(基础训练6)一质点由原点从静止出发沿x 轴运动,它在运动过程中受到指向原点的力作用,此力的大小正比于它与原点的距离,比例系数为k .那么当质点离开原点为x 时,它相对原点的势能值是(A) 221kx -. (B) 221kx . (C) 2kx -. (D) 2kx . 【提示】依题意,F kx =-,x = 0处为势能零点,则021()2p xE kx dx kx =-=⎰[ B ]4、(自测提高2)质量为m =0.5 kg 的质点,在Oxy 坐标平面内运动,其运动方程为x =5t ,y =0.5t 2(SI ),从t = 2 s 到t = 4 s 这段时间内,外力对质点作的功为(A) 1.5 J . (B) 3 J . (C) 4.5 J .(D) -1.5 J .【提示】用动能定理求解。
新高考物理第四章 曲线运动 万有引力与航天4-7 实验:探究影响向心力大小的因素
2. 用如图所示的装置可以探究做匀速圆周运动的物体需要的向心力的大小与哪 些因素有关。
(1)本实验采用的科学方法是________。
A.控制变量法
B.累积法
C.微元法
D.放大法
(2)图示情景正在探究的是_____
B.向心力的大小与线速度大小的关系
C.向心力的大小与角速度大小的关系
①作出F-v2图线;
② 若 圆 柱 体 运 动 半 径 r = 0.2 m , 由 作 出 的 F-v2 图 线 可 得 圆 柱 体 的 质 量 m = ____kg(保留两位有效数字)。
解析:(1)实验中探究向心力和速度的关系,保持圆柱体质量和运动半径不变, 采用的实验方法是控制变量法,B 正确。 (2)①作出 F-v2 图线,如图所示。 ②根据 F=mrv2知,图线的斜率 k=mr ,则有:mr =7.990, 代入数据计算得出:m≈0.18 kg。
操作三:手握绳结点A,使杯在水平方向每秒运动二周,体会向心力的大小。 操作四:手握绳结点A,再向杯中添加30 mL的水,使杯在水平方向每秒运动一周, 体会向心力的大小。 则:①操作二与一相比较:质量、角速度相同,向心力的大小与转动半径大小有关; 操作三与一相比较:质量、转动半径相同,向心力的大小与角速度的大小有关; 操作四与一相比较:____________________相同,向心力大小与________有关; ②物理学中此种实验方法叫________法。 ③小组总结阶段,在空中甩动,使杯在水平面内做圆周运动的同学谈感受时说: “感觉手腕发酸,感觉力的方向不是指向圆心的向心力而是背离圆心的离心力,跟 书上说的不一样。”你认为该同学的说法是否正确,为什么?
解析:(1)从球第 1 次到第 n 次通过 A 位置,转动圈数为 n-1,时间为 t,周期 T=n-t 1,A 错误;小球的线速度大小为 v=2πTR=2πn-t 1R,B 正确;小球 受重力和拉力,合力提供向心力,设细绳与竖直方向的夹角为 α,有 FTcos α =mg,FTsin α=Fn,则 Fn=mgtan α=mgR-h r,C 错误;若电动机的转速增 加,则转动半径增加,激光笔 1、2 应分别左移、上移,D 正确。 (2)小球做圆周运动的周期 T=n-t 1=2.00 s,向心力 Fn=mgR-h r=mR4Tπ22,解 得 g=R4-π2RrhT2≈9.86 m/s2。
新编物理基础学全册(王少杰版)课后习题答案及详解
新编物理基础学全册课后习题详细答案王少杰,顾牡主编第一章1-1.质点运动学方程为:cos()sin(),r a t i a t j btk ωω=++其中a ,b ,ω均为正常数,求质点速度和加速度与时间的关系式。
分析:由速度、加速度的定义,将运动方程()r t 对时间t 求一阶导数和二阶导数,可得到速度和加速度的表达式。
解:/sin()cos()==-++v dr dt a t i a t j bk ωωωω2/cos()sin()a dv dt a t i t j ωωω⎡⎤==-+⎣⎦1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2/d d v v K t -=, 式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度为 0Kxv v e -= 。
其中0v 是发动机关闭时的速度。
分析:要求()v v x =可通过积分变量替换dxdvv dt dv a ==,积分即可求得。
证:2d d d d d d d d v x vv t x x v t v K -==⋅= d Kdx v =-v⎰⎰-=x x K 0d d 10v v v v , Kx -=0ln v v0Kxv v e -=1-3.一质点在xOy 平面内运动,运动函数为22,48x t y t ==-。
(1)求质点的轨道方程并画出轨道曲线;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程。
写出质点的运动学方程)(t r表达式。
对运动学方程求一阶导、二阶导得()v t 和()a t ,把时间代入可得某时刻质点的位置、速度、加速度。
解:(1)由2,x t =得:,2x t =代入248y t =-可得:28y x =-,即轨道曲线。
画图略 (2)质点的位置可表示为:22(48)r ti t j =+- 由/v dr dt =则速度:28v i tj =+ 由/a dv dt =则加速度:8a j =则:当t=1s 时,有24,28,8r i j v i j a j =-=+=当t=2s 时,有48,216,8ri j v i j a j =+=+=1-4.一质点的运动学方程为22(1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位。
第六版大学物理学习题答案
第六版大学物理学习题答案第六版大学物理学习题答案大学物理作为一门重要的基础学科,对于理工科学生来说至关重要。
而在学习过程中,练习题是巩固知识、提高理解和应用能力的重要途径。
然而,由于各版本教材的不同,很多学生在解答练习题时会遇到困难。
为了帮助大家更好地学习物理,本文将分享第六版大学物理学习题的一些答案和解析,希望能对大家有所帮助。
1. 第一章:运动的描写题目:一个物体做匀速直线运动,已知它在t=2s时的位移为10m,在t=5s时的位移为30m,求它的速度。
答案:根据匀速直线运动的定义,速度等于位移与时间的比值。
所以,速度v= (30m - 10m) / (5s - 2s) = 20m/s。
2. 第二章:力的概念题目:一个质量为2kg的物体,受到一个恒力F=10N的作用,求它在5s内的加速度。
答案:根据牛顿第二定律F = ma,可得加速度a = F/m = 10N / 2kg = 5m/s²。
3. 第三章:牛顿定律和动量题目:一个质量为0.1kg的物体,受到一个恒力F=5N的作用,求它在10s内的速度变化。
答案:根据牛顿第二定律F = ma,可得加速度a = F/m = 5N / 0.1kg = 50m/s²。
速度的变化Δv = at = 50m/s² * 10s = 500m/s。
4. 第四章:功和能量题目:一个质量为0.5kg的物体从高度为10m的位置自由下落,求它落地时的动能。
答案:根据势能转化为动能的公式E = mgh,其中m为物体质量,g为重力加速度,h为高度。
所以,动能E = 0.5kg * 9.8m/s² * 10m = 49J。
5. 第五章:振动和波动题目:一个质量为0.2kg的弹簧振子,振动周期为2s,求它的弹性势能。
答案:根据弹簧振子的势能公式E = (1/2)kx²,其中k为弹簧劲度系数,x为振子的位移。
振动周期T与弹簧劲度系数k的关系为T = 2π√(m/k),其中m为振子的质量。
高中物理必修一第四章《运动和力的关系》测试题(含答案解析)
一、选择题1.如图所示,倾角为θ的足够长传送带以恒定的速率0v 沿逆时针方向运行。
0t =时,将质量1kg m =的小物块(可视为质点)轻放在传送带上,物块速度随时间变化的图象如图所示。
设沿传送带向下为正方向,取重力加速度210m/s g =则( )A .1~2s 内,物块的加速度为21m/sB .小物块受到的摩擦力的方向始终沿传送带向下C .传送带的倾角30θ=︒D .小物块与传送带之间的动摩擦因数0.5μ=2.2020年7月20日消息,近日俄军最新型的图-160M 战略轰炸机首飞,飞行过程持续34分钟,飞行高度为1500米,能搭载多达40吨的各型炸药。
在这则新闻中涉及了质量、长度和时间及其单位,在国际单位制中,下列说法中正确的是( )A .新闻中涉及的“34分钟、1500米和40吨”中,只有米是国际单位制中的基本单位B .“千克米每二次方秒”被定义为“牛顿”,所以“牛顿”是国际单位制中的基本单位C .秒是国际单位制中力学三个基本物理量之一,而天只是时间的单位D .两个或更多的符号表示的单位一定是导出单位3.在真空的牛顿管里的羽毛和铁片下落的快慢相同,在有空气的牛顿管里的羽毛下落的慢、铁片下落的快,这其中最主要的原因是( )A .铁钉比鸡毛重B .铁钉比鸡毛密度大C .鸡毛受到的空气阻力大D .铁钉下落的加速度比鸡毛下落的加速度大4.如图,箱子内,一物体静止在倾斜固定的木板上。
现将箱子轻放到弹性安全气垫上并由静止释放,在箱子从A 向下压缩气垫至最低点B 的过程中,物体始终相对木板静止。
设木板对物体的支持力和摩擦力分别为N 和f ,则从A 到B 的过程中( )A .N 先增大后减小,f 先减小后增大B .N 先减小后增大,f 先增大后减小C .N 和f 都是一直减小D .N 和f 都是一直增大5.一质量为m 的乘客在高楼内乘坐竖直电梯下楼,其位移s 与时间t 的关系图像如图所示。
乘客所受支持力的大小用F N 表示、速度用v 表示,重力加速度大小为g 。
大学基础物理学课后答案 --
第一章 思考题:<1-4> 解:在上液面下取A 点,设该点压强为A p ,在下液面内取B 点,设该点压强为B p 。
对上液面应用拉普拉斯公式,得 A A R p p γ20=- 对下液面使用拉普拉斯公式,得 BB 02R p p γ=- 又因为 gh p p ρ+=A B将三式联立求解可得 ⎪⎪⎭⎫ ⎝⎛-=B A 112R R g h ργ<1-5> 答:根据对毛细现象的物理分析可知,由于水的表面张力系数与温度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细水上升的高度越高。
在白天,由于日照的原因,土壤表面的温度较高,土壤表面的水分一方面蒸发加快,另一方面土壤颗粒之间的毛细水会因温度升高而下降,这两方面的原因使土壤表层变得干燥。
相反,在夜间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒间的毛细水上升;另一方面,空气中的水汽也会因为温度下降而凝结,从而使得清晨时土壤表层变得较为湿润。
<1-6> 答:连续性原理是根据质量守恒原理推出的,连续性原理要求流体的流动是定常流动,并且不可压缩。
伯努利方程是根据功能原理推出的,它的使用条件是不考虑流体的黏滞性和可压缩性,同时,还要求流动是定常流动。
如果流体具有黏滞性,伯努利方程不能使用,需要加以修正。
<1-8> 答:泊肃叶公式适用于圆形管道中的定常流动,并且流体具有黏滞性。
斯托克斯公式适用于球形物体在黏滞流体中运动速度不太大的情况。
练习题:<1-6> 解:设以水坝底部作为高度起点,水坝任一点至底部的距离为h 。
在h 基础上取微元d h ,与之对应的水坝侧面面积元d S (图中阴影面积)应为坡长d m 与坝长l 的乘积。
练习题1-6用图d h d F由图可知 osin60d sin d d hh m ==θ 水坝侧面的面积元d S 为 d d d sin 60hS l m l该面积元上所受的水压力为 0d d d [(5)]sin 60hFp Sp ρg h l水坝所受的总压力为 ()[]N)(103.760sin d 5d 855o0⨯=-+==⎰⎰h l h g p F F ρ(注:若以水坝的上顶点作为高度起点亦可,则新定义的高度5h h ,高度微元取法不变,即d d h h ,将h 与d h 带入水坝压力积分公式,同样可解出水坝所受压力大小。
大学基础物理学(第四版)课后题答案
面向21世纪课程教材学习辅导书普通高等教育“十一五”国家级规划教材配套参考书大学基础物理学第四版习题解答陈建军主编后德家王贤锋副主编高等教育出版社内容简介本书是与“面向21世纪课程教材”和“普通高等教育‘十一五’国家级规划教材”《大学基础物理学》(第四版)配套的学习辅导书.全书的内容按照主教材的章节顺序编排,习题解答过程规范、详细.本书可为学生学习课程内容,复习和巩固知识以指导与帮助.本书适合于选用“面向21世纪课程教材”和“普通高等教育‘十一五’国家级规划教材”《大学基础物理学》(第四版)的学校选作教学辅导书,也可供其他大学物理学习者使用.前言 (1)第1章流体力学 (1)第2章气体动理论 (7)第3章热力学基础 (12)第4章静电场恒定电场 (20)第5章恒定磁场 (28)第6章交变电磁场 (36)第7章光的波动性 (41)第8章光的量子性 (46)第9章量子力学初步 (49)第10章光谱分析原理及应用 (51)第11章放射性核物理及其应用 (52)测试练习(一) (55)测试练习(一)参考答案 (59)测试练习(二) (62)测试练习(二)参考答案 (65)《大学基础物理学》(第四版)是专为高等农林院校农、林类专业编写的大学物理课程教学的教材,本书是与之配套的教学参考书.大学物理课程学习中,做习题是一个不可缺的教学环节,不仅可以检查学生对课程知识点掌握的程度,还能巩固所学的知识,而且有利于提高分析问题和解决问题的能力.为了帮助学生掌握正确的解题方法,我们修订了《大学基础物理学》(第三版)《习题解答》教学参考书.全书的内容按照主教材的章编排,习题解答规范,过程详细.本书将给农林院校农、林类专业学生学习大学物理课程以极大的帮助.本书第一章(流体力学)、第二章(气体动理论)、第三章(热力学基础)、第八章(光的量子性)、第九章(量子力学初步)由华中农业大学陈建军修订;第四章(静电场恒定电场)、第五章(恒定磁场)、第六章(交变电磁场)由华中农业大学王贤锋修订;第七章(光的波动性)、第十章(光谱分析原理及应用)、第十一章(放射性核物理及其应用)由华中农业大学后德家修订.华中农业大学谭佐军、卢军、魏薇、程其娈、张纾、邓海游参与题目审核工作,刘玉红参与公式编辑工作,陈建军负责全书统稿和定稿.华中农业大学罗贤清和丁孺牛细致审阅了本习题解答,并提出了许多建设性的意见,在此表示衷心的感谢.同时编者也对参加第一版、第二版和第三版编写工作的同志表示诚挚的谢意.感谢教育部大学物理课程教学指导委员会农林水工作委员会、全国高等农林水院校物理教学委员会对本次修订工作的指导.由于编者水平有限,书中难免有错误和疏漏之处,我们衷心期待得到广大读者、同行专家的批评、指正,感谢对编者的关爱和帮助.编者2017年6月于狮子山南湖畔第1章流体力学1.1从水龙头缓缓流出的水流,下落时逐渐变细,为什么?答:从水龙头缓缓流出的水流,下落时由于重力做功,水流的速度越来越大.根据连续性原理Sv =常量,可知水流的速度越大,其横截面积就越小,所以从水龙头缓缓流出的水流,下落时逐渐变细.22121122121v v ρρgh ρp p -++=Pa1062Pa 52100121108910010510012110515233235⨯=⨯⨯⨯-⨯⨯⨯+⨯⨯⨯+⨯=........1.4如习题1.4图所示,一水管向水井中放水的流量为141094--⋅⨯=s m .3Q ,井底有一截面积为2cm .50=S 的小孔,当井中水面不再升高时,井中水深多高?习题1.4图解:本题是关于伯努利方程的应用.设机翼上面的气流速率为v 2,机翼下面的气流速率为v 1,由于飞机机翼比较薄,所以可近似取h 1=h 2,机翼压强差为p 1–p 2=1000Pa.根据伯努利方程有2222112121v v ρp ρp +=+机翼上面的气流速率为11221212s m 107s m 10029110002)(2--⋅=⋅+⨯=+-=.v v ρp p 1.6水从管1流入,通过支管2和3流入管4,管4的出口与大气相通,整个管道系统在同一水平面内.已知各管的横截面积分别是S 1=15cm 2,S 2=S 3=5cm 2,S 4=10cm 2,管1中的体积流量Q 1=600cm 3·s -1.求(1)各管中的流速;(2)各管中的压强与大气压强之差.Pa 0Pa =⨯-⨯⨯⨯=-=-=--42232224420210)6060(100.121)(21v v ρp p p p 同理,Pa 0=-03p p .1.7将一半径为1.0mm 的钢球,轻轻放入装有甘油的缸中,当钢球的加速度是其自由落体加速度一半时,其速度是多少?钢球的最大速度是多少?钢球的密度为8.5×103kg·m -3,甘油的密度为1.32×103kg·m -3,甘油的粘度为0.83Pa·s.解:本题是关于斯托克斯定律的应用.钢球在甘油中下落,所受重力为g ρr mg 钢球3π34=,所受甘油的浮力为g ρr F 甘油浮3π34=,根据斯托克斯定律所受黏性阻力为v r ηF f 甘油π6=.根据牛顿第二定律F =ma ,钢球的加速度是其自由落体加速度的一半时,有mg ―F f ―F 浮=ma =mg /2,即解:本题是关于斯托克斯定律及雷诺数的应用.对下落雨滴进行受力分析,雨滴所受重力为ρg r mg 3π34=,所受空气的浮力为g ρr F 空气浮3π34=,根据斯托克斯定律,所受黏性阻力为v r ηF π6=f .当雨滴受到的空气黏性阻力加上空气对雨滴的浮力等于其受到的重力,雨滴将匀速下落,此时速度为终极速度,于是有ρg r g ρr r 33π34π34π6=+空气v η雨滴的终极速度为23223352m m kg sPa s m )10600()2911001(10818992)(92⨯⋅⨯⋅⋅⨯⨯⨯-⨯⨯⨯⨯==----.....-空气空气r ρρg ηv 11s m 1034--⋅⨯=.根据泊肃叶定律lηR p p Q V 8)π(421-=,得大动脉内单位长度上的压强差Pa 10092ms m m s Pa )10521(1431050110048π844134363421⨯=⋅⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯===∆----.....-R lQ ηp p p V 根据圆管中实际流体的流速随半径的分布规律公式)(42221r R ηlp p --=v ,得轴心处(即r =0)血液流动速度为122334221s 04m 2m ms Pa Pa )10251(0110044100924---⋅=⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯=-=.....R ηl p p v第2章气体动理论2.1气体的平衡态有何特征?与力学中所指的平衡有什么不同?答:所谓平衡态是指系统与外界没有能量交换,内部也没有化学变化等形式的能量转化,系统的宏观性质不随时间变化.当气体处于平衡时,其状态的宏观参量值不随时间变化,即气体内部各部分具有相同的压强、密度和温度.热力学系统的平衡态与力学中所指的平衡是两个不同的概念.力学中的平衡平动动能也相等.(2)平均动能包括分子的平均平动动能、平均转动动能和平均振动动能,与每个分子的自由度数有关,为T k iB 2.氢气和氦气分子结构不同,则自由度数i 不相同,所以它们的平均动能不相等.(3)根据RT i M m 2,虽然温度T 和物质的量Mm相同,但氢和氦两种气体分子自由度i 不同,所以它们的内能不相等.2.4温度为27℃时,计算1mol 氮气的平均动能,平均转动动能和内能.解:本题是关于理想气体的能量均分定理及内能的应用.氮气分子是双原子分子,自由度为5,根据能量均分定理,其平均动能为23-120B 551.3810300J K K 1.0351022J--==⨯⨯⨯⨯⋅⨯=⨯w k T2.6将kg 10×83的氧气从10℃加热到20℃,求氧气的内能增加多少?解:本题是关于理想气体内能公式的应用.氧气分子是双原子分子,自由度为5,氧气的摩尔质量M =32×10-3kg·mol-1,根据理想气体内能公式RT iM m 2,可知氧气增加的内能[]J52mol kg K K mol J kg )10273()20273(31.8251032108211133=⋅⋅⋅⋅⨯⨯+-+⨯⨯⨯⨯⨯=∆=-----T R i m E M 2.7储有氮气的容器以速度-1200m sυ=⋅运动,假若该容器突然停止,气体的全部机械平动动能转化为气体的内能,这时气体的温度将会升高多少?(设氮气可看做理想气体.)解:设容器内氮气总质量为m ,则全部机械平动动能为0p (4)⎰∞2d )(υυf υ表示气体分子速率平方的平均值;(5)υυnf d )(表示单位体积内,分子速率在v ~v +d v 区间的分子数.2.9求在温度为27℃时氧气分子的平均速率、方均根速率以及最概然速率.解:本题是关于理想气体分子平均速率、方均根速率和最概然速率公式的应用.氧气的摩尔质量M =32×10-3kg·mol -1,温度T =(273+27)K=300K,可求得121113O s m 1044molkg KK mol J 10323.14300318882-----⋅⨯=⋅⨯⋅⋅⨯⨯⨯⨯⨯==6..M πRTv 121113O O 2s m 10834mol kg K K mol J 10323003183322-----⋅⨯=⋅⨯⋅⋅⨯⨯⨯⨯==..M RT v(1)按题给条件,速率分布函数是分段的.在F v v <<0速率区间,速率分布函数f (v )与v 2成正比;当F v v >时,速率分布函数f (v )为零.于是可画出速率分布函数曲线,如解题2.11图所示.(2)由归一化条件1=⎰∞d )(v v f ,有解题2.11图1===⎰⎰∞3F 0203d d )(Fv v v v v v A A f 得3F3v =A (3)根据最概然速率的定义,由图知,F p v v =.根据平均速率的定义式⎰∞=0d )(v v v v f ,得电子平均速率F F 033F 02075043d 3d A d )(FF v v v v v v v v v v v v v v .=====⎰⎰⎰∞f 根据方均速率的定义式⎰∞=022d )(v v v v f ,得电子速率平方平均值2F 043F 02202253d 3d A d )(FF v v v v v v v v v v v v v ====⎰⎰⎰∞f 所以,电子方均根速率为F F 27750515v v v .==第3章热力学基础3.1系统的温度升高是否一定要吸热?系统与外界不作任何热交换,而系统的温度发生变化,这种过程可能吗?答:系统的温度要升高不一定要吸热,外界对系统做功也可以使系统的温度升高;系统与外界不作任何热交换,而使系统的温度发生变化,这种过程是可能的,可以通过外界对系统做功或系统对外界做功来实现系统温度的变化.3.2(1)0.50kg 的水在大气压下用电热器加热,使水的温度自20℃缓慢的加热到30℃,试计算此水的内能的变化(水的比热容为3-1-14.1810J kg K⨯⋅⋅.)(2)一保温瓶里装有0.50kg、20℃的水,用力摇荡此瓶,使水的温度升高到30℃,初态及终态的压强均为大气压,试求水内能的变化及水所做的功.解:(1)在此过程中,等压地对水所加的热量为= t =0.5×4.18×10 ×10J =t.0 ×104J由于水的体积变化很小,故准静态过程的功A=0,依热力学第一定律有内能的变化= =t.0 ×104J (2)此过程不是准静态过程.但其始末状态与(1)相同,故内能变化与(1)相同,即= =t.0 ×104J由于系统被保温瓶所隔着,故无热量的传递,所以Q =0依 = + ,得水所做的功为=− =−t.0 ×104J3.3系统由习题 3.3图中的a 态沿abc 到达c 态时,吸收了400J 的热量,同时对外作150J 的功.(1)如果将沿adc 进行,则系统做功40J,问这时系统吸收了多少热量?(2)当系统由c 态沿着ca 返回a 态时,如果外界对系统做功80J,这时系统是吸热还是放热?热量传递时多少?习题 3.3图解:本题是关于热力学第一定律在准静态过程中的应用.根据热力学第一定律Q=△E+A,得a、b状态内能的变化△Eab =Eb-Ea=Qac b-Aac b=400J-150J=250J(1)对于adb过程,a、b状态相同,内能变化相同,根据热力学第一定律Q=△E+A,得此过程交换的热量为Qad b =△Eab+Aad b=250J+40J=290J(2)对于ba过程,由b→a,内能变化为负,即△Eba =Ea-Eb=150J-400J=-250J根据热力学第一定律Q=△E+A,得此过程交换的热量为Qba =△Eba+Aba=-250J-80J=-330J式中负号表示放热.3.41mol的氦气,在1atm、20℃时、体积为V.令使其经过一下两种过程达到同一状态;(1)先保持体积不变,加热,使其温度升高到80℃,然后令其做等温膨胀,体积变为原来的2倍.(2)先使其等温膨胀至原来体积的2倍,然后保持体积不变,加热到80℃.试分别计算上述两种过程中气体吸收的热量,气体对外所做的功和气体内能的增量.解:本题是关于热力学第一定律在准静态过程中的应用.依据题意,作出p-V图,如解题3.4图所示.图3.4abcd 四个状态(p ,V ,T ):a(1,V 0,T 1)b(p b ,V 0,T 2)c(p c ,2V 0,T 2)d(p d ,2V 0,T 1)T 1=293K,T 2=353K(1)先作等体升温(ab 过程),再作等温膨胀(bc 过程).①等体过程,氧气从热源吸取热量全部转化为系统内能的增加,做功为零,即121233d ()22T ab ab Tm m Q E R T R T T =∆==-⎰M M =1×t×8. 1× 5 −t ×mol ×J ∙mol −1∙K −1×K =香4香. J A ab =0②等温膨胀,氧气从热源吸取热量全部转化为对外做功,而内能不变,即11d d ln cbcc bc bc bbV A p V V ====⎰⎰V V V m mQ RT RT M M V =1×8. 1× 5 ×lnt ×mol ×J ∙mol −1∙K −1×K =t.0 ×10 J△E bc =0abc 过程吸取的热量为Q ab c =Q ab +Q bc =747.9J +2.03×103J =2.78×103Jabc 过程做的功为A ab c =A bc = 2.03×103Jabc 过程内能改变为△E ab c =△E ab =香4香. J(2)a →d 等温膨胀过程,氧气从热源吸取热量全部转化为对外做功,而内能不变,即22d d ln dadd ad ad aaV A p V V ====⎰⎰V V V m mQ RT RT M M V =1×8. 1×t ×lnt ×mol ×J ∙mol −1∙K −1×K =1. ×10 J△E dc =0习题 3.5图解:根据方程()00V V e p p -=,有9ln ln000c +=+=V p p V V c。
新高考物理第四章 曲线运动 万有引力与航天4-1 曲线运动 运动的合成与分解
3.常见模型
[模型应用] 题型 1 绳端速度分解模型 1.(2022·聊城模拟)如图所示,水平光滑长杆上套有一物块 Q,跨过悬挂于
O 点的轻小光滑圆环的轻绳一端连接 Q,另一端悬挂一物块 P。设轻绳 的左边部分与水平方向的夹角为 θ,初始时 θ 很小。现将 P、Q 由静止 同时释放,关于 P、Q 以后的运动,下列说法正确的是 A.当 θ=60°时,P、Q 的速度之比是 3∶2 B.当 θ=90°时,Q 的速度最大 C.当 θ=90°时,Q 的速度为零 D.当 θ 向 90°增大的过程中,Q 所受的合力一直增大
自行研制、具有自主知识产权的喷气式民用飞机,于2017年5月
5日成功首飞。如图所示,飞机在起飞过程中的某时刻水平分速度为60 m/s,竖
直分速度为6 m/s,已知在此后的1 min内,飞机在水平方向做加速度为2 m/s2的
匀加速直线运动,竖直方向做加速度为0.2 m/s2的匀加速直线运动。关于这1 min
平方向恒力F=4 N的作用下运动。如图所示给出了滑块在水平面
上运动的一段轨迹,滑块过P、Q两点时速度大小均为v=5 m/s,滑块在P点的速
度方向与PQ连线夹角α=37°,sin 37°=0.6,cos 37°=0.8,则下列说法正确
的是
()
A.水平恒力F的方向与PQ连线成53°夹角
B.滑块从P点运动到Q点的时间为3 s
如果 v 船<v 水,当船头方向(即 v 船方向)与合速度 方向垂直时,渡河位移最短,等于dv水
v船
[模型应用] 应用 1 求小船渡河的最短时间 1.(多选)某河宽为 600 m,河中某点的水流速度 v 与该点到
较近河岸的距离 d 的关系图像如图所示,现船以静水中 的速度 4 m/s 渡河,且船渡河的时间最短,下列说法正确的是 A.船在河水中航行的轨迹是一条直线 B.船在行驶过程中,船头始终与河岸垂直 C.船离开河岸 400 m 时的速度大小为 2 5 m/s D.渡河最短时间为 240 s
2016-2017学年高中物理 第四章 第一节 伽利略的理相.
重点
掌握牛 顿第一 定律. 具体解 释惯性 现象.
难点
知识点一 伽利略的理想实验 提炼知识 1.亚里士多德的观点. 力是维持物体运动的原因. 2.伽利略的观点. 物体在水平面上做匀速运动不需要外力来维持.
3.理想实验. 伽利略的假想实验有力地说明了力不是维持物体运 动的原因,其科学探究的方法有力地推动了科学的发展. 判断正误 1.伽利略斜面实验为理想实验,无法在实验室中验 证,因此该实验仅是一种假想,不能揭示自然规律.(×) 2.力是维持物体运动的原因.(×)
惯性 本节→牛顿第一定律→ 惯性定律
3.惯性. (1)物体具有的保持原来的静止状态或匀速直线运动 状态的性质称为惯性. (2)惯性是物体的固有属性,与物体的受力情况及运 动情况无关.
判断正误 1.小李驾车沿环城路匀速运动一周的过程中,其运 动状态不变.(×) 2. 物体只有静止或做匀速直线运动时才有惯性. ( ×) 3 力无法改变物体的惯性.(√)
【典例 3】 ( 多选 ) 关于惯性,下列说法正确的是 ( ) A.惯性是物体固有的属性,惯性越大的物体,它的 运动状态越难改变 B.同一物体运动时的惯性大于静止时的惯性 C.速度快的汽车很难停下来,是因为速度越大,惯 性越大
D.各种机床和发电机的底座做得很笨重,并用螺丝 固定在地面上,目的是增大惯性 解析:惯性是物体固有的属性,惯性越大的物体,保 持原来运动状态的性质越强,即它的运动状态越难改变, A 正确;质量是惯性大小的唯一量度,惯性大小与运动状 态无关,B、C 错误;
2.伽利略理想实验的意义. (1)伽利略用“实验+科学推理”的方法推翻了亚里 士多德的观点. (2)第一次确立了物理实验在物理学中的地位. (3)初步揭示了力和运动的关系,即力不是维持物体 运动的原因,而是改变物体运动状态(即速度)的原因.
高中物理必修一 第四章 专题强化 动力学连接体问题
释放,求:
(1)物体的加速度大小;
答案
mg M+m
以m为研究对象:mg-T=ma
①
以M为研究对象:T=Ma
②
联立①②得:a=Mm+gm
T=MM+mgm.
(2)绳对M的拉力大小.
答案
Mmg M+m
以m为研究对象:mg-T=ma
①
以M为研究对象:T=Ma
②
联立①②得:a=Mm+gm
T=MM+mgm.
(2)若两木块与水平面间的动摩擦 因数均为μ,则A、B间绳的拉力 为多大? 答案 mAm+BmBF
若动摩擦因数均为μ,以A、B整体为研究对象,有F-μ(mA+mB)g= (mA+mB)a1,然后隔离出B为研究对象,有T2-μmBg=mBa1,联立解 得T2= mAm+BmBF .
(3)如图乙所示,若把两木块放在固定斜面上,两木块 与斜面间的动摩擦因数均为μ,在方向平行于斜面的拉 力F作用下沿斜面向上加速运动,A、B间绳的拉力为 多大? 答案 mAm+BmBF
针对训练2
如图所示,物体A重20 N,物体B重5 N,不计一切摩擦和
绳的重力,当两物体由静止释放后,物体A的加速度与绳
子上的张力分别为(重力加速度g=10 m/s2)
√A.6 m/s2,8 N
B.10 m/s2,8 N
C.8 m/s2,6 N
D.6 m/s2,9N
由静止释放后,物体A将加速下降,物体B将加速上 升,二者加速度大小相等,由牛顿第二定律,对A有 mAg-T=mAa,对B有T-mBg=mBa,代入数据解得a =6 m/s2,T=8 N,A正确.
C.底板对物体 2 的支持力为(m2-m1)g D.底板对物体 2 的摩擦力大小为tman2gθ
2023人教版带答案高中物理必修一第四章运动和力的关系微公式版基础知识手册
2023人教版带答案高中物理必修一第四章运动和力的关系微公式版基础知识手册单选题1、如图所示,竖直放置在水平面上的轻质弹簧上叠放着两物块A、B,两者的质量均为2kg,它们处于静止状态。
若突然将一个大小为10N、方向竖直向下的力施加在物体A上,则此瞬间A对B的压力大小为(g=10m/s2)()A.10NB.25NC.20ND.30N答案:B开始时A、B处于静止状态,对AB整体受力分析得(m A+m B)g=F弹代入数据求得F弹=40N施加一个竖直向下的10N的外力后,A、B整体不再平衡,受力分析得F+(m A+m)B g−F弹=(m A+m)Ba施加力的前后F弹的大小不变,代入相关数据得a=2.5m/s2隔离A物体受力分析得F+m A g−F BA=m A a;代入数据解得F BA=25N根据牛顿第三定律可知A对B的压力大小为25N。
故选B。
2、如图所示,小球B放在真空容器A内,球B的直径恰好等于正方体A的棱长,将它们以初速度v0竖直向上抛出,下列说法中正确的是()A.若不计空气阻力,上升过程中,A对B有向上的支持力B.若考虑空气阻力,上升过程中,A对B的压力向下C.若考虑空气阻力,下落过程中,B对A的压力向上D.若不计空气阻力,下落过程中,B对A的压力向上答案:BAD.根据题意,若不计空气阻力,将容器以初速度v0竖直向上抛出后,以整体为研究对象,根据牛顿第二定律得到加速度为g,再以容器A为研究对象,无论上升和下落过程其合力都等于本身重力,则B对A没有压力,由牛顿第三定律可得,A对B也没有支持力,故AD错误;B.若考虑空气阻力,以整体为研究对象,根据牛顿第二定律可得,上升过程加速度大于g,再以球B为研究对象,根据牛顿第二定律分析,B受到的合力大于重力,B除受到重力外,还应受到向下的压力,即A对B的压力向下,故B正确;C.若考虑空气阻力,以整体为研究对象,根据牛顿第二定律得下落过程加速度小于g,再以B为研究对象,根据牛顿第二定律分析,B受到的合力小于重力,B除受到重力外,还应受到向上的力,即A对B的支持力向上,由牛顿第三定律可得,B对A的压力向下,故C错误。
《普通物理学简明教程》(第2版) 下 第四章 4-4
hv 。试证光子的散射角满
c c h 1 cos
v v0 m0c
此处 m0 是电子的静止质量,h 为普朗克常量。
hv
e
hv0 c
e0
c
电子
x
mv
上页 下页 返回 退出
证明:在图中,入射光子的能量和动量分别为 hv0 和 碰撞h。cv0碰e0撞,后与,物设质光中子质散量射为开m0去的而静和止原自来由入电射子方发向生
m0c
c c h 1 cos
v v0 m0c
上页 下页 返回 退出
选择进入下一节 §4-0 教学基本要求 §4-1 狭义相对论基本原理 洛伦兹变换 §4-2 相对论速度变换 §4-3 狭义相对论的时空观 §4-4 狭义相对论动力学基础 *§4-5 广义相对论简介
上页 下页 返回 退出
m(v) u
根据洛伦兹速度变换公式可得
u'
u
uv 1 uv / c2
(4)
v 1 1 v2 / c2 (5) u
m(v) m0 1 v2 / c2
相对论质速关系
上页 下页 返回 退出
m(v) m0 1 v2 c2
m(v)
m0——物体的 静止质量。
m(v)——相对于 观察者以速度v 运动时的质量。 相对论质量
dt dt
(1) 当 (2) 当
v<<c 时, m=m0 , F= ma v→c 时, m→∞, a d v
F v dm dt
0
dt
m
上页 下页 返回 退出
二、 相对论质量和能量的关系
1. 相对论动能
推导的基本出发是动能定理
令质点从静止开始,力所作的功就是动能表达式
(压轴题)高中物理必修一第四章《运动和力的关系》检测(答案解析)(3)
一、选择题1.物块A 左端固定一拉力传感器,总质量为M ,通过轻细绳与质量为m 的物块B 连接,A 、B 与水平面的动摩擦因数相同,给A 施加水平恒力F ,系统向右运动的过程中拉力传感器显示示数为4N 。
当用大小相同的水平恒力F 向左拉物块B ,系统向左运动的过程中拉力传感器显示示数为6N 。
则( )A .m :M =4:3B .m :M =3:2C .F =10ND .F =12N 2.某质量为m 的物体在三个共点力的作用下处于静止状态。
若把其中一个力1F 的方向沿顺时针转过90°而保持其大小不变,其余两个力保持不变,则此时物体的加速度大小为( )A .1F mB .12F mC .12F mD .无法确定 3.国产歼-15舰载机以80m/s 的速度降落在静止的“辽宁号”航母水平甲板上,机尾挂钩精准钩住阻拦索,如图所示。
在阻拦索的拉力帮助下,经历2.5s 速度减小为零。
若将上述运动视为匀减速直线运动,根据以上数据不能求出战斗机在甲板上运动的( )A .位移B .加速度C .平均速度D .受到的阻力 4.如图甲所示,A 、B 两个物体叠放在水平面上,m A =0.5kg ,m B =0.7kg ,B 的上、下表面均水平,A 物体与一拉力传感器相连接,连接拉力传感器和物体A 的细绳保持水平。
从t =0时刻起,用一水平向右的力F =2t (N )作用在B 的物体上,力传感器的示数随时间变化的图线如图乙所示,已知t 1=3s 、t 2=5s ,且最大静摩擦力等于滑动摩擦力。
据此可求( )A.3s后,B开始向右运动B.A、B之间的动摩擦因数AB 4 5μ=C.5s后,B向右做匀加速运动 D.B与水平面间的动摩擦因数56μ=5.以下关于力的单位,说法正确的是()A.“牛顿”是国际单位制中的基本单位B.使1kg的物体产生1m/s2加速度的力为1NC.国际单位制中规定1kg物体的重力为9.8ND.对公式F ma=,无论F、m、a三个物理量的单位是什么,此公式总是成立的6.如图所示,A、B、C三球质量均为m,轻质弹簧一端固定在斜面顶端、另一端与A球相连,A、B间固定一个轻杆,B、C间由一轻质细线连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 经典质点动力学4-1.已知质量为2kg 的质点的运动学方程为22(61)(341)r t i t t j =-+++(国际制单位),求证质点所受合力为恒力.证 对运动学方程求时间导数()d 1264d r v t i t j t==++ 22d d 126d d v r a i j t t ===+ 2(126)=2412(N)F ma i j i j ==⨯++可见质点所受合力为恒力.4-2.已知质量为1kg 的质点,在合力128(N)F t i j =+作用下运动.已知1t =s 时,质点位于2x =m 、0y =处,并以速率3m s 沿y 轴正向运动.求质点运动学方程.解 由mr F =,知12x t =,8y =.可得d 12d x t t = ,d 8d y t =积分 01d 12d xt x t t =⎰⎰ ,31d 8d y ty t =⎰⎰ 求出 266x t =- ,85y t =-再根据 2d (66)d x t t =- ,d (85)d y t t =-再积分 221d (66)d xt x t t =-⎰⎰ ,01d (85)d y t y t t =-⎰⎰ 质点运动学方程为 3266x t t =-+ ,2451y t t =-+4-3.跳水运动员沿竖直方向入水,刚入水时速率为0v ,以入水点为O 点,y 轴竖直向下,运动员入水后浮力与重力抵消,受水的阻力与速度平方成正比,比例系数为k ,求入水后运动员速度随时间的变化规律.解 以运动员为质点,根据牛顿第二定律有2d d yy v m kv t =- ,即2d d y y v k v t m =- 分离变量并积分 020d d y v t y v y v k t v m =-⎰⎰即可求出 011y k t v v m-= 也可以表示为 00y mv v m kv t =+4-4.跳水运动员由高处下落,设运动员入水后重力与浮力抵消,受水的阻力与速度平方成正比,比例系数0.4k m =(m 为运动员质量).求运动员速率减为入水速率的110时,其入水深度(均为国际制单位).解 以入水点为O 点,y 轴竖直向下,以运动员为质点,根据牛顿第二定律有2d 0.4d yy v m mv t =-做变量变换,得 2d d d 0.4d d d y y y y v v y v v y t y==- 即 d 0.4d y y v v y=- 分离变量并积分 00100d 0.4d v y y v yv y v =-⎰⎰ 0010ln |0.4v y v v y =- 可知运动员速率减为入水速率的110时,其入水深度ln1004576(m)y ..==.4-5.质量为m 的小球系在一不可伸长的轻绳之一端,可在水平光滑桌面上滑动.绳的另一端穿过桌面上一小孔,握在一人手中使它以匀速率a 向下运动.设初始时绳是拉直的,小球与小孔的距离为R ,初速度在垂直于绳的方向上的分量为0v .试求小球运动和绳子的张力.解 小球m 视为质点,作为研究对象,受力分析如图.以桌面小孔为坐标原点O ,建立极坐标系如图,根据牛顿第二定律,有T N T ma F F mg F =++=在极坐标系中的投影方程为2()T m r r F θ-=- (1)(2)0m r r θθ+= (2)由题意可知 r a =- (3)由(3)式得0d d r tR r a t =-⎰⎰ 所以r R at =-,代入(2)式,得 ()20R at a θθ--= ,即 d ()2d R at a tθθ-= 初始时00R v θ=,即00v R θ=,把上式分离变量且积分 000d 2d d()2tt v R a t R at R at R at θθθ-==---⎰⎰⎰220ln 2ln ln ()R R at R v R R at θ-=-=- 所以 02d d ()v R t R at θθ==- 把上式分离变量且积分 0200d()d ()t v R R at a R at θθ-=--⎰⎰ 所以 0011()v R v ta R at R R atθ=-=-- 小球的运动学方程为r R at =-,0v t R at θ=-.由(1)式得222220023()()[]()()T v R mv R F m r r mr m R at R at R at θθ=-==-=--4-6.已知质点所受合力为sin cos e t F t i t j k =++,求在0t =到2t π=时间内合力对质点的冲量.(国际制单位.)解 0t =到2t π=时间内合力对质点的冲量为200d (sin cos e )d t t I F t t i t j k t π==++⎰⎰222000(s i n d )(c o s d )(d )t t t i t t j e t k πππ=++⎰⎰⎰ 222000(cos |)(sin |)(|)t t i t j e k πππ=-++2(e 1)i j k π=++-(国际制单位)4-7.用棒打击质量为0.5kg 、从西沿水平方向以速率20m s 飞来的球,球落到棒的西面80m 处,球上升的最大高度为20m ,打击时间为0.05s ,打击时可略去重力,取210m g =.求:(1)棒对球的冲量;(2)棒给予球的平均冲力.解 建立坐标系Oxy ,Ox 轴沿水平方向自东向西,Oy 轴竖直向上.先讨论球被棒打击后的运动,球仅受重力,可知2012y y v t gt =- ,0y y v v gt =- 当0y v =时球达到最大高度m 20m y =.根据0010y v t =-求出0010y t .v =,代入202050y v t .t =-得到 22200020010005005y y y .v .v .v =-=因00y v >,略去020y v =-,可求出020m s y v =.进而求出2s t =.由于球沿Ox 方向作匀速率运动,到4s t =时向西运动了80m ,所以020m x v =. 在碰撞中根据动量定理 21I mv mv =- 由于120v i =-,2002020x y v v i v j i j =+=+,所以棒对球的冲量 2010(N s)I i j =+⋅平均冲力 2010400200 (N)0.05I i j F i j t +===+∆4-8.从高出枰盘 4.9m h =处,将每个质量m 均为0.02kg 的橡皮泥块,以每秒100n =个的速率注入枰盘,橡皮泥块落入枰盘后均黏附在盘上.以开始注入时为0t =,求10s t =时枰的读数.解 橡皮泥块在下落过程中只受重力,橡皮泥块落入枰盘的速率98(m s)v .=在橡皮泥块落入秤盘的过程中,对秤盘的平均冲力为(向上为正方向)F —nmg=n(mv 2—mv 1)=F —100*0.02*9.8=100*0.02*[0-(-9.8)]F=39.2N由于橡皮泥块由 4.9m h =处下落,由22119.8 4.922gt t =⨯⨯=可知下落的时间1s t =.所以10s t =时枰盘内橡皮泥块受到的总重力g (10-1)1009002981764(N)F n mg ...==⨯⨯⨯=因此秤的读数为F+F g =39.2+176.4=215.6N4-9.对例题4-4-2(见图),判断以下说法的正误:(1)质点对O 点角动量守恒;(2)质点对O '点角动量守恒;(3)质点对z 轴角动量守恒;(4)质点对x 轴角动量守恒.解 (1)摆锤所受合力指向O 点,摆锤所受合力对O 点力矩为零,所以质点对O 点角动量守恒.(2)合力对O'点力矩不为零,质点对O'点角动量不受恒.(3)质点所受合力的作用线过Oz 轴,对Oz 轴合力矩为零,所以质点对Oz 轴角动量守恒.(4)质点对O 点角动量守恒,所以质点对Ox 轴角动量守恒.4-10.在一直角坐标系Oxyz 中,一质点位于点(3m,4m,5m)处,并受一作用力7N 8N 9N F i i i =++,求:(1)力F 对O 点的力矩;(2)力F 对x 轴的力矩.解 345r i j k =++,所以(345)(789)484(N m)O M r F i j k i j k i j k =⨯=++⨯++=-+-⋅4N m x O M M i =⋅=-⋅4-11.在直角坐标系Oxyz 中,质点质量为2kg ,其速度1242(m s )v i j tk -=+-⋅,并已知0t =时位置矢量02(m)r i =.求:(1)质点对O 点的角动量;(2)质点对y 轴的角动量;(3)质点所受合力对O 点和y 轴的力矩.解 因为d d r v t =,d d r v t =,所以00d d r t r r v t =⎰⎰,即 00002(2d )(4d )(2d )t t tr r r i t i t j t t k -=-=+-⎰⎰⎰ 所以 2(22)4r t i tj t k =++- (1) 22[(22)4](242)O L r mv t i tj t k i j tk =⨯=⨯++-⨯+-22218(48)16(kg m s )t i t t j k -=-+++⋅⋅(2) 22148(kg m s )y O L L j t t -=⋅=+⋅⋅(3) d 16(88)(N m)d O O L M t i t j t==-++⋅ d 88(N m)d y y L M t t==+⋅4-12.设质点在Oxy 平面内运动,试判断以下论述是否正确:(1)若质点动量守恒,则对z 轴角动量守恒;(2)若质点对z 轴角动量守恒,则动量守恒;(3)若质点对z 轴角动量守恒,则动量的大小保持不变;(4)若质点对z 轴角动量守恒,则质点不可能作直线运动.解 (1)正确.质点动量守恒,则质点所受合力为零,质点所受合力对Oz 轴力矩为零,所以对Oz 轴角动量守恒.(2)不对.比如,质点在Oxy 平面内、绕O 点做匀速圆周运动,对Oz 轴角动量守恒,但是动量并不守恒.(3)不对.比如例题4-5-2,质点在Oxy 平面内做椭圆运动,它所受的合力是有心力,始终指向O 点,所以对Oz 轴的角动量守恒,但是动量的大小不断变化.(4)不对.在Oxy 平面内做匀速直线运动的质点对Oz 轴角动量守恒.4-13.质量为m 的质点在Oxy 平面内运动,其运动学方程为cos x a t ω=,sin y b t ω=,a 、b 、ω均为常量.求:(1)质点对z 轴的角动量;(2)质点所受对z 轴的合力矩.解 (1)对运动学方程cos sin r a ti b tj ωω=+求时间导数,可得d sin cos d r v a ti b t j tωωωω==-+ 所以 (cos sin )(sin cos )O L r mv a ti b tj m a ti b t j ωωωωωω=⨯=+⨯-+22(cos sin )m ab t ab t k mab k ωωωωω=+=z O L L k abm ω=⋅=(2)因z L 为常量,由对Oz 的角动量定理,可知质点所受对Oz 轴的合力矩d 0d z z L M t==4-14.如图,刚性转动系统放在盛有液体的容器内,长为l 的细杆一端固定一质量为m 的小球,另一端垂直地固定于转轴z .小球受液体阻力与小球质量及系统转动角速度的大小成正比,即F km ω=,k 为比例常量.z 轴及细杆的质量及所受阻力均忽略不计,问:经过多长时间系统的角速度的大小变为初始值0ω的1e .解 由题意知z M lkm ω=-,2z L ml ω=,根据d d z z L M t=,得 2dd ml lkm tωω=- 分离变量并积分 d d k t lωω=-⎰⎰ ln k t C lω=-+ 由0t =时0ωω=定出积分常数,0ln C ω=,则 0e kt l ωω-= 所以,当0e ωω=时l t k=.4-15.如图所示,小球m 系于不可伸长的轻绳的一端,绳经O 点穿入竖直小管.开始时小球绕管在水平面内做半径为R 的圆周运动,每分钟转120转.由绳的A 端将绳拉入小管,拉绳后小球绕管在水平面内做半径为2R 的圆周运动.求:(1)拉绳以后小球每分钟之转数;(2)拉绳过程中小球对O 点角动量是否守恒?为什么?解 (1)在拉绳过程中,因为小球所受重力与OA 轴平行、绳拉力与OA 轴相交,对OA 轴力矩均为零,所以在拉绳过程中小球对OA 轴角动量守恒02R mvmv R = 拉绳前,每秒转两转,022R v π⋅=.设拉绳后,每秒转n 转,22R n v π⋅=.把04v R π=和v n R π=代入角动量守恒方程,得42R mn Rm R R ππ=⋅ 即可求出拉绳后小球每秒转8n =转,即每分钟480转.(2)因为小球所受合力对O 点力矩不为零,所以小球对O 点角动量不守恒.4-16.试判断以下说法是否正确:(1)静摩擦力一定不做功;(2)滑动摩擦力一定做负功;(3)摩擦力总是阻碍物体运动;(4)运动质点如受摩擦力作用,则能量一定减小.答 均不正确.4-17.试证明2(3sin e )(N)x F x x i =++是保守力.质点在F 作用下由0x =运动到1m x =,试用两种方法计算力F 对质点做的功.解 由于2(3sin e )(N)x F x x i =++在位移d r 中所做元功2d (3sin )(d d d )x F r x x e i xi yj zk ⋅=++⋅++2(3sin e )d x x x x =++3d(cos e )xx x =-+可以表示为只与位置有关的标量函数3()cos e x U x x x =-+的微分,所以此力为保守力.方法一:质点沿Ox 轴由0x =运动到1x =,F 对质点所做的功为 120d (3sin e )d x W F r x x x =⋅=++⎰⎰310(cos e )|x x x =-+ 1cos1e 11=-++-1cos1e =-+ 方法二:因F 为保守力,引入势能3p (cos e )x E U C x x C =-+=--++,则p2p1()W E E =--1cos1e 11=-++-1cos1e =-+4-18.如图,一劲度系数为k 的弹簧,一端固定于A 点,另一端与质量为m 的质点相连.弹簧处于自由伸张状态时,质点位于竖直面与半径为R 的半圆柱面的交界处B .质点在力F 的作用下,由B 点从静止开始运动到光滑半圆柱面的顶点C ,到达C 点时质点速率为C v .求力F 对质点所做的功.解 在质点由B 到C 点的过程中,所受重力和弹簧弹性力为保守力,以B 点为重力势能及弹性势能零点.质点受面的支撑力不做功,设力F 做功为F A .由质点的机械能定理k p k p ()()C C B B F E E E E A +-+=可得 22111[(R)](00)222F C A mv mgR k π=++-+ 2221128C mv mgR k R π=++4-19.接题4-18,质点到达C 点后,力F 被撤除,求质点运动到AB 之间的平衡位置时的速率.解 质点平衡时mg k l =∆,mg l k ∆=,即质点的平衡位置位于B 点下方mg k处. 在质点由C 到平衡位置的过程中,由于所受重力和弹簧弹性力为保守力,受面的支撑力不做功,所以机械能守恒.以B 点为重力势能及弹性势能零点,则()2222211112822C mv mgR k R mv mg l k l π++=-∆+∆ 22222122m g m g mv k k=-+222122m g mv k =-即可求出质点运动到AB 之间的平衡位置时的速率2222121(2)4C k R mg v v gR m k π=+++4-20.如题4-15图之装置.设小球质量0.5g m =,初态管外绳长12m l =,绳与竖直方向夹角130θ=,速度为1v .末态绳与竖直方向夹角260θ=,速度为2v .求:(1)1v 、2v ;(2)绳对小球所做的功.解 视小球为质点,受重力W 和绳的张力T F 如图.初态小球做水平圆周运动,合力T F W F =+指向圆轨道圆心,由牛顿第二定律2211111tg sin v v m m mg R l θθ== 所以1238m s v .=== 设末态2l l =,小球做水平圆周运动,有22222tg sin v m mg l θθ= ,222222sin cos v l g θθ= 可知221112222212sin cos cos sin v l v l θθθθ== (1) 在由初态到末态的过程中,小球所受合力对竖直轴AB 的力矩为零,所以小球对轴AB 的角动量守恒111222sin sin mv l mv l θθ=所以1222111sin sin v l v l θθ== (2) (1)(2)⨯得 313213v v = 可求出 13213343m v v .==2(1)(2)得3132l l =121080m l l .== 由机械能定理,以O 点为势能零点,绳对小球所做的功为k p W E E =∆+∆2221121()(cos30cos60)2m v v mg l l =-+-000805J .=4-21.质量为0.2kg 的小球B 以弹性绳在光滑水平面上与固定点A 相连.弹性绳劲度系数为8N m ,其自由伸张长度为0.6m .小球初位置和速度0v 如图所示.当小球速率变为v 时,它与A 点距离最大且等于0.8m .求初态与末态之速率0v 和v .解 小球在水平面上仅受弹性绳弹性力,弹性力作用线过A ,所以小球在运动过程中对过A 的竖直轴角动量守恒;注意到小球与A 点距离最大时其速度与弹性绳垂直;则004sin3008.mv .mv =小球在水平面内仅受弹性绳弹性力,弹性力为保守力,因此小球在运动过程中机械能守恒,以弹性绳自由伸张时为弹性势能零点;则2220111(0806)222mv mv k ..=+- 所以 04v v = ,22016v v .-= 联立求解上述二式即可求出0131m v .=,033m v .=.4-22.如图,在升降机内有一和升降机固定的光滑斜面,斜面相对水平方向的倾角为θ.当升降机以匀加速度a 沿竖直方向上升时,质量为m 的物体沿斜面下滑,试以升降机为参考系,求:(1)物体相对升降机的加速度;(2)物体对斜面的压力;(3)物体对地面的加速度.解 以升降机为非惯性参考系,建立与斜面固连的坐标系Oxy 如图.视物体为质点,受重力mg 、支承力N F 和惯性力I F ma =-,物体在非惯性系中的动力学方程为()sin m g a mx θ+=()N cos 0F m g a θ-+=所以,物体相对升降机的加速度()sin a x i g a i θ'==+物体对斜面的压力()NN cos F F m g a j θ'=-=-+ 物体对地面的加速度sin cos ()sin sin cos a a a a i a j g a i g i a j θθθθθ'=+=-+++=+地4-23.如图,一理想定滑轮固定于升降机上,一不可伸长之轻绳跨过滑轮后,两端各悬挂一物体,物体质量为1m 和2m ,12m m ≠.升降机以加速度a 沿竖直方向下降时,试以升降机为参考系,求:两个物体相对地面的加速度及绳内张力.解 以升降机为非惯性参考系,建立与升降机固连的坐标系Ox 如图.视二物体为质点,物体受重力、绳张力和惯性力I11F m a =-、I22F m a =-,在非惯性系中的动力学方程为1T1111m g F m a m x --=2T2222m g F m a m x --=绳不可伸长 12x x =-根据牛顿第三定律 T1T2T F F F ==所以 12211212()()m m g m m a x x m m -+-=-=+ 绳内张力 12T 122()m m F g a m m =-+ 两个物体相对地面的加速度为1221122111212()()()2m m g m m a m m g m a a a x i ai i i m m m m -+--+=+=+=++ 1221211121212()()()2m m g m m a m m g m a a a x i ai i i m m m m -+--+=+=-=++4-24.如图所示有一绕竖直z 轴以角速度k ωω=作匀角速度定轴转动的光滑水平大转台.在距z 轴R 的A 处立一竖直杆,杆端有一长度为l 的不可伸长的轻绳,绳末端挂一质量为m 的小球.当绳与竖直杆夹角θ保持不变时,以转台为参考系,求θ与ω的关系.解 以转台为非惯性参考系,视小球为质点,小球受重力mg ,绳的拉力T F ,惯性离心力It F ,2It (sin )F m R l ωθ=+.小球在非惯性系中受三个力平衡,水平方向的平衡方程为2(sin )tan m R l mg ωθθ+=所以 1tan ()sin g R l θωθ=+ 4-25.接题4-24,有人试图从O 点以初速0v 沿台面抛出一小球,而使小球沿转台上的直线OA 运动,此人的目的能否达到?试在转台参考系中加以说明.解 以转台为非惯性参考系,小球相对于转台具有速度,所以小球除受重力、支持力和惯性离心力以外,还受科里奥利力作用.由于科里奥利力与小球运动方向垂直,所以小球不可能沿转台上的直线OA 运动.(第四章题解结束)。