山东省泰安第一中学等差数列单元测试题+答案
山东省泰安第一中学虎山路校区2015-2016学年上学期高二10月月考数学试题
泰安一中虎山路校区10月学情检测
高二数学试题 2015.10
注意事项: 试卷类型A
1.答题前,请先将自己的姓名、考场、考号在答题卡和答题纸相应位置填涂清楚;
2.选择题答案用2B 铅笔涂在答题卡上,非选择题答案用黑色签字笔写在答题卷上。
第Ⅰ卷
一、选择题(本大题10个小题,每小题5分,共50分。在每小题给出的四个选项中,只有一个是正确的。)
1.在△ABC 中,a =5,b =3,C =120°,则sin A ∶sin B 的值是( ) A.5
3 B.35 C.37
D.57
2.在△ABC 中,若∠A =105°,∠B =45°,b =22,则c 等于( ) A .1 B .2 C. 2 D. 3
3.一个三角形的两边长分别为5和3,它们夹角的余弦值是-3
5,则三角形的另一边长为( )
A .52
B .213
C .16
D .4
4.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4
D.π12
5.在△ABC 中,若b 2
=a 2
+c 2
+ac ,则B 等于( ) A .60° B .45°或135° C .120°
D .30°
6.已知数列{a n }的通项公式为a n =
1+(-1)
n +1
2,则该数列的前4项依次为( )
A .1,0,1,0
B .0,1,0,1
C.12,0,1
2
,0 D .2,0,2,0 7.已知等差数列{a n }的通项公式a n =3-2n ,则它的公差d 为( ) A .2 B .3 C .-2 D .-3
8.△ABC 中,三内角A 、B 、C 成等差数列,则角B 等于( ) A .30° B .60° C .90° D .120°
山东省泰安第一中学(虎山路校区)数列的概念单元测试题
一、数列的概念选择题
1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184
B .174
C .188
D .160
2.已知数列{}n a 满足11a =
),2n N n *=
∈≥,且()2cos
3
n n n a b n N π
*=∈,则数列{}n b 的前18项和为( ) A .120
B .174
C .204-
D .
373
2
3.数列{}n a 的通项公式是2
76n a n n =-+,4a =( )
A .2
B .6-
C .2-
D .1
4.在数列{}n a 中,10a =
,1n a +,则2020a =( ) A .0
B .1
C
.D
5.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=
+ ⎪⎝⎭
,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S ++
+=( )
A .135
B .141
C .149
D .155
6.已知数列{}n a 的前n 项和为n S ,且2
1n S n n =++,则{}n a 的通项公式是( )
等差数列经典试题(含答案) 百度文库
一、等差数列选择题
1.已知数列{}n a 的前n 项和为n S ,11
2
a =
,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫
⎨⎬⎩⎭
的前n 项和为n T ,则下列说法中错误的是( )
A .21
4
a =-
B .
648
211S S S =+ C .数列{}12n n n S S S +++-的最大项为
712
D .1121
n n n n n
T T T n n +-=
++ 2.已知各项不为0的等差数列{}n a 满足2
6780a a a -+=,数列{}n b 是等比数列,且
77b a =,则3810b b b =( )
A .1
B .8
C .4
D .2
3.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13 B .14 C .15 D .16 4.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8
B .10
C .12
D .14
5.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8
B .13
C .26
D .162
6.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个
B .3个
C .2个
D .1个
7.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则6
(最新整理)等差数列练习题附答案
(完整)等差数列练习题附答案
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)等差数列练习题附答案)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)等差数列练习题附答案的全部内容。
等差数列练习
一、选择题
1、等差数列{}n a 中,10120S =,那么110a a +=( )
A. 12 B 。 24 C. 36 D 。 48
2、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( )
A.有最小值且是整数
B. 有最小值且是分数 C 。 有最大值且是整数 D. 有最大值且是分数 3、已知等差数列{}n a 的公差1
2
d =
,8010042=+++a a a ,那么=100S A .80 B .120 C .135 D .160.
4、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13S
A .390
B .195
C .180
D .120
5、从前180个正偶数的和中减去前180个正奇数的和,其差为( )
A. 0 B 。 90 C. 180 D 。 360
6、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )
A. 130 B 。 170 C. 210 D. 260
等差数列经典试题(含答案)
当 且 时,由 ,
由 可得 ,
整理得 ( 且 ).
则 为以2为首项,以2为公差的等差数列 , .
A中,当 时, ,A选项正确;
B中, 为等差数列,显然有 ,B选项正确;
C中,记 ,
,
,故 为递减数列,
,C选项正确;
D中, , , .
,D选项错误.
故选:D.
【点睛】
关键点点睛:利用 与 的关系求通项,一般利用 来求解,在变形过程中要注意 是否适用,当利用作差法求解不方便时,应利用 将递推关系转化为有关 的递推数列来求解.
(1)当 时, 有最大值,可以通过 的二次函数性质求解,也可以通过求满足 且 的 的取值范围确定;
(2)当 时, 有最小值,可以通过 的二次函数性质求解,也可以通过求满足 且 的 的取值范围确定;
24.ABD
【分析】
转化条件为 ,进而可得 , ,再结合等差数列的性质及前n项和公式逐项判断即可得解.
【详解】
则有 ,则 ,所以
解得 ,因为年龄为整数,所以 .
故选:D
4.B
【分析】
设公差为 ,利用等差数列的前 项和公式, ,得 ,由前 项和公式,得 ,同时可得 的最大值, , 或 时取得,结合递减数列判断D.
【详解】
设公差为 ,由已知 , ,得 ,所以 ,A正确;
所以 ,B错误;
山东省泰安第一中学(虎山路校区)等差数列单元测试题
一、等差数列选择题
1.在等差数列{}n a 中,10a >,81335a a =,则n S 中最大的是( ) A .21S
B .20S
C .19S
D .18S
2.已知数列{}n a 是等差数列,其前n 项和为n S ,若454a a +=,则8S =( ) A .16 B .-16 C .4
D .-4
3.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45
B .50
C .60
D .80
4.设数列{}n a 的前n 项和2
1n S n =+. 则8a 的值为( ).
A .65
B .16
C .15
D .14
5.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n -
B .n
C .21n -
D .2n
6.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160
B .180
C .200
D .220
7.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32
B .33
C .34
D .35
8.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个
泰安第一中学2024届高一数学第二学期期末质量跟踪监视试题含解析
泰安第一中学2024届高一数学第二学期期末质量跟踪监视试题
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.如果在一次实验中,测得
的四组数值分别是
,
,
,
,
则与之间的回归直线方程是( ) A .
B .
C .
D .
2.已知函数
()()2
12
log 4f x ax =-在区间(1,2)上是增函数,则实数a 的取值范围是( ) A .(0,+∞)
B .(0,1)
C .(0,1]
D .(﹣1,0)
3.如图,ABC 中,,AB a AC b ==,4BC BD =,用,a b 表示AD ,正确的是( )
A .1344AD a b =+
B .51
44AD a b =
+ C .31
44
AD a b =+
D .51
44
AD a b =-
4.在Rt ABC ∆中,2,CA CB M N ==,是斜边AB 上的两个动点,且2MN =则CM CN ⋅的取值范围为( )
A .322⎡⎤
⎢⎥⎣⎦
,
B .31,2⎛⎫ ⎪⎝⎭
C .[]12,
D .[)2+,
∞
5.已知点P (
12,
3
2
)为角α的终边上一点,则cos α=( ) A .
等差数列经典试题(含答案) 百度文库
一、等差数列选择题
1.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4S
B .5S
C . 6S
D . 7S
2.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200
B .100
C .90
D .80
3.设等差数列{}n a 的前n 项和为n S ,公差1d =,且62
10S S ,则34a a +=( )
A .2
B .3
C .4
D .5
4.定义
12n
n
p p p ++
+为n 个正数12,,
,n p p p 的“均倒数”,若已知数列{}n a 的前
n 项的“均倒数”为
12n
,又2n n a b =,则
1223910
111
b b b b b b +++
=( ) A .
8
17 B .
1021
C .
1123 D .
919
5.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了
3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米 6.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4 B .a 6=4 C .a 5=2 D .a 6=2 7.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( ) A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列 D .S 2,S 4+S 2,S 6+S 4必成等差数列
(完整版)等差数列基础习题选(附详细答案)-答案
参考答案与试题解析
一.选择题(共26小题)
1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()
A.B.1C.D.﹣1
考点:等差数列.
专题:计算题.
分析:
本题可由题意,构造方程组,解出该方程组即可得到答案.
解答:解:等差数列{a n}中,a3=9,a9=3,
由等差数列的通项公式,可得
解得,即等差数列的公差d=﹣1.
故选D
点评:本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.
2.已知数列{a n}的通项公式是a n=2n+5,则此数列是()
A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列
C.以5为首项,公差为2的等差数列D.不是等差数列
考点:等差数列.
专题:计算题.
分析:直接根据数列{a n}的通项公式是a n=2n+5求出首项,再把相邻两项作差求出公差即可得出结论.
解答:解:因为a n=2n+5,
所以a1=2×1+5=7;
a n+1﹣a n=2(n+1)+5﹣(2n+5)=2.
故此数列是以7为首项,公差为2的等差数列.
故选A.
点评:本题主要考查等差数列的通项公式的应用.如果已知数列的通项公式,可以求出数列中的任意一项.
3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()
A.23 B.24 C.25 D.26
考点:等差数列.
专题:综合题.
分析:根据a1=13,a3=12,利用等差数列的通项公式求得d的值,然后根据首项和公差写出数列的通项公式,让其等于2得到关于n的方程,求出方程的解即可得到n的值.
解答:
解:由题意得a3=a1+2d=12,把a1=13代入求得d=﹣,
等差数列练习题(有答案)百度文库
一、等差数列选择题
1.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( ) A .9
B .12
C .15
D .18
2.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了
3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米
3.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -
B .
3
22
n - C .
3122
n - D .
31
22
n + 4.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160
B .180
C .200
D .220
5.已知数列{}n a 的前n 项和n S 满足()
12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭
的前10项的和为
( ) A .
89
B .
910
C .10
11
D .
1112
6.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则6
12S
S =( ) A .
17
7
B .
83 C .
143
D .
103
7.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121
B .161
C .141
D .151
8.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60
等差数列习题及答案
等差数列习题及答案
【篇一:高一数学等差数列习题及答案1】
09安徽卷)已知
为等差数列,
,则
等于 ()
a. -1
b. 1
c. 3
d.7
a
2、(2009湖南卷)设sn是等差数列?n?的前n项和,已知a2?3,a6?11,则s7等于【】
a.13b.35c.49 d. 63
sn
{a}3、(2009福建卷)等差数列n的前n项和为,且s3 =6,
a1=4,则公差
d等于( )
5
a.1 bc.- 2 d 3
3
4、实数a,b,5a,7,3b,…,c组成等差数列,且a+b+5a+
7+3b+…+c=2500,则a,b,c的值分别为
[ ]
a.1,3,5b.1,3,7 c.1,3,99 d.1,3,9
a
5.(2009安徽卷理)已知?n?为等差数列,a1+a3+a5=105,
a2?a4?a6=99,以
sn表示?an?的前n项和,则使得sn达到最大值的n是
(a)21(b)20 (c)19 (d) 18
a
6、(2009全国卷Ⅰ)设等差数列?n?的前n项和为sn,若
s9?72, 则a2?a4?a9
__. 7、 (2009山东卷)在等差数列{an}中,a3?7,a5?a2?6,则
a6?__________
a
8、(2009辽宁卷)等差数列?n?的前n项和为sn,且6s5?5s3?5,则a4?
9、等差数列前10项的和为140,其中,项数为奇数的各项的和为125,求其第6项.
10、在项数为2n的等差数列中,各奇数项之和为75,各偶数项之和为90,末项与首项之差为27,则n之值是多少?
11、在等差数列{an}中,已知a6+a9+a12+a15=34,求前20项之和.
等差数列练习题及答案
等差数列练习题及答案
等差数列练习题及答案
数学中的等差数列是一种非常重要且常见的数列形式。在我们的日常生活中,很多问题都可以用等差数列来解决。掌握等差数列的性质和求解方法,对于我们的数学学习和解决实际问题都有很大的帮助。下面,我将给大家介绍一些常见的等差数列练习题及其答案。
题目一:已知等差数列的首项为2,公差为3,求第10项的值。
解析:根据等差数列的通项公式an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。代入已知条件,可得第10项的值为2 + (10-1)×3 = 2 + 27 = 29。
题目二:已知等差数列的前三项分别为3、7、11,求该数列的公差和第10项的值。
解析:首先,我们可以通过前三项求出公差。根据等差数列的性质,第二项减去第一项的值等于公差,第三项减去第二项的值也等于公差。所以,公差d = 7 - 3 = 4。接下来,我们可以利用公差和首项求出第10项的值。根据等差数列的通项公式,第10项的值为a1 + (10-1)×d = 3 + 9×4 = 3 + 36 = 39。
题目三:已知等差数列的前五项之和为50,公差为2,求该数列的首项和第10项的值。
解析:首先,我们可以利用前五项之和求出首项。根据等差数列的性质,前五项之和等于5/2(首项加上末项)乘以项数。所以,50 = 5/2 × (a1 + a5) = 5/2 × (a1 + (a1 + 4d)) = 5/2 × (2a1 + 4d)。化简得到2a1 + 4d = 20。又已知公差d = 2,代入得到2a1 + 8 = 20,解得a1 = 6。接下来,我们可以利用公差和首项
山东省泰安市新泰第一中学东校2020_2021学年高二数学上学期第二次质量检测试题含解析
(2)一束光线从 点射向(1)中的直线 ,若反射光线过点 ,求反射光线所在的直线方程.
【答案】(1) ;(2) .
【解析】
【分析】
(1)本题首先可求出 ,然后根据直线 过点 且与直线 平行即可求出直线 的方程;
(2)本题可求出 关于直线 的对称点 的坐标,然后求出 的值,最后根据直线的点斜式方程即可得出结果.
所以 , ,
所以C正确,D错误,
故选:AC
11.在平面直角坐标系 中,圆 的方程为 .若直线 上存在一点 ,使过 所作的圆的两条切线相互垂直,则实数 的取可以是()
A. B. C. D.
【答案】AB
【解析】
【分析】
先得到 的轨迹方程为圆,与直线 有交点,得到 的范围,得到答案.
【详解】
所作的圆的两条切线相互垂直,所以 ,圆点 ,两切点构成正方形
【详解】由题意得 ,则圆心 到直线 的距离为 ,
当直线 的斜率不存在时,直线 的方程为 ,此时直线 与圆相切,不合题意,舍去,
当直线 的斜率存在时,设直线 的方程为 ,
则 ,解得 ,
故选:BC.
第II卷(非选择题)
三、填空题
13.坐标平面内过点 ,且在两坐标轴上截距相等的直线 的方程为___________.
所以点 到平面 的距离 .
山东省泰安第一中学等比数列单元测试题+答案
一、等比数列选择题
1.明代数学家程大位编著的《算法统宗》是中国数学史上的一座丰碑.其中有一段著述“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”.注:“倍加增”意为“从塔顶到塔底,相比于上一层,每一层灯的盏数成倍增加”,则该塔正中间一层的灯的盏数为( )
A .3
B .12
C .24
D .48
2.已知等比数列{}n a 的前n 项和为,n S 且63
9S S =,则42a
a 的值为( )
A 2
B .2
C .22
D .4
3.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8
B .8±
C .8-
D .1
4.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A .12
B .18
C .24
D .32
5.等比数列{}n a 中11a =,且14a ,22a ,3a 成等差数列,则()*n
a n N n
∈的最小值为( ) A .
16
25
B .
49
C .
12
D .1
6.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T ( )
A .有最大项,有最小项
B .有最大项,无最小项
C .无最大项,有最小项
D .无最大项,无最小项
7.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-
B .3-
C .3
D .8
8.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=( )
等差数列经典试题(含答案)
一、等差数列选择题
1.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,则后五个节气日影长之和为( )(注:一丈=十尺,一尺=十寸) A .一丈七尺五寸 B .一丈八尺五寸 C .二丈一尺五寸
D .二丈二尺五寸
2.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13
B .14
C .15
D .16
3.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S =( ) A .10-
B .8
C .12
D .14
4.已知数列{}n a 是等差数列,其前n 项和为n S ,若454a a +=,则8S =( ) A .16 B .-16 C .4
D .-4
5.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32
B .33
C .34
D .35
6.设等差数列{}n a 的前n 项和为n S ,10a
a a =,则当n S 取最小值时,n 的值为( ) A .21
B .20
C .19
D .19或20
7.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11
等差数列单元测试题+答案 百度文库
一、等差数列选择题
1.在数列{}n a 中,129a =-,()
*
13n n a a n +=+∈N ,则1220a a a ++
+=( )
A .10
B .145
C .300
D .320 2.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )
A .8
B .10
C .12
D .14
3.已知数列{}n a 的前n 项和为n S ,15a =,且满足
122527
n n
a a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )
A .6-
B .2-
C .1-
D .0
4.定义
12n
n
p p p ++
+为n 个正数12,,
,n p p p 的“均倒数”,若已知数列{}n a 的前
n 项的“均倒数”为
12n ,又2n n a b =,则1223
910
111
b b b b b b +++
=( ) A .
8
17 B .
1021
C .
1123 D .
919
5.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45 B .50 C .60 D .80 6.在等差数列{a n }中,a 3+a 7=4,则必有( )
A .a 5=4
B .a 6=4
C .a 5=2
D .a 6=2
7.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29
B .38
C .40
D .58
8.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等差数列选择题
1.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21
B .15
C .10
D .6
2.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231
n n a n b n =+,则2121S T 的值为( )
A .
13
15
B .
2335
C .
1117 D .
49
3.已知数列{}n a 的前n 项和2
21n S n n =+-,则13525a a a a +++
+=( )
A .350
B .351
C .674
D .675
4.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个
B .3个
C .2个
D .1个
5.设等差数列{}n a 的前n 项和为n S ,10a <且11101921
a a =,则当n S 取最小值时,n 的值为( ) A .21
B .20
C .19
D .19或20
6.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则6
12S
S =( ) A .
17
7
B .
83 C .
143
D .
103
7.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则12
15
a b =( ) A .
3
2
B .
7059
C .
7159
D .85
8.已知数列{}n a 中,132a =
,且满足()*
1112,22
n n n a a n n N -=+≥∈,若对于任意*n N ∈,都有
n a n
λ
≥成立,则实数λ的最小值是( ) A .2
B .4
C .8
D .16
9.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?” 意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( )
A .3斤
B .6斤
C .9斤
D .12斤
10.等差数列{}n a 的前n 项和为n S ,已知58a =,36S =,则107S S -的值是( ) A .48
B .60
C .72
D .24
11.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333
122n n n a a a ++=+,则10a 等于
( ) A .10
B
C .64
D .4
12.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25
B .11
C .10
D .9
13.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )
A .7
B .9
C .21
D .42
14.设等差数列{}n a 的前n 和为n S ,若()*
111,m m a a a m m N +-<<->∈,则必有( )
A .0m S <且10m S +>
B .0m S >且10m S +>
C .0m S <且10m S +<
D .0m S >且10m S +<
15.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36
B .48
C .56
D .72
16.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若
p m n q <<<且()
*,,,p q m n p q m n N +=+∈,则下列判断正确的是( )
A .22p p S p a =⋅
B .p q m n a a a a >
C .1111p q m n a a a a +<+
D .1111p q m n
S S S S +>+ 17.记n S 为等差数列{}n a 的前n 项和,若542S S =,248a a +=,则5a 等于( ) A .6
B .7
C .8
D .10
18.已知数列{x n }满足x 1=1,x 2=23
,且
11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(
23
)n -1
B .(
23
)n C .
21
n + D .
1
2
n + 19.在等差数列{}n a 中,520164a a +=,S ,是数列{}n a 的前n 项和,则S 2020=( ) A .2019
B .4040
C .2020
D .4038
20.已知等差数列{}n a 的公差d 为正数,()()111,211,
n n n a a a tn a t +=+=+为常数,则
n a =( )
A .21n -
B .43n -
C .54n -
D .n
二、多选题21.题目文件丢失!