2.1合情推理和演绎推理导学案(数学选修1-2)

合集下载

2.1 合情推理与演绎推理(一) 选修1-2精品教案

2.1 合情推理与演绎推理(一)  选修1-2精品教案

§2.1.1 合情推理与演绎推理(一)【内容分析】:归纳是重要的推理方法,在掌握一定的数学基础知识(如数列、立体几何、空间向量等等)后,对数学问题的探究方法加以总结,上升为思想方法。

【教学目标】:1、知识与技能:(1)结合数学实例,了解归纳推理的含义(2)能利用归纳方法进行简单的推理,2、过程与方法:通过课例,加深对归纳这种思想方法的认识。

3、情感态度与价值观:体验并认识归纳推理在数学发现中的作用。

【教学重点】:(1)体会并实践归纳推理的探索过程(2)归纳推理的局限【教学难点】:引导和训练学生从已知的线索中归纳出正确的结论【教学过程设计】:→如何证明:将递推公式变【练习与测试】: (基础题)1)数列2,5,11,20,,47,x …中的x 等于( ) A .28 B .32 C .33 D .272)从222576543,3432,11=++++=++=中得出的一般性结论是_____________。

3)定义,,,A B B C C D D A ****的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(A )、(B )所对应的运算结果可能是( ).(1) (2) (3) (4) (A ) (B )A.,B D A D **B.,B D A C **C.,B C A D **D.,C D A D **4)有10个顶点的凸多面体,它的各面多边形内角总和是________.5)在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝, 第二件首饰是由6颗珠宝(图中圆圈表示珠宝)构成如图1所示的正六边形, 第三件首饰如图2, 第四件首饰如图3, 第五件首饰如图4, 以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六变形,依此推断第6件首饰上应有_______________颗珠宝,第n 件首饰所用珠宝总数为_________________颗.6)已知n n a n na 11+=+(n=1.2. …)11=a 试归纳这个数列的通项公式 答案:1)B 523,1156,20119,-=-=-=推出2012,32x x -==2)2*1...212...32(21),n n n n n n n N ++++-+++-=-∈ 注意左边共有21n -项 3)B 4)(n-2)3605) 91,1+5+9+…4n+1=2n 2+3n+1 6) a 1=1,a 2=21 a 3=31… a n =n1(中等题)1)观察下列的图形中小正方形的个数,则第n 个图中有 个小正方形. 2)-1 .3 .-7 .15 .( ) ,63 , , , 括号中的数字应为( ) A.33 B.-31 C.-27 D.-573)设平面内有n 条直线(n ≥ 3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用表示 n 条直线交点的个数,则 f (4 )=( ) A.3 B.4 C.5 D.64)顺次计算数列:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,的前4项,由此猜测123...)1()1(...321++++-++-++++=n n n a n 的结果.答案:1)1+2+3+4+…+(n+1)=)2)(1(21++n n 2)B 正负相间,3=1+2,7=3+22,15=7+23,15+24=31,31+25=63 3)C4)依次为,1,22,32,42,所以a n =n 2(难题)1).迄今为止,人类已借助“网格计算”技术找到了630万位的最大质数。

人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_15

人教A版高中数学选修1-2《二章 推理与证明  2.1 合情推理与演绎推理  2.1.2 演绎推理》优质课教案_15

2.1.2演绎推理一、教学目标1.知识与技能(1)让学生知道演绎推理的含义,以及演绎推理与合情推理的联系与差异.(2)能运用演绎推理的基本方法“三段论”进行一些简单的推理.(1)结合已学过的数学实例和生活中的实例,引出演绎推理的概念.(2)通过对实际例子的分析,从中概括出演绎推理的推理过程.(3)通过一些证明题的实例,让学生体会“三段论”的推理形式.3.情感、态度与价值观让学生体会演绎推理的逻辑推理美,让学生亲身经历数学研究的过程,感受数学的魅力,进而激发自身的求知欲.了解演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理,论证有据的思维习惯.二、教学重点难点重点:了解演绎推理的含义,理解合情推理与演绎推理的区别与联系,能利用“三段论”进行简单的推理.难点:利用三段论证明一些实际问题.三、教学过程(一)复习准备:1.问:合情推理的含义与特点是什么?2.常见的可以类比的知识点3.导入:(1)所有的金属都能够导电,铜是金属,所以铜可以导电。

(2)一切奇数都不能被2整除, 因为(12100+)是奇数, 因此(3)三角函数都是周期函数, 因为αtan 三角函数, 所以 .(4)全等的三角形面积相等 ,如果三角形ABC 与三角形321C B A 全等,那么 (填空→讨论上述例子的推理形式与我们学过的合情推理一样吗?→课题:演绎推理)(二)、讲授新课 :1.演绎推理(1)含义:从一般性的原理出发,推出某个特殊情况下的结论的推理.(2)特点:由一般到特殊的推理.2.演绎推理的模式:“三段论”是演绎推理的一般模式;M ……P (M 是P) 大前提---已知的一般原理;S ……M (S 是M) 小前提---所研究的特殊对象;S……P (S是P) 结论---据一般原理,对特殊对象做出的判断:三段论推理的依据P,S是M 的一个子集,那么S中所有元素也都具有性(P) M……P……M……P(三)、例题讲解:例1完成下面的推理过程“函数12++=xxy的图象是试将其恢复成完整的三段论.解:例2.在锐角三角形ABC中,AD⊥BC, BE⊥AC,D,E是垂足,用演绎推理“三段论”格式证AB的中点M到D,E的距离相等解:例3:证明函数xxxf2)(2+=在(-∞,1)是增函数。

人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_18

人教A版高中数学选修1-2《二章 推理与证明  2.1 合情推理与演绎推理  2.1.2 演绎推理》优质课教案_18

2.1.2演绎推理教学设计整体设计教材分析《演绎推理》是高中数学中的基本思维过程,是根据一个或几个已知的判断来确定一个新的判断的思维过程,也是人们学习和生活中经常使用的思维方式,是正确进行逻辑推理必不可少的基础知识,是高考热点.演绎推理具有证明结论、整理和构建知识体系的作用,是公理体系中的基本推理方法.本节内容相对比较抽象,教学中应紧密结合已学过的生活实例和数学实例,让学生了解演绎推理的含义,并在上一节学习的基础上,了解合情推理与演绎推理之间的联系与差异,同时纠正推理过程中可能犯的典型错误,增强学生的好奇心,激发出潜在的创造力,使学生能正确应用合情推理和演绎推理去进行一些简单的推理,证明一些数学结论.课时划分1课时.教学目标1.知识与技能目标了解演绎推理的含义,了解合情推理与演绎推理之间的联系与差别,能正确地运用演绎推理,进行简单的推理.2.过程与方法目标了解和体会演绎推理在日常生活和学习中的应用,培养学生的逻辑推理能力,使学生学会观察,大胆猜想,敢于归纳、挖掘其中所包含的推理思路和思想;明确演绎推理的基本过程,提高学生的创新能力.3.情感、态度与价值观通过本节课的学习,体验推理源于实践,又应用于实践的思想,激发学生学习的兴趣,培养学生勇于探索、创新的个性品质.重点难点重点:正确地运用演绎推理进行简单的推理证明.难点:了解合情推理与演绎推理之间的联系与差别.教学过程引入新课观察与思考:新学期开始了,班里换了新的老师,他们是林老师、王老师和吴老师,三位老师分别教语文、数学、英语.已知:每个老师只教一门课;林老师上课全用汉语;英语老师是一个学生的哥哥;吴老师是一位女教师,她比数学老师活泼.问:三位老师各上什么课?活动设计:让学生带着浓厚的兴趣,先独立思考,然后小组交流.引导分析:启发学生把自己的思考过程借助于下列表格展示出来,从而解决问题.注意与学生交流.学情预测:开始学生的回答可能不全面、不准确,但在其他学生的不断补充、纠正下,会趋于准确.活动结果:林老师——数学,王老师——英语,吴老师——语文.设计意图本着“兴趣是最好的老师”的原则,结合生活中具体的实例,激发学生学习的兴趣,让学生体会“数学来源于生活”,创造和谐积极的学习气氛,体会演绎推理的现实意义.探究新知判断下列推理是合情推理吗?分析推理过程,明确它们的推理形式.(1)所有的金属都能导电,铜是金属,所以,铜能够导电.(2)一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除.(3)三角函数都是周期函数,tanα是三角函数,所以,tanα是周期函数.活动设计:学生口答,教师板书.学情预测:学生积极思考片刻,有学生举手回答且回答准确.活动结果:以上推理不是合情推理,它们的推理形式如下:(1)所有的金属都能导电,第一段铜是金属,第二段所以,铜能够导电.第三段(2)一切奇数都不能被2整除,第一段(2100+1)是奇数,第二段所以,(2100+1)不能被2整除.第三段(3)三角函数都是周期函数,第一段tanα是三角函数,第二段所以,tanα是周期函数.第三段提出问题:对于上面的三个推理,它们的推理形式有什么特点?活动设计:学生独立思考,并自由发言.学情预测:通过观察和分析,学生有足够的能力来解决上面所提问题.活动结果:上面的例子都有三段,是以一般的判断为前提,得出一些个别的、具体的判断:(1)所有的金属都能导电,大前提铜是金属,小前提所以,铜能够导电.结论(2)一切奇数都不能被2整除,大前提(2100+1)是奇数,小前提所以,(2100+1)不能被2整除.结论(3)三角函数都是周期函数,大前提tanα是三角函数,小前提所以,tanα是周期函数.结论教师:演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式,包括(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.设计意图通过对演绎推理概念的学习,体会以“三段论”模式来说明演绎推理的特点,从中概括出演绎推理的推理过程,对演绎推理是一般到特殊的推理有一个直观的认识,训练和培养学生的演绎推理能力.理解新知提出问题:在应用“三段论”进行推理的过程中,得到的推理结论一定正确吗?为什么?例如:(1)所有阔叶植物都是落叶的,葡萄树是阔叶植物,所以,葡萄树都是落叶的.(2)因为所有边长都相等的凸多边形是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形.(3)英雄难过美人关,我难过美人关,所以,我是英雄.活动设计:学生独立思考,先有学生自由发言,然后教师小结并形成新知.学情预测:学生们在积极思考,对(2)(3)两个小题的结论产生分歧,意见不统一.活动结果:(1)推理形式正确,前提正确,结论正确.(2)推理形式正确,大前提错误,结论错误.(3)推理形式错误(大、小前提没有连接起来),结论错误.教师:通过上面的学习,学生们对演绎推理和“三段论”模式都有了更深的了解,其中特别注意:(1)三段论的基本格式M—P(M是P)(大前提)S—M(S是M)(小前提)S—P(S是P)(结论)(2)三段论推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S 是M的一个子集,那么S中所有元素也都具有性质P.(3)在演绎推理中,只有前提和推理形式都正确,结论才是正确的.设计意图通过所举的例子,教师可以了解学生对演绎推理和三段论模式的理解程度,明确概念的内涵和外延,加深理解,及时更正学生在认识推理中产生的错误和偏差.提出问题:合情推理与演绎推理有什么区别与联系?活动设计:学生独立思考,先由学生自由发言,然后教师小结并形成新知.活动结果:设计意图通过比较合情推理与演绎推理的区别与联系,有助于学生更清晰地理解和掌握这两种推理方法,并能灵活应用.运用新知例1如图,在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D ,E 是垂足,求证:AB 的中点M 到D ,E 的距离相等.思路分析:根据三段论的推理过程进行证明.证明:(1)因为有一个内角是直角的三角形是直角三角形,——大前提 在△ABC 中,AD ⊥BC ,即∠ADB =90°,——小前提 所以△ABD 是直角三角形.——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提 因为DM 是直角三角形ABD 斜边上的中线,——小前提 所以DM =12AB.——结论同理EM =12AB.所以DM =EM.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,突出演绎推理中的“大前提”“小前提”和“结论”.巩固练习由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理得出一个结论,则这个结论是( )A .正方形的对角线相等B .平行四边形的对角线相等C .正方形是平行四边形D .其他 答案:A例2证明函数f(x)=-x 2+2x 在(-∞,1)内是增函数.思路分析:证明本例所依据的大前提是:在某个区间(a ,b)内,如果f ′(x)>0,那么函数y =f(x)在这个区间内单调递增.小前提是f(x)=-x 2+2x 在(-∞,1)内有f ′(x)>0,这是证明本例的关键. 证明:f ′(x)=-2x +2,因为当x ∈(-∞,1)时,有1-x>0, 所以f ′(x)=-2x +2=2(1-x)>0,于是,根据“三段论”,可知f(x)=-x 2+2x 在(-∞,1)内是增函数.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,并加深对演绎推理的认识.教师:许多学生能写出证明过程,但不一定非常清楚证明的逻辑规则,因此在表述证明过程时往往显得杂乱无章,通过这两个例子的教学,应当使这种状况得到改善.变练演编(1)已知a ,b ,m 均为正实数,且b<a ,求证:b a <b +ma +m.(2)已知△ABC 的三条边分别为a ,b ,c ,则1+ <1+.思路分析:(1)中根据演绎推理的证明过程进行证明;(2)中不必证明,答案不唯一. 证明:(1)不等式两边乘以同一个正数,不等式仍成立,——大前提 b<a ,m>0,——小前提 所以mb<ma.——结论不等式两边加上同一个数,不等式仍成立,——大前提 mb<ma ,ab =ab ,——小前提所以ab +mb<ab +ma ,即b(a +m)<a(b +m).——结论 不等式两边除以同一个正数,不等式仍成立,——大前提 b(a +m)<a(b +m),a(a +m)>0,——小前提所以,b (a +m )a (a +m )<a (b +m )a (a +m ),即b a <b +m a +m .——结论(2)c 1+c <a +b 1+a +b (答案不唯一,例如a1+a <c +b 1+c +b). 点评:通过证明(1)中不等式成立,感知条件与结论的不唯一性,例如:已知a ,b ,m 均为正实数,若a<b ,求证:a b <a +mb +m.(2)中加强学生思维的灵活性、分析问题的深刻性.活动设计:学生讨论交流并回答问题,老师对不同的合理答案给予肯定,将所有发现的结论一一列举,并由学生予以评价.设计意图通过变练演编,使学生对演绎推理的认识不断加深,同时培养学生逻辑思维的严谨性. 达标检测1.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A .①②③B .②③④C .②④⑤D .①③⑤2.有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内的所有直线;已知直线平面α,直线平面α,直线b ∥平面α,则直线b ∥直线a ”,结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 答案:1.D 2.C 3.A课堂小结1.知识收获:(1)演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况做出的判断.2.方法收获:利用演绎推理判断进行证明的方法与步骤:①找出大前提;②找出小前提;③根据“三段论”推出结论.3.思维收获:培养和训练学生严谨缜密的逻辑思维.布置作业课本本节练习1、2、3.补充练习基础练习1.把“函数y=x2+x+1的图象是一条抛物线”恢复成三段论.2.下面说法正确的有()(1)演绎推理是由一般到特殊的推理;(2)演绎推理得到的结论一定是正确的;(3)演绎推理的一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个3.下列几种推理过程是演绎推理的是()A.5和22可以比较大小B.由平面三角形的性质,推测空间四面体的性质C.东升高中高二年级有15个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D.预测股票走势图4.已知△ABC,∠A=30°,∠B=60°,求证:a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的()A.大前提B.小前提C.结论D.三段论5.用演绎推理法证明y=x是增函数时的大前提是______.答案:1.解:二次函数的图象是一条抛物线(大前提),函数y=x2+x+1是二次函数(小前提),所以,函数y=x2+x+1的图象是一条抛物线(结论).2.C 3.A 4.B 5.增函数的定义拓展练习6.S为△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC.求证:AB⊥BC.证明:如图,作AE⊥SB于E.∵平面SAB⊥平面SBC,∴AE⊥平面SBC,∴AE⊥BC.又∵SA⊥平面ABC,∴SA⊥BC.∵SA∩AE=A,SA⊂平面SAB,AE⊂平面SAB,∴BC⊥平面SAB.∵AB⊂平面SAB,∴AB⊥BC.设计说明由于这节课概念性、理论性较强,一般的教学方式会使学生感到枯燥乏味,为此,激发学生的学习兴趣是上好本节课的关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去总结概念“下定义”,去体会概念的本质属性.学生对于演绎推理和三段论的理解,需要经过一定时间的体会,先给出学生常见问题的解决步骤,结合以前所学的知识来解决问题,在教学中经常借助这些概念表达、阐述和分析问题.引导学生从日常生活中的推理问题出发,激发学生的学习兴趣,结合学生熟知的旧知识归纳新知识,同时在应用新知的过程中,将所学的知识条理化,使学生的认知结构更趋于合理.备课资料例1小王、小刘、小张参加了今年的高考,考完后在一起议论.小王说:“我肯定考上重点大学.”小刘说:“重点大学我是考不上了.”小张说:“要是不论重点不重点,我考上肯定没问题.”发榜结果表明,三人中考取重点大学、一般大学和没考上大学的各有一个,并且他们三个人的预言只有一个人是对的,另外两个人的预言都同事实恰好相反.可见() A.小王没考上,小刘考上一般大学,小张考上重点大学B.小王考上一般大学,小刘没考上,小张考上重点大学C.小王没考上,小刘考上重点大学,小张考上一般大学D.小王考上一般大学,小刘考上重点大学,小张没考上解析:根据推理知识得出结论.答案:C例2已知直线l、m,平面α、β,且l⊥α,m∥β,给出下列四个命题:(1)若α∥β,则l⊥m;(2)若l⊥m,则α∥β;(3)若α⊥β,则l∥m;(4)若l∥m,则α⊥β.其中正确命题的个数是()A.1 B.2C.3 D.4解析:根据演绎推理的定义,逐一判断结论的正误.由直线和平面、平面和平面平行和垂直的判定定理、性质定理,可知应选B.答案:B点评:以准确、完整地理解条件为基础,才能判断命题的正误.例3函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是______.解析:根据函数的性质进行判断.∵函数y=f(x)在(0,2)上是增函数,∴0<x+2<2,即-2<x<0.∴函数y=f(x+2)在(-2,0)上是增函数.又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2)在(0,2)上是减函数.由图象可得f(2.5)>f(1)>f(3.5).故应填f(2.5)>f(1)>f(3.5).答案:f(2.5)>f(1)>f(3.5)点评:根据函数的基本性质,结合三段论的推理模式可得.例4已知lg2=m,计算lg0.8.分析:利用所学的推理知识解决问题.解:lga n=nlga(a>0),——大前提lg8=lg23,——小前提lg8=3lg2.——结论lg ab=lga-lgb(a>0,b>0),——大前提lg0.8=lg 810,——小前提所以lg0.8=lg8-1=3lg2-1=3m-1.——结论点评:找出三段论的大前提与小前提即可得到答案.设计者:李效三2018年5月22日星期二。

人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_8

人教A版高中数学选修1-2《二章 推理与证明  2.1 合情推理与演绎推理  2.1.2 演绎推理》优质课教案_8

演绎推理教学设计一、教材分析推理是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。

结合已学过的教学实例和日常生活中的实例,能够较好的让学生体会数学与其他学科的联系,在解决问题的过程中,合情推理和演绎推理相辅相成。

共同架起数学与生活的桥梁,形成严谨的理性思维与科学精神,归纳、发现、猜测、探索的过程有利于培养学生的创新精神,合情推理是具有创造性的或然推理,演绎推理形式化程度远比合情推理高,即用演绎法时,一个命题由其他命题推出,其根据是形式结构之间的联系。

二、学情分析高中必修课程以及选修1-1部分知识已学完,学生对主干知识有了初步的认识,相对系统性较差,而课本给的合情推理和演绎推理讲解基本都是文字性的知识,学生学起来感觉知道几个定义就可以了,推理能力得不到提升,于是本节课结合旧知识,以实际生活为例,增加趣味性,活跃了课堂气氛,数学内容来自必修的五本教材,同时起到了复习的效果,将死板的概念讲活,用活。

三、教学目标1、知识与技能了解演绎推理的含义及特点,会将推理写成三段论的形式2、过程与方法、通过日常生活的案例以及习题的讲解,使学生能对演绎推理的过程有个感性的认识,通过小组讨论以及讲评的形式,提升学生自主学习能力。

3、情感、态度与价值观了解演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理论证有据的习惯。

四、教学重难点教学重点:了解演绎推理的含义,理解合情推理与演绎推理的区别与联系,能利用三段论进行简单的推理。

教学难点:利用三段论证明一些实际问题。

五、教学过程(一)创设问题情境、引入新课小明是一名高二年级的学生,17岁,迷恋上网络,沉迷于虚拟的世界当中。

由于每月的零花钱不够用,便向亲戚要钱,但这仍然满足不了需求,于是就产生了歹念,强行向路人抢取钱财。

但小明却说我是未成年人而且就抢了50元,这应该不会很严重吧???【学情预设:判断要有理有据】问:如果你是法官,你会如何判决呢?小明到底是不是犯罪呢?【设计意图:用一个简单的推理问题引起学生学习的欲望,使学生对接下来的学习有兴趣,调动学生积极性,而且紧扣本节课的主题】(二)师生互动、探究新知1、自学探究要求:学生自己在规定的时间中学习课本,回答以下问题:(1)、什么是演绎推理?(2)、什么是三段论?(3)、你能举出一些在生活和学习中有关演绎推理的例子吗?【情境预设:学生自学课本,了解课本的知识脉络】师:请学生回答问题【设计意图:熟悉课本,使学生能够对本节课的知识有个大概的了解】师:观察上述例子有什么特点?(1)太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此冥王星以椭圆形轨道绕太阳运行;(2)在一个标准大气压下,水的沸点是100°C ,所以在一个标准大气压下把水加热到100°C 时,水会沸腾;(3)一切奇数都不能被2整除,)12(100+是奇数,所以)12(100+不能被2整【情境预设:通过几个简单的例子,学生试着发现共同特征】师:这些都是一些简单的推理,而且是从一般到特殊的推理。

高中数学《2.1合情推理与演绎推理(一)》教案 文 新人教A版选修1-2

高中数学《2.1合情推理与演绎推理(一)》教案 文 新人教A版选修1-2

湖南省蓝山二中2014年高中数学《2.1合情推理与演绎推理(一)》教案文新人教A版选修1-2教学任务分析:课文以提出哥德巴赫猜想的思维过程为背景,从中概括出归纳推理,然后借助例题说明应用归纳推理的一般步骤以及归纳推理的作用,使学生对归纳推理有一个比较完整的认识.教学重点:了解归纳推理的含义以及思维过程、特点.教学难点:应用归纳进行简单推理,做出猜想.教学过程哥德巴赫大胆地猜想:任何一个不小于6的偶数都等于两个奇质数之和.归纳推理这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理.例1 观察右图可以发现:1=12,1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,……由上述具体事实能得出怎样的结论?例2 已知数列{an }的第1项a 1=1,且nn n a a a +=+11 (n =1,2,3 …),试归纳出这个数列的通项公式.在例1和例2中,我们通过归纳得到了两个猜想.虽然它们是否正确还有待严格的证明,但猜想可以为我们的研究提供一种方向.课堂练习1. 在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第2,3,4,…堆最底层(第一层)分别按如图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f (n )表示第n 堆的乒乓球总数,则f (3)=10__________,f (n )=6)2)(1(++n n n 2. 对于任意正整数n ,猜想2n -1与(n +1)2的大小关系.3. 设凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+___B_______. ππππ2 D. 23 C. B. 2 A. 4. 定义A *B ,B *C ,C *D ,D *B 分别对应下列图形.那么下列图形中可以表示A *D ,A *C 的分别是( C )A.(1),(2)B.(2),(3)C.(2),(4)D.(1),(4).333*)(222111.52个的值猜想n n n N n =∈-6. 一个正整数表如下(表中下一行中的数的个数是上一行中数的个数的2倍.如图,则第6行中的第三个数是32216=+-_.. 22)(2127)32(3)16(25)8(2)4(23)2(*)(131211)(.7+≥≥>>>>=∈++++=n f n f f f f f N n n n f n 时,有,推测当,,,,,经计算得:..3251111121611119111.821中有怎样的不等式成立边形猜想在成立中,不等式成立;在五边形中,不等式成立,在四边形中,不等式在n A A A n E DC B A ABCDED C B A ABCD C B A ABC πππ≥++++≥+++≥++∆ 这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理.课后作业《习案》作业(七).1112;16--=≥==n n n S S a n S a n 时,时,题提示:第。

人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_16

人教A版高中数学选修1-2《二章 推理与证明  2.1 合情推理与演绎推理  2.1.2 演绎推理》优质课教案_16

§2.1.2演绎推理教学设计一、学习目标1、知识目标①让学生知道演绎推理的含义,以及演绎推理与合情推理的联系与差异。

②能运用演绎推理的基本方法“三段论”进行一些简单的推理。

①结合已学过的数学实例和生活中的实例,引出演绎推理的概念。

②通过对实际例子的分析,从中概括出演绎推理的推理过程。

③通过一些证明题的实例,让学生体会“三段论”的推理形式。

3、情感态度与价值观目标:让学生体会演绎推理的逻辑推理美,让学生亲身经历数学研究的过程,感受数学的魅力,进而激发自身的求知欲。

二、①重点:知道演绎推理的含义,能利用“三段论”进行简单的推理.;②难点:利用三段论证明一些实际问题。

三、学习方法:问题诱思法四、教学过程1、引入:问题1:在美丽的云南大理,居住着一个古老的少数民族——白族,那里的人们都把未婚女孩叫做“金花”,未婚男孩叫做“阿鹏哥”。

小李家在大理,大家平时都叫她“金花”,那么小李( )A :是个女孩,已婚B :是个男孩,已婚C :是个女孩,未婚D :是个男孩,未婚生答: 选C设问:上述推理是合情推理吗?为什么?生答(1):是,因为上述例子是从特殊到一般的推理。

生答(2):不是,上述例子是从一般到特殊的推理,所以不是合情推理。

【师点评】:第一位同学回答错误,上面这个例子它是从一般到特殊的推理,因此它并不是合情推理。

2、概念的提炼问题2:请同学们思考下列推理有何特点?① 所有的金属都能够导电,铀是金属,所以铀能导电。

② 太阳系的行星都以椭圆形轨道绕太阳运行,天王星是太阳系的行星,因此天王星以椭圆形轨道绕太阳运行。

③ 一切奇数都不能被2整除,)12(100+是奇数,所以)12(100+不能被2整除。

④ 三角函数都是周期函数,∂tan 是三角函数,因此∂tan 是周期函数。

⑤ 两条直线平行,同旁内角互补。

如果∠A 与∠B 是两条平行直线的同旁内角,那么∠A +∠B =180°生答:上述例子都是从一般到特殊的推理。

人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_14

人教A版高中数学选修1-2《二章 推理与证明  2.1 合情推理与演绎推理  2.1.2 演绎推理》优质课教案_14

教学要求:结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理。

.教学重点:了解演绎推理的含义,能利用“三段论”进行简单的推理.教学难点:分析证明过程中包含的“三段论”形式.教学过程:一、复习准备:1. 练习: ① 对于任意正整数n ,猜想(2n -1)与(n +1)2的大小关系?若,a c b c ⊥⊥,则//a b ;或在空间中,若,,//αγβγαβ⊥⊥则.合情推理的结论不一定正确,有待进一步证明,有什么能使结论正确的推理形式呢?3. 导入:① 所有的金属都能够导电,铜是金属,所以 ;② 太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此 ; ③ 奇数都不能被2整除,2007是奇数,所以 .(填空→讨论:上述例子的推理形式与我们学过的合情推理一样吗?→课题:演绎推理)二、讲授新课:1. 教学概念:① 概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。

要点:由一般到特殊的推理。

② 讨论:演绎推理与合情推理有什么区别?合情推理⎧⎨⎩归纳推理:由特殊到一般类比推理:由特殊到特殊;演绎推理:由一般到特殊. P——所研究的特殊情况;第三段:结论——根据一般原理,对特殊情况做出的判断. ④ 举例:举出一些用“三段论”推理的例子.2. 教学例题:① 出示例1:证明函数2()2f x x x =-+在(],1-∞-上是增函数.板演:证明方法(定义法、导数法) → 指出:大前题、小前题、结论.② 出示例2:在锐角三角形ABC 中,,AD BC BE AC ⊥⊥,D ,E 是垂足. 求证:AB 的中点M 到D ,E 的距离相等.分析:证明思路 →板演:证明过程 → 指出:大前题、小前题、结论.③ 讨论:因为指数函数x y a =是增函数,1()2x y =是指数函数,则结论是什么? (结论→指出:大前提、小前提 → 讨论:结论是否正确,为什么?)④ 讨论:演绎推理怎样才结论正确?(只要前提和推理形式正确,结论必定正确)。

高中数学选修1-2教案6:2.1.1 合情推理(二)教学设计

高中数学选修1-2教案6:2.1.1 合情推理(二)教学设计

2.1.1 合情推理(二)教学目标1.知识与技能目标通过对已学知识的回顾,进一步理解推理这种基本的分析问题的方法,了解类比推理的含义,掌握类比推理的基本方法与步骤,并把它们用于对问题的发现与解决中去.2.过程与方法目标类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质;通过教学使学生认识到,类比的性质相似性越多,相似的性质与推测的性质之间的关系就越密切,从而类比得出的结论就越可靠.3.情感、态度与价值观(1)正确认识合情推理在数学中的重要作用,培养学生养成认真观察事物,发现事物之间的质的联系的良好个性品质,善于发现问题、分析问题、解决问题.(2)认识数学在日常生产生活中的重要作用,培养学生学数学、用数学、完善数学的意识.重点难点重点:了解类比推理的含义,能利用类比进行简单的推理.难点:用类比进行推理,提出猜想.教学过程引入新课我们先看几个推理的实例:1.工匠鲁班类比带齿的草叶和蝗虫的牙齿,发明了锯.2.人类仿照鱼类的外型和它们在水中沉浮的原理,发明了潜水艇.3.利用平面向量的基本定理类比得到空间向量的基本定理.提出问题1:这些推理是归纳推理吗?活动设计:先让学生独立思考,然后小组交流.学情预测:学生根据上节所学归纳推理的定义,很快就可以得出答案.活动结果:以上推理不是归纳推理.提出问题2:这三个推理过程有何共同特点?活动设计:学生先独立思考,然后再分小组讨论.学情预测:以实例1为例,学生的思路有可能是这样的:草叶是齿形的;草叶能割破手;我需要一种能割断木头的工具;它也可以是齿形的.这是学生应该能想到的,但对这种思维方式共同点的总结存在一定的难度.活动结果:将两类不同事物进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式.设计意图自然合理地提出问题,让学生体会“数学来源于生活”,以此创造和谐积极的学习氛围.探究新知我们再看几个类似的推理实例.例1 科学家对火星进行研究,发现火星与地球有许多类似的特征:(1)火星也是绕太阳运行、绕轴自转的行星;(2)有大气层,在一年中也有季节变更;(3)火星上大部分时间的温度适合地球上某些已知生物的生存,等等.科学家猜想:火星上也可能有生命存在.例2 根据等式的性质猜想不等式的性质.等式的性质:猜想不等式的性质:(1)a=b⇒a+c=b+c; (1)a>b⇒a+c>b+c;(2)a=b⇒ac=bc; (2)a>b⇒ac>bc;(3)a=b⇒a2=b2等等. (3)a>b⇒a2>b2等等.提出问题:这两个推理实例在思维方式上有什么共同特点?活动设计:学生先独立思考,然后学生分小组讨论,教师适当加以指导.活动结果:共同特点:由特殊到特殊的推理.类比推理的定义:这种由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.设计意图从大量的实例出发,让学生充分体会类比推理的含义和类比推理的构成,使类比推理概念的形成自然、生动,训练和培养学生的抽象概括和表达能力.理解新知教师举例:类比平面内直角三角形的勾股定理,试给出对空间中三个面两两垂直的四面体性质的猜想.活动设计:学生先独立思考,然后分小组讨论.教师适时介入全班引导,提醒学生注意类比的对象是什么?平面内直角三角形的性质是什么?反映的是哪些几何量之间的关系?给出空间四面体性质应从哪些方面进行类比?学情预测:学生的回答可能很杂,甚至于偏离主题,教师应及时地加以引导.活动结果:猜想:S2=S21+S22+S23.类比推理的几个特点:1.类比是从人们已经掌握的事物的属性,推测正在研究的事物的属性,是以已有的旧的认识为基础,类比出新的结果;2.类比是从一种事物的特殊属性推测另一种事物的特殊属性;3.类比的结果是猜测,不一定可靠,但它却有发现的功能.设计意图通过所举的例子,教师可以了解学生对类比推理的理解程度,使学生加深对关键词、重点词的理解,掌握类比推理的特点,及时更正学生在认识理解中产生的偏差,巩固类比推理的定义.运用新知例1 计算机中常用的十六进位制是逢16进1的计算制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:例如用16进位制表示E+D=1B,则A×B等于()A.6E B.72C.5F D.0B思路分析:类比十六进位制是逢16进1的规律,找到本题所规定的进位制的规律.【解析】因为用16进位制表示E+D=1B,所以A×B=6E,应选A.【答案】A点评:类比推理的一般步骤:(1)找出两类对象之间可以确切表述的相似特征;(2)用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;(3)检验猜想,即证明结论.2试将平面上圆的性质与空间中球的性质进行类比.思路分析:从已掌握的平面上圆的基本性质出发,逐步类比推测出空间中球的性质,圆的定义:平面内到一个定点的距离等于定长的点的集合.球的定义:空间内到一个定点的距离等于定长的点的集合.圆球弦←→ 截面圆直径←→ 大圆周长←→ 表面积面积←→ 体积解:点评:通过例题让学生进一步熟悉进行类比推理的一般过程,同时体会类比推理的特点和作用.虽然猜想的正确性还有待严格证明,但这个猜想可以为我们的研究提供一个方向.设计意图选择开放性命题加以练习,让全班同学做.在学生学习类比推理方法和步骤的同时,完成对类比推理的再认识.教师:我们上节所学的归纳推理和本节所学的类比推理,就其所进行的推理过程可以概括为:从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想可见,上节所学的归纳推理和本节所学的类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.提出问题:合情推理所得的结论有时是正确的,有时是错误的,那么我们为什么还要进行合情推理呢?活动设计:学生先独立思考,然后进行讨论.活动成果:合情推理是指“合乎情理”的推理.数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.下面再来看一个例子:例3 如图所示,有三根针和套在一根针上的若干金属片(小在上,大在下).按下列规则,把金属片从一根针上全部移到另一根针上.1.每次只能移动1个金属片;2.较大的金属片不能放在较小的金属片上面.试推测:把n个金属片从1号针移到3号针,最少需要移动多少次?思路分析:我们分别从1,2,3,4个金属片的情形入手,探究其中的规律性,进而归纳出移动n个金属片所需的次数.解:当n=1时,只需把金属片从1号针移到3号针,用符号(13)表示,共移动了1次.当n=2时,为了避免将较大的金属片放在较小的金属片上面,我们利用2号针作为“中间针”,移动的顺序是:(1)把第1个金属片从1号针移到2号针;(2)把第2个金属片从1号针移到3号针;(3)把第1个金属片从2号针移到3号针;用符号表示为(12)(13)(23),共移动了3次.当n=3时,把上面两个金属片作为一个整体,则归结为n=2的情形,移动的顺序是:(1)把上面两个金属片从1号针移到2号针;(2)把第3个金属片从1号针移到3号针;(3)把上面两个金属片从2号针移到3号针.其中(1)和(3)都需要借助中间针.用符号表示为(13)(12)(32);(13);(21)(23)(13),共移动了7次.当n=4时,把上面3个金属片作为一个整体,移动的顺序是:(1)把上面3个金属片从1号针移到2号针;(2)把第4个金属片从1号针移到3号针;(3)把上面3个金属片从2号针移到3号针.用符号表示为(12)(13)(23)(12)(31)(32)(12);(13);(23)(21)(31)(23)(12)(13)(23),共移动了15次.至此,我们得到依次移动1,2,3,4个金属片所需次数构成的数列为1,3,7,15.观察这个数列,可以发现其中蕴含着如下规律:1=21-1,3=22-1,7=23-1,15=24-1.由此我们猜想:若把n 个金属片从1号针移到3号针,最少需要移动a n 次,则数列{a n }的通项公式为a n =2n -1(n ∈N ).①点评:通过研究上述n =1,2,3,4时的移动方法,我们可以归纳出对n 个金属片都适用的移动方法.当移动n 个金属片时,可分为下列3个步骤:(1)把上面(n -1)个金属片从1号针移到2号针; (2)把第n 个金属片从1号针移到3号针; (3)把上面(n -1)个金属片从2号针移到3号针.这样就把移动n 个金属片的任务,转化为移动(n -1)个金属片和移动一次第n 个金属片的任务.而移动(n -1)个金属片需要移动两次(n -2)个金属片和移动一次第(n -1)个金属片,移动(n -2)个金属片需要移动两次(n -3)个金属片和移动一次第(n -2)个金属片……如此继续下去,直到转化为移动1个金属片的情形.根据这个过程,可得递推公式⎩⎪⎨⎪⎧a 1=1,a n =2a n -1+1(n ∈N ),且n >1.从这个递推公式出发,可以证明通项公式①是正确的.一般来说,由合情推理所获得的结论,仅仅是一种猜想,未必可靠. 变练演编前面我们类比平面内直角三角形的勾股定理,给出了对空间中三个面两两垂直的四面体性质的猜想.得到猜想:S 2=S 21+S 22+S 23.变式1:平面内的一般三角形的性质与空间中的四面体的性质类比:三角形四面体 三角形任意两边之和大于第三边三角形任意两边中点的连线平行于第三边,且等于第三边的一半 在△ABC 中,∠A 的平分线交BC 于D ,则AB AC =BD DC在△ABC 中,a sin A =b sin B =csin C(正弦定理)设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,外接圆半径为R ,则(1)r =2Sa +b +c;(2)R ≥2r变式2:平面内三角形的性质与空间中的三棱柱的性质类比:活动设计:学生讨论交流并回答问题,老师对不同的合理答案给予肯定,将所有发现的结果一一列举,并让学生之间互相判断合理性.活动结果:变式1:平面内的一般三角形的性质与空间中的四面体的性质类比:变式2:平面内三角形的性质与空间中的三棱柱的性质类比:设计意图通过变练演编,使学生对类比推理的方法和步骤的掌握更加牢固,同时培养学生善于发现问题,探求新知识、发现事物之间的质的联系的良好品质.课堂小结1.知识收获:了解类比推理和合情推理的含义; 2.方法收获:利用类比进行简单推理的方法和步骤;3.思维收获:合情推理是进行猜测发现结论,探索和提供思路的常用思维方法.布置作业1.课本习题2.1 A 组 第5题.2.实习作业:登陆网站,选择两例用类比推理得到的猜想并探究其来源.补充练习基础练习1.下列哪个平面图形与空间中平行六面体作为类比对象比较合适( ) A .三角形 B .梯形 C .平行四边形 D .矩形 2.下面使用类比推理正确的是( )A .“若a ×3=b ×3,则a =b ”类比推出“若a ×0=b ×0,则a =b ”B .“若(a +b )c =ac +bc ”类比推出“(a ·b )c =ac ·bc ”C .“若(a +b )c =ac +bc ”类比推出“a +b c =a c +b c (c ≠0)”D .“(ab )n =a n b n ”类比推出“(a +b )n =a n +b n ”3.等差数列{a n }中,a n >0,公差d >0,则有a 4·a 6>a 3·a 7,类比上述性质,在等比数列{b n }中,若b n >0,q >1,写出b 4,b 5,b 7,b 8的一个不等关系:________.4.中学数学中存在许多关系,比如“相等关系”“平行关系”等等.如果集合A 中元素之间的一个关系“-”满足以下三个条件:(1)自反性:对于任意a ∈A ,都有a -a ; (2)对称性:对于a ,b ∈A ,若a -b ,则有b -a ; (3)传递性:对于a ,b ,c ∈A ,若a -b ,b -c ,则有a -c .则称“-”是集合A 的一个等价关系.例如:“数的相等”是等价关系,而“直线的平行”不是等价关系(自反性不成立).请你再列出三个等价关系:__________.5.若图(1)有面积关系S′△ΡΑ′Β′S′△ΡΑΒ=ΡΑ′·ΡΒ′ΡΑ·ΡΒ,则图(2)有体积关系V P—A′B′C′V P—ABC=__________.【答案】 1.C 2.C3.b 4+b 8>b 5+b 74.集合相等;充要条件;非零向量共线5.P A′·PB′·PC′P A·PB·PC拓展练习6.把下面在平面内成立的结论类比推广到空间,并判断类比的结论是否成立. (1)如果一条直线与两条平行直线中的一条相交,则必与另一条相交. (2)如果两条直线同时垂直于第三条直线,则这两条直线平行.解:(1)一个平面若和两个平行平面中的一个相交,则必然和另一个也相交,此结论成立;(2)若两个平面同时垂直于第三个平面,则这两个平面平行,此结论不成立.设计说明【设计思想】 从已学知识入手,以学生熟知的生活实例和数学实例为载体,引导他们概括、提炼类比推理的含义和类比推理的方法.【设计意图】 给学生创建一个开放、有活力、有个性的数学学习环境,感受数学美和发现规律的喜悦,激发学生更积极地去寻找规律、认识规律,同时让学生感受到只要做个有高中数学选修1-2心人,发现规律并非难事.【设计特点】自然合理地提出问题,让学生体会“数学来源于生活”,通过创造和谐积极的学习气氛,让学生通过直观感知、观察分析、归纳类比,形成由浅入深、由易到难、由特殊到一般的思维飞跃,并借助例题具体说明在数学发现的过程中应用类比推理的过程.11。

人教版高中选修1—2数学2.1合情推理与演绎推理教案(1)

人教版高中选修1—2数学2.1合情推理与演绎推理教案(1)

导学案:2.1合情推理与演绎推理
教学目标:让学生了解合情推理与演绎推理的概念
教学重点、难点:合情推理与演绎推理的概念及区别
知识链接:
1.合情推理的基本概念
(1)从结构上说,推理一般由两部分组成,一部分是以知的事实(或假设),叫做;一部分是由以知判断推出的新判断,叫做
(2)合情推理的主要形式有和
(3)归纳推理包括和
(4)根据两类不同事物之间具有某些类似(或一致)性,推测其中异类事物具有与另一类事物类似(或相同)的性质的推理,叫做
2.演绎推理的基本概念
(1)根据一般性的真命题导出特殊性命题为真的推理,叫做
(2)数学中常用演绎推理的规则是,,
(3)“三段论”推理的一般模式包括,,
(4)把所有情况都考虑在内的演绎推理规则叫做
3.几种推理的比较
(1)归纳推理是的推理
类比推理是的推理
(2)合情推理的结论
演绎推理的结论
例题讲解:
例1.观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,你由此可以归纳出什么规律?
例2.把下面在平面内成立的结论类比推广到空间,并判断类比的结论是否成立:
1)如果一条直线与两条平行直线中的一条相交,则必于另一条相交。

2)如果两条直线同时垂直与第三条直线,则这两条直线平行。

例3.(1)证明21001不能被2整除
(2)在锐角三角形ABC中,E
,⊥
⊥是垂足。

求证:的中点M到E
D,的距离相等。

,
AD,
AC
BE
BC
D。

高中数学选修1-2教案3:2.1.1 合情推理教学设计

高中数学选修1-2教案3:2.1.1 合情推理教学设计

《合情推理》教学设计●教学目标:通过对已学知识的回顾,认识类比推理这一种合情推理的基本方法,并把它用于对问题的发现中去。

●教学重点:了解合情推理的含义,能利用类比进行简单的推理。

●教学难点:用类比进行推理,做出猜想。

●教具准备:与教材内容相关的资料。

●教学设想:类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。

●教学过程:学生探究过程:从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子.他的思路是这样的:茅草是齿形的;茅草能割破手.我需要一种能割断木头的工具;它也可以是齿形的.这个推理过程是归纳推理吗?A对象具有属性a、b、c、d;B对象具有属性a、b、c;所以,B对象具有属性d。

为了提高类比推理结论的可靠性,逻辑学提出了一些要求:应当尽可能多地列举出对象间相似属性和选择较为本质的属性进行类比。

数学活动我们再看几个类似的推理实例。

例1、试根据等式的性质猜想不等式的性质。

等式的性质:猜想不等式的性质:(1) a=b⇒a+c=b+c; (1) a>b⇒a+c>b+c;(2) a=b ⇒ ac=bc; (2) a >b ⇒ ac >bc;(3) a =b ⇒a 2=b 2;等等。

(3) a >b ⇒a 2>b 2;等等。

问:这样猜想出的结论是否一定正确?例2、试根据等差数列的性质猜想等比数列的性质。

等差数列 等比数列a n -a n -1=d(n ≥2,n ∈N) ),2(1N n n q a a n n ∈≥=-a n =a 1+(n -1)d a n =a 1⋅q n -1a n =211+-+n n a a (n ≥2,n ∈N) a n 2=11-+⋅n n a a (n ≥2,n ∈N) 设问1:观察上述公式,等差数列、等比数列相关公式的对应运算法则规律是什么? 设问2:如何分析表达式结构特征?)2()2(5)4(g f f -设问3:类比对象是什么?三角形与三棱柱。

人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_20

人教A版高中数学选修1-2《二章 推理与证明  2.1 合情推理与演绎推理  2.1.2 演绎推理》优质课教案_20

推理1 归纳推理的定义:___________________________________________________________2 类比推理的定义:___________________________________________________________3 某数列的第一项为1,第二项为4,第三项为8,第四项为13,则第五项为__________• 3 华罗庚教授曾经举过一个例子:从一个袋子里摸出来的第一个球是红色的玻璃球,第二个是红色的玻璃球,第三个,第四个,第五个都是红色的玻璃球,我们立刻就会出现一种猜想:_________________ 但是,当有一次我们摸出一个白色的玻璃球时,这个猜想失败了,这时,我们又会出现另一个猜想:______________________________________但是,当有一次摸出的是一个木球时,这个猜想又失败了,这时我们又会猜想:“是不是袋子里都是球?”这个猜想对不对,还必须继续加以检验,,,,,,推理的定义:____________________________________三合作探究:4 (1)钠,镁,铝,铜等金属能导电,能得出什么结论?_______________________(2)三角形的内角和为180度,凸四边形的内角和为360度,凸五变形的内角和为540度,那么凸n边形的内角和为多少度?_______________________________(3)地球上有生命,火星具有类似地球的某些特征,我们能猜想得到什么?____________________________________合情推理的定义:______________________________________________它包括:_____________,___________________5 生活中和学科中合情推理的例子:6 哥德巴赫猜想:7 四色猜想:8 归纳推理的的步骤:9 归纳推理的作用和意义:10 费马猜想:四 课堂练习:11 归纳推理在具体解题中的应用:(1)(陕西)观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第五个等式应为__________________. (2)已知数列 的第1项 ,且 试归纳推理这个数列的通项公式。

人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_17

人教A版高中数学选修1-2《二章 推理与证明  2.1 合情推理与演绎推理  2.1.2 演绎推理》优质课教案_17

2.1合情推理与演绎推理(教学设计)(3)§2.1.2演绎推理教学目标:知识与技能目标:了解演绎推理的含义,了解合情推理与演绎推理之间的联系与差别,能正确地运用演绎推理,进行简单的推理。

过程与方法目标:能正确地运用演绎推理,进行简单的推理。

培养学生的逻辑推理能力,使学生学会观察,大胆猜想,敢于归纳,挖掘其中所包含的推理思路和思想;明确演绎推理的基本过程,提高学生的创新能力。

情感、态度与价值观目标:了解合情推理与演绎推理之间的联系与差别。

体验推理源于实践,又应用于实践的思想,激发学生学习的兴趣,培养学生勇于探索、创新的个性品质。

教学重点:正确地运用演绎推理,进行简单的推理教学难点:了解合情推理与演绎推理之间的联系与差别。

教学过程:一、复习回顾:1、合情推理归纳推理从特殊到一般类比推理从特殊到特殊从具体问题出发——观察、分析、比较、联想——归纳、类比——提出猜想二、创设情境,新课引入:情景创设1:小明是一名高二年级的学生,17岁,迷恋上网络,沉迷于虚拟的世界当中。

由于每月的零花钱不够用,便向亲戚要钱,但这仍然满足不了需求,于是就产生了歹念,强行向路人抢取钱财。

但小明却说我是未成年人而且就抢了50元,这应该不会很严重吧???情景创设2:完成下列填空并观察下列推理有什么特点?1.马有四条腿,因为白马是马, 所以2.学生要遵守校规校纪,因为小刚是学生,所以tan是三角函数,所以3.三角函数都是周期函数, 因为4.鱼类、贝类,都是海洋生物,它们世世代代生活在海洋里,因为喜马拉雅山上发现它们的化石,所以三、师生互动,新课讲解:1、演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.2、演绎推理的特点:是由一般到特殊的推理;3、演绎推理的一般模式:“三段论”,包括(1)大前提---已知的一般原理;(2)小前提---所研究的特殊情况;(3)结论-----据一般原理,对特殊情况做出的判断.4、三段论的基本格式M—P(M是P)(大前提)S—M(S是M)(小前提)S—P(S是P)(结论)5、三段论推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P. 练习1:请分别说出下列三段论的大小前提和结论?(1)所有的金属都能导电←————大前提铜是金属, ←-----小前提所以,铜能够导电←――结论(2)太阳系的大行星都以椭圆形轨道绕太阳运行,←————大前提天王星是太阳系的大行星,←――小前提因此天王星以椭圆形轨道绕太阳运行←―――结论(3)在一个标准大气压下,水的沸点是100°C,←——大前提所以一个标准大气压下把水加热到100°C, ←――小前提水会沸腾←――结论例1.用三段论的形式写出下列演绎推理1.三角形内角和180°,等边三角形内角和是180°2.所有的循环小数都是有理数,233.0是有理数小明是一名高二年级的学生,17岁,迷恋上网络,沉迷于虚拟的世界当中。

苏教版数学高二-【数学选修1-2】2.1《合情推理与演绎推理》导学案(2)

苏教版数学高二-【数学选修1-2】2.1《合情推理与演绎推理》导学案(2)
8、平面几何与立体几何的许多概念、性质是相似的,如:“长方形的每一边与另一边平行,而与其余的边垂直”;“长方体的每一面与另一面平行,而与其余的面垂直”,请用类比法写出更多相似的命题。
★链接高考★
9、(2003年高考)在平面几何里,有勾股定理:“设 的两边AB、AC互相垂直,则 。”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系,可以得妯的正确结论是:“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则”
(3)类比推理以旧的知识作基础,推测性的结果,具有发现的功能。
【典型例题】
例1、类比圆的下列特征,找出球的相关特征
(1)平面内与定点的距离等于定长的点的集合是圆;
(2)平面内不共线的3个点确定一个圆
(3)圆的周长和面积可求
(4)在平面直角坐标系中,以点 为圆心,r为半径的圆的方程为
【解析】:(1)在空间内与定点距离等于定长的点的集合是球;
2.1.2合情推理与演绎推理(2)
1、C 2、D 3、D 4、类比5、(1)圆柱面(2)两个平行平面
6、
7、在等比数列 中,若 , ,则
8、(1)(平面)在平行四边形中,对角线互相平分;(立体)在平行六面体中,对角线相交于同一点,且在这一点互相平分;(2)(平面)在平行四边形中,各对角线长的平方和等于各边长的平方和;(立体)在平行六面体中,各对角线长的平方和等于各棱长的平方和;(3)(平面)圆面积等于圆周长与半径之积的1/2;(立体)球体积等于球面积与半径之积的1/3;(4)(平面)正三角形外接圆半径等于内切圆半径的2倍,(立体)正四面体的外接球半径等于内切球半径的3倍。9、 + + =
2.1.2合情推理与演绎推理(2)
类比推理

人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_23

人教A版高中数学选修1-2《二章 推理与证明  2.1 合情推理与演绎推理  2.1.2 演绎推理》优质课教案_23

第1讲 合情推理与演绎推理最新考纲 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;3.了解合情推理和演绎推理之间的联系和差异.知 识 梳 理1.合情推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理. (2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.诊 断 自 测1.判断正误(在括号内打“√”或“×”)精彩PPT 展示(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( )(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( ) 解析 (1)类比推理的结论不一定正确.(3)平面中的三角形与空间中的四面体作为类比对象较为合适.(4)演绎推理是在大前提、小前提和推理形式都正确时,得到的结论一定正确. 答案 (1)× (2)√ (3)× (4)×2.数列2,5,11,20,x ,47,…中的x 等于( ) A.28B.32C.33D.27解析 5-2=3,11-5=6,20-11=9, 推出x -20=12,所以x =32. 答案 B3.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( ) A.结论正确B.大前提不正确C.小前提不正确D.全不正确解析 f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确. 答案 C4.(2015·陕西卷)观察下列等式 1-12=121-12+13-14=13+141-12+13-14+15-16=14+15+16 ……据此规律,第n 个等式可为________.解析 第n 个等式左边共有2n 项且等式左边分母分别为1,2,…,2n ,分子为1,正负交替出现,即为1-12+13-14+…+12n -1-12n ;等式右边共有n 项且分母分别为n +1,n +2,…,2n ,分子为1,即为1n +1+1n +2+…+12n .所以第n个等式可为1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n . 答案 1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n 5.(选修2-2P84A5改编)在等差数列{a n }中,若a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,类比上述性质,在等比数列{b n }中,若b 9=1,则b 1b 2b 3…b n =________. 答案 b 1b 2b 3…b 17-n (n <17,n ∈N *)考点一 归纳推理【例1】 (1)(2016·山东卷)观察下列等式: ⎝ ⎛⎭⎪⎫sin π3-2+⎝ ⎛⎭⎪⎫sin2π3-2=43×1×2;⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin2π5-2+⎝⎛⎭⎪⎫sin3π5-2+⎝⎛⎭⎪⎫sin4π5-2 =43×2×3; ⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin2π7-2+⎝ ⎛⎭⎪⎫sin3π7-2+…+⎝ ⎛⎭⎪⎫sin6π7-2=43×3×4;⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin2π9-2+⎝⎛⎭⎪⎫sin3π9-2+…+⎝⎛⎭⎪⎫sin8π9-2=43×4×5;……照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=________.(2)(2017·潍坊模拟)观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,……,根据上述规律,第n 个不等式应该为________.解析 (1)观察前4个等式,由归纳推理可知⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin2π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=43×n ×(n +1)=4n (n +1)3.(2)根据规律,知不等式的左边是n +1个自然数的平方的倒数的和,右边分母是以2为首项,1为公差的等差数列,分子是以3为首项,2为公差的等差数列,所以第n 个不等式应该为1+122+132+…+1(n +1)2<2n +1n +1.答案 (1)4n (n +1)3(2)1+122+132+…+1(n +1)2<2n +1n +1规律方法 归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解.(2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解.(3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.【训练1】 (1)用火柴棒摆“金鱼”,如图所示,按照下面的规律,第n 个“金鱼”图需要火柴棒的根数为________.(2)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n ,3)=12n 2+12n , 正方形数 N (n ,4)=n 2, 五边形数 N (n ,5)=32n 2-12n , 六边形数 N (n ,6)=2n 2-n ……可以推测N (n ,k )的表达式,由此计算N (10,24)=____________.解析 (1)由题意知:图②的火柴棒比图①的多6根,图③的火柴棒比图②的多6根,而图①的火柴棒的根数为2+6,∴第n 条小鱼需要(2+6n )根.(2)三角形数 N (n ,3)=12n 2+12n =n 2+n 2, 正方形数 N (n ,4)=n 2=2n 2-0·n2,五边形数 N (n ,5)=32n 2-12n =3n 2-n 2, 六边形数 N (n ,6)=2n 2-n =4n 2-2n2,k 边形数 N (n ,k )=(k -2)n 2-(k -4)n2,所以N (10,24)=22×102-20×102=2 200-2002=1 000.答案 (1)2+6n (2)1 000 考点二 类比推理【例2】 (1)若数列{a n }是等差数列,则数列{b n }⎝ ⎛⎭⎪⎫b n =a 1+a 2+…+a n n 也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( ) A.d n =c 1+c 2+…+c nnB.d n =c 1·c 2·…·c nnC.d n =n c n 1+c n 2+…+c nnnD.d n =nc 1·c 2·…·c n(2)(2017·南昌二中月考)如图(1)所示,点O 是△ABC 内任意一点,连接AO ,BO ,CO ,并延长交对边于A 1,B 1,C 1,则OA 1AA 1+OB 1BB 1+OC 1CC 1=1,类比猜想:点O 是空间四面体V -BCD 内的任意一点,如图(2)所示,连接VO ,BO ,CO ,DO 并延长分别交面BCD ,VCD ,VBD ,VBC 于点V 1,B 1,C 1,D 1,则有________________.解析 (1)法一 从商类比开方,从和类比积,则算术平均数可以类比几何平均数,故d n 的表达式为d n =nc 1·c 2·…·c n .法二 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d ,∴b n =a 1+(n -1)2d =d 2n +a 1-d2,即{b n }为等差数列; 若{c n }是等比数列,则c 1·c 2·…·c n =c n1·q 1+2+…+(n -1)=c n 1·qn (n -1)2,∴d n =nc 1·c 2·…·c n =c 1·qn -12,即{d n }为等比数列,故选D.(2)利用类比推理,猜想应有OV 1VV 1+OB 1BB 1+OC 1CC 1+OD 1DD 1=1.用“体积法”证明如下:OV 1VV 1+OB 1BB 1+OC 1CC 1+OD 1DD 1=V O -BCD V V -BCD +V O -VCD V B -VCD +V O -VBD V C -VBD +V O -VBC V D -VBC =V V -BCDV V -BCD =1. 答案 (1)D (2)OV 1VV 1+OB 1BB 1+OC 1CC 1+OD 1DD 1=1规律方法 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.【训练2】 (2017·安徽江淮十校三联)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定出来x =2,类似地不难得到1+11+11+…=( )A.-5-12B.5-12C.1+52D.1-52解析 1+11+11+…=x ,即1+1x =x ,即x 2-x -1=0,解得x =1+52(x =1-52舍),故1+11+11+…=1+52,故选C.答案 C考点三 演绎推理【例3】 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n , ∴(n +2)S n =n (S n +1-S n ), 即nS n +1=2(n +1)S n .∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)规律方法 演绎推理是从一般到特殊的推理;其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.【训练3】 (2016·全国Ⅱ卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.解析由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,所以由甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.答案1和3[思想方法]1.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.[易错防范]1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.2.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.基础巩固题组(建议用时:30分钟)一、选择题1.(2016·西安八校联考)观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第()A.22项B.23项C.24项D.25项解析两数和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5为和为8的第3项,所以为第24项,故选C.答案 C2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误解析由“三段论”的推理方式可知,该推理的错误原因是推理形式错误.答案 C3.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()A.f(x)B.-f(x)C.g(x)D.-g(x)解析由已知得偶函数的导函数为奇函数,故g(-x)=-g(x).答案 D4.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于()A.28B.76C.123D.199解析观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.答案 C5.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”; ⑥“ac bc =a b ”类比得到“a ·c b ·c =a b ”.以上式子中,类比得到的结论正确的个数是( ) A.1B.2C.3D.4解析 ①②正确;③④⑤⑥错误. 答案 B6.(2017·宜昌一中月考)老师带甲、乙、丙、丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,四名学生回答如下: 甲说:“我们四人都没考好”; 乙说:“我们四人中有人考的好”; 丙说:“乙和丁至少有一人没考好”; 丁说:“我没考好”.结果,四名学生中有两人说对了,则四名学生中说对的两人是( ) A.甲,丙B.乙,丁C.丙,丁D.乙,丙解析 甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确.故答案为D. 答案 D7.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为( ) A.n +1 B.2n C.n 2+n +22D.n 2+n +1解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域,选C. 答案 C8.如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为( )A.6B.7C.8D.9解析 由题意知,第1层的点数为1,第2层的点数为6,第3层的点数为2×6,第4层的点数为3×6,第5层的点数为4×6,…,第n (n ≥2,n ∈N *)层的点数为6(n -1).设一个点阵有n (n ≥2,n ∈N *)层,则共有的点数为1+6+6×2+…+6(n -1)=1+6+6(n -1)2×(n -1)=3n 2-3n +1,由题意得3n 2-3n +1=169,即(n +7)·(n -8)=0,所以n =8,故共有8层.答案 C二、填空题9.仔细观察下面○和●的排列规律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________.解析 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……, 则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n (n +3)2,易知f (14)=119,f (15)=135,故n =14.答案 1410.观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,……,根据上述规律,第n 个等式为________.解析 观察所给等式左右两边的构成易得第n 个等式为13+23+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22=n 2(n +1)24. 答案 13+23+…+n 3=n 2(n +1)24 11.(2017·重庆模拟)在等差数列{a n }中,若公差为d ,且a 1=d ,那么有a m +a n =a m+n ,类比上述性质,写出在等比数列{a n }中类似的性质:_____________________________________________________________________.解析 等差数列中两项之和类比等比数列中两项之积,故在等比数列中,类似的性质是“在等比数列{a n }中,若公比为q ,且a 1=q ,则a m ·a n =a m +n .”答案 在等比数列{a n }中,若公比为q ,且a 1=q ,则a m ·a n =a m +n12.已知点A (x 1,ax 1),B (x 2,ax 2)是函数y =a x (a >1)的图象上任意不同两点,依据图象可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有结论ax 1+ax 22>a x 1+x 22成立.运用类比思想方法可知,若点A (x 1,sin x 1),B (x 2,sin x 2)是函数y =sin x (x ∈(0,π))的图象上任意不同两点,则类似地有________成立. 解析 对于函数y =a x (a >1)的图象上任意不同两点A ,B ,依据图象可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有结论ax 1+ax 22>a x 1+x 22成立;对于函数y =sin x (x ∈(0,π))的图象上任意不同的两点A (x 1,sin x 1),B (x 2,sin x 2),线段AB 总是位于A ,B 两点之间函数图象的下方,类比可知应有sin x 1+sin x 22<sin x 1+x 22成立.答案 sin x 1+sin x 22<sin x 1+x 22能力提升题组(建议用时:15分钟)13.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )A.289B.1 024C.1 225D.1 378解析 观察三角形数:1,3,6,10,…,记该数列为{a n },则a 1=1,a 2=a 1+2,a 3=a 2+3,…a n =a n -1+n .∴a 1+a 2+…+a n =(a 1+a 2+…+a n -1)+(1+2+3+…+n )⇒a n =1+2+3+…+n =n (n +1)2, 观察正方形数:1,4,9,16,…,记该数列为{b n },则b n =n 2.把四个选项的数字,分别代入上述两个通项公式,可知使得n 都为正整数的只有1 225. 答案 C14.(2017·青岛模拟)若数列{a n }的通项公式为a n =1(n +1)2(n ∈N *),记f (n )=(1-a 1)(1-a 2)…(1-a n ),试通过计算f (1),f (2),f (3)的值,推测出f (n )=________.解析 f (1)=1-a 1=1-14=34,f (2)=(1-a 1)(1-a 2)=34⎝ ⎛⎭⎪⎫1-19=23=46,f (3)=(1-a 1)(1-a 2)(1-a 3)=23⎝⎛⎭⎪⎫1-116=58,推测f (n )=n +22n +2. 答案 n +22n +215.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0y b 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________.解析 设P 1(x 1,y 1),P 2(x 2,y 2),则P 1,P 2的切线方程分别是x 1x a 2-y 1y b 2=1,x 2x a 2-y 2y b 2=1.因为P 0(x 0,y 0)在这两条切线上,故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b 2=1,这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0y b 2=1上,故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0y b 2=1.答案 x 0x a 2-y 0y b 2=116.(2017·郑州模拟)如图所示,一回形图,其回形通道的宽和OB1的长均为1,且各回形线之间或相互平行、或相互垂直.设回形线与射线OA交于A1,A2,A3,…,从点O到点A1的回形线为第1圈(长为7),从点A1到点A2的回形线为第2圈,从点A2到点A3的回形线为第3圈…,依此类推,第8圈的长为________.解析第1圈的长为2(1+2)+1=7,第2圈的长为2(3+4)+1=15,第3圈的长为2(5+6)+1=23,则第n圈的长为2[(2n-1)+2n]+1=8n-1,当n=8时,第8圈的长度为8×8-1=63.答案63。

苏教版高中数学选修1-2导学案设计:2.1.1-合情推理(无答案)

苏教版高中数学选修1-2导学案设计:2.1.1-合情推理(无答案)

苏教版高中数学选修1-2导学案设计:2.1.1-合情推理(无答案)1 / 42.1.1合情推理(1)班级__________姓名____________ ______年____月____日【教学目标】能利用归纳方法进行简单的推理,体会并认识合情推理在数学发现中的作用. 【教学重点】合情推理的含义,利用归纳方法进行简单的推理. 【教学难点】用归纳进行推理,做出猜想及归纳推理的正确性. 【教学过程】一、引入:1. 称为推理. 2.通过对本节引言的三个推理案例的预习,思考几个推理各有什么特点?二、新授内容:我们看几个类似的推理实例:1.(1)蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。

蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所有的爬行动物都是用肺呼吸的. (2)三角形的内角和是180︒,凸四边形的内角和是360︒,凸五边形的内角和是540︒由此我们猜想:凸边形的内角和是(2)180n -⨯︒. (3)221222221,,,331332333+++<<<+++L ,由此我们猜想:a a mb b m+<+(,,a b m 均为正实数). 这种 的推理,称为归纳推理.(简称:归纳) 2.归纳推理的一般步骤:(1)对有限的资料进行观察、分析、归纳 整理; (2)提出带有规律性的结论,即猜想; (3)检验猜想.例1.已知数列{}n a 的每一项均为正数,11=a ,)(1*221N n a a n n ∈+=+,试归纳数列{}n a 的一个通项公式.【变式拓展】数列{}n a 的第1项11=a 且nnn a a a +=+11)(*N n ∈,试归纳数列的通项公式.第 2 页 共 4 页ICME -7 图甲O A 1A 2 A 3A 4A 5A 6 A 7 A 8图乙例2.如图第n 个图形是由正2+n 边形“扩展”而来 )(*N n ∈.则第n +2个图形中共有 个顶点.【变式拓展】仔细观察下面○和●的排列规律:○●○○●○○○●○○○○●○○○○○●○○○○○○●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________.例3.从222112343345675=++=++++=L ,,,中, 归纳出一般结论为 .【变式拓展】设010()sin ()()f x x f x f x '==,,211()()()()n n f x f x f x f x n N +''==∈L ,,,,则2014()f x = .三、课堂反馈:1.如图甲是第七届国际数学教育大会(简称ICME -7)的会徽图案,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中11223781OA A A A A A A =====L ,如果把图乙中的直角三角形继续作下去,记12,,,,n OA OA OA L L 的长度构成数列{}n a ,则此数列的通项公式为n a =_________.2.观察下列等式,并从中归纳出一般结论:(1)在首项为1a 、公差为d 的等差数列{}n a 中,1110a a a d ==+,2111a a d a d =+=+,3212a a d a d =+=+,4313a a d a d =+=+,L结论: .(2)2222111321+3531+35+74=+=+=+=L ,,,, 反思:苏教版高中数学选修1-2导学案设计:2.1.1-合情推理(无答案)3 / 4结论: .3.在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形 的展品,其中第1堆只有1层,就一个球;第2,3,4,L 堆最底层(第一层)分别按图4所示方式固定 摆放,从第二层开始,每层的小球自然垒放在下一层 之上,第n 堆第n 层就放一个乒乓球,以()f n 表示第n堆的乒乓球总数,则(3)_____f =;(4)_____f =.4.观察下列等式,并从中归纳出一般的结论:1111211131111422263261242612205=+=++=+++=L ,,,, .5.观察直线上的n 个点,发现2个点可以确定1条线段,3个点可以确定3条线段,4个点可以确定6 条线段,5个点可以确定10条线段,由此可以归纳出n )(*N n ∈个点可确定 条线段.四、课后作业: 学生姓名:___________ 1.数列{}n a 中,12341,35,7911,13151719,...a a a a ==+=++=+++则=10a .2.观察下列两等式的规律,请写出一个(包含下面两命题)一般性的命题: ① 4330sin 30sin 30sin 30sin 022=⋅++; ② 4320sin 40sin 20sin 40sin 022=⋅++. .3.观察(1)tan10tan 20tan 20tan 60tan 60tan101++=oooooo(2)tan5tan10tan10tan 75tan 75tan51++=oooooo。

人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_6

人教A版高中数学选修1-2《二章 推理与证明  2.1 合情推理与演绎推理  2.1.2 演绎推理》优质课教案_6

2.1.3 演绎推理一、三维目标1. 知识与能力:①结合已学过的数学实例和生活中的实例,体会演绎推理的重要性;②掌握演绎推理的基本方法,并能运用它们进行一些简单推理.2. 情感、态度与价值观:①通过演绎推理与三段论法则的学习,促使学生崇尚理智、逻辑、科学,提倡求实精神,批判精神;②严谨的逻辑思维训练、缜密的思考与推算过程,可促使学生的道德准则合乎理性,形成诚实、顽强、谨慎、勇敢和一丝不苟等个性品质.3. 过程与方法:演绎推理是严谨的数学思维中必不可少的推理方式,通过已学过的数学实例的讲解让学生认识到演绎推理在数学思考中的重要作用,培养和提高学生的演绎推理或逻辑证明的能力,这也是高中数学课程的重要目标.二、教学重点演绎推理的概念;三段论式推理的格式.三、教学难点三段论式推理的格式.四、教学过程(一)引入课题判断下列推理结果正确与否:所有的金属能导电,铀是金属,所以铀能导电。

(二)传授新知1. 认识演绎推理与类比推理、归纳推理都不相同,演绎推理是从一般到特殊的推理。

一般中概括了特殊,凡是一类事物所共有的属性,其中每一特殊事物必然具有。

演绎推理中推理的前提是一般性的,即普遍性的知识、原理、定律、公式等,推出的结论是特殊的知识。

所以,演绎推理是必然性推理,其结论是可靠的,这就是演绎推理的特点。

2.演绎推理的主要形式——三段论三段论:大前提——已知的一般性原理;小前提——所研究的特殊情况;结论——根据一般性原理,对特殊情况所下的结论。

例如:所有的金属能导电(大前提)铀是金属(小前提)所以铀能导电(结论)三段论是由两个包含着一个共同项的性质判断作前提,推出另一个性质判断为结论的间接推理。

第一个判断称为大前提,它提供了一个一般的事实或道理;第二个判断称为小前提,它指出了一个特殊情况;这两个判断联合起来揭示了一般事实或道理和特殊情况的内在联系,从而产生了第三个判断——结论。

注意:①三段论全由性质判断组成;②两个前提必须有一个共同项(即相同的概念);③三段论是间接推理,因为它的前提是两个判断组成.再如三角形内角和等于180°,(大前提)图形ABC是三角形,(小前提)所以,图形ABC内角和等于180°。

人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_26

人教A版高中数学选修1-2《二章 推理与证明  2.1 合情推理与演绎推理  2.1.2 演绎推理》优质课教案_26

§2.1.2演绎推理教学设计【教材分析】本章内容属于数学思维方法的范畴,即把过去渗透在具体数学内容中的思维方法以集中显示的形式呈现出来,使学生更加明确这些方法,并能在今后的学习中有意识的使用。

推理是人们学习和生活中经常使用的思维方式。

而应用演绎推理可以使人们产生新的创意或新的发现。

在解决问题的过程中通过本节的学习,有利于发展学生的思维能力,提高学生的数学素养,让学生感受演绎推理在数学以及日常生活中的作用,从而架起数学与生活的桥梁,形成严谨的理性思维和科学精神。

一.教学目标:㈠知识与技能目标①了解演绎推理的含义,以及演绎推理与合情推理的联系与区别。

②能正确运用演绎推理的基本方法“三段论”进行一些简单的推理。

㈡过程与方法目标①通过了解和体会演绎推理在日常生活和学习中的应用,引出演绎推理的概念。

②通过对实际例子的分析,培养学生的逻辑推理能力,使学生学会观察,大胆猜想,敢于归纳,挖掘其中所包含的推理思路和思想;③通过一些证明题的实例,明确演绎推理的“三段论”的推理形式,提高学生的创新能力。

㈢情感、态度与价值观目标通过本节课的学习,让学生体验演绎推理源于实践,又应用于实践的思想,感受演绎推理的逻辑推理美,让学生亲身经历数学研究的过程,感受数学的魅力,激发学生的学习兴趣,培养学生勇于探索、创新的个性品质。

二.教学重点与难点重点:了解演绎推理的含义,能利用“三段论”进行简单的推理证明。

难点:掌握演绎推理的基本方法,应用演绎推理产生新的创意或新的发现。

三.教学方法本节课采用范例分析、媒体演示、分层教学等启发发现法进行教学;课堂学习上,鼓励学生采取回顾复习、分组讨论、归纳总结等课堂讨论法进行学习;教法与学法协助提高,从而达到举一反三、触类旁通、提高课堂学习效率的效果。

四.教学过程(一)、创设情境,引入新课1.复习:合情推理的分类,应用归纳推理和类比推理的一般步骤(提问学生,多媒体展示)2. 在世界四大文明古国之一---印度,流传着一个古老的婚俗。

人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_11

人教A版高中数学选修1-2《二章 推理与证明  2.1 合情推理与演绎推理  2.1.2 演绎推理》优质课教案_11

第35讲合情推理与演绎推理考纲要求考情分析命题趋势1.合情推理(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的!!!!__全部对象__####都具有这些特征的推理,或者由个别的事实概括出一般结论的推理.②特点:是由!!!!__部分__####到!!!!__整体__####、由!!!!__个别__####到!!!!__一般__####的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有!!!!__这些特征__####的推理.②特点:是由!!!!__特殊__####到!!!!__特殊__####的推理.2.演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由!!!!__一般__####到!!!!__特殊__####的推理.(2)“三段论”是演绎推理的一般模式①大前提——已知的!!!!__一般原理__####.②小前提——所研究的!!!!__特殊情况__####.③结论——根据一般原理,对!!!!__特殊情况__####做出的判断.1.思维辨析(在括号内打“√”或“”).(1)归纳推理与类比推理都是由特殊到一般的推理.(×)(2)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.(×)(3)“所有3的倍数都是9的倍数,若数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√)(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.(×)解析(1)错误.归纳推理是由部分到整体、由个别到一般的推理;类比推理是由特殊到特殊的推理.(2)错误.平面中的三角形与空间中的四面体作为类比对象较为合适.(3)正确.因为大前提错误,所以结论错误.(4)错误.演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.2.有段时间流传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅”.结论显然是错误的,因为(C)A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析推理形式不符合三段论推理的形式,三段论的形式是:M是P,S是M,则S是P,而上面的推理形式则是:M是P,S是P,则S是M.故选C.3.数列2,5,11,20,x,47,…中的x=(B)A.28B.32C.33D.27解析由5-2=3,11-5=6,20-11=9,可知x-20=12,因此x=32.4.给出下列三个类比结论:①(ab)n=a n b n与(a+b)n类比,则有(a+b)n=a n+b n;②log a(xy)=log a x+log a y与sin(α+β)类比,则有sin(α+β)=sin αsin β;③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a·b+b2.其中结论正确的个数为(B)A.0B.1C.2D.3解析只有③正确.5.观察下列不等式:1+123<7 6,1+123+133<2924,1+123+133+143<4940,1+123+133+143+153<3730, …按此规律,第五个不等式为!!!! 1+123+133+143+153+163<2621 ####.解析 1+123<76=142×3×2,1+123+133<2924=14+3×53×4×2, 1+123+133+143<4940=494×5×2=29+4×54×5×2, 1+123+133+143+153<3730=745×6×2=49+5×55×6×2, 照此规律可以得到1+123+133+143+153+163<74+6×56×7×2=2621.所以第五个不等式为1+123+133+143+153+163<2621.一 类比推理(1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有:平面与空间类比、低维与高维的类比、等差与等比数列类比、运算类比(加与乘、乘与乘方、减与除、除与开方)、数的运算与向量运算类比、圆锥曲线间的类比等.【例1】 (1)若数列{a n }是等差数列,则数列{b n }⎝⎛⎭⎫b n =a 1+a 2+…+a n n 也为等差数列.类比这一性质可知,若正项数列{}c n 是等比数列,且{}d n 也是等比数列,则d n 的表达式应为( D )A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nnC .d n =n c n1+c n 2+…+c n nnD .d n =nc 1·c 2·…·c n(2)在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为!!!!__1∶8__####.解析 (1)若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d ,∴b n =a 1+(n -1)2d =d 2n +a 1-d2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q 1+2+…+(n -1)=c n 1·q n (n -1)2 , ∴d n =nc 1·c 2·…·c n =c 1·q n (n -1)2 ,即{d n }为等比数列.故选D .(2)由平面图形的面积类比立体图形的体积得出:在空间内,若两个正四面体的棱长的比为1∶2,则它们的底面积之比为1∶4,对应高之比为1∶2,所以体积比为1∶8.二 归纳推理归纳推理中几种问题的处理技巧(1)与等式或不等式“共舞”问题.观察所给的几个等式或不等式两边式子的特点,注意是纵向看,发现隐含的规律.(2)与数列“牵手”问题.先求出几个特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所含的范围,从而由特殊的结论推广到一般结论.(3)与图形变化“相融”问题.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.【例2】 观察下列等式: 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, …依此规律,第n 个等式可为!!!!__12-22+32-42+…+(-1)n +1·n 2=(-1)n +1·n (n +1)2__####.解析 第n 个等式的左边第n 项应是(-1)n +1n 2,右边数的绝对值为1+2+3+…+n =n (n +1)2,故有12-22+32-42+…+(-1)n +1·n 2=(-1)n +1·n (n +1)2. 【例3】 观察下列的图形中小正方形的个数,则第6个图中有!!!!__28__####个小正方形.解析 第1~5个图形中分别有3,6,10,15,21个小正方形,它们分别为1+2,1+2+3,1+2+3+4,1+2+3+4+5,1+2+3+4+5+6,因此a n =1+2+3+…+(n +1).故a 6=1+2+3+…+7=7(1+7)2=28,即第6个图中有28个小正方形.三 演绎推理演绎推理是从一般到特殊的推理;其一般形式是三段论,应用三段论解决问题,应当首先明确什么是大前提和小前提,若大前提是显然的,则可以省略.【例4】 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n·S n (n ∈N *),证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n , ∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论)(2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)1.有下列各式:1+12+13>1,1+12+…+17>32,1+12+13+…+115>2,…,则按此规律可猜想此类不等式的一般形式为!!!!__1+12+13+…+12n +1-1>n +12(n ∈N *)__####.解析 观察前三个不等式,发现其左边最后一项的分母分别为3,7,15,故可猜想第n 个式子中应有2n +1-1项,不等式右侧分别写成22,32,42,故猜想第n 个式子中应为n +12,按此规律可猜想此类不等式的一般形式为1+12+13+…+12n +1-1>n +12(n ∈N *).2.用火柴棒摆“金鱼”,如图所示,按照下面的规律,第n 个“金鱼”图需要火柴棒的根数为!!!!__6n +2__####.…解析 由题意知,图②的火柴棒比图①的多6根,图③的火柴棒比图②的多6根,而图①的火柴棒的根数为2+6,∴第n 个“金鱼”图需要(2+6n )根火柴棒.3.在矩形ABCD 中,对角线AC 与相邻两边所成的角为α,β,则有cos 2α+cos 2β=1.类比到空间中的一个正确命题是:在长方体ABCD -A 1B 1C 1D 1中,对角线AC 1与相邻三个面所成的角为α,β,γ,则!!!!__cos 2α+cos 2β+cos 2γ=2__####.解析 设长方体的棱长分别为a ,b ,c ,如图所示,所以AC 1与下底面所成角为∠C 1AC ,记为α,AC 1与平面A 1D 1DA 所成的角记为β,AC 1与平面A 1B 1BA 所成的角记为γ,所以cos 2α=AC 2AC 21=a 2+b 2a 2+b 2+c2,同理cos 2β=a 2+c 2a 2+b 2+c 2,cos 2γ=b 2+c 2a 2+b 2+c 2,所以cos 2α+cos 2β+cos 2γ=2.4.若f (a +b )=f (a )f (b )(a ,b ∈N *),且f (1)=2,则f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2 018)f (2 017)=!!!!__2 018__####.解析 利用三段论.因为f (a +b )=f (a )f (b )(a ,b ∈N *),(大前提) 令b =1,则f (a +1)f (a )=f (1)=2,(小前提)所以f (2)f (1)=f (4)f (3)=…=f (2 018)f (2 017)=2.(结论)易错点 类比不当错因分析:从平面类比到空间时,缺乏对对应特点的分析,无法得到正确结论. 【例1】 在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC2,那么在四面体A-BCD中,类比上述结论,你能得到怎样的猜想,并说明理由.解析如图(1)所示,由射影定理知AD2=BD·DC,AB2=BD·BC,AC2=BC·DC,∴1AD2=1BD·DC=BC2 BD·BC·DC·BC=BC2AB2·AC2.又BC2=AB2+AC2,∴1AD2=AB2+AC2AB2·AC2=1AB2+1AC2,∴1AD2=1AB2+1AC2.在四面体A-BCD中,AB,AC,AD两两垂直,AE⊥平面BCD于E,则1AE2=1AB2+1AC2+1AD2.证明如下:如图(2),连接BE交CD于点F,连接AF. ∵AB⊥AC,AB⊥AD,∴AB⊥平面ACD.而AF⊂平面ACD,∴AB⊥AF.在Rt△ABF中,AE⊥BF,∴1AE2=1AB2+1AF2.在Rt△ACD中,AF⊥CD,1AF2=1AC2+1AD2.∴1AE2=1AB2+1AC2+1AD2.【跟踪训练1】我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若a,b,c为直角三角形的三边,其中c为斜边,则a2+b2=c2,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体O-ABC中,∠AOB=∠BOC=∠COA=90°,S为顶点O所对面的面积,S1,S2,S3分别为侧面△OAB,△OAC,△OBC的面积,则下列选项中对于S,S1,S2,S3满足的关系描述正确的为(A)A.S2=S21+S22+S23B.S2=1S21+1S22+1S23C.S=S1+S2+S3 D.S=1S1+1S2+1S3解析 如图,作OD ⊥BC 于点D ,连接AD ,由立体几何知识知,AD ⊥BC ,从而S 2=⎝⎛⎭⎫12BC ·AD 2=14BC 2·AD 2=14BC 2·(OA 2+OD 2)=14(OB 2+OC 2)·OA 2+14BC 2·OD 2=⎝⎛⎭⎫12OB ·OA 2+⎝⎛⎭⎫12OC ·OA 2+⎝⎛⎭⎫12BC ·OD 2=S 21+S 22+S 23.课时达标 第35讲[解密考纲]高考中,归纳推理和类比推理主要是和数列、不等式等内容联合考查,多以选择题和填空题的形式出现.一、选择题1.下面四个推导过程符合演绎推理三段论形式且推理正确的是( B )A .大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B .大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C .大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D .大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析 对于A 项,小前提与结论颠倒,错误;对于B 项,符合演绎推理过程且结论正确;对于C 项,大小前提颠倒;对于D 项,大小前提以及结论颠倒.故选B .2.请仔细观察1,1,2,3,5,( ),13,运用合情推理,可知写在括号里的数最可能是( A ) A .8B .9C .10D .11解析 观察题中所给各数可知,2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,∴括号中的数为8.故选A .3.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k |n ∈Z },k =0,1,2,3,4.给出如下四个结论:①2 018∈[3]; ②-2∈[2];③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”.其中正确结论的个数为( C ) A .1B .2C .3D .4解析 因为2 018=403×5+3,所以2 018∈[3],①正确;-2=-1×5+3,-2∈[3],所以②不正确;因为整数集中被5除的数可以且只可以分成五类,所以③正确;整数a ,b 属于同一“类”,因为整数a ,b 被5除的余数相同,从而a -b 被5除的余数为0,反之也成立,故整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”,故④正确.所以正确的结论有3个.故选C .4.观察(x 2)′=2x ,(x 4)′=4x 3, (cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( D )A .f (x )B .-f (x )C .g (x )D .-g (x )解析 由所给等式知,偶函数的导数是奇函数. ∵f (-x )=f (x ),∴f (x )是偶函数,从而g (x )是奇函数. ∴g (-x )=-g (x ).5.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:“你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩”.看后甲对大家说:“我还是不知道我的成绩”.根据以上信息,则( D )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩解析 依题意,由于甲看后还是不知道自己的成绩,说明乙、丙两人必是一个优秀、一个良好,则甲、丁两人必是一个优秀、一个良好,因此乙看了丙的成绩就可以知道自己的成绩,丁看了甲的成绩就清楚了自己的成绩,综合以上信息可知,乙、丁可以知道自己的成绩.故选D .6.已知a n =log n +1(n +2)(n ∈N *),观察下列运算: a 1·a 2=log 23·log 34=lg 3lg 2·lg 4lg 3=2;a 1·a 2·a 3·a 4·a 5·a 6=log 23·log 34·…·log 78=lg 3lg 2·lg 4lg 3·…·lg 8lg 7=3;….若a 1·a 2·a 3·…·a k (k ∈N *)为整数,则称k 为“企盼数”,试确定当a 1·a 2·a 3·…·a k =2 019时,“企盼数”k 为( C )A .22 019 +2B .22 019C .22 019-2D .22 019-4解析 a 1·a 2·a 3·…·a k =lg (k +2)lg 2=2 019,lg(k +2)=lg 22 019,故k =22 019-2.二、填空题7.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据上述规律,第n个不等式应该为!!!!__1+122+132+…+1(n +1)2<2n +1n +1__####.解析 不等式的左边为连续自然数的平方的倒数和,即1+122+…+1(n +1)2,不等式的右边为2n +1n +1,所以第n 个不等式应该为1+122+132+…+1(n +1)2<2n +1n +1. 8.观察下列等式: 1=1; 2+3+4=9; 3+4+5+6+7=25; 4+5+6+7+8+9+10=49; …照此规律,第n 个等式为!!!! n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2 ####. 解析 观察这些等式,第一个等式左边是1个数,从1开始;第二个等式左边是3个数相加,从2开始;第三个等式左边是5个数相加,从3开始;……;第n 个等式左边是2n -1个数相加,从n 开始.等式的右边为左边2n -1个数的中间数的平方,故第n 个等式为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.9.设等差数列{a n }的前n 项和为 S n ,则 S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论我们可以得到一个真命题为:设等比数列{b n }的前n 项积为T n ,则!!!! T 4,T 8T 4,T 12T 8,T 16T 12####成等比数列. 解析 利用类比推理把等差数列中的差换成商即可. 三、解答题10.设f (x )=a x +a -x 2 ,g (x )=a x -a -x2(其中a >0,且a ≠1).(1)由5=2+3请你推测g (5)能否用f (2),f (3),g (2),g (3)来表示; (2)如果(1)中获得了一个结论,请你推测能否将其推广.解析 (1)由于f (3)g (2)+g (3)f (2)=a 3+a -32·a 2-a -22+a 3-a -32·a 2+a -22=a 5-a -52,又g (5)=a 5-a -52,因此g (5)=f (3)g (2)+g (3)f (2). (2)由g (5)=f (3)g (2)+g (3)f (2), 即g (2+3)=f (3)g (2)+g (3)f (2), 于是推测g (x +y )=f (x )g (y )+g (x )f (y ).证明:因为f (x )=a x +a -x 2,g (x )=a x -a -x 2, 所以g (x +y )=a x +y -a -(x +y )2,g (y )=a y -a -y 2,f (y )=a y +a -y 2, 所以f (x )g (y )+g (x )f (y )=a x +a -x 2·a y -a -y 2+a x -a -x 2·a y +a -y 2=a x +y -a -(x +y )2=g (x +y ).11.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5.(1)求a 18的值;(2)求该数列的前n 项和S n .解析 (1)由等和数列的定义,数列{a n }是等和数列,且a 1=2,公和为5,易知a 2n -1=2,a 2n =3(n =1,2,…),故a 18=3.(2)当n 为偶数时,S n =a 1+a 2+…+a n=(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n ) =2+2+…+2n 2个2+3+3+…+3n 2个3 =52n . 当n 为奇数时,S n =S n -1+a n =52(n -1)+2=52n -12. 综上所述,S n =⎩⎨⎧ 52n ,n 为偶数,52n -12,n 为奇数.12.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何—个三次函数都有“拐点”;任何—个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现,解决下列问题.(1)求函数f (x )=13x 3-12x 2+3x -512的对称中心; (2)计算f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫22 017+f ⎝⎛⎭⎫32 017+…+f ⎝⎛⎭⎫2 0162 017. 解析 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1,由f ″(x )=0,即2x -1=0,解得x =12. f ⎝⎛⎭⎫12=13×⎝⎛⎭⎫123-12×⎝⎛⎭⎫122+3×12-512=1. 由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝⎛⎭⎫12,1. (2)由(1)知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝⎛⎭⎫12,1, 所以f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2,即f (x )+f (1-x )=2.故f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫2 0162 017=2,f ⎝⎛⎭⎫22 017+f ⎝⎛⎭⎫2 0152 017=2,f ⎝⎛⎭⎫32 017+f ⎝⎛⎭⎫2 0142 017=2,…f ⎝⎛⎭⎫2 0162 017+f ⎝⎛⎭⎫12 017=2,所以f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫22 017+f ⎝⎛⎭⎫32 017+…+f ⎝⎛⎭⎫2 0162 017=12×2×2 016=2 016.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1合情推理与演绎推理学习目标:1.了解合情推理的含义,能利用归纳和类比进行简单的推理;2.了解演绎推理的含义,掌握演绎推理的基本模式,能利用“三段论”进行简单的推理. 重点:用归纳和类比进行推理,做出猜想;用“三段论”证明问题.难点:用归纳和类比进行合情推理,做出猜想。

学习策略:①合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势②合情推理中的归纳、类比都是具有创造性的或然推理.不论是由大量的实例,经过分析、概括、发现规律的归纳,还是由两系统的已知属性,通过比较、联想而发现未知属性的类比,它们的共同点是,结论往往超出前提所控制的范围,所以它们是“开拓型”或“发散型”的思维方法.也正因为结论超出了前提的管辖范围,前提也就无力保证结论必真,所以归纳类比都是或然性推理.③演绎推理所得的结论完全蕴含于前提之中,所以它是“封闭型”或“收敛型”的思维方法.只要前提真实,逻辑形式正确,结论必然是真实的.知识要点梳理知识点一:推理的概念根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论.知识点二:合情推理根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果、个人的经验和直觉等,经过观察、分析、比较、联想、归纳、类比等推测出某些结果的推理过程。

其中归纳推理和类比推理是最常见的合情推理。

1.归纳推理(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳)。

(2)一般模式:部分整体,个体一般(3)一般步骤:①通过观察个别情况发现某些相同性质;②从已知的相同的性质中猜想出一个明确表述的一般性命题;③检验猜想.(4)归纳推理的结论可真可假归纳推理一般都是从观察、实验、分析特殊情况开始,提出有规律性的猜想;一般地,归纳的个别情况越多,就越具有代表性,推广的一般性命题就越可靠.由于归纳推理的前提是部分的、个别的事实,因此归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然的,而是或然的,所以归纳推理所得的结论不一定是正确的.2.类比推理(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).(2)一般模式:特殊特殊(3)类比的原则:可以从不同的角度选择类比对象,但类比的原则是根据当前问题的需要,选择恰当的类比对象.(4)一般步骤:①找出两类对象之间的相似性或一致性;②用一类对象的已知特征去推测另一类对象的特征,得出一个明确的命题(猜想);③检验猜想.(5)类比推理的结论可真可假类比推理中的两类对象是具有某些相似性的对象,同时又应是两类不同的对象;一般情况下,如果类比的相似性越多,相似的性质与推测的性质越相关,那么类比得出的命题就越可靠.类比结论具有或然性,所以类比推理所得的结论不一定是正确的。

知识点三:演绎推理(1)定义:从一般性的原理出发,按照严格的逻辑法则,推出某个特殊情况下的结论的推理,叫做演绎推理. 简言之,演绎推理是由一般到特殊的推理.(2)一般模式:“三段论”是演绎推理的一般模式,常用的一种格式①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的结论.(3)用集合的观点理解“三段论”若集合的所有元素都具有性质,是的子集,那么中所有元素都具有性质(4)演绎推理的结论一定正确演绎推理是一个必然性的推理,因而只要大前提、小前提及推理形式正确,那么结论一定是正确的,它是完全可靠的推理。

规律方法指导合情推理与演绎推理的区别与联系(1)从推理模式看:①归纳推理是由特殊到一般的推理.②类比推理是由特殊到特殊的推理.③演绎推理是由一般到特殊的推理.(2)从推理的结论看:①合情推理所得的结论不一定正确,有待证明。

②演绎推理所得的结论一定正确。

(3)总体来说,从推理的形式和推理的正确性上讲,二者有差异;从二者在认识事物的过程中所发挥的作用的角度考虑,它们又是紧密联系,相辅相成的。

合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的;演绎推理可以验证合情推理的正确性,合情推理可以为演绎推理提供方向和思路.经典例题透析类型一:归纳推理1.用推理的形式表示数列的前项和的归纳过程.思路点拨:依题意,表示数列的前项和,即.为此,我们先根据该公式,算出数列的前几项,通过观察进一步归纳得出与的对应关系式.解析:总结升华:①本题是由部分到整体的推理,先把部分的情况都写出来,然后寻找规律,概括出整体的情况,是典型的归纳推理.②归纳常常从观察开始,观察、实验、对有限的资料作归纳整理,提出带有规律性的猜想,是数学研究的基本方法之一③归纳猜想是一种重要的思维方法,但结果的正确性还需进一步证明.在归纳猜想数列的前项和公式时,要认真观察数列中各项数字间的规律,分析每一项与对应的项数之间的关系.④虽然由归纳推理所得到的结论未必是正确的,但它所具有的由特殊到一般,由具体到抽象的认知功能,对于数学的发现却是十分有用的.举一反三:【变式1】用推理的形式表示等差数列1,3,5,…,(2 -1),…的前项和的归纳过程.【变式2】设,计算的值,同时归纳结果所具有的性质,并用验证猜想的结论是否正确.【变式3】在数列中,a1=1,且,计算a2、a3、a4,并猜想的表达式.例2.平面内的1条直线把平面分成2部分,2条相交直线把平面分成4部分,3条相交但不共点的直线把平面分成7部分,n条彼此相交而无三条共点的直线,把平面分成多少部分?思路点拨:可通过画当直线条数n为3,4,5时,分别计算出它们将平面分成的区域数,从中发现规律,再归纳出结论.举一反三:【变式1】平面中有n个圆,每两个圆都相交于两点,每三个圆都无公共点,它们将平面分成块区域,有,,,……,则的表达式是___________.【答案】【变式2】图(a)、(b)、(c)、(d)为四个平面图形(1)数一数,每个平面图各有多少个顶点?多少条边?它们将平面各分成了多少个区域?(2)推断一个平面图形的顶点数,边数,区域数之间的关系.解:(1顶点数(((2)类型二:类比推理例3.在三角形中有下面的性质:(1)三角形的两边之和大于第三边;(2)三角形的中位线等于第三边的一半,且平行于第三边;(3)三角形的三条内角平分线交于一点,且这个点是三角形的内心;(4)三角形的面积,(为三角形的三边长,为三角形的内切圆半径).请类比写出四面体的有关性质.思路点拨:利用三角形的性质,通过观察四面体的结构,比较二者的内在联系,从而类比出四面体的相似命题,提出猜想.解析:总结升华:1. 把平面几何的问题类比立体几何的问题,常常有如下规律:(1)平面中的点类比为空间中的线;(2)平面中的线类比为空间中的面;(3)平面中的区域类比为空间中的空间区域;(4)平面中的面积类比成空间中的体积.举一反三:【变式1】在平面几何中有命题“正三角形内任意一点到三边距离之和是一个定值”,那么在正四面体中类似的命题是什么?【变式2】在中,若,则,请在立体几何中,给出类似的四面体性质.【变式3】已知等差数列的公差为,前项和有如下性质:①通项②若,则③若,则.④,,构成等差数列.类比上述性质,在等比数列中,写出相类似的性质.类型三:演绎推理例4.已知:在空间四边形中,、分别为、的中点,用三段论证明:∥平面举一反三:【变式1】有一位同学利用三段论证明了这样一个问题:证明:因为所有边长都相等的凸多边形是正多边形,…………大前提而菱形是所有边长都相等的凸多边形,…………………………小前提所以菱形是正多边形.………………………………………………结论(1)上面的推理形式正确吗?(2)推理的结论正确吗?为什么?【变式2】写出三角形内角和定理的证明,并指出每一步推理的大前提和小前提.已知:中,求证:.【变式3】如图2-1-8所示,D,E,F分别是BC,CA,AB上的点,∠BFD=∠A,DE∥BA,求证:ED=AF.【变式4】用三段论证明函数在(-∞,+∞)上是增函数.基础达标:1.下列关于归纳推理的说法中错误的是()A.归纳推理是由一般到一般的一种推理过程B.归纳推理是由特殊到一般的一种推理过程C.归纳推理得出的结论具有或然性,不一定正确D.归纳推理具有由具体到抽象的认识过程2.有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( )A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误3.数列3,8,15,___,35,48,…根据数列的特点,在横线“___”上,应填写的数字是()A.20 B.24 C.28D.304.由集合,,,…子集的个数归纳出集合的子集的个数为()A.B.C.D.D.5.三角形的面积为、、为三角形三边长,为三角形内切圆的半径.利用类比推理可以得出四面体的体积为()A.B.C.、、、分别为四面体的四个面面积,为四面体内切球的半径)D.为四面体的高)6.函数在上是增函数,函数是偶函数,则f(1),f(2.5),f(3.5)的大小关系是__________.7.在某报《自测健康状况》的报导中,自测血压结果与相应年龄的统计数据如下表.观察表8.设数列满足,,则=_________,=________,___________,由此,可猜测可能为=___________(用表示).9.判断下列推理是否正确.(1)如果不买彩票,那么就不能中奖.因为你买了彩票,所以你一定中奖;(2)因为正方形的对角线互相平分且相等,所以,若一个四边形的对角线互相平分且相等,则四边形是正方形;(3)因为,所以;(4)因为,所以.10.找出圆与球相似的性质,并用圆的下列性质类比球的有关性质.①圆心与弦(非直径)中点的连线垂直于弦;②与圆心距离相等的两弦相等;③圆的周长是直径);④圆的面积.11.证明函数在内是增函数.参考答案:基础达标:1.A 2.C 3.B 4.C 5.C6.f(2.5)>f(1)>f(3.5).解析:∵函数y=f(x)在(0,2)上是增函数,由0<x+2<2得-2<x<0∴函数y=f(x+2) 在(-2,0)上是增函数,又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2) 在(0,2)上是减函数由图象可得f(2.5)>f(1)>f(3.5).7.140,85.8.3;4;5;解析:由,得;由,得;由,得,由此猜想.9.(1)错误;(2)错误;(3)错误;(4)正确.10.解析:二者相似的性质有:①圆是平面上到一定点的距离等于定长的点的集合;球面是空间中到一定点的距离等于定长的点的集合.②圆是平面内封闭的曲线所围成的对称图形;球是空间中封闭的曲面所围成的对称图形.通过与圆的有关性质类比,可以推测球的有关性圆的周长球的表面积圆的面积球的体积11.证明:.当时,有,所以. 所以在内是增函数。

相关文档
最新文档