几何公理法简介

合集下载

立体几何四大公理八大定理

立体几何四大公理八大定理

立体几何四大公理八大定理《立体几何四大公理八大定理篇一》立体几何,那可是数学里的一座神秘大山。

说起立体几何四大公理八大定理,就像是在讲述一个神秘组织的规则一样。

先说说这四大公理吧。

公理就像是游戏的基本规则,大家都得默认它是对的,没什么可商量的余地。

就像那“如果一条直线上的两点在一个平面内,那么这条直线在此平面内”这条公理,我刚接触的时候就觉得,这不是理所当然的嘛。

可后来仔细一想,这就像在说一个小蚂蚁在一张纸上爬,如果它的两只脚都在纸上,那它整个身子肯定也在纸上啊。

这就像生活中的一些道理,看似简单,其实蕴含着很深的意义。

再看那八大定理,我的天呐,就像是迷宫里的一道道关卡。

有时候我感觉自己像是在黑暗中摸索的探险家,试图搞清楚这些定理之间的关系。

比如说,线面垂直的判定定理,要证明一条直线垂直一个平面,得找平面内两条相交直线都和这条直线垂直。

我每次做这种题的时候,就像在玩一场“找不同”的游戏,在复杂的图形里找出那两条特殊的相交直线。

我记得有一次考试,有一道立体几何的大题,就是要用到这些公理和定理。

我当时看着那图形,就像看一幅外星来的抽象画一样,完全蒙圈了。

我就想,这公理和定理怎么在这时候就像跟我捉迷藏似的呢?也许是我还不够熟练,就像一个新手厨师,虽然知道菜谱上的步骤,但是真到做的时候就手忙脚乱。

我开始在脑海里拼命回忆那些公理和定理,就像在翻找一个装满杂物的旧箱子,试图找到那个合适的工具。

可是有时候我又觉得这些公理和定理是不是有点太刻板了呢?我就想啊,在现实生活中,有些东西可没这么规规矩矩的。

比如说,我们看到的那些建筑,虽然也是基于立体几何的原理,但有些设计就很奇特,好像有点打破这些公理定理的感觉。

但也许这就是理论和实际的差距吧,理论是基础,实际是在这个基础上的创新。

就像我们学走路,先得学会基本的步伐,然后才能跳出自己的舞步。

这些公理和定理虽然有时候让我头疼得像要炸开一样,但我也知道,它们就像一把把钥匙,能打开立体几何这个神秘世界的大门。

初中几何证明的所有公理和定理

初中几何证明的所有公理和定理

初中几何证明的所有公理和定理几何学是数学的一个分支,研究平面和空间中的图形、形状、大小以及它们之间的关系。

在几何学中,有一些基本的公理和定理被广泛应用于证明其他几何结论。

以下是初中几何中常用的公理和定理。

一、公理1.尺规公理:任意两点可以用直尺连接,任意一点可以用剪刀间距来复原。

2.同位角公理:同位角互等。

3.平行公理:通过点外一条直线的直线,与这条直线平行的直线只有唯一一条。

4.直线偏转公理:过直线和不在直线上的一点,有且只有一条直线与该直线相交。

二、定理1.垂直平分线定理:平分一条线段的直线必垂直于该线段。

2.三角形内角和定理:三角形内角的和为180°。

3.直角三角形定理:在直角三角形中,两个直角三角形的边长和斜边相等。

4.点到直线的距离定理:点到直线的距离等于点到该直线上垂线的距离。

5.等腰三角形定理:等腰三角形的底边中点到顶点的距离等于底边的一半。

6.等边三角形定理:等边三角形的三条边相等。

7.三角形外角定理:三角形外角等于其对应内角的和。

8.直角三角形的勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。

9.海伦公式:已知三角形的三边长,可以通过海伦公式求解其面积。

10.等周定理:等周的两角相等,反之亦成立。

11.三角形中位线定理:三角形两边中点连线中位线,且平分第三边。

12.周长定理:四边形周长等于各边长的和。

13.三角形周长定理:三角形的周长等于三边长的和。

14.三角形中线定理:三角形中线等分中位线,且平分第三边。

15.三角形终边定理:一个角的终边上的点,到另一个角所在的直线的距离永远相等。

16.五边形内角和定理:五边形的内角和是540°。

17.钝角三角形的边长关系:钝角三角形两边长的平方和小于斜边长的平方。

18.三角形的相似性定理:对应角等价、对应边成比例的两个三角形为相似三角形。

19.平行线的性质定理:平行条边分别过枚角且长度成正比,则连线为平行线。

20.重叠三角形定理:如果两个角和一个边分别相等,则两个三角形相等。

欧几里得几何直观易懂的五条公理

欧几里得几何直观易懂的五条公理

欧几里得几何直观易懂的五条公理
当我们谈论欧几里得几何时,我们不得不提到欧几里得的五条公理。

这些公理是欧几里得几何的基础,它们为我们提供了一种直观易懂的方法来理解空间和形状之间的关系。

以下是欧几里得几何的五条公理:
1. 第一条公理,任意两点之间有一条直线段。

这条公理表明,任意两个点都可以用一条直线段连接起来。

这是我们对直线的最基本的认识,也是欧几里得几何的基础之一。

2. 第二条公理,有限直线段可以无限延伸。

这条公理表明,一条有限的直线段可以无限延伸。

这意味着直线是无限长的,我们可以一直延伸下去,而不会停止。

3. 第三条公理,任意圆心和半径可以确定一个圆。

这条公理表明,通过给定一个圆心和一个半径,我们可以确定一个唯一的圆。

圆是由所有到圆心距离等于半径的点组成的。

4. 第四条公理,所有直角都相等。

这条公理表明,如果两个直角相等,那么它们的度数相等。

这是我们对直角的性质的一种直观理解。

5. 第五条公理,如果一条直线上的某个点与另外两个点的连线的角相等,则这两条直线互相平行。

这条公理表明了平行线的概念,即如果两条直线上的角相等,那么这两条直线是平行的。

这是欧几里得几何中关于平行线的基本性质之一。

这些公理为我们提供了一种直观易懂的方法来理解空间和形状之间的关系,它们构成了欧几里得几何的基础,也为我们提供了一种直观的几何直观。

数学高一(北师大)必修21.4如何用立体几何的三个公理解决共点、共线、共面问题

数学高一(北师大)必修21.4如何用立体几何的三个公理解决共点、共线、共面问题

如何用立体几何的三个公理解决共点、共线、共面问题一.三个公理公理一:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理二:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.公理三:经过不在同一条直线上的三点,有且只有一个平面. 推论1:直线及其外一点确定一个平面 推论2:两相交直线确定一个平面 推论3:两平行直线确定一个平面二.应用归纳1.公理一、三,并能运用它解决点、线共面问题.2.公理二,并能运用它找出两个平面的交线及“三线共点”和“三点共线”问题.三.三个公理的应用1. 证明三线共点问题例1.已知:平面α⋂平面β=a ,平面α⋂平面γ=b ,平面γ⋂平面β=c 且c b a 、、不重合.求证:c b a 、、交于一点或两两平行.证明:(1)若三直线中有两条相交,不妨设a 、b 交于A . 因为,β⊂a ,故β∈A ,同理由于b γ⊂,所以γ∈A 即点A 是平面γ与平面β的一个交点. 而平面γ⋂平面β=c 于是由公理2可得c A ∈. 所以c b a 、、交于一点.(2)若三条直线没有两条相交的情况,则这三条直线两两平行. 综上所述,命题得证. 2. 证明三点共线问题例2.已知ABC ∆在平面α外,它的三边所在的直线分别交平面α于R Q P 、、.求证:R Q P 、、三点共线.证明:设ABC ∆所在的平面为β,则R Q P 、、为平面α与平面β的公共点,于是由A BC PQRα公理2可知:R Q P 、、三点共线于平面α与平面β的交线上.说明:在立体几何中证明点共线,线共点等问题时经常要用到公理2. 3.证明点共面问题例3.正方体1111D C B A ABCD -中,E 、F 、G 、H 、K 、L 分别是、、、111D A DD DC BC BB B A 、、111的中点.求证:这六点共面. 证明:连结BD 和KF , 因为 L E 、是CB CD 、的中点, 所以 BD EL //.又 矩形11B BDD 中BD KF //, 所以 EL KF //,所以由公理三的推论3知:EL KF 、可确定平面α, 所以 L K F E 、、、共于平面α, 同理 KL EH //, 故 L K H E 、、、共面β.又 平面α与平面β都经过不共线的三点L K E 、、,故 平面α与平面β重合,所以E 、F 、G 、H 、K 、L 共面于平面α. 同理可证α∈G ,所以,E 、F 、G 、H 、K 、L 六点共面. 说明:证明共面问题常有如下两个方法:(1)接法:先确定一个平面,再证明其余元素均在这个平面上;(2)间接法:先证明这些元素分别在几个平面上,再证明这些平面重合.CA A BB C D D EFGH KL1111。

几何原本的公设和公理

几何原本的公设和公理

几何原本的公设和公理几何学是一门研究空间中图形、大小、位置关系和性质的学科,它的基础在于公设和公理。

公设和公理是几何学中最基本的概念,它们构成了几何学体系的基础。

本文将详细介绍几何原本的公设和公理。

一、公设1.点线面公设点是没有长度、宽度和高度的,只有位置的概念。

线是由无数个点连成的,具有长度但没有宽度和高度。

面是由无数条线围成的,具有长度和宽度但没有高度。

2.尺规作图公设尺规作图是指用直尺和圆规来画出一些特定形状的图形。

尺规作图公设认为可以用直尺和圆规画出能够被分解为直线段与圆弧相交所得到的长度为1的线段。

3.平行公设平行公设认为如果一条直线上有两个点与另一条直线上两个点相对应且这两条直线不重合,则这两条直线必定平行。

二、公理1.欧几里德几何五大公理欧几里德几何是古希腊数学家欧几里德所创立的几何学体系。

欧几里德几何的五大公理包括:(1)任意两点之间都可以画一条直线。

(2)有限直线段可以无限延长。

(3)以一个点为圆心、以一个确定的长度为半径可以画出一个唯一确定的圆。

(4)所有直角相等。

(5)如果一条直线上有两点与另一条直线上两点相对应,则这两条直线不会相交,或者在相交处形成同侧的两个直角。

2.非欧几里德几何公理与欧几里德几何不同,非欧几里德几何并不认为第五公理是正确的。

非欧几里德几何有多种公理体系,其中最著名的是黎曼几何和洛巴奇夫斯基空间。

黎曼几何公理认为平面上不存在平行线,而洛巴奇夫斯基空间则认为平面上存在无穷多个平行线。

三、总结公设和公理是构成了现代数学中各个分支学科体系中最基本概念和规则,它们构成了各个分支学科体系的基础和框架。

在学习数学时,我们需要深入掌握这些基本概念和规则,以便更好地理解和应用数学知识。

初中数学平行几何五大公理

初中数学平行几何五大公理

平面几何五大公理欧几里得的《几何原本》,一开始欧几里得就劈头盖脸地给出了23个定义,5个公设,5个公理.其实他说的公设就是我们后来所说的公理,他的公理是一些计算和证明用到的方法(如公理1:等于同一个量的量相等,公理5:整体大于局部等)他给出的5个公设倒是和几何学非常紧密的,也就是后来我们教科书中的公理.分别是:公设1:任意一点到另外任意一点可以画直线公设2:一条有限线段可以继续延长公设3:以任意点为心及任意的距离可以画圆公设4:凡直角都彼此相等公设5:同平面内一条直线和另外两条直线相交,若在某一侧的两个内角和小于二直角的和,则这二直线经无限延长后在这一侧相交.在这五个公设(理)里,欧几里得并没有幼稚地假定定义的存在和彼此相容.亚里士多德就指出,头三个公设说的是可以构造线和圆,所以他是对两件东西顿在性的声明.事实上欧几里得用这种构造法证明很多命题.第五个公设非常罗嗦,没有前四个简洁好懂.声明的也不是存在的东西,而是欧几里得自己想的东西.这就足以说明他的天才.从欧几里得提出这个公理到1800年这大约2100年的时间里虽然人们没有怀疑整个体系的正确性,但是对这个第五公设却一直耿耿于怀.很多数学家想把这个公设从这个体系中去掉,但是几经努力而无果,无法从其他公设中推到处第五公设.同时数学家们也注意到了这个公设既是对平行概念的论述(故称之为平行公理)也是对三角形内角和的论述(即内角和公理).高斯对这一点是非常明白的,他认为欧几里得几何式物质空间的几何,1799年他说给他的朋友的一封信中表现了他相信平行公里不能从其他的公设中推导出来,他开始认真从事开发一个新的能够应用的几何.1813年,发展了他几何,最初称为反欧氏几何,后称星空几何,最后称非欧几何.在他的几何中三角形内角可以大于180度.当然得到这样的几何不是高斯一人,历史上有三个人.一个是他的搭档,另一个是高斯的朋友的儿子独立发现的.其中一个有趣的问题是,非欧氏几何中过直线外一点的平行线可以无穷.不久之后,俄国的罗巴切夫斯基也发现了一个新的非欧几何,即罗氏几何.他的三角形内角和是小于180度的.而19世纪初非欧式几何的发现,正是后来爱因斯坦发现广义相对论的基础.。

1.立体几何中基本概念、公理、定理、推论

1.立体几何中基本概念、公理、定理、推论

立体几何中基本概念、公理、定理、推论1. 三个公理和三条推论:(1)公理1:一条直线的两点在一个平面内,那么这条直线上的所有的点都在这个平面内.这是判断直线在平面内的常用方法.(2)公理2:如果两个平面有一个公共点,它们有无数个公共点,而且这无数个公共点都在同一条直线上.这是判断几点共线(证这几点是两个平面的公共点)和三条直线共点(证其中两条直线的交点在第三条直线上)的方法之一.(3)公理3:经过不在同一直线上的三点有且只有一个平面.推论1:经过直线和直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.公理3和三个推论是确定平面的依据.2. 直观图的画法(斜二侧画法规则):在画直观图时,要注意:(1)使045x o y '''∠=(或0135),x o y '''所确定的平面表示水平平面.(2)已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度和平行性不变,平行于y 轴的线段平行性不变,但在直观图中其长度为原来的一半.3. 公理4:平行于同一直线的两直线互相平行.(即平行直线的传递性)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等. (此定理说明角平移后大小不变) 若无“方向相同”,则这两个角相等或互补.4. 空间直线的位置关系:(1)相交直线――有且只有一个公共点.(2)平行直线――在同一平面内,没有公共点.(3)异面直线――不在同一平面内,也没有公共点.5. 异面直线⑴异面直线定义:不同在任何一个平面内的两条直线叫做异面直线.⑵异面直线的判定:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.⑶异面直线所成的角:已知两条异面直线a 、b ,经过空间任一点O 作直线a '、b ',使//a a '、//b b ',把a '与b '所成的锐角(或直角)叫做异面直线a 、b 所成的角(或夹角).⑷异面直线所成的角的求法:首先要判断两条异面直线是否垂直,若垂直,则它们所成的角为900;若不垂直,则利用平移法求角,一般的步骤是“作(找)—证—算”.注意,异面直线所成角的范围是π0,2⎛⎤⎥⎝⎦;求异面直线所成角的方法:计算异面直线所成角的关键是平移(中点平移,顶点平移以及补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,以便易于发现两条异面直线间的关系)转化为相交两直线的夹角. ⑸两条异面直线的公垂线:①定义:和两条异面直线都垂直且相交的直线,叫做异面直线的公垂线;两条异面直线的公垂线有且只有一条.而和两条异面直线都垂直的直线有无数条,因为空间中,垂直不一定相交.②证明:异面直线公垂线的证明常转化为证明公垂线与两条异面直线分别垂直.⑹两条异面直线的距离:两条异面直线的公垂线在这两条异面直线间的线段的长度.6. 直线与平面的位置关系:(1)直线在平面内;(2)直线与平面相交.其中,如果一条直线和平面内任何一条直线都垂直,那么这条直线和这个平面垂直.注意:任一条直线并不等同于无数条直线;(3)直线与平面平行.其中直线与平面相交、直线与平面平行都叫作直线在平面外.平面与平面的位置关系:(1)平行――没有公共点;(2)相交――有一条公共直线.7.线面平行、面面平行⑴直线与平面平行的判定定理: 如果不在一个平面(α)内的一条直线(l )和平面(α)内的一条直线(m )平行,那么这条直线(l )和这个平面(α)平行.,,////l m l m l ααα⊄⊂⇒ (作用:线线平行⇒线面平行)⑵直线与平面平行的性质定理:如果一条直线(l )和一个平面(α)平行,经过这条直线(l )的平面(β)和这个平面(α)相交(设交线是m ),那么这条直线(l )和交线(m )平行.//,,//l l m l m αβαβ⊂⋂=⇒ (作用: 线面平行⇒线线平行)⑶平面与平面平行的判定定理:如果一个平面(β)内有两条相交直线(,a b )分别平行于另一个平面(α),那么这两个平面(,βα)平行.,,,//,////a b a b P a b ββααβα⊂⊂⋂=⇒ (作用:线面平行⇒面面平行)推论:如果一个平面(β)内有两条相交直线(,a b )分别平行于另一个平面(α)内的两条直线(,a b ''), 那么这两个平面(,βα)平行.,,,,,//,////a b a b P a b a a b b ββααβα''''⊂⊂⋂=⊂⊂⇒(作用: 线线平行⇒面面平行) ⑷平面与平面平行的性质定理:如果两个平行平面(,αβ)同时与第三个平面(γ)相交(设交线分别是,a b ),那么它们的交线(,a b )平行.//,,//a b a b αβαγβγ⋂=⋂=⇒ (作用: 面面平行⇒线线平行)推论:如果两个平面(,αβ)平行,则一个平面(α)内的一条直线(a )平行于另一个平面(β). //,//a a αβαβ⊂⇒ (作用: 面面平行⇒线面平行)8.线线垂直、线面垂直、面面垂直⑴直线与平面垂直的判定定理:如果一条直线(l )和一个平面(α)内的两条相交直线(,m n )都垂直,那么这条直线(l )垂直于这个平面(α).,,,,l m l n m n m n P l ααα⊥⊥⊂⊂⋂=⇒⊥ (作用: 线线垂直⇒线面垂直)⑵直线与平面垂直的性质定理:如果一条直线(l )和一个平面(α)垂直,那么这条直线(l )和这个平面(α)内的任意一条直线(m )垂直.,l m l m αα⊥⊂⇒⊥ .⑶三垂线定理: 其作用是证两直线异面垂直和作二面角的平面角①定理: 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.②逆定理:在平面内的一条直线,如果它和这个平面的一条斜线,那么它也和这条斜线在平面内的射影垂直.(作用: 线线垂直⇒线线垂直)⑷平面与平面垂直的判定定理: 如果一个平面(α)经过另一个平面(β)的一条垂线(l ),那么这两个平面(,αβ)互相垂直.,l l βααβ⊥⊂⇒⊥ (作用: 线面垂直⇒面面垂直)⑸平面与平面垂直的性质定理:如果两个平面(,αβ)垂直,那么在一个平面(α)内垂直于它们交线(m )的直线(l )垂直于另一个平面(β).,,,m l l m l αβαβαβ⊥⋂=⊂⊥⇒⊥ (作用: 面面垂直⇒线面垂直)9. 直线和平面所成的角⑴最小角定理:平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任意一条直线所成的角中最小的角.满足关系式:12cos cos cos θθθ=⋅θ是平面的斜线与平面内的一条直线所成的角;1θ是平面的斜线与斜线在平面内的射影所成的角;2θ是斜线在平面内的射影与平面内的直线所成的角.⑵直线和平面所成的角: 平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角. 范围:[0,90]10.二面角⑴二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,每个半平面叫做二面角的面.棱为l ,两个面分别是α、β的二面角记为l αβ--.二面角的范围:[0,]π⑵二面角的平面角:在二面角的棱上取一点,在二面角的面内分别作两条垂直于棱的射线,这两条射线所成的角叫做二面角的平面角.11.空间距离⑴点到平面的距离:一点到它在一个平面内的正射影的距离.⑵直线到与它平行平面的距离:一条直线上的任一点到与它平行的平面的距离.⑶两个平行平面的距离:两个平行平面的公垂线段的长度.⑷异面直线的距离12. 多面体有关概念:(1)多面体:由若干个平面多边形围成的空间图形叫做多面体.围成多面体的各个多边形叫做多面体的面.多面体的相邻两个面的公共边叫做多面体的棱.(2)多面体的对角线:多面体中连结不在同一面上的两个顶点的线段叫做多面体的对角线.(3)凸多面体:把一个多面体的任一个面伸展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫做凸多面体.13.棱柱⑴棱柱的定义: 有两个面互相平行,其余每相邻两个面的交线互相平行,这样的多面体叫棱柱.两个互相平行的面叫棱柱的底面(简称底);其余各面叫棱柱的侧面;两侧面的公共边叫棱柱的侧棱;两底面所在平面的公垂线段叫棱柱的高(公垂线段长也简称高).⑵棱柱的分类:侧棱不垂直于底面的棱柱叫斜棱柱.侧棱垂直于底面的棱柱叫直棱柱.底面是正多边形的直棱柱叫正棱柱.棱柱的底面可以是三角形、四边形、五边形……这样的棱柱分别叫三棱柱、四棱柱、五棱柱……⑶棱柱的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等,直棱柱的各个侧面都是矩形,正棱柱的各个侧面都是全等的矩形.②与底面平行的截面是与底面对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.⑷平行六面体、长方体、正方体:底面是平行四边形的四棱柱是平行六面体.侧棱与底面垂直的平行六面体叫直平行六面体,底面是矩形的直平行六面体叫长方体,棱长都相等的长方体叫正方体.⑸①平行六面体的任何一个面都可以作为底面;②平行六面体的对角线交于一点,并且在交点处互相平分;③平行六面体的四条对角线的平方和等于各棱的平方和;④长方体的一条对角线的平方等于一个顶点上三条棱长的平方和.14.棱锥⑴棱锥的定义: 有一个面是多边形,其余各面是有一个公共顶点的三角形,这样的多面体叫棱锥其中有公共顶点的三角形叫棱锥的侧面;多边形叫棱锥的底面或底;各侧面的公共顶点()S ,叫棱锥的顶点,顶点到底面所在平面的垂线段()SO ,叫棱锥的高(垂线段的长也简称高).⑵棱锥的分类:(按底面多边形的边数)分别称底面是三角形,四边形,五边形……的棱锥为三棱锥,四棱锥,五棱锥…… ⑶棱锥的性质:定理:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积比等于顶点到截面的距离与棱锥高的平方比. 中截面:经过棱锥高的中点且平行于底面的截面,叫棱锥的中截面⑷正棱锥:底面是正多边形,顶点在底面上的射影是底面的中心的棱锥叫正棱锥. ⑸正棱锥的性质:①正棱锥的各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高(叫斜高)也相等。

公理法

公理法

公理法选取少数不加定义的原始概念(基本概念)和无条件承认的规定(公理)作为出发点,再加以严格的逻辑推理,将某一数学分支建成演绎系统的方法,叫数学系统的公理化方法,简称“公理法”.两千多年来,欧几里得的《几何原本》在传播几何知识方面做出了巨大的贡献,并一直被人们作为标准的教科书使用.《几何原本》的特点是建立了一个比较严密的几何体系,提出了几何学的“根据”和它的逻辑结构问题.但是,随着时间的推移,人们逐渐发现《几何原本》的体系还存在不少破绽和漏洞,例如使用一些未知的定义来解释另一个未知的定义,这样的定义既不能逻辑地确定几何名词和术语,也不能在逻辑推理中起作用;《几何原本》也使用了一些未曾定义的概念,如“连续”的概念就未定义而被使用.正是由于对《几何原本》在逻辑结构方面存在的破绽和漏洞的发现,推动了几何学的不断发展.1899年,德国数学家希尔伯特在他的《几何基础》一书中,首次用公理化的方法提出了一个比较完善的几何学的公理系统,即希尔伯特公理体系,克服了《几何原本》中的一些缺点.希尔伯特公理体系的主要思想包含:(1)把几何中的点、直线、平面等概念,作为不加定义的“原始”概念,叫基本对象.(2)给出几何元素的一些基本关系:结合关系、顺序关系、合同关系.(3)规定了五组公理,用它阐述基本对象的性质.希尔伯特还提出建立一个公理化体系的原则,即在一个公理体系中,取哪些为公理,应包含多少公理,必须考虑以下三点:第一,相容性,即各公理必须是互相不矛盾的,同存于一个体系中.第二,独立性,即每条公理都是各自独立的,不能由其他公理推出.第三,完备性,即体系中所包含的公理应足以推出本学科的任何命题.欧几里得的几何体系实际上是公理化体系的雏形,常称之为古典公理体系.公理化方法给几何学的研究带来了一个新的观点.在公理体系中,由于基本对象不加以定义,因此就不必考虑研究对象的直观形象,只要研究抽象的对象之间的关系、性质.凡符合公理体系的元素都可以作为这个几何体系的直观解释,或称几何学的模型.因此,几何学的研究对象更广泛,其含义也更抽象.20世纪以来,由于公理化方法在研究几何基础方面所取得的成就,促使公理化方法渗透到数学的其他分支,诸如代数、泛函、拓朴等比较抽象的数学分支的研究.公理化方法对近代数学的发展所产生的巨大影响,已成为举世公认的事实,公理化方法早已超过数学理论范围,进入其他自然科学的领域.如本世纪40年代波兰数学家巴拿赫完成了理论力学的公理化,物理学家还将相对论表述为公理体系等等.当然,公理化方法若不与实验方法相结合,不与科学方法相结合,也不会更好地解决和发现问题.公理法选取少数不加定义的原始概念(基本概念)和无条件承认的规定(公理)作为出发点,再加以严格的逻辑推理,将某一数学分支建成演绎系统的方法,叫数学系统的公理化方法,简称“公理法”.两千多年来,欧几里得的《几何原本》在传播几何知识方面做出了巨大的贡献,并一直被人们作为标准的教科书使用.《几何原本》的特点是建立了一个比较严密的几何体系,提出了几何学的“根据”和它的逻辑结构问题.但是,随着时间的推移,人们逐渐发现《几何原本》的体系还存在不少破绽和漏洞,例如使用一些未知的定义来解释另一个未知的定义,这样的定义既不能逻辑地确定几何名词和术语,也不能在逻辑推理中起作用;《几何原本》也使用了一些未曾定义的概念,如“连续”的概念就未定义而被使用.正是由于对《几何原本》在逻辑结构方面存在的破绽和漏洞的发现,推动了几何学的不断发展.1899年,德国数学家希尔伯特在他的《几何基础》一书中,首次用公理化的方法提出了一个比较完善的几何学的公理系统,即希尔伯特公理体系,克服了《几何原本》中的一些缺点.希尔伯特公理体系的主要思想包含:(1)把几何中的点、直线、平面等概念,作为不加定义的“原始”概念,叫基本对象.(2)给出几何元素的一些基本关系:结合关系、顺序关系、合同关系.(3)规定了五组公理,用它阐述基本对象的性质.希尔伯特还提出建立一个公理化体系的原则,即在一个公理体系中,取哪些为公理,应包含多少公理,必须考虑以下三点:第一,相容性,即各公理必须是互相不矛盾的,同存于一个体系中.第二,独立性,即每条公理都是各自独立的,不能由其他公理推出.第三,完备性,即体系中所包含的公理应足以推出本学科的任何命题.欧几里得的几何体系实际上是公理化体系的雏形,常称之为古典公理体系.公理化方法给几何学的研究带来了一个新的观点.在公理体系中,由于基本对象不加以定义,因此就不必考虑研究对象的直观形象,只要研究抽象的对象之间的关系、性质.凡符合公理体系的元素都可以作为这个几何体系的直观解释,或称几何学的模型.因此,几何学的研究对象更广泛,其含义也更抽象.20世纪以来,由于公理化方法在研究几何基础方面所取得的成就,促使公理化方法渗透到数学的其他分支,诸如代数、泛函、拓朴等比较抽象的数学分支的研究.公理化方法对近代数学的发展所产生的巨大影响,已成为举世公认的事实,公理化方法早已超过数学理论范围,进入其他自然科学的领域.如本世纪40年代波兰数学家巴拿赫完成了理论力学的公理化,物理学家还将相对论表述为公理体系等等.当然,公理化方法若不与实验方法相结合,不与科学方法相结合,也不会更好地解决和发现问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章几何公理法简介
6.6 几何公理体系的三个基本问题
任何公理体系中,包括初等几何公理体系,都有三个基本问题:
①无矛盾性问题(即和谐问题);
②最少个数问题(即独立性问题);
③完备性问题.
第一个问题要求公理体系的各个公理以及经过一串推导得出的命题不能相互矛盾,首先要求公理之间不相矛盾.这显然是必要的条件.
证明公理体系的和谐性常用模型法.公理法是抽象的,它所考虑的对象(几何元素点、直线、平面)以及对象之间的关系或运算(几何上讲的接合、顺序、合同),都是不加定义的,但要满足公理的要求.设给定一组公理,在某些对象间建立了确定性质的相互关系.从所采用的公理,可以对这些对象的这些性质作逻辑推理,而完全不必理睬它们其它一切可能的性质,只要公理中没有提到.
所以一个已知公理体系的对象可以是任意种类的事物,而且在公理中说到的它们之间的关系,可以有任何具体意义,只要公理的要求得到满足.
给定一组公理,具体挑选一组事物使这组公理得到满足,就说给这组公理做了一个实现或解释.实现这些公理的对象的集合,构成这公理体系的一模型.
一个公理体系若能以某种方法用模型来实现,那么这公理体系就是和谐的.
举一具体的例.我们给第一组公理I1-8造一个模型.
取一个四面体,约定将它的顶点叫做“点”,棱叫做“直线”,面叫做“平面”.在这个实现里,构成几何元素的集合是四点、六直线、四平面.
正象在任何实现里一样,此刻应将接合性具体叙述出来.我们约定,跟四面体ABCD的顶点例如A所代表的“点”相接合的“直线”就是含顶点A的棱,跟“点”A接合的“平面”就是四面体含顶点A的面;跟“直线”AB接合的“平面”就是四面体含棱AB的面.容易验明,在这个模型里,公理I1-8全部满足.
这四面体模型的存在表明八条接合公理是和谐的.
这个模型的存在,还给我们带来一个更宝贵的信息,即从第一组接合公理不能推出几何元素的个数是无穷的.因为四面体模型只有4+6+4=14个元素却已实现了它.初等几何公理体系的和谐性证明是相对的,即有条件的。

一般的几何基础书上介绍平面几何公理I1-8,II-V的和谐性证明时,是给出一个笛卡尔实现.结论是:
倘若实数的算术是和谐的,则公理I-V是和谐的.
第二个基本问题是公理的独立性问题.如果公理体系中有一个公理可从其余公理推导出来,它就不是独立的,可以把它从公理表中挪走,减少一个公理.试证第五公设的过程就是这样一个过程.但是为了简化演绎过程,有时也多列上一条公理.例如近年的中学几何课本就把三角形全等的三条定理都当作公理用.
还须注意,一种几何可以用不同的公理体系作为基础,所以去掉多余的公理(如果有的话)以后,一般说来,可以得到不同的最少个数的体系.因此,最少个数的公理体系决不是唯一的.
一组公理的独立性,虽非必要的,却是我们所期望的.设一组公理含有n个和谐的公理
n A A A ,,,21 .要表明其中一个i A 对于其余公理的独立性,办法是把它化为一个和谐的问题,即证明公理组(i A 表i A 的反面)
n i i i A A A A A A ,,,,,,,1121 +-
的和谐性。

这是因为如果i A 能从n i i A A A A ,,,,,111 +-推出,上一行的公理中就将既含i A 又含i A ,就不和谐了.
公理法的第三个基本问题是完备性问题
定义1 设一个公理体系具有两个模型∑和∑',如果在∑和∑'的对象之间能建立这样的一一对应,使得∑中元素间的相互关系或命题,总跟∑'中相应元素间的相互关系或命题相对应,则称这两模型是同构的.
定义2 如果一个公理体系的各个模型是同构的,这公理体系就称为完备的.
由于希尔伯特构作的公理体系使得它有一个笛卡尔模型同构,因而相互同构.所以公理体系I-V 是完备的.
几何公理的三个基本问题中,和谐性是必要的,独立性和完备性不是必要的.正在发展中的数学分支一般不具完备性.数学中一些公理体系正因为不具备完备性,才有各色各样的模型,显示出这公理体系的广泛应用.。

相关文档
最新文档